WO2014168031A1 - 車両用インホイールモータユニット - Google Patents
車両用インホイールモータユニット Download PDFInfo
- Publication number
- WO2014168031A1 WO2014168031A1 PCT/JP2014/059250 JP2014059250W WO2014168031A1 WO 2014168031 A1 WO2014168031 A1 WO 2014168031A1 JP 2014059250 W JP2014059250 W JP 2014059250W WO 2014168031 A1 WO2014168031 A1 WO 2014168031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- shaft
- hub
- displacement
- motor unit
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 98
- 230000007246 mechanism Effects 0.000 claims abstract description 54
- 230000008878 coupling Effects 0.000 claims abstract description 45
- 238000010168 coupling process Methods 0.000 claims abstract description 45
- 238000005859 coupling reaction Methods 0.000 claims abstract description 45
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 13
- 230000009471 action Effects 0.000 description 11
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000576 Laminated steel Inorganic materials 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K7/0007—Disposition of motor in, or adjacent to, traction wheel the motor being electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/0015—Hubs for driven wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
- B60K17/043—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
- B60K17/046—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
- B60K17/14—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing the motor of fluid or electric gearing being disposed in, or adjacent to, traction wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/18—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth
- F16D3/185—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth radial teeth connecting concentric inner and outer coupling parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0038—Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0092—Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
Definitions
- the present invention relates to a vehicle in-wheel motor unit in which a drive output shaft from a drive unit main body and a wheel hub shaft supported by a hub bearing with respect to a case member are connected via a displacement absorbing mechanism.
- an in-wheel motor for a vehicle in which a drive output shaft and a wheel hub shaft supported by a hub bearing are connected via a displacement absorbing mechanism is known.
- the displacement absorption mechanism is a mechanism that prevents / suppresses the influence on the gear meshing part and the motor by preventing / suppressing the displacement / inclination of the hub bearing to the gear train and the motor included in the drive unit main body.
- a hub is provided at the tip of the shaft portion extending from the displacement absorbing mechanism toward the wheel, and the wheel is bolted to the wheel mounting surface of the hub.
- the total length of the displacement absorbing mechanism in the axial direction is disposed on the vehicle inner side than the wheel mounting surface. For this reason, there is a possibility that the drive unit main body is disposed on the vehicle inner side by the entire length in the axial direction of the displacement absorbing mechanism with respect to the position of the wheel, and the in-vehicle performance may be deteriorated. Further, when the drive unit main body is forcibly arranged on the outside of the vehicle, the axial span of the displacement absorbing mechanism is shortened, and the displacement absorbing performance may be reduced accordingly.
- the present invention has been made paying attention to the above problem, and an object thereof is to provide an in-wheel motor unit for a vehicle that can achieve both in-vehicle performance and displacement absorption performance.
- a displacement absorbing mechanism that connects a drive output shaft from the drive unit main body and a wheel hub shaft supported by a hub bearing includes: a first internal tooth portion of the drive output shaft; and a first external tooth portion of the gear coupling shaft.
- the second external tooth portion of the gear coupling shaft of the displacement absorbing mechanism is disposed on the vehicle outer side in the axial direction with respect to the wheel mounting surface on which the wheel is mounted on the wheel hub shaft.
- a wheel motor unit was used.
- the second external tooth portion of the gear coupling shaft of the displacement absorbing mechanism is arranged on the vehicle outer side in the axial direction from the wheel mounting surface. For this reason, the installation position of the drive unit main body can be arranged outside the vehicle, the axial dimension of the entire unit can be kept small, and the in-vehicle layout is excellent. In addition, a long span in the axial direction of the displacement absorbing mechanism can be secured, and higher displacement absorbing performance can be obtained than that with a short span.
- FIG. 3 is an exploded cross-sectional view illustrating a configuration in which the vehicle in-wheel motor unit according to the first embodiment is divided into a drive unit main body, a displacement absorbing mechanism, and a wheel structure. It is the expanded sectional view which expanded and showed the displacement absorption mechanism of the in-wheel motor unit for vehicles in Example 1, and its circumference.
- FIG. 10 is a diagram for explaining a displacement absorbing action for absorbing the displacement / tilt of the hub bearing in the displacement absorbing mechanism, and is an action explanatory diagram showing when there is no displacement.
- FIG. 10 is a diagram for explaining a displacement absorbing action for absorbing the displacement / tilt of the hub bearing in the displacement absorbing mechanism, and is an action explanatory diagram showing when there is no displacement.
- FIG. 10 is a diagram for explaining a displacement absorbing action for absorbing the displacement / tilt of the hub bearing in the displacement absorbing mechanism, and is an action explanatory diagram showing a parallel displacement.
- FIG. 9 is a diagram for explaining a displacement absorbing action for absorbing the displacement / tilt of the hub bearing in the displacement absorbing mechanism, and is an action explanatory diagram showing a tilt displacement.
- FIG. 9 is a diagram for explaining a displacement absorbing action for absorbing a displacement / inclination of the hub bearing in the displacement absorbing mechanism, and is an action explanatory view showing an axial displacement. It is an expanded sectional view showing the details of the structure of the axle case and the wheel hub shaft in the first embodiment.
- FIG. 1 It is the front view seen from the axial direction which shows the mudguard guard with which the axle case in the vehicle in-wheel motor unit of Example 1 was mounted
- FIG. It is explanatory drawing which shows the movement locus
- Example 1 shown in the drawings.
- the configuration of the in-wheel motor unit for a vehicle in the first embodiment is as follows. [Schematic configuration of entire unit], [Detailed configuration of drive unit main body], [Detailed configuration of displacement absorbing mechanism], [Detailed configuration of wheel structure], [Gear A detailed description of the coupling shaft assembly structure] and a detailed configuration around the axle case will be given separately.
- FIG. 1 shows the whole cross section of the in-wheel motor unit for vehicles
- the in-wheel motor unit for a vehicle is applied to left and right rear wheels of an electric vehicle, and includes a drive unit main body A, a displacement absorbing mechanism B, and a wheel structure C as shown in FIG.
- the drive unit main body A has a function as a drive source set for each of the left and right rear wheels and includes a motor generator MG and a gear train GT.
- a motor generator MG When the motor generator MG is powered, a three-phase alternating current is applied to the stator coil 9b wound around the stator 9 to rotate the motor shaft 6 integrally having the rotor 8, and the rotation of the motor shaft 6 is performed by the gear train GT. Decelerate and output from the drive output shaft 10.
- the rotation input from the drive output shaft 10 is accelerated by the gear train GT and the motor shaft 6 and the rotor 8 are rotated, so that the stator disposed in the rotor 8 via the air gap.
- a three-phase alternating current is generated in the stator coil 9b.
- the displacement absorbing mechanism B has a function of preventing / suppressing transmission / displacement of the hub bearing 71 to the motor generator MG and the gear train GT of the drive unit main body A, and has a gear coupling shaft 50.
- the gear coupling shaft 50 connects the drive output shaft 10 from the drive unit main body A and the wheel hub shaft 70 supported by the hub bearing 71 to the axle case 72 (case member) so as to absorb displacement.
- the wheel structure C has a function of attaching a tire and a brake mechanism of each wheel, and has a wheel hub shaft 70.
- the wheel hub shaft 70 is rotatably supported with respect to the axle case 72 by a hub bearing 71 having a double-row angular bearing structure.
- a brake disc 73 and a tire wheel 110 are mounted on a hub side flange portion 70a of the wheel hub shaft 70. Fixed. Further, the wheel hub shaft 70 is connected to the drive output shaft 10 of the drive unit main body A via the displacement absorbing mechanism B.
- FIG. 2 shows a configuration in which the vehicle in-wheel motor unit is divided into a drive unit main body A, a displacement absorbing mechanism B, and a wheel structure C.
- a detailed configuration of the drive unit main body A will be described with reference to FIGS. 1 and 2.
- the drive unit main body A is configured by incorporating a motor generator MG having a three-phase AC embedded magnet synchronous motor structure and a gear train GT having a planetary gear type reduction gear mechanism in a unit case member 100.
- the unit case member 100 includes a unit case 1, a unit cover 2, a motor shaft side cover 3, and an output shaft side cover 4.
- the unit cover 2 is bolted to one end side of the unit case 1, and the motor shaft side cover 3 is bolted to the unit cover 2 so as to close one end side of the motor shaft 6.
- the output shaft side cover 4 is bolted to the other end side of the unit case 1 so that a part of the drive output shaft 10 protrudes from the drive unit main body A.
- An oil seal 5 is attached to the end position of the output shaft side cover 4, and the seal portion of the oil seal 5 is brought into contact with the outer peripheral surface of the drive output shaft 10 with a predetermined seal pressure. That is, the output shaft side cover 4 and the oil seal 5 are partition wall structural members that separate the drive unit main body A and the hub bearing 71.
- the motor generator MG includes a motor shaft 6, a rotor flange 7, a rotor 8, and a stator 9.
- One end of the motor shaft 6 is supported to be rotatable with respect to the unit cover 2 via the first bearing 11, and the other end is supported to be relatively rotatable with respect to the drive output shaft 10 via the second bearing 12.
- the rotor 8 is configured by a laminated steel plate that is fitted to a rotor flange 7 fixed to the motor shaft 6 and embedded with permanent magnets (not shown).
- the stator 9 is fixed to the inner surface of the unit case 1 and is disposed with respect to the rotor 8 via an air gap, and is configured by winding a stator coil 9b around each of the stator teeth 9a made of a punched laminated steel plate.
- the harness is connected to the stator coil 9b via connection terminals 15 divided into U phase, V phase, and W phase.
- the motor shaft 6 is formed with an axial oil passage 16 through which lubricating oil for lubricating necessary portions such as a gear meshing portion and a bearing of the gear train GT is supplied.
- the gear train GT is disposed in the right space of the rotor flange 7 in FIG. 1 and includes a sun gear 17, a large pinion 18, a small pinion 19, a pinion carrier 20, and a ring gear 21.
- the planetary gear type reduction gear mechanism that decelerates and outputs the input rotation is constituted by ring gear fixing, sun gear input, and pinion carrier output.
- the sun gear 17 is formed integrally with the motor shaft 6 and meshes with the large pinion 18.
- the large pinion 18 and the small pinion 19 are integrally formed adjacent to each other and supported so as to be rotatable with respect to the pinion carrier 20.
- the ring gear 21 is fixed in the rotational direction by serration coupling to the unit case 1 and meshes with the small pinion 19.
- a drive output shaft 10 is provided integrally with the pinion carrier 20.
- the drive output shaft 10 is formed in a cylindrical sleeve shape having one end side extending in the axial direction to the inside of the small pinion 19 and the other end side extending in the axial direction until protruding from the output shaft side cover 4.
- the rotation support structure of the drive output shaft 10 is formed together with the pinion carrier 20, is supported so as to be relatively rotatable with respect to the motor shaft 6 via the third bearing 13, and is supported by the fourth bearing 14 with respect to the output shaft side cover 4. It is supported rotatably through the.
- a partition wall seal member 22 is disposed on the inner surface of the drive output shaft 10 in an oil-tight state at a position separating the motor shaft 6 and the gear coupling shaft 50.
- the partition seal member 22 is a partition structure member that separates the drive unit main body A and the displacement absorbing mechanism B from each other.
- a resolver 23 for detecting the rotation angle of the motor and a park gear 24 for fixing the motor shaft 6 by meshing with a parking pole (not shown) are arranged.
- FIG. 2 shows a configuration in which the in-wheel motor unit for a vehicle is divided into a drive unit main body A, a displacement absorbing mechanism B, and a wheel structure C
- FIG. 3 shows an enlarged cross-sectional view of the displacement absorbing mechanism that is a main part.
- the detailed configuration of the displacement absorbing mechanism B will be described below with reference to FIGS.
- the displacement absorbing mechanism B shown in FIG. 1 is configured by fitting an independently replaceable gear coupling shaft 50 to the drive output shaft 10 and the wheel hub shaft 70 so as to be able to transmit drive while absorbing displacement. Is done.
- the gear coupling shaft 50 is configured by providing a first external tooth portion 52 and a first end portion 53, a second external tooth portion 54 and a second end portion 55, respectively, on both side positions of the gear coupling shaft portion 51. Is done.
- the first outer tooth portion 52 is serrated to the first inner tooth portion 56 of the drive output shaft 10 so as to be capable of absorbing displacement, and the first end portion 53 can be spherically contacted with the partition wall seal member 22.
- the second outer tooth portion 54 is serrated and fitted so as to absorb displacement with respect to the second inner tooth portion 57 of the wheel hub shaft 70, and the second end portion 55 can be brought into spherical contact with the end cap seal member 76. Is done.
- the first internal gear portion 56 formed on the drive output shaft 10 and the second internal gear portion 57 formed on the wheel hub shaft 70 have a cylindrical shape extending linearly in the axial direction on the top and valley surfaces of the internal teeth. It is said.
- the first external tooth portion 52 and the second external tooth portion 54 formed on the gear coupling shaft 50 have a spherical shape on the top and bottom surfaces of the external teeth.
- a crowning shape with a thickened tooth thickness at the center and a narrower tooth thickness toward both ends absorbs inclinations in all directions around the tilt center point D and the tilt center point E. It has a structure to do.
- the first end portion 53 and the second end portion 55 have a smooth spherical shape with the axial center position as the maximum projecting surface, and a displacement (rigidity) center point F disposed between the tilt center point D and the tilt center point E is used.
- a structure that absorbs the inclination with respect to the center is adopted. That is, the meshing of the first external tooth portion 52 and the first internal tooth portion 56 becomes the output shaft side drive transmission fitting portion 58 between the gear coupling shaft 50 and the drive output shaft 10. Further, the meshing of the second external tooth portion 54 and the second internal tooth portion 57 becomes a hub shaft side drive transmission fitting portion 59 between the gear coupling shaft 50 and the wheel hub shaft 70 (see FIG. 3).
- the gear coupling shaft 50 is mounted together with lubricating grease (not shown) in a coupling space where the entire circumference is sealed.
- the gear coupling shaft 50 is formed symmetrically at both ends in the axial direction. That is, the first external tooth portion 52 and the second external tooth portion 54 are formed so that the number of teeth and the top and bottom surfaces of the external teeth are spherically symmetrical in the axial direction (left-right direction in FIG. 1). The first end portion 53 and the second end portion 55 are also formed symmetrically in the axial direction (left-right direction in FIG. 1). Therefore, the number of teeth of both the inner teeth portions 56 and 57 that mesh with both the outer teeth portions 52 and 54 is also the same.
- FIG. 2 shows a configuration in which the in-wheel motor unit for a vehicle is divided into a drive unit main body A, a displacement absorbing mechanism B, and a wheel structure C
- FIG. 3 shows an enlarged cross-sectional view of the displacement absorbing mechanism that is a main part.
- the detailed structure of the wheel structure C will be described below with reference to FIGS.
- the wheel structure C includes a wheel hub shaft 70, a hub bearing 71, an axle case 72, a brake disc 73, and a tire wheel 110.
- the wheel hub shaft 70 is a rotating member connected to the drive output shaft 10 through the gear coupling shaft 50 and has an inner race function of the hub bearing 71.
- the wheel hub shaft 70 supports a hub bearing 71 at the end of the cylindrical main body 700 on the drive unit main body A side.
- the hub side flange portion 70 a extends in the outer radial direction from the outer periphery of the intermediate portion in the axial direction of the main body 700, outside the position where the hub bearing 71 is supported.
- a bolt insertion hole 70f is penetrated in the hub side flange portion 70a in a direction along the axial direction.
- a wheel bolt 75 shown in FIG. 1 for fixing the brake disc 73 and the tire wheel 110 together with a wheel nut (not shown) through the shaft 75b passes through the shaft portion 75b and extends to the outside of the vehicle. It is fixed in advance in a protruding state.
- An end cap seal member 76 that contacts the second end portion 55 of the gear coupling shaft 50 is fixed to the end portion position by a spring pin 77.
- a tire (not shown) is attached to the outer peripheral position of the tire wheel 110.
- the hub bearing 71 is a bearing that supports the wheel hub shaft 70 with respect to the axle case 72, and is configured by arranging two rows of balls with a contact angle of back-to-back alignment.
- the hub bearing 71 is a bearing having the wheel hub shaft 70 as an inner race and the axle case 72 as an outer race. For this reason, surface hardened portions 201 and 202 are formed by subjecting the ball contact surfaces of the wheel hub shaft 70 and the axle case 72 to surface hardening treatment such as carburizing quenching or shot peening.
- the hub bearing 71 is filled with grease for lubrication.
- the axle case 72 is a case member that is fastened to the unit case 1 and the output shaft side cover 4 by bolts 78 and has an outer race function for the hub bearing 71.
- the case side flange portion 72b of the axle case 72 has a wheel caliper 79 fixed as a brake component, and a brake caliper 81 that supports a pair of brake shoes 80, 80 extending integrally therewith.
- a splash guard 82 that covers the brake disk 73 and prevents the intrusion of muddy water into the hub bearing 71 is fixed to the case side flange portion 72 b of the axle case 72.
- a mudguard guard 83 shown in FIG. 5 is fixed to the cylindrical portion 72a of the axle case 72 to prevent intrusion of muddy water into the hub bearing 71 and the seal member 84 that seals the hub bearing 71.
- the mudguard 83 is formed in an L-shaped cross section by a cylindrical base 83a fixed to the cylindrical portion 72a and an annular plate-shaped shielding plate 83b extending from one end of the base 83a in the outer diameter direction. ing. And as shown in FIG. 6, the notch part 83c notched by the circular arc shape from the outer periphery to the internal diameter direction is formed in one place of the circumferential direction of the shielding board 83b.
- the axle case 72 is fixed to the output shaft side cover 4, thereby forming a closed space 90 having a liquid sealing property between the drive unit main body A and the hub bearing 71.
- An ABS sensor 91 that detects the wheel speed is disposed in the closed space 90.
- a sensing component 91 a is provided in the upper position of the axle case 72 so as to penetrate to the closed space 90, and the sensed component 91 b is fixed to the wheel hub shaft 70 by press fitting.
- a breather 92 communicating with outside air is connected to the closed space 90 (see FIG. 3).
- the wheel hub shaft 70 is supported by the hub bearing 71 with respect to the unit case 1 in the state shown in FIG. 3 at the end (the right end in the drawing) opposite to the drive unit main body A in the axial direction.
- An opening 70b is provided.
- the opening 70b is formed to have a larger diameter than the general portion 70c that accommodates the gear coupling shaft 50 in the cylindrical wheel hub shaft 70, and has an inner diameter that allows the gear coupling shaft 50 to be inserted. Yes.
- a step portion 70d is formed between the opening 70b and the general portion 70c due to a difference in diameter.
- the opening 70b is closed by the end cap seal member 76 described above.
- the end cap seal member 76 is formed in a disk shape from metal or resin, and as shown in FIG. 3, a flange 76f extending in the axial direction is formed on the outer periphery, and the closed space 90 is sealed to the outer periphery of the flange 76f.
- a sealing member 76a is provided.
- the end cap seal member 76 is prevented from coming off from the opening 70b by a spring pin 77 as an attaching / detaching member in a state where it is abutted against the stepped portion 70d.
- the wheel hub shaft 70 has a pair of insertion holes 70e and 70e that open in the direction perpendicular to the axis.
- the flange 76f of the end cap seal member 76 is U-shaped when viewed in the radial direction through which the spring pin 77 penetrates at two positions on the upper and lower sides in the drawing, which are coaxial with the insertion holes 70e and 70e.
- the notches 76b and 76b are formed.
- the insertion holes 70e and 70e are covered with the inner periphery of the mounting hole 111 of the tire wheel 110 attached to the wheel hub shaft 70. Thereby, when the tire wheel 110 is attached, the tire wheel 110 prevents the spring pin 77 from coming off. Further, the mounting hole 111 is closed by the cap 112, and the infiltration of muddy water or the like into the end cap seal member 76 or the spring pin 77 is restricted.
- the axle case 72 extends in a disk shape in the outer diameter direction from the cylindrical portion 72 a that supports the hub bearing 71 and the end of the cylindrical portion 72 a on the drive unit main body A side. And a case side flange portion 72b fixed to the output shaft side cover 4.
- a space 140 is provided between the case-side flange portion 72b and the hub-side flange portion 70a of the wheel hub shaft 70. The space 140 serves as a working space when the wheel bolt 75 is attached to and detached from the hub side flange 70a.
- a working groove 72c is formed in a corner portion between the cylindrical portion 72a and the case side flange portion 72b. As shown in the perspective view of FIG. 7, the working groove 72 c is provided at one place in the circumferential direction in the cylindrical portion 72 a of the axle case 72.
- the working groove 72c is formed to extend in the radial direction (vertical direction in the drawing) at the center in the left-right direction when viewed from the axial direction, and is provided at a position that is bilaterally symmetrical when viewed from the axial direction. It has been.
- the working groove 72c is attached / detached due to interference between the head 75a of the wheel bolt 75 and the axle case 72.
- the purpose is to prevent obstruction.
- the axial dimension L (see FIG. 5) of the space 140 between the case side flange portion 72b and the hub side flange portion 70a is shorter than the axial length of the wheel bolt 75, and the bolt insertion hole. It is narrowed to a size that cannot be attached to and detached from 70f. That is, in the axial dimension L, the wheel bolt 75 is moved from the state where the tip of the shaft portion 75b shown in (Sa) of FIG. 8 is inserted into the inlet of the bolt insertion hole 70f as shown in (Sb). If the portion 75 b is inserted further deeply, the head 75 a interferes with the axle case 72.
- the working groove 72c is formed only at one location of the axle case 72, thereby minimizing the rigidity of the axle case 72 due to the formation of the working groove 72c.
- the working groove 72c is provided at one place in the circumferential direction of the axle case 72, the working groove 72c is provided at one place on the left and right as viewed from the axial direction. It can be shared on a circle.
- the hub-side flange portion 70 a of the wheel hub shaft 70 is erected at an intermediate portion in the axial direction.
- the right side surface in the drawing is the wheel mounting surface 70g.
- the brake disc 73 is sandwiched between the wheel mounting surface 70g and the tire wheel 110.
- the second external tooth portion 54 that engages with the wheel hub shaft 70 side of the gear coupling shaft 50 of the displacement absorbing mechanism B with respect to the wheel mounting surface 70g is arranged on the vehicle outer side (right side in the drawing) in the axial direction. It is arranged.
- a hub bearing 71 is disposed closer to the drive unit main body A than the hub side flange portion 70a on which the wheel mounting surface 70g is formed.
- the second internal gear 57 is provided at a position farther away from the vehicle than the portion that supports the hub bearing 71. Carburization quenching and shot are performed on the surface layer of the second internal gear 57.
- a surface hardened portion 203 is formed by peening or the like. Similar surface-hardened portions (not shown) are also formed on the surface layers of the first internal gear portion 56 of the drive output shaft 10 and the external gear portions 52 and 54 of the gear coupling shaft 50.
- the hub bearing 71 is disposed in the middle of the output shaft side drive transmission fitting portion 58 and the hub shaft side drive transmission fitting portion 59 in the axial direction at a substantially central position. Yes.
- the tilt displacement is driven on the output shaft side.
- the two couplings by the transmission fitting portion 58 and the hub shaft side drive transmission fitting portion 59 can absorb the gear coupling shaft 50 through the illustrated inclination. Therefore, the tilt displacement of the wheel hub shaft 70 does not affect the drive output shaft 10 to displace it.
- the wheel hub shaft 70 is configured by disposing the displacement center points F of the displacement absorbing mechanism B (two rows of ball center positions of the hub bearing 71) at a position between the tilt center points D and E.
- the output shaft side drive transmission fitting portion 58 and the hub shaft side drive transmission fitting portion 59 can reliably absorb these displacements even if any of parallel displacement, tilt displacement, and axial displacement occurs. That is, the displacement of the wheel hub shaft 70 does not reach the drive output shaft 10 and displace it in the corresponding direction.
- the in-wheel motor unit for a vehicle can prevent the displacement of the wheel hub shaft 70 from being transmitted from the drive output shaft 10 to the gear train GT and the motor generator MG by the displacement absorbing mechanism B. As a result, none of the above problems (1) to (4) occurs.
- the in-wheel motor unit for vehicles of Example 1 is A drive output shaft 10 from the drive unit main body A and a wheel hub shaft 70 supported by a hub bearing 71 to an axle case 72 as a case member of the drive unit main body A are connected via a displacement absorbing mechanism B.
- the displacement absorbing mechanism B includes an output shaft side drive transmission fitting portion 58 in which the first inner tooth portion 56 of the drive output shaft 10 and the first outer tooth portion 52 of the gear coupling shaft 50 are engaged, and the wheel hub shaft.
- the second external tooth portion 54 of the gear coupling shaft 50 of the displacement absorbing mechanism B is disposed on the vehicle outer side in the axial direction from the wheel mounting surface 70g to which the tire wheel 110 is mounted on the wheel hub shaft 70. It is characterized by.
- the second external tooth portion 54 of the gear coupling shaft 50 of the displacement absorbing mechanism B is disposed on the vehicle outer side in the axial direction with respect to the wheel mounting surface 70g. Can be arranged outside the vehicle.
- the axial direction dimension of the whole unit can be restrained small, and it is excellent in in-vehicle layout property.
- the second external tooth portion 54 of the gear coupling shaft 50 of the displacement absorbing mechanism B outside the wheel mounting surface 70g in the axial direction a long axial span of the displacement absorbing mechanism B can be secured. . Therefore, the displacement absorbing performance described in the above (1) to (4) can be obtained more reliably as compared with the case where the axial span is short. Therefore, the in-wheel motor unit for vehicles of Example 1 can aim at coexistence with ensuring of vehicle-mounted property and ensuring of displacement absorption performance.
- the in-wheel motor unit for vehicles of Example 1 is The hub bearing 71 is disposed at a position closer to the drive unit main body A in the axial direction than the wheel mounting surface 70g.
- a surface hardened portion 203 is formed on the surface layer of the second internal tooth portion 57 of the wheel hub shaft 70.
- a surface hardened portion 201 such as carburizing and quenching is provided on the surface layer of the second internal tooth portion 57 and the raceway surface of the hub bearing 71.
- the distance between the second inner tooth portion 57 that meshes with the second outer tooth portion 54 of the gear coupling shaft 50 and the raceway surface of the hub bearing 71 is secured.
- the surface of one of the second internal gear portion 57 and the hub bearing 71 is subjected to heat treatment during the surface hardening treatment. Curing reduction (burn-out) due to influence can be prevented.
- the in-wheel motor unit for vehicles of Example 1 is
- the first external tooth portion 52 and the second external tooth portion 54 of the gear coupling shaft 50 have a displacement absorbing structure in which the top surface and the bottom surface of the external teeth are made spherical and the tooth surface is crowned. It is characterized by having. For this reason, at the time of absorbing the displacements (1) to (4), it is possible to suppress resistance at the gear meshing portion and obtain a high displacement absorbing performance, and to suppress the occurrence of wear at the gear meshing portion. That is, in addition to securing the axial span as in (a) above and improving the displacement absorption performance, the displacement absorption performance can be further improved based on the shapes of the both external tooth portions 52 and 54. .
- the in-wheel motor unit for vehicles of Example 1 is When the second external tooth portion 54 of the gear coupling shaft 50 of the displacement absorbing mechanism B is disposed on the vehicle outer side in the axial direction with respect to the wheel mounting surface 70g of the hub side flange portion 70a, the hub bearing 71 is disposed in the axial direction.
- the hub bearing 71 is disposed in the axial direction.
- it is characterized in that it is arranged at an intermediate position between the output shaft side drive transmission fitting portion 58 and the hub shaft side drive transmission fitting portion 59, particularly at a substantially central position. Therefore, the input to the wheel hub shaft 70 accompanying the drive transmission of the output shaft side drive transmission fitting portion 58 and the hub shaft side drive transmission fitting portion 59 is transmitted without being biased to one side. Therefore, the displacement due to the bias of the input transmission hardly occurs.
- the in-wheel motor unit for vehicles of Example 1 is Depth that separates the head portion 75a of the wheel bolt 75 from the bolt insertion hole 70f until the shaft portion 75b is completely removed from the bolt insertion hole 70f when the wheel bolt 75 is attached to or detached from a part of the axle case 72.
- a working groove 72c having a thickness is formed. Therefore, the wheel bolt 75 can be attached and detached while the axial dimension of the space 140 between the hub side flange portion 70a and the case side flange portion 72b is narrowed as compared with the case where the working groove portion 72c is not provided. It becomes. Thereby, the axial direction dimension of the in-wheel motor unit for vehicles can be shortened. Therefore, the drive unit main body A of (a) can be maintained more easily while the effect of shortening the axial dimension can be obtained more remarkably.
- the in-wheel motor unit for a vehicle according to the present invention has been described based on the first embodiment, but the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims. Design changes and additions are permitted without departing from the gist of the present invention.
- the hub bearing when the second external tooth portion of the gear coupling shaft of the displacement absorbing mechanism is arranged on the vehicle outer side in the axial direction with respect to the wheel mounting surface 70g, the hub bearing is driven in the output direction on the output shaft side in the axial direction.
- the intermediate portion between the fitting portion and the hub shaft side drive transmission fitting portion is disposed at a substantially central position.
- the hub shaft side drive transmission fitting portion (second external tooth portion) is arranged on the vehicle outer side than the wheel mounting surface, the bu bearing, the output shaft side drive transmission fitting portion, the hub shaft side drive
- the position of the transmission fitting portion is not limited to this.
- the axle case is shown as the case member that supports the wheel hub shaft via the hub bearing.
- the case member is limited to the axle case as long as it is a part included in the unit case member. is not.
- Example 1 shows an example in which the vehicle in-wheel motor unit of the present invention is applied to the left and right rear wheels of an electric vehicle.
- the vehicle in-wheel motor unit of the present invention can be applied to the left and right front wheels of an electric vehicle, and can also be applied to all the wheels of an electric vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Retarders (AREA)
Abstract
Description
この特許文献1に記載の技術では、変位吸収機構からホイール側に延びる軸部の先端部に、ハブが設けられ、このハブのホイール取付面にホイールが、ボルト固定された構造となっている。
駆動ユニット本体からの駆動出力軸と、ハブベアリングにより支持されたホイールハブ軸とを連結した変位吸収機構が、前記駆動出力軸の第1内歯部とギヤカップリング軸の第1外歯部とが噛み合う出力軸側駆動伝達嵌合部と、前記ホイールハブ軸の第2内歯部と前記ギヤカップリング軸の第2外歯部とが噛み合うハブ軸側駆動伝達嵌合部と、を有し、
前記変位吸収機構のギヤカップリング軸の前記第2外歯部が、前記ホイールハブ軸においてホイールが取り付けられるホイール取付面よりも軸方向で車外側に配置されていることを特徴とする車両用インホイールモータユニットとした。
実施例1における車両用インホイールモータユニットの構成を、[ユニット全体の概略構成]、[駆動ユニット本体の詳細構成]、[変位吸収機構の詳細構成]、[ホイール構造の詳細構成]、[ギヤカップリング軸の組付構造の詳細構成]、[アクスルケース周辺の詳細構成]に分けて説明する。
車両用インホイールモータユニットの全体断面を示す図1に基づき、ユニット全体の概略構成を説明する。
前記車両用インホイールモータユニットは、電気自動車の左右後輪等に適用され、図1に示すように、駆動ユニット本体Aと、変位吸収機構Bと、ホイール構造Cと、を備えている。
図2は、車両用インホイールモータユニットを駆動ユニット本体Aと変位吸収機構Bとホイール構造Cに分けた構成を示す。以下、図1及び図2に基づき、駆動ユニット本体Aの詳細構成を説明する。
そして、出力軸側カバー4の端部位置にはオイルシール5が装着され、オイルシール5のシール部分を駆動出力軸10の外周面に対して所定のシール圧にて接触させている。つまり、出力軸側カバー4とオイルシール5を、駆動ユニット本体Aとハブベアリング71を隔離する隔壁構造部材としている。
なお、ステータコイル9bには、U相・V相・W相に分けた接続端子15を介してハーネスが接続される。また、モータ軸6には、ギヤトレインGTのギヤ噛み合い部やベアリング等の必要部位を潤滑する潤滑油が供給される軸芯油路16が形成される。
そして、駆動出力軸10の内面には、モータ軸6とギヤカップリング軸50とを隔てる位置に、隔壁シール部材22が油密状態で配置されている。つまり、隔壁シール部材22を、駆動ユニット本体Aと変位吸収機構Bを隔離する隔壁構造部材としている。
なお、ロータフランジ7を挟んだ図1の左側スペースには、モータの回転角度を検出するレゾルバ23と、図外のパーキングポールの噛み合いによりモータ軸6を固定するパークギヤ24と、が配置される。
図2は、車両用インホイールモータユニットを駆動ユニット本体Aと変位吸収機構Bとホイール構造Cに分けた構成を示し、図3は、要部である変位吸収機構の拡大断面図を示す。以下、図1~図3に基づき、変位吸収機構Bの詳細構成を説明する。
なお、ギヤカップリング軸50は、全周がシールされたカップリング空間に、図外の潤滑グリースと共に装着される。
したがって、両外歯部52,54と噛み合う両内歯部56,57の歯数も同数に形成されている。
図2は、車両用インホイールモータユニットを駆動ユニット本体Aと変位吸収機構Bとホイール構造Cに分けた構成を示し、図3は、要部である変位吸収機構の拡大断面図を示す。以下、図1~図3に基づき、ホイール構造Cの詳細構成を説明する。
前記ホイール構造Cは、ホイールハブ軸70と、ハブベアリング71と、アクスルケース72と、ブレーキディスク73と、タイヤホイール110と、を有して構成される。
また、ギヤカップリング軸50の第2端部55と接触するエンドキャップシール部材76が、スプリングピン77により端部位置に固定される。なお、タイヤホイール110の外周位置には、図外のタイヤが装着される。
また、アクスルケース72のケース側フランジ部72bは、ブレーキ部品として、ホイールシリンダ79が固定されると共に、一対のブレーキシュー80,80が支持されるブレーキキャリパ81が一体に延設される。
さらに、アクスルケース72のケース側フランジ部72bには、ブレーキディスク73を覆うと共に、ハブベアリング71への泥水の浸入を防止するスプラッシュガード82が固定される。さらに、アクスルケース72の円筒状部72aには、図5に示す泥除けガード83が固定され、ハブベアリング71及びこれをシールするシール部材84への泥水の浸入を防止している。
そして、図6に示すように、遮蔽板83bの周方向の一箇所には、外周縁から内径方向に円弧状に切り欠かれた切欠部83cが形成されている。
ABSセンサ91は、センシング部品91aがアクスルケース72の上部位置に閉鎖空間90まで貫通して設けられ、ホイールハブ軸70に被センシング部品91bが圧入により固定される。なお、閉鎖空間90には、外気と連通するブリーザー92が連結される(図3参照)。
次に、ギヤカップリング軸50の組付に関する構成について説明する。
ホイールハブ軸70は、ユニットケース1に対してハブベアリング71により支持された図3に示す状態で、軸方向で駆動ユニット本体A側とは反対側の端部(図において右側の端部)に、開口部70bが設けられている。この開口部70bは、円筒状のホイールハブ軸70においてギヤカップリング軸50を収容する一般部70cよりも大径に形成されており、ギヤカップリング軸50を挿通可能な内径寸法に形成されている。また、開口部70bと一般部70cとの間には、径差により段部70dが形成されている。
エンドキャップシール部材76は、金属あるいは樹脂により円盤状に形成され、外周部には、図3に示すように、軸方向に延びるフランジ76fが形成され、このフランジ76fの外周に閉鎖空間90をシールするシール部材76aが設けられている。
すなわち、ホイールハブ軸70には、軸直交方向に貫通して一対の挿通孔70e,70eが開口されている。
さらに、エンドキャップシール部材76のフランジ76fには、挿通孔70e,70eと径方向で同軸の位置であって図において上下の2箇所に、スプリングピン77を貫通させる径方向で見てU字状の切欠部76b,76bが形成されている。
アクスルケース72は、図5に拡大して示すように、ハブベアリング71を支持する円筒状部72aと、この円筒状部72aの駆動ユニット本体A側端部から外径方向に円板状に延びて出力軸側カバー4に固定されるケース側フランジ部72bと、を備えている。
なお、ケース側フランジ部72bと、ホイールハブ軸70のハブ側フランジ部70aとの間に空間部140が設けられている。この空間部140は、ホイール用ボルト75をハブ側フランジ部70aに対して着脱する際の作業用のスペースとなる。
すなわち、軸方向寸法Lでは、ホイール用ボルト75を、図8の(Sa)にて示す軸部75bの先端をボルト挿通孔70fの入口に差し込んだ状態から、(Sb)にて示すように軸部75bをさらに深く差し込もうとすると、頭部75aがアクスルケース72に干渉する。また、その逆に、ホイール用ボルト75を、(Sc)に示すようにボルト挿通孔70fに差し込んだ位置から、(Sb)に示すように引き出そうとした場合にも、頭部75aがアクスルケース72に干渉して、移動が妨げられる。
そこで、アクスルケース72に、作業用溝部72cを形成し、この作業用溝部72cの深さを、上記作業時に頭部75aをアクスルケース72と干渉しないだけハブ側フランジ部70aから離間させることができる深さに形成している。
また、作業用溝部72cは、アクスルケース72の周方向の1箇所に設けるのにあたり、軸方向から見て、左右対称となる上部の1箇所としているため、図外の車体に取り付けるのにあたり、左右輪で共用可能である。
そして、このホイール取付面70gに対して、変位吸収機構Bのギヤカップリング軸50のホイールハブ軸70側と係合する第2外歯部54を、軸方向で車外側(図において右側)に配置している。
なお、本実施例1では、ハブベアリング71は、軸方向で、出力軸側駆動伝達嵌合部58とハブ軸側駆動伝達嵌合部59との中間であって、略中央位置に配置されている。
実施例1の車両用インホイールモータユニットにおける作用を、[変位吸収機構での変位吸収作用]、[ホイール用ボルトの着脱作業]に分けて説明する。
例えば、高負荷での長期使用によりハブベアリング71のレース面摩耗が進行すると、ハブベアリング71に支持されるホイールハブ軸70が変位したり傾いたりする。このホイールハブ軸70の変位/傾きは、駆動ユニット本体AのギヤトレインGTやモータジェネレータMGへ伝達されることにより、
(1)異音・振動 :ギヤ歯の片当たりによるギヤノイズ
(2)ギヤ寿命の低下 :ギヤ歯の片当たりによる極部応力/面圧増加
(3)フリクション増加:ギヤ歯面間バックラッシ変化による損失増加
(4)モータ性能 :モータエアーギャップ変化による出力低下やトルク変動等の問題を生じさせる。
実施例1の車両用インホイールモータユニットにあっては、下記に列挙する効果を得ることができる。
(a) 実施例1の車両用インホイールモータユニットは、
駆動ユニット本体Aからの駆動出力軸10と、前記駆動ユニット本体Aのケース部材としてのアクスルケース72に対しハブベアリング71により支持されたホイールハブ軸70とを、変位吸収機構Bを介して連結した車両用インホイールモータユニットにおいて、
前記変位吸収機構Bは、前記駆動出力軸10の第1内歯部56とギヤカップリング軸50の第1外歯部52とが噛み合う出力軸側駆動伝達嵌合部58と、前記ホイールハブ軸70の第2内歯部57と前記ギヤカップリング軸50の第2外歯部54とが噛み合うハブ軸側駆動伝達嵌合部59と、を有し、
前記変位吸収機構Bのギヤカップリング軸50の前記第2外歯部54が、前記ホイールハブ軸70においてタイヤホイール110が取り付けられるホイール取付面70gよりも軸方向で車外側に配置されていることを特徴とする。
このように本実施例1では、変位吸収機構Bのギヤカップリング軸50の第2外歯部54を、ホイール取付面70gよりも軸方向で車外側に配置したため、駆動ユニット本体Aの設置位置を車外側に配置可能となる。これにより、ユニット全体の軸方向寸法を小さく抑えることができ、車載レイアウト性に優れる。
また、変位吸収機構Bのギヤカップリング軸50の第2外歯部54を、ホイール取付面70gよりも軸方向で車外側に配置することにより、変位吸収機構Bの軸方向スパンを長く確保できる。よって、この軸方向スパンが短い場合と比較して、上記(1)~(4)で述べた変位吸収性能を、より確実に得ることが可能となる。
したがって、実施例1の車両用インホイールモータユニットは、車載性の確保と変位吸収性能の確保との両立を図ることができる。
前記ハブベアリング71は、前記ホイール取付面70gよりも、軸方向で前記駆動ユニット本体A側の位置に配置され、
前記ホイールハブ軸70の前記第2内歯部57の表層に、表面硬化部203が形成されていることを特徴とする。
ホイールハブ軸70にあっては、第2内歯部57の表層及びハブベアリング71の軌道面には、浸炭焼入れなどの表面硬化部201を設けている。実施例1では、ギヤカップリング軸50の第2外歯部54と噛み合う第2内歯部57とハブベアリング71の軌道面との距離が確保されている。このため、ホイール取付面70g及びハブベアリング71を車外側位置に配置したものと比較して、第2内歯部57とハブベアリング71とのいずれか一方の表面硬化処理の際に、他方に熱影響による硬化性低減(焼き抜け)が生じないようにできる。
前記ギヤカップリング軸50の前記第1外歯部52と前記第2外歯部54は、外歯の頂面と底面とを球面形状にすると共に、歯面にクラウニングを付けた変位吸収構造を有することを特徴とする。
このため、上記(1)~(4)の変位吸収時に、ギヤ噛み合い部分での抵抗を抑え、高い変位吸収性能を得ることができるとともに、このギヤ噛み合い部分における摩耗の発生を抑えることができる。
すなわち、上記(a)のように軸方向のスパンを確保して、変位吸収性能を向上できるのに加え、上記の両外歯部52,54の形状に基づいて、さらに変位吸収性能を向上できる。
前記変位吸収機構Bのギヤカップリング軸50の第2外歯部54を、ハブ側フランジ部70aのホイール取付面70gよりも軸方向で車外側に配置するのにあたり、ハブベアリング71を、軸方向で出力軸側駆動伝達嵌合部58とハブ軸側駆動伝達嵌合部59との中間位置、特に、略中央位置に配置したことを特徴とする。
したがって、出力軸側駆動伝達嵌合部58及びハブ軸側駆動伝達嵌合部59の駆動伝達に伴うホイールハブ軸70への入力が、一方に偏ることなく伝達される。よって、この入力伝達の偏りを原因とした変位が生じにくい。
アクスルケース72の一部に、ホイール用ボルト75の着脱時に、軸部75bがボルト挿通孔70fから完全に抜けるまで前記ホイール用ボルト75の頭部75aを前記ボルト挿通孔70fに対して離間させる深さを有した作業用溝部72cが形成されていることを特徴とする。
したがって、作業用溝部72cを設けないものと比較して、ハブ側フランジ部70aとケース側フランジ部72bとの間の空間部140の軸方向寸法を狭めながらも、ホイール用ボルト75の着脱が可能となる。
これにより、車両用インホイールモータユニットの軸方向寸法を短縮可能である。よって、上記(a)の駆動ユニット本体Aを軸方向寸法の短縮効果をさらに顕著に得ることができながらも、メンテナンス性を確保できる。
また、実施例では、ハブベアリングを介してホイールハブ軸を支持するケース部材として、アクスルケースを示したが、ケース部材は、ユニットケース部材に含まれる部分であれば、アクスルケースに限定されるものではない。
Claims (3)
- 駆動ユニット本体からの駆動出力軸と、前記駆動ユニット本体のケース部材に対しハブベアリングにより支持されたホイールハブ軸とを、変位吸収機構を介して連結した車両用インホイールモータユニットにおいて、
前記変位吸収機構は、前記駆動出力軸の第1内歯部とギヤカップリング軸の第1外歯部とが噛み合う出力軸側駆動伝達嵌合部と、前記ホイールハブ軸の第2内歯部と前記ギヤカップリング軸の第2外歯部とが噛み合うハブ軸側駆動伝達嵌合部と、を有し、
前記変位吸収機構のギヤカップリング軸の前記第2外歯部が、前記ホイールハブ軸においてホイールが取り付けられるホイール取付面よりも軸方向で車外側に配置されていることを特徴とする車両用インホイールモータユニット。 - 請求項1に記載された車両用インホイールモータユニットにおいて、
前記ハブベアリングは、前記ホイール取付面よりも、軸方向で前記駆動ユニット本体側の位置に配置され、
前記ホイールハブ軸の前記第2内歯部の表層に、表面硬化部が形成されていることを特徴とする車両用インホイールモータユニット。 - 請求項1又は請求項2に記載された車両用インホイールモータユニットにおいて、
前記ギヤカップリング軸の前記第1外歯部と前記第2外歯部は、外歯の頂面と底面とを球面形状にすると共に、歯面にクラウニングを付けた変位吸収構造を有することを特徴とする車両用インホイールモータユニット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480020686.9A CN105121202A (zh) | 2013-04-11 | 2014-03-28 | 车辆用轮内电动机单元 |
EP14782415.5A EP2985165A4 (en) | 2013-04-11 | 2014-03-28 | MOTOR-WHEEL UNIT FOR VEHICLE |
US14/782,845 US20160068054A1 (en) | 2013-04-11 | 2014-03-28 | In-wheel motor unit for a vehicle |
JP2015511212A JPWO2014168031A1 (ja) | 2013-04-11 | 2014-03-28 | 車両用インホイールモータユニット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013082666 | 2013-04-11 | ||
JP2013-082666 | 2013-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014168031A1 true WO2014168031A1 (ja) | 2014-10-16 |
Family
ID=51689441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059250 WO2014168031A1 (ja) | 2013-04-11 | 2014-03-28 | 車両用インホイールモータユニット |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160068054A1 (ja) |
EP (1) | EP2985165A4 (ja) |
JP (1) | JPWO2014168031A1 (ja) |
CN (1) | CN105121202A (ja) |
WO (1) | WO2014168031A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015014087B4 (de) * | 2015-11-03 | 2017-11-09 | Sew-Eurodrive Gmbh & Co Kg | Getriebe |
JP6843338B2 (ja) * | 2016-07-05 | 2021-03-17 | 株式会社 神崎高級工機製作所 | Hmtユニット及びhmt構造 |
US10399437B2 (en) * | 2016-09-06 | 2019-09-03 | Joy Global Underground Mining Llc | Coupled compound planetary transmission for a wheel unit |
JP2018062314A (ja) * | 2016-10-14 | 2018-04-19 | Ntn株式会社 | インホイールモータ駆動装置 |
CN109510390B (zh) * | 2017-09-15 | 2021-07-09 | 日本电产株式会社 | 驱动装置 |
JP7224198B2 (ja) * | 2019-02-08 | 2023-02-17 | Ntn株式会社 | 車両用動力装置および発電機付き車輪用軸受装置 |
KR20220013844A (ko) * | 2020-07-27 | 2022-02-04 | 현대모비스 주식회사 | 인휠 구동 장치 및 그 인휠 구동 장치를 포함하는 자동차 |
KR20230011139A (ko) * | 2021-07-13 | 2023-01-20 | 현대모비스 주식회사 | 허브 베어링을 포함하는 휠 구조체 및 그 휠 구조체를 포함하는 자동차 |
US20250074182A1 (en) | 2023-09-06 | 2025-03-06 | Kevin R. Williams | Radial wheel motor supported on auxiliary bearings in a parallel arrangement |
US20250079944A1 (en) | 2023-09-06 | 2025-03-06 | Kevin R. Williams | Axial gap wheel motor supported by auxiliary bearings in a series arrangement |
US20250074181A1 (en) | 2023-09-06 | 2025-03-06 | Kevin R. Williams | Radial gap wheel motor supported on hub bearings in a parallel arrangement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62147123A (ja) * | 1985-12-19 | 1987-07-01 | Mitsubishi Electric Corp | 車両の駆動電動機用継手 |
JP2007022386A (ja) * | 2005-07-19 | 2007-02-01 | Ntn Corp | 電動式車輪駆動装置 |
JP2007045385A (ja) * | 2005-07-13 | 2007-02-22 | Kanzaki Kokyukoki Mfg Co Ltd | ホイールモータ装置 |
JP2007238092A (ja) * | 2007-03-28 | 2007-09-20 | Ntn Corp | インホイールモータ駆動装置 |
JP2008189212A (ja) * | 2007-02-07 | 2008-08-21 | Ntn Corp | インホイールモータ駆動装置 |
JP2009190440A (ja) | 2008-02-12 | 2009-08-27 | Honda Motor Co Ltd | 車両用インホイールモータ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1743796A3 (en) * | 2005-07-13 | 2007-03-28 | Kanzaki Kokyukoki MFG. Co., Ltd. | Wheel motor device |
DE102010003933A1 (de) * | 2010-04-13 | 2011-10-13 | Bayerische Motoren Werke Aktiengesellschaft | Radlagereinheit eines angetriebenen Fahrzeug-Rades |
JP2013071685A (ja) * | 2011-09-29 | 2013-04-22 | Nissan Motor Co Ltd | インホイールモータ駆動ユニット |
CN104640731B (zh) * | 2012-09-10 | 2017-03-08 | 日产自动车株式会社 | 电动机驱动单元 |
-
2014
- 2014-03-28 EP EP14782415.5A patent/EP2985165A4/en not_active Withdrawn
- 2014-03-28 CN CN201480020686.9A patent/CN105121202A/zh active Pending
- 2014-03-28 JP JP2015511212A patent/JPWO2014168031A1/ja active Pending
- 2014-03-28 WO PCT/JP2014/059250 patent/WO2014168031A1/ja active Application Filing
- 2014-03-28 US US14/782,845 patent/US20160068054A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62147123A (ja) * | 1985-12-19 | 1987-07-01 | Mitsubishi Electric Corp | 車両の駆動電動機用継手 |
JP2007045385A (ja) * | 2005-07-13 | 2007-02-22 | Kanzaki Kokyukoki Mfg Co Ltd | ホイールモータ装置 |
JP2007022386A (ja) * | 2005-07-19 | 2007-02-01 | Ntn Corp | 電動式車輪駆動装置 |
JP2008189212A (ja) * | 2007-02-07 | 2008-08-21 | Ntn Corp | インホイールモータ駆動装置 |
JP2007238092A (ja) * | 2007-03-28 | 2007-09-20 | Ntn Corp | インホイールモータ駆動装置 |
JP2009190440A (ja) | 2008-02-12 | 2009-08-27 | Honda Motor Co Ltd | 車両用インホイールモータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2985165A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20160068054A1 (en) | 2016-03-10 |
EP2985165A4 (en) | 2016-03-30 |
JPWO2014168031A1 (ja) | 2017-02-16 |
EP2985165A1 (en) | 2016-02-17 |
CN105121202A (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014168031A1 (ja) | 車両用インホイールモータユニット | |
JP5069975B2 (ja) | インホイールモータ駆動装置 | |
EP3357730B1 (en) | In-wheel motor drive device assembly | |
JP5799731B2 (ja) | 車軸支持構造 | |
WO2013047695A1 (ja) | インホイール型モータ内蔵車輪用軸受装置 | |
JP6508148B2 (ja) | インホイールモータユニット | |
JP6011718B2 (ja) | 車両用インホイールモータユニットおよびその変位吸収機構組立方法 | |
JP2008189212A (ja) | インホイールモータ駆動装置 | |
JP6786354B2 (ja) | インホイールモータ駆動装置 | |
JP2005231428A (ja) | 電動式車輪駆動装置 | |
JP6647930B2 (ja) | インホイールモータ駆動装置 | |
WO2016039258A1 (ja) | インホイールモータ駆動装置 | |
JP4967789B2 (ja) | 車輪駆動装置 | |
JP6011717B2 (ja) | 車両用インホイールモータユニット | |
JP2014205377A (ja) | 車両用インホイールモータユニット | |
JP5913925B2 (ja) | インホイール型モータ内蔵車輪用軸受装置 | |
JP2014205382A (ja) | 車両用インホイールモータユニット | |
JP5300830B2 (ja) | モータ内蔵自転車用ハブ | |
JP2014206193A (ja) | 駆動ユニット | |
WO2016021649A1 (ja) | 車輪用軸受装置 | |
JP2013071599A (ja) | インホイール型モータ内蔵車輪用軸受装置 | |
KR102783858B1 (ko) | 인휠 모터용 씰 및 이를 포함하는 인휠 모터용 씰링 장치 | |
KR20140055751A (ko) | 차량의 드라이브 샤프트와 허브 연결구조 | |
WO2019049802A1 (ja) | インホイールモータ駆動装置 | |
JP2014198516A (ja) | インホイールモータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14782415 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015511212 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014782415 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14782845 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |