WO2014171510A1 - Phase shift mask production method, phase shift mask and phase shift mask production device - Google Patents
Phase shift mask production method, phase shift mask and phase shift mask production device Download PDFInfo
- Publication number
- WO2014171510A1 WO2014171510A1 PCT/JP2014/060929 JP2014060929W WO2014171510A1 WO 2014171510 A1 WO2014171510 A1 WO 2014171510A1 JP 2014060929 W JP2014060929 W JP 2014060929W WO 2014171510 A1 WO2014171510 A1 WO 2014171510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- phase shift
- shift mask
- manufacturing
- layers
- Prior art date
Links
- 230000010363 phase shift Effects 0.000 title claims abstract description 223
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000001301 oxygen Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims description 53
- 239000007789 gas Substances 0.000 claims description 32
- 230000015572 biosynthetic process Effects 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 10
- 238000000059 patterning Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000002310 reflectometry Methods 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 383
- 239000011521 glass Substances 0.000 description 17
- 239000011651 chromium Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007261 regionalization Effects 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- QBEGYEWDTSUVHH-UHFFFAOYSA-P diazanium;cerium(3+);pentanitrate Chemical compound [NH4+].[NH4+].[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QBEGYEWDTSUVHH-UHFFFAOYSA-P 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- -1 specifically Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
Definitions
- the present invention relates to a method for manufacturing a phase shift mask and a phase shift mask capable of forming a fine and highly accurate exposure pattern, and more particularly to a technique used for manufacturing a flat panel display.
- phase shift mask that can form a finer pattern using a single wavelength by using light interference at a pattern edge from a photomask having a light shielding film pattern formed using a composite wavelength in order to perform pattern miniaturization in the photomask.
- Patent Document 1 an edge-enhanced phase shift mask using an i-line single wavelength is used as shown in Patent Document 1, but for further miniaturization, Patent Document 2 As shown in FIG. 1, a semi-transmission type phase shift mask has been used in which the exposure wavelength is shortened to a single ArF wavelength.
- Patterns are also formed by exposure with an exposure wavelength that is a composite wavelength of g-line, h-line, and i-line. It has been broken. Recently, in order to form a high-definition screen even in the above flat panel display, the pattern profile has been further miniaturized. Thus, edge-enhanced phase shift masks have been used.
- Japanese Unexamined Patent Publication No. 08-272071 Japanese Unexamined Patent Publication No. 2006-078953 Japanese Unexamined Patent Publication No. 2007-271720
- phase shift mask As a method for improving the above, a method of forming a fine pattern at the time of transfer to a flat panel wiring using a phase shift mask has been used as described above. The situation is that the method is required.
- the reflectance of the surface layer of the phase shift layer formed on the transparent substrate may be reduced.
- the phase shift mask having the phase shift layer as the uppermost layer if the ratio of the exposure light reflected on the surface layer of the phase shift layer is large in the entire exposure light incident on the phase shift mask, an interfering wave is formed by reflection. Therefore, it becomes difficult to expose a fine wiring pattern. Therefore, a phase shift mask having a low reflectance of exposure light on the surface layer of the phase shift layer is required.
- aspects of the present invention provide a phase shift mask manufacturing method, a phase shift mask, and a phase shift mask manufacturing apparatus capable of forming a phase shift mask having a low reflectance of exposure light on the surface layer of the phase shift layer. For the purpose.
- a method of manufacturing a phase shift mask according to one embodiment of the present invention includes a transparent substrate and Cr having at least a portion formed with a constant thickness on one surface side of the transparent substrate as a main component, and having a wavelength region of 300 nm to 500 nm.
- the uppermost layer to be formed is characterized by having an oxygen content higher than that of the lower layer facing the uppermost layer.
- the uppermost layer constituting the phase shift layer is characterized in that the oxygen content is made larger than the layer below it.
- the layer below the uppermost layer constituting the phase shift layer is characterized in that the oxygen content is increased as the layer is closer to the uppermost layer.
- the layer facing the uppermost layer is characterized by having a lower oxygen content than the layer facing it.
- the method further includes the step of forming a light shielding layer mainly composed of Cr on the transparent substrate.
- the phase shift layer is characterized in that at least the uppermost layer has a lower nitrogen content than the lower layer facing it.
- the oxygen content of the uppermost layer is made higher than the layers below it.
- the oxygen content is controlled so that the reflectance of the uppermost layer is 19% or less.
- the thicknesses of the layers correspond to each other so that lights having different wavelengths have a phase difference.
- a phase shift mask according to another aspect of the present invention is mainly formed of a transparent substrate and Cr having a portion formed at a constant thickness on the surface of the transparent substrate, overlaid on the transparent substrate, and having a thickness of 300 nm or more.
- a phase shift pattern having a portion is formed, and has a region in which the thickness of the layer is changed in multiple stages at a boundary portion between the phase shift layer and the transparent substrate in plan view, and constitutes the phase shift layer
- the uppermost layer constituting the shift layer is characterized by having a higher oxygen content than the lower layer facing it.
- the thickness of the phase shift layer corresponds to a phase difference of 180 ° in at least one of g-line, h-line, and i-line.
- phase shift layer includes a plurality of film forming chambers that individually form the stages constituting the phase shift layer, Among these, the film formation chamber for forming the uppermost layer is controlled so that the content of CO 2 gas in the film formation atmosphere gas is higher than the film formation chamber for forming the lower layer. It is characterized by.
- At least the uppermost layer constituting the phase shift layer has a higher oxygen content than the lower layer facing it.
- the reflectance of the uppermost phase shift layer on the exposure light incident side is reduced. Therefore, it is possible to reduce the reflected light reflected by the phase shift mask, prevent a decrease in pattern formation accuracy due to the reflected light, and enable a fine and highly accurate pattern formation.
- phase shift mask of this invention It is a principal part expanded sectional view which shows the phase shift mask of this invention. It is sectional drawing which shows the manufacturing method of the phase shift mask of this invention. It is sectional drawing and a table
- FIG. 1 is an enlarged cross-sectional view of a main part showing the phase shift mask of the present embodiment.
- the phase shift mask 10 of this embodiment includes a glass substrate (transparent substrate) 11 and a phase shift layer 12 formed on the one surface 11 a side of the glass substrate 11.
- the phase shift layer 12 has a phase shift pattern 12p capable of giving a phase difference of 180 ° in a region of 300 to 500 nm, and is configured as a patterning mask for an FPD glass substrate, for example.
- a composite wavelength of i-line, h-line and g-line is used for exposure light.
- the phase shift mask 10 has a thickness of the phase shift pattern 12p at the boundary portion B1 between the portion C where the glass substrate 11 is exposed in plan view and the formed phase shift pattern 12p in the exposure region where the exposure pattern is formed.
- Such a multi-stage region B1b is obtained by laminating a plurality of thin layers 12a to 12h, that is, eight layers in this embodiment, and shortening the end portion stepwise.
- region B1b has comprised the substantially inclined surface (inclined area
- the multistage region B1b is formed by, for example, wet etching the end portions of the layers 12a to 12h. Note that the number of stacked layers is not limited to eight, and it is sufficient that at least two or more layers are provided. Furthermore, it is more effective if it has three or more stages.
- the boundary surfaces between the layers 12a to 12h of the phase shift layer 12 are not necessarily clear and may be formed integrally in the thickness direction.
- the entire layer in which the layers 12a to 12h of the thin phase shift layer 12 are stacked will be described as the phase shift layer 12.
- the transparent substrate 11 a material excellent in transparency and optical isotropy is used, and for example, a quartz glass substrate can be used.
- the size of the transparent substrate 11 is not particularly limited, and is appropriately selected according to a substrate (for example, an FPD substrate or a semiconductor substrate) to be exposed using the mask.
- the present invention can be applied to a substrate having a diameter of about 100 mm, a rectangular substrate having a side of about 50 to 100 mm to a side of 300 mm or more, and further, a quartz substrate having a length of 450 mm, a width of 550 mm, and a thickness of 8 mm, A substrate having a thickness of 1000 mm or more and a thickness of 10 mm or more can also be used.
- the flatness of the transparent substrate 11 may be improved by polishing the surface of the transparent substrate 11.
- the flatness of the transparent substrate 11 can be set to 20 ⁇ m or less, for example. As a result, the depth of focus of the mask is increased, and it is possible to greatly contribute to the formation of a fine and highly accurate pattern. Further, the flatness is preferably as small as 10 ⁇ m or less.
- the phase shift layer 12 is mainly composed of Cr (chromium), specifically, Cr alone, and oxides, nitrides, carbides, oxynitrides, carbonitrides, and oxycarbonitrides of Cr. It is also possible to configure at least one selected from the above, or to stack two or more selected from these.
- the phase shift mask 10 of the present embodiment can be configured as a patterning mask for an FPD glass substrate, for example. As will be described later, for the patterning of the glass substrate using the mask, a composite wavelength of i-line, h-line and g-line is used for exposure light.
- the total thickness of the layers 12a to 12h constituting the phase shift layer 12 is any light in a wavelength region of 300 nm to 500 nm, which is a general wavelength as exposure light (for example, i-line with a wavelength of 365 nm, a wavelength of 436 nm (g-line, h-line having a wavelength of 405 nm) with a thickness (for example, 90 to 170 nm) capable of giving a phase difference of about 180 °.
- exposure light refers to light having a wavelength shorter than the g-line having a wavelength of 436 nm, for example, light having a wavelength of 300 nm to 500 nm.
- the phase shift layer 12 is, for example, a layer in which thin layers 12a to 12h having a thickness of about several nanometers to several tens of nanometers are stacked stepwise, and the thicknesses of the respective layers 12a to 12h may be the same. And may be different. Alternatively, the thicknesses of the layers 12a to 12h may be gradually reduced as going upward from the one surface 11a of the transparent substrate 11.
- Each of the layers 12a to 12h has a different oxygen content.
- the layer 12a positioned at the uppermost layer has an interfering wave caused by reflected light reaching the resist film of the flat panel in the flat panel manufacturing process than the layers 12b to 12h positioned below it.
- the reflectance with respect to exposure light is set low so that the formation of a fine pattern does not become difficult.
- the reflectance with respect to exposure light can be set lower in the layer positioned higher by setting the oxygen content. For example, the reflectance with respect to the exposure light is the lowest in the layer 12a, then the layer 12b is lower, and the layers 12c to 12h below it have a higher reflectance than the layer 12b.
- the uppermost layer 12a has the highest oxygen content
- the third layer 12c is higher than the second layer 12b
- the reflectance of each layer is the lowest for the uppermost layer 12a
- the third layer 12c is the next lowest
- the intermediate layer 12b is the highest.
- the oxygen content of the uppermost layer 12a is the second highest
- the second layer 12b is the third highest
- the third layer 12c is the highest
- the reflectance of each layer is the second lowest
- the second layer 12b is the highest and the third layer 12c is the lowest.
- the layer 12a on the exposure light incident side is formed to have a reflectance of 19% or less, for example.
- the reflectance of each of the layers 12a to 12h with respect to the exposure light varies depending on the oxygen content. Specifically, when the respective layers 12a to 12h are formed, the higher the oxygen concentration in the film formation environment, the lower the reflectance with respect to the exposure light. As a method for increasing the oxygen concentration in the film formation environment, increasing the CO 2 concentration as an oxygen supply source can be mentioned.
- the reflectivity of each of the layers 12a to 12h with respect to the exposure light varies depending on the nitrogen content. Specifically, when the respective layers 12a to 12h are formed, the lower the nitrogen concentration in the film formation environment, the lower the reflectance with respect to the exposure light.
- the layer 12a located at the uppermost layer among the layers 12a to 12h has a higher oxygen content than the lower layers 12b to 12h.
- the oxygen content is higher in the upper layer.
- the oxygen content of each layer is the highest in the layer 12a, then the layer 12b, and the lower layers 12c to 12h have a lower oxygen content than the layer 12b.
- the oxygen content other than the uppermost layer is not limited to the above, and the uppermost layer 12a may be set higher than the next layer 12b. There are cases where the oxygen content can be set higher in the order of the third layer 12c, the uppermost layer 12a and the second layer 12b in the order of the uppermost layer 12a, the third layer 12c and the second layer 12b in the three layers from the uppermost layer.
- the lower layer can be appropriately selected by setting the pattern profile of the phase shift layer 12.
- the uppermost layer 12a has a higher oxygen content than the lower layers 12b to 12h.
- the oxygen content is higher in the upper layer.
- the oxygen content of each layer is the highest in the layer 12a, then the layer 12b, and the layers 12c to 12h below it have a lower oxygen content than the layer 12b.
- the uppermost layer 12a only needs to have a higher oxygen content than the second layer 12b, and is not limited to the above.
- the uppermost layer 12a is the highest, and may be higher in the order of the third layer 12c and the second layer 12b, or in the order of the third layer 12c, the uppermost layer 12a, and the second layer 12b. It may be high.
- phase shift layer 12 having such a multistage region B1b will be described in detail in the manufacturing method.
- the phase shift layer 12 can be formed by sputtering, electron beam vapor deposition, laser vapor deposition, ALD, or the like.
- the thickness T12 in the uniform thickness region B1a is equal to the thickness of the phase shift pattern 12p other than the boundary portion B1.
- the thickness T12 is a value corresponding to a thickness Tg (for example, 145.0 nm) at which the light intensity corresponding to the g line becomes zero, for example.
- the thickness T12 of the phase shift layer 12 can be set to a value larger than Tg, and the thickness corresponding to Th and Ti can be positioned in the inclined region (multistage region B1b).
- the film thickness may be a film thickness Th (for example, 133.0 nm) corresponding to the h line or a film thickness Ti (for example, 120.0 nm) corresponding to the i line.
- the film thickness corresponding to Ti can be positioned in the inclined region (multistage region) B1b.
- the phase shift pattern 12p can also be formed such that the thickness changes stepwise in the multistage region B1b.
- the width direction of the multi-stage region B1b is the end of the exposed portion C (the portion where the glass substrate 11 is exposed when the thickness of the phase shift layer is zero) from the end 12t of the thickness T12 of the phase shift pattern 12p. Up to 12u.
- the width dimension of the multi-stage region B1b is set with respect to the direction in which the thickness decreases.
- the film thickness setting in each layer constituting the phase shift pattern is not limited to the above description, and can take various forms.
- the multi-stage region B1b has a thickness corresponding to a thickness Th (eg, 133.0 nm) at which the light intensity corresponding to the h line becomes zero and a thickness at which the light intensity corresponding to the i-line becomes zero on the surface of the multi-stage area B1b. It is also possible to have a portion having a thickness corresponding to the thickness Ti (for example, 120.0 nm).
- the layers 12a to 12h of the phase shift layer 12 are formed so that the portions where the thickness Tg, the thickness Th, and the thickness Ti are within a predetermined range, respectively.
- Th and Ti may not be included in the profile of the pattern edge through which light passes.
- the film thickness of Ti can be included.
- the Ti film thickness may not be included in the profile of the pattern edge through which light passes.
- phase shift mask 10 of the present embodiment configured as described above, of the exposure light irradiated toward the phase shift mask 10 when exposing a mask pattern for forming a fine wiring pattern,
- the ratio of the exposure light reflected by the surface of the phase shift layer 12 which forms the incident light incident side can be reduced. That is, the reflection of exposure light on the surface of the phase shift layer 12 is increased by increasing the oxygen content of the uppermost layer 12a among the phase shift layers 12 formed in multiple stages to be lower than the layers 12b to 12h below it. The rate can be reliably reduced.
- the reflectance of the exposure light of the phase shift layer 12 is 20% or more, but in the phase shift mask 10 of the present embodiment, the reflectance of the exposure light is 19% or less, for example, 14 %. Therefore, it is possible to prevent a decrease in pattern formation accuracy due to reflected light and to form a fine and highly accurate pattern. Thereby, a high-quality flat panel display can be manufactured.
- the reflectance with respect to the exposure light of the layers 12b and 12c located immediately below the uppermost layer 12a can also be reduced. Thereby, the reflectance with respect to the exposure light of the surface of the phase shift layer 12 can be reduced more reliably.
- the oxygen content of the uppermost layer 12a is higher than that of the next layer 12b, an effect will occur. Specifically, the oxygen content in the three layers from the uppermost layer 12a is higher in the order of the uppermost layer 12a, the third layer 12c, and the second layer 12b, and in the order of the third layer 12c, the uppermost layer 12a, and the second layer 12b. Even when is set high, the reflectance with respect to the exposure light can be reduced.
- the reflectance of the exposure light can be further reduced by increasing the oxygen content of the uppermost layer 12a over the lower layers 12b to 12h and simultaneously reducing the nitrogen content.
- FIG. 2 is a cross-sectional view showing the phase shift mask manufacturing method according to the present embodiment step by step.
- the phase shift mask 10 of the present embodiment has alignment marks for alignment on the outer periphery of the exposure region, and this alignment mark is formed of a light shielding layer 13a.
- the light shielding layer 13a for the alignment mark may be provided, but the light shielding layer 13a for the alignment mark may not be provided, and the alignment mark may be a semi-transmissive film including only the phase shift layer 12.
- a light shielding layer 13 mainly composed of Cr is formed on one surface 11a of the glass substrate 11.
- a photoresist layer 14 is formed on the light shielding layer 13.
- the photoresist layer 14 may be a positive type or a negative type.
- FIG. 2C shows an example in which a resist pattern 14 a is formed so that the light shielding layer 13 remains in a predetermined range of the periphery of the glass substrate 11.
- a liquid resist is used as the photoresist layer 14.
- the light shielding layer 13 is wet etched using the first etching solution over the resist pattern 14a.
- the first etching solution an etching solution containing cerium diammonium nitrate can be used.
- cerium diammonium nitrate containing an acid such as nitric acid or perchloric acid is preferably used.
- the light shielding layer 13 a patterned in a predetermined shape is formed on the one surface 11 a of the glass substrate 11.
- the resist pattern 14a is removed as shown in FIG.
- a sodium hydroxide aqueous solution can be used for removing the resist pattern 14a.
- the phase shift layer 12 is formed. As shown in FIG. 2F, the phase shift layer 12 is formed on the one surface 11a of the glass substrate 11 so as to cover the light shielding layer 13a.
- the phase shift layer 12 is made of a chromium oxynitride material and is formed by a DC sputtering method.
- a mixed gas of a nitriding gas and an oxidizing gas, or a mixed gas of an inert gas, a nitriding gas, and an oxidizing gas can be used as the process gas.
- the film forming pressure can be set to 0.1 Pa to 0.5 Pa, for example.
- As the inert gas halogen, especially argon can be applied.
- the oxidizing gas CO, CO 2 , NO, N 2 O, NO 2 , O 2 or the like can be used.
- the nitriding gas NO, N 2 O, NO 2 , N 2 or the like can be used. In the present embodiment, for example, CO 2 is used.
- the oxygen content of the phase shift layer 12 is controlled.
- the oxygen content of the phase shift layer 12 can also be controlled by controlling the CO 2 concentration.
- Ar, He, Xe or the like is used as the inert gas, but typically Ar is used.
- the mixed gas may further contain a carbonizing gas such as CH 4 .
- thin layers 12a to 12h each having a thickness of, for example, several nanometers to several tens of nanometers are laminated step by step. For example, first, the layer 12h is formed on the one surface 11a of the glass substrate 11, and then the layer 12g is formed on the layer 12h. Further, the layers 12f to 12a are sequentially stacked on the layer 12g.
- the uppermost layer 12a is formed more than when the lower layers 12b to 12h are formed. So that the oxygen content incorporated into the gas is increased.
- the CO 2 flow rate is increased or the concentration is controlled to be higher than when the layers 12b to 12h below it are formed. By such control, the uppermost layer 12a has a higher oxygen content than the lower layers 12b to 12h.
- the oxygen content of each layer is not limited to the above, and the oxygen content of three layers from the uppermost layer 12a is illustrated as an example in the order of the uppermost layer 12a, the third layer 12c, and the second layer 12b.
- the oxygen content increases in the order of the third layer 12c, the uppermost layer 12a, and the second layer 12b.
- the oxygen content increases in the order of the third layer 12c, the second layer 12b, and the uppermost layer 12a. It may be mentioned.
- the layers 12b to 12h constituting the phase shift layer 12
- the layers 12b to 12h (layers 12b and 12c) closer to the layer 12a have the CO 2 content so that the oxygen content is increased next to the layer 12a. It is preferable to control the flow rate and concentration of the liquid.
- each layer may be formed one by one in correspondence with each of the layers 12a to 12h using eight film forming chambers.
- the deposition chamber for depositing the uppermost layer 12a may be controlled so that the flow rate of CO 2 is increased or the concentration is increased.
- the phase shift layer 12 is composed of eight layers.
- the phase shift layer 12 is not limited to eight layers, and the reflectance can be controlled as long as it is at least two layers. In the film forming apparatus, three or more layers may be used.
- the layers 12a to 12h constituting the phase shift layer 12 are sequentially formed using one film forming chamber, and the flow rate of CO 2 in the film forming chamber is changed at the timing of forming the uppermost layer 12a.
- the number may be increased or the concentration may be controlled to be high.
- the total thickness T12 of the formed phase shift layer 12 can have a phase difference of 180 ° with respect to the g-line, h-line, and i-line in the wavelength region of 300 nm or more and 500 nm or less in the multistage region B1b. Thickness.
- the light to which the phase difference of 180 ° is given is inverted in phase, so that the intensity of the light is canceled by the interference action with the light that does not pass through the phase shift layer 12.
- the light in the wavelength region is a composite light (polychromatic light) of i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm).
- the phase shift layer 12 is formed with a thickness that can give a phase difference of 180 °.
- the light having the target wavelength may be any of i-line, h-line, and g-line, or light in a wavelength region other than these.
- a finer pattern can be formed.
- the film thickness of the phase shift layer 12 is preferably at least uniform in the exposure area in the surface of the transparent substrate 11 except for the boundary portion B1.
- the shape of the end of the multistage region B1b is set by setting the flow rate ratio of the oxidizing gas in the atmospheric gas as the film forming condition of the phase shift layer 12.
- the etching state in the phase shift layer 12 can be controlled to set the shape of the stepped inclined surface.
- the profile of the pattern edge can be appropriately adjusted by controlling the oxidizing gas.
- the pattern contour is formed so that the light intensity is minimized by the phase reversal action, and the thickness change of the multi-stage region B1b of the boundary portion B1 can be set after etching so that the exposure pattern becomes thicker. be able to.
- a photoresist layer 14 is formed on the layer 12a (see FIG. 1) constituting the phase shift layer 12.
- the photoresist layer 14 is exposed and developed to form a resist pattern 14 a on the phase shift layer 12.
- the resist pattern 14 a functions as an etching mask for the phase shift layer 12, and the shape is appropriately determined according to the etching pattern of the phase shift layer 12.
- the phase shift layer 12 is etched into a predetermined pattern shape.
- the phase shift pattern 12p patterned into a predetermined shape and the exposed portion C of the glass substrate 11 are formed on the one surface 11a of the glass substrate 11.
- the resist pattern 14a is removed as shown in FIG.
- a sodium hydroxide aqueous solution can be used for removing the resist pattern 14a.
- each layer in the shape diagram on the right side corresponds to the number of layers on the left side.
- the number of layers is listed in order of the first layer and the second layer from the lower layer.
- the distance / film thickness is a value of (width of the inclined surface in plan view) / (thickness of the phase shift layer).
- the phase shift layer 12 is composed of eight layers, and the end portions are gently inclined from the first layer to the upper eighth layer (uppermost layer).
- the phase shift layer 12 is composed of two layers, the first layer having a large thickness and the second layer (the uppermost layer) having a small thickness are stacked thereon, and the end of the second layer is gently inclined.
- the phase shift layer 12 is composed of two layers, and the end portions of the thick first layer and the thin second layer (uppermost layer) thereon are gently inclined.
- the phase shift layer 12 is composed of three layers, and the boundary portion between the thick first layer and the second layer is recessed, and the boundary portion between the thin third layer and the thick second layer. Is protruding.
- FIG. 4 the phase shift layer 12 is composed of eight layers, and the end portions are gently inclined from the first layer to the upper eighth layer (uppermost layer).
- the phase shift layer 12 is composed of two layers, the first layer having a large thickness and the second layer (the uppermost layer) having a small thickness are stacked thereon,
- the phase shift layer 12 is composed of three layers, the boundary between the thick first layer and the second layer is projected, and the gap between the thin third layer and the thick second layer is shown. It is gently inclined.
- the phase shift layer 12 is composed of six layers, and a layer having a gradual inclination and a layer having a steep inclination are alternately stacked to make the first layer thicker than the other layers.
- the phase shift layer 12 is composed of six layers, and a layer having a gradual inclination and a layer having a steep inclination are alternately overlapped to make the first layer thicker than the other layers.
- the phase shift layer 12 is composed of three layers, the boundary portion between the thick first layer and the second layer is recessed, and the boundary portion between the thin third layer and the thick second layer. Is slightly protruding.
- the present invention is not limited to the above example.
- the distance / film thickness can be defined as a value of ⁇ 3 ⁇ (width of the inclined surface in plan view) / (thickness of the phase shift layer) ⁇ 3 from the above embodiment.
- FIG. 11 is a schematic configuration diagram showing a phase shift mask manufacturing apparatus (film forming apparatus) that can be used when manufacturing the phase shift mask as shown in FIG.
- the film forming apparatus (phase shift mask manufacturing apparatus) 50 includes, for example, eight film forming chambers 51a to 51h.
- a cathode 52 and the like are formed in each of the film forming chambers 51a to 51h.
- a gas supply mechanism 53 for supplying a film forming gas containing an oxidizing gas such as CO 2 is formed in each of the film forming chambers 51a to 51h.
- the gas supply mechanism 53 includes a film forming gas source 54, a supply pipe 55, and the like.
- the eight film forming chambers 51a to 51h form, for example, eight layers 12a to 12h (see FIG. 1) of the thin phase shift layer 12 constituting the phase shift layer 12, respectively.
- the layer 12h of the phase shift layer 12 is first formed on the glass substrate 11 by the film formation chamber 51h.
- the layer 12g of the phase shift layer 12 is formed by the film formation chamber 51g.
- the layers 12f to 12b of the phase shift layer 12 are formed in the film forming chambers 51f to 51b, respectively.
- the layer 12a of the phase shift layer 12 that is the uppermost layer of the phase shift layer 12 is formed by the film formation chamber 51a.
- the chamber is not limited to one corresponding to the eight phase shift layers 12. However, when the number of layers is very large, the manufacturing cost of the film forming apparatus is greatly increased.
- the CO 2 flow rate of the film forming chamber 51a for forming the layer 12a is controlled to be larger than the CO 2 flow rates of the other seven film forming chambers 51b to 51h.
- the uppermost layer 12a formed in the film forming chamber 51a has a higher oxygen content than the lower layers 12b to 12h. Thereby, the reflectance of the uppermost layer 12a on the exposure light incident side is reduced.
- the oxidizing gas such as CO 2 may be configured to control the concentration control or both in addition to the flow rate control.
- the oxygen content of each layer is not limited to the above, and the oxygen content of three layers from the uppermost layer 12a is illustrated as an example in the order of the uppermost layer 12a, the third layer 12c, and the second layer 12b.
- the oxygen content increases in the order of the third layer 12c, the uppermost layer 12a, and the second layer 12b.
- the oxygen content increases in the order of the third layer 12c, the second layer 12b, and the uppermost layer 12a. It may be mentioned.
- eight film forming chambers 51a to 51h are provided in accordance with the eight thin layers 12a to 12h constituting the phase shift layer 12.
- the number of stacks constituting the phase shift layer 12 is not necessarily limited.
- the number of deposition chambers need not match.
- the number of deposition chambers can be selected as appropriate, for example, two layers are deposited in one deposition chamber.
- phase shift layer 12 a conventional phase shift mask was formed by CO 2 flow rate (Example 1), phase shift masks (Embodiment was deposited by reducing the CO 2 flow rate than conventional CO 2 flow rate Example 2) and a phase shift mask (Example 3) each of which was formed by increasing the CO 2 flow rate in comparison with the conventional CO 2 flow rate were prepared. Then, measurement light was applied to these three types of phase shift masks, and the reflectance of each phase shift mask was measured. The wavelength range of the measurement light was changed from 300 nm to 800 nm.
- FIG. 12 shows a graph of the verification result.
- phase shift mask of the present invention patterning on a flat panel using the phase shift mask of the present invention is performed using a phase shift mask having a conventional reflectance of 27.5% in the g-line and g in FIG.
- a line width as fine as 30% can be formed in the case of using the phase shift mask of FIG.
- Phase shift mask 11 Glass substrate (transparent substrate) 12 Phase shift layer (laminate) 12a to 12h layers (each layer constituting the phase shift layer) 13, 13a Light-shielding layer B1b Multi-stage region
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
本願は、2013年4月17日に、日本に出願された特願2013-086983号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for manufacturing a phase shift mask and a phase shift mask capable of forming a fine and highly accurate exposure pattern, and more particularly to a technique used for manufacturing a flat panel display.
This application claims priority based on Japanese Patent Application No. 2013-069883 filed in Japan on April 17, 2013, the contents of which are incorporated herein by reference.
フォトマスクにおいてもパターン微細化を行うために、複合波長を用い、遮光膜パターン形成したフォトマスクから、パターン縁において光干渉を用いて、単波長を用い、より微細なパターン形成可能な位相シフトマスクが使用されるに至っている。
上記に示す、半導体用位相シフトマスクでは、特許文献1に示すようにi線単波長を用いたエッジ強調型の位相シフトマスクが使用されていたが、更なる微細化のために、特許文献2に示すようにArF単波長まで露光波長を短くし、かつ、半透過型の位相シフトマスクが使用されてきている。 In semiconductors, pattern miniaturization has been performed over a long period of time in order to perform high-density mounting. For this purpose, various techniques such as shortening the exposure wavelength and improving the exposure method have been studied.
A phase shift mask that can form a finer pattern using a single wavelength by using light interference at a pattern edge from a photomask having a light shielding film pattern formed using a composite wavelength in order to perform pattern miniaturization in the photomask. Has been used.
In the semiconductor phase shift mask described above, an edge-enhanced phase shift mask using an i-line single wavelength is used as shown in
最近、上記フラットパネルディスプレイでも高精細な画面を形成するためにパターンプロファイルがより微細化されてきており、従来より使用されてきている遮光膜をパターン化したフォトマスクではなく、特許文献3に示すようにエッジ強調型の位相シフトマスクが使用されるに至っている。 Flat panel displays, on the other hand, need to be produced at high throughput in order to reduce costs. Patterns are also formed by exposure with an exposure wavelength that is a composite wavelength of g-line, h-line, and i-line. It has been broken.
Recently, in order to form a high-definition screen even in the above flat panel display, the pattern profile has been further miniaturized. Thus, edge-enhanced phase shift masks have been used.
しかし、フォトマスクの配線における微細化技術検討、もしくは、微細パターン形成に対する露光条件、現像条件等の検討だけでは対応が非常に難しくなってきており、さらなる微細化を達成するための新しい技術が求められるようになってきている。 2. Description of the Related Art In recent years, with the increase in definition of flat panel displays, with the miniaturization of wiring patterns, there has been an increasing demand for fine line width accuracy in photomasks used for manufacturing flat panel displays.
However, it has become very difficult to deal with the miniaturization technology in photomask wiring, or the examination of exposure conditions and development conditions for fine pattern formation, and new technologies are needed to achieve further miniaturization. It is getting to be.
上記課題に対する方法として、位相シフトマスクにおいて、透明基板上に形成した位相シフト層の表層の反射率を低減することがある。位相シフト層が最上層にある位相シフトマスクの場合、位相シフトマスクに入射する露光光全体のうち、位相シフト層の表層で反射される露光光の割合が多いと、反射によって介在波が形成されるために、微細な配線パターンを露光させることが難しくなってくる。ゆえに、位相シフト層の表層における露光光の反射率が低い位相シフトマスクが求められている。 As a method for improving the above, a method of forming a fine pattern at the time of transfer to a flat panel wiring using a phase shift mask has been used as described above. The situation is that the method is required.
As a method for solving the above problem, in the phase shift mask, the reflectance of the surface layer of the phase shift layer formed on the transparent substrate may be reduced. In the case of the phase shift mask having the phase shift layer as the uppermost layer, if the ratio of the exposure light reflected on the surface layer of the phase shift layer is large in the entire exposure light incident on the phase shift mask, an interfering wave is formed by reflection. Therefore, it becomes difficult to expose a fine wiring pattern. Therefore, a phase shift mask having a low reflectance of exposure light on the surface layer of the phase shift layer is required.
また、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。 Embodiments and examples of the present invention will be described with reference to the drawings, and the present invention will be described in more detail. However, the present invention is not limited to these embodiments and examples.
Also, in the description using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension and the like are different from the actual ones, and are necessary for the description for easy understanding. Illustrations other than the members are omitted as appropriate.
図1は、本実施形態の位相シフトマスクを示す要部拡大断面図である。
本実施形態の位相シフトマスク10は、ガラス基板(透明基板)11と、このガラス基板11の一面11a側に形成された位相シフト層12とを備えている。位相シフト層12は、300~500nmの領域にて180°の位相差をもたせることが可能な位相シフトパターン12pを有するものとされ、例えばFPD用ガラス基板に対するパターニング用マスクとして構成される。後述するように、当該マスクを用いたガラス基板のパターニングには、露光光にi線、h線及びg線の複合波長が用いられる。 (Phase shift mask)
FIG. 1 is an enlarged cross-sectional view of a main part showing the phase shift mask of the present embodiment.
The
なお、積層数については8段に限定されることはなく、少なくとも2段以上有していればよい。さらに3段以上有していれば、より効果がある。 The
Note that the number of stacked layers is not limited to eight, and it is sufficient that at least two or more layers are provided. Furthermore, it is more effective if it has three or more stages.
さらに最上層12aの酸素含有量が2番目、第2層12bが3番目に高く、第3層12cが最も高く設定した場合では、各層の反射率が、最上層12aが2番目に低く、第2層12bが最も高く、第3層12cが最も低くなる。
露光光の入射側となる層12aは、例えば反射率が19%以下になるように形成されている。 Moreover, in the
Furthermore, when the oxygen content of the
The
また、位相シフトパターンを構成する各層における膜厚設定は上記記載に限定されることなく、さまざまな形態をとることが可能である。 The
Further, the film thickness setting in each layer constituting the phase shift pattern is not limited to the above description, and can take various forms.
更に、膜厚をThに設定した場合には、Tiの膜厚を含むことも可能である。さらには、光が通過するパターンエッジのプロファイルにおいてTiの膜厚が含まれない場合もある。 The multi-stage region B1b has a thickness corresponding to a thickness Th (eg, 133.0 nm) at which the light intensity corresponding to the h line becomes zero and a thickness at which the light intensity corresponding to the i-line becomes zero on the surface of the multi-stage area B1b. It is also possible to have a portion having a thickness corresponding to the thickness Ti (for example, 120.0 nm). The
Furthermore, when the film thickness is set to Th, the film thickness of Ti can be included. Furthermore, the Ti film thickness may not be included in the profile of the pattern edge through which light passes.
以下、本実施形態の位相シフトマスク10を製造するための位相シフトマスクの製造方法について説明する。
図2は、本実施形態に係る位相シフトマスクの製造方法を段階的に示した断面図である。
本実施形態の位相シフトマスク10は、図2(j)に示すように、露光領域の外側に当たる周辺部に位置合わせ用のアライメントマークを有し、このアライメントマークが遮光層13aで形成されている。上述のように、アライメントマーク用の遮光層13aがある場合もあるが、アライメントマーク用としての遮光層13aがなく、位相シフト層12のみの半透過膜によるものでもよい。 (Phase shift mask manufacturing method)
Hereinafter, a method of manufacturing a phase shift mask for manufacturing the
FIG. 2 is a cross-sectional view showing the phase shift mask manufacturing method according to the present embodiment step by step.
As shown in FIG. 2 (j), the
なお、上記記載例では位相シフト層12は8層より構成されているが、8層に限定されることなく、少なくとも2層以上であれば反射率を制御できるが、3層以上であるほうが好ましく、成膜装置においても3層以上であればよい。
あるいは、1つの成膜チャンバを利用して、位相シフト層12を構成する層12a~12hを順次成膜していき、最上層12aを成膜するタイミングで、成膜チャンバのCO2の流量を多くしたり、濃度が濃くなるように制御してもよい。 When forming the
In the example described above, the
Alternatively, the
位相シフト層12の膜厚は、透明基板11の面内において露光領域内で境界部分B1以外では少なくとも均一であることが好ましい。 In the present embodiment, the light in the wavelength region is a composite light (polychromatic light) of i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm). Thus, the
The film thickness of the
位相シフト層12の成膜時における酸化性ガスの流量を調節することで、位相シフト層12におけるエッチング状態を制御して、階段状の傾斜面の形状を設定することができる。また、酸化性ガスの制御によりパターンエッジのプロファイルも適宜調整可能である。 Further, the shape of the end of the multistage region B1b is set by setting the flow rate ratio of the oxidizing gas in the atmospheric gas as the film forming condition of the
By adjusting the flow rate of the oxidizing gas at the time of forming the
以下、図3~図10において、位相シフト層12の境界部分B1の形成例を挙げる。これら図3~図10において、右側に位相シフト層12の境界部分B1の形状と構成する層構成を示す。また、左側の表には、それぞれの形状例における各層の成膜時の成膜ガスの流量や比率、各層の膜厚、距離/膜厚、および反射率を示す。なお、右側の形状図における各層を示す数字は、左側の層の数に対応している。層の数は下層から順に1層目、2層目の順に記載している。また、距離/膜厚とは、(平面視した傾斜面の幅)/(位相シフト層の厚さ)の値である。 As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention. In particular, regarding the stepwise inclined state at the boundary portion B1 of the
Hereinafter, in FIG. 3 to FIG. 10, examples of forming the boundary portion B1 of the
図4では、位相シフト層12を2層から構成し、厚みの厚い1層目と、その上に厚みが薄い2層目(最上層)を重ね、2層目の端部を緩やかに傾斜させている。
図5では、位相シフト層12を2層から構成し、厚みの厚い1層目と、その上に厚みが薄い2層目(最上層)の端部を緩やかに傾斜させている。
図6では、位相シフト層12を3層から構成し、厚みの厚い1層目と2層目との境界部分を凹ませ、厚みが薄い3層目と厚みの厚い2層目との境界部分を突出させている。
図7では、位相シフト層12を3層から構成し、厚みの厚い1層目と2層目との境界部分を突出させ、厚みが薄い3層目と厚みの厚い2層目との間を緩やかに傾斜させている。
図8では、位相シフト層12を6層から構成し、傾斜が緩やかな層と傾斜が急な層とを交互に重ね合わせ、1層目を他の層より厚くしている。
図9では、位相シフト層12を6層から構成し、傾斜が緩やかな層と傾斜が急な層とを交互に重ね合わせ、1層目を他の層より厚くしている。
図10では、位相シフト層12を3層から構成し、厚みの厚い1層目と2層目との境界部分を凹ませ、厚みが薄い3層目と厚みの厚い2層目との境界部分をわずかに突出させている。 In FIG. 3, the
In FIG. 4, the
In FIG. 5, the
In FIG. 6, the
In FIG. 7, the
In FIG. 8, the
In FIG. 9, the
In FIG. 10, the
図11は、図1に示すような位相シフトマスクを製造する際に使用できる、位相シフトマスクの製造装置(成膜装置)を示す概要構成図である。
成膜装置(位相シフトマスクの製造装置)50は、例えば、8つの成膜チャンバ51a~51hを備えている。それぞれの成膜チャンバ51a~51hには、カソード52等が形成されている。そして、それぞれの成膜チャンバ51a~51hに対して、CO2など酸化性ガスを含む成膜ガスを供給するガス供給機構53が形成されている。ガス供給機構53は、成膜ガス源54や、供給管55などから構成されている。 (Phase shift mask manufacturing equipment)
FIG. 11 is a schematic configuration diagram showing a phase shift mask manufacturing apparatus (film forming apparatus) that can be used when manufacturing the phase shift mask as shown in FIG.
The film forming apparatus (phase shift mask manufacturing apparatus) 50 includes, for example, eight
なお、チャンバは8層からなる位相シフト層12に対応したものに限定されるものではない。但し、層の数が非常に多い場合、成膜装置の製造コストが大幅に増加するので、20層以下とする方が好ましい。 The eight
The chamber is not limited to one corresponding to the eight phase shift layers 12. However, when the number of layers is very large, the manufacturing cost of the film forming apparatus is greatly increased.
これによって、露光光の入射側となる最上層の層12aの反射率が低減される。 Among these
Thereby, the reflectance of the
まず、位相シフト層12の成膜時に、従来のCO2流量で成膜した位相シフトマスク(実施例1)、従来のCO2流量よりもCO2流量を減らして成膜した位相シフトマスク(実施例2)、および本発明である、従来のCO2流量よりもCO2流量を増やして成膜した位相シフトマスク(実施例3)をそれぞれ用意した。そして、これら3種類の位相シフトマスクについて測定光を照射し、それぞれの位相シフトマスクの反射率を測定した。測定光は、波長範囲を300nm~800nmまで変化させた。
図12に、検証結果のグラフを示す。 The effect of the present invention was verified.
First, during the formation of the
FIG. 12 shows a graph of the verification result.
11 ガラス基板(透明基板)
12 位相シフト層(積層体)
12a~12h 層(位相シフト層を構成する各層)
13、13a 遮光層
B1b 多段領域 10
12 Phase shift layer (laminate)
12a to 12h layers (each layer constituting the phase shift layer)
13, 13a Light-shielding layer B1b Multi-stage region
Claims (12)
- 透明基板と、
少なくとも前記透明基板の一面側に一定厚みで形成された部分を有するCrを主成分とし、300nm以上500nm以下の波長領域のいずれかの光に対して180°の位相差をもたせることが可能な位相シフト層と、を有する位相シフトマスクの製造方法であって、
前記位相シフト層を多段に形成する工程と、
前記位相シフト層をエッチングして前記位相シフト層と前記透明基板とが平面視した境界部分を有するように前記位相シフト層をパターニングして位相シフトパターンを形成する工程と、を有し、
前記位相シフト層における最上段に位置する第1層は、前記第1層の下に位置しかつ前記第1層に面する第2層よりも酸素の含有量を多くさせた
ことを特徴とする位相シフトマスクの製造方法。 A transparent substrate;
A phase having Cr as a main component and having a portion formed with a constant thickness on at least one surface side of the transparent substrate, and having a phase difference of 180 ° with respect to any light in a wavelength region of 300 nm to 500 nm. A phase shift mask having a shift layer,
Forming the phase shift layer in multiple stages;
Etching the phase shift layer to form the phase shift pattern by patterning the phase shift layer so that the phase shift layer and the transparent substrate have a boundary portion in plan view.
The first layer located at the uppermost stage in the phase shift layer is characterized in that the oxygen content is higher than that of the second layer located under the first layer and facing the first layer. A method of manufacturing a phase shift mask. - 前記位相シフト層のうち、前記第2層は、前記第2層と面する第3層よりも前記酸素の含有量を少なくさせたことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The phase shift mask according to claim 1, wherein the second layer of the phase shift layer has a lower oxygen content than a third layer facing the second layer. Method.
- 前記位相シフト層のうち、前記第1層は、前記第1層より下の層よりも酸素の含有量を多くさせたことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The method of manufacturing a phase shift mask according to claim 1, wherein, among the phase shift layers, the first layer has an oxygen content higher than that of a layer below the first layer.
- 前記位相シフト層における前記第1層よりも下の層は、前記第1層に近いほど酸素の含有量を多くさせたことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The method of manufacturing a phase shift mask according to claim 1, wherein the oxygen content of the layer below the first layer in the phase shift layer is increased as the layer is closer to the first layer.
- 前記透明基板の上にCrを主成分とする遮光層を形成する工程を更に備えたことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 The method of manufacturing a phase shift mask according to claim 1, further comprising a step of forming a light shielding layer containing Cr as a main component on the transparent substrate.
- 前記位相シフト層は、少なくとも前記第1層が、前記第2層よりも窒素の含有量が少ないことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The method of manufacturing a phase shift mask according to claim 1, wherein at least the first layer of the phase shift layer has a lower nitrogen content than the second layer.
- 前記位相シフト層の形成工程おいて、成膜雰囲気ガス中におけるCO2ガスの含有量を設定することで、前記第1層の前記酸素の含有量を、前記第1層より下の層よりも多くすることを特徴とする請求項1に記載の位相シフトマスクの製造方法。 In the step of forming the phase shift layer, by setting the content of the CO 2 gas in the film formation atmosphere gas, the content of the oxygen in the first layer is set to be lower than the layer below the first layer. 2. The method of manufacturing a phase shift mask according to claim 1, wherein the number is increased.
- 前記位相シフト層のうち、前記第1層の反射率が19%以下となるように、前記酸素の含有量を制御したことを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The method of manufacturing a phase shift mask according to claim 1, wherein the oxygen content is controlled so that the reflectance of the first layer of the phase shift layer is 19% or less.
- 前記位相シフト層において、異なる波長の光が位相差をもつように各層の厚みが対応することを特徴とする請求項1に記載の位相シフトマスクの製造方法。 2. The method of manufacturing a phase shift mask according to claim 1, wherein in the phase shift layer, the thickness of each layer corresponds so that light of different wavelengths has a phase difference.
- 請求項1から8のいずれか1項に記載の位相シフトマスクの製造方法によって製造され、
透明基板と、前記透明基板に重ねて形成され、少なくとも前記透明基板の表面に一定厚みで形成された部分を有するCrを主成分とし、300nm以上500nm以下の波長領域のいずれかの光に対して180°の位相差をもたせることが可能な位相シフト層と、を有する位相シフトマスクであって、
前記位相シフト層には、前記透明基板と平面視した境界部分を有する位相シフトパターンが形成され、
平面視した前記位相シフト層と前記透明基板との前記境界部分において、前記位相シフト層の厚みを多段に変化させた領域を有し、
前記位相シフト層における最上段に位置する第1層は、前記第1層の下に位置しかつ前記第1層と面する第2層よりも酸素の含有量が多い
ことを特徴とする位相シフトマスク。 It is manufactured by the method for manufacturing a phase shift mask according to any one of claims 1 to 8,
A transparent substrate, which is formed so as to overlap with the transparent substrate and has at least a portion formed on the surface of the transparent substrate with a constant thickness as a main component, with respect to any light in a wavelength region of 300 nm to 500 nm A phase shift layer having a phase shift layer capable of having a phase difference of 180 °,
In the phase shift layer, a phase shift pattern having a boundary portion in plan view with the transparent substrate is formed,
In the boundary portion between the phase shift layer and the transparent substrate in plan view, it has a region where the thickness of the phase shift layer is changed in multiple stages,
The phase shift layer is characterized in that the first layer located at the uppermost stage has a higher oxygen content than the second layer located below the first layer and facing the first layer. mask. - 前記位相シフト層の厚みが、g線、h線、i線の少なくとも一つにおいて位相差180°をもつように対応することを特徴とする請求項10に記載の位相シフトマスク。 The phase shift mask according to claim 10, wherein the thickness of the phase shift layer corresponds to a phase difference of 180 ° in at least one of g-line, h-line, and i-line.
- 請求項1から9のいずれか1項に記載の位相シフトマスクの製造方法に用いる位相シフトマスクの製造装置であって、
位相シフト層を構成する各段を個別に形成する複数の成膜室を有し、前記位相シフト層のうち、最上段の層を成膜する成膜室は、前記最上段の層より下の層を形成する成膜室よりも、成膜雰囲気ガス中におけるCO2ガスの含有量が多くなるように制御することを特徴とする位相シフトマスクの製造装置。 A phase shift mask manufacturing apparatus used in the phase shift mask manufacturing method according to any one of claims 1 to 9,
A plurality of film forming chambers for individually forming the stages constituting the phase shift layer, and the film forming chamber for forming the uppermost layer of the phase shift layers is located below the uppermost layer; An apparatus for manufacturing a phase shift mask, characterized in that control is performed such that the content of CO 2 gas in a deposition atmosphere gas is larger than in a deposition chamber in which a layer is formed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015512519A JP5934434B2 (en) | 2013-04-17 | 2014-04-17 | Phase shift mask manufacturing method, phase shift mask, and phase shift mask manufacturing apparatus |
CN201480005329.5A CN104919368B (en) | 2013-04-17 | 2014-04-17 | Method for manufacturing phase shift mask, and apparatus for manufacturing phase shift mask |
KR1020157019017A KR102044402B1 (en) | 2013-04-17 | 2014-04-17 | Phase shift mask production method, phase shift mask and phase shift mask production device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-086983 | 2013-04-17 | ||
JP2013086983 | 2013-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171510A1 true WO2014171510A1 (en) | 2014-10-23 |
Family
ID=51731446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060929 WO2014171510A1 (en) | 2013-04-17 | 2014-04-17 | Phase shift mask production method, phase shift mask and phase shift mask production device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5934434B2 (en) |
KR (1) | KR102044402B1 (en) |
CN (1) | CN104919368B (en) |
TW (1) | TWI613509B (en) |
WO (1) | WO2014171510A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019817A (en) * | 2015-03-27 | 2016-10-12 | Hoya株式会社 | Optical mask blank film, manufacturing method of optical mask, and manufacturing method of display device |
CN106353963A (en) * | 2015-07-17 | 2017-01-25 | Hoya株式会社 | Phase-shift mask semi-finished product, method for manufacturing phase-shift mask and method for manufacturing display device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10233528B2 (en) * | 2015-06-08 | 2019-03-19 | Applied Materials, Inc. | Mask for deposition system and method for using the mask |
JP6998181B2 (en) * | 2017-11-14 | 2022-02-04 | アルバック成膜株式会社 | Mask blank, phase shift mask and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234854A (en) * | 1988-03-16 | 1990-02-05 | Hitachi Ltd | Manufacturing method of semiconductor device |
JPH04166938A (en) * | 1990-10-31 | 1992-06-12 | Hoya Corp | Phase shift mask and its manufacture and exposure device |
JPH04254855A (en) * | 1991-02-07 | 1992-09-10 | Hitachi Ltd | Photomask and its manufacture |
JPH05134389A (en) * | 1991-11-14 | 1993-05-28 | Mitsubishi Electric Corp | Mask for exposure |
JPH11184063A (en) * | 1997-12-25 | 1999-07-09 | Ulvac Seimaku Kk | Phase shift photomask blank and production of phase shift photomask as well as method for controlling side etching quantity |
JP2004333652A (en) * | 2003-05-01 | 2004-11-25 | Shin Etsu Chem Co Ltd | Phase shift mask blank and phase shift photomask |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100295385B1 (en) * | 1993-04-09 | 2001-09-17 | 기타지마 요시토시 | Halftone Phase Shift Photomask, Blanks for Halftone Phase Shift Photomask and Manufacturing Method thereof |
JP3256345B2 (en) * | 1993-07-26 | 2002-02-12 | アルバック成膜株式会社 | Photomask blanks and photomasks |
JPH08171197A (en) * | 1994-12-19 | 1996-07-02 | Hitachi Ltd | Excimer laser processing mask and its manufacturing method |
KR0166497B1 (en) * | 1995-03-24 | 1999-01-15 | 김주용 | Phase inversion mask and the method of production therefrom |
TW324071B (en) * | 1996-11-11 | 1998-01-01 | Taiwan Semiconductor Mfg Co Ltd | Manufacturing method of phase shifting mask wiht multi-layer film structure (patent specification amendment of patent number 85113798) |
JP2000181048A (en) * | 1998-12-16 | 2000-06-30 | Sharp Corp | Photomask, its production and exposure method using the same |
JP2002244274A (en) * | 2001-02-13 | 2002-08-30 | Shin Etsu Chem Co Ltd | Photomask blank, photomask, and manufacturing method thereof |
CN1742232A (en) * | 2002-11-25 | 2006-03-01 | 凸版光掩膜公司 | Photomask and method for creating a protective layer on the same |
US20040241556A1 (en) * | 2003-05-29 | 2004-12-02 | Bellman Robert A. | Mask, mask blank, photosensitive film therefor and fabrication thereof |
TWI269934B (en) * | 2003-11-17 | 2007-01-01 | Macronix Int Co Ltd | Mask for improving lithography performance by using multi-transmittance photomask |
JP4551344B2 (en) * | 2006-03-02 | 2010-09-29 | 信越化学工業株式会社 | Photomask blank and photomask |
US8173355B2 (en) * | 2007-11-20 | 2012-05-08 | Eastman Kodak Company | Gradient colored mask |
KR100940270B1 (en) * | 2008-03-11 | 2010-02-05 | 주식회사 하이닉스반도체 | Extreme ultraviolet lithography mask and method for forming the same. |
JP5588633B2 (en) * | 2009-06-30 | 2014-09-10 | アルバック成膜株式会社 | Phase shift mask manufacturing method, flat panel display manufacturing method, and phase shift mask |
JP5644293B2 (en) * | 2010-09-10 | 2014-12-24 | 信越化学工業株式会社 | Method of designing transition metal silicon-based material film |
-
2014
- 2014-04-17 KR KR1020157019017A patent/KR102044402B1/en active Active
- 2014-04-17 CN CN201480005329.5A patent/CN104919368B/en active Active
- 2014-04-17 TW TW103114080A patent/TWI613509B/en active
- 2014-04-17 JP JP2015512519A patent/JP5934434B2/en active Active
- 2014-04-17 WO PCT/JP2014/060929 patent/WO2014171510A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234854A (en) * | 1988-03-16 | 1990-02-05 | Hitachi Ltd | Manufacturing method of semiconductor device |
JPH04166938A (en) * | 1990-10-31 | 1992-06-12 | Hoya Corp | Phase shift mask and its manufacture and exposure device |
JPH04254855A (en) * | 1991-02-07 | 1992-09-10 | Hitachi Ltd | Photomask and its manufacture |
JPH05134389A (en) * | 1991-11-14 | 1993-05-28 | Mitsubishi Electric Corp | Mask for exposure |
JPH11184063A (en) * | 1997-12-25 | 1999-07-09 | Ulvac Seimaku Kk | Phase shift photomask blank and production of phase shift photomask as well as method for controlling side etching quantity |
JP2004333652A (en) * | 2003-05-01 | 2004-11-25 | Shin Etsu Chem Co Ltd | Phase shift mask blank and phase shift photomask |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019817A (en) * | 2015-03-27 | 2016-10-12 | Hoya株式会社 | Optical mask blank film, manufacturing method of optical mask, and manufacturing method of display device |
CN106353963A (en) * | 2015-07-17 | 2017-01-25 | Hoya株式会社 | Phase-shift mask semi-finished product, method for manufacturing phase-shift mask and method for manufacturing display device |
Also Published As
Publication number | Publication date |
---|---|
TWI613509B (en) | 2018-02-01 |
KR102044402B1 (en) | 2019-11-13 |
CN104919368B (en) | 2020-02-07 |
JP5934434B2 (en) | 2016-06-15 |
TW201502692A (en) | 2015-01-16 |
JPWO2014171510A1 (en) | 2017-02-23 |
KR20150097653A (en) | 2015-08-26 |
CN104919368A (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101887323B1 (en) | Mask blank, phase shift mask and method for manufacturing semiconductor device | |
CN1900819B (en) | Photomask blank, photomask and fabrication method thereof | |
KR102365488B1 (en) | Photomask blank and method of manufacturing photomask blank, method of manufacturing photomask, and method of manufacturing display deⅵce | |
CN103809369B (en) | Photo blanks, photomask and preparation method thereof | |
JP6266322B2 (en) | Phase shift mask blank for manufacturing display device, phase shift mask for manufacturing display device, method for manufacturing the same, and method for manufacturing display device | |
JP6396118B2 (en) | Phase shift mask blank, method for manufacturing the same, and method for manufacturing the phase shift mask | |
JP4525893B2 (en) | Phase shift mask blank, phase shift mask and pattern transfer method | |
US8394558B2 (en) | Reflection type photomask blank, manufacturing method thereof, reflection type photomask, and manufacturing method of semiconductor device | |
KR101760337B1 (en) | Phase shift mask production method and phase shift mask | |
TW201600921A (en) | Mask blank, method of manufacturing a transfer mask and method of manufacturing a semiconductor device | |
TW201428417A (en) | Photomask blank and process for producing the same, process for producing photomask, and process for producing semiconductor device | |
CN111801618A (en) | Mask blank, phase shift mask, and manufacturing method of semiconductor device | |
KR20180054682A (en) | Mask blank, phase shift mask and method of manufacturing semiconductor device | |
JP5934434B2 (en) | Phase shift mask manufacturing method, phase shift mask, and phase shift mask manufacturing apparatus | |
KR20170073232A (en) | Multi-tone Photomask | |
KR20240085859A (en) | Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device | |
JP6207006B2 (en) | Method for manufacturing phase shift mask | |
KR20240137470A (en) | Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device | |
TW202403436A (en) | Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14785369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015512519 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157019017 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14785369 Country of ref document: EP Kind code of ref document: A1 |