WO2014171244A1 - Machine tool and cutting method for workpiece having protruding section - Google Patents
Machine tool and cutting method for workpiece having protruding section Download PDFInfo
- Publication number
- WO2014171244A1 WO2014171244A1 PCT/JP2014/056945 JP2014056945W WO2014171244A1 WO 2014171244 A1 WO2014171244 A1 WO 2014171244A1 JP 2014056945 W JP2014056945 W JP 2014056945W WO 2014171244 A1 WO2014171244 A1 WO 2014171244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tool
- axis direction
- workpiece
- axis
- cut
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims description 31
- 238000003754 machining Methods 0.000 claims abstract description 34
- 230000003746 surface roughness Effects 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B1/00—Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B5/00—Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
- B23B5/18—Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning crankshafts, eccentrics, or cams, e.g. crankpin lathes
Definitions
- the present invention relates to a machine tool suitable for cutting a cylindrical surface to be cut, such as a bearing support portion such as a camshaft, a crankshaft, etc., having an overhanging portion projecting outward on both sides in the axial direction.
- the present invention also relates to a method for cutting a workpiece with an overhang using the machine tool.
- a cutting edge 20a such as a normal turning tool or the like.
- FIGS. 2B and 2C by feeding from the center of the surface to be cut F toward both overhang portions Wa and Wb. Then, each side is processed with separate tools 20 and 20.
- An object of the present invention is to provide a machine tool capable of machining a cylindrical surface to be cut having overhang portions on both sides in the axial direction with high accuracy and high efficiency, and a cutting method for a workpiece with an overhang portion. It is.
- the machine tool according to the present invention has overhang portions (Wa, Wb, Wc) projecting to the larger diameter side than the surfaces to be cut (F1, F2) on both sides in the axial direction of the cylindrical surfaces to be cut (F1, F2).
- Wd) is a machine tool (1) for cutting the cut surface (F1, F2) of a work (W) having a spindle (2) that supports and rotates an end of the work (W).
- the tool (20A) has a linear cutting edge (20Aa), and the cutting edge (20Aa) is parallel to a YZ plane which is a plane including the Y-axis direction and the Z-axis direction, and Z It is inclined with respect to the axial direction.
- the position of the cutting edge (20Aa) of the tool (20A) is a position in the Z-axis direction within the range of the cut surface (F1, F2) of the workpiece (W), And it is a position in the X-axis direction where a cutting depth determined with respect to the cut surface (F1, F2) of the workpiece (W) is obtained, and is determined in the Y-axis direction with respect to the workpiece (W).
- the tool (20A) is moved to the Y-axis cutting feed start position at a certain distance, and then the cutting edge (20Aa) of the tool (20A) passes through the cut surface (F1, F2) of the workpiece (W). Thus, the tool (20A) is moved in the Y-axis direction.
- the tool (20A) has a linear cutting edge (20Aa)
- a single cutting feed operation can be performed in a wide range in the Z-axis direction of the surface to be cut (F1, F2), for example, overhang portions (Wa, Wb on both sides). , Wc, Wd), the entire width of the cut surface (F1, F2) can be cut.
- the cutting edge (20Aa) of the tool (20A) is parallel to the YZ plane and is inclined with respect to the Z-axis direction, the workpiece cutting points at the cutting edge (20Aa) of the tool (20A) are continuous. Process while shifting. Therefore, the feed mark can be reduced and the surface roughness can be processed satisfactorily.
- the frictional heat due to the chips does not concentrate on one point of the cutting edge (20Aa).
- the machining speed can be increased, a cylindrical surface to be cut having overhangs on both sides in the axial direction can be machined with high accuracy and high efficiency, and the durability of the tool can be improved.
- the tool (20A) is relatively movable in the Z-axis direction with respect to the main axis, and the width of the work surface (F1, F2) of the workpiece (W) in the Z-axis direction is
- the machining control device (30) moves the tool (20A) in the Y-axis direction while moving the tool (20A) in the Z-axis direction. May be.
- the to-be-cut surface (F1, F2) whose width in the Z-axis direction is wider than the cutting edge (20Aa) of the tool (20A) can be cut by only one cutting feed operation.
- the method of cutting a workpiece with an overhang portion includes an overhang projecting on both sides in the axial direction of a cylindrical surface to be cut (F1, F2) to the larger diameter side than the surface to be cut (F1, F2). It is a method of cutting the said to-be-cut surface (F1, F2) of the workpiece
- the direction of the axis (O1) of the main shaft (2) that supports and rotates the end of the workpiece (W) is the Z-axis direction
- the workpiece
- the cutting direction of W) into the cut surface (F1, F2) is the X-axis direction and the direction perpendicular to the Z-axis direction and the X-axis direction is the Y-axis direction
- the straight line of the tool (20A) The tool (20A) is held so that the cutting edge (20Aa) is parallel to the YZ plane, which is a plane including the Y-axis direction and the Z-axis direction, and is inclined with respect to the Z-axis direction
- the position of the cutting edge (20Aa) of the tool (20A) is a position in the Z-axis direction within the range of the cut surface (F1, F2) of the workpiece (W), and the workpiece (W )
- the surface to be cut (F1, F2) of the workpiece (W) is machined with the tool (20A) having the linear cutting edge (20Aa), so that the surface to be cut in one Y-axis cutting feed process.
- a wide range of (F1, F2) in the Z-axis direction for example, the entire width of the surface to be cut (F1, F2) between the protruding portions (Wa, Wb, Wc, Wd) on both sides can be cut. Since the cutting edge (20Aa) of the tool (20A) is parallel to the YZ plane and inclined with respect to the Z-axis direction, the workpiece cutting point at the cutting edge (20Aa) of the tool (20A) is continuously set. Process while shifting.
- the feed mark can be reduced and the surface roughness can be processed satisfactorily.
- the cutting point on the workpiece is continuously shifted and the cutting portion that is the contact portion between the workpiece and the cutting edge is substantially linear, frictional heat due to chips may be concentrated on one point of the cutting edge (20Aa). Absent.
- the machining speed can be increased, a cylindrical surface to be cut having overhangs on both sides in the axial direction can be machined with high accuracy and high efficiency, and the durability of the tool can be improved.
- FIG. 1 It is the figure which added the block diagram of a control system to the partially broken front view of the machine tool concerning one Embodiment of this invention. It is a partially broken side view of the machine tool.
- (A) is the front view of the tool holder and tool of the machine tool
- (B) is the side view
- (C) is the bottom view of the tool for special processing.
- (A) is a side view of an example of a workpiece
- (B) is the front view.
- FIG. 1 is a partially broken front view of a machine tool according to this embodiment
- FIG. 2 is a partially broken side view thereof.
- This machine tool is a lathe, and a spindle 2 extending in the left-right direction in a front view is rotatably installed on a bed 1 (FIG. 2) via a spindle stock 3 (FIG. 1).
- a rotation center 5 (FIG. 1) supported by the core presser 4 (FIG. 1) is provided on an extension line of O1.
- One end of the work W is gripped by a chuck 2 a (FIG. 1) that is a part of the main shaft 2 provided at the tip of the main shaft 2, and the center of the other end is supported by the rotation center 5.
- the main shaft 2 is rotationally driven via a transmission mechanism 7 (FIG. 2) by a main shaft motor 6 (FIG. 2) composed of a servo motor or the like.
- a pair of processing means 10 are provided above and below the position where the workpiece W is supported by the spindle 2.
- Each processing means 10 moves the turret-type tool holder 14 in the Z-axis direction with respect to the bed 1 via the Z-axis feed base 11 (FIG. 2), the X-axis feed base 12, and the Y-axis feed base 13. It is installed so as to be movable in three axial directions orthogonal to the X-axis direction and the Y-axis direction.
- the Z-axis direction indicates the direction of the axis O1 of the main shaft 2.
- the X-axis direction refers to the cutting direction of the workpiece W into the cut surface F1 (FIG. 1).
- the Y-axis direction refers to a direction orthogonal to the Z-axis direction and the X-axis direction.
- the X-axis direction is the vertical direction
- the Y-axis direction is the front-rear direction
- the Z-axis direction is the left-right direction.
- the Z-axis feed base 11 is installed on a guide 1a (FIG. 2) in the Z-axis direction provided on the bed 1 so as to freely advance and retreat, and includes a Z-axis servo motor 16a (FIG. 1) and a feed screw mechanism (not shown). Driven back and forth in the Z-axis direction by the Z-axis moving mechanism 16 (FIG. 2).
- the X-axis feed base 12 is installed on a guide 11a (FIG. 2) in the X-axis direction provided on the Z-axis feed base 11 so as to freely advance and retreat, and an X-axis servo motor 17a (FIG. 1) and a feed screw mechanism (not shown).
- the Y-axis feed base 13 is installed on a guide 12a in the Y-axis direction provided on the X-axis feed base 12 so as to be able to advance and retreat, and comprises a servo motor 18a (FIG. 1) and a feed screw mechanism (not shown).
- the mechanism 18 is driven back and forth in the Y-axis direction.
- the tool holder 14 is of a turret type, and can turn around a turning axis O2 parallel to the axis O1 (FIG. 1) of the main shaft 2.
- the tool holder 14 has a polygonal shape as viewed from the direction along the turning axis O2, and a plurality of tool mounting portions 14a are provided on the outer periphery thereof.
- the tool mounting portion 14 a may be a part of the tool holder 14 or may be a tool holder provided separately from the tool holder 14.
- a tool 20 is mounted on each tool mounting portion 14a.
- a machining position P in which an arbitrary tool 20 among the plurality of tools 20 mounted on each tool mounting portion 14a is determined by rotating the tool holder 14 around the rotation axis O2 by an index drive mechanism (not shown). (Fig. 2).
- a special processing tool 20A is included. 1 and 2, a special processing tool 20 ⁇ / b> A is attached to the tool holder 14 of the upper processing means 10. As shown in FIG. 3, the special processing tool 20A has a linear cutting edge 20Aa.
- the tool holder 14A has a tool holder 14A so that the cutting edge 20Aa is parallel to the YZ plane, which is a plane including the Y axis direction and the Z axis direction, and is inclined with respect to the Z axis direction during processing. It is attached to.
- the machine tool is entirely covered with a machine body cover 22, and a space in which the headstock 3 and the tool holder 14 are installed in the machine body cover 22 is a machining area Q.
- the entire bottom surface of the processing region Q is formed in an inclined hopper-like portion 23 (FIG. 2), and one end 24a (FIG. 2) is formed under an opening (not shown) portion of the bottom surface of the hopper-like portion 23.
- the chip conveyor 24 located extends to the rear of the machine tool through a space penetrating the front and back of the lower surface of the bed 1.
- the front surface of the processing area Q can be opened and closed by an opening / closing door 25 provided on the machine body cover 22.
- this machine tool is controlled by a machining control device 30.
- the processing control device 30 includes a computer-type numerical control device and a programmer controller, and controls a normal processing control unit 31 that controls processing by a tool 20 other than the special processing tool 20A, and processing by the special processing tool 20A.
- a special processing control unit 32 includes an approach control unit 33 and a Y-axis cutting feed control unit 34. Based on the command determined by the normal machining control unit 31 or the special machining control unit 32, the servo motors 17a, 18a, and 16a are driven through the X-axis driver 35, the Y-axis driver 36, and the Z-axis driver 37. .
- the normal machining control unit 31 adjusts the position of the tool holder 14 in the X-axis direction so that the cutting edge of the tool 20 has a predetermined cutting depth with respect to the workpiece W. It is a control part which performs the well-known process which moves the tool holder 14 to a Z-axis direction, and performs a cutting process.
- the special machining control unit 32 is a control unit that cuts the cut surfaces F1 and F2 of the workpiece W as shown in FIG.
- the workpiece W has a cylindrical surface to be cut F1 and F2, and projecting portions Wa, Wb, and Wc that protrude to the larger diameter side of the surfaces to be cut F1 and F2 on both sides in the axial direction of the surfaces to be cut F1 and F2. , Wd.
- the workpiece W in the illustrated example is a camshaft of an engine, and the surfaces to be cut F1 and F2 are bearing support portions in which a bearing is fitted on the outer periphery. In addition to the camshaft, the present invention is also applied to the machining of the bearing support portion of the crankshaft.
- the approach control means 33 of the special machining control unit 32 performs control to move the tool 20A from the standby position to a predetermined Y-axis cutting feed start position.
- the standby position is not particularly limited, and may be a specific position that is determined, or may be a position where the previous cutting process has been completed.
- the Y-axis cutting feed start position is a position in the Z-axis direction in which the position of the cutting edge 20Aa of the tool 20A is within the range of the cut surfaces F1 and F2 of the workpiece W, and with respect to the cut surfaces F1 and F2 of the workpiece W.
- the Y-axis cutting feed control means 34 moves the tool 20A in the Y-axis direction so that the cutting edge 20Aa of the tool 20A passes through the surfaces to be cut F1 and F2 of the workpiece W from the Y-axis cutting feed start position. Take control.
- the machining control device 30 is specifically configured as shown in FIG. That is, the machining control device 30 includes a program storage unit 41 and an arithmetic control unit 42.
- the program storage means 41 stores a machining program 43 for normal machining and a program 44 for special machining.
- the machining program 43 for normal machining is a program for executing control of the normal machining control unit 31.
- the special machining program 44 includes an approach program 45 and a cutting feed program 46.
- the approach program 45 is a program for executing the control of the approach control means 33.
- the Y-axis cutting feed program 46 is a program for executing control of the Y-axis cutting feed control means 34.
- the arithmetic control unit 42 decodes and executes the machining programs 43 and 44, and includes a CPU 47, a memory 48, and the like.
- FIG. 6 is an explanatory view in which a broken plan view and a broken front view showing the positional relationship between the workpiece W and the tool 20A in each process of machining are shown together in one figure.
- Each broken plan view of FIG. 6 is a plan view broken along the VIa-VIa plane of FIG. 3A with reference to the tool 20A.
- Each broken front view of FIG. 6 is a plan view taken along the VIb-VIb plane of FIG. The same applies to FIG. 7 used in the later description.
- the dashed-two dotted line in FIG. 6 (A), (B) shows the target outer diameter of the to-be-cut surface F1 used as a process target.
- the tool 20A is moved from the machining position P (FIG. 2) or the standby position to the Y-axis cutting feed start position under the control of the approach control means 33, and the tool 20A is moved to FIG. 6 (A).
- the position of the cutting edge 20Aa of the tool 20A at this time is between the overhanging portions Wa and Wb on both sides of the cut surface F1 to be machined in the Z-axis direction, and the target of the cut surface F1 in the X-axis direction.
- the height is the same as the upper end of the outer diameter, and the Y-axis direction is upstream of the workpiece W in the tool feed direction (left side in the figure).
- FIG. 5B shows a state at the time when one end (the upper end in the fracture plan view) of the workpiece W starts to be cut to the target outer diameter by the tip S of the cutting edge 20Aa of the tool 20A.
- FIG. 6C shows a state in which the Y-axis feed of the tool 20A has been completed and the entire width of the cut surface F1 has been cut to the target outer diameter.
- the tool 20A Since the tool 20A has a straight cutting edge 20Aa, it is possible to cut a wide range in the Z-axis direction of the surface F1 to be cut by one cutting feed operation. Since the cutting edge 20Aa of the tool 20A is parallel to the YZ plane and inclined with respect to the Z-axis direction, the workpiece cutting point on the cutting edge 20Aa is processed while being continuously displaced. Therefore, the feed mark can be reduced and the surface roughness can be processed satisfactorily. In the conventional processing using a cutting tool or the like, it was necessary to perform grinding processing later in order to obtain high-precision surface roughness. However, in the processing using the special processing tool 20A, a high-precision surface can be obtained by itself. Since the roughness can be obtained, it is possible to eliminate grinding. Moreover, since the workpiece cutting point is continuously shifted, frictional heat due to chips does not concentrate on one point of the cutting edge 20Aa. Thereby, the processing speed can be increased and the durability of the tool 20A can be improved.
- FIG. 7 shows an example of machining in the case where the width of the cutting surface F1 in the Z-axis direction is wider than the width of the cutting edge 20Aa of the tool 20A in the Z-axis direction.
- the tool 20A is fed in the Z axis while feeding the tool 20A in the process of shifting from the figure (B) to the figure (C). The rest is the same as the processing example of FIG.
- the tool 20A is fed simultaneously in the Y-axis direction and the Z-axis direction, so that the surface to be cut F1 wider than the cutting edge 20Aa of the tool 20A can be cut only once. Can be cut with.
- this machine tool uses the tool 20A for special machining and feeds the tool under the control of the approach control means 33 and the Y-axis cutting feed control means 34, so that the overhang portions Wa, Wb, Cylindrical surface to be cut F1 and F2 with Wc and Wd can be processed with high accuracy and high efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turning (AREA)
Abstract
Provided is a machine tool capable of high-precision, high-efficiency machining of a surface to be cut having a cylindrical shape and a protruding section provided on both sides thereof in the axial direction. The machine tool comprises: a main shaft (2) supporting an end section of a workpiece (W) and rotating; a tool (20A) movable relative to the main shaft (2) in the X-axis and Y-axis directions; and a machining control device (30) that controls the movement of the tool (20A). The tool (20A) has a linear blade tip. The blade tip is parallel to the Y-Z plane and is inclined relative to the Z-axis direction. The machining control device (30) causes the tool (20A) to move to a stipulated Y-axis cutting feed start position, then causes the tool (20A) to move in the Y-axis direction such that the blade tip of the tool (20A) passes through the surface to be cut (F1) on the workpiece (W).
Description
本出願は、2013年4月16日出願の特願2013-085697の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2013-085697 filed on Apr. 16, 2013, which is incorporated herein by reference in its entirety.
この発明は、カムシャフト、クランクシャフト等の軸受支持部のような、軸方向両側に外径側に張り出した張出部がある円筒面状の被切削面を切削加工するのに適した工作機械、およびこの工作機械を用いた張出部付きワークの切削加工方法に関する。
The present invention relates to a machine tool suitable for cutting a cylindrical surface to be cut, such as a bearing support portion such as a camshaft, a crankshaft, etc., having an overhanging portion projecting outward on both sides in the axial direction. The present invention also relates to a method for cutting a workpiece with an overhang using the machine tool.
図8(A)に示すような張出部付きワークWにおいて、2つの張出部Wa,Wb間の円筒面状の被切削面Fを切削加工する場合、通常の旋削用バイト等の刃先20aの先端が細い工具20を用いた従来の加工では、同図(B),(C)のように、被切削面Fの中央部から両方の張出部Wa,Wb端に向かって送ることにより、片側ずつ別々の工具20,20で加工する。
In the workpiece W with an overhanging portion as shown in FIG. 8A, when cutting a cylindrical surface to be cut F between the two overhanging portions Wa and Wb, a cutting edge 20a such as a normal turning tool or the like. In the conventional machining using the tool 20 with a thin tip, as shown in FIGS. 2B and 2C, by feeding from the center of the surface to be cut F toward both overhang portions Wa and Wb. Then, each side is processed with separate tools 20 and 20.
刃先20aの先端が細い工具20を用いる上記従来の加工によると、1周ごとにすじ状の送りマークが生じるため、高面粗度を得るためには工具20の送り速度を上げることができず、生産性を高めることに限界があった。要求される高面粗度が得られない場合は、後で研削を行う必要があり、さらに生産性が悪くなる。生産性を上げるために、二つの工具20で同時に加工することも行われるが、それは各工具20をそれぞれ個別に移動させる機構が必要となり、構成が複雑になる。
According to the above-described conventional processing using the tool 20 having a thin tip of the blade edge 20a, a streak-shaped feed mark is generated every round. Therefore, in order to obtain high surface roughness, the feed speed of the tool 20 cannot be increased. There was a limit to increasing productivity. When the required high surface roughness cannot be obtained, it is necessary to perform grinding later, and the productivity further deteriorates. In order to increase productivity, two tools 20 are simultaneously processed, but this requires a mechanism for moving each tool 20 individually, which complicates the configuration.
この発明の目的は、軸方向両側に張出部がある円筒面状の被切削面を高精度かつ高能率に加工することができる工作機械および張出部付きワークの切削加工方法を提供することである。
An object of the present invention is to provide a machine tool capable of machining a cylindrical surface to be cut having overhang portions on both sides in the axial direction with high accuracy and high efficiency, and a cutting method for a workpiece with an overhang portion. It is.
以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
この発明の工作機械は、円筒面状の被切削面(F1,F2)の軸方向両側にこの被切削面(F1,F2)よりも大径側に張り出した張出部(Wa,Wb,Wc,Wd)を有するワーク(W)の前記被切削面(F1,F2)を切削加工する工作機械(1)であって、前記ワーク(W)の端部を支持して回転する主軸(2)と、この主軸(2)の軸心(O1)の方向であるZ軸方向に対して直交し前記ワーク(W)の前記被切削面(F1,F2)への切込み方向であるX軸方向、およびZ軸方向とX軸方向に対して直交する方向であるY軸方向に、前記主軸(2)に対して相対的に移動自在な工具(20A)と、この工具(20A)の移動を制御する加工制御装置(30)とを備える。前記工具(20A)は、直線状の刃先(20Aa)を有し、この刃先(20Aa)が、Y軸方向およびZ軸方向を包含する平面であるY-Z平面に対して平行で、かつZ軸方向に対して傾斜している。前記加工制御装置(30)は、前記工具(20A)の刃先(20Aa)の位置が、前記ワーク(W)の前記被切削面(F1,F2)の範囲内のZ軸方向の位置であり、かつ前記ワーク(W)の前記被切削面(F1,F2)に対して定められた切込み量が得られるX軸方向の位置であり、かつ前記ワーク(W)に対してY軸方向に定められた距離にあるY軸切削送り開始位置まで前記工具(20A)を移動させ、次いで、前記工具(20A)の刃先(20Aa)が前記ワーク(W)の前記被切削面(F1,F2)を通過するように、前記工具(20A)をY軸方向に移動させる。
The machine tool according to the present invention has overhang portions (Wa, Wb, Wc) projecting to the larger diameter side than the surfaces to be cut (F1, F2) on both sides in the axial direction of the cylindrical surfaces to be cut (F1, F2). , Wd) is a machine tool (1) for cutting the cut surface (F1, F2) of a work (W) having a spindle (2) that supports and rotates an end of the work (W). And the X-axis direction that is perpendicular to the Z-axis direction that is the direction of the axis (O1) of the main shaft (2) and that is the cutting direction of the workpiece (W) into the cut surface (F1, F2), And a tool (20A) movable relative to the main shaft (2) in the Y-axis direction, which is a direction orthogonal to the Z-axis direction and the X-axis direction, and the movement of the tool (20A) is controlled. And a machining control device (30). The tool (20A) has a linear cutting edge (20Aa), and the cutting edge (20Aa) is parallel to a YZ plane which is a plane including the Y-axis direction and the Z-axis direction, and Z It is inclined with respect to the axial direction. In the machining control device (30), the position of the cutting edge (20Aa) of the tool (20A) is a position in the Z-axis direction within the range of the cut surface (F1, F2) of the workpiece (W), And it is a position in the X-axis direction where a cutting depth determined with respect to the cut surface (F1, F2) of the workpiece (W) is obtained, and is determined in the Y-axis direction with respect to the workpiece (W). The tool (20A) is moved to the Y-axis cutting feed start position at a certain distance, and then the cutting edge (20Aa) of the tool (20A) passes through the cut surface (F1, F2) of the workpiece (W). Thus, the tool (20A) is moved in the Y-axis direction.
この構成によると、加工制御装置(30)により、工具(20A)の刃先(20Aa)の位置が前記Y軸切削送り開始位置となるように工具(20A)を移動させるアプローチ動作を実行した後、工具(20A)の刃先(20Aa)がワーク(W)の被切削面(F1,F2)を通過するように工具(20A)をY軸方向に移動させて、ワーク(W)の被切削面(F1,F2)を切削加工するY軸切削送り動作を実行する。工具(20A)は直線状の刃先(20Aa)を有するため、1回の切削送り動作で、被切削面(F1,F2)のZ軸方向に広い範囲、例えば両側の張出部(Wa,Wb,Wc,Wd)間の被切削面(F1,F2)の全幅を切削加工することができる。工具(20A)の刃先(20Aa)はY-Z平面に対して平行で、かつZ軸方向に対して傾斜しているため、工具(20A)の刃先(20Aa)におけるワーク切削点が連続的にずれながら加工する。そのため、送りマークを小さくでき、表面粗度が良好に加工できる。また、ワーク切削点が連続的にずれるため、刃先(20Aa)の1点に切くずによる摩擦熱が集中することがない。それにより、加工速度を速くでき、軸方向両側に張出部がある円筒面状の被切削面を高精度かつ高能率に加工することができ、かつ工具の耐久性を向上させることができる。
According to this configuration, after executing the approach operation of moving the tool (20A) so that the position of the cutting edge (20Aa) of the tool (20A) becomes the Y-axis cutting feed start position by the machining control device (30), The tool (20A) is moved in the Y-axis direction so that the cutting edge (20Aa) of the tool (20A) passes the work surface (F1, F2) of the work (W), and the work surface of the work (W) ( A Y-axis cutting feed operation for cutting F1, F2) is executed. Since the tool (20A) has a linear cutting edge (20Aa), a single cutting feed operation can be performed in a wide range in the Z-axis direction of the surface to be cut (F1, F2), for example, overhang portions (Wa, Wb on both sides). , Wc, Wd), the entire width of the cut surface (F1, F2) can be cut. Since the cutting edge (20Aa) of the tool (20A) is parallel to the YZ plane and is inclined with respect to the Z-axis direction, the workpiece cutting points at the cutting edge (20Aa) of the tool (20A) are continuous. Process while shifting. Therefore, the feed mark can be reduced and the surface roughness can be processed satisfactorily. Moreover, since the workpiece cutting point is continuously shifted, the frictional heat due to the chips does not concentrate on one point of the cutting edge (20Aa). As a result, the machining speed can be increased, a cylindrical surface to be cut having overhangs on both sides in the axial direction can be machined with high accuracy and high efficiency, and the durability of the tool can be improved.
この発明において、前記工具(20A)は前記主軸に対してZ軸方向に相対的に移動自在であり、前記ワーク(W)の前記被切削面(F1,F2)のZ軸方向の幅が、前記工具(20A)の刃先(20Aa)のZ軸方向の幅よりも広い場合、前記加工制御装置(30)は、前記工具(20A)をY軸方向に移動させつつ、Z軸方向に移動させてもよい。
これにより、工具(20A)の刃先(20Aa)よりもZ軸方向の幅が広い被切削面(F1,F2)を、1回の切削送り動作だけで切削加工することができる。 In this invention, the tool (20A) is relatively movable in the Z-axis direction with respect to the main axis, and the width of the work surface (F1, F2) of the workpiece (W) in the Z-axis direction is When the width of the cutting edge (20Aa) of the tool (20A) is wider than the Z-axis direction, the machining control device (30) moves the tool (20A) in the Y-axis direction while moving the tool (20A) in the Z-axis direction. May be.
Thereby, the to-be-cut surface (F1, F2) whose width in the Z-axis direction is wider than the cutting edge (20Aa) of the tool (20A) can be cut by only one cutting feed operation.
これにより、工具(20A)の刃先(20Aa)よりもZ軸方向の幅が広い被切削面(F1,F2)を、1回の切削送り動作だけで切削加工することができる。 In this invention, the tool (20A) is relatively movable in the Z-axis direction with respect to the main axis, and the width of the work surface (F1, F2) of the workpiece (W) in the Z-axis direction is When the width of the cutting edge (20Aa) of the tool (20A) is wider than the Z-axis direction, the machining control device (30) moves the tool (20A) in the Y-axis direction while moving the tool (20A) in the Z-axis direction. May be.
Thereby, the to-be-cut surface (F1, F2) whose width in the Z-axis direction is wider than the cutting edge (20Aa) of the tool (20A) can be cut by only one cutting feed operation.
この発明の張出部付きワークの切削加工方法は、円筒面状の被切削面(F1,F2)の軸方向両側にこの被切削面(F1,F2)よりも大径側に張り出した張出部(Wa,Wb,Wc,Wd)を有するワーク(W)の前記被切削面(F1,F2)を切削する方法である。この切削加工方法は、前記ワーク(W)の端部を支持して回転する主軸(2)の軸心(O1)の方向をZ軸方向とし、このZ軸方向に対して直交し前記ワーク(W)の前記被切削面(F1,F2)への切込み方向をX軸方向とし、これらZ軸方向とX軸方向に対して直交する方向をY軸方向とした場合、工具(20A)の直線状の刃先(20Aa)が、Y軸方向およびZ軸方向を包含する平面であるY-Z平面に対して平行で、かつZ軸方向に対して傾斜するように、前記工具(20A)を保持した状態で、前記工具(20A)の刃先(20Aa)の位置が、前記ワーク(W)の前記被切削面(F1,F2)の範囲内のZ軸方向の位置であり、かつ前記ワーク(W)の前記被切削面(F1,F2)に対して定められた切込み量が得られるX軸方向の位置であり、かつ前記ワーク(W)に対してY軸方向に定められた距離にあるY軸切削送り開始位置まで前記工具(20A)を移動させるアプローチ過程と、前記Y軸切削送り開始位置から、前記工具(20A)の刃先(20Aa)が前記ワーク(W)の前記被切削面(F1,F2)を通過するように、前記工具(20A)をY軸方向に移動させるY軸切削送り過程とを有する。
The method of cutting a workpiece with an overhang portion according to the present invention includes an overhang projecting on both sides in the axial direction of a cylindrical surface to be cut (F1, F2) to the larger diameter side than the surface to be cut (F1, F2). It is a method of cutting the said to-be-cut surface (F1, F2) of the workpiece | work (W) which has a part (Wa, Wb, Wc, Wd). In this cutting method, the direction of the axis (O1) of the main shaft (2) that supports and rotates the end of the workpiece (W) is the Z-axis direction, and the workpiece ( When the cutting direction of W) into the cut surface (F1, F2) is the X-axis direction and the direction perpendicular to the Z-axis direction and the X-axis direction is the Y-axis direction, the straight line of the tool (20A) The tool (20A) is held so that the cutting edge (20Aa) is parallel to the YZ plane, which is a plane including the Y-axis direction and the Z-axis direction, and is inclined with respect to the Z-axis direction In this state, the position of the cutting edge (20Aa) of the tool (20A) is a position in the Z-axis direction within the range of the cut surface (F1, F2) of the workpiece (W), and the workpiece (W ) To obtain a cutting depth determined for the cut surface (F1, F2) An approach process in which the tool (20A) is moved to a Y-axis cutting feed start position that is in a direction and at a distance defined in the Y-axis direction with respect to the workpiece (W), and the Y-axis cutting feed start Y-axis cutting that moves the tool (20A) in the Y-axis direction so that the cutting edge (20Aa) of the tool (20A) passes through the cut surface (F1, F2) of the workpiece (W) from the position. A feeding process.
この方法によると、直線状の刃先(20Aa)を有する工具(20A)でワーク(W)の被切削面(F1,F2)を加工するため、1回のY軸切削送り過程で、被切削面(F1,F2)のZ軸方向に広い範囲、例えば両側の張出部(Wa,Wb,Wc,Wd)間の被切削面(F1,F2)の全幅を切削加工することができる。工具(20A)の刃先(20Aa)はY-Z平面に対して平行で、かつZ軸方向に対して傾斜しているため、工具(20A)の刃先(20Aa)におけるワーク切削点を連続的にずらしながら加工する。そのため、送りマークを小さくでき、表面粗度が良好に加工できる。また、ワーク上の切削点が連続的にずれ、ワークと刃先との接触箇所である切削箇所が略直線状となるため、刃先(20Aa)の1点に切くずによる摩擦熱が集中することがない。それにより、加工速度を速くでき、軸方向両側に張出部がある円筒面状の被切削面を高精度かつ高能率に加工することができ、かつ工具の耐久性を向上させることができる。
According to this method, the surface to be cut (F1, F2) of the workpiece (W) is machined with the tool (20A) having the linear cutting edge (20Aa), so that the surface to be cut in one Y-axis cutting feed process. A wide range of (F1, F2) in the Z-axis direction, for example, the entire width of the surface to be cut (F1, F2) between the protruding portions (Wa, Wb, Wc, Wd) on both sides can be cut. Since the cutting edge (20Aa) of the tool (20A) is parallel to the YZ plane and inclined with respect to the Z-axis direction, the workpiece cutting point at the cutting edge (20Aa) of the tool (20A) is continuously set. Process while shifting. Therefore, the feed mark can be reduced and the surface roughness can be processed satisfactorily. In addition, since the cutting point on the workpiece is continuously shifted and the cutting portion that is the contact portion between the workpiece and the cutting edge is substantially linear, frictional heat due to chips may be concentrated on one point of the cutting edge (20Aa). Absent. As a result, the machining speed can be increased, a cylindrical surface to be cut having overhangs on both sides in the axial direction can be machined with high accuracy and high efficiency, and the durability of the tool can be improved.
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の一実施形態を図面と共に説明する。
図1はこの実施形態にかかる工作機械の一部破断正面図、図2はその一部破断側面図である。この工作機械は旋盤であって、ベッド1(図2)上に、正面視で左右方向に延びる主軸2が主軸台3(図1)を介して回転自在に設置され、この主軸2の軸心O1の延長線上に、芯押し台4(図1)に支持された回転センター5(図1)が設けられている。ワークWは、主軸2の先端に設けられた主軸2の一部であるチャック2a(図1)により一端が把持され、他端の中心が回転センター5により支持される。主軸2は、サーボモータ等からなる主軸モータ6(図2)により、伝動機構7(図2)を介して回転駆動される。 An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partially broken front view of a machine tool according to this embodiment, and FIG. 2 is a partially broken side view thereof. This machine tool is a lathe, and aspindle 2 extending in the left-right direction in a front view is rotatably installed on a bed 1 (FIG. 2) via a spindle stock 3 (FIG. 1). A rotation center 5 (FIG. 1) supported by the core presser 4 (FIG. 1) is provided on an extension line of O1. One end of the work W is gripped by a chuck 2 a (FIG. 1) that is a part of the main shaft 2 provided at the tip of the main shaft 2, and the center of the other end is supported by the rotation center 5. The main shaft 2 is rotationally driven via a transmission mechanism 7 (FIG. 2) by a main shaft motor 6 (FIG. 2) composed of a servo motor or the like.
図1はこの実施形態にかかる工作機械の一部破断正面図、図2はその一部破断側面図である。この工作機械は旋盤であって、ベッド1(図2)上に、正面視で左右方向に延びる主軸2が主軸台3(図1)を介して回転自在に設置され、この主軸2の軸心O1の延長線上に、芯押し台4(図1)に支持された回転センター5(図1)が設けられている。ワークWは、主軸2の先端に設けられた主軸2の一部であるチャック2a(図1)により一端が把持され、他端の中心が回転センター5により支持される。主軸2は、サーボモータ等からなる主軸モータ6(図2)により、伝動機構7(図2)を介して回転駆動される。 An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partially broken front view of a machine tool according to this embodiment, and FIG. 2 is a partially broken side view thereof. This machine tool is a lathe, and a
主軸2によるワークWの支持位置の上下に、一対の加工手段10が設けられている。各加工手段10は、ベッド1に対して、Z軸送り台11(図2)、X軸送り台12、およびY軸送り台13を介して、タレット型の工具保持体14をZ軸方向、X軸方向、およびY軸方向の直交3軸方向に移動可能に設置したものである。Z軸方向は、主軸2の軸心O1の方向を指す。X軸方向は、ワークWの被切削面F1(図1)への切込み方向を指す。Y軸方向は、Z軸方向とX軸方向に対して直交する方向を指す。この実施形態の場合、X軸方向は上下方向であり、Y軸方向は前後方向であり、Z軸方向は左右方向である。
A pair of processing means 10 are provided above and below the position where the workpiece W is supported by the spindle 2. Each processing means 10 moves the turret-type tool holder 14 in the Z-axis direction with respect to the bed 1 via the Z-axis feed base 11 (FIG. 2), the X-axis feed base 12, and the Y-axis feed base 13. It is installed so as to be movable in three axial directions orthogonal to the X-axis direction and the Y-axis direction. The Z-axis direction indicates the direction of the axis O1 of the main shaft 2. The X-axis direction refers to the cutting direction of the workpiece W into the cut surface F1 (FIG. 1). The Y-axis direction refers to a direction orthogonal to the Z-axis direction and the X-axis direction. In this embodiment, the X-axis direction is the vertical direction, the Y-axis direction is the front-rear direction, and the Z-axis direction is the left-right direction.
Z軸送り台11は、ベッド1に設けられたZ軸方向の案内1a(図2)に進退自在に設置され、Z軸サーボモータ16a(図1)および送りねじ機構(図示せず)からなるZ軸移動機構16(図2)により、Z軸方向に進退駆動される。X軸送り台12は、Z軸送り台11に設けられたX軸方向の案内11a(図2)に進退自在に設置され、X軸サーボモータ17a(図1)および送りねじ機構(図示せず)からなるX軸移動機構17(図2)により、X軸方向に進退駆動される。Y軸送り台13は、X軸送り台12に設けられたY軸方向の案内12aに進退自在に設置され、サーボモータ18a(図1)および送りねじ機構(図示せず)からなるY軸移動機構18により、Y軸方向に進退駆動される。
The Z-axis feed base 11 is installed on a guide 1a (FIG. 2) in the Z-axis direction provided on the bed 1 so as to freely advance and retreat, and includes a Z-axis servo motor 16a (FIG. 1) and a feed screw mechanism (not shown). Driven back and forth in the Z-axis direction by the Z-axis moving mechanism 16 (FIG. 2). The X-axis feed base 12 is installed on a guide 11a (FIG. 2) in the X-axis direction provided on the Z-axis feed base 11 so as to freely advance and retreat, and an X-axis servo motor 17a (FIG. 1) and a feed screw mechanism (not shown). Are driven forward and backward in the X-axis direction by the X-axis moving mechanism 17 (FIG. 2). The Y-axis feed base 13 is installed on a guide 12a in the Y-axis direction provided on the X-axis feed base 12 so as to be able to advance and retreat, and comprises a servo motor 18a (FIG. 1) and a feed screw mechanism (not shown). The mechanism 18 is driven back and forth in the Y-axis direction.
図3に示すように、工具保持体14はタレット型のものであり、主軸2の軸心O1(図1)と平行な旋回軸O2回りに旋回自在である。工具保持体14は、旋回軸O2に沿う方向から見た形状が多角形をしており、その外周部に複数の工具装着部14aが設けられている。工具装着部14aは、工具保持体14の一部であってもよく、あるいは工具保持体14とは別に設けられた工具ホルダであっても良い。各工具装着部14aには、それぞれ工具20が装着される。図示しない割出駆動機構により、旋回軸O2回りに工具保持体14を旋回させることで、各工具装着部14aに装着された複数の工具20のうちの任意の工具20が定められた加工位置P(図2)に割り出される。
As shown in FIG. 3, the tool holder 14 is of a turret type, and can turn around a turning axis O2 parallel to the axis O1 (FIG. 1) of the main shaft 2. The tool holder 14 has a polygonal shape as viewed from the direction along the turning axis O2, and a plurality of tool mounting portions 14a are provided on the outer periphery thereof. The tool mounting portion 14 a may be a part of the tool holder 14 or may be a tool holder provided separately from the tool holder 14. A tool 20 is mounted on each tool mounting portion 14a. A machining position P in which an arbitrary tool 20 among the plurality of tools 20 mounted on each tool mounting portion 14a is determined by rotating the tool holder 14 around the rotation axis O2 by an index drive mechanism (not shown). (Fig. 2).
工具保持体14の各工具装着部14aに装着される複数の工具には、バイト、回転工具等の通常加工用の工具20の他に、工具保持体14をY軸方向に移動させながら切削加工を行う特殊加工用の工具20Aが含まれる。図1、図2では、上側の加工手段10の工具保持体14に特殊加工用の工具20Aが装着されている。この特殊加工用の工具20Aは、図3に示すように、直線状の刃先20Aaを有する。工具20Aは、加工時において刃先20Aaが、Y軸方向およびZ軸方向を包含する平面であるY-Z平面に対して平行で、かつZ軸方向に対して傾斜するように、工具保持体14に装着される。
For the plurality of tools mounted on each tool mounting portion 14a of the tool holder 14, cutting is performed while moving the tool holder 14 in the Y-axis direction in addition to the normal processing tool 20 such as a cutting tool and a rotary tool. A special processing tool 20A is included. 1 and 2, a special processing tool 20 </ b> A is attached to the tool holder 14 of the upper processing means 10. As shown in FIG. 3, the special processing tool 20A has a linear cutting edge 20Aa. The tool holder 14A has a tool holder 14A so that the cutting edge 20Aa is parallel to the YZ plane, which is a plane including the Y axis direction and the Z axis direction, and is inclined with respect to the Z axis direction during processing. It is attached to.
図1、図2において、この工作機械は、全体が機体カバー22に覆われており、この機体カバー22内における主軸台3および工具保持体14を設置した空間が加工領域Qとなる。この加工領域Qの底面は全体が、傾斜面のホッパー状部23(図2)に形成され、このホッパー状部23の底面の開口(図示せず)部分の下に一端24a(図2)が位置するチップコンベア24(図2)が、ベッド1の下面の前後に貫通した空間を介して工作機械の後方へ延びている。加工領域Qの前面は、機体カバー22に設けられた開閉扉25で開閉可能である。
1 and 2, the machine tool is entirely covered with a machine body cover 22, and a space in which the headstock 3 and the tool holder 14 are installed in the machine body cover 22 is a machining area Q. The entire bottom surface of the processing region Q is formed in an inclined hopper-like portion 23 (FIG. 2), and one end 24a (FIG. 2) is formed under an opening (not shown) portion of the bottom surface of the hopper-like portion 23. The chip conveyor 24 (FIG. 2) located extends to the rear of the machine tool through a space penetrating the front and back of the lower surface of the bed 1. The front surface of the processing area Q can be opened and closed by an opening / closing door 25 provided on the machine body cover 22.
図1に示すように、この工作機械は、加工制御装置30により制御される。加工制御装置30は、コンピュータ式の数値制御装置およびプログラマコントローラからなり、特殊加工用の工具20A以外の工具20による加工を制御する通常加工制御部31と、特殊加工用の工具20Aによる加工を制御する特殊加工制御部32とを有する。また、特殊加工制御部32は、アプローチ制御手段33とY軸切削送り制御手段34とを有する。通常加工制御部31または特殊加工制御部32により決定された命令に基づき、X軸ドライバ35、Y軸ドライバ36、およびZ軸ドライバ37を介して、前記各サーボモータ17a,18a,16aを駆動する。
As shown in FIG. 1, this machine tool is controlled by a machining control device 30. The processing control device 30 includes a computer-type numerical control device and a programmer controller, and controls a normal processing control unit 31 that controls processing by a tool 20 other than the special processing tool 20A, and processing by the special processing tool 20A. And a special processing control unit 32. The special machining control unit 32 includes an approach control unit 33 and a Y-axis cutting feed control unit 34. Based on the command determined by the normal machining control unit 31 or the special machining control unit 32, the servo motors 17a, 18a, and 16a are driven through the X-axis driver 35, the Y-axis driver 36, and the Z-axis driver 37. .
通常加工制御部31は、例えば工具20がバイトである場合、工具20の刃先がワークWに対して定められた切込み量となるように、工具保持体14のX軸方向位置を調整しながら、工具保持体14をZ軸方向に移動させて切削加工を行う周知の加工を実行させる制御部である。
For example, when the tool 20 is a tool, the normal machining control unit 31 adjusts the position of the tool holder 14 in the X-axis direction so that the cutting edge of the tool 20 has a predetermined cutting depth with respect to the workpiece W. It is a control part which performs the well-known process which moves the tool holder 14 to a Z-axis direction, and performs a cutting process.
特殊加工制御部32は、図4に示すようなワークWの被切削面F1,F2を切削加工させる制御部である。ワークWは、被切削面F1,F2が円筒面状で、これら被切削面F1,F2の軸方向両側に被切削面F1,F2よりも大径側に張り出した張出部Wa,Wb,Wc,Wdを有する。図示例のワークWはエンジンのカムシャフトであり、被切削面F1,F2は外周に軸受が嵌る軸受支持部である。カムシャフトの他に、クランクシャフトの軸受支持部の切削加工にも適用される。
The special machining control unit 32 is a control unit that cuts the cut surfaces F1 and F2 of the workpiece W as shown in FIG. The workpiece W has a cylindrical surface to be cut F1 and F2, and projecting portions Wa, Wb, and Wc that protrude to the larger diameter side of the surfaces to be cut F1 and F2 on both sides in the axial direction of the surfaces to be cut F1 and F2. , Wd. The workpiece W in the illustrated example is a camshaft of an engine, and the surfaces to be cut F1 and F2 are bearing support portions in which a bearing is fitted on the outer periphery. In addition to the camshaft, the present invention is also applied to the machining of the bearing support portion of the crankshaft.
特殊加工制御部32のアプローチ制御手段33は、工具20Aを待機位置から所定のY軸切削送り開始位置へ移動させる制御を行う。待機位置は、特に限定するものではなく、定められた特定の位置であってもよく、または前回切削加工が終了した位置であってもよい。Y軸切削送り開始位置は、工具20Aの刃先20Aaの位置が、ワークWの被切削面F1,F2の範囲内のZ軸方向の位置であり、かつワークWの被切削面F1,F2に対して定められた切込み量が得られるX軸方向の位置であり、かつワークWに対してY軸方向に定められた距離であるときの工具20Aの位置を言う。また、Y軸切削送り制御手段34は、前記Y軸切削送り開始位置から、工具20Aの刃先20AaがワークWの被切削面F1,F2を通過するように、工具20AをY軸方向に移動させる制御を行う。
The approach control means 33 of the special machining control unit 32 performs control to move the tool 20A from the standby position to a predetermined Y-axis cutting feed start position. The standby position is not particularly limited, and may be a specific position that is determined, or may be a position where the previous cutting process has been completed. The Y-axis cutting feed start position is a position in the Z-axis direction in which the position of the cutting edge 20Aa of the tool 20A is within the range of the cut surfaces F1 and F2 of the workpiece W, and with respect to the cut surfaces F1 and F2 of the workpiece W The position of the tool 20A when it is a position in the X-axis direction where a predetermined cutting amount is obtained and is a distance determined in the Y-axis direction with respect to the workpiece W. Further, the Y-axis cutting feed control means 34 moves the tool 20A in the Y-axis direction so that the cutting edge 20Aa of the tool 20A passes through the surfaces to be cut F1 and F2 of the workpiece W from the Y-axis cutting feed start position. Take control.
加工制御装置30は、具体的には図5に示す構成とされる。すなわち、加工制御装置30は、プログラム記憶手段41および演算制御部42を備える。プログラム記憶手段41には、通常加工用の加工プログラム43と特殊加工用のプログラム44とが記憶されている。通常加工用の加工プログラム43は、前記通常加工制御部31の制御を実行するためのプログラムである。特殊加工用のプログラム44には、アプローチプログラム45と切削送りプログラム46とがある。アプローチプログラム45は、前記アプローチ制御手段33の制御を実行するためのプログラムである。Y軸切削送りプログラム46は、前記Y軸切削送り制御手段34の制御を実行するためのプログラムである。演算制御部42は、上記加工プログラム43,44を解読して実行するもので、CPU47、メモリ48等で構成される。
The machining control device 30 is specifically configured as shown in FIG. That is, the machining control device 30 includes a program storage unit 41 and an arithmetic control unit 42. The program storage means 41 stores a machining program 43 for normal machining and a program 44 for special machining. The machining program 43 for normal machining is a program for executing control of the normal machining control unit 31. The special machining program 44 includes an approach program 45 and a cutting feed program 46. The approach program 45 is a program for executing the control of the approach control means 33. The Y-axis cutting feed program 46 is a program for executing control of the Y-axis cutting feed control means 34. The arithmetic control unit 42 decodes and executes the machining programs 43 and 44, and includes a CPU 47, a memory 48, and the like.
特殊加工用の工具20Aによる具体的な加工の例を、図6と共に説明する。同図は、加工の各過程におけるワークWと工具20Aの位置関係を示す破断平面図および破断正面図
を一つの図にまとめて表した説明図である。図6の各破断平面図は、工具20Aを基準として図3(A)のVIa-VIa面で破断した平面図である。図6の各破断正面図は、ワークWを基準として図4(B)のVIb-VIb面で破断した平面図である。後の説明で用いる図7も同様である。なお、図6(A),(B)における二点鎖線は、加工対象となる被切削面F1の目標外径を示す。 A specific example of processing by thespecial processing tool 20A will be described with reference to FIG. This figure is an explanatory view in which a broken plan view and a broken front view showing the positional relationship between the workpiece W and the tool 20A in each process of machining are shown together in one figure. Each broken plan view of FIG. 6 is a plan view broken along the VIa-VIa plane of FIG. 3A with reference to the tool 20A. Each broken front view of FIG. 6 is a plan view taken along the VIb-VIb plane of FIG. The same applies to FIG. 7 used in the later description. In addition, the dashed-two dotted line in FIG. 6 (A), (B) shows the target outer diameter of the to-be-cut surface F1 used as a process target.
を一つの図にまとめて表した説明図である。図6の各破断平面図は、工具20Aを基準として図3(A)のVIa-VIa面で破断した平面図である。図6の各破断正面図は、ワークWを基準として図4(B)のVIb-VIb面で破断した平面図である。後の説明で用いる図7も同様である。なお、図6(A),(B)における二点鎖線は、加工対象となる被切削面F1の目標外径を示す。 A specific example of processing by the
(1)アプローチ過程
まず、アプローチ制御手段33の制御により、工具20Aを前記加工位置P(図2)または前記待機位置からY軸切削送り開始位置へ移動させて、工具20Aを図6(A)に示す位置に位置決めする。このときの工具20Aの刃先20Aaの位置は、Z軸方向については加工対象となる被切削面F1の両側の張出部Wa,Wbの間であり、X軸方向について同被切削面F1の目標外径の上端と同じ高さであり、Y軸方向についてはワークWに対して工具送り方向の上流側(図の左側)である。 (1) Approach Process First, thetool 20A is moved from the machining position P (FIG. 2) or the standby position to the Y-axis cutting feed start position under the control of the approach control means 33, and the tool 20A is moved to FIG. 6 (A). Position at the position shown in. The position of the cutting edge 20Aa of the tool 20A at this time is between the overhanging portions Wa and Wb on both sides of the cut surface F1 to be machined in the Z-axis direction, and the target of the cut surface F1 in the X-axis direction. The height is the same as the upper end of the outer diameter, and the Y-axis direction is upstream of the workpiece W in the tool feed direction (left side in the figure).
まず、アプローチ制御手段33の制御により、工具20Aを前記加工位置P(図2)または前記待機位置からY軸切削送り開始位置へ移動させて、工具20Aを図6(A)に示す位置に位置決めする。このときの工具20Aの刃先20Aaの位置は、Z軸方向については加工対象となる被切削面F1の両側の張出部Wa,Wbの間であり、X軸方向について同被切削面F1の目標外径の上端と同じ高さであり、Y軸方向についてはワークWに対して工具送り方向の上流側(図の左側)である。 (1) Approach Process First, the
(2)Y軸切削送り過程
次に、Y軸切削送り制御手段34の制御により、工具20Aを、図6(A)のY軸切削送り開始位置から、同図(B),(C)のように工具送り方向の下流側(図の右側)へY軸送りする。同図(B)は、工具20Aの刃先20Aaの先端Sにより、ワークWの被切削面F1の一端(破断平面図では上端)が目標外径に切削され始めた時点の状態を表している。また、同図(C)は、工具20AのY軸送りが終了して、被切削面F1の全幅が目標外径に切削された状態を表している。 (2) Y-axis cutting feed process Next, under the control of the Y-axis cutting feed control means 34, thetool 20A is moved from the Y-axis cutting feed start position in FIG. Thus, the Y-axis is fed to the downstream side (right side in the figure) in the tool feeding direction. FIG. 5B shows a state at the time when one end (the upper end in the fracture plan view) of the workpiece W starts to be cut to the target outer diameter by the tip S of the cutting edge 20Aa of the tool 20A. FIG. 6C shows a state in which the Y-axis feed of the tool 20A has been completed and the entire width of the cut surface F1 has been cut to the target outer diameter.
次に、Y軸切削送り制御手段34の制御により、工具20Aを、図6(A)のY軸切削送り開始位置から、同図(B),(C)のように工具送り方向の下流側(図の右側)へY軸送りする。同図(B)は、工具20Aの刃先20Aaの先端Sにより、ワークWの被切削面F1の一端(破断平面図では上端)が目標外径に切削され始めた時点の状態を表している。また、同図(C)は、工具20AのY軸送りが終了して、被切削面F1の全幅が目標外径に切削された状態を表している。 (2) Y-axis cutting feed process Next, under the control of the Y-axis cutting feed control means 34, the
工具20Aは直線状の刃先20Aaを有するため、1回の切削送り動作で、被切削面F1のZ軸方向に広い範囲を切削加工することができる。工具20Aの刃先20AaはY‐Z平面に対して平行で、かつZ軸方向に対して傾斜しているため、刃先20Aaにおけるワーク切削点が連続的にずれながら加工する。そのため、送りマークを小さくでき、表面粗度が良好に加工できる。従来のバイト等を用いた加工では、高精度の表面粗度を得るために後で研削加工を行う必要があったが、特殊加工用の工具20Aを用いた加工では、それだけで高精度の表面粗度を得ることができるので、研削加工を無くすことも可能である。また、ワーク切削点が連続的にずれるため、刃先20Aaの1点に切くずによる摩擦熱が集中することがない。それにより、加工速度を速くでき、かつ工具20Aの耐久性を向上させることができる。
Since the tool 20A has a straight cutting edge 20Aa, it is possible to cut a wide range in the Z-axis direction of the surface F1 to be cut by one cutting feed operation. Since the cutting edge 20Aa of the tool 20A is parallel to the YZ plane and inclined with respect to the Z-axis direction, the workpiece cutting point on the cutting edge 20Aa is processed while being continuously displaced. Therefore, the feed mark can be reduced and the surface roughness can be processed satisfactorily. In the conventional processing using a cutting tool or the like, it was necessary to perform grinding processing later in order to obtain high-precision surface roughness. However, in the processing using the special processing tool 20A, a high-precision surface can be obtained by itself. Since the roughness can be obtained, it is possible to eliminate grinding. Moreover, since the workpiece cutting point is continuously shifted, frictional heat due to chips does not concentrate on one point of the cutting edge 20Aa. Thereby, the processing speed can be increased and the durability of the tool 20A can be improved.
(3)戻り過程
切削送り過程による被切削面F1の切削加工が終了すると、図6(D)のように工具20Aを上昇させる。その後、工具保持体14をY軸方向およびZ軸方向に移動させて、待機位置へ戻す。 (3) Returning process When the cutting of the cut surface F1 in the cutting feed process is completed, thetool 20A is raised as shown in FIG. Thereafter, the tool holder 14 is moved in the Y-axis direction and the Z-axis direction and returned to the standby position.
切削送り過程による被切削面F1の切削加工が終了すると、図6(D)のように工具20Aを上昇させる。その後、工具保持体14をY軸方向およびZ軸方向に移動させて、待機位置へ戻す。 (3) Returning process When the cutting of the cut surface F1 in the cutting feed process is completed, the
図7は、工具20Aの刃先20AaのZ軸方向の幅よりも被切削面F1のZ軸方向の幅の方が広い場合の加工例を示す。この場合、同図(B)から同図(C)へ移行する過程で、工具20AをY軸送りしつつ、Z軸送りする。それ以外は、図6の加工例と同じである。このように、Y軸切削送り過程において、工具20AをY軸方向とZ軸方向に同時に送ることにより、工具20Aの刃先20Aaよりも幅が広い被切削面F1を、1回の切削送り動作だけで切削加工することができる。
FIG. 7 shows an example of machining in the case where the width of the cutting surface F1 in the Z-axis direction is wider than the width of the cutting edge 20Aa of the tool 20A in the Z-axis direction. In this case, the tool 20A is fed in the Z axis while feeding the tool 20A in the process of shifting from the figure (B) to the figure (C). The rest is the same as the processing example of FIG. Thus, in the Y-axis cutting feed process, the tool 20A is fed simultaneously in the Y-axis direction and the Z-axis direction, so that the surface to be cut F1 wider than the cutting edge 20Aa of the tool 20A can be cut only once. Can be cut with.
このように、この工作機械は、特殊加工用の工具20Aを用い、アプローチ制御手段33およびY軸切削送り制御手段34の制御で工具送りすることにより、軸方向両側に張出部Wa,Wb,Wc,Wdがある円筒面状の被切削面F1,F2を高精度かつ高能率に加工することができる。
In this way, this machine tool uses the tool 20A for special machining and feeds the tool under the control of the approach control means 33 and the Y-axis cutting feed control means 34, so that the overhang portions Wa, Wb, Cylindrical surface to be cut F1 and F2 with Wc and Wd can be processed with high accuracy and high efficiency.
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
2…主軸
20,20A…工具
20Aa…刃先
30…加工制御装置
33…アプローチ制御手段
34…Y軸切削送り制御手段
F,F1,F2…被切削面
O1…主軸の軸心
W…ワーク
Wa,Wb,Wc,Wd…張出部 2 ... Spindle 20, 20A ... Tool 20Aa ... Cutting edge 30 ... Processing control device 33 ... Approach control means 34 ... Y-axis cutting feed control means F, F1, F2 ... Surface to be cut O1 ... Spindle axis W ... Workpieces Wa, Wb , Wc, Wd ... overhang
20,20A…工具
20Aa…刃先
30…加工制御装置
33…アプローチ制御手段
34…Y軸切削送り制御手段
F,F1,F2…被切削面
O1…主軸の軸心
W…ワーク
Wa,Wb,Wc,Wd…張出部 2 ...
Claims (3)
- 円筒面状の被切削面の軸方向両側にこの被切削面よりも大径側に張り出した張出部を有するワークの前記被切削面を切削加工する工作機械であって、
前記ワークの端部を支持して回転する主軸と、この主軸の軸心の方向であるZ軸方向に対して直交し前記ワークの前記被切削面への切込み方向であるX軸方向、およびZ軸方向とX軸方向に対して直交する方向であるY軸方向に、前記主軸に対して相対的に移動自在な工具と、この工具の移動を制御する加工制御装置とを備え、
前記工具は、直線状の刃先を有し、この刃先が、Y軸方向およびZ軸方向を包含する平面であるY-Z平面に対して平行で、かつZ軸方向に対して傾斜するものであり、
前記加工制御装置は、
前記工具の刃先の位置が、前記ワークの前記被切削面の範囲内のZ軸方向の位置であり、かつ前記ワークの前記被切削面に対して定められた切込み量が得られるX軸方向の位置であり、かつ前記ワークに対してY軸方向に定められた距離にあるY軸切削送り開始位置まで前記工具を移動させ、次いで、
前記工具の刃先が前記ワークの前記被切削面を通過するように前記工具をY軸方向に移動させる工作機械。 A machine tool for cutting the surface to be cut of a workpiece having a projecting portion projecting to a larger diameter side than the surface to be cut on both axial sides of a surface to be cut in a cylindrical surface,
A main shaft that supports and rotates the end portion of the workpiece, an X-axis direction that is perpendicular to the Z-axis direction that is the direction of the axis of the main shaft, and that is a cutting direction of the workpiece into the surface to be cut, and Z A tool that is movable relative to the main axis in the Y-axis direction, which is a direction orthogonal to the axial direction and the X-axis direction, and a machining control device that controls the movement of the tool;
The tool has a linear cutting edge, and the cutting edge is parallel to the YZ plane, which is a plane including the Y-axis direction and the Z-axis direction, and is inclined with respect to the Z-axis direction. Yes,
The processing control device includes:
The position of the cutting edge of the tool is a position in the Z-axis direction within the range of the surface to be cut of the workpiece, and a cutting amount determined with respect to the surface to be cut of the workpiece can be obtained in the X-axis direction. The tool is moved to a Y-axis cutting feed start position at a position and at a distance determined in the Y-axis direction with respect to the workpiece, and then
A machine tool that moves the tool in the Y-axis direction so that a cutting edge of the tool passes through the surface to be cut of the workpiece. - 前記工具は前記主軸に対してZ軸方向に相対的に移動自在であり、前記ワークの前記被切削面のZ軸方向の幅が、前記工具の刃先のZ軸方向の幅よりも広い場合、前記加工制御装置は、前記工具をY軸方向に移動させつつ、Z軸方向に移動させる請求項1記載の工作機械。 When the tool is relatively movable in the Z-axis direction with respect to the main axis, and the width of the work surface of the workpiece in the Z-axis direction is wider than the width of the cutting edge of the tool in the Z-axis direction, The machine tool according to claim 1, wherein the machining control device moves the tool in the Z-axis direction while moving the tool in the Y-axis direction.
- 円筒面状の被切削面の軸方向両側にこの被切削面よりも大径側に張り出した張出部を有するワークの前記被切削面を切削加工する切削加工方法であって、
前記ワークの端部を支持して回転する主軸の軸心の方向をZ軸方向とし、このZ軸方向に対して直交し前記ワークの前記被切削面への切込み方向をX軸方向とし、これらZ軸方向とX軸方向に対して直交する方向をY軸方向とした場合、
工具の直線状の刃先が、Y軸方向およびZ軸方向を包含する平面であるY-Z平面に対して平行で、かつZ軸方向に対して傾斜するように、前記工具を保持した状態で、
前記工具の刃先の位置が、前記ワークの前記被切削面の範囲内のZ軸方向の位置であり、かつ前記ワークの前記被切削面に対して定められた切込み量が得られるX軸方向の位置であり、かつ前記ワークに対してY軸方向に定められた距離にあるY軸切削送り開始位置まで前記工具を移動させるアプローチ過程と、
前記Y軸切削送り開始位置から、前記工具の刃先が前記ワークの前記被切削面を通過するように、前記工具をY軸方向に移動させるY軸切削送り過程とを有する張出部付きワークの切削加工方法。 A cutting method for cutting the surface to be cut of a workpiece having a projecting portion projecting to a larger diameter side than the surface to be cut on both axial sides of a surface to be cut in a cylindrical surface,
The direction of the axis of the main shaft that rotates while supporting the end of the workpiece is defined as the Z-axis direction, and the cutting direction of the workpiece into the cut surface perpendicular to the Z-axis direction is defined as the X-axis direction. When the direction perpendicular to the Z-axis direction and the X-axis direction is the Y-axis direction,
In a state where the tool is held such that the linear cutting edge of the tool is parallel to the YZ plane, which is a plane including the Y-axis direction and the Z-axis direction, and is inclined with respect to the Z-axis direction. ,
The position of the cutting edge of the tool is a position in the Z-axis direction within the range of the surface to be cut of the workpiece, and a cutting amount determined with respect to the surface to be cut of the workpiece can be obtained in the X-axis direction. An approach process of moving the tool to a Y-axis cutting feed start position that is a position and is at a distance defined in the Y-axis direction with respect to the workpiece;
A workpiece with a projecting portion having a Y-axis cutting feed process in which the tool is moved in the Y-axis direction so that the cutting edge of the tool passes through the surface to be cut of the workpiece from the Y-axis cutting feed start position. Cutting method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015512361A JPWO2014171244A1 (en) | 2013-04-16 | 2014-03-14 | Machine tool and method of cutting workpiece with overhang |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013085697 | 2013-04-16 | ||
JP2013-085697 | 2013-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171244A1 true WO2014171244A1 (en) | 2014-10-23 |
Family
ID=51731201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056945 WO2014171244A1 (en) | 2013-04-16 | 2014-03-14 | Machine tool and cutting method for workpiece having protruding section |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014171244A1 (en) |
WO (1) | WO2014171244A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043171A1 (en) * | 2015-09-09 | 2017-03-16 | 住友電工ハードメタル株式会社 | Method for manufacturing machine part, apparatus for manufacturing machine part, method for machining rotationally symmetric surface, recording medium, and program |
EP3330026A1 (en) * | 2016-12-05 | 2018-06-06 | Audi Ag | Turning tool, in particular rotary broach |
CN109604635A (en) * | 2019-01-28 | 2019-04-12 | 重庆大学 | A chip breaking method for variable feed turning on a vertical CNC lathe |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5025689A (en) * | 1988-03-22 | 1991-06-25 | Boehringer Werkzeugmaschinen Gmbh | Method and apparatus for machining axially symmetrical parts |
JPH05293701A (en) * | 1992-04-17 | 1993-11-09 | Toyoda Mach Works Ltd | Grooving lathe |
JP2005014167A (en) * | 2003-06-27 | 2005-01-20 | Hitachi Ltd | Machining method of shaft having a plurality of eccentric parts |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2232324A (en) * | 1939-11-16 | 1941-02-18 | Rk Leblond Machine Tool Co | Orbital lathe |
DE50002786D1 (en) * | 1999-12-17 | 2003-08-07 | Boehringer Werkzeugmaschinen | METHOD FOR SPIN-FREE MACHINING OF ROTATION-SYMMETRICAL SURFACES |
DE102011113756B4 (en) * | 2011-09-18 | 2020-12-31 | Mag Ias Gmbh | Method and device for finishing workpieces |
-
2014
- 2014-03-14 WO PCT/JP2014/056945 patent/WO2014171244A1/en active Application Filing
- 2014-03-14 JP JP2015512361A patent/JPWO2014171244A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5025689A (en) * | 1988-03-22 | 1991-06-25 | Boehringer Werkzeugmaschinen Gmbh | Method and apparatus for machining axially symmetrical parts |
JPH05293701A (en) * | 1992-04-17 | 1993-11-09 | Toyoda Mach Works Ltd | Grooving lathe |
JP2005014167A (en) * | 2003-06-27 | 2005-01-20 | Hitachi Ltd | Machining method of shaft having a plurality of eccentric parts |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043171A1 (en) * | 2015-09-09 | 2017-03-16 | 住友電工ハードメタル株式会社 | Method for manufacturing machine part, apparatus for manufacturing machine part, method for machining rotationally symmetric surface, recording medium, and program |
CN107949448A (en) * | 2015-09-09 | 2018-04-20 | 住友电工硬质合金株式会社 | Method for manufacture machine component, the equipment for manufacture machine component, the method for processing rotationally symmetrical surf, recording medium and program |
JPWO2017043171A1 (en) * | 2015-09-09 | 2018-06-28 | 住友電工ハードメタル株式会社 | Machine part manufacturing method, machine part manufacturing apparatus, rotationally symmetric surface processing method, recording medium, and program |
CN107949448B (en) * | 2015-09-09 | 2019-05-14 | 住友电工硬质合金株式会社 | Method for manufacture machine component, the equipment for manufacture machine component, method and recording medium for processing rotationally symmetrical surf |
EP3330026A1 (en) * | 2016-12-05 | 2018-06-06 | Audi Ag | Turning tool, in particular rotary broach |
CN109604635A (en) * | 2019-01-28 | 2019-04-12 | 重庆大学 | A chip breaking method for variable feed turning on a vertical CNC lathe |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014171244A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5094465B2 (en) | Machine tool and method of machining inner surface of workpiece using the machine tool | |
JP5138258B2 (en) | Numerically controlled lathe provided with a guide bush and a method of machining a workpiece using the numerically controlled lathe | |
EP3199271B1 (en) | Machine tool and control device for machine tool | |
EP3205430B1 (en) | Method for manufacturing a thread | |
TWI529028B (en) | Working machinery | |
JP5761374B2 (en) | Machine Tools | |
EP3162478B1 (en) | Machine tool and machining method | |
US12337402B2 (en) | Machining device, machining method and cutting tool | |
US20180178301A1 (en) | Machine tool | |
JP6833710B2 (en) | Machine tools and processing methods using machine tools | |
WO2014171244A1 (en) | Machine tool and cutting method for workpiece having protruding section | |
JP6025220B2 (en) | Machine Tools | |
US20190217405A1 (en) | Gear machining apparatus and gear machining method | |
JP6577861B2 (en) | Machine Tools | |
JPH11207514A (en) | Machining method and finishing machine | |
JP6430217B2 (en) | Profile grinding machine | |
TW201945101A (en) | Machine tool | |
KR101518061B1 (en) | Machine tool that oval processing is available | |
JP2014121746A (en) | Cutting work method in machine tool | |
JP7594501B2 (en) | Machine Tools | |
JP2013006224A (en) | Machine tool | |
JP2005169582A (en) | Combined cutting method of machine tool and combined cutting machine | |
JP7058103B2 (en) | Work end face cutting method | |
JP2024011835A (en) | Multi-tasking machine | |
TWM581024U (en) | Feeding device of CNC lathe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14785774 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015512361 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14785774 Country of ref document: EP Kind code of ref document: A1 |