WO2014175099A1 - Catalyst, electrode catalyst layer using same, membrane electrode assembly and fuel cell - Google Patents
Catalyst, electrode catalyst layer using same, membrane electrode assembly and fuel cell Download PDFInfo
- Publication number
- WO2014175099A1 WO2014175099A1 PCT/JP2014/060637 JP2014060637W WO2014175099A1 WO 2014175099 A1 WO2014175099 A1 WO 2014175099A1 JP 2014060637 W JP2014060637 W JP 2014060637W WO 2014175099 A1 WO2014175099 A1 WO 2014175099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- carrier
- fuel cell
- metal
- layer
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 415
- 239000000446 fuel Substances 0.000 title claims abstract description 81
- 239000012528 membrane Substances 0.000 title description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 121
- 239000002184 metal Substances 0.000 claims abstract description 120
- 230000002378 acidificating effect Effects 0.000 claims abstract description 39
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 134
- 229910052697 platinum Inorganic materials 0.000 claims description 60
- 239000003792 electrolyte Substances 0.000 claims description 59
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 55
- 229910052799 carbon Inorganic materials 0.000 claims description 36
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 125000000686 lactone group Chemical group 0.000 claims description 6
- 239000010411 electrocatalyst Substances 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 claims 4
- 210000000170 cell membrane Anatomy 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 164
- 239000005518 polymer electrolyte Substances 0.000 description 76
- 239000007789 gas Substances 0.000 description 60
- 239000011148 porous material Substances 0.000 description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 47
- 239000000843 powder Substances 0.000 description 45
- 239000002245 particle Substances 0.000 description 42
- 238000000034 method Methods 0.000 description 39
- 230000003197 catalytic effect Effects 0.000 description 36
- 239000004020 conductor Substances 0.000 description 35
- 239000000243 solution Substances 0.000 description 33
- 239000007788 liquid Substances 0.000 description 29
- 238000009792 diffusion process Methods 0.000 description 26
- 238000010248 power generation Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 25
- 239000007787 solid Substances 0.000 description 22
- 230000001590 oxidative effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- -1 platinum Chemical class 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910017604 nitric acid Inorganic materials 0.000 description 10
- 239000007800 oxidant agent Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 230000002940 repellent Effects 0.000 description 10
- 239000005871 repellent Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000002737 fuel gas Substances 0.000 description 9
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000002923 metal particle Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229920000554 ionomer Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000003273 ketjen black Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- PAKNPEMFWIUWQV-UHFFFAOYSA-N 1,2-difluoro-2-(2-fluorophenyl)ethenesulfonic acid Chemical compound OS(=O)(=O)C(F)=C(F)C1=CC=CC=C1F PAKNPEMFWIUWQV-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920003934 Aciplex® Polymers 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- MAHPNPYYQAIOJN-UHFFFAOYSA-N azimsulfuron Chemical compound COC1=CC(OC)=NC(NC(=O)NS(=O)(=O)C=2N(N=CC=2C2=NN(C)N=N2)C)=N1 MAHPNPYYQAIOJN-UHFFFAOYSA-N 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920006260 polyaryletherketone Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/923—Compounds thereof with non-metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a catalyst, in particular, an electrode catalyst used in a fuel cell (PEFC), an electrode catalyst layer using the catalyst, a membrane electrode assembly, and a fuel cell.
- PEFC fuel cell
- a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
- Patent Document 1 discloses a polymer electrolyte fuel cell catalyst in which platinum catalyst particles are supported on a carbon powder carrier having a specific surface area of 250 to 1200 m 2 / g.
- the carbon powder carrier is bound with 0.7 to 3.0 mmol / g (based on the weight of the carrier) of hydrophilic groups, and the platinum particles have an average particle size of 3.5 to 8.0 nm.
- the platinum specific surface area (COMSA) is 40 to 100 m 2 / g.
- This Patent Document 1 describes that the initial activity (initial power generation characteristics) can be ensured by introducing a hydrophilic group into a platinum catalyst that has been annealed and has lost its functional group on the surface of the carrier and has deteriorated wettability. Yes.
- the catalyst described in Patent Document 1 is such that when the platinum particles, which are catalytic metals, and the polymer electrolyte come into contact with each other, the polymer electrolyte is easily adsorbed on the surface of the platinum particles, resulting in a decrease in catalytic activity and power generation performance. It was found that would decrease. In order to obtain sufficient power generation performance, it is necessary to use a large amount of expensive metal such as platinum, which leads to an increase in the cost of the fuel cell.
- an object of the present invention is to provide a fuel cell electrode catalyst capable of increasing the utilization rate of the catalyst metal and reducing the manufacturing cost of the fuel cell.
- the present invention is a catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier, wherein the BET specific surface area per carrier weight exceeds 1200 m 2 / g carrier, and the amount of acidic groups per carrier weight Is a catalyst characterized by having a support of 0.7 mmol / g or more.
- the catalyst of the present invention (also referred to herein as “electrode catalyst”) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier.
- the catalyst satisfies the following configurations (a) to (b): (A) the BET specific surface area per carrier weight is more than 1200 m 2 / g carrier; (B) The amount of acidic groups per carrier weight is 0.7 mmol / g or more.
- the present invention by controlling the BET specific surface area of the catalyst, it is possible to suppress a decrease in the catalytic activity due to the electrolyte adsorbed on the catalytic metal surface. Further, by controlling the amount of acidic groups in the catalyst, proton transport inside the pores of the carrier can be ensured, so that the utilization rate of the catalyst metal can be increased. As a result, the amount of catalyst metal used can be reduced, and the manufacturing cost of the fuel cell can be reduced.
- the electrolyte is more easily adsorbed on the surface of the catalyst metal as compared with a gas such as oxygen. It has been found that the reaction active area on the surface of the catalytic metal decreases when is contacted with the electrolyte. As a result, the catalytic activity is lowered and the power generation performance is lowered. Therefore, in order to obtain sufficient power generation performance, it is necessary to use a lot of expensive metals such as platinum, which increases the cost of the fuel cell. Will be invited.
- the reaction activity area of the catalyst metal can be secured by forming a three-phase interface with water, and the catalyst metal can be used effectively.
- a catalyst using a porous carrier such as carbon sufficient mesopores can be secured by setting the BET specific surface area of the catalyst to more than 1200 m 2 / g carrier. Therefore, by setting the BET specific surface area of the catalyst to more than 1200 m 2 / g support, the catalyst metal can be supported inside the mesopores into which the electrolyte cannot enter, and the catalyst is formed by the electrolyte adsorbed on the surface of the catalyst metal. The decrease in activity can be suppressed.
- pores having a radius of less than 1 nm are also referred to as “micropores”.
- holes having a radius of 1 to 5 nm are also referred to as “meso holes”.
- the hydrophilicity of the inner surface of the pores of the catalyst can be enhanced by controlling the amount of acidic groups present in the catalyst to a value above a certain value. Therefore, water can be adsorbed and held inside the pores. Since water is easily introduced into the pores in this way, proton transport is also promoted around the catalyst metal supported inside the pores of the catalyst, and the electrochemical reaction can proceed efficiently. Metal utilization can be improved. Therefore, the usage amount of the catalyst metal can be reduced, which can contribute to the reduction of the manufacturing cost of the fuel cell.
- the catalyst of the present invention can achieve a higher effect, particularly when used under conditions where the relative humidity is low. When the relative humidity is high, the catalyst pores are relatively easily filled with water.
- the conventional catalyst when the relative humidity is low, the conventional catalyst is not sufficiently filled with water inside the catalyst pores, and the proton transport resistance is low. The power generation performance is greatly reduced.
- the catalyst of the present invention even when the relative humidity is low, water can be retained inside the pores, so that high proton transportability can be obtained. Therefore, the catalytic metal can be used effectively, and the effects of the present invention can be obtained more remarkably.
- X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
- a fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
- MEA membrane electrode assembly
- the fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
- FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
- the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
- the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
- GDL gas diffusion layers
- the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
- MEA membrane electrode assembly
- the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
- the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
- the separator is generally used as a separator for an adjacent PEFC (not shown).
- the MEAs are sequentially stacked via the separator to form a stack.
- a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
- the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
- the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
- a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
- a fuel gas for example, hydrogen
- an oxidant gas for example, air
- the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
- a refrigerant for example, water
- the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
- the separators (5a, 5c) are formed in an uneven shape.
- the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
- the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
- the type of the fuel cell is not particularly limited.
- the polymer electrolyte fuel cell has been described as an example.
- an alkaline fuel cell and a direct methanol fuel cell are used.
- a micro fuel cell is used.
- a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
- the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
- the fuel used when operating the fuel cell is not particularly limited.
- hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
- hydrogen and methanol are preferably used in that high output is possible.
- the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
- the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
- FIG. 2 is a schematic sectional explanatory view showing the shape and structure of a catalyst according to an embodiment of the present invention.
- the catalyst 20 of the present invention includes a catalytic metal 22 and a support 23. Further, the catalyst 20 has pores (mesopores) 24. Further, the catalyst 20 has an acidic group 25.
- the catalyst metal 22 is supported inside the pores (mesopores) 24. Further, it is sufficient that at least a part of the catalyst metal 22 is supported inside the pores (mesopores) 24, and a part thereof may be supported on the surface of the carrier 23.
- substantially all of the catalyst metal 22 is supported inside the mesopores 24.
- substantially all catalytic metals is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity.
- substantially all catalyst metals are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
- the BET specific surface area of the catalyst of the present invention (after supporting the catalytic metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g)] is more than 1200 m 2 / g support.
- the BET specific surface area of the catalyst is 1200 m 2 / g or less, sufficient pores (mesopores) cannot be secured, and it is difficult to store (support) more catalyst metal inside the pores (mesopores).
- the catalytic metal supported on the surface of the support becomes relatively large. Therefore, the catalyst metal and the electrolyte are easily brought into contact with each other in the catalyst layer, and the ratio of the electrolyte covering the catalyst metal is increased.
- the BET specific surface area of the catalyst is 1200 m 2 / g or less, it is not easy to disperse the catalyst metal particles in a high state to sufficiently increase the effective surface area.
- the BET specific surface area of the catalyst is preferably 1500 m 2 / g support or more, more preferably 1700 m 2 / g support or more.
- the upper limit of the specific surface area is not particularly limited, but is preferably 3000 m 2 / g or less.
- the “BET specific surface area (m 2 / g)” of the catalyst is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight. .
- the BET specific surface area is measured under the following measurement conditions.
- a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
- the production method of the catalyst having the specific surface area as described above is not particularly limited, but usually, the methods described in JP 2010-208887 A, International Publication No. 2009/0775264, etc. are preferably used.
- the material of the carrier is not particularly limited as long as it has mesopores and has a specific surface area sufficient to support the catalyst component in a dispersed state inside the mesopores and sufficient electron conductivity.
- the carrier contains carbon, more preferably the main component is carbon.
- Specific examples include porous carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like.
- the main component is carbon means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included.
- “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed. By using carbon as a carrier, electron conductivity is improved and electron conduction resistance is reduced, so that power generation performance can be improved.
- carbon black is preferably used, and Black Pearls (registered trademark) is particularly preferably used because a desired pore region is easily formed inside the carrier.
- the crystallinity of the carbon support for the purpose of improving the corrosion resistance of the catalyst layer.
- G band peak intensity and D band peak intensity calculated by Raman scattering spectroscopic analysis can be used.
- peaks are usually generated around 1340 cm ⁇ 1 and 1580 cm ⁇ 1 . These peaks are usually referred to as “D band” and “G band”. Strictly speaking, the peak of diamond is 1333 cm ⁇ 1 and is distinguished from the D band.
- said carrier is carbon black half width of D band appearing at 1340 cm -1 in the Raman spectrum is 100 cm -1 or less. Further, in an embodiment of the present invention, the carrier, the half width of G band appearing at 1580 cm -1 in the Raman spectrum is 60cm -1 or less. In these cases, the corrosion resistance of the catalyst layer is improved by graphitization of the carbon support, whereby a catalyst layer having high initial performance and capable of maintaining the performance over a long period of time can be provided.
- the lower limit value of the half width of the D band and the half width of the G band is not particularly limited. However, since the primary vacancies are closed simultaneously with the progress of graphitization of the support, the half-value width of the D band is 50 cm ⁇ in order to achieve both the graphitization of the support and securing the desired primary vacancy region. It is preferably 1 or more, and the half width of the G band is preferably 40 cm ⁇ 1 or more.
- the Raman spectrum is a spectrum indicating which light of which wavelength is scattered with what intensity with respect to the light scattered by the Raman effect.
- the half widths of the D band and the G band can be calculated using a Raman spectrum in which the wave number (cm ⁇ 1 ) is represented on one axis and the intensity is represented on the other axis.
- the “half-value width” is a value used for determining the distribution state of a predetermined absorption band, and refers to the spread width of the absorption band at a half height of the peak height of the absorption band.
- the full width at half maximum can be determined by the analysis program.
- the half-value width is determined by the process of drawing a straight baseline in the region containing the D-band and G-band peaks, performing curve fitting of the Lorentz waveform, and separating the peaks of the D-band and G-band.
- porous metals such as Sn (tin) and Ti (titanium), as well as conductive metal oxides such as RuO 2 and TiO 2 can be preferably used as the carrier.
- conductive metal oxides such as RuO 2 and TiO 2
- the BET specific surface area of the support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state.
- the BET specific surface area of the carrier can be determined by the same method as the BET specific surface area of the catalyst described above.
- the BET specific surface area of the support is substantially equivalent to the BET specific surface area of the catalyst determined on the basis of the weight of the support.
- the BET specific surface area of the support is preferably more than 1200 m 2 / g, more preferably 1500 m 2 / g or more, and even more preferably 1700 m 2 / g or more. If the specific surface area is as described above, sufficient mesopores can be secured, so that more catalyst metal can be stored (supported) in the mesopores.
- the upper limit value of the BET specific surface area of the support is not particularly limited, but is, for example, 3000 m 2 / g or less.
- the pore diameter of the carrier is not particularly limited as long as the carrier has mesopores, but preferably mesopores (radius 1 to 5 nm) and micropores (radius less than 1 nm, size lower limit is 0.3 nm). Have.
- the pore volume of pores (micropores) having a radius of less than 1 nm of the carrier is not particularly limited, but is preferably 0.1 cc / g or more. More preferably, the pore volume of the micropores is 0.3 to 3 cc / g carrier, and particularly preferably 0.4 to 2 cc / g carrier. Such a void volume can more effectively suppress / prevent desorption of the catalytic metal under mechanical stress. In addition, sufficient micropores for gas transportation can be secured, and the gas transportation resistance is small.
- the catalyst of the present invention can exhibit high catalytic activity, that is, promote the catalytic reaction. it can.
- the pore volume of pores having a radius of less than 1 nm is also simply referred to as “micropore pore volume”.
- the pore volume of the pores (mesopores) having a radius of 1 nm or more of the carrier is not particularly limited, but is 0.4 cc / g carrier or more, more preferably 0.4 to 3 cc / g carrier, particularly preferably. Is preferably 0.4 to 2 cc / g carrier. If the pore volume is in the range as described above, desorption of the catalytic metal under mechanical stress can be more effectively suppressed / prevented. In addition, a large amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented).
- the activity of the catalytic metal can be utilized more effectively.
- the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
- the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved.
- the void volume of holes having a radius of 1 nm or more is also simply referred to as “mesopore void volume”.
- the pore volume of micropores means the total volume of micropores with a radius of less than 1 nm present in the carrier, and is expressed as the volume per gram of carrier (cc / g carrier).
- the “micropore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (MP method).
- pore volume of mesopores means the total volume of mesopores having a radius of 1 nm or more present in the carrier, and is represented by the volume per gram of carrier (cc / g carrier).
- the “mesopore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
- the average particle size of the carrier is preferably 20 to 2000 nm. Within such a range, the mechanical strength can be maintained and the thickness of the catalyst layer can be controlled within an appropriate range even when the support is provided with the above-described pore structure.
- the value of the “average particle diameter of the carrier” is observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles shall be adopted.
- the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
- examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth.
- the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
- the catalytic metal that can be used in the present invention has a function of catalyzing an electrochemical reaction.
- the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
- the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
- metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
- the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
- a catalytic metal can exhibit high activity. Therefore, when used as an electrode catalyst for a fuel cell, high power generation performance can be obtained.
- the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
- an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
- the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
- the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
- the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
- the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
- the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
- As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
- the average particle diameter of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably more than 3 nm and not more than 10 nm.
- the catalyst metal is supported relatively firmly in the mesopores, and the contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented. Further, the micropores remain without being clogged with the catalyst metal, and the gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
- the catalyst metal can be supported inside the mesopores of the support by a simple method, and the electrolyte coverage of the catalyst metal can be reduced.
- the “average particle diameter of the catalytic metal particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalytic metal component in X-ray diffraction, or the catalytic metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle diameters.
- the catalyst content per unit catalyst coating area (mg / cm 2 ) is particularly limited as long as sufficient degree of dispersion of the catalyst on the carrier and power generation performance can be obtained. For example, it is 0.01 to 1 mg / cm 2 .
- the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
- the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
- the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 . In this embodiment, since the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
- inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
- ICP inductively coupled plasma emission spectroscopy
- a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
- the ratio of the catalyst metal contained in the catalyst is preferably relative to the total amount of the catalyst support (that is, the support and the catalyst). Is 50% by weight or less, more preferably 30% by weight or less. If the supported amount is within the above range, the catalyst metal having a small particle diameter is dispersed on the surface of the support, so that the surface area of the catalyst metal per weight is maintained even if the amount of catalyst metal used is reduced. That is, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and high catalyst activity per unit weight of the catalyst can be achieved.
- the amount of platinum used can be reduced by reducing to the above range, and it is preferable to reduce the cost.
- the amount of catalyst metal supported is 30% by weight or less, the raw material cost of the catalyst metal can be reduced, and the weight fraction of the support with respect to the catalyst increases. Can be suppressed and durability can be improved.
- the lower limit value of the loading amount is not particularly limited, but is preferably 5% by weight or more from the viewpoint of obtaining high power generation performance.
- the catalyst of the present invention has acidic groups on the surface of catalyst particles or the surface of pores, and the amount of acidic groups per carrier weight is 0.7 mmol / g or more.
- the acidic group of the catalyst of the present invention is not particularly limited as long as it is a functional group that can be ionized to release protons, but contains at least one selected from the group consisting of a hydroxyl group, a lactone group, and a carboxyl group. Is preferred.
- the support includes carbon
- the acidic group preferably includes a hydroxyl group, a lactone group, or a carboxyl group
- the acidic group preferably includes a hydroxyl group.
- Such an acidic group is a hydrophilic group and can increase the amount of water adsorbed on the surface of the carrier, so that the proton transportability in the catalyst layer can be improved. Further, the durability of the catalyst can be improved.
- the amount of acidic groups possessed by the catalyst is 0.7 mmol / g or more.
- the amount of acidic groups in the catalyst is less than 0.7 mmol / g support, the hydrophilicity of the catalyst cannot be secured and sufficient proton transportability cannot be exhibited. For this reason, the utilization rate of the catalyst metal cannot be sufficiently increased, and in order to obtain sufficient power generation performance, a large amount of the catalyst metal must be used, which may increase the cost of the fuel cell.
- the amount of the acidic group is preferably more than 0.75 mmol / g carrier, more preferably 1.2 mmol / g carrier or more, and still more preferably 1.8 mmol / g carrier or more.
- the upper limit of the amount of acidic groups is not particularly limited, but is preferably 3.0 mmol / g carrier or less, more preferably 2.5 mmol / g carrier or less from the viewpoint of carbon durability.
- the amount of the acidic group can be measured by a titration method using an alkali compound, and specifically, can be measured by the method described in Examples.
- the method for adding an acidic group to the catalyst so that the amount of the acidic group is within the above range is not particularly limited.
- a support catalyst support
- a dipping wet method may be employed. Details of this method will be described later.
- the catalyst of the present invention can exhibit high proton transportability, that is, can promote an electrochemical reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, this invention also provides the electrode catalyst layer for fuel cells containing the catalyst and electrolyte layer of this invention.
- the catalyst 20 is covered with the electrolyte 26.
- the electrolyte 26 has a smaller surface opening diameter of the pores (mesopores) 24 than its molecular size, It does not enter the pores (mesopores) 24 of the (carrier 23).
- the catalyst metal 22 on the surface of the carrier 23 is in contact with the electrolyte 26, but the catalyst metal 22 supported in the pores 24 is not in contact with the electrolyte 26.
- the catalytic metal in the pores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
- the catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
- the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
- the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
- Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
- ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by Dupont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
- Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
- hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
- S-PES sulfonated polyethersulfone
- S-PEEK ether ketone
- S-PPP sulfonated polyphenylene
- the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
- the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
- the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
- the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
- the following polymer electrolytes are included.
- the EW of the polymer electrolyte is preferably 500 or more.
- EW Equivalent Weight
- the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
- the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
- the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
- the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
- the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
- the catalyst layer of this embodiment may have a liquid proton conductive material such as water that can connect the catalyst and the polymer electrolyte in a proton conductive state between the catalyst and the polymer electrolyte.
- a liquid proton conductive material such as water that can connect the catalyst and the polymer electrolyte in a proton conductive state between the catalyst and the polymer electrolyte.
- the liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
- the liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte.
- Specific examples include water, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution. In this embodiment, it is preferable to contain water.
- the liquid proton conductive material When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation.
- the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules.
- water liquid proton conductive material
- polymer electrolyte liquid conductive material holding part
- the total area of the catalyst (catalyst metal) in contact with the polymer electrolyte is smaller than the total area of the catalyst (catalyst metal) exposed at the liquid conductive material holding part. It is preferable that
- these areas are compared, for example, with the capacity of the electric double layer formed at the catalyst-polymer electrolyte interface and the catalyst-liquid proton conducting material interface in a state where the liquid conducting material holding portion is filled with the liquid proton conducting material.
- This can be done by seeking a relationship. That is, the electric double layer capacity is proportional to the area of the electrochemically effective interface. Therefore, if the electric double layer capacity formed at the catalyst-electrolyte interface is smaller than the electric double layer capacity formed at the catalyst-liquid proton conductive material interface, the contact area of the catalyst with the electrolyte is exposed to the liquid conductive material holding part. It will be smaller than the area.
- this is a method for determining the relationship between the contact area between the catalyst and the electrolyte and between the catalyst and the liquid proton conductive material (the relationship between the contact area of the catalyst with the electrolyte and the exposed area of the liquid conductive material holding part). is there.
- Catalyst-Polymer electrolyte (CS) (2) Catalyst-Liquid proton conductive material (CL) (3) Porous carrier-polymer electrolyte (Cr-S) (4) Porous carrier-liquid proton conducting material (Cr-L)
- CS Catalyst-Polymer electrolyte
- CL Catalyst-Liquid proton conductive material
- Cr-S Porous carrier-polymer electrolyte
- Cr-L Porous carrier-liquid proton conducting material
- Electric double layer capacitor since that is directly proportional to the area of the electrochemically active surface, Cdl C-S (catalytic - electric double layer capacity of the polymer electrolyte interface) and Cdl C-L (catalytic - What is necessary is just to obtain
- the contribution of the four types of interfaces to the electric double layer capacity (Cdl) can be separated as follows.
- the electric double layer capacity is measured under a high humidification condition such as 100% RH and a low humidification condition such as 10% RH or less.
- examples of the measurement method of the electric double layer capacitance include cyclic voltammetry and electrochemical impedance spectroscopy. From these comparisons, the contribution of the liquid proton conducting material (in this case “water”), that is, the above (2) and (4) can be separated.
- the catalyst when the catalyst is deactivated, for example, when Pt is used as the catalyst, the catalyst is deactivated by supplying CO gas to the electrode to be measured and adsorbing CO on the Pt surface.
- the contribution to the multilayer capacity can be separated. In such a state, as described above, the electric double layer capacity under high and low humidification conditions is measured by the same method, and the contribution of the catalyst, that is, the above (1) and (2) is separated from these comparisons. be able to.
- the measured value (A) in the highly humidified state is the electric double layer capacity formed at all the interfaces (1) to (4)
- the measured value (B) in the lowly humidified state is the above (1) and (3).
- the measured value (C) in the catalyst deactivation / highly humidified state is the electric double layer capacity formed at the interface of the above (3) and (4)
- the measured value (D) in the catalyst deactivated / lowly humidified state is the above It becomes an electric double layer capacity formed at the interface of (3).
- the difference between A and C is the electric double layer capacity formed at the interface of (1) and (2)
- the difference between B and D is the electric double layer capacity formed at the interface of (1).
- (AC)-(BD) the electric double layer capacity formed at the interface of (2) can be obtained.
- the contact area of the catalyst with the polymer electrolyte and the exposed area of the conductive material holding part can be obtained by, for example, TEM (transmission electron microscope) tomography.
- the electrolyte coverage of the catalyst metal calculated from the ratio of the area where the catalyst metal surface is covered with the electrolyte to the surface area of the catalyst metal is preferably 0.3 or less.
- the electrolyte coverage of the catalyst metal is more preferably 0.25 or less, and more preferably 0.2 or less (lower limit: 0). If the electrolyte coverage is 0.3 or less, the catalytic activity (particularly the oxygen reduction reaction activity) is improved, so that the power generation performance can be improved.
- the electrolyte coverage can be calculated from the electric double layer capacity, and specifically can be calculated by the method described in Examples.
- a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
- a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
- the thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
- the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer.
- the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
- a carrier also referred to as “porous carrier” or “conductive porous carrier” in the present specification
- the pore structure is controlled by heat-treating the carrier. Specifically, it may be produced as described in the method for producing the carrier. Thereby, the support
- the conditions for the heat treatment vary depending on the material and are appropriately determined so that a desired specific surface area can be obtained. Such heat treatment conditions may be determined according to the material while confirming the pore structure, and can be easily determined by those skilled in the art.
- the catalyst is supported on the porous carrier to obtain catalyst powder.
- the catalyst can be supported on the porous carrier by a known method.
- known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
- the particle diameter of the catalytic metal particles can be adjusted to a desired particle diameter by annealing treatment.
- the annealing treatment is not particularly limited, but can be performed by heat treatment in hydrogen gas.
- the temperature and time of the heat treatment are not particularly limited.
- the heat treatment is performed at 600 to 1180 ° C., preferably 800 to 1000 ° C., and preferably 0.5 to 2 hours. If the temperature of heat processing is 600 degreeC or more, a particle diameter will not become small too much and activity can continue for a long time. If the temperature of heat processing is 1180 degrees C or less, a particle diameter will not become large too much and high mass activity can be obtained.
- the obtained catalyst is treated with an oxidizing solution to add an acidic group.
- a carrier such as carbon has a certain amount of a functional group such as a hydrogen atom or an acidic group as a terminal group.
- an acidic group is further added by treatment with an oxidizing solution to make the carrier 0.7 mmol / g or more.
- the oxidizing solution used is preferably an aqueous solution of sulfuric acid, nitric acid, phosphorous acid, potassium permanganate, hydrogen peroxide, hydrochloric acid, chloric acid, hypochlorous acid, chromic acid, or the like. This oxidizing solution treatment is performed by bringing the catalyst into contact with the oxidizing solution at least once.
- the concentration of the solution is preferably 0.1 to 10.0 mol / L, and the catalyst is preferably immersed in the solution.
- the immersion time is preferably 0.5 to 3 hours, and the treatment temperature is preferably 50 to 90 ° C.
- the amount of acidic groups can be controlled by adjusting the BET specific surface area of the catalyst, the type of oxidizing solution, the concentration, the treatment time, and the treatment temperature.
- a catalyst ink containing an acid group-added catalyst powder, a polymer electrolyte, and a solvent is prepared.
- the solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
- the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
- the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
- additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
- these additives may be added to the catalyst ink.
- the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
- the amount of the additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
- a catalyst ink is applied to the surface of the substrate.
- the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
- a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
- the obtained laminate can be used for the production of the membrane electrode assembly as it is.
- a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
- PTFE polytetrafluoroethylene
- the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
- the solid polymer electrolyte membrane 2 a cathode catalyst layer disposed on one side of the electrolyte membrane, an anode catalyst layer disposed on the other side of the electrolyte membrane,
- a membrane electrode assembly for a fuel cell having an electrolyte membrane 2 and a pair of gas diffusion layers (4a, 4c) sandwiching the anode catalyst layer 3a and the cathode catalyst layer 3c.
- at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
- the cathode catalyst layer may be the catalyst layer of the embodiment described above.
- the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
- a fuel cell having the membrane electrode assembly of the above form there is provided a fuel cell having the membrane electrode assembly of the above form. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
- the present invention is characterized by the catalyst and the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
- the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
- the solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
- the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
- the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
- the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
- the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
- the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
- the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
- the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
- a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
- the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
- the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
- the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
- the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
- MPL microporous layer
- the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
- the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
- Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
- fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
- the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
- a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, it is possible to use a method in which a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing and a gas diffusion layer is bonded to a dried product.
- two gas diffusion electrodes are prepared by applying a catalyst layer on one side of the base material layer in advance and drying the microporous layer side of the gas diffusion layer (if the microporous layer is not included)
- the gas diffusion electrode can be bonded to both sides of the solid polymer electrolyte membrane by hot pressing, and the coating and bonding conditions such as hot pressing can be performed in the solid polymer electrolyte membrane or the polymer in the catalyst layer. What is necessary is just to adjust suitably according to the kind (perfluorosulfonic acid type
- the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
- the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
- each of the separators is preferably provided with a gas flow path and a cooling flow path.
- a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
- the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
- the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
- a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
- the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
- the relative humidity of the fuel gas or the oxidant gas supplied to the fuel cell of the present embodiment is not particularly limited.
- the relative humidity is 60% or less, particularly 40% or less (lower limit value: 0% or more)
- the present invention when the relative humidity is 60% or less, particularly 40% or less (lower limit value: 0% or more), the present invention.
- the effect of can be obtained more remarkably. That is, the catalyst of the present embodiment can be suitably used as a fuel cell electrode catalyst under conditions where the relative humidity is 60% or less, particularly 40% or less.
- the fuel gas or oxidant gas supplied to the fuel cell can be used after adjusting the humidity to a desired humidity by a known method.
- the PEFC and membrane electrode assembly described above use a catalyst layer that has a high utilization rate of catalyst metal and is excellent in power generation performance and durability. Therefore, the PEFC and membrane electrode assembly are excellent in power generation performance and durability, and the amount of catalyst metal used can be reduced, so that the manufacturing cost is reduced.
- the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
- Example 1 A carrier A having a BET specific surface area of 1750 m 2 / g was prepared. Specifically, carrier A was prepared by the method described in International Publication No. 2009/75264.
- catalyst powder A platinum (Pt) having an average particle diameter of 4 nm as a catalyst metal was supported so as to have a supporting rate of 50% by weight to obtain catalyst powder A. That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. And it filtered and dried and obtained catalyst powder A with a loading rate of 50 weight%.
- the annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
- Catalyst powder A was subjected to an oxidizing solution treatment for adding an acidic group.
- the catalyst powder A was immersed in a 3.0 mol / L nitric acid aqueous solution at 80 ° C. for 2 hours, and then filtered and dried to obtain a catalyst powder A having an acidic group.
- the catalyst powder A thus obtained was measured for BET specific surface area and found to be 1750 m 2 / g carrier.
- a catalyst powder A having an acidic group and an ionomer dispersion (Nafion (registered trademark) D2020, EW 1100 g / mol, manufactured by DuPont) as a polymer electrolyte, and a weight ratio of the carbon support to the ionomer of 0.9 It mixed so that it might become. Further, an n-propyl alcohol solution (50%) was added as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight to prepare a cathode catalyst ink.
- Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) having an average particle size of 2.5 nm is supported on the catalyst metal so that the supported amount is 50% by weight.
- an anode catalyst ink was prepared by adding an n-propyl alcohol solution (50%) as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight.
- a gasket manufactured by Teijin DuPont Films, Teonex (registered trademark), thickness: 25 ⁇ m (adhesive layer: 25 ⁇ m) around both sides of a polymer electrolyte membrane (Dupont, Nafion (registered trademark) NR211; thickness: 25 ⁇ m). 10 ⁇ m)).
- the catalyst ink was applied to a size of 5 cm ⁇ 2 cm by spray coating on the exposed portion of one side of the polymer electrolyte membrane. The catalyst ink was dried by maintaining the stage for spray coating at 60 ° C. to obtain a cathode catalyst layer. The amount of platinum supported at this time is 0.15 mg / cm 2 .
- spray coating and heat treatment were performed on the electrolyte membrane to form an anode catalyst layer, thereby obtaining a membrane electrode assembly (1) (MEA (1)) of this example.
- Example 2 Black Pearls (registered trademark) (carrier B) having a BET specific surface area of 1440 m 2 / g was prepared.
- catalyst powder B platinum (Pt) having an average particle size of 4 nm was supported on the catalyst metal so that the supporting rate was 30% by weight to obtain catalyst powder B. That is, 107 g of carrier B was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and then 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier B. And it filtered and dried and obtained catalyst powder B with the load of 30 weight%.
- the annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
- Catalyst powder B was treated with an oxidizing solution for addition of acidic groups.
- the catalyst powder B was immersed in a 3.0 mol / L nitric acid aqueous solution at 80 ° C. for 1 hour, then filtered and dried to obtain a catalyst powder B having an acidic group.
- the catalyst powder B thus obtained was measured for BET specific surface area to be 1291 m 2 / g carrier.
- Membrane electrode assembly (2) (MEA (2)) was obtained in the same manner as in Example 1 except that the catalyst powder B thus obtained was used instead of the catalyst powder A.
- Example 3 As the carrier C, the same carrier as in Example 1 was prepared.
- catalyst powder C platinum (Pt) having an average particle diameter of 4 nm was supported as a catalyst metal so that the supporting rate was 30% by weight, and catalyst powder C was obtained. That is, 107 g of carrier C was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6 mass%, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier C. And it filtered and dried and obtained catalyst powder C with the load of 30 weight%.
- the annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
- Catalyst powder C was treated with an oxidizing solution for adding an acidic group.
- the catalyst powder C was immersed in an aqueous 3.0 mol / L nitric acid solution at 80 ° C. for 1 hour, then filtered and dried to obtain catalyst powder C having an acidic group.
- the catalyst powder C thus obtained was measured for BET specific surface area and found to be 1750 m 2 / g carrier.
- Membrane electrode assembly (3) (MEA (3)) was obtained in the same manner as in Example 1 except that the catalyst powder C thus obtained was used instead of the catalyst powder A.
- catalyst powder D platinum (Pt) having an average particle diameter of 5 nm was supported on the carrier metal so as to have a supporting rate of 50% by weight to obtain catalyst powder D. That is, 46 g of carrier D was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier D. And it filtered and dried and obtained catalyst powder D with the load of 50 weight%.
- the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder D.
- the catalyst powder D thus obtained was measured for BET specific surface area and found to be 705 m 2 / g carrier.
- a comparative membrane electrode assembly (1) (comparative MEA (1)) was obtained in the same manner as in Example 1 except that the catalyst powder D thus obtained was used instead of the catalyst powder A. .
- catalyst powder E platinum (Pt) having an average particle diameter of 4 nm was supported on the carrier metal so that the supporting rate was 50% by weight to obtain catalyst powder E. That is, 46 g of carrier E was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and then 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier E. And it filtered and dried and obtained catalyst powder E with the load of 50 weight%.
- catalyst powder E was measured for BET specific surface area to be 1291 m 2 / g carrier.
- a comparative membrane electrode assembly (2) (comparative MEA (2)) was obtained in the same manner as in Example 1 except that the catalyst powder E thus obtained was used instead of the catalyst powder A. .
- the amount of acidic groups was measured by the following titration method. That is, first, 2.5 g of the catalyst powder having an acidic group was washed with 1 L of warm pure water and dried. After drying, the amount of carbon contained in the catalyst having an acidic group was measured to be 0.25 g, stirred with 55 ml of water for 10 minutes, and then subjected to ultrasonic dispersion for 2 minutes. Next, this catalyst dispersion was moved to a glove box purged with nitrogen gas, and nitrogen gas was bubbled for 10 minutes.
- a 0.1 M aqueous base solution was added to the catalyst dispersion, and the basic solution was subjected to neutralization titration with 0.1 M hydrochloric acid, and the amount of functional groups was determined from the neutralization point.
- three types of NaOH, Na 2 CO 3 and NaHCO 3 are used as the aqueous base solution, and neutralization titration work is performed for each. This is because the type of functional group to be neutralized differs for each base used. In the case of NaOH, the carboxyl group, lactone group, and hydroxyl group, and in the case of Na 2 CO 3 , the carboxyl group, lactone group, and NaHCO 3 are used.
- the coverage of the electrolyte with respect to the catalyst metal was calculated by measuring the electric double layer capacity formed at the interface of the catalyst with the solid proton conductive material and the liquid proton conductive material. . In calculating the coverage, it was calculated from the ratio of the electric double layer capacity in the low humidified state to the high humidified state, and the measured values under the conditions of 5% RH and 100% RH were used as representatives of the humidity state. .
- the measurement conditions shown in Table 1 were employed using an electrochemical measurement system HZ-3000 manufactured by Hokuto Denko Corporation and a frequency response analyzer FRA5020 manufactured by NF Circuit Design Block.
- each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state shown in Table 1 were supplied to the working electrode and the counter electrode, respectively.
- the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates. Since the relationship between the imaginary part (Z ′′) and the angular velocity ⁇ (converted from the frequency) is expressed by the following equation, the reciprocal of the imaginary part is arranged with respect to ⁇ 2 to the angular velocity, and when the ⁇ 2 to the angular velocity is 0 The electric double layer capacitance C dl is obtained by extrapolating the value.
- the catalysts of Examples 1 to 3 in which the BET specific surface area of the catalyst is more than 1200 m 2 / g support and the amount of acidic groups is 0.7 mmol / g support or more are Comparative Examples 1, 2 It can be seen that the oxygen reduction reaction activity per platinum surface area is excellent as compared with the above catalyst. Further, from comparison between Example 2 and Example 3, the larger the BET specific surface area of the catalyst, the higher the oxygen reduction reaction activity per platinum surface area. Further, from comparison between Example 1 and Example 3, it was found that the oxygen reduction reaction activity could be improved when the platinum loading was 30% by weight or less. Moreover, if the electrolyte coverage is 0.3 or less, the oxygen reduction reaction activity can be improved. From these results, it can be seen that according to the catalyst of the present invention, the utilization rate of the catalyst metal can be increased, and the usage amount of the catalyst metal can be reduced to contribute to the reduction of the production cost of the catalyst.
- PEFC Polymer electrolyte fuel cell
- 2 solid polymer electrolyte membrane 3a anode catalyst layer, 3c cathode catalyst layer, 4a Anode gas diffusion layer, 4c cathode gas diffusion layer, 5a anode separator, 5c cathode separator, 6a Anode gas flow path, 6c cathode gas flow path, 7 Refrigerant flow path, 10 Membrane electrode assembly (MEA), 20 catalyst, 22 catalytic metal, 23 carrier, 24 pores (mesopores), 25 acidic groups, 26 Electrolyte.
- MEA Membrane electrode assembly
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
[Problem] To provide an electrode catalyst for fuel cells, which is increased in the rate of catalyst metal utilization and is capable of reducing the production cost of a fuel cell.
[Solution] A catalyst which is composed of a catalyst carrier and a catalyst metal supported by the catalyst carrier, and which is characterized in that the BET specific surface area per carrier weight is more than 1200 m2 per gram of the carrier and the amount of acidic groups per carrier weight is not less than 0.7 mmol per gram of the carrier.
Description
本発明は、触媒、特に燃料電池(PEFC)に用いられる電極触媒、および当該触媒を用いる電極触媒層、膜電極接合体および燃料電池に関するものである。
The present invention relates to a catalyst, in particular, an electrode catalyst used in a fuel cell (PEFC), an electrode catalyst layer using the catalyst, a membrane electrode assembly, and a fuel cell.
プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
A solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
このような固体高分子形燃料電池には、一般的に、白金(Pt)やPt合金に代表される高価な金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。
In such a polymer electrolyte fuel cell, generally, an expensive metal catalyst represented by platinum (Pt) or a Pt alloy is used, which is a high cost factor of such a fuel cell. . For this reason, development of a technique capable of reducing the cost of fuel cells by reducing the amount of noble metal catalyst used is required.
例えば、特許文献1には、比表面積が250~1200m2/gの炭素粉末担体上に、白金からなる触媒粒子が担持されてなる固体高分子形燃料電池用触媒が開示されている。前記炭素粉末担体は、0.7~3.0mmol/g(担体重量基準)の親水基が結合されており、前記白金粒子は、平均粒径3.5~8.0nmであり、CO吸着による白金比表面積(COMSA)が40~100m2/gである。この特許文献1には、アニール処理され担体表面の官能基が消失し濡れ性が悪化した白金触媒に、親水基を導入することにより、初期における活性(初期発電特性)が確保できることが記載されている。
For example, Patent Document 1 discloses a polymer electrolyte fuel cell catalyst in which platinum catalyst particles are supported on a carbon powder carrier having a specific surface area of 250 to 1200 m 2 / g. The carbon powder carrier is bound with 0.7 to 3.0 mmol / g (based on the weight of the carrier) of hydrophilic groups, and the platinum particles have an average particle size of 3.5 to 8.0 nm. The platinum specific surface area (COMSA) is 40 to 100 m 2 / g. This Patent Document 1 describes that the initial activity (initial power generation characteristics) can be ensured by introducing a hydrophilic group into a platinum catalyst that has been annealed and has lost its functional group on the surface of the carrier and has deteriorated wettability. Yes.
しかしながら、特許文献1に記載の触媒は、触媒金属である白金粒子と高分子電解質とが接触することによって高分子電解質が白金粒子表面に吸着しやすく、その結果、触媒活性が低下し、発電性能が低下してしまうことがわかった。十分な発電性能を得るためには白金のような高価な金属を多く使用する必要があり、これは燃料電池の高コスト化を招いてしまう。
However, the catalyst described in Patent Document 1 is such that when the platinum particles, which are catalytic metals, and the polymer electrolyte come into contact with each other, the polymer electrolyte is easily adsorbed on the surface of the platinum particles, resulting in a decrease in catalytic activity and power generation performance. It was found that would decrease. In order to obtain sufficient power generation performance, it is necessary to use a large amount of expensive metal such as platinum, which leads to an increase in the cost of the fuel cell.
そこで、本発明は、上記事情を鑑みてなされたものであり、触媒金属の利用率を高め、燃料電池の製造コストを低減しうる、燃料電池用電極触媒を提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell electrode catalyst capable of increasing the utilization rate of the catalyst metal and reducing the manufacturing cost of the fuel cell.
本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、所定のBET比表面積を有し、所定の量の酸性基を有する触媒が上記課題を解決することを見出し、本発明を完成するに到った。
As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst having a predetermined BET specific surface area and a predetermined amount of acidic groups solves the above problems. The invention has been completed.
すなわち本発明は、触媒担体および前記触媒担体に担持される触媒金属からなる触媒であって、担体重量当たりのBET比表面積が1200m2/g担体超であり、かつ担体重量当たりの酸性基の量が0.7mmol/g担体以上であることを特徴とする、触媒である。
That is, the present invention is a catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier, wherein the BET specific surface area per carrier weight exceeds 1200 m 2 / g carrier, and the amount of acidic groups per carrier weight Is a catalyst characterized by having a support of 0.7 mmol / g or more.
本発明の触媒(本明細書中では、「電極触媒」とも称する)は、触媒担体および前記触媒担体に担持される触媒金属からなる。ここで、触媒は、下記構成(a)~(b)を満たす:
(a)担体重量当たりのBET比表面積が1200m2/g担体超である;
(b)担体重量当たりの酸性基の量が0.7mmol/g担体以上である。 The catalyst of the present invention (also referred to herein as “electrode catalyst”) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier. Here, the catalyst satisfies the following configurations (a) to (b):
(A) the BET specific surface area per carrier weight is more than 1200 m 2 / g carrier;
(B) The amount of acidic groups per carrier weight is 0.7 mmol / g or more.
(a)担体重量当たりのBET比表面積が1200m2/g担体超である;
(b)担体重量当たりの酸性基の量が0.7mmol/g担体以上である。 The catalyst of the present invention (also referred to herein as “electrode catalyst”) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier. Here, the catalyst satisfies the following configurations (a) to (b):
(A) the BET specific surface area per carrier weight is more than 1200 m 2 / g carrier;
(B) The amount of acidic groups per carrier weight is 0.7 mmol / g or more.
本発明によれば、触媒のBET比表面積を制御することによって、電解質が触媒金属表面に吸着することによる触媒活性の低下を抑制できる。また、触媒における酸性基の量を制御することによって担体の空孔内部のプロトン輸送が確保できるため、触媒金属の利用率を高めることができる。その結果、触媒金属の使用量を低減でき、燃料電池の製造コストを低減することができる。
According to the present invention, by controlling the BET specific surface area of the catalyst, it is possible to suppress a decrease in the catalytic activity due to the electrolyte adsorbed on the catalytic metal surface. Further, by controlling the amount of acidic groups in the catalyst, proton transport inside the pores of the carrier can be ensured, so that the utilization rate of the catalyst metal can be increased. As a result, the amount of catalyst metal used can be reduced, and the manufacturing cost of the fuel cell can be reduced.
本発明者らは、上記特許文献1に記載の触媒と高分子電解質とを用いて触媒層を作製した場合、電解質は酸素等のガスに比して触媒金属表面に吸着し易いため、触媒金属が電解質と接触すると、触媒金属表面の反応活性面積が減少することを見出した。その結果、触媒活性が低下し、発電性能が低下してしまうため、十分な発電性能を得るためには白金のような高価な金属を多く使用する必要があり、これは燃料電池の高コスト化を招いてしまう。これに対して、触媒金属が電解質と接触しない場合であっても、水により三相界面を形成することによって触媒金属の反応活性面積を確保でき、触媒金属を有効に利用できることを見出した。ここで、カーボンなどの多孔質担体を用いた触媒において、触媒のBET比表面積を1200m2/g担体超とすることで十分なメソ孔を確保することができる。そのため、触媒のBET比表面積を1200m2/g担体超とすることで、触媒金属を電解質が進入できないメソ孔内部に担持する構成とすることができ、電解質が触媒金属表面に吸着することによる触媒活性の低下を抑制することができる。なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1~5nmの空孔を「メソ孔」とも称する。
When the present inventors prepared a catalyst layer using the catalyst described in Patent Document 1 and a polymer electrolyte, the electrolyte is more easily adsorbed on the surface of the catalyst metal as compared with a gas such as oxygen. It has been found that the reaction active area on the surface of the catalytic metal decreases when is contacted with the electrolyte. As a result, the catalytic activity is lowered and the power generation performance is lowered. Therefore, in order to obtain sufficient power generation performance, it is necessary to use a lot of expensive metals such as platinum, which increases the cost of the fuel cell. Will be invited. On the other hand, even when the catalyst metal does not come into contact with the electrolyte, it has been found that the reaction activity area of the catalyst metal can be secured by forming a three-phase interface with water, and the catalyst metal can be used effectively. Here, in a catalyst using a porous carrier such as carbon, sufficient mesopores can be secured by setting the BET specific surface area of the catalyst to more than 1200 m 2 / g carrier. Therefore, by setting the BET specific surface area of the catalyst to more than 1200 m 2 / g support, the catalyst metal can be supported inside the mesopores into which the electrolyte cannot enter, and the catalyst is formed by the electrolyte adsorbed on the surface of the catalyst metal. The decrease in activity can be suppressed. In the present specification, pores having a radius of less than 1 nm are also referred to as “micropores”. Further, in the present specification, holes having a radius of 1 to 5 nm are also referred to as “meso holes”.
一方、固体高分子型燃料電池の電極触媒層では、プロトンが電解質および液体プロトン伝導材である水を介して伝導することで電気化学反応が進行し、発電が生じる。触媒金属を電解質が進入できないメソ孔内部に主に担持する場合には、電解質が空孔内に進入できないため、空孔内の触媒金属周辺のプロトン輸送は水が担うことになる。ところが、空孔内に水が十分に存在していないと、プロトン輸送性が低下し、発電性能が低下してしまうことがわかった。したがって、このような場合は、コスト低減のために触媒金属の使用量を低減することができないことが明らかになった。
On the other hand, in the electrode catalyst layer of the polymer electrolyte fuel cell, protons are conducted through the electrolyte and the water, which is a liquid proton conducting material, so that an electrochemical reaction proceeds and power generation occurs. When the catalyst metal is mainly supported inside the mesopores into which the electrolyte cannot enter, the electrolyte cannot enter the pores, so that water is responsible for proton transport around the catalyst metal in the pores. However, it has been found that if there is not enough water in the pores, the proton transportability is lowered and the power generation performance is lowered. Therefore, in such a case, it has become clear that the amount of catalyst metal used cannot be reduced for cost reduction.
これに対して、本発明によれば、触媒に存在する酸性基の量を一定以上の値に制御することによって、触媒の空孔内部表面の親水性を高めることができる。したがって、空孔内部に水を吸着させ、保持することができる。このように空孔内部に水が導入されやすくなることで、触媒の空孔内部に担持された触媒金属周辺にもプロトンの輸送が促進されて電気化学反応が効率的に進行しうるため、触媒金属の利用率が向上しうる。そのため、触媒金属の使用量を減らすことができ、燃料電池の製造コストの低減に寄与しうる。また、本発明の触媒は、特に相対湿度が低い条件で用いた場合、より高い効果が得られうる。相対湿度が高い場合は触媒の空孔内部にも比較的水が充填されやすいが、相対湿度が低い場合、従来の触媒では触媒の空孔内部まで水が十分に充填されず、プロトン輸送抵抗が増大し、発電性能が大きく低下してしまう。しかしながら本発明の触媒によれば相対湿度が低い場合であっても空孔内部に水を保持することができるため高いプロトン輸送性が得られうる。したがって、触媒金属を有効に利用でき、本発明の効果がより顕著に得られうる。
On the other hand, according to the present invention, the hydrophilicity of the inner surface of the pores of the catalyst can be enhanced by controlling the amount of acidic groups present in the catalyst to a value above a certain value. Therefore, water can be adsorbed and held inside the pores. Since water is easily introduced into the pores in this way, proton transport is also promoted around the catalyst metal supported inside the pores of the catalyst, and the electrochemical reaction can proceed efficiently. Metal utilization can be improved. Therefore, the usage amount of the catalyst metal can be reduced, which can contribute to the reduction of the manufacturing cost of the fuel cell. In addition, the catalyst of the present invention can achieve a higher effect, particularly when used under conditions where the relative humidity is low. When the relative humidity is high, the catalyst pores are relatively easily filled with water. However, when the relative humidity is low, the conventional catalyst is not sufficiently filled with water inside the catalyst pores, and the proton transport resistance is low. The power generation performance is greatly reduced. However, according to the catalyst of the present invention, even when the relative humidity is low, water can be retained inside the pores, so that high proton transportability can be obtained. Therefore, the catalytic metal can be used effectively, and the effects of the present invention can be obtained more remarkably.
以下、適宜図面を参照しながら、本発明の触媒の一実施形態、ならびにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を、図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
Hereinafter, an embodiment of the catalyst of the present invention and an embodiment of a catalyst layer, a membrane electrode assembly (MEA) and a fuel cell using the same will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited only to the following embodiments. Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one. Further, in the case where the embodiment of the present invention is described with reference to the drawings, the same reference numerals are given to the same elements in the description of the drawings, and a duplicate description is omitted.
また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
[燃料電池]
燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。 [Fuel cell]
A fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. Have. The fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。 [Fuel cell]
A fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. Have. The fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention. The PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane. The laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c). Thus, the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
In PEFC1, the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c). In FIG. 1, the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. These descriptions are omitted in FIG.
セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
The separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured. Further, a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, a fuel gas (for example, hydrogen) is circulated through the gas flow path 6a of the anode separator 5a, and an oxidant gas (for example, air) is circulated through the gas flow path 6c of the cathode separator 5c.
一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
On the other hand, the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. . Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
In the embodiment shown in FIG. 1, the separators (5a, 5c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
The fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance. Here, the type of the fuel cell is not particularly limited. In the above description, the polymer electrolyte fuel cell has been described as an example. However, in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
Further, the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle. The electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
Hereinafter, although the members constituting the fuel cell of the present embodiment will be briefly described, the technical scope of the present invention is not limited only to the following embodiments.
[触媒(電極触媒)]
図2は、本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。図2に示されるように、本発明の触媒20は、触媒金属22および担体23からなる。また、触媒20は、空孔(メソ孔)24を有する。さらに、触媒20は、酸性基25を有する。ここで、触媒金属22は、空孔(メソ孔)24の内部に担持される。また、触媒金属22は、少なくとも一部が空孔(メソ孔)24の内部に担持されていればよく、一部が担体23の表面に担持されていてもよい。しかし、触媒層での電解質と触媒金属との接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。 [Catalyst (Electrocatalyst)]
FIG. 2 is a schematic sectional explanatory view showing the shape and structure of a catalyst according to an embodiment of the present invention. As shown in FIG. 2, thecatalyst 20 of the present invention includes a catalytic metal 22 and a support 23. Further, the catalyst 20 has pores (mesopores) 24. Further, the catalyst 20 has an acidic group 25. Here, the catalyst metal 22 is supported inside the pores (mesopores) 24. Further, it is sufficient that at least a part of the catalyst metal 22 is supported inside the pores (mesopores) 24, and a part thereof may be supported on the surface of the carrier 23. However, from the viewpoint of preventing contact between the electrolyte and the catalyst metal in the catalyst layer, it is preferable that substantially all of the catalyst metal 22 is supported inside the mesopores 24. Here, “substantially all catalytic metals” is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity. “Substantially all catalyst metals” are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
図2は、本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。図2に示されるように、本発明の触媒20は、触媒金属22および担体23からなる。また、触媒20は、空孔(メソ孔)24を有する。さらに、触媒20は、酸性基25を有する。ここで、触媒金属22は、空孔(メソ孔)24の内部に担持される。また、触媒金属22は、少なくとも一部が空孔(メソ孔)24の内部に担持されていればよく、一部が担体23の表面に担持されていてもよい。しかし、触媒層での電解質と触媒金属との接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。 [Catalyst (Electrocatalyst)]
FIG. 2 is a schematic sectional explanatory view showing the shape and structure of a catalyst according to an embodiment of the present invention. As shown in FIG. 2, the
本発明の触媒の(触媒金属担持後の)BET比表面積[担体1gあたりの触媒のBET比表面積(m2/g)]は、1200m2/g担体超である。触媒のBET比表面積が1200m2/g担体以下である場合、十分な空孔(メソ孔)を確保できず、空孔(メソ孔)内部により多くの触媒金属を格納(担持)することが難しく、担体の表面に担持される触媒金属が相対的に多くなる。よって、触媒層で触媒金属と電解質とが接触しやすくなり、電解質が触媒金属に被覆する割合が大きくなる。ゆえに、触媒金属の活性を有効に利用できず、触媒反応をより効果的に促進することが困難になる。さらに、触媒のBET比表面積が1200m2/g担体以下である場合は、触媒金属の粒子を高い状態で分散させ有効表面積を十分に高くすることが容易ではない。触媒のBET比表面積は、好ましくは1500m2/g担体以上であり、より好ましくは1700m2/g担体以上である。該比表面積の上限値は特に制限されないが、3000m2/g担体以下であることが好ましい。
The BET specific surface area of the catalyst of the present invention (after supporting the catalytic metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g)] is more than 1200 m 2 / g support. When the BET specific surface area of the catalyst is 1200 m 2 / g or less, sufficient pores (mesopores) cannot be secured, and it is difficult to store (support) more catalyst metal inside the pores (mesopores). The catalytic metal supported on the surface of the support becomes relatively large. Therefore, the catalyst metal and the electrolyte are easily brought into contact with each other in the catalyst layer, and the ratio of the electrolyte covering the catalyst metal is increased. Therefore, the activity of the catalytic metal cannot be effectively used, and it becomes difficult to promote the catalytic reaction more effectively. Further, when the BET specific surface area of the catalyst is 1200 m 2 / g or less, it is not easy to disperse the catalyst metal particles in a high state to sufficiently increase the effective surface area. The BET specific surface area of the catalyst is preferably 1500 m 2 / g support or more, more preferably 1700 m 2 / g support or more. The upper limit of the specific surface area is not particularly limited, but is preferably 3000 m 2 / g or less.
なお、本明細書において、触媒の「BET比表面積(m2/g)」は、窒素吸着法により測定される。詳細には、触媒粉末 約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、島津製作所株式会社製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(登録商標)(基材)重量を差し引いた塗布層の正味の重量約0.03~0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。
In the present specification, the “BET specific surface area (m 2 / g)” of the catalyst is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight. . Next, the BET specific surface area is measured under the following measurement conditions. On the adsorption side of the adsorption / desorption isotherm, a BET specific surface area is calculated from the slope and intercept by creating a BET plot from a relative pressure (P / P 0 ) range of about 0.00 to 0.45.
上記したような比表面積を有する触媒の製造方法は、特に制限されないが、通常、特開2010-208887号、国際公開第2009/075264号などの公報に記載される方法が好ましく使用される。
The production method of the catalyst having the specific surface area as described above is not particularly limited, but usually, the methods described in JP 2010-208887 A, International Publication No. 2009/0775264, etc. are preferably used.
担体の材質は、メソ孔を有し、触媒成分をメソ孔内部に分散状態で担持させるのに充分な比表面積と充分な電子伝導性とを有するものであれば特に制限されない。好ましくは、前記担体はカーボンを含み、より好ましくは主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭などからなる多孔質カーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%程度以下の不純物の混入が許容されうることを意味する。担体としてカーボンを用いることによって、電子伝導性が向上し、電子伝導抵抗が軽減されるため、発電性能が向上しうる。
The material of the carrier is not particularly limited as long as it has mesopores and has a specific surface area sufficient to support the catalyst component in a dispersed state inside the mesopores and sufficient electron conductivity. Preferably, the carrier contains carbon, more preferably the main component is carbon. Specific examples include porous carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included. “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed. By using carbon as a carrier, electron conductivity is improved and electron conduction resistance is reduced, so that power generation performance can be improved.
より好ましくは、担体内部に所望の空孔領域を形成し易いことから、カーボンブラックを使用することが好ましく、特に好ましくはBlack Pearls(登録商標)を使用する。
More preferably, carbon black is preferably used, and Black Pearls (registered trademark) is particularly preferably used because a desired pore region is easily formed inside the carrier.
さらに、触媒層の耐食性を向上させる目的で、カーボン担体の結晶性が制御されることが好ましい。炭素材料の結晶性や結晶性組成については、例えば、ラマン散乱分光分析により算出される、Gバンドピーク強度とDバンドピーク強度を用いることができる。
Furthermore, it is preferable to control the crystallinity of the carbon support for the purpose of improving the corrosion resistance of the catalyst layer. For the crystallinity and crystalline composition of the carbon material, for example, G band peak intensity and D band peak intensity calculated by Raman scattering spectroscopic analysis can be used.
炭素材料をラマン分光法により分析すると、通常1340cm-1付近および1580cm-1付近にピークが生じる。これらのピークは通常、「Dバンド」および「Gバンド」と称される。なお、ダイヤモンドのピークは厳密には1333cm-1であり、上記Dバンドとは区別される。
When the carbon material is analyzed by Raman spectroscopy, peaks are usually generated around 1340 cm −1 and 1580 cm −1 . These peaks are usually referred to as “D band” and “G band”. Strictly speaking, the peak of diamond is 1333 cm −1 and is distinguished from the D band.
本発明の一実施形態において、前記担体は、ラマンスペクトルにおいて1340cm-1に現れるDバンドの半値幅が100cm-1以下であるカーボンブラックである。また、本発明の一実施形態において、前記担体は、ラマンスペクトルにおいて1580cm-1に現れるGバンドの半値幅が60cm-1以下である。これらの場合には、カーボン担体の黒鉛化により触媒層の耐食性が向上し、これにより、初期性能が高く、長期間にわたりその性能を維持しうる触媒層が提供されうる。
In one embodiment of the present invention, said carrier is carbon black half width of D band appearing at 1340 cm -1 in the Raman spectrum is 100 cm -1 or less. Further, in an embodiment of the present invention, the carrier, the half width of G band appearing at 1580 cm -1 in the Raman spectrum is 60cm -1 or less. In these cases, the corrosion resistance of the catalyst layer is improved by graphitization of the carbon support, whereby a catalyst layer having high initial performance and capable of maintaining the performance over a long period of time can be provided.
上記Dバンドの半値幅および上記Gバンドの半値幅の下限値は特に制限されない。ただし、担体の黒鉛化の進展と同時に一次空孔が塞がれていくため、担体の黒鉛化と所望の一次空孔領域の確保とを両立させる点から、上記Dバンドの半値幅は50cm-1以上であるのが好ましく、上記Gバンドの半値幅は40cm-1以上であるのが好ましい。
The lower limit value of the half width of the D band and the half width of the G band is not particularly limited. However, since the primary vacancies are closed simultaneously with the progress of graphitization of the support, the half-value width of the D band is 50 cm − in order to achieve both the graphitization of the support and securing the desired primary vacancy region. It is preferably 1 or more, and the half width of the G band is preferably 40 cm −1 or more.
ここで、ラマンスペクトルとは、ラマン効果によって散射された光について、どの波長の光がどの程度の強さで散射されたかを示すスペクトルである。本発明においては、波数(cm-1)を一方の軸、強度を他方の軸として表したラマンスペクトルを用いて、DバンドおよびGバンドの半値幅が算出されうる。また、「半値幅」とは、所定の吸収帯の分布状態を判断するために用いられる値であり、吸収帯のピーク高さの2分の1の高さにおける吸収帯の広がり幅をいう。なお、これらのラマンスペクトルは、触媒担持前の担体に対して計測してもよいが、触媒担持後の担体に対して計測するのが好ましい。担体中の触媒の有無そのものはラマンスペクトルに影響しないが、触媒担持処理によって担体の表面が変質する可能性があるためである。
Here, the Raman spectrum is a spectrum indicating which light of which wavelength is scattered with what intensity with respect to the light scattered by the Raman effect. In the present invention, the half widths of the D band and the G band can be calculated using a Raman spectrum in which the wave number (cm −1 ) is represented on one axis and the intensity is represented on the other axis. Further, the “half-value width” is a value used for determining the distribution state of a predetermined absorption band, and refers to the spread width of the absorption band at a half height of the peak height of the absorption band. These Raman spectra may be measured for the carrier before supporting the catalyst, but it is preferable to measure for the carrier after supporting the catalyst. This is because the presence or absence of the catalyst in the carrier itself does not affect the Raman spectrum, but the surface of the carrier may be altered by the catalyst loading treatment.
DバンドやGバンド近辺に他の吸収帯が存在し、DバンドやGバンドと接合しているために半値幅がスペクトルからは一見したところ判断できない場合、通常は、ラマン分光測定装置に付随する解析プログラムによって半値幅が決定されうる。例えば、DバンドやGバンドのピークが含まれている領域に直線のベースラインを引き、Lorentz波形のカーブフィットを実施し、DバンドやGバンドのピーク分離を行う処理によって、半値幅が決定される。
When there is another absorption band in the vicinity of the D band or G band and the half width cannot be determined from the spectrum at first glance because it is bonded to the D band or G band, it is usually attached to the Raman spectrometer. The full width at half maximum can be determined by the analysis program. For example, the half-value width is determined by the process of drawing a straight baseline in the region containing the D-band and G-band peaks, performing curve fitting of the Lorentz waveform, and separating the peaks of the D-band and G-band. The
上記カーボンの他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性を有する金属酸化物、例えば、RuO2、TiO2なども担体として好ましく使用できる。このような金属酸化物を用いることにより、担体の腐食が低減され、触媒の耐久性がより向上する。
In addition to the above carbon, porous metals such as Sn (tin) and Ti (titanium), as well as conductive metal oxides such as RuO 2 and TiO 2 can be preferably used as the carrier. By using such a metal oxide, the corrosion of the support is reduced and the durability of the catalyst is further improved.
担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよい。担体のBET比表面積は、上述した触媒のBET比表面積と同様の手法で求めることができる。担体のBET比表面積は、担体の重量基準で求めた触媒のBET比表面積と実質的に同等である。担体のBET比表面積は、好ましくは1200m2/g超であり、より好ましくは1500m2/g以上であり、さらに好ましくは1700m2/g以上である。上記したような比表面積であれば、十分なメソ孔を確保できるため、メソ孔内部により多くの触媒金属を格納(担持)できる。よって、触媒層での電解質の触媒金属への被覆を抑制することができる(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用でき、触媒反応をより効果的に促進できる。また、触媒金属が付着する面積を増加させることができるので小粒子径の触媒金属の粒子が高分散で分布させ、有効表面積を高くすることができる。その結果、燃料電池用電極触媒として用いた際の発電性能が向上しうる。担体のBET比表面積の上限値は特に制限されないが、例えば、3000m2/g以下である。
The BET specific surface area of the support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state. The BET specific surface area of the carrier can be determined by the same method as the BET specific surface area of the catalyst described above. The BET specific surface area of the support is substantially equivalent to the BET specific surface area of the catalyst determined on the basis of the weight of the support. The BET specific surface area of the support is preferably more than 1200 m 2 / g, more preferably 1500 m 2 / g or more, and even more preferably 1700 m 2 / g or more. If the specific surface area is as described above, sufficient mesopores can be secured, so that more catalyst metal can be stored (supported) in the mesopores. Therefore, it is possible to suppress the coating of the electrolyte on the catalyst metal in the catalyst layer (the contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively, and the catalytic reaction can be promoted more effectively. In addition, since the area to which the catalyst metal adheres can be increased, the catalyst metal particles having a small particle diameter can be distributed with high dispersion, and the effective surface area can be increased. As a result, the power generation performance when used as a fuel cell electrode catalyst can be improved. The upper limit value of the BET specific surface area of the support is not particularly limited, but is, for example, 3000 m 2 / g or less.
担体の細孔径は、担体がメソ孔を有するものであれば特に限定されないが、好ましくはメソ孔(半径1~5nm)およびミクロ孔(半径1nm未満、大きさの下限値は0.3nm)を有する。
The pore diameter of the carrier is not particularly limited as long as the carrier has mesopores, but preferably mesopores (radius 1 to 5 nm) and micropores (radius less than 1 nm, size lower limit is 0.3 nm). Have.
前記担体の半径1nm未満の空孔(ミクロ孔)の空孔容積は、特に制限されないが、0.1cc/g担体以上であることが好ましい。より好ましくは、ミクロ孔の空孔容積は、0.3~3cc/g担体であり、0.4~2cc/g担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。なお、本明細書では、半径1nm未満の空孔の空孔容積を単に「ミクロ孔の空孔容積」とも称する。
The pore volume of pores (micropores) having a radius of less than 1 nm of the carrier is not particularly limited, but is preferably 0.1 cc / g or more. More preferably, the pore volume of the micropores is 0.3 to 3 cc / g carrier, and particularly preferably 0.4 to 2 cc / g carrier. Such a void volume can more effectively suppress / prevent desorption of the catalytic metal under mechanical stress. In addition, sufficient micropores for gas transportation can be secured, and the gas transportation resistance is small. For this reason, since a sufficient amount of gas can be transported to the surface of the catalytic metal existing in the mesopores through the micropore (pass), the catalyst of the present invention can exhibit high catalytic activity, that is, promote the catalytic reaction. it can. In this specification, the pore volume of pores having a radius of less than 1 nm is also simply referred to as “micropore pore volume”.
また、前記担体の半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g担体以上、より好ましくは0.4~3cc/g担体であり、特に好ましくは0.4~2cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著に形成して、触媒活性をより向上できる。なお、本明細書では、半径1nm以上の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
The pore volume of the pores (mesopores) having a radius of 1 nm or more of the carrier is not particularly limited, but is 0.4 cc / g carrier or more, more preferably 0.4 to 3 cc / g carrier, particularly preferably. Is preferably 0.4 to 2 cc / g carrier. If the pore volume is in the range as described above, desorption of the catalytic metal under mechanical stress can be more effectively suppressed / prevented. In addition, a large amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively. In addition, the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably. In addition, the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved. In the present specification, the void volume of holes having a radius of 1 nm or more is also simply referred to as “mesopore void volume”.
「ミクロ孔の空孔容積」は、担体に存在する半径1nm未満のミクロ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「ミクロ孔の空孔容積(cc/g担体)」は、窒素吸着法(MP法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。同様にして、「メソ孔の空孔容積」は、担体に存在する半径1nm以上のメソ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「メソ孔の空孔容積(cc/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。
“The pore volume of micropores” means the total volume of micropores with a radius of less than 1 nm present in the carrier, and is expressed as the volume per gram of carrier (cc / g carrier). The “micropore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (MP method). Similarly, “pore volume of mesopores” means the total volume of mesopores having a radius of 1 nm or more present in the carrier, and is represented by the volume per gram of carrier (cc / g carrier). The “mesopore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
担体の平均粒径は20~2000nmであることが好ましい。かような範囲であれば、担体に上記空孔構造を設けた場合であっても機械的強度が維持され、かつ、触媒層の厚みを適切な範囲で制御することができる。「担体の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
The average particle size of the carrier is preferably 20 to 2000 nm. Within such a range, the mechanical strength can be maintained and the thickness of the catalyst layer can be controlled within an appropriate range even when the support is provided with the above-described pore structure. The value of the “average particle diameter of the carrier” is observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles shall be adopted. The “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
なお、本発明においては、上記したような比表面積を有するものである限り、必ずしも上記したような粒状の多孔質担体を用いる必要はない。
In the present invention, it is not always necessary to use the granular porous carrier as described above as long as it has the specific surface area as described above.
すなわち、担体として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。このとき、触媒をこれら非多孔質の導電性担体に担持したり、膜電極接合体のガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなどに直接付着させたりすることも可能である。
That is, examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth. At this time, the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
本発明で使用できる触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
The catalytic metal that can be used in the present invention has a function of catalyzing an electrochemical reaction. The catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner. The catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。そのため、燃料電池用電極触媒として用いたとき、高い発電性能が得られうる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
Among these, those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like. That is, the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy. Such a catalytic metal can exhibit high activity. Therefore, when used as an electrode catalyst for a fuel cell, high power generation performance can be obtained. Although the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application. At this time, the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above. In the present specification, unless otherwise specified, the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both. However, the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径は、特に制限されないが、3nm以上、より好ましくは3nm超30nm以下、特に好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属がメソ孔内に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、担体のメソ孔内部に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。
The shape and size of the catalyst metal (catalyst component) are not particularly limited, and the same shape and size as known catalyst components can be adopted. As the shape, for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable. At this time, the average particle diameter of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably more than 3 nm and not more than 10 nm. If the average particle diameter of the catalyst metal is 3 nm or more, the catalyst metal is supported relatively firmly in the mesopores, and the contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented. Further, the micropores remain without being clogged with the catalyst metal, and the gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently. On the other hand, if the average particle diameter of the catalyst metal particles is 30 nm or less, the catalyst metal can be supported inside the mesopores of the support by a simple method, and the electrolyte coverage of the catalyst metal can be reduced. The “average particle diameter of the catalytic metal particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalytic metal component in X-ray diffraction, or the catalytic metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle diameters.
本実施形態の触媒を燃料電池用電極触媒として用いる場合、単位触媒塗布面積当たりの触媒含有量(mg/cm2)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01~1mg/cm2である。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm2以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm2以上である。より好ましくは、当該白金含有量は0.02~0.4mg/cm2である。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
When the catalyst of this embodiment is used as an electrode catalyst for a fuel cell, the catalyst content per unit catalyst coating area (mg / cm 2 ) is particularly limited as long as sufficient degree of dispersion of the catalyst on the carrier and power generation performance can be obtained. For example, it is 0.01 to 1 mg / cm 2 . However, when the catalyst contains platinum or a platinum-containing alloy, the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less. The use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost. The lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 . In this embodiment, since the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm2)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm2)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
In this specification, inductively coupled plasma emission spectroscopy (ICP) is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”. A person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
また、本発明の触媒において、触媒に含まれる触媒金属の割合(触媒金属の担持量または担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは50重量%以下、より好ましくは30重量%以下とするのがよい。担持量が前記範囲であれば、小粒子径の触媒金属が担体表面に分散するため、触媒金属の使用量を低減しても重量あたりの触媒金属の表面積は維持される。すなわち、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、触媒の単位重量あたりの高い触媒活性が達成できるため好ましい。特に触媒金属が白金である場合、または白金と白金以外の金属を含む場合、上記範囲まで低減することで白金使用量を低減することができ、コストを削減することが好ましい。特に触媒金属の担持量が30重量%以下であれば、触媒金属の原材料費を低減できるほか、触媒に対する担体の重量分率が増加するため、触媒金属使用量を低減しても触媒の体積低下が抑制され、耐久性が向上しうる。なお、該担持量の下限値は特に制限されないが、高い発電性能を得る観点から、5重量%以上であることが好ましい。
In the catalyst of the present invention, the ratio of the catalyst metal contained in the catalyst (sometimes referred to as the amount of catalyst metal supported or the rate of support) is preferably relative to the total amount of the catalyst support (that is, the support and the catalyst). Is 50% by weight or less, more preferably 30% by weight or less. If the supported amount is within the above range, the catalyst metal having a small particle diameter is dispersed on the surface of the support, so that the surface area of the catalyst metal per weight is maintained even if the amount of catalyst metal used is reduced. That is, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and high catalyst activity per unit weight of the catalyst can be achieved. In particular, when the catalyst metal is platinum, or when platinum and a metal other than platinum are included, the amount of platinum used can be reduced by reducing to the above range, and it is preferable to reduce the cost. In particular, if the amount of catalyst metal supported is 30% by weight or less, the raw material cost of the catalyst metal can be reduced, and the weight fraction of the support with respect to the catalyst increases. Can be suppressed and durability can be improved. In addition, the lower limit value of the loading amount is not particularly limited, but is preferably 5% by weight or more from the viewpoint of obtaining high power generation performance.
本発明の触媒は、触媒の粒子の表面または空孔の表面に酸性基を有し、担体重量当たりの酸性基の量が0.7mmol/g担体以上である。
The catalyst of the present invention has acidic groups on the surface of catalyst particles or the surface of pores, and the amount of acidic groups per carrier weight is 0.7 mmol / g or more.
本発明の触媒が有する酸性基は、電離してプロトンを放出しうる官能基であれば特に制限されないが、ヒドロキシル基、ラクトン基、およびカルボキシル基からなる群より選択される少なくとも1種を含むことが好ましい。担体がカーボンを含む場合、前記酸性基は、好ましくはヒドロキシル基、ラクトン基、またはカルボキシル基を含み、担体が金属酸化物を含む場合、前記酸性基は、好ましくはヒドロキシル基を含む。このような酸性基は親水性基であり、担体表面への水吸着量を増やすことができるため、触媒層におけるプロトン輸送性が向上しうる。また、触媒の耐久性が向上しうる。
The acidic group of the catalyst of the present invention is not particularly limited as long as it is a functional group that can be ionized to release protons, but contains at least one selected from the group consisting of a hydroxyl group, a lactone group, and a carboxyl group. Is preferred. When the support includes carbon, the acidic group preferably includes a hydroxyl group, a lactone group, or a carboxyl group, and when the support includes a metal oxide, the acidic group preferably includes a hydroxyl group. Such an acidic group is a hydrophilic group and can increase the amount of water adsorbed on the surface of the carrier, so that the proton transportability in the catalyst layer can be improved. Further, the durability of the catalyst can be improved.
触媒が有する酸性基の量は、0.7mmol/g担体以上である。触媒が有する酸性基の量が0.7mmol/g担体を下回ると、触媒の親水性を確保することができず、十分なプロトン輸送性を発揮することができない。そのため、触媒金属の利用率を十分に高めることができず、十分な発電性能を得るためには触媒金属を多く使用しなければならず、燃料電池のコストが増大しうる。該酸性基の量は、好ましくは0.75mmol/g担体超であり、より好ましくは1.2mmol/g担体以上であり、さらに好ましくは1.8mmol/g担体以上である。なお、酸性基の量の上限値は特に制限されないが、カーボン耐久性の観点から、3.0mmol/g担体以下であることが好ましく、2.5mmol/g担体以下であることがより好ましい。
The amount of acidic groups possessed by the catalyst is 0.7 mmol / g or more. When the amount of acidic groups in the catalyst is less than 0.7 mmol / g support, the hydrophilicity of the catalyst cannot be secured and sufficient proton transportability cannot be exhibited. For this reason, the utilization rate of the catalyst metal cannot be sufficiently increased, and in order to obtain sufficient power generation performance, a large amount of the catalyst metal must be used, which may increase the cost of the fuel cell. The amount of the acidic group is preferably more than 0.75 mmol / g carrier, more preferably 1.2 mmol / g carrier or more, and still more preferably 1.8 mmol / g carrier or more. The upper limit of the amount of acidic groups is not particularly limited, but is preferably 3.0 mmol / g carrier or less, more preferably 2.5 mmol / g carrier or less from the viewpoint of carbon durability.
当該酸性基の量は、アルカリ化合物を用いた滴定法により測定することができ、具体的には、実施例に記載の方法により測定することができる。
The amount of the acidic group can be measured by a titration method using an alkali compound, and specifically, can be measured by the method described in Examples.
酸性基の量を上記範囲になるように触媒に酸性基を付加する方法は特に制限されないが、例えば、酸化剤を含む酸化性溶液中に、触媒金属を担持させた担体(触媒担持体)を浸漬する湿式法が採用されうる。この方法についての詳細は後述する。
The method for adding an acidic group to the catalyst so that the amount of the acidic group is within the above range is not particularly limited. For example, a support (catalyst support) supporting a catalyst metal in an oxidizing solution containing an oxidizing agent is used. A dipping wet method may be employed. Details of this method will be described later.
[触媒層]
上述したように、本発明の触媒は、高いプロトン輸送性を発揮できる、即ち、電気化学反応を促進できる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の触媒および電解質層を含む、燃料電池用電極触媒層をも提供する。 [Catalyst layer]
As described above, the catalyst of the present invention can exhibit high proton transportability, that is, can promote an electrochemical reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, this invention also provides the electrode catalyst layer for fuel cells containing the catalyst and electrolyte layer of this invention.
上述したように、本発明の触媒は、高いプロトン輸送性を発揮できる、即ち、電気化学反応を促進できる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の触媒および電解質層を含む、燃料電池用電極触媒層をも提供する。 [Catalyst layer]
As described above, the catalyst of the present invention can exhibit high proton transportability, that is, can promote an electrochemical reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, this invention also provides the electrode catalyst layer for fuel cells containing the catalyst and electrolyte layer of this invention.
図2に示されるように、触媒層内では、触媒20は電解質26で被覆されているが、電解質26は、その分子サイズよりも空孔(メソ孔)24の表面開口径が小さいため、触媒(担体23)の空孔(メソ孔)24内には侵入しない。このため、担体23表面の触媒金属22は電解質26と接触するが、空孔24内部に担持された触媒金属22は電解質26と非接触状態である。空孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。
As shown in FIG. 2, in the catalyst layer, the catalyst 20 is covered with the electrolyte 26. However, since the electrolyte 26 has a smaller surface opening diameter of the pores (mesopores) 24 than its molecular size, It does not enter the pores (mesopores) 24 of the (carrier 23). For this reason, the catalyst metal 22 on the surface of the carrier 23 is in contact with the electrolyte 26, but the catalyst metal 22 supported in the pores 24 is not in contact with the electrolyte 26. The catalytic metal in the pores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。
The catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
The electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
The polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、Nafion(登録商標、Dupont社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
Examples of ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by Dupont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
Specific examples of the hydrocarbon electrolyte include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP). These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high. In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。
Proton conductivity is important in polymer electrolytes responsible for proton transmission. Here, when the EW of the polymer electrolyte is too large, the ionic conductivity in the entire catalyst layer is lowered. Therefore, it is preferable that the catalyst layer of this embodiment contains a polymer electrolyte having a small EW. Specifically, the catalyst layer of this embodiment preferably has an EW of 1500 g / eq. The following polymer electrolyte is contained, More preferably, it is 1200 g / eq. The following polymer electrolyte is included, and particularly preferably 1000 g / eq. The following polymer electrolytes are included.
一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは500以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
On the other hand, if the EW is too small, the hydrophilicity is too high and it becomes difficult to smoothly move water. From such a viewpoint, the EW of the polymer electrolyte is preferably 500 or more. Note that EW (Equivalent Weight) represents an equivalent weight of an exchange group having proton conductivity. The equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
Further, the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface. At this time, the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved. The EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
Furthermore, it is desirable to use a polymer electrolyte with the lowest EW in a region higher than the average temperature of the cooling water inlet and outlet. As a result, the resistance value is reduced regardless of the current density region, and the battery performance can be further improved.
さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガスおよび酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
Furthermore, from the viewpoint of reducing the resistance value of the fuel cell system, the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
本形態の触媒層は、触媒と高分子電解質との間に、触媒と高分子電解質とをプロトン伝導可能な状態に連結しうる、水などの液体プロトン伝導材を有しうる。液体プロトン伝導材が導入されることによって、触媒と高分子電解質との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と高分子電解質との間に介在していればよく、触媒層内の多孔質担体間の空孔(二次空孔)や多孔質担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。
The catalyst layer of this embodiment may have a liquid proton conductive material such as water that can connect the catalyst and the polymer electrolyte in a proton conductive state between the catalyst and the polymer electrolyte. By introducing a liquid proton conductive material, a proton transport path through the liquid proton conductive material is secured between the catalyst and the polymer electrolyte, and protons necessary for power generation are efficiently transported to the catalyst surface. Is possible. Thereby, since the utilization efficiency of a catalyst improves, it becomes possible to reduce the usage-amount of a catalyst, maintaining electric power generation performance. The liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
液体プロトン伝導材としては、イオン伝導性を有し、触媒と高分子電解質と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができるが、本実施形態では水を含むことが好ましい。
The liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte. Specific examples include water, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution. In this embodiment, it is preferable to contain water.
液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質との表面距離を、水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と高分子電解質との非接触状態を保持しながら、触媒と高分子電解質との間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。
When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation. For example, the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules. By maintaining such a distance, water (liquid proton conductive material) intervenes between the catalyst and polymer electrolyte (liquid conductive material holding part) while maintaining a non-contact state between the catalyst and the polymer electrolyte. And a proton transport route by water between the two can be secured.
本実施形態の触媒層では、触媒(触媒金属)の高分子電解質と接触している総面積が、この触媒(触媒金属)が液体伝導材保持部に露出している総面積よりも小さいものとなっていることが好ましい。
In the catalyst layer of the present embodiment, the total area of the catalyst (catalyst metal) in contact with the polymer electrolyte is smaller than the total area of the catalyst (catalyst metal) exposed at the liquid conductive material holding part. It is preferable that
これら面積の比較は、例えば、上記液体伝導材保持部に液体プロトン伝導材を満たした状態で、触媒-高分子電解質界面と触媒-液体プロトン伝導材界面に形成される電気二重層の容量の大小関係を求めることによって行うことができる。すなわち、電気二重層容量は、電気化学的に有効な界面の面積に比例する。そのため、触媒-電解質界面に形成される電気二重層容量が触媒-液体プロトン伝導材界面に形成される電気二重層容量より小さければ、触媒の電解質との接触面積が液体伝導材保持部への露出面積よりも小さいことになる。
These areas are compared, for example, with the capacity of the electric double layer formed at the catalyst-polymer electrolyte interface and the catalyst-liquid proton conducting material interface in a state where the liquid conducting material holding portion is filled with the liquid proton conducting material. This can be done by seeking a relationship. That is, the electric double layer capacity is proportional to the area of the electrochemically effective interface. Therefore, if the electric double layer capacity formed at the catalyst-electrolyte interface is smaller than the electric double layer capacity formed at the catalyst-liquid proton conductive material interface, the contact area of the catalyst with the electrolyte is exposed to the liquid conductive material holding part. It will be smaller than the area.
ここで、触媒-電解質界面、触媒-液体プロトン伝導材界面にそれぞれ形成される電気二重層容量の測定方法について説明する。これは、言い換えると、触媒-電解質間および触媒-液体プロトン伝導材間の接触面積の大小関係(触媒の電解質との接触面積と液体伝導材保持部への露出面積の大小関係)の判定方法である。
Here, a method for measuring the electric double layer capacity formed at the catalyst-electrolyte interface and the catalyst-liquid proton conducting material interface will be described. In other words, this is a method for determining the relationship between the contact area between the catalyst and the electrolyte and between the catalyst and the liquid proton conductive material (the relationship between the contact area of the catalyst with the electrolyte and the exposed area of the liquid conductive material holding part). is there.
すなわち、本形態の触媒層においては、
(1)触媒-高分子電解質(C-S)
(2)触媒-液体プロトン伝導材(C-L)
(3)多孔質担体-高分子電解質(Cr-S)
(4)多孔質担体-液体プロトン伝導材(Cr-L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。 That is, in the catalyst layer of this embodiment,
(1) Catalyst-Polymer electrolyte (CS)
(2) Catalyst-Liquid proton conductive material (CL)
(3) Porous carrier-polymer electrolyte (Cr-S)
(4) Porous carrier-liquid proton conducting material (Cr-L)
These four types of interfaces can contribute as electric double layer capacitance (Cdl).
(1)触媒-高分子電解質(C-S)
(2)触媒-液体プロトン伝導材(C-L)
(3)多孔質担体-高分子電解質(Cr-S)
(4)多孔質担体-液体プロトン伝導材(Cr-L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。 That is, in the catalyst layer of this embodiment,
(1) Catalyst-Polymer electrolyte (CS)
(2) Catalyst-Liquid proton conductive material (CL)
(3) Porous carrier-polymer electrolyte (Cr-S)
(4) Porous carrier-liquid proton conducting material (Cr-L)
These four types of interfaces can contribute as electric double layer capacitance (Cdl).
電気二重層容量は、上記したように、電気化学的に有効な界面の面積に正比例するため、CdlC-S(触媒-高分子電解質界面の電気二重層容量)およびCdlC-L(触媒-液体プロトン伝導材界面の電気二重層容量)を求めればよい。そして、電気二重層容量(Cdl)に対する上記4種の界面の寄与については、以下のようにして分離することができる。
Electric double layer capacitor, as described above, since that is directly proportional to the area of the electrochemically active surface, Cdl C-S (catalytic - electric double layer capacity of the polymer electrolyte interface) and Cdl C-L (catalytic - What is necessary is just to obtain | require the electrical double layer capacity | capacitance of a liquid proton conductive material interface. The contribution of the four types of interfaces to the electric double layer capacity (Cdl) can be separated as follows.
まず、例えば100%RHのような高加湿条件、および10%RH以下のような低加湿条件下において、電気二重層容量をそれぞれ計測する。なお、電気二重層容量の計測手法としては、サイクリックボルタンメトリーや電気化学インピーダンス分光法などを挙げることができる。これらの比較から、液体プロトン伝導材(この場合は「水」)の寄与、すなわち上記(2)および(4)を分離することができる。
First, for example, the electric double layer capacity is measured under a high humidification condition such as 100% RH and a low humidification condition such as 10% RH or less. In addition, examples of the measurement method of the electric double layer capacitance include cyclic voltammetry and electrochemical impedance spectroscopy. From these comparisons, the contribution of the liquid proton conducting material (in this case “water”), that is, the above (2) and (4) can be separated.
さらに触媒を失活させること、例えば、Ptを触媒として用いた場合には、測定対象の電極にCOガスを供給してCOをPt表面上に吸着させることによる触媒の失活によって、その電気二重層容量への寄与を分離することができる。このような状態で、前述のように高加湿および低加湿条件における電気二重層容量を同様の手法で計測し、これらの比較から、触媒の寄与、つまり上記(1)および(2)を分離することができる。
Further, when the catalyst is deactivated, for example, when Pt is used as the catalyst, the catalyst is deactivated by supplying CO gas to the electrode to be measured and adsorbing CO on the Pt surface. The contribution to the multilayer capacity can be separated. In such a state, as described above, the electric double layer capacity under high and low humidification conditions is measured by the same method, and the contribution of the catalyst, that is, the above (1) and (2) is separated from these comparisons. be able to.
以上により、上記(1)~(4)全ての寄与を分離することができ、触媒と高分子電解質および液体プロトン伝導材両界面に形成される電気二重層容量を求めることができる。
As described above, all the contributions (1) to (4) can be separated, and the electric double layer capacity formed at the interfaces of the catalyst, the polymer electrolyte, and the liquid proton conducting material can be obtained.
すなわち、高加湿状態における測定値(A)が上記(1)~(4)の全界面に形成される電気二重層容量、低加湿状態における測定値(B)が上記(1)および(3)の界面に形成される電気二重層容量になる。また、触媒失活・高加湿状態における測定値(C)が上記(3)および(4)の界面に形成される電気二重層容量、触媒失活・低加湿状態における測定値(D)が上記(3)の界面に形成される電気二重層容量になる。
That is, the measured value (A) in the highly humidified state is the electric double layer capacity formed at all the interfaces (1) to (4), and the measured value (B) in the lowly humidified state is the above (1) and (3). The electric double layer capacity formed at the interface. Further, the measured value (C) in the catalyst deactivation / highly humidified state is the electric double layer capacity formed at the interface of the above (3) and (4), and the measured value (D) in the catalyst deactivated / lowly humidified state is the above It becomes an electric double layer capacity formed at the interface of (3).
したがって、AとCの差が(1)および(2)の界面に形成される電気二重層容量、BとDの差が(1)の界面に形成される電気二重層容量ということになる。そして、これら値の差、(A-C)-(B-D)を算出すれば、(2)の界面に形成される電気二重層容量を求めることができる。なお、触媒の高分子電解質との接触面積や、伝導材保持部への露出面積については、上記の他には、例えば、TEM(透過型電子顕微鏡)トモグラフィなどによっても求めることができる。
Therefore, the difference between A and C is the electric double layer capacity formed at the interface of (1) and (2), and the difference between B and D is the electric double layer capacity formed at the interface of (1). Then, by calculating the difference between these values, (AC)-(BD), the electric double layer capacity formed at the interface of (2) can be obtained. In addition to the above, the contact area of the catalyst with the polymer electrolyte and the exposed area of the conductive material holding part can be obtained by, for example, TEM (transmission electron microscope) tomography.
本実施形態の触媒層において、触媒金属の表面積に対する触媒金属表面が電解質によって被覆されている面積の比から算出される触媒金属の電解質被覆率は、好ましくは0.3以下である。触媒金属の電解質被覆率は、より好ましくは0.25以下であり、より好ましくは0.2以下である(下限値:0)。電解質被覆率が0.3以下であれば、触媒活性(特に、酸素還元反応活性)が向上するため、発電性能が向上しうる。
In the catalyst layer of the present embodiment, the electrolyte coverage of the catalyst metal calculated from the ratio of the area where the catalyst metal surface is covered with the electrolyte to the surface area of the catalyst metal is preferably 0.3 or less. The electrolyte coverage of the catalyst metal is more preferably 0.25 or less, and more preferably 0.2 or less (lower limit: 0). If the electrolyte coverage is 0.3 or less, the catalytic activity (particularly the oxygen reduction reaction activity) is improved, so that the power generation performance can be improved.
電解質被覆率は、上記電気二重層容量から算出することができ、具体的には実施例に記載の方法により算出することができる。
The electrolyte coverage can be calculated from the electric double layer capacity, and specifically can be calculated by the method described in Examples.
触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
For the catalyst layer, a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary. ), A thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
触媒層の厚み(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記厚みは、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層およびアノード触媒層の厚みは、同じであってもあるいは異なってもよい。
The thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 2 to 15 μm. In addition, the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer. However, the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
(触媒層の製造方法)
以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。 (Method for producing catalyst layer)
Hereinafter, although preferable embodiment for manufacturing a catalyst layer is described, the technical scope of this invention is not limited only to the following form. Further, since various conditions such as the material of each component of the catalyst layer are as described above, description thereof is omitted here.
以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。 (Method for producing catalyst layer)
Hereinafter, although preferable embodiment for manufacturing a catalyst layer is described, the technical scope of this invention is not limited only to the following form. Further, since various conditions such as the material of each component of the catalyst layer are as described above, description thereof is omitted here.
まず、担体(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備し、これを熱処理することにより空孔構造を制御する。具体的には、上記担体の製造方法で説明したように、作製すればよい。これにより、特定の比表面積を有する担体が得られる。
First, a carrier (also referred to as “porous carrier” or “conductive porous carrier” in the present specification) is prepared, and the pore structure is controlled by heat-treating the carrier. Specifically, it may be produced as described in the method for producing the carrier. Thereby, the support | carrier which has a specific specific surface area is obtained.
当該熱処理の条件は材料に応じて異なり、所望の比表面積が得られるように適宜決定される。このような熱処理条件は、空孔構造を確認しつつ、材料に応じて決定すればよく、当業者であれば容易に決定することができるであろう。
The conditions for the heat treatment vary depending on the material and are appropriately determined so that a desired specific surface area can be obtained. Such heat treatment conditions may be determined according to the material while confirming the pore structure, and can be easily determined by those skilled in the art.
次いで、多孔質担体に触媒を担持させて、触媒粉末とする。多孔質担体への触媒の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
Next, the catalyst is supported on the porous carrier to obtain catalyst powder. The catalyst can be supported on the porous carrier by a known method. For example, known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
次に、得られた触媒粉末を、必要に応じて、アニール処理してもよい。アニール処理によって触媒金属粒子の粒子径を所望の粒子径に調整することができる。アニール処理は、特に制限されないが、水素ガス中で熱処理することによって行われうる。熱処理の温度および時間も特に制限されないが、例えば、600~1180℃、好ましくは800~1000℃で、好ましくは、0.5~2時間熱処理する。熱処理の温度が600℃以上であれば、粒子径が小さくなりすぎず、長時間活性が持続しうる。熱処理の温度が1180℃以下であれば、粒子径が大きくなりすぎず、高い質量活性が得られうる。
Next, the obtained catalyst powder may be annealed as necessary. The particle diameter of the catalytic metal particles can be adjusted to a desired particle diameter by annealing treatment. The annealing treatment is not particularly limited, but can be performed by heat treatment in hydrogen gas. The temperature and time of the heat treatment are not particularly limited. For example, the heat treatment is performed at 600 to 1180 ° C., preferably 800 to 1000 ° C., and preferably 0.5 to 2 hours. If the temperature of heat processing is 600 degreeC or more, a particle diameter will not become small too much and activity can continue for a long time. If the temperature of heat processing is 1180 degrees C or less, a particle diameter will not become large too much and high mass activity can be obtained.
次に、得られた触媒を、酸化性溶液で処理し、酸性基を付加する。カーボンなどの担体は末端基として一定量の水素原子または酸性基などの官能基を有するが、酸化性溶液で処理することによってさらに酸性基を付加し、0.7mmol/g担体以上とする。使用する酸化性溶液としては、硫酸、硝酸、亜リン酸、過マンガン酸カリウム、過酸化水素、塩酸、塩素酸、次亜塩素酸、クロム酸などの水溶液が好ましい。なお、この酸化性溶液処理は、触媒を酸化性溶液に1回以上接触させることによって行われる。複数回の酸処理を行う場合は、処理ごとに溶液の種類を変更してもよい。酸化性溶液処理の条件としては、溶液の濃度は、0.1~10.0mol/Lとすることが好ましく、溶液に触媒を浸漬することが好ましい。浸漬時間は、0.5~3時間が好ましく、処理温度は50~90℃が好ましい。酸性基の量は、触媒のBET比表面積、酸化性溶液の種類、濃度、処理時間、処理温度を調節することで制御することができる。
Next, the obtained catalyst is treated with an oxidizing solution to add an acidic group. A carrier such as carbon has a certain amount of a functional group such as a hydrogen atom or an acidic group as a terminal group. However, an acidic group is further added by treatment with an oxidizing solution to make the carrier 0.7 mmol / g or more. The oxidizing solution used is preferably an aqueous solution of sulfuric acid, nitric acid, phosphorous acid, potassium permanganate, hydrogen peroxide, hydrochloric acid, chloric acid, hypochlorous acid, chromic acid, or the like. This oxidizing solution treatment is performed by bringing the catalyst into contact with the oxidizing solution at least once. When performing acid treatment several times, you may change the kind of solution for every process. As conditions for the oxidizing solution treatment, the concentration of the solution is preferably 0.1 to 10.0 mol / L, and the catalyst is preferably immersed in the solution. The immersion time is preferably 0.5 to 3 hours, and the treatment temperature is preferably 50 to 90 ° C. The amount of acidic groups can be controlled by adjusting the BET specific surface area of the catalyst, the type of oxidizing solution, the concentration, the treatment time, and the treatment temperature.
続いて、酸性基を付加させた触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、およびtert-ブタノール等の炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
Subsequently, a catalyst ink containing an acid group-added catalyst powder, a polymer electrolyte, and a solvent is prepared. The solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。
The amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte. Specifically, the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。
In addition, when additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent are used, these additives may be added to the catalyst ink. At this time, the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention. For example, the amount of the additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
Next, a catalyst ink is applied to the surface of the substrate. The application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
At this time, a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied. In such a case, after forming the catalyst layer on the surface of the solid polymer electrolyte membrane (electrolyte layer) or the gas diffusion base material (gas diffusion layer), the obtained laminate can be used for the production of the membrane electrode assembly as it is. Can be used. Alternatively, a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate. Thus, a catalyst layer may be obtained.
最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~150℃で、1~60分間乾燥する。これにより、触媒層が形成される。
Finally, the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
(膜電極接合体)
本発明のさらなる実施形態によれば、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3aおよび前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。 (Membrane electrode assembly)
According to a further embodiment of the present invention, the solid polymer electrolyte membrane 2, a cathode catalyst layer disposed on one side of the electrolyte membrane, an anode catalyst layer disposed on the other side of the electrolyte membrane, There is provided a membrane electrode assembly for a fuel cell having an electrolyte membrane 2 and a pair of gas diffusion layers (4a, 4c) sandwiching theanode catalyst layer 3a and the cathode catalyst layer 3c. In this membrane electrode assembly, at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
本発明のさらなる実施形態によれば、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3aおよび前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。 (Membrane electrode assembly)
According to a further embodiment of the present invention, the solid polymer electrolyte membrane 2, a cathode catalyst layer disposed on one side of the electrolyte membrane, an anode catalyst layer disposed on the other side of the electrolyte membrane, There is provided a membrane electrode assembly for a fuel cell having an electrolyte membrane 2 and a pair of gas diffusion layers (4a, 4c) sandwiching the
ただし、プロトン伝導性の向上および反応ガス(特にO2)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
However, in consideration of the necessity for improvement of proton conductivity and improvement of transport characteristics (gas diffusibility) of the reaction gas (especially O 2 ), at least the cathode catalyst layer may be the catalyst layer of the embodiment described above. preferable. However, the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
According to a further embodiment of the present invention, there is provided a fuel cell having the membrane electrode assembly of the above form. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC1の構成要素について説明する。ただし、本発明は触媒および触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
Hereinafter, the components of the PEFC 1 using the catalyst layer of the above embodiment will be described with reference to FIG. However, the present invention is characterized by the catalyst and the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
(電解質膜)
電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。 (Electrolyte membrane)
The electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG. The solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in theanode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction. The solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。 (Electrolyte membrane)
The electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG. The solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the
固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
The electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。
The thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte layer is usually about 5 to 300 μm. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
(ガス拡散層)
ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。 (Gas diffusion layer)
The gas diffusion layers (anodegas diffusion layer 4a, cathode gas diffusion layer 4c) are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。 (Gas diffusion layer)
The gas diffusion layers (anode
ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
The material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably. For example, a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
The gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
In order to further improve the water repellency, the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
The carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. The average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
Examples of the water repellent used for the carbon particle layer include the same water repellents as described above. Among these, fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
The mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good. In addition, there is no restriction | limiting in particular also about the thickness of a carbon particle layer, What is necessary is just to determine suitably in consideration of the water repellency of the gas diffusion layer obtained.
(膜電極接合体の製造方法)
膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法が使用できる。または、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。 (Method for producing membrane electrode assembly)
A method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, it is possible to use a method in which a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing and a gas diffusion layer is bonded to a dried product. Alternatively, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of the base material layer in advance and drying the microporous layer side of the gas diffusion layer (if the microporous layer is not included) The gas diffusion electrode can be bonded to both sides of the solid polymer electrolyte membrane by hot pressing, and the coating and bonding conditions such as hot pressing can be performed in the solid polymer electrolyte membrane or the polymer in the catalyst layer. What is necessary is just to adjust suitably according to the kind (perfluorosulfonic acid type | system | group or hydrocarbon type) of electrolyte.
膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法が使用できる。または、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。 (Method for producing membrane electrode assembly)
A method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, it is possible to use a method in which a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing and a gas diffusion layer is bonded to a dried product. Alternatively, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of the base material layer in advance and drying the microporous layer side of the gas diffusion layer (if the microporous layer is not included) The gas diffusion electrode can be bonded to both sides of the solid polymer electrolyte membrane by hot pressing, and the coating and bonding conditions such as hot pressing can be performed in the solid polymer electrolyte membrane or the polymer in the catalyst layer. What is necessary is just to adjust suitably according to the kind (perfluorosulfonic acid type | system | group or hydrocarbon type) of electrolyte.
(セパレータ)
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。 (Separator)
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。 (Separator)
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
なお、本実施形態の燃料電池に供給する燃料ガスまたは酸化剤ガスの相対湿度は特に限定されないが、例えば60%以下、特には40%以下(下限値:0%以上)である場合、本発明の効果がより一層顕著に得られうる。すなわち、本実施形態の触媒は、相対湿度が60%以下、特には40%以下の条件下で、燃料電池用電極触媒として好適に使用されうる。燃料電池に供給する燃料ガスまたは酸化剤ガスは、公知の手法でそれぞれ所望の湿度に調湿して用いることができる。
The relative humidity of the fuel gas or the oxidant gas supplied to the fuel cell of the present embodiment is not particularly limited. For example, when the relative humidity is 60% or less, particularly 40% or less (lower limit value: 0% or more), the present invention. The effect of can be obtained more remarkably. That is, the catalyst of the present embodiment can be suitably used as a fuel cell electrode catalyst under conditions where the relative humidity is 60% or less, particularly 40% or less. The fuel gas or oxidant gas supplied to the fuel cell can be used after adjusting the humidity to a desired humidity by a known method.
上述したPEFCや膜電極接合体は、触媒金属の利用率が高く、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れ、触媒金属の使用量を少なくできるため製造コストが低減される。
The PEFC and membrane electrode assembly described above use a catalyst layer that has a high utilization rate of catalyst metal and is excellent in power generation performance and durability. Therefore, the PEFC and membrane electrode assembly are excellent in power generation performance and durability, and the amount of catalyst metal used can be reduced, so that the manufacturing cost is reduced.
本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
The PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
(実施例1)
BET比表面積が1750m2/gである担体Aを準備した。具体的には、国際公開第2009/75264号などに記載の方法により担体Aを作製した。 (Example 1)
A carrier A having a BET specific surface area of 1750 m 2 / g was prepared. Specifically, carrier A was prepared by the method described in International Publication No. 2009/75264.
BET比表面積が1750m2/gである担体Aを準備した。具体的には、国際公開第2009/75264号などに記載の方法により担体Aを作製した。 (Example 1)
A carrier A having a BET specific surface area of 1750 m 2 / g was prepared. Specifically, carrier A was prepared by the method described in International Publication No. 2009/75264.
上記担体Aを用い、これに触媒金属として平均粒径4nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が50重量%の触媒粉末Aを得た。
Using the carrier A, platinum (Pt) having an average particle diameter of 4 nm as a catalyst metal was supported so as to have a supporting rate of 50% by weight to obtain catalyst powder A. That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. And it filtered and dried and obtained catalyst powder A with a loading rate of 50 weight%.
上記工程によって製造した触媒粉末を100%水素ガス中で、1時間、900℃で保持することによってアニール処理を行った。
The annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
触媒粉末Aについて、酸性基付加のための酸化性溶液処理を行った。触媒粉末Aを、3.0mol/Lの硝酸水溶液中で、80℃で2時間浸漬させた後、濾過、乾燥し、酸性基を有する触媒粉末Aを得た。
Catalyst powder A was subjected to an oxidizing solution treatment for adding an acidic group. The catalyst powder A was immersed in a 3.0 mol / L nitric acid aqueous solution at 80 ° C. for 2 hours, and then filtered and dried to obtain a catalyst powder A having an acidic group.
このようにして得られた触媒粉末Aについて、BET比表面積を測定したところ、1750m2/g担体であった。
The catalyst powder A thus obtained was measured for BET specific surface area and found to be 1750 m 2 / g carrier.
酸性基を有する触媒粉末Aと、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とを、カーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてn-プロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7重量%となるよう添加して、カソード触媒インクを調製した。
A catalyst powder A having an acidic group and an ionomer dispersion (Nafion (registered trademark) D2020, EW = 1100 g / mol, manufactured by DuPont) as a polymer electrolyte, and a weight ratio of the carbon support to the ionomer of 0.9 It mixed so that it might become. Further, an n-propyl alcohol solution (50%) was added as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight to prepare a cathode catalyst ink.
担体として、ケッチェンブラック(粒径:30~60nm)を用い、これに触媒金属として平均粒径2.5nmの白金(Pt)を担持量が50重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてn-プロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7重量%となるよう添加して、アノード触媒インクを調製した。
Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) having an average particle size of 2.5 nm is supported on the catalyst metal so that the supported amount is 50% by weight. Got. This catalyst powder was mixed with an ionomer dispersion (Nafion (registered trademark) D2020, EW = 1100 g / mol, manufactured by DuPont) as a polymer electrolyte so that the weight ratio of the carbon support to the ionomer was 0.9. Further, an anode catalyst ink was prepared by adding an n-propyl alcohol solution (50%) as a solvent so that the solid content (Pt + carbon carrier + ionomer) was 7% by weight.
次に、高分子電解質膜(Dupont社製、Nafion(登録商標) NR211、厚み:25μm)の両面の周囲にガスケット(帝人デュポンフィルム株式会社製、テオネックス(登録商標)、厚み:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部に触媒インクをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に保つことで触媒インクを乾燥し、カソード触媒層を得た。このときの白金担持量は0.15mg/cm2である。次に、カソード触媒層と同様に電解質膜上にスプレー塗布および熱処理を行うことでアノード触媒層を形成し、本実施例の膜電極接合体(1)(MEA(1))を得た。
Next, a gasket (manufactured by Teijin DuPont Films, Teonex (registered trademark), thickness: 25 μm (adhesive layer: 25 μm) around both sides of a polymer electrolyte membrane (Dupont, Nafion (registered trademark) NR211; thickness: 25 μm). 10 μm)). Next, the catalyst ink was applied to a size of 5 cm × 2 cm by spray coating on the exposed portion of one side of the polymer electrolyte membrane. The catalyst ink was dried by maintaining the stage for spray coating at 60 ° C. to obtain a cathode catalyst layer. The amount of platinum supported at this time is 0.15 mg / cm 2 . Next, similarly to the cathode catalyst layer, spray coating and heat treatment were performed on the electrolyte membrane to form an anode catalyst layer, thereby obtaining a membrane electrode assembly (1) (MEA (1)) of this example.
(実施例2)
BET比表面積が1440m2/gである、Black Pearls(登録商標)(担体B)を準備した。 (Example 2)
Black Pearls (registered trademark) (carrier B) having a BET specific surface area of 1440 m 2 / g was prepared.
BET比表面積が1440m2/gである、Black Pearls(登録商標)(担体B)を準備した。 (Example 2)
Black Pearls (registered trademark) (carrier B) having a BET specific surface area of 1440 m 2 / g was prepared.
上記担体Bを用い、これに触媒金属として平均粒径4nmの白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Bを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Bを107g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Bに担持させた。そして、濾過、乾燥することにより、担持量が30重量%の触媒粉末Bを得た。
Using the carrier B, platinum (Pt) having an average particle size of 4 nm was supported on the catalyst metal so that the supporting rate was 30% by weight to obtain catalyst powder B. That is, 107 g of carrier B was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and then 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier B. And it filtered and dried and obtained catalyst powder B with the load of 30 weight%.
上記工程によって製造した触媒粉末を100%水素ガス中で、1時間、900℃で保持することによってアニール処理を行った。
The annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
触媒粉末Bについて、酸性基付加のための酸化性溶液処理を行った。触媒粉末Bを、3.0mol/Lの硝酸水溶液中で、80℃で1時間浸漬させた後、濾過、乾燥し、酸性基を有する触媒粉末Bを得た。
Catalyst powder B was treated with an oxidizing solution for addition of acidic groups. The catalyst powder B was immersed in a 3.0 mol / L nitric acid aqueous solution at 80 ° C. for 1 hour, then filtered and dried to obtain a catalyst powder B having an acidic group.
このようにして得られた触媒粉末Bについて、BET比表面積を測定したところ、1291m2/g担体であった。
The catalyst powder B thus obtained was measured for BET specific surface area to be 1291 m 2 / g carrier.
このようにして得られた触媒粉末Bを、触媒粉末Aの代わりに用いたこと以外は、実施例1と同様にして、膜電極接合体(2)(MEA(2))を得た。
Membrane electrode assembly (2) (MEA (2)) was obtained in the same manner as in Example 1 except that the catalyst powder B thus obtained was used instead of the catalyst powder A.
(実施例3)
担体Cとして、実施例1と同様の担体を準備した。 (Example 3)
As the carrier C, the same carrier as in Example 1 was prepared.
担体Cとして、実施例1と同様の担体を準備した。 (Example 3)
As the carrier C, the same carrier as in Example 1 was prepared.
上記担体Cを用い、これに触媒金属として平均粒径4nmの白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Cを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Cを107g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Cに担持させた。そして、濾過、乾燥することにより、担持量が30重量%の触媒粉末Cを得た。
Using the carrier C, platinum (Pt) having an average particle diameter of 4 nm was supported as a catalyst metal so that the supporting rate was 30% by weight, and catalyst powder C was obtained. That is, 107 g of carrier C was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6 mass%, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier C. And it filtered and dried and obtained catalyst powder C with the load of 30 weight%.
上記工程によって製造した触媒粉末を100%水素ガス中で、1時間、900℃で保持することによってアニール処理を行った。
The annealing treatment was performed by holding the catalyst powder produced by the above process in 900% hydrogen gas at 900 ° C. for 1 hour.
触媒粉末Cについて、酸性基付加のための酸化性溶液処理を行った。触媒粉末Cを、3.0mol/Lの硝酸水溶液中で、80℃で1時間浸漬させた後、濾過、乾燥し、酸性基を有する触媒粉末Cを得た。
Catalyst powder C was treated with an oxidizing solution for adding an acidic group. The catalyst powder C was immersed in an aqueous 3.0 mol / L nitric acid solution at 80 ° C. for 1 hour, then filtered and dried to obtain catalyst powder C having an acidic group.
このようにして得られた触媒粉末Cについて、BET比表面積を測定したところ、1750m2/g担体であった。
The catalyst powder C thus obtained was measured for BET specific surface area and found to be 1750 m 2 / g carrier.
このようにして得られた触媒粉末Cを、触媒粉末Aの代わりに用いたこと以外は、実施例1と同様にして、膜電極接合体(3)(MEA(3))を得た。
Membrane electrode assembly (3) (MEA (3)) was obtained in the same manner as in Example 1 except that the catalyst powder C thus obtained was used instead of the catalyst powder A.
(比較例1)
BET比表面積が720m2/gであるケッチェンブラックEC300J(ケッチェンブラックインターナショナル株式会社製)(担体D)を準備した。 (Comparative Example 1)
Ketjen Black EC300J (Ketjen Black International Co., Ltd.) (carrier D) having a BET specific surface area of 720 m 2 / g was prepared.
BET比表面積が720m2/gであるケッチェンブラックEC300J(ケッチェンブラックインターナショナル株式会社製)(担体D)を準備した。 (Comparative Example 1)
Ketjen Black EC300J (Ketjen Black International Co., Ltd.) (carrier D) having a BET specific surface area of 720 m 2 / g was prepared.
上記担体Dを用い、これに触媒金属として平均粒径5nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末Dを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Dを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Dに担持させた。そして、濾過、乾燥することにより、担持量が50重量%の触媒粉末Dを得た。
Using the carrier D, platinum (Pt) having an average particle diameter of 5 nm was supported on the carrier metal so as to have a supporting rate of 50% by weight to obtain catalyst powder D. That is, 46 g of carrier D was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier D. And it filtered and dried and obtained catalyst powder D with the load of 50 weight%.
その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Dを得た。このようにして得られた触媒粉末Dについて、BET比表面積を測定したところ、705m2/g担体であった。
Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder D. The catalyst powder D thus obtained was measured for BET specific surface area and found to be 705 m 2 / g carrier.
このようにして得られた触媒粉末Dを、触媒粉末Aの代わりに用いたこと以外は、実施例1と同様にして、比較膜電極接合体(1)(比較MEA(1))を得た。
A comparative membrane electrode assembly (1) (comparative MEA (1)) was obtained in the same manner as in Example 1 except that the catalyst powder D thus obtained was used instead of the catalyst powder A. .
(比較例2)
担体Eとして、実施例2と同様の担体を準備した。 (Comparative Example 2)
As the carrier E, the same carrier as in Example 2 was prepared.
担体Eとして、実施例2と同様の担体を準備した。 (Comparative Example 2)
As the carrier E, the same carrier as in Example 2 was prepared.
上記担体Eを用い、これに触媒金属として平均粒径4nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末Eを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Eを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Eに担持させた。そして、濾過、乾燥することにより、担持量が50重量%の触媒粉末Eを得た。
Using the carrier E, platinum (Pt) having an average particle diameter of 4 nm was supported on the carrier metal so that the supporting rate was 50% by weight to obtain catalyst powder E. That is, 46 g of carrier E was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by mass and stirred, and then 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier E. And it filtered and dried and obtained catalyst powder E with the load of 50 weight%.
その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Eを得た。このようにして得られた触媒粉末Eについて、BET比表面積を測定したところ、1291m2/g担体であった。
Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder E. The catalyst powder E thus obtained was measured for BET specific surface area to be 1291 m 2 / g carrier.
このようにして得られた触媒粉末Eを、触媒粉末Aの代わりに用いたこと以外は、実施例1と同様にして、比較膜電極接合体(2)(比較MEA(2))を得た。
A comparative membrane electrode assembly (2) (comparative MEA (2)) was obtained in the same manner as in Example 1 except that the catalyst powder E thus obtained was used instead of the catalyst powder A. .
〔酸性基量の測定〕
酸性基の量は、以下のような滴定法により測定した。すなわち、まず、2.5gの酸性基を有する触媒粉末を1Lの温純水にて洗浄、乾燥した。乾燥後、酸性基を有する触媒に含まれるカーボン量が0.25gとなるよう計量し、55mlの水と10分間攪拌後、2分間超音波分散を行った。次に、この触媒分散液を窒素ガスにてパージしたグローブボックスへ移動させ、窒素ガスを10分間バブリングした。そして、触媒分散液に0.1Mの塩基水溶液を過剰に投入し、この塩基性溶液に対して0.1Mの塩酸にて中和滴定を行ない、中和点から官能基量を定量した。ここで、塩基水溶液は、NaOH、Na2CO3、NaHCO3の3種類を用い、それぞれについて中和滴定作業を行っている。これは使用する塩基毎に中和される官能基の種類が異なるからであり、NaOHの場合はカルボキシル基、ラクトン基、ヒドロキシル基と、Na2CO3の場合はカルボキシル基、ラクトン基と、NaHCO3の場合はカルボキシル基と中和反応するからである。そして、これら滴定で投入した3種類の塩基種類と量、および消費した塩酸量の結果により、酸性基の量を算出した。尚、中和点の確認には、pHメーターを使用し、NaOHの場合はpH7.0、Na2CO3の場合はpH8.5、NaHCO3の場合はpH4.5を中和点とした。これにより、触媒に付加しているカルボキシル基、ラクトン基、およびヒドロキシル基の総量を求めた。 (Measurement of acid group content)
The amount of acidic groups was measured by the following titration method. That is, first, 2.5 g of the catalyst powder having an acidic group was washed with 1 L of warm pure water and dried. After drying, the amount of carbon contained in the catalyst having an acidic group was measured to be 0.25 g, stirred with 55 ml of water for 10 minutes, and then subjected to ultrasonic dispersion for 2 minutes. Next, this catalyst dispersion was moved to a glove box purged with nitrogen gas, and nitrogen gas was bubbled for 10 minutes. Then, an excessive amount of a 0.1 M aqueous base solution was added to the catalyst dispersion, and the basic solution was subjected to neutralization titration with 0.1 M hydrochloric acid, and the amount of functional groups was determined from the neutralization point. Here, three types of NaOH, Na 2 CO 3 and NaHCO 3 are used as the aqueous base solution, and neutralization titration work is performed for each. This is because the type of functional group to be neutralized differs for each base used. In the case of NaOH, the carboxyl group, lactone group, and hydroxyl group, and in the case of Na 2 CO 3 , the carboxyl group, lactone group, and NaHCO 3 are used. This is because the case 3 is neutralized with a carboxyl group. Then, the amount of acidic groups was calculated from the results of the types and amounts of the three types of bases added in these titrations and the amount of hydrochloric acid consumed. For confirmation of the neutralization point, a pH meter was used. The pH was 7.0 for NaOH, pH 8.5 for Na 2 CO 3 , and pH 4.5 for NaHCO 3 . Thereby, the total amount of carboxyl groups, lactone groups, and hydroxyl groups added to the catalyst was determined.
酸性基の量は、以下のような滴定法により測定した。すなわち、まず、2.5gの酸性基を有する触媒粉末を1Lの温純水にて洗浄、乾燥した。乾燥後、酸性基を有する触媒に含まれるカーボン量が0.25gとなるよう計量し、55mlの水と10分間攪拌後、2分間超音波分散を行った。次に、この触媒分散液を窒素ガスにてパージしたグローブボックスへ移動させ、窒素ガスを10分間バブリングした。そして、触媒分散液に0.1Mの塩基水溶液を過剰に投入し、この塩基性溶液に対して0.1Mの塩酸にて中和滴定を行ない、中和点から官能基量を定量した。ここで、塩基水溶液は、NaOH、Na2CO3、NaHCO3の3種類を用い、それぞれについて中和滴定作業を行っている。これは使用する塩基毎に中和される官能基の種類が異なるからであり、NaOHの場合はカルボキシル基、ラクトン基、ヒドロキシル基と、Na2CO3の場合はカルボキシル基、ラクトン基と、NaHCO3の場合はカルボキシル基と中和反応するからである。そして、これら滴定で投入した3種類の塩基種類と量、および消費した塩酸量の結果により、酸性基の量を算出した。尚、中和点の確認には、pHメーターを使用し、NaOHの場合はpH7.0、Na2CO3の場合はpH8.5、NaHCO3の場合はpH4.5を中和点とした。これにより、触媒に付加しているカルボキシル基、ラクトン基、およびヒドロキシル基の総量を求めた。 (Measurement of acid group content)
The amount of acidic groups was measured by the following titration method. That is, first, 2.5 g of the catalyst powder having an acidic group was washed with 1 L of warm pure water and dried. After drying, the amount of carbon contained in the catalyst having an acidic group was measured to be 0.25 g, stirred with 55 ml of water for 10 minutes, and then subjected to ultrasonic dispersion for 2 minutes. Next, this catalyst dispersion was moved to a glove box purged with nitrogen gas, and nitrogen gas was bubbled for 10 minutes. Then, an excessive amount of a 0.1 M aqueous base solution was added to the catalyst dispersion, and the basic solution was subjected to neutralization titration with 0.1 M hydrochloric acid, and the amount of functional groups was determined from the neutralization point. Here, three types of NaOH, Na 2 CO 3 and NaHCO 3 are used as the aqueous base solution, and neutralization titration work is performed for each. This is because the type of functional group to be neutralized differs for each base used. In the case of NaOH, the carboxyl group, lactone group, and hydroxyl group, and in the case of Na 2 CO 3 , the carboxyl group, lactone group, and NaHCO 3 are used. This is because the case 3 is neutralized with a carboxyl group. Then, the amount of acidic groups was calculated from the results of the types and amounts of the three types of bases added in these titrations and the amount of hydrochloric acid consumed. For confirmation of the neutralization point, a pH meter was used. The pH was 7.0 for NaOH, pH 8.5 for Na 2 CO 3 , and pH 4.5 for NaHCO 3 . Thereby, the total amount of carboxyl groups, lactone groups, and hydroxyl groups added to the catalyst was determined.
〔電解質被覆率〕
触媒金属に対する電解質の被覆率は、触媒の固体プロトン伝導材および液体プロトン伝導材との界面に形成される電気二重層容量の計測を用いて、固体プロトン伝導材による触媒金属の被覆率を算出した。なお、被覆率の算出に当たっては、高加湿状態に対する低加湿状態の電気二重層容量の比より算出し、湿度状態を代表するものとして、それぞれ5%RHおよび100%RH条件における計測値を用いた。 [Electrolyte coverage]
The coverage of the electrolyte with respect to the catalyst metal was calculated by measuring the electric double layer capacity formed at the interface of the catalyst with the solid proton conductive material and the liquid proton conductive material. . In calculating the coverage, it was calculated from the ratio of the electric double layer capacity in the low humidified state to the high humidified state, and the measured values under the conditions of 5% RH and 100% RH were used as representatives of the humidity state. .
触媒金属に対する電解質の被覆率は、触媒の固体プロトン伝導材および液体プロトン伝導材との界面に形成される電気二重層容量の計測を用いて、固体プロトン伝導材による触媒金属の被覆率を算出した。なお、被覆率の算出に当たっては、高加湿状態に対する低加湿状態の電気二重層容量の比より算出し、湿度状態を代表するものとして、それぞれ5%RHおよび100%RH条件における計測値を用いた。 [Electrolyte coverage]
The coverage of the electrolyte with respect to the catalyst metal was calculated by measuring the electric double layer capacity formed at the interface of the catalyst with the solid proton conductive material and the liquid proton conductive material. . In calculating the coverage, it was calculated from the ratio of the electric double layer capacity in the low humidified state to the high humidified state, and the measured values under the conditions of 5% RH and 100% RH were used as representatives of the humidity state. .
<電気二重層容量の測定>
実施例3および比較例1で得られたMEAについて、電気化学インピーダンス分光法により、高加湿状態、低加湿状態、さらに触媒失活かつ高加湿状態および低加湿状態における電気二重層容量をそれぞれ測定し、両電池の電極触媒における触媒の両プロトン伝導材との接触面積を比較した。 <Measurement of electric double layer capacity>
For the MEAs obtained in Example 3 and Comparative Example 1, the electric double layer capacities in the highly humidified state, the low humidified state, the catalyst deactivation and the highly humidified state, and the low humidified state were measured by electrochemical impedance spectroscopy. The contact area of the catalyst with both proton conducting materials in the electrode catalyst of both batteries was compared.
実施例3および比較例1で得られたMEAについて、電気化学インピーダンス分光法により、高加湿状態、低加湿状態、さらに触媒失活かつ高加湿状態および低加湿状態における電気二重層容量をそれぞれ測定し、両電池の電極触媒における触媒の両プロトン伝導材との接触面積を比較した。 <Measurement of electric double layer capacity>
For the MEAs obtained in Example 3 and Comparative Example 1, the electric double layer capacities in the highly humidified state, the low humidified state, the catalyst deactivation and the highly humidified state, and the low humidified state were measured by electrochemical impedance spectroscopy. The contact area of the catalyst with both proton conducting materials in the electrode catalyst of both batteries was compared.
なお、使用機器としては、北斗電工株式会社製電気化学測定システムHZ-3000と、エヌエフ回路設計ブロック社製周波数応答分析器FRA5020とを用い、表1に示す測定条件を採用した。
As the equipment used, the measurement conditions shown in Table 1 were employed using an electrochemical measurement system HZ-3000 manufactured by Hokuto Denko Corporation and a frequency response analyzer FRA5020 manufactured by NF Circuit Design Block.
まず、それぞれの電池をヒーターによって30℃に加温し、作用極および対極に、それぞれ表1に示した加湿状態に調整した窒素ガスおよび水素ガスを供給した状態で電気二重層容量を計測した。
First, each battery was heated to 30 ° C. with a heater, and the electric double layer capacity was measured in a state where nitrogen gas and hydrogen gas adjusted to the humidified state shown in Table 1 were supplied to the working electrode and the counter electrode, respectively.
電気二重層容量の測定に際しては、表1に示したように、0.45Vで保持し、さらに、±10mVの振幅で、20kHz~10mHzの周波数範囲で作用極の電位を振動させた。
When measuring the electric double layer capacity, as shown in Table 1, it was held at 0.45 V, and the working electrode potential was oscillated with an amplitude of ± 10 mV and a frequency range of 20 kHz to 10 mHz.
すなわち、作用極電位の振動時の応答から、各周波数におけるインピーダンスの実部、虚部が得られる。この虚部(Z”)と角速度ω(周波数から変換)の関係が次式で表されるため、虚部の逆数を角速度の-2乗について整理し、角速度の-2乗が0のときの値を外挿することによって、電気二重層容量Cdlが求められる。
That is, the real part and imaginary part of the impedance at each frequency are obtained from the response when the working electrode potential vibrates. Since the relationship between the imaginary part (Z ″) and the angular velocity ω (converted from the frequency) is expressed by the following equation, the reciprocal of the imaginary part is arranged with respect to −2 to the angular velocity, and when the −2 to the angular velocity is 0 The electric double layer capacitance C dl is obtained by extrapolating the value.
このような測定を低加湿状態および高加湿状態(5%RH→10%RH→90%RH→100%RH条件)で順次実施した。
Such measurement was sequentially performed in a low humidified state and a high humidified state (5% RH → 10% RH → 90% RH → 100% RH condition).
さらに、作用極に濃度1%(体積比)のCOを含む窒素ガスを1NL/分で15分以上流通させることによって、Pt触媒を失活させたのち、上記のような高加湿および低加湿状態における電気二重層容量をそれぞれ同様に計測した。これらの結果を表2に示す。なお、得られた電気二重層容量は、触媒層の面積当たりの値に換算して示した。
Furthermore, after deactivating the Pt catalyst by flowing nitrogen gas containing CO at a concentration of 1% (volume ratio) to the working electrode at a rate of 1 NL / min for 15 minutes or more, the high humidification and low humidification conditions as described above The electric double layer capacity was measured in the same manner. These results are shown in Table 2. In addition, the obtained electric double layer capacity was shown in terms of a value per area of the catalyst layer.
そして、計測値に基づいて、触媒-固体プロトン伝導材(C-S)界面および触媒-液体プロトン伝導材(C-L)界面に形成された電気二重層容量を算出した。
Based on the measured values, the electric double layer capacity formed at the catalyst-solid proton conductive material (CS) interface and the catalyst-liquid proton conductive material (CL) interface was calculated.
なお、算出に当たっては、低加湿状態および高加湿状態の電気二重層容量を代表するものとして、それぞれ5%RHおよび100%RH条件における計測値を用いた。
In the calculation, the measured values under the conditions of 5% RH and 100% RH were used as representatives of the electric double layer capacity in the low and high humidification states.
実験1:酸素還元反応活性の評価
上記実施例1~3で作製された膜電極接合体(1)~(3)および比較例1、2で作製された比較膜電極接合体(1)、(2)について、下記評価条件下、0.9V時の白金表面積当たりの発電電流の電流密度(A/m2-Pt)を測定した。これにより、酸素還元反応(ORR)活性の評価を行った。 Experiment 1: Evaluation of oxygen reduction reaction activity Membrane electrode assemblies (1) to (3) prepared in Examples 1 to 3 and Comparative membrane electrode assemblies (1) and (1) prepared in Comparative Examples 1 and 2 For 2), the current density (A / m 2 -Pt) of the generated current per platinum surface area at 0.9 V was measured under the following evaluation conditions. Thereby, the oxygen reduction reaction (ORR) activity was evaluated.
上記実施例1~3で作製された膜電極接合体(1)~(3)および比較例1、2で作製された比較膜電極接合体(1)、(2)について、下記評価条件下、0.9V時の白金表面積当たりの発電電流の電流密度(A/m2-Pt)を測定した。これにより、酸素還元反応(ORR)活性の評価を行った。 Experiment 1: Evaluation of oxygen reduction reaction activity Membrane electrode assemblies (1) to (3) prepared in Examples 1 to 3 and Comparative membrane electrode assemblies (1) and (1) prepared in Comparative Examples 1 and 2 For 2), the current density (A / m 2 -Pt) of the generated current per platinum surface area at 0.9 V was measured under the following evaluation conditions. Thereby, the oxygen reduction reaction (ORR) activity was evaluated.
結果を下記表2に示す。
The results are shown in Table 2 below.
上記表2の結果から、触媒のBET比表面積が1200m2/g担体超であり、酸性基の量が0.7mmol/g担体以上である実施例1~3の触媒は、比較例1、2の触媒と比較して、白金表面積あたりの酸素還元反応活性に優れることがわかる。さらに、実施例2と実施例3との比較から、触媒のBET比表面積が大きいほど白金表面積あたりの酸素還元反応活性が高い。また、実施例1と実施例3との比較から、白金担持量が30重量%以下であると酸素還元反応活性が向上しうることがわかった。また、電解質被覆率が0.3以下であれば、酸素還元反応活性が向上しうる。これらの結果から、本発明の触媒によれば、触媒金属の利用率を高めることができ、触媒金属の使用量を低減して、触媒の製造コストの低減に寄与しうることがわかる。
From the results of Table 2 above, the catalysts of Examples 1 to 3 in which the BET specific surface area of the catalyst is more than 1200 m 2 / g support and the amount of acidic groups is 0.7 mmol / g support or more are Comparative Examples 1, 2 It can be seen that the oxygen reduction reaction activity per platinum surface area is excellent as compared with the above catalyst. Further, from comparison between Example 2 and Example 3, the larger the BET specific surface area of the catalyst, the higher the oxygen reduction reaction activity per platinum surface area. Further, from comparison between Example 1 and Example 3, it was found that the oxygen reduction reaction activity could be improved when the platinum loading was 30% by weight or less. Moreover, if the electrolyte coverage is 0.3 or less, the oxygen reduction reaction activity can be improved. From these results, it can be seen that according to the catalyst of the present invention, the utilization rate of the catalyst metal can be increased, and the usage amount of the catalyst metal can be reduced to contribute to the reduction of the production cost of the catalyst.
本出願は、2013年4月25日に出願された日本国特許出願第2013-092918号に基づいており、その開示内容は、参照により全体として引用されている。
This application is based on Japanese Patent Application No. 2013-092918 filed on April 25, 2013, the disclosure of which is incorporated by reference in its entirety.
1 固体高分子形燃料電池(PEFC)、
2 固体高分子電解質膜、
3a アノード触媒層、
3c カソード触媒層、
4a アノードガス拡散層、
4c カソードガス拡散層、
5a アノードセパレータ、
5c カソードセパレータ、
6a アノードガス流路、
6c カソードガス流路、
7 冷媒流路、
10 膜電極接合体(MEA)、
20 触媒、
22 触媒金属、
23 担体、
24 空孔(メソ孔)、
25 酸性基、
26 電解質。 1 Polymer electrolyte fuel cell (PEFC),
2 solid polymer electrolyte membrane,
3a anode catalyst layer,
3c cathode catalyst layer,
4a Anode gas diffusion layer,
4c cathode gas diffusion layer,
5a anode separator,
5c cathode separator,
6a Anode gas flow path,
6c cathode gas flow path,
7 Refrigerant flow path,
10 Membrane electrode assembly (MEA),
20 catalyst,
22 catalytic metal,
23 carrier,
24 pores (mesopores),
25 acidic groups,
26 Electrolyte.
2 固体高分子電解質膜、
3a アノード触媒層、
3c カソード触媒層、
4a アノードガス拡散層、
4c カソードガス拡散層、
5a アノードセパレータ、
5c カソードセパレータ、
6a アノードガス流路、
6c カソードガス流路、
7 冷媒流路、
10 膜電極接合体(MEA)、
20 触媒、
22 触媒金属、
23 担体、
24 空孔(メソ孔)、
25 酸性基、
26 電解質。 1 Polymer electrolyte fuel cell (PEFC),
2 solid polymer electrolyte membrane,
3a anode catalyst layer,
3c cathode catalyst layer,
4a Anode gas diffusion layer,
4c cathode gas diffusion layer,
5a anode separator,
5c cathode separator,
6a Anode gas flow path,
6c cathode gas flow path,
7 Refrigerant flow path,
10 Membrane electrode assembly (MEA),
20 catalyst,
22 catalytic metal,
23 carrier,
24 pores (mesopores),
25 acidic groups,
26 Electrolyte.
Claims (10)
- 触媒担体および前記触媒担体に担持される触媒金属からなる触媒であって、
担体重量当たりのBET比表面積が1200m2/g担体超であり、かつ
担体重量当たりの酸性基の量が0.7mmol/g担体以上であることを特徴とする、触媒。 A catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier,
A catalyst characterized in that the BET specific surface area per weight of the support is more than 1200 m 2 / g support, and the amount of acidic groups per weight of the support is 0.7 mmol / g or more. - 前記酸性基がヒドロキシル基、ラクトン基、およびカルボキシル基からなる群より選択される少なくとも1種である、請求項1に記載の触媒。 The catalyst according to claim 1, wherein the acidic group is at least one selected from the group consisting of a hydroxyl group, a lactone group, and a carboxyl group.
- 前記担体のBET比表面積が1500m2/g担体以上である、請求項1または2に記載の触媒。 The catalyst according to claim 1 or 2, wherein the support has a BET specific surface area of 1500 m 2 / g support or more.
- 前記担体は、カーボンを含む、請求項1~3のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the carrier contains carbon.
- 前記触媒金属は、白金である、または白金と白金以外の金属成分を含み、前記触媒に対する前記触媒金属の担持量は50重量%以下である、請求項1~4のいずれか1項に記載の触媒。 The catalyst metal according to any one of claims 1 to 4, wherein the catalyst metal is platinum or contains a metal component other than platinum and platinum, and the amount of the catalyst metal supported on the catalyst is 50% by weight or less. catalyst.
- 前記触媒に対する前記触媒金属の担持量は30重量%以下である、請求項5に記載の触媒。 The catalyst according to claim 5, wherein the amount of the catalyst metal supported on the catalyst is 30% by weight or less.
- 請求項1~6のいずれか1項に記載の触媒および電解質を含む、燃料電池用電極触媒層。 An electrode catalyst layer for a fuel cell, comprising the catalyst according to any one of claims 1 to 6 and an electrolyte.
- 前記触媒において、触媒金属の表面積に対する触媒金属表面が電解質によって被覆されている面積の比から算出される触媒金属の電解質被覆率が、0.3以下である、請求項7に記載の燃料電池用電極触媒層。 8. The fuel cell according to claim 7, wherein in the catalyst, an electrolyte coverage of the catalyst metal calculated from a ratio of an area where the catalyst metal surface is covered with an electrolyte to a surface area of the catalyst metal is 0.3 or less. Electrocatalyst layer.
- 請求項7または8に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。 A fuel cell membrane electrode assembly comprising the fuel cell electrode catalyst layer according to claim 7 or 8.
- 請求項9に記載の燃料電池用膜電極接合体を含む、燃料電池。 A fuel cell comprising the fuel cell membrane electrode assembly according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015513685A JP6113836B2 (en) | 2013-04-25 | 2014-04-14 | Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-092918 | 2013-04-25 | ||
JP2013092918 | 2013-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175099A1 true WO2014175099A1 (en) | 2014-10-30 |
Family
ID=51791678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060637 WO2014175099A1 (en) | 2013-04-25 | 2014-04-14 | Catalyst, electrode catalyst layer using same, membrane electrode assembly and fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6113836B2 (en) |
WO (1) | WO2014175099A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016225151A (en) * | 2015-05-29 | 2016-12-28 | 日産自動車株式会社 | Method of manufacturing fuel cell |
JP2017021909A (en) * | 2015-07-07 | 2017-01-26 | 日産自動車株式会社 | Electrode catalyst layer for fuel cell, manufacturing method of the same, film electrode assembly body using electrode catalyst layer for fuel cell, fuel cell, and vehicle |
JP2017018909A (en) * | 2015-07-13 | 2017-01-26 | 日産自動車株式会社 | Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell |
JP2018089615A (en) * | 2016-12-05 | 2018-06-14 | パナソニックIpマネジメント株式会社 | Metal particle carrier catalyst, method for producing the same, and fuel battery using the catalyst |
EP3349281A4 (en) * | 2015-09-09 | 2018-09-12 | Nissan Motor Co., Ltd. | Electrode catalyst layer for fuel cell, method for manufacturing same, membrane electrode assembly in which said catalyst layer is used, fuel cell, and vehicle |
JP2018156765A (en) * | 2017-03-16 | 2018-10-04 | トヨタ自動車株式会社 | Method for manufacturing catalyst ink, and catalyst composite |
US10333153B2 (en) | 2015-10-09 | 2019-06-25 | Toyota Jidosha Kabushiki Kaisha | Fuel cell catalyst layer, and fuel cell |
JP2019169317A (en) * | 2018-03-22 | 2019-10-03 | 株式会社豊田中央研究所 | Monodispersed spherical carbon porous body and polymer electrolyte fuel cell |
US11258076B2 (en) | 2016-12-09 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell, method of producing the same, and fuel cell |
CN114171749A (en) * | 2021-11-30 | 2022-03-11 | 浙江天能氢能源科技有限公司 | Pt/C catalyst and preparation method and application thereof |
JP7072040B1 (en) | 2020-12-10 | 2022-05-19 | 株式会社キャタラー | Fuel cell catalyst and its manufacturing method |
WO2023167199A1 (en) | 2022-03-01 | 2023-09-07 | 三井金属鉱業株式会社 | Electrode catalyst, method for producing same, and fuel cell |
KR20230150263A (en) | 2021-02-26 | 2023-10-30 | 미쓰이금속광업주식회사 | Electrode catalyst and its manufacturing method and fuel cell |
KR20240018672A (en) | 2022-03-01 | 2024-02-13 | 미쓰이금속광업주식회사 | Electrode catalyst and its manufacturing method and fuel cell |
KR20240149985A (en) | 2022-03-04 | 2024-10-15 | 닛신보 홀딩스 가부시키 가이샤 | Metal-supported catalysts, electrodes and batteries |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230083433A (en) * | 2021-12-03 | 2023-06-12 | 코오롱인더스트리 주식회사 | Catalyst for Fuel Cell, Method for Fabricating the Same and Fuel Cell Comprising the Same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09257687A (en) * | 1996-01-16 | 1997-10-03 | Matsushita Electric Ind Co Ltd | Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell |
JP2004025024A (en) * | 2002-06-25 | 2004-01-29 | Toyobo Co Ltd | Active carbon carrier, catalyst-carrying active carbon, and method of producing them |
WO2005083818A1 (en) * | 2004-02-26 | 2005-09-09 | Sharp Kabushiki Kaisha | Electrode catalyst for fuel cell and fuel cell using same |
JP2008004541A (en) * | 2006-05-25 | 2008-01-10 | Nissan Motor Co Ltd | Electrode material |
JP2010015970A (en) * | 2008-06-06 | 2010-01-21 | Toyobo Co Ltd | Catalyst for fuel cell using metal complex composite, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst |
JP2010027364A (en) * | 2008-07-18 | 2010-02-04 | Nissan Motor Co Ltd | Electrode catalyst for fuel cell and its manufacturing method |
JP2012124001A (en) * | 2010-12-08 | 2012-06-28 | Tanaka Kikinzoku Kogyo Kk | Catalyst for solid polymer fuel cell and method of producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070003822A1 (en) * | 2005-06-30 | 2007-01-04 | Shyam Kocha | Voltage cycling durable catalysts |
WO2009116157A1 (en) * | 2008-03-19 | 2009-09-24 | 住友商事株式会社 | Process for producing catalyst for fuel cell, electrode assembly, and fuel cell |
-
2014
- 2014-04-14 JP JP2015513685A patent/JP6113836B2/en active Active
- 2014-04-14 WO PCT/JP2014/060637 patent/WO2014175099A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09257687A (en) * | 1996-01-16 | 1997-10-03 | Matsushita Electric Ind Co Ltd | Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell |
JP2004025024A (en) * | 2002-06-25 | 2004-01-29 | Toyobo Co Ltd | Active carbon carrier, catalyst-carrying active carbon, and method of producing them |
WO2005083818A1 (en) * | 2004-02-26 | 2005-09-09 | Sharp Kabushiki Kaisha | Electrode catalyst for fuel cell and fuel cell using same |
JP2008004541A (en) * | 2006-05-25 | 2008-01-10 | Nissan Motor Co Ltd | Electrode material |
JP2010015970A (en) * | 2008-06-06 | 2010-01-21 | Toyobo Co Ltd | Catalyst for fuel cell using metal complex composite, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst |
JP2010027364A (en) * | 2008-07-18 | 2010-02-04 | Nissan Motor Co Ltd | Electrode catalyst for fuel cell and its manufacturing method |
JP2012124001A (en) * | 2010-12-08 | 2012-06-28 | Tanaka Kikinzoku Kogyo Kk | Catalyst for solid polymer fuel cell and method of producing the same |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016225151A (en) * | 2015-05-29 | 2016-12-28 | 日産自動車株式会社 | Method of manufacturing fuel cell |
JP2017021909A (en) * | 2015-07-07 | 2017-01-26 | 日産自動車株式会社 | Electrode catalyst layer for fuel cell, manufacturing method of the same, film electrode assembly body using electrode catalyst layer for fuel cell, fuel cell, and vehicle |
JP2017018909A (en) * | 2015-07-13 | 2017-01-26 | 日産自動車株式会社 | Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell |
EP3349281A4 (en) * | 2015-09-09 | 2018-09-12 | Nissan Motor Co., Ltd. | Electrode catalyst layer for fuel cell, method for manufacturing same, membrane electrode assembly in which said catalyst layer is used, fuel cell, and vehicle |
US10333153B2 (en) | 2015-10-09 | 2019-06-25 | Toyota Jidosha Kabushiki Kaisha | Fuel cell catalyst layer, and fuel cell |
JP2018089615A (en) * | 2016-12-05 | 2018-06-14 | パナソニックIpマネジメント株式会社 | Metal particle carrier catalyst, method for producing the same, and fuel battery using the catalyst |
US11069903B2 (en) | 2016-12-05 | 2021-07-20 | Panasonic Intellectual Property Management Co., Ltd. | Metal particle supported catalysts, methods for producing same, and fuel cells using same |
US11258076B2 (en) | 2016-12-09 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell, method of producing the same, and fuel cell |
JP2018156765A (en) * | 2017-03-16 | 2018-10-04 | トヨタ自動車株式会社 | Method for manufacturing catalyst ink, and catalyst composite |
JP2019169317A (en) * | 2018-03-22 | 2019-10-03 | 株式会社豊田中央研究所 | Monodispersed spherical carbon porous body and polymer electrolyte fuel cell |
JP7116564B2 (en) | 2018-03-22 | 2022-08-10 | 株式会社豊田中央研究所 | Monodisperse spherical carbon porous material and polymer electrolyte fuel cell |
JP7072040B1 (en) | 2020-12-10 | 2022-05-19 | 株式会社キャタラー | Fuel cell catalyst and its manufacturing method |
WO2022124080A1 (en) * | 2020-12-10 | 2022-06-16 | 株式会社キャタラー | Catalyst for fuel cells and method for producing same |
JP2022092187A (en) * | 2020-12-10 | 2022-06-22 | 株式会社キャタラー | Fuel cell catalyst and manufacturing method thereof |
KR20230150263A (en) | 2021-02-26 | 2023-10-30 | 미쓰이금속광업주식회사 | Electrode catalyst and its manufacturing method and fuel cell |
CN114171749A (en) * | 2021-11-30 | 2022-03-11 | 浙江天能氢能源科技有限公司 | Pt/C catalyst and preparation method and application thereof |
CN114171749B (en) * | 2021-11-30 | 2024-02-20 | 浙江天能氢能源科技有限公司 | Pt/C catalyst and preparation method and application thereof |
WO2023167199A1 (en) | 2022-03-01 | 2023-09-07 | 三井金属鉱業株式会社 | Electrode catalyst, method for producing same, and fuel cell |
KR20240018672A (en) | 2022-03-01 | 2024-02-13 | 미쓰이금속광업주식회사 | Electrode catalyst and its manufacturing method and fuel cell |
KR20240149985A (en) | 2022-03-04 | 2024-10-15 | 닛신보 홀딩스 가부시키 가이샤 | Metal-supported catalysts, electrodes and batteries |
Also Published As
Publication number | Publication date |
---|---|
JP6113836B2 (en) | 2017-04-12 |
JPWO2014175099A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6113836B2 (en) | Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell | |
JP5810860B2 (en) | Fuel cell electrode catalyst layer | |
JP6461805B2 (en) | Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell | |
JP5998277B2 (en) | Fuel cell catalyst and fuel cell electrode catalyst layer including the same | |
JP6113837B2 (en) | Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell | |
JP5998275B2 (en) | Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell | |
JP6156490B2 (en) | ELECTRODE CATALYST FOR FUEL CELL AND ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL | |
WO2014175097A1 (en) | Catalyst, method for producing same, and electrode catalyst layer using said catalyst | |
JP6327681B2 (en) | FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST | |
JP6008044B2 (en) | Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell | |
JP5998276B2 (en) | Method for producing catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst | |
JP6276870B2 (en) | Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer | |
JP6672622B2 (en) | Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle | |
JP6183120B2 (en) | Membrane electrode assembly for fuel cell and fuel cell | |
JP6191368B2 (en) | Membrane electrode assembly for fuel cell and fuel cell | |
JP6699094B2 (en) | Fuel cell manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788531 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015513685 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14788531 Country of ref document: EP Kind code of ref document: A1 |