[go: up one dir, main page]

WO2014175307A1 - 測定対象溶液における有機物の分析方法 - Google Patents

測定対象溶液における有機物の分析方法 Download PDF

Info

Publication number
WO2014175307A1
WO2014175307A1 PCT/JP2014/061368 JP2014061368W WO2014175307A1 WO 2014175307 A1 WO2014175307 A1 WO 2014175307A1 JP 2014061368 W JP2014061368 W JP 2014061368W WO 2014175307 A1 WO2014175307 A1 WO 2014175307A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
activated carbon
organic substance
analysis
organic
Prior art date
Application number
PCT/JP2014/061368
Other languages
English (en)
French (fr)
Inventor
崇康 杉原
河原 幸春
大濱 理
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/787,209 priority Critical patent/US20160116446A1/en
Priority to CN201480023640.2A priority patent/CN105164527A/zh
Priority to JP2015513783A priority patent/JPWO2014175307A1/ja
Priority to EP14787514.0A priority patent/EP2990789A4/en
Publication of WO2014175307A1 publication Critical patent/WO2014175307A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn

Definitions

  • the present invention relates to a method for analyzing an organic substance in a measurement target solution for analyzing a very small amount of organic substance contained in the measurement target solution.
  • Patent Document 1 discloses an organic component analysis method for analyzing an organic component (organic matter) contained in a high-concentration salt solution (measurement target solution) such as a plating solution or a battery electrolyte (analysis method of organic matter in the measurement target solution). Is disclosed.
  • organic components are extracted from a high-concentration salt solution and analyzed by solid-phase extraction using activated carbon. More specifically, a sampling solution sampled from a high-concentration salt solution containing an organic component is passed through activated carbon, the organic component in the sampling solution is adsorbed on the activated carbon, and a solvent is passed through the activated carbon after the post-adsorption step. A step of eluting the adsorbed organic component, a step of concentrating and drying the solvent from which the organic component has been eluted, and a step of performing chromatographic analysis using the organic component after concentration and drying as a sample. ing.
  • Patent Document 1 is an analysis method mainly intended to analyze mass ppm order (one millionth order) organic matter contained in the plating solution, and analyzes mass ppb order organic matter. This is because the analysis method is not intended.
  • This invention is made
  • An analysis method of an organic substance in a measurement target solution includes a sampling process, an adsorption process, an extraction process, a sample preparation process, and an analysis process.
  • sampling step ... Sampling solution of 500 ml or less is collected from the solution to be measured whose organic substance content is unknown.
  • Adsorption step ... Sampling solution is passed through activated carbon to adsorb organic matter on the activated carbon.
  • the specific surface area of the activated carbon used in the adsorption step is 800 m 2 / g or more, and the amount of activated carbon with respect to the sampling solution is 0.025 g / ml or more.
  • the flow rate of the sampling solution on the discharge end side of the activated carbon in the adsorption step is 7.5 ml / min or less.
  • extraction step A hydrophobic solvent is passed through activated carbon on which organic substances are adsorbed, and the organic substances are extracted into the hydrophobic solvent.
  • sample preparation step A sample solution for analysis of organic matter is prepared using a hydrophobic solvent from which the organic matter has been extracted.
  • Analysis step A sample solution for analysis of organic matter is prepared using a hydrophobic solvent from which the organic matter has been extracted.
  • the components contained in the sample solution are measured by a chromatograph, and it is analyzed whether or not an organic substance of 20 mass ppb or less is contained in the measurement target solution.
  • the presence or absence of an organic substance of 20 mass ppb or less contained in the measurement target solution can be analyzed.
  • the organic substance analysis method in the measurement target solution of the present embodiment includes a sampling process, an adsorption process, an extraction process, a sample preparation process, and an analysis process.
  • a sampling solution of 500 ml or less is collected from the measurement target solution whose organic content is unknown.
  • the sampling solution is passed through activated carbon to adsorb organic matter on the activated carbon.
  • the specific surface area of the activated carbon used in the adsorption step is 800 m 2 / g or more, and the amount of the activated carbon with respect to the sampling solution is 0.025 g / ml or more.
  • the flow rate of the sampling solution on the discharge end side of the activated carbon in the adsorption step is 7.5 ml / min or less.
  • the sample solution used for the analysis of organic substance is produced using the hydrophobic solvent from which organic substance was extracted.
  • the component contained in a sample solution is measured with a chromatograph, and it is analyzed whether the organic substance of 20 mass ppb or less is contained in the measuring object solution.
  • the presence or absence of the organic matter contained in the measurement target solution can be analyzed even if the organic matter contained in the measurement target solution is 20 mass ppb or less. That is, by using a predetermined amount or more of activated carbon having a specific surface area in the adsorption step, a sufficient contact area between the activated carbon and the sampling solution can be secured, and the liquid passing speed on the exhaust side of the activated carbon should be a predetermined value or less. This is because a sufficient time for the sampling solution to contact the activated carbon (that is, the time for the organic matter to be adsorbed on the activated carbon) can be secured.
  • the organic substance analysis method in the measurement target solution of the present embodiment can also be used for analysis of a measurement target solution that may contain an organic substance exceeding 20 mass ppb.
  • ⁇ 2> As a method for analyzing an organic substance in a measurement target solution according to the present embodiment, in an analysis step, standard data obtained by measuring a component contained in a standard solution having a known organic substance content by chromatography is acquired. By comparing the analytical data obtained by measuring the sample solution and its standard data, the form of quantifying the content of the organic matter contained in the measurement target solution can be mentioned.
  • a method for analyzing an organic substance in a solution to be measured a method of using a programmed temperature vaporization (PTV) method for introducing a sample solution into a chromatograph in an analysis step may be mentioned. it can.
  • PTV programmed temperature vaporization
  • the PTV method is a method for introducing a sample solution using a PTV inlet capable of raising the temperature.
  • the sample solution is heated in accordance with a predetermined temperature raising program to vaporize organic substances contained in the sample solution and chromatograph it. Introduce.
  • the resolution of the components can be increased by utilizing the difference in vaporization temperature of the components (including organic substances) contained in the measurement solution. As a result, the organic substance contained in the sampling solution can be analyzed more accurately.
  • the measurement target solution may include a redox flow battery electrolyte solution (hereinafter referred to as an RF electrolyte solution).
  • an RF electrolyte solution a redox flow battery electrolyte solution
  • An RF battery is a secondary battery that performs charge and discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to battery cells in which a diaphragm is interposed between a positive electrode and a negative electrode.
  • An RF electrolyte solution used for such an RF battery usually uses a metal element whose valence is changed by oxidation-reduction as an active material.
  • a metal element whose valence is changed by oxidation-reduction as an active material.
  • iron (Fe 2+ / Fe 3+ ) -chromium (Cr 3+ / Cr 2+ ) -based RF batteries using Fe ions as the positive electrode active material and Cr ions as the negative electrode active material, or V ions as the active material of both electrodes And vanadium (V 2+ / V 3+ -V 4+ / V 5+ ) based RF batteries.
  • the RF battery charging / discharging is performed by an electrochemical reaction (electrode reaction) on the electrode.
  • electrochemical reaction electrochemical reaction
  • the electrodes do not function as designed, the battery characteristics such as battery output and battery capacity are reduced.
  • impurities adhere to the surface of the electrode and the reactive sites on the electrode are covered, the surface area of the electrode is substantially reduced, leading to a decrease in battery output and a decrease in battery capacity.
  • impurities particularly organic substances have been found to have a very serious effect on the reduction of the electrode reaction.
  • the organic matter analysis method in the measurement sample of the present embodiment for quantification of the organic matter in the RF electrolyte solution, it is possible to grasp in advance the presence or absence of an organic matter of 20 mass ppb or less in the RF electrolyte solution used in the RF battery.
  • An RF battery that exhibits stable performance can be manufactured.
  • the analysis method of this embodiment can also be used for sampling inspection of the RF electrolyte after the operation of the RF battery.
  • the analysis method of the organic substance in the measurement target solution of the present embodiment is not limited to being used for the analysis of the organic substance in the RF electrolyte solution.
  • the analysis method of this embodiment can also be used for analysis of organic matter in a high concentration salt solution in which 50 g or more of inorganic salt is dissolved per 1000 ml of solvent, such as analysis of organic matter in a plating solution.
  • the organic substance in the measurement target solution of the present embodiment in which the measurement target solution is an RF electrolyte may be exemplified by the organic substance being phthalates.
  • activated carbon in the adsorption step, activated carbon can be divided into a plurality of units, and a sampling solution can be continuously passed through each unit.
  • the said form can adjust easily to the liquid flow rate by the side of discharge
  • a form in which a plurality of tubes filled with activated carbon are prepared and these tubes are connected in the axial direction can be exemplified.
  • a form in which activated carbon is filled in a tube in which at least one constriction portion is formed inside that is, a form in which the activated carbon is divided up and down across the constriction portion can be exemplified.
  • a form in which activated carbon is divided into a plurality of tubes installed in the automatic extractor can also be mentioned. In this case, the sampling solution discharged from the nth tube may be introduced into the (n + 1) th tube (n is a natural number).
  • the flow rate of the sampling solution in the adsorption step and the flow rate of the hydrophobic solvent in the extraction step are The liquid passing speed can be set almost as set, and the liquid passing speed can be kept almost constant. Therefore, the stability and reliability of the analysis result of organic matter can be improved.
  • the ability to suppress contamination (contamination) of organic substances into the sampling solution by automation also contributes to the improvement of the stability and reliability of the analysis results of organic substances.
  • Embodiment 1 demonstrates the example which analyzes (quantifies) the organic substance contained in vanadium system RF electrolyte solution (measuring solution).
  • the RF electrolyte is an inorganic salt solution containing vanadium ions as an active material.
  • the vanadium ion concentration may be 1 M or more and 3 M or less
  • the sulfate ion concentration may be 1 M or more and 4 M or less.
  • the average valence of the RF electrolyte is approximately 3.3 or more and 3.7 or less.
  • Such an average valence RF electrolyte solution has a good balance of vanadium ion concentration of each valence both as the electrolyte solution on the positive electrode side and the electrolyte solution on the negative electrode side. Therefore, when an RF battery is configured using such an average valence RF electrolyte, the capacity of the RF battery can be made very high.
  • the solution to be measured may be an iron-chromium RF electrolyte.
  • the vanadium-based RF electrolyte solution may contain organic substances in the production process.
  • organic substances may be mixed into the RF electrolyte from an atmosphere in contact with the components of the RF battery or the RF electrolyte.
  • the organic substance include tetradecene (C 14 H 28 ), octanethiol (C 8 H 18 S), n-decane (C 10 H 22 ), and dioctyl phthalate (C 24 H 38 O) which is a kind of phthalate ester. And esters containing 4 ).
  • the conventional analysis method uses a large amount of RF of 1000 ml or more to quantify the organic substances in the RF electrolyte solution. It is necessary to sample the electrolyte for quantification. When such a large amount of sampling solution is used, it takes a long time for quantification, and the RF electrolyte used for the production of the RF battery is greatly reduced. Therefore, in the first embodiment, the following organic substance analysis method in the measurement target solution is performed.
  • the organic substance analysis method in the measurement target solution used in the first embodiment includes a sampling process, an adsorption process, an extraction process, a sample preparation process, and an analysis process. Each process will be described sequentially.
  • a sampling solution of 500 ml or less is collected from the produced RF electrolyte.
  • the sampling solution to be collected can be 300 ml or less, 200 ml or less, or 100 ml or less.
  • the sampling solution is passed through activated carbon, and the organic matter contained in the sampling solution is adsorbed on the activated carbon.
  • the activated carbon in the adsorption step one having a specific surface area of 800 m 2 / g or more is used, and the amount of activated carbon used is 0.025 g or more per 1 ml of the sampling solution. By doing so, the surface area of the activated carbon on which the organic substance contained in the sampling solution is adsorbed can be sufficiently secured. Further, in the adsorption step, adjustment is made so that the liquid passing speed on the discharge end side of the activated carbon is 7.5 ml / min or less. By doing so, sufficient contact time between the sampling solution and the activated carbon can be ensured.
  • the activated carbon may be divided into a plurality of units.
  • the liquid flow rate can be adjusted to 7.5 ml / min or less.
  • 1 includes a lower pipe 2 having a cock 2c on the discharge side, and an upper pipe 3 fitted into an inlet 2i of the lower pipe 2.
  • the inlet 2i of the lower pipe 2 is formed in a wide opening, and the portion on the outlet 3o side of the upper pipe 3 can be easily fitted into the inlet 2i.
  • a cock is not formed on the discharge side of the upper pipe 3, and the inlet 3i is not wide.
  • Each of these tubes 2 and 3 is filled with glass wool 9, activated carbon 8 and glass wool 9 in this order. If the sampling solution is introduced from the inlet 3i of the upper tube 3, the sampling solution is stored in both tubes 3, 3. 2 is passed through the activated carbon 8 and discharged from the outlet 2 o of the lower pipe 2. According to the adsorption device 1 having such a connecting pipe structure, the flow rate of the sampling solution is reduced in the upper pipe 3, and the flow rate of the sampling solution is also reduced in the lower pipe 2 having the cock 2c. It is possible to easily adjust the liquid passing speed on the discharge end side to 7.5 ml / min or less.
  • the glass wool 9 serves to prevent the activated carbon 8 from dropping from the tubes 2 and 3 and to reduce the flow rate of the sampling solution.
  • the adsorption device 1 is preferably subjected to pretreatment (conditioning) for the purpose of washing the adsorbed material adsorbed by the activated carbon and improving the hydrophilicity of the activated carbon before use.
  • a hydrophobic solvent such as benzene, an alcohol such as ethanol, and distilled water are passed through activated carbon in this order.
  • the adsorbate can be washed with a hydrophobic solvent, the hydrophobic solvent can be washed with alcohol, and the hydrophilicity of the activated carbon can be improved with distilled water.
  • the sampling solution is introduced from the inlet 3 i of the upper pipe 3 of the adsorption device 1.
  • the surface area of the activated carbon 8 on which the organic matter is adsorbed is sufficiently secured and the contact time between the activated carbon 8 and the sampling solution is also sufficiently secured, the organic matter contained in the sampling solution has a high yield. Is adsorbed on the activated carbon 8.
  • a hydrophobic solvent is passed through the activated carbon 8 of the adsorption device 1, and the organic matter adsorbed on the activated carbon is dissolved in the hydrophobic solvent and extracted.
  • water in the activated carbon 8 can be removed by passing alcohol such as ethanol through the activated carbon 8.
  • Alcohol also plays a role of improving the familiarity between the hydrophobic solvent that is passed through the activated carbon 8 and the activated carbon 8 in the extraction of the organic matter.
  • hydrophobic solvent used in the extraction step examples include organic solvents such as benzene.
  • the organic substance adsorbed on the activated carbon 8 can be efficiently recovered by passing the hydrophobic solvent.
  • sample preparation process a sample solution for analysis of organic matter is prepared using a hydrophobic solvent from which the organic matter has been extracted. Specifically, first, the hydrophobic solvent from which the organic substance has been extracted is dried to concentrate the organic substance.
  • a vacuum evaporator can be used to concentrate the organic matter. As concentration conditions using a vacuum evaporator, it is 0.08 MPa or more and 0.1 MPa or less, 65 degreeC or more and 80 degrees C or less x15 minutes or more and 30 minutes or less is mentioned, for example.
  • a sample solution in which the organic matter is dissolved in a fixed volume of solvent is prepared.
  • the solvent used for preparing the sample solution is preferably a low boiling point solvent such as acetone (a solvent having a lower boiling point than the boiling point of the organic substance to be quantified).
  • the volume of the sample solution is preferably about 1.5 ml or more and 5.0 ml or less.
  • the temperature raising program may be appropriately changed depending on the composition of the components of the sample solution. For example, when the organic substance is dioctyl phthalate and the solvent for dissolving the organic substance is acetone, the temperature raising program for the PTV inlet is a first heating period in which heating is performed at 60 ° C. to 70 ° C. for 2.5 minutes or less. And a second heating period in which heating is performed at 120 ° C. to 150 ° C.
  • a third heating period in which heating is performed at 300 ° C. to 350 ° C. for 5.0 minutes or less. be able to. It is preferable that the rate of temperature rise during the transition to each heating period is 200 ° C./min or more and 300 ° C./min or less.
  • the solvent (acetone) is vaporized, but the organic substance (dioctyl phthalate) is hardly vaporized.
  • Vaporized acetone is exhausted without being introduced into the chromatograph.
  • the organic substance to be measured is vaporized, that is, dioctyl phthalate is vaporized. Vaporized dioctyl phthalate is introduced into the column provided in the chromatograph.
  • the high boiling point component of the sample solution is vaporized, and the organic substance (dioctyl phthalate) is completely vaporized accordingly. This vaporized component is also introduced into the chromatographic column.
  • the column temperature rising program is, for example, a temperature rising start temperature of 60 ° C. to 100 ° C., heating the column to 350 ° C. at a temperature rising rate of about 20 ° C./min, and holding the column at 350 ° C. for 20 minutes or less.
  • a temperature program can be mentioned.
  • the column temperature setting affects peak separation, ie, component resolution.
  • the analysis of organic substances is performed automatically by the computer that controls the chromatograph.
  • standard data obtained by chromatographic analysis of a standard solution in which the content of organic substances is known in advance is acquired, and organic substances are quantified based on the standard data. It may be simply analyzed whether or not an organic substance having a mass of 20 ppb or less is contained in the measurement target solution.
  • the measurement target solution can be quantified. This is mainly because the organic matter contained in the sampling solution can be adsorbed on the activated carbon in a high yield in the adsorption step in the analysis method.
  • Test Example 1 In Test Example 1, the organic matter contained in the vanadium RF electrolyte was actually quantified as shown below.
  • a vanadium RF electrolyte solution having a vanadium ion concentration of 1.8M and a sulfate ion concentration of 3M was prepared.
  • This RF electrolyte solution intentionally contained dioctyl phthalate (organic substance), and its concentration was 10.0 mass ppb. This concentration is only an example, and the same analysis is possible as long as the concentration is 0.5 mass ppb or more at the detection limit.
  • the allowable content of dioctyl phthalate in the RF electrolyte is 10 mass ppb or less.
  • An adsorption device 1 having a connecting pipe structure shown in FIG. 1 was prepared.
  • the lower pipe 2 and the upper pipe 3 constituting the adsorption device 1 are made of glass.
  • the lower tube 2 was filled with glass wool 9, and 3.5 g of bead-shaped activated carbon 8 was packed thereon, and further glass wool 9 was packed.
  • the upper tube 3 was also filled with glass wool 9, on which 4.5 g of bead-shaped activated carbon 8 was packed, and further glass wool 9 was packed.
  • ⁇ Pretreatment of adsorption device ⁇ The adsorption device 1 was subjected to pretreatment for cleaning the activated carbon 8 and making it hydrophilic. Specifically, 5 ml of benzene was passed through the two-stage column 10 times, then 5 ml of ethanol was passed 3 times, and finally 20 ml of distilled water was passed 3 times.
  • a 200 ml sampling solution sampled from the RF electrolyte was passed through the activated carbon 8 of the adsorption device 1 subjected to the pretreatment. Specifically, the sampling solution was introduced from the inlet 3 i of the upper pipe 3 of the adsorption device 1. At that time, the cock 2c of the lower pipe 2 was adjusted, and the dropping rate of the sampling solution discharged from the outlet 2o of the lower pipe 2 was adjusted to 7.5 ml / min or less. The sampling solution was discarded.
  • the collected liquid was dried with a vacuum evaporator.
  • the inside of the evaporator into which the recovered liquid was put was previously washed with acetone three times and with benzene once.
  • the flat bottom flask was rotated while reducing the pressure inside the flat bottom flask to concentrate and dry the benzene in the collected liquid.
  • the concentration conditions were 0.1 MPa and 65 ° C. ⁇ 20 minutes.
  • ⁇ Preparation of sample solution 2 ml of acetone was put into the flat bottom flask after concentration of benzene, and dioctyl phthalate was dissolved in acetone. The acetone solution was recovered and transferred to a syringe with a disk filter. Then, the filtrate was transferred from the syringe to the vial through the disk filter to obtain a sample solution.
  • a standard solution with a known dioctyl phthalate content is also analyzed. If there is standard data obtained from the standard solution, the concentration of dioctyl phthalate contained in the vanadium-based RF electrolyte can be quantified by comparing the standard data with the analytical data obtained from the sample solution. . In this test example, two standard data were acquired from two types of standard solutions with different contents of dioctyl phthalate to improve the accuracy of quantification.
  • One standard solution was a standard solution containing 2 ⁇ g of dioctyl phthalate per ml of acetone, and the other standard solution was a standard solution containing 5 ⁇ g of dioctyl phthalate per ml of acetone.
  • Test Example 2 As a comparative example of Test Example 1, in Test Example 2, the adsorption device used in the adsorption process was a single tube structure, and dioctyl phthalate in the RF electrolyte was quantified. The configuration other than the adsorption device and the quantitative procedure are the same as in Test Example 1. Of course, the content of dioctyl phthalate in the RF electrolyte solution was 10.0 mass ppb as in Test Example 1.
  • the adsorption device of Test Example 2 was prepared by filling glass wool, activated carbon, and glass wool in this order.
  • the specific surface area of the activated carbon was 800 m 2 / g, and the total amount of activated carbon was 8 g.
  • the dropping rate of the sampling solution was 10 ml / min.
  • the most characteristic part of the above embodiment is to ensure a sufficient contact area between the activated carbon and the sampling solution and to ensure a sufficient time for the sampling solution to contact the activated carbon. From this point of view, there is a possibility that the organic matter in the mass ppb order in the measurement target solution can be analyzed by the following organic substance analysis method in the measurement target solution.
  • the organic substance analysis method in the measurement target solution includes a sampling process, an adsorption process, an extraction process, a sample preparation process, and an analysis process.
  • a sampling process 500 ml or less of sampling solutions are extract
  • the sampling solution and the activated carbon are stirred in the same container, and the organic matter is adsorbed on the activated carbon.
  • the specific surface area of the activated carbon used in the adsorption step is 800 m 2 / g or more, and the amount of the activated carbon with respect to the sampling solution is 0.025 g / ml or more.
  • the stirring time in the adsorption step is 20 minutes or more and 60 minutes or less.
  • a hydrophobic solvent is passed through activated carbon on which the organic matter is adsorbed, and the organic matter is extracted into the hydrophobic solvent.
  • the sample solution used for the analysis of organic substance is produced using the hydrophobic solvent from which organic substance was extracted.
  • the component contained in a sample solution is measured with a chromatograph, and it is analyzed whether the organic substance below 20 mass ppb is contained in the measuring object solution.
  • sampling process sample preparation process, and analysis process may be performed in the same manner as in the first embodiment.
  • the sampling solution may be put into a container such as a beaker, and the activated carbon may be gradually added to the sampling solution while stirring the sampling solution with a stirrer or the like.
  • the agitation time is an agitation time having a start time when the whole amount of activated carbon is charged.
  • the mixed solution of the sampling solution and activated carbon that has been subjected to the adsorption process is put into a column, and a hydrophilic solvent (such as ethanol) is passed through the column to wash out the sampling solution.
  • a hydrophilic solvent such as ethanol
  • the sampling solution discharged from the column when the mixed solution is put into the column may be discarded.
  • the hydrophilic solvent is also passed for the purpose of removing the residue of the sampling solution and may be discarded. This is because the organic substances contained in the sampling solution are considered to be sufficiently adsorbed by the activated carbon in the adsorption step.
  • the method for analyzing an organic substance in a measurement target solution of the present invention can be suitably used for analyzing an organic substance contained in the measurement target solution.
  • the method for analyzing an organic substance in a measurement target solution of the present invention can be suitably used for quality inspection of a redox flow battery electrolyte by analyzing an organic substance contained in the redox flow battery electrolyte.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

測定対象溶液に含まれる有機物の有無を、20質量ppb以下のオーダーで分析する分析方法を提供する。次の工程を備える測定対象溶液における有機物の分析方法である。測定対象溶液から500ml以下のサンプリング溶液を採取するサンプリング工程。サンプリング溶液を活性炭8に通液させて、当該活性炭に有機物を吸着させる吸着工程。疎水性溶剤に有機物を抽出する抽出工程。有機物が抽出された疎水性溶剤を用いて試料溶液を作製する試料準備工程。クロマトグラフによって20質量ppb以下の有機物が測定対象溶液に含まれているか否かを分析する分析工程。活性炭8の比表面積が800m/g以上で、サンプリング溶液に対する活性炭8の量が0.025g/ml以上である。吸着工程における活性炭8の排出端側のサンプリング溶液の通液速度が7.5ml/分以下である。

Description

測定対象溶液における有機物の分析方法
 本発明は、測定対象溶液に含まれる極微量の有機物を分析するための測定対象溶液における有機物の分析方法に関する。
 測定対象溶液に含まれる極微量の有機物を分析することがある。例えば、特許文献1には、メッキ液や電池電解液などの高濃度塩溶液(測定対象溶液)に含まれる有機成分(有機物)を分析する有機成分分析方法(測定対象溶液における有機物の分析方法)が開示されている。
 特許文献1では、活性炭を用いた固相抽出によって高濃度塩溶液から有機成分を抽出し、分析している。より具体的には、有機成分を含む高濃度塩溶液からサンプリングしたサンプリング溶液を活性炭に通液して、サンプリング溶液中の有機成分を活性炭に吸着させる工程と、吸着後工程後に活性炭に溶剤を通液して、吸着された有機成分を溶出する工程と、有機成分の溶出された溶剤を濃縮乾燥する工程と、濃縮乾燥後の有機成分を試料に用いてクロマトグラフにより分析する工程と、を行なっている。
特許第3821000号公報
 近年、測定対象溶液に質量ppbオーダー(十億分の一のオーダー)の有機物が含まれているか否かを分析することが求められる場合がある。例えば、本出願人の最近の研究によれば、レドックスフロー電池に用いられる電解液では、20質量ppb以下という極微量の有機物であってもレドックスフロー電池の性能に大きな影響を与えることが判ってきた。しかし、特許文献1の測定対象溶液における有機物の測定方法では、そのような極微量の有機物を分析することが難しい。特許文献1の分析方法は、主としてメッキ液に含まれる質量ppmオーダー(百万分の一のオーダー)の有機物を分析することを目的とした分析方法であって、質量ppbオーダーの有機物を分析することを想定した分析方法ではないからである。
 本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、測定対象溶液に含まれる有機物の有無を、20質量ppb以下のオーダーで分析することができる測定対象溶液における有機物の分析方法を提供することにある。
 本発明の一形態の測定対象溶液における有機物の分析方法は、サンプリング工程と、吸着工程と、抽出工程と、試料準備工程と、分析工程と、を備える。
[サンプリング工程]…有機物の含有量が未知の測定対象溶液から500ml以下のサンプリング溶液を採取する。
[吸着工程]…サンプリング溶液を活性炭に通液させて、当該活性炭に有機物を吸着させる。ここで、吸着工程で使用する活性炭の比表面積が800m/g以上で、サンプリング溶液に対する活性炭の量が0.025g/ml以上である。また、吸着工程における活性炭の排出端側のサンプリング溶液の通液速度が7.5ml/分以下である。
[抽出工程]…有機物が吸着した活性炭に疎水性溶剤を通液させ、当該疎水性溶剤に前記有機物を抽出する。
[試料準備工程]…有機物が抽出された疎水性溶剤を用いて、有機物の分析に供する試料溶液を作製する。
[分析工程]…クロマトグラフによって試料溶液に含まれる成分を測定し、20質量ppb以下の有機物が測定対象溶液に含まれているか否かを分析する。
 本発明の測定対象溶液における有機物の分析方法によれば、測定対象溶液に含まれる20質量ppb以下の有機物の有無を分析することができる。
測定対象溶液における有機物の分析方法に利用する有機物の吸着装置の一例を示す概略図である。 試験例におけるPTV注入口の昇温プログラムの温度プロファイルを示す模式図である。 試験例におけるクロマトグラフに備わるカラムの昇温プログラムの温度プロファイルを示す模式図である。
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
<1>本実施形態の測定対象溶液における有機物の分析方法は、サンプリング工程と、吸着工程と、抽出工程と、試料準備工程と、分析工程と、を備える。
・サンプリング工程では、有機物の含有量が未知の測定対象溶液から500ml以下のサンプリング溶液を採取する。
・吸着工程では、サンプリング溶液を活性炭に通液させて、当該活性炭に有機物を吸着させる。ここで、吸着工程で使用する活性炭の比表面積が800m/g以上で、サンプリング溶液に対する前記活性炭の量が0.025g/ml以上である。また、吸着工程における活性炭の排出端側のサンプリング溶液の通液速度が7.5ml/分以下である。
・試料準備工程では、有機物が抽出された疎水性溶剤を用いて、有機物の分析に供する試料溶液を作製する。
・分析工程では、クロマトグラフによって試料溶液に含まれる成分を測定し、20質量ppb以下の有機物が測定対象溶液に含まれているか否かを分析する。
 上記構成とすることで、測定対象溶液に含まれる有機物が20質量ppb以下であっても測定対象溶液に含まれる有機物の有無を分析することができる。それは、上記吸着工程において所定の比表面積の活性炭を所定量以上用いることで、活性炭とサンプリング溶液との接触面積を十分に確保でき、かつ活性炭の排出側の通液速度を所定値以下とすることで、サンプリング溶液が活性炭に接触する時間(即ち、活性炭に有機物が吸着される時間)を十分に確保できるからである。この接触面積と接触時間の確保によって、サンプリング溶液に含まれる有機物が極微量であったとしても、その有機物を活性炭に高収率で吸着させることができる。なお、言うまでもないが、本実施形態の測定対象溶液における有機物の分析方法は、20質量ppbを超える有機物が含まれている可能性のある測定対象溶液の分析に利用することもできる。
<2>本実施形態の測定対象溶液における有機物の分析方法として、分析工程において、有機物の含有量が既知の標準溶液に含まれる成分をクロマトグラフによって測定することで得られた標準データを取得し、試料溶液を測定することで得られた分析データと、その標準データと、を比較することで、前記測定対象溶液に含まれる有機物の含有量を定量する形態を挙げることができる。
 予め有機物の含有量が判っている標準溶液を分析に供することで、有機物の含有量がどの程度であればどのような測定結果が得られるかという傾向が見て取れる標準データが得られる。そのため、この標準データと、試料溶液の分析データと、を比較することで、測定対象溶液に含まれる有機物の含有量をかなりの精度で定量することができる。
<3>本実施形態の測定対象溶液における有機物の分析方法として、分析工程において、クロマトグラフへの試料溶液の導入に、プログラム昇温気化(programmed temperature vaporization;PTV)法を用いる形態を挙げることができる。
 PTV法は、昇温可能なPTV注入口を用いた試料溶液の導入方法であって、予め定められた昇温プログラムに従って試料溶液を加熱し、試料溶液に含まれる有機物を気化させてクロマトグラフに導入する。PTV注入口を用いることで、測定溶液に含まれる成分(有機物を含む)の気化温度の相違を利用して、成分の分解能を高めることができる。その結果、サンプリング溶液に含まれる有機物の分析をより正確に行なうことができる。
<4>本実施形態の測定対象溶液における有機物の分析方法として、測定対象溶液は、レドックスフロー電池用電解液(以下、RF電解液)である形態を挙げることができる。
 昨今、地球温暖化への対策として、太陽光発電、風力発電といった自然エネルギー(所謂、再生可能エネルギー)を利用した発電が世界的に活発に行なわれている。これらの発電出力は、天候などの自然条件に大きく左右されるため、電力系統に大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の蓄電、負荷平準化などを図ることが検討されている。その大容量の蓄電池の一つにレドックスフロー電池(以下、RF電池)がある。RF電池は、正極電極と負極電極との間に隔膜を介在させた電池セルに正極電解液及び負極電解液をそれぞれ供給して充放電を行う二次電池である。このようなRF電池に用いられるRF電解液は通常、酸化還元により価数が変化する金属元素を活物質として利用している。例えば、正極活物質としてFeイオンを、負極活物質としてCrイオンを用いた鉄(Fe2+/Fe3+)-クロム(Cr3+/Cr2+)系RF電池や、両極の活物質にVイオンを用いたバナジウム(V2+/V3+-V4+/V5+)系RF電池を挙げることができる。
 ここで、RF電池では、電極上の電気化学反応(電極反応)により充放電が行なわれている。そのため、電極が設計時の仕様通りに機能しないと、電池出力の低下や電池容量の低下などの電池特性の低下を招く。例えば、電極の表面に不純物が付着して電極上の反応活性点が覆われると、実質的に電極の表面積が減じられ、電池出力の低下、電池容量の低下に繋がる。そのような不純物のうちの特に有機物は、電極反応の低下に極めて深刻な影響を与えることが判ってきた。そのため、RF電解液中の有機物の定量に本実施形態の測定試料における有機物の分析方法を用いて、RF電池に供するRF電解液における20質量ppb以下の有機物の有無を予め把握しておくことで、安定した性能を発揮するRF電池を作製することができる。もちろん、RF電池の運用後におけるRF電解液の抜き取り検査に、本実施形態の分析方法を利用することもできる。
 なお、言うまでもないが、本実施形態の測定対象溶液における有機物の分析方法は、RF電解液における有機物の分析に利用されることに限定されるわけではない。例えば、本実施形態の分析方法は、メッキ液における有機物の分析など、溶媒1000mlあたり50g以上の無機塩が溶解した高濃度塩溶液における有機物の分析に利用することもできる。
<5>測定対象溶液がRF電解液である本実施形態の測定対象溶液における有機物の分析方法として、有機物は、フタル酸エステル類である形態を挙げることができる。
 最近の出願人の研究によって、有機物の中でも特にフタル酸エステル類がRF電解液に含まれていると、電池反応の低下に極めて深刻な影響を与えることが判った。このフタル酸エステル類は、RF電解液中における有機物濃度が質量ppbオーダーという極微量であったとしても、電池反応を阻害し易い。そのため、RF電解液におけるフタル酸エステル類の分析は、レドックスフロー電池の性能を安定させる上で重要である。
<6>本実施形態の測定対象溶液における有機物の分析方法として、吸着工程において、活性炭を複数のユニットに分割し、サンプリング溶液を各ユニットに連続的に通液させる形態を挙げることができる。
 上記形態によれば、活性炭の排出側の通液速度を7.5ml/分以下に調整することが容易にできる。活性炭を複数のユニットに分割する具体例としては、例えば、活性炭を充填した複数の管を用意し、それらの管を軸方向に連結させた形態を挙げることができる。
 あるいは、内部に少なくとも一つの狭窄部を形成した管に活性炭を充填させた形態、即ち狭窄部を挟んで上下に活性炭が分割された形態を挙げることができる。その他、自動抽出機に設置される複数の管に活性炭が分割された形態を挙げることもできる。この場合、n番目の管から排出されたサンプリング溶液を、n+1番目の管に導入すると良い(nは自然数)。
<7>本実施形態の測定対象溶液における有機物の分析方法として、吸着工程、抽出工程、および試料準備工程を全自動で行なう形態を挙げることができる。
 有機物の吸着・有機物の抽出・試料溶液の準備の一連の工程を全自動で行なう形態とすることで、吸着工程におけるサンプリング溶液の通液速度、および抽出工程における疎水性溶剤の通液速度を、ほぼ設定通りの通液速度とすることができ、またその通液速度をほほ一定に保持することができる。そのため、有機物の分析結果の安定性・信頼性を向上させることができる。また、自動化によって、サンプリング溶液への有機物の混入(コンタミネーション)を抑制することができることも、有機物の分析結果の安定性・信頼性の向上に寄与する。
[本発明の実施形態の詳細]
 本実施形態に係る測定対象溶液における有機物の分析方法を以下に説明する。なお、本発明はこれらの例示に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
 実施形態1では、バナジウム系RF電解液(測定対象溶液)に含まれる有機物を分析(定量)する例を説明する。当該RF電解液は、バナジウムイオンを活物質として含有する無機塩溶液である。例えば、バナジウムイオン濃度は1M以上、3M以下、硫酸イオン濃度は1M以上、4M以下とすると良く、その場合RF電解液の平均価数はおよそ、3.3以上、3.7以下である。このような平均価数のRF電解液は、正極側の電解液としても負極側の電解液としても各価数のバナジウムイオン濃度のバランスが良い。そのため、このような平均価数のRF電解液を用いてRF電池を構成した場合、RF電池の容量を非常に高くすることができる。もちろん、測定対象溶液は、鉄-クロム系RF電解液であっても良い。
 上記バナジウム系RF電解液(以下、単にRF電解液とする)には、その作製過程において有機物が混入する可能性がある。その他、RF電解液を用いたRF電池の運転に伴って、RF電池の構成部材やRF電解液に接する雰囲気からRF電解液に有機物が混入する可能性もある。有機物としては、例えば、tetradecene(C1428)や、octanethiol(C18S)、n-decane(C1022)、フタル酸エステルの一種であるフタル酸ジオクチル(C2438)を含むエステル類などを挙げることができる。これら有機物のRF電解液における含有量が質量ppbオーダー、具体的には20質量ppb以下であった場合、従来の分析方法では、RF電解液中の有機物を定量するために1000ml以上の大量のRF電解液を定量用にサンプリングする必要がある。このような大量のサンプリング溶液を用いると、定量に時間がかかる上、RF電池の作製に供するRF電解液が大きく減じられることになる。そこで、本実施形態1では、以下に示す測定対象溶液における有機物の分析方法を実施する。
 本実施形態1で用いた測定対象溶液における有機物の分析方法は、サンプリング工程と、吸着工程と、抽出工程と、試料準備工程と、分析工程と、を備える。各工程を順次説明する。
 ≪サンプリング工程≫
 サンプリング工程では、作製したRF電解液から500ml以下のサンプリング溶液を採取する。サンプリング工程の次の吸着工程の仕様によっては、採取するサンプリング溶液は、300ml以下、200ml以下、100ml以下とすることもできる。
 ≪吸着工程≫
 吸着工程では、サンプリング溶液を活性炭に通液させて、サンプリング溶液に含まれる有機物を活性炭に吸着させる。吸着工程における活性炭としては、その比表面積が800m/g以上のものを使用し、使用する活性炭の量は、サンプリング溶液1ml当たり0.025g以上とする。そうすることで、サンプリング溶液に含まれる有機物が吸着される活性炭の表面積を十分に確保することができる。また、吸着工程においては、活性炭の排出端側の通液速度が7.5ml/分以下となるように調節する。そうすることで、サンプリング溶液と活性炭との接触時間を十分に確保することができる。
 活性炭の排出端側の通液速度を7.5ml/分以下とするには、活性炭を複数のユニットに分割すると良い。例えば、図1に示す吸着装置1を用いることで、上記通液速度を7.5ml/分以下に調節することができる。図1の吸着装置1は、排出側にコック2cを有する下方管2と、下方管2の導入口2iに嵌め込まれる上方管3と、を備える。下方管2の導入口2iは広口に形成されており、その導入口2iに上方管3の排出口3o側の部分を嵌め込み易くなっている。上方管3の排出側にはコックは形成されておらず、導入口3iは広口になっていない。これらの管2,3にはそれぞれ、ガラスウール9・活性炭8・ガラスウール9の順に詰め込まれており、上方管3の導入口3iからサンプリング溶液を導入すれば、当該サンプリング溶液は両管3,2の活性炭8に通液されて、下方管2の排出口2oから排出される。このような連結管構造の吸着装置1によれば、上方管3でサンプリング溶液の通液速度が減じられ、さらにコック2cを有する下方管2でもサンプリング溶液の通液速度が減じられるので、活性炭8の排出端側の通液速度を7.5ml/分以下に調節することが容易にできる。なお、ガラスウール9は、管2,3からの活性炭8の脱落を防止すると共に、サンプリング溶液の通液速度を減じる役割も果たす。
 吸着装置1は、その使用前に、活性炭の吸着した吸着物の洗浄と、活性炭の親水性の向上と、を目的とする前処理(コンディショニング)を行うことが好ましい。例えば、ベンゼンなどの疎水性溶剤、エタノールなどのアルコール、蒸留水、の順に活性炭に通液する。疎水性溶剤により吸着物を洗浄することができ、アルコールで疎水性溶剤を洗浄することができ、蒸留水で活性炭の親水性を向上させることができる。
 吸着装置1の前処理が終了したら、吸着装置1の上方管3の導入口3iからサンプリング溶液を導入する。その際、有機物が吸着される活性炭8の表面積が十分に確保されており、しかも活性炭8とサンプリング溶液との接触時間も十分に確保されていることから、サンプリング溶液に含まれる有機物が高収率で活性炭8に吸着される。
 ≪抽出工程≫
 抽出工程では、吸着装置1の活性炭8に疎水性溶剤を通液させ、活性炭に吸着された有機物を疎水性溶剤に溶解させ、抽出する。その抽出に先立ち、活性炭8の水分を除去することが好ましい。例えば、エタノールなどのアルコールを活性炭8に通液させることで、活性炭8の水分を除去できる。アルコールは、有機物の抽出にあたって活性炭8に通液される疎水性溶剤と活性炭8との馴染みを良くする役割も果たす。
 抽出工程に利用する疎水性溶剤としては、例えばベンゼンなどの有機溶剤を挙げることができる。疎水性溶剤の通液によって、活性炭8に吸着された有機物を効率的に回収することができる。
 ≪試料準備工程≫
 試料準備工程では、有機物が抽出された疎水性溶剤を用いて、有機物の分析に供する試料溶液を作製する。具体的には、まず有機物が抽出された疎水性溶剤を乾燥させ、有機物を濃縮する。有機物の濃縮には、減圧エバポレーターを利用することができる。減圧エバポレーターを利用した濃縮条件としては、例えば、0.08MPa以上0.1MPa以下で、65℃以上80℃以下×15分以上30分以下とすることが挙げられる。
 有機物を濃縮したら、定容量の溶媒に有機物を溶解させた試料溶液を作製する。試料溶液の作製に利用する溶媒は、アセトンなどの低沸点溶剤(定量する有機物の沸点よりも低沸点の溶剤)とすると良い。この試料溶液の容量は1.5ml以上、5.0ml以下程度とすることが好適である。
 ≪分析工程≫
 分析工程では、クロマトグラフ(ガスクロマトグラフ)によって試料溶液に含まれる有機物を分析する。
 ここで、分析工程では、クロマトグラフへの試料溶液の導入に、プログラム昇温気化法(PTV法)を利用することが好ましい。PTV法を利用することで、試料溶液の成分の分解能を高めることができる。昇温プログラムは、試料溶液の成分の組成によって適宜変更すると良い。例えば、有機物がフタル酸ジオクチルで、この有機物を溶解させる溶媒がアセトンである場合、PTV注入口の昇温プログラムは、60℃~70℃で2.5分以下の加熱を行なう第一加熱期間と、120℃~150℃で3.0分以下の加熱を行なう第二加熱期間と、300℃~350℃で5.0分以下の加熱を行なう第三加熱期間と、を備える昇温プログラムを挙げることができる。各加熱期間へ移行する際の昇温速度は、200℃/分以上、300℃/分以下とすることが好ましい。
 第一加熱期間では主として試料溶液の溶媒を気化させる、即ちアセトン(沸点=56.5℃)を気化させる。この第一加熱期間では溶媒(アセトン)は気化するが有機物(フタル酸ジオクチル)は殆ど気化しない。気化したアセトンは、クロマトグラフに導入せず、排気する。次の第二加熱期間では主に、測定対象である有機物を気化させる、即ちフタル酸ジオクチルを気化させる。気化したフタル酸ジオクチルはクロマトグラフに備わるカラムに導入する。第三加熱期間では、試料溶液の高沸点成分を気化させ、それに伴い有機物(フタル酸ジオクチル)を完全に気化させる。この気化成分もクロマトグラフのカラムに導入する。
 クロマトグラフに備わるカラムに試料を導入したら、カラムの温度を上げて、カラムから各成分をクロマトグラフの検出器に導入する。カラムの昇温プログラムは、例えば、昇温開始温度が60℃~100℃で、約20℃/分の昇温速度で350℃までカラムを加熱し、カラムを350℃で20分以下保持する昇温プログラムを挙げることができる。カラムの温度設定は、ピークの分離、即ち成分の分解能に影響を与える。
 有機物の分析、即ち有機物の定量は、クロマトグラフを制御するコンピューターが自動で行なってくれる。例えば、予め有機物の含有量が判っている標準溶液をクロマトグラフで分析した標準データを取得しておき、その標準データに基づいて有機物の定量を行なう。単に、20質量ppb以下の有機物が測定対象溶液に含まれるか否かを分析しても良い。
 ≪効果≫
 以上説明した測定対象溶液における有機物の分析方法によれば、測定対象溶液に含まれる有機物が20質量ppb以下で、かつ測定対象溶液からサンプリングされるサンプリング溶液が500ml以下であっても、測定対象溶液に含まれる有機物を定量することができる。それは、主として、上記分析方法における吸着工程で、サンプリング溶液に含まれる有機物を活性炭に高収率で吸着させることができるからである。
<試験例1>
 試験例1では、バナジウム系RF電解液に含まれる有機物を、以下に示すように実際に定量した。
 ≪測定対象溶液の準備≫
 バナジウムイオン濃度が1.8M、硫酸イオン濃度が3Mのバナジウム系RF電解液を用意した。このRF電解液には、意図的にフタル酸ジオクチル(有機物)を含有させており、その濃度は10.0質量ppbであった。この濃度は一例に過ぎず、検出限界の0.5質量ppb以上の濃度であれば同様の分析が可能である。なお、近年の出願人の研究によれば、RF電解液におけるフタル酸ジオクチルの許容含有量は10質量ppb以下である。
 ≪吸着装置の準備≫
 図1に示す連結管構造の吸着装置1を用意した。吸着装置1を構成する下方管2と上方管3はガラス製とした。下方管2には、ガラスウール9を詰めて、その上に3.5gのビーズ状の活性炭8を詰め、さらにガラスウール9を詰めた。また、上方管3にも、ガラスウール9を詰め、その上に4.5gのビーズ状の活性炭8を詰め、さらにガラスウール9を詰めた。両管2,3に詰めた活性炭8の比表面積は800m/gであった。つまり、吸着装置における活性炭の総表面積は、800m/g×8g=6400mであった。
 ≪吸着装置の前処理≫
 吸着装置1に対して、活性炭8の洗浄と親水化のための前処理を施した。具体的には、二段カラムに5mlのベンゼンを10回通液させ、次いで5mlのエタノールを3回通液させ、最後に20mlの蒸留水を3回通液させた。
 ≪活性炭へのフタル酸ジオクチルの吸着≫
 前処理を施した吸着装置1の活性炭8に、RF電解液からサンプリングした200mlサンプリング溶液を通液させた。具体的には、吸着装置1の上方管3の導入口3iからサンプリング溶液を導入した。その際、下方管2のコック2cを調節し、下方管2の排出口2oから排出されるサンプリング溶液の滴下速度を、7.5ml/分以下に調節した。サンプリング溶液は廃棄した。
 ≪有機物の抽出≫
 活性炭8に吸着させたフタル酸ジオクチルを抽出する前処理として、まず400mlの蒸留水を吸着装置1に通液させ、管2,3の内周面および活性炭8に付着したバナジウムイオンや硫酸イオンなどを除去した。次いで、5mlのエタノールを吸着装置1に4回通液させ、吸着装置1内の水分を除去した。蒸留水およびエタノールは廃棄した。
 上記前処理が終了したら、5mlのベンゼンを吸着装置1に4回通液させ、20mlの回収液を平底フラスコに回収することを5回繰り返した。回収液の総量は約100mlであった。
 ≪有機物の濃縮≫
 回収液を減圧エバポレーターで乾燥させた。回収液を入れるエバポレーターの内部は、予めアセトンで3回、ベンゼンで1回洗浄しておいた。回収液の乾燥の際、平底フラスコの内部を減圧しつつ平底フラスコを回転させ、回収液のベンゼンを濃縮・乾固させた。濃縮条件は、0.1MPaで、65℃×20分とした。
 ≪試料溶液の作製≫
 ベンゼンを濃縮した後の平底フラスコの内部に2mlのアセトンを投入し、アセトンにフタル酸ジオクチルを溶解させた。そのアセトン溶液を回収し、ディスクフィルター付きのシリンジに移し入れた。そして、シリンジからディスクフィルターを介して濾過液をバイアル瓶に移し入れ、試料溶液とした。
 ≪有機物の分析≫
 上記バイアル瓶をガスクロマトグラフのオートサンプラーにセットし、PTV法によって試料溶液をクロマトグラフに導入し、有機物の分析を行なった。PTV法におけるPTV注入口とクロマトグラフのカラムの昇温プログラムの条件は以下の通りであった。参考までに、PTV注入口とカラムの昇温プログラムの温度プロファイルをそれぞれ、図2および図3の模式図に示す。
(PTV注入口)
 第一加熱時間=60℃×2.5分
 第二加熱時間=120℃×3.0分
 第三加熱時間=300℃×5.0分
 昇温速度=300℃/分
(カラム)
 開始温度=100℃
 保持温度=350℃
 昇温速度=20℃/分
 なお、有機物の分析にあたって、予めフタル酸ジオクチルの含有量が判っている標準溶液の分析も行なう。標準溶液から得られる標準データがあれば、この標準データと、試料溶液から得られる分析データと、を比較することで、バナジウム系RF電解液に含まれるフタル酸ジオクチルの濃度を定量することができる。本試験例では、フタル酸ジオクチルの含有量が異なる二種類の標準溶液から二つの標準データを取得し、定量の精度を向上させた。一方の標準溶液は、アセトン1mlあたり2μgのフタル酸ジオクチルを含む標準溶液、他方の標準溶液は、アセトン1mlあたり5μgのフタル酸ジオクチルを含む標準溶液であった。
 ≪定量結果≫
 ガスクロマトグラフで得られた分析データの結果、フタル酸ジオクチルを検出することができた。また、その分析データと、標準溶液から得られた標準データと、の比較に基づいて、バナジウム系RF電解液におけるフタル酸ジオクチルの濃度は9.8質量ppbであるとの結果が得られた。バナジウム系RF電解液の準備の際に意図的に含有させたフタル酸ジオクチルの濃度が10.0質量ppbであるので、かなりの精度でバナジウム系RF電解液におけるフタル酸ジオクチルを定量できることが明らかになった。
<試験例2>
 試験例1の比較例として、試験例2では吸着工程に使用する吸着装置を単管構造として、RF電解液におけるフタル酸ジオクチルの定量を行なった。吸着装置以外の構成、定量手順は試験例1と同様である。もちろん、RF電解液におけるフタル酸ジオクチルの含有量も、試験例1と同様に、10.0質量ppbであった。
 試験例2の吸着装置は、ガラス製の管に、グラスウール、活性炭、グラスウールの順に詰め込むことで作製した。活性炭の比表面積は800m/g、活性炭の総量は8gであった。この単管構造の吸着装置に200mlのサンプリング溶液を通液させると、サンプリング溶液の滴下速度(活性炭の排出端側の通液速度に同じ)は10ml/分であった。
 以後、試験例1と同様の手順に従って試料溶液を作製し、その試料溶液に含まれる有機物の分析を行なったところ、フタル酸ジオクチルの存在を確信できるような分析データを得ることができなかった。
 以上説明した試験例2の結果から、サンプリング溶液の滴下速度が速い場合、RF電解液に含まれる質量ppbオーダーのフタル酸ジオクチルを定量することはもちろん、検出することすら困難であることが別った。
<付記>
 上記実施形態の最も特徴的な部分は、活性炭とサンプリング溶液との接触面積を十分に確保することと、サンプリング溶液が活性炭に接触する時間を十分に確保することである。この観点からすれば、次のような測定対象溶液における有機物の分析方法によっても、測定対象溶液における質量ppbオーダーの有機物を分析できる可能性がある。
 即ち、測定対象溶液における有機物の分析方法は、サンプリング工程と、吸着工程と、抽出工程と、試料準備工程と、分析工程と、を備える。
・サンプリング工程では、有機物が含まれていることが疑われる測定対象溶液から500ml以下のサンプリング溶液を採取する。
・吸着工程では、サンプリング溶液と活性炭とを同一容器中で撹拌し、当該活性炭に有機物を吸着させる。ここで、吸着工程で使用する活性炭の比表面積が800m/g以上で、サンプリング溶液に対する前記活性炭の量が0.025g/ml以上である。また、吸着工程における撹拌時間は20分以上、60分以下である。
・抽出工程では、有機物が吸着した活性炭に疎水性溶剤を通液させ、当該疎水性溶剤に前記有機物を抽出する。
・試料準備工程では、有機物が抽出された疎水性溶剤を用いて、有機物の分析に供する試料溶液を作製する。
・分析工程では、クロマトグラフによって試料溶液に含まれる成分を測定し、20質量ppb以下の有機物が測定対象溶液に含まれているか否かを分析する。
 サンプリング工程、試料準備工程、および分析工程は、実施形態1と同様に行なえば良い。
 吸着工程では、例えばビーカー等の容器内にサンプリング溶液を投入し、スターラー等でサンプリング溶液を撹拌しつつ、徐々にサンプリング溶液に活性炭を加えていけば良い。ここで、上記撹拌時間は、活性炭の全量投入時をスタート時間とする撹拌時間である。
 抽出工程では、例えば、吸着工程を終えたサンプリング溶液と活性炭との混合溶液をカラムに投入し、そのカラムに親水性溶剤(エタノールなど)を通液してサンプリング溶液を洗い流し、その後、疎水性溶剤を注ぎ込めば良い。ここで、混合溶液をカラムに投入したときにカラムから排出されるサンプリング溶液は廃棄して良い。また、親水性溶剤も、サンプリング溶液の残渣を除去する目的で通液するものであるので、廃棄して良い。サンプリング溶液に含まれる有機物は、上記吸着工程において十分に活性炭に吸着されたと考えられるからである。
 本発明の測定対象溶液における有機物の分析方法は、測定対象溶液に含まれる有機物の分析に好適に利用することができる。特に、本発明の測定対象溶液における有機物の分析方法は、レドックスフロー電池用電解液に含まれる有機物を分析することで、レドックスフロー電池用電解液の品質検査に好適に利用することができる。
1 吸着装置
 2 下方管  2i 導入口 2o 排出口 2c コック
 3 上方管  3i 導入口 3o 排出口
 8 活性炭
 9 ガラスウール

Claims (7)

  1.  有機物の含有量が未知の測定対象溶液から500ml以下のサンプリング溶液を採取するサンプリング工程と、
     前記サンプリング溶液を活性炭に通液させて、当該活性炭に前記有機物を吸着させる吸着工程と、
     前記有機物が吸着した前記活性炭に疎水性溶剤を通液させ、当該疎水性溶剤に前記有機物を抽出する抽出工程と、
     前記有機物が抽出された前記疎水性溶剤を用いて、前記有機物の分析に供する試料溶液を作製する試料準備工程と、
     クロマトグラフによって前記試料溶液に含まれる成分を測定し、20質量ppb以下の有機物が前記測定対象溶液に含まれているか否かを分析する分析工程と、を備え、
     前記吸着工程で使用する前記活性炭の比表面積が800m/g以上で、前記サンプリング溶液に対する前記活性炭の量が0.025g/ml以上であり、
     前記吸着工程における前記活性炭の排出端側のサンプリング溶液の通液速度が7.5ml/分以下である測定対象溶液における有機物の分析方法。
  2.  前記分析工程において、有機物の含有量が既知の標準溶液に含まれる成分をクロマトグラフによって測定することで得られた標準データを取得し、
     前記試料溶液を測定することで得られた分析データと、その標準データと、を比較することで、前記測定対象溶液に含まれる有機物の含有量を定量する請求項1に記載の測定対象溶液における有機物の分析方法。
  3.  前記分析工程において、前記クロマトグラフへの前記試料溶液の導入に、プログラム昇温気化法を用いる請求項1または請求項2に記載の測定対象溶液における有機物の分析方法。
  4.  前記測定対象溶液は、レドックスフロー電池用電解液である請求項1~請求項3のいずれか一項に記載の測定対象溶液における有機物の分析方法。
  5.  前記有機物は、フタル酸エステル類である請求項4に記載の測定対象溶液における有機物の分析方法。
  6.  前記吸着工程において、前記活性炭を複数のユニットに分割し、前記サンプリング溶液を各ユニットに連続的に通液させる請求項1~請求項5のいずれか一項に記載の測定対象溶液における有機物の分析方法。
  7.  前記吸着工程、前記抽出工程、および前記試料準備工程を全自動で行なう請求項1~請求項6のいずれか一項に記載の測定対象溶液における有機物の分析方法。
PCT/JP2014/061368 2013-04-26 2014-04-23 測定対象溶液における有機物の分析方法 WO2014175307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/787,209 US20160116446A1 (en) 2013-04-26 2014-04-23 Analysis method for organic substances in solution to be examined
CN201480023640.2A CN105164527A (zh) 2013-04-26 2014-04-23 用于待测溶液中的有机物的分析方法
JP2015513783A JPWO2014175307A1 (ja) 2013-04-26 2014-04-23 測定対象溶液における有機物の分析方法
EP14787514.0A EP2990789A4 (en) 2013-04-26 2014-04-23 METHOD FOR SEARCHING FOR ORGANIC SUBSTANCES IN A SOLUTION TO BE INVESTIGATED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013094248 2013-04-26
JP2013-094248 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014175307A1 true WO2014175307A1 (ja) 2014-10-30

Family

ID=51791877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061368 WO2014175307A1 (ja) 2013-04-26 2014-04-23 測定対象溶液における有機物の分析方法

Country Status (5)

Country Link
US (1) US20160116446A1 (ja)
EP (1) EP2990789A4 (ja)
JP (1) JPWO2014175307A1 (ja)
CN (1) CN105164527A (ja)
WO (1) WO2014175307A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362781A (zh) * 2018-01-29 2018-08-03 江苏理文化工有限公司 一种锂电池电解液的分析方法
JP2020536232A (ja) * 2018-02-23 2020-12-10 エルジー・ケム・リミテッド 添加剤の分析のための高速処理ガスクロマトグラフィーシステム及びそれを用いた分析方法
CN115845652A (zh) * 2022-12-12 2023-03-28 四川中测标物科技有限公司 一种微量总有机碳溶液标准物质的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116466A1 (en) 2014-10-27 2016-04-28 Chembio Diagnostic Systems, Inc. Rapid Screening Assay for Qualitative Detection of Multiple Febrile Illnesses
CN108614061B (zh) * 2018-07-02 2021-04-02 山东师范大学 一种去除无水乙醇和环己烷中塑化剂的方法
CN111257470B (zh) * 2020-03-03 2023-05-23 广州天赐高新材料股份有限公司 电解液有机溶剂检测的前处理方法及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083052A (ja) * 1999-09-13 2001-03-30 Miura Co Ltd 塩素化有機化合物の採取器および塩素化有機化合物の採取方法
JP2001261319A (ja) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd 活性炭及びその製造方法
JP2002155031A (ja) * 2000-11-20 2002-05-28 Asahi Glass Co Ltd ガスクロマトグラフ法を用いるフッ素化されたエステル化合物の製造方法
JP2003130860A (ja) * 2001-10-19 2003-05-08 Asahi Kasei Corp 揮発性物質自動分析装置
JP2003222618A (ja) * 2002-01-29 2003-08-08 Sumitomo Electric Ind Ltd 高濃度塩溶液中の有機成分分析方法
JP2006284345A (ja) * 2005-03-31 2006-10-19 Shimadzu Corp ガスクロマトグラフ用試料導入装置
WO2008156199A1 (ja) * 2007-06-18 2008-12-24 Gl Sciences Incorporated モノリス吸着剤及びそれによる試料吸着方法及び装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1482747A (en) * 1973-10-10 1977-08-10 Bnf Metals Tech Centre Chromium plating baths
US3967928A (en) * 1974-03-22 1976-07-06 The Dow Chemical Company Method for quantitatively analyzing substances containing elements other than carbon, hydrogen and oxygen and volatile organic compounds
JP3669402B2 (ja) * 1997-06-23 2005-07-06 社団法人大阪府薬剤師会 ガスクロマトグラフの試料導入方法及び試料導入装置
TW486565B (en) * 1998-01-23 2002-05-11 Miura Kogyo Kk Sampling apparatus for chlorinated organic compounds
JP3273796B2 (ja) * 1998-01-23 2002-04-15 三浦工業株式会社 塩素化有機化合物の採取器
US5954862A (en) * 1998-01-29 1999-09-21 Hewlett-Packard Company Sample inlet liner
JP2001162269A (ja) * 1999-12-10 2001-06-19 Matsushita Electric Ind Co Ltd 活性炭充填材およびそれを用いた浄水カートリッジ
JP3897544B2 (ja) * 2001-06-07 2007-03-28 住友電気工業株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
US7092077B2 (en) * 2001-09-24 2006-08-15 Entegris, Inc. System and method for monitoring contamination
WO2003041519A1 (en) * 2001-11-09 2003-05-22 Vector Tobacco Inc. Extraction method for polyaromatic hydrocarbon analysis
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
CN1890562A (zh) * 2003-12-05 2007-01-03 财团法人杂贺技术研究所 有机化学物质的分析方法和分析装置
KR100750009B1 (ko) * 2003-12-24 2007-08-16 아사히 가세이 케미칼즈 가부시키가이샤 폴리올레핀제 미다공막
DE102004024070B3 (de) * 2004-05-13 2005-11-03 Bruker Biospin Gmbh Trocknung von SPE-Kartuschen
DE102004063633B4 (de) * 2004-12-28 2011-12-15 Polymerics Gmbh Verwendung eines Sorbens zur Festphasenextraktion (solid phase extraction, SPE)
US20070274867A1 (en) * 2005-02-28 2007-11-29 Honeywell International Inc. Stationary phase for a micro fluid analyzer
JP5426065B2 (ja) * 2005-06-30 2014-02-26 住友電気工業株式会社 レドックスフロー電池
ES2276622B1 (es) * 2005-12-12 2008-03-01 Univ Castilla La Mancha Sistema y metodo de cromatografia de gases
US7742880B2 (en) * 2006-06-20 2010-06-22 Seer Technology, Inc. Apparatus, system, and method for broad spectrum chemical detection
US8465781B2 (en) * 2008-04-21 2013-06-18 Herbonis Ag Preparation and use of a plant extract from Solanum glaucophyllum with an enriched content of 1,25-dihydroxyvitamin D3 glycosides and quercetin glycosides
JP5520841B2 (ja) * 2009-01-29 2014-06-11 株式会社日立ハイテクノロジーズ 生体サンプルの前処理装置、及びそれを備えた質量分析装置
JP5736457B2 (ja) * 2011-07-08 2015-06-17 株式会社日立ハイテクノロジーズ 固相抽出装置
CN102580351A (zh) * 2012-01-12 2012-07-18 浙江大学 一种饮用水中亚硝胺类化合物的串联固相萃取方法
US20130334045A1 (en) * 2012-06-14 2013-12-19 ChemiSensor LLP Distributable Chemical Sampling and Sensing System

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083052A (ja) * 1999-09-13 2001-03-30 Miura Co Ltd 塩素化有機化合物の採取器および塩素化有機化合物の採取方法
JP2001261319A (ja) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd 活性炭及びその製造方法
JP2002155031A (ja) * 2000-11-20 2002-05-28 Asahi Glass Co Ltd ガスクロマトグラフ法を用いるフッ素化されたエステル化合物の製造方法
JP2003130860A (ja) * 2001-10-19 2003-05-08 Asahi Kasei Corp 揮発性物質自動分析装置
JP2003222618A (ja) * 2002-01-29 2003-08-08 Sumitomo Electric Ind Ltd 高濃度塩溶液中の有機成分分析方法
JP3821000B2 (ja) 2002-01-29 2006-09-13 住友電気工業株式会社 高濃度塩溶液中の有機成分分析方法
JP2006284345A (ja) * 2005-03-31 2006-10-19 Shimadzu Corp ガスクロマトグラフ用試料導入装置
WO2008156199A1 (ja) * 2007-06-18 2008-12-24 Gl Sciences Incorporated モノリス吸着剤及びそれによる試料吸着方法及び装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARIJA VUKCEVIC ET AL.: "Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples", CHEMICAL ENGINEERING, vol. 211, no. 212, 15 November 2012 (2012-11-15), pages 224 - 232, XP055232011 *
See also references of EP2990789A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362781A (zh) * 2018-01-29 2018-08-03 江苏理文化工有限公司 一种锂电池电解液的分析方法
JP2020536232A (ja) * 2018-02-23 2020-12-10 エルジー・ケム・リミテッド 添加剤の分析のための高速処理ガスクロマトグラフィーシステム及びそれを用いた分析方法
JP7006778B2 (ja) 2018-02-23 2022-01-24 エルジー・ケム・リミテッド 添加剤の分析のための高速処理ガスクロマトグラフィーシステム及びそれを用いた分析方法
US11835498B2 (en) 2018-02-23 2023-12-05 Lg Chem, Ltd. High throughput gas-chromatography system for additive analysis, and analysis method using same
CN115845652A (zh) * 2022-12-12 2023-03-28 四川中测标物科技有限公司 一种微量总有机碳溶液标准物质的制备方法

Also Published As

Publication number Publication date
EP2990789A4 (en) 2016-05-04
CN105164527A (zh) 2015-12-16
EP2990789A1 (en) 2016-03-02
JPWO2014175307A1 (ja) 2017-02-23
US20160116446A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2014175307A1 (ja) 測定対象溶液における有機物の分析方法
Mo et al. On-line separation and pre-concentration on a mesoporous silica-grafted graphene oxide adsorbent coupled with solution cathode glow discharge-atomic emission spectrometry for the determination of lead
CN204154649U (zh) 一种铬元素形态分析装置
CN105116064A (zh) 一种茶叶中多种农药残留检测自动化样品前处理和检测方法
Abdallah et al. Applications of layered double hydroxides in sample preparation: A review
CN105467026A (zh) 一种土壤及沉积物中全氟化合物的检测方法
Wang et al. Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization
CN102520084A (zh) 一种测定水中痕量含氮消毒副产物二甲基亚硝胺的方法
CN103335878A (zh) 一种食用油中邻苯二甲酸酯类增塑剂的预处理方法
CN110031560A (zh) 一种海洋沉积物中有机锡类环境激素的分散固相萃取气相色谱质谱检测方法
CN104677977A (zh) 一种浊点萃取-icp-ms联用测定水中痕量汞、镉的方法
CN103884788B (zh) 一种用气相质谱联用技术检测茶叶中农药残留的方法
CN114740112A (zh) 一种植物油中草甘膦残留量的提取净化方法
CN112505190B (zh) 一种土壤中丙烯酸的检测方法
CN113804799A (zh) 一种用于测试锂离子电池极片中nmp含量的前处理方法及方法
CN102507541A (zh) 高纯铌或氧化铌中痕量铋的快速分析检测方法
CN108872454A (zh) 一种快速准确测定厌氧消化液中vfa的方法
CN102866122A (zh) 食品中重金属铜的检测方法
CN117907455A (zh) 一种快速测定雅安藏茶中九种除草剂残留量的方法
CN114660197B (zh) 一种测定哺乳动物器官中液晶单体类化合物的检测方法
CN115406981B (zh) 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法
CN110887911A (zh) 一种动物源食品中克霉唑残留的气相色谱-串联质谱检测方法
Shang et al. Selective detection of trace lead in lead-free solder alloy by flow injection on-line solid-phase extraction using a macrocycle immobilized silica gel as sorbent coupled with hydride generation atomic fluorescence spectrometry
Meena et al. A rapid analytical method using flow injection preconcentration of zinc on dithizone impregnated on Amberlite XAD-2 and its determination in water samples by FAAS
CN106124672A (zh) 一种基于氟固相萃取技术的水样中有机氟化物的富集方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023640.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014787514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14787209

Country of ref document: US