[go: up one dir, main page]

WO2014165657A1 - Enhanced node b and method for rrc connection establishment for small data transfers - Google Patents

Enhanced node b and method for rrc connection establishment for small data transfers Download PDF

Info

Publication number
WO2014165657A1
WO2014165657A1 PCT/US2014/032797 US2014032797W WO2014165657A1 WO 2014165657 A1 WO2014165657 A1 WO 2014165657A1 US 2014032797 W US2014032797 W US 2014032797W WO 2014165657 A1 WO2014165657 A1 WO 2014165657A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
data
rrc connection
enb
request message
Prior art date
Application number
PCT/US2014/032797
Other languages
French (fr)
Inventor
Ali Koc
Maruti Gupta
Rath Vannithamby
Satish Chandra Jha
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/140,932 external-priority patent/US9191178B2/en
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to EP14778074.6A priority Critical patent/EP2982055A4/en
Priority to CN201480010992.4A priority patent/CN105027468B/en
Priority to PCT/US2014/032797 priority patent/WO2014165657A1/en
Publication of WO2014165657A1 publication Critical patent/WO2014165657A1/en
Priority to HK16104928.1A priority patent/HK1216953A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/613Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1074Peer-to-peer [P2P] networks for supporting data block transmission mechanisms
    • H04L67/1076Resource dissemination mechanisms or network resource keeping policies for optimal resource availability in the overlay network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments pertain to wireless communications. Some embodiments relate to small-data transfer in 3GPP LTE networks. Some embodiments relate to machine-type communications (MTC).
  • MTC machine-type communications
  • 4G e.g., LTE
  • 4G provides an always connected data mode where the user equipment (UE) has the IP address.
  • UE user equipment
  • a default (e.g., best effort) flow is assigned to the UE along with an IP address.
  • eNB enhanced Node B
  • this IP connection requires bearer establishment between the eNB and the core network.
  • setting up a connection requires a great deal of signaling overhead. This overhead is negligible when the amount of data exchanged such as in applications such as web browsing or file transfer is very large.
  • the amount of data transferred may be very small (e.g., hundreds of bites) compared to the signaling overhead involved in setting up and tearing down the LTE connection.
  • social networking apps like Facebook, Twitter and machine-type communication (MTC) applications (e.g., smart parking meters)
  • MTC machine-type communication
  • FIG. 1 shows a portion of an end-to-end network architecture of LTE (long term evolution) network with various components of the network in accordance with some embodiments.
  • LTE long term evolution
  • FIG. 2 illustrates an RRC connection establishment procedure
  • FIG. 3 illustrates an RRC connection establishment procedure for small-data transfer in accordance with some embodiments.
  • FIG. 4 illustrates a functional block diagram of a UE in accordance with some embodiments.
  • FIG. 1 shows a portion of an end-to-end network architecture of an LTE (long term evolution) network with various components of the network in accordance with some embodiments.
  • the network comprises a radio access network (RAN) (e.g., as depicted, the E-UTRAN or evolved universal terrestrial radio access network) and the core network 120 (e.g., shown as an evolved packet core (EPC)) coupled together through an SI interface 115.
  • RAN radio access network
  • EPC evolved packet core
  • the core 120 includes mobility management entity (MME) 122, serving gateway (serving GW) 124, and packet data network gateway (PDN GW) 126.
  • the RAN includes enhanced node B's (eNBs) 104 (which may operate as base stations) for communicating with user equipment (UE) 102.
  • the eNBs 104 may include macro eNBs and low power (LP) eNBs.
  • the MME is similar in function to the control plane of legacy
  • the serving GW 124 terminates the interface toward the RAN, and routes data packets between the RAN and core network. In addition, it may be a local mobility anchor point for inter-eNB handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
  • the Serving GW and the MME may be implemented in one physical node or separate physical nodes.
  • the PDN GW terminates an SGi interface toward the packet data network (PDN). It routes data packets between the EPC and the external PDN, and may be a key node for policy enforcement and charging data collection.
  • PDN packet data network
  • the external PDN can be any kind of IP network, as well as an IP Multimedia Subsystem (IMS) domain.
  • IMS IP Multimedia Subsystem
  • the PDN GW and the Serving GW may be implemented in one physical node or separated physical nodes.
  • the eNB terminates the air interface protocol and is usually (if not always) the first point of contact for a UE 102.
  • an eNB may fulfill various logical functions for the RAN including but not limited to RNC (radio network controller functions) such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
  • RNC radio network controller functions
  • the S 1 interface is the interface that separates the RAN and the
  • the EPC It is split into two parts: the Sl-U, which carries traffic data between the eNB and the Serving GW, and the SI -MME, which is a signaling interface between the eNB and the MME.
  • the X2 interface is the interface between eNBs (at least between most, as will be addressed below regarding micro eNBs).
  • the X2 interface comprises two parts, the X2-C and X2-U.
  • the X2-C is the control plane interface between eNBs
  • the X2-U is the user plane interface between eNBs.
  • LP cells are typically used to extend coverage to indoor areas where outdoor signals do not reach well, or to add network capacity in areas with very dense phone usage, such as train stations.
  • the term low power (LP) eNB refers to any suitable relatively low power eNB for implementing a narrower cell (narrower than a macro cell) such as a femtocell, a picocell, or a micro cell.
  • Femtocell eNBs are typically provided by a mobile network operator to its residential or enterprise customers.
  • a femtocell is typically the size of a residential gateway or smaller and generally connects to the user's broadband line.
  • a picocell is a wireless communication system typically covering a small area, such as in-building (offices, shopping malls, train stations, etc.), or more recently in-aircraft.
  • a picocell eNB can generally connect through the X2 link to another eNB such as a macro eNB through its base station controller (BSC)
  • LP eNB 106 could be implemented with a picocell eNB since it is coupled to a macro eNB via an X2 interface.
  • Picocell eNBs or other LP eNBs for that matter may incorporate some or all functionality of a macro eNB. In some cases, this may be referred to as an access point base station or enterprise femtocell.
  • an eNB 104 may be configured for small-data radio -resource control (RRC) connection establishment in a 3 GPP LTE network (e.g., a E-UTRAN of FIG. 1). In these embodiments, the eNB 104 may receive a small-data RRC connection request message from a UE 102.
  • RRC radio -resource control
  • the small-data RRC connection request message may include an establishment clause value indicating small-data traffic either with or without mobility.
  • the eNB 104 may send an initial UE setup request message to inform the MME 122 that a small-data RRC connection is being established.
  • the eNB 104 may indicate to the MME 122 whether or not the small-data RRC connection is to be established with mobility.
  • the eNB 104 may also receive an acceptance message from the MME 122 for the small-data RRC connection.
  • the acceptance may include a reduction of an RRC inactivity timer for faster connection release.
  • the eNB 104 may send an RRC connection reconfiguration message to the UE 102 in response to receipt of the acceptance to establish the small-data RRC connection.
  • the RRC connection reconfiguration message may include a measurement information element (IE) when mobility is to be supported.
  • IE measurement information element
  • control plane solutions Some conventional techniques for small-data transfer have proposed to use purely control plane solutions whereby the UE does not have to establish any data bearers and thus save time and air interface resources in setting up of connections over the air interface.
  • these control plane solutions are constrained in several ways.
  • the solutions involving sending data over the control plane can be used only for traffic being sent one way (i.e. either the UE sends data to the sender (i.e. mobile originated (MO) data) or the UE receives data from the sender (i.e. mobile terminated (MT) data), but not allowing both during the connection.
  • Another constraint is the UE may be able to send only one IP packet during the connection.
  • Embodiments disclosed herein may help minimize the control plane overhead of setting up connections specifically for small-data transfers. These embodiments can be applied to MTC and non-MTC devices and allow multiple TCP/IP packets to be exchanged between a UE 102 and a destination.
  • FIG. 2 illustrates an RRC connection establishment procedure.
  • the messages may be exchanged between the UE 102 and the eNB 104 and some of the messages may be exchanged between eNB 104, the MME 122, the S-GW 124 and the PDN-GW 126.
  • some changes may be made to the steps of FIG. 2 to help minimize the control plane overhead of setting up connections for small-data transfers.
  • a UE 102 When a UE 102 needs to send data from an idle state, the UE may follow the same steps from step 1 until however, in the RRC connection request, the UE may state that the establishment cause is to do a small-data transfer. Currently this clause does not exist. Secondly the UE 102 may indicate whether it needs mobility support during the transfer or not. This provides support for non-MTC devices which may need mobility support even for small-data transfers since the device may be moving at high speeds even when transferring small data.
  • step 6 when the eNB 104 forwards the UE's attach request to the MME 122, the eNB 104 may also include the information regarding small- data transfer to the MME.
  • step 7 the MME 122 may validate whether this particular UE
  • the MME 122 may modify the RRC inactivity timer for this connection to a very small value (e.g., to use the network RTT value such as 250ms instead of current average of 510 sees).
  • the eNB 104 may include information to perform measurement reporting to the UE 102. If no support is required, the eNB 104 does refrain from sending such information saving air interface resources. The UE 102 may then perform a data packet transfer once it is allocated its IP address. The eNB 104 may release the UE's connection after the shorter inactivity period lasting on average the end-to-end round trip time to ensure no further packets were expected during this connection.
  • FIG. 3 illustrates an RRC connection establishment procedure for small-data transfer in accordance with some embodiments.
  • an eNB 104 may arranged for small-data RRC connection establishment.
  • the eNB 104 may receiving a small-data RRC connection request message 302 from a UE 102.
  • the small-data RRC connection request message 302 may include an establishment clause value indicating small-data traffic either with or without mobility.
  • the eNB 104 may send an initial UE setup request message 306 to inform the MME 122 that a small-data RRC connection for the UE 102 is being established.
  • the eNB 104 may indicate to the MME 122 whether or not the small-data RRC connection is to be established with mobility.
  • the eNB 104 may receive an acceptance message 308 from the MME 122 for the small-data RRC connection.
  • the acceptance may include a reduction of an RRC inactivity timer 314 for fast connection release.
  • the eNB 104 may send an RRC connection reconfiguration message 310 to the UE 102 in response to receipt of the acceptance 308 to establish the small-data RRC connection.
  • the RRC connection reconfiguration message 310 may include a measurement information element (IE) when mobility is to be supported.
  • IE measurement information element
  • RRC connection is being established with mobility is part of the initial UE setup request message 306.
  • the eNB 104 may add a field to an attach request message 304 received from the UE 102 to generate the initial UE setup request message 306.
  • the added field may indicate small data in a dedicated non-access spectrum (NAS) information element (IE).
  • NAS dedicated non-access spectrum
  • the attach request message 304 with the added field may be forwarded by the eNB 104 to the MME 122.
  • the eNB 104 may communicate small-data packets 312 with the UE 102 over the established small-data RRC connection prior to expiration of the reduced RRC inactivity timer.
  • the small-data packets 312 may have a predetermined maximum size for small-data transfer.
  • the UE 102 may be machine-type communications (MTC) device.
  • the UE 102 is a mobile device including a smart phone.
  • the small-data RRC connection request message includes an establishment clause value indicating small-data traffic without mobility.
  • the small-data RRC connection request message includes an establishment clause value indicating small-data traffic with mobility.
  • the predetermined maximum size for small-data transfer is 1 -Kbyte, although the scope of the embodiments is not limited in this respect.
  • new establishment cause values are provided in an RRC Connection Request message ("small-data traffic with mobility” and "small-data traffic with no mobility”). Furthermore, new mechanisms are provided for an eNB 104 to inform the MME 122 that the connection request is a small-data transfer. In the attach request message forwarded by the eNB to the MME 122, a field may be added to indicate small- data message in the dedicated Info NAS IE. The eNB 104 may indicate to the MME 122 that this is a small-data transfer and may also indicate whether mobility support is required or not on top of attach request NAS message.
  • the eNB 104 may send a RRC Connection Reconfiguration message (no measurement IE, no mobility IE, depending on whether mobility support required or not).
  • the MME 122 may also send an updated RRC inactivity timer value for fast connection release. If the core network 120 knows this is a small-data transfer connection, it may not retain the tunnel information between the S-GW 124 and the eNB 104 and between PDN-GW 126 and the S-GW 124 for long periods of time and may release bearer resources earlier as well.
  • RRCConnectionRequest-r8-IEs SEQUENCE ⁇ ue-Identity InitialUE-Identity, establi shmentC ause EstablishmentCause, spare BIT STRING (SrZE (l))
  • Embodiments disclosed here may be applicable to small-data transmissions for both MTC and non-MTC devices.
  • Embodiments disclosed herein may allow sending multiple IP packets and also TCP/IP packets.
  • Embodiments disclosed herein may be flexible for mobile and non-mobile devices. Embodiments disclosed herein may reduce the impact of measurement configuration for mobile devices, saving signaling overhead. Embodiments disclosed do not compromise security. Embodiments disclosed herein may save UE power by releasing the connection quickly, also saving network resources.
  • the packets for small-data transfer are smaller in size (e.g. in the order of hundreds of bytes) with average packet size of 100 bits and may have a predetermined maximum size of 1 Kbyte, although the scope of the embodiments is not limited in this respect.
  • the packets for small-data transfer are smaller in size (e.g. in the order of hundreds of bytes) with average packet size of 100 bits and may have a predetermined maximum size of 1 Kbyte, although the scope of the embodiments is not limited in this respect.
  • an eNB 104 may refrain from including an establishment clause value indicating small-data traffic for RRC connection requests that are not for small-data traffic.
  • FIG. 4 illustrates a functional block diagram of a UE in accordance with some embodiments.
  • UE 400 may be suitable for use as UE 102 (FIG. 1) although other UE configurations may also be suitable.
  • the UE 400 may include physical layer circuitry 402 for transmitting and receiving signals to and from eNBs 104 (FIG. 1) using one or more antennas 401.
  • UE 400 may also include medium access control layer (MAC) circuitry 404 for controlling access to the wireless medium.
  • UE 400 may also include processing circuitry 406 and memory 408 arranged to perform the operations described herein.
  • the block diagram illustrated by FIG. 4 may also be functionally suitable for an eNB, such as eNB 104 (FIG. 1) although other configurations for an eNB may also be suitable.
  • the eNB may include network interface circuitry arranged to perform at least some of the operations described herein.
  • the UE 400 may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone, a smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly.
  • the UE 400 may include one or more of a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements.
  • the display may be an LCD screen including a touch screen.
  • the one or more antennas 401 utilized by the UE 400 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals.
  • a single antenna with multiple apertures may be used instead of two or more antennas.
  • each aperture may be considered a separate antenna.
  • MIMO multiple -input multiple-output
  • the antennas may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result between each of antennas and the antennas of a transmitting station.
  • the antennas may be separated by up to 1/10 of a wavelength or more.
  • the UE 400 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements.
  • DSPs digital signal processors
  • some elements may comprise one or more microprocessors, DSPs, application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein.
  • the functional elements may refer to one or more processes operating on one or more processing elements.
  • Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage medium, which may be read and executed by at least one processor to perform the operations described herein.
  • a computer-readable storage medium may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer).
  • a computer-readable storage medium may include readonly memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media.
  • one or more processors may be configured with the instructions to perform the operations described herein.
  • the UE 400 may be configured to receive
  • the OFDM signals may comprise a plurality of orthogonal subcarriers.
  • eNBs may be part of a broadband wireless access (BWA) network communication network, such as a 3rd Generation Partnership Project (3 GPP) Universal Terrestrial Radio Access Network (UTRAN) Long-Term-Evolution (LTE) or a Long-Term-Evolution (LTE) communication network, although the scope of the invention is not limited in this respect.
  • BWA broadband wireless access
  • 3 GPP 3rd Generation Partnership Project
  • UTRAN Universal Terrestrial Radio Access Network
  • LTE Long-Term-Evolution
  • LTE Long-Term-Evolution
  • LTE Long-Term-Evolution
  • the basic unit of the wireless resource is the Physical Resource Block (PRB).
  • the PRB may comprise 12 sub-carriers in the frequency domain x 0.5 ms in the time domain.
  • the PRBs may be allocated in pairs (in the time domain).
  • the PRB may comprise a plurality of resource elements (REs).
  • a RE may comprise one sub- carrier x one symbol.
  • Two types of reference signals may be transmitted by an eNB including demodulation reference signals (DM-RS), channel state information reference signals (CIS-RS) and/or a common reference signal (CRS).
  • DM-RS demodulation reference signals
  • CIS-RS channel state information reference signals
  • CRS common reference signal
  • the DM- RS may be used by the UE for data demodulation.
  • the reference signals may be transmitted in predetermined PRBs.
  • the OFDM A technique may be either a frequency domain duplexing (FDD) technique that uses different uplink and downlink spectrum or a time-domain duplexing (TDD) technique that uses the same spectrum for uplink and downlink.
  • FDD frequency domain duplexing
  • TDD time-domain duplexing
  • the UE 400 and the eNBs may be configured to communicate signals that were transmitted using one or more other modulation techniques such as spread spectrum modulation (e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), time-division multiplexing (TDM) modulation, and/or frequency-division multiplexing (FDM) modulation, although the scope of the embodiments is not limited in this respect.
  • spread spectrum modulation e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)
  • TDM time-division multiplexing
  • FDM frequency-division multiplexing
  • the UE 400 may calculate several different feedback values which may be used to perform channel adaption for closed-loop spatial multiplexing transmission mode.
  • These feedback values may include a channel-quality indicator (CQI), a rank indicator (RI) and a precoding matrix indicator (PMI).
  • CQI channel-quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • the transmitter selects one of several modulation alphabets and code rate combinations.
  • the RI informs the transmitter about the number of useful transmission layers for the current MIMO channel
  • the PMI indicates the codebook index of the precoding matrix (depending on the number of transmit antennas) that is applied at the transmitter.
  • the code rate used by the eNB may be based on the CQI.
  • the PMI may be a vector that is calculated by the UE and reported to the eNB.
  • the UE may transmit a physical uplink control channel (PUCCH) of format 2, 2a or 2b containing the CQI/PMI or RI.
  • the CQI may be an indication of the downlink mobile radio channel quality as experienced by the UE 400.
  • the CQI allows the UE 400 to propose to an eNB an optimum modulation scheme and coding rate to use for a given radio link quality so that the resulting transport block error rate would not exceed a certain value, such as 10%.
  • the UE 400 may report a wideband CQI value which refers to the channel quality of the system bandwidth.
  • the UE 400 may also report a sub- band CQI value per sub-band of a certain number of resource blocks which may be configured by higher layers.
  • the full set of sub-bands may cover the system bandwidth.
  • a CQI per code word may be reported.
  • the PMI may indicate an optimum precoding matrix to be used by the eNB 104 for a given radio condition.
  • the PMI value refers to the codebook table.
  • the network configures the number of resource blocks that are represented by a PMI report.
  • multiple PMI reports may be provided. PMI reports may also be provided for closed loop spatial multiplexing, multi-user MIMO and closed-loop rank 1 precoding MIMO modes.
  • the network may be configured for joint transmissions to a UE 400 in which two or more cooperating/coordinating points, such as remote-radio heads (RRHs) transmit jointly.
  • the joint transmissions may be MIMO transmissions and the cooperating points are configured to perform joint beamforming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of an enhanced Node B (eNB) and method for RRC connection establishment for small-data transfers in a 3GPP LTE network are generally described herein. The eNB may receive a small-data RRC connection request message from user equipment (UE) that may include an establishment clause value indicating small-data traffic either with or without mobility. The eNB may send an initial UE setup request message to inform the mobility management entity (MME) that a small-data RRC connection is being established. The eNB may receive an acceptance message from the MME for the small-data RRC connection which may include a reduction of an RRC inactivity timer for fast connection release. The eNB may send an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.

Description

ENHANCED NODE B AND METHOD FOR RRC CONNECTION ESTABLISHMENT FOR SMALL DATA TRANSFERS
PRIORITY CLAIM
[0001] This application claims the benefit of priority to U.S. Patent
Application Serial No. 14/140,932, filed on December 26, 2013, which claims the benefit of priority to U.S. Provisional Patent Application Serial No.
61/808,597, filed on April 4, 2013, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] Embodiments pertain to wireless communications. Some embodiments relate to small-data transfer in 3GPP LTE networks. Some embodiments relate to machine-type communications (MTC).
BACKGROUND [0003] Small-data transmission is becoming an issue for wireless communication especially for 4G (e.g., LTE) radios due to the burden of control signaling overhead. Compared to 3G, 4G provides an always connected data mode where the user equipment (UE) has the IP address. Whenever a UE connects to an LTE network, a default (e.g., best effort) flow is assigned to the UE along with an IP address. Besides the connection between UE and an enhanced Node B (eNB), this IP connection requires bearer establishment between the eNB and the core network. Thus, setting up a connection requires a great deal of signaling overhead. This overhead is negligible when the amount of data exchanged such as in applications such as web browsing or file transfer is very large. But a lot of other applications, such as social networking apps like Facebook, Twitter and machine-type communication (MTC) applications (e.g., smart parking meters), the amount of data transferred may be very small (e.g., hundreds of bites) compared to the signaling overhead involved in setting up and tearing down the LTE connection.
[0004] Thus there are general needs for reducing the signaling overhead for frequent small-data transmissions.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG. 1 shows a portion of an end-to-end network architecture of LTE (long term evolution) network with various components of the network in accordance with some embodiments.
[0006] FIG. 2 illustrates an RRC connection establishment procedure;
[0007] FIG. 3 illustrates an RRC connection establishment procedure for small-data transfer in accordance with some embodiments; and
[0008] FIG. 4 illustrates a functional block diagram of a UE in accordance with some embodiments.
DETAILED DESCRIPTION [0009] The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims.
[0010] FIG. 1 shows a portion of an end-to-end network architecture of an LTE (long term evolution) network with various components of the network in accordance with some embodiments. The network comprises a radio access network (RAN) (e.g., as depicted, the E-UTRAN or evolved universal terrestrial radio access network) and the core network 120 (e.g., shown as an evolved packet core (EPC)) coupled together through an SI interface 115. For convenience and brevity sake, only a portion of the core network, as well as the RAN, is shown. [0011] The core 120 includes mobility management entity (MME) 122, serving gateway (serving GW) 124, and packet data network gateway (PDN GW) 126. The RAN includes enhanced node B's (eNBs) 104 (which may operate as base stations) for communicating with user equipment (UE) 102. The eNBs 104 may include macro eNBs and low power (LP) eNBs.
[0012] The MME is similar in function to the control plane of legacy
Serving GPRS Support Nodes (SGSN). It manages mobility aspects in access such as gateway selection and tracking area list management. The serving GW 124 terminates the interface toward the RAN, and routes data packets between the RAN and core network. In addition, it may be a local mobility anchor point for inter-eNB handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement. The Serving GW and the MME may be implemented in one physical node or separate physical nodes. The PDN GW terminates an SGi interface toward the packet data network (PDN). It routes data packets between the EPC and the external PDN, and may be a key node for policy enforcement and charging data collection. It may also provide an anchor point for mobility with non-LTE accesses. The external PDN can be any kind of IP network, as well as an IP Multimedia Subsystem (IMS) domain. The PDN GW and the Serving GW may be implemented in one physical node or separated physical nodes.
[0013] The eNB (macro and micro) terminates the air interface protocol and is usually (if not always) the first point of contact for a UE 102. In some embodiments, an eNB may fulfill various logical functions for the RAN including but not limited to RNC (radio network controller functions) such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
[0014] The S 1 interface is the interface that separates the RAN and the
EPC. It is split into two parts: the Sl-U, which carries traffic data between the eNB and the Serving GW, and the SI -MME, which is a signaling interface between the eNB and the MME. The X2 interface is the interface between eNBs (at least between most, as will be addressed below regarding micro eNBs). The X2 interface comprises two parts, the X2-C and X2-U. The X2-C is the control plane interface between eNBs, while the X2-U is the user plane interface between eNBs.
[0015] With cellular networks, LP cells are typically used to extend coverage to indoor areas where outdoor signals do not reach well, or to add network capacity in areas with very dense phone usage, such as train stations. As used herein, the term low power (LP) eNB refers to any suitable relatively low power eNB for implementing a narrower cell (narrower than a macro cell) such as a femtocell, a picocell, or a micro cell. Femtocell eNBs are typically provided by a mobile network operator to its residential or enterprise customers. A femtocell is typically the size of a residential gateway or smaller and generally connects to the user's broadband line. Once plugged in, the femtocell connects to the mobile operator's mobile network and provides extra coverage in a range of typically 30 to 50 meters for residential femtocells. Thus, a LP eNB might be a femtocell eNB since it is coupled through the PDN GW 126. Similarly, a picocell is a wireless communication system typically covering a small area, such as in-building (offices, shopping malls, train stations, etc.), or more recently in-aircraft. A picocell eNB can generally connect through the X2 link to another eNB such as a macro eNB through its base station controller (BSC)
functionality. Thus, LP eNB 106 could be implemented with a picocell eNB since it is coupled to a macro eNB via an X2 interface. Picocell eNBs or other LP eNBs for that matter) may incorporate some or all functionality of a macro eNB. In some cases, this may be referred to as an access point base station or enterprise femtocell.
[0016] As mentioned above, small-data transmission is becoming an issue for wireless communication due to the burden of control signaling overhead particularly since the IP connection conventionally requires bearer establishment between an eNB 104 and the core network 120. Setting up a connection in the conventional manner thus requires a great deal of signaling overhead. Embodiments disclosed herein provide for a reduction in the signaling overhead for small-data transmissions. In accordance with embodiments, an eNB 104 may be configured for small-data radio -resource control (RRC) connection establishment in a 3 GPP LTE network (e.g., a E-UTRAN of FIG. 1). In these embodiments, the eNB 104 may receive a small-data RRC connection request message from a UE 102. The small-data RRC connection request message may include an establishment clause value indicating small-data traffic either with or without mobility. The eNB 104 may send an initial UE setup request message to inform the MME 122 that a small-data RRC connection is being established. The eNB 104 may indicate to the MME 122 whether or not the small-data RRC connection is to be established with mobility. The eNB 104 may also receive an acceptance message from the MME 122 for the small-data RRC connection. The acceptance may include a reduction of an RRC inactivity timer for faster connection release. The eNB 104 may send an RRC connection reconfiguration message to the UE 102 in response to receipt of the acceptance to establish the small-data RRC connection. The RRC connection reconfiguration message may include a measurement information element (IE) when mobility is to be supported. These embodiments may achieve a significant reduction in control plane overhead for setting up connections for small-data transfers. These embodiments are described in more detail below.
[0017] Some conventional techniques for small-data transfer have proposed to use purely control plane solutions whereby the UE does not have to establish any data bearers and thus save time and air interface resources in setting up of connections over the air interface. However, these control plane solutions are constrained in several ways. For example, the solutions involving sending data over the control plane can be used only for traffic being sent one way (i.e. either the UE sends data to the sender (i.e. mobile originated (MO) data) or the UE receives data from the sender (i.e. mobile terminated (MT) data), but not allowing both during the connection. Another constraint is the UE may be able to send only one IP packet during the connection. Some of these constraints arise due to the absence of the UE being allocated an IP address.
[0018] Embodiments disclosed herein may help minimize the control plane overhead of setting up connections specifically for small-data transfers. These embodiments can be applied to MTC and non-MTC devices and allow multiple TCP/IP packets to be exchanged between a UE 102 and a destination.
[0019] FIG. 2 illustrates an RRC connection establishment procedure. As mentioned above, there are several steps involved in setting up a connection over the air interface between the UE 102 and the eNB 104 and between the eNB 104 and the core network EPC 120. The messages may be exchanged between the UE 102 and the eNB 104 and some of the messages may be exchanged between eNB 104, the MME 122, the S-GW 124 and the PDN-GW 126. In accordance with embodiments, some changes may be made to the steps of FIG. 2 to help minimize the control plane overhead of setting up connections for small-data transfers.
[0020] When a UE 102 needs to send data from an idle state, the UE may follow the same steps from step 1 until however, in the RRC connection request, the UE may state that the establishment cause is to do a small-data transfer. Currently this clause does not exist. Secondly the UE 102 may indicate whether it needs mobility support during the transfer or not. This provides support for non-MTC devices which may need mobility support even for small-data transfers since the device may be moving at high speeds even when transferring small data.
[0021] In step 6, when the eNB 104 forwards the UE's attach request to the MME 122, the eNB 104 may also include the information regarding small- data transfer to the MME.
[0022] In step 7, the MME 122 may validate whether this particular UE
102 can be allowed to perform small-data transfers and may send an acceptance. The MME 122 may modify the RRC inactivity timer for this connection to a very small value (e.g., to use the network RTT value such as 250ms instead of current average of 510 sees).
[0023] In step 8, depending on whether the UE 102 indicated a need mobility support, the eNB 104 may include information to perform measurement reporting to the UE 102. If no support is required, the eNB 104 does refrain from sending such information saving air interface resources. The UE 102 may then perform a data packet transfer once it is allocated its IP address. The eNB 104 may release the UE's connection after the shorter inactivity period lasting on average the end-to-end round trip time to ensure no further packets were expected during this connection.
[0024] FIG. 3 illustrates an RRC connection establishment procedure for small-data transfer in accordance with some embodiments. In accordance with embodiments, an eNB 104 may arranged for small-data RRC connection establishment. In these embodiments, the eNB 104 may receiving a small-data RRC connection request message 302 from a UE 102. The small-data RRC connection request message 302 may include an establishment clause value indicating small-data traffic either with or without mobility. In these embodiments, the eNB 104 may send an initial UE setup request message 306 to inform the MME 122 that a small-data RRC connection for the UE 102 is being established. The eNB 104 may indicate to the MME 122 whether or not the small-data RRC connection is to be established with mobility. In these embodiments, the eNB 104 may receive an acceptance message 308 from the MME 122 for the small-data RRC connection. The acceptance may include a reduction of an RRC inactivity timer 314 for fast connection release. In these embodiments, the eNB 104 may send an RRC connection reconfiguration message 310 to the UE 102 in response to receipt of the acceptance 308 to establish the small-data RRC connection. The RRC connection reconfiguration message 310 may include a measurement information element (IE) when mobility is to be supported.
[0025] In some embodiments, indicating whether or not the small-data
RRC connection is being established with mobility is part of the initial UE setup request message 306.
[0026] In some embodiments, the eNB 104 may add a field to an attach request message 304 received from the UE 102 to generate the initial UE setup request message 306. The added field may indicate small data in a dedicated non-access spectrum (NAS) information element (IE). The attach request message 304 with the added field may be forwarded by the eNB 104 to the MME 122.
[0027] In some embodiments, the eNB 104 may communicate small-data packets 312 with the UE 102 over the established small-data RRC connection prior to expiration of the reduced RRC inactivity timer. The small-data packets 312 may have a predetermined maximum size for small-data transfer.
[0028] In some embodiments, the UE 102 may be machine-type communications (MTC) device. In some embodiments, the UE 102 is a mobile device including a smart phone. In some embodiments, the small-data RRC connection request message includes an establishment clause value indicating small-data traffic without mobility. In some embodiments, the small-data RRC connection request message includes an establishment clause value indicating small-data traffic with mobility. In some embodiments, the predetermined maximum size for small-data transfer is 1 -Kbyte, although the scope of the embodiments is not limited in this respect.
[0029] In accordance with embodiments, new establishment cause values are provided in an RRC Connection Request message ("small-data traffic with mobility" and "small-data traffic with no mobility"). Furthermore, new mechanisms are provided for an eNB 104 to inform the MME 122 that the connection request is a small-data transfer. In the attach request message forwarded by the eNB to the MME 122, a field may be added to indicate small- data message in the dedicated Info NAS IE. The eNB 104 may indicate to the MME 122 that this is a small-data transfer and may also indicate whether mobility support is required or not on top of attach request NAS message. When the eNB 104 receives attach accept message, the eNB 104 may send a RRC Connection Reconfiguration message (no measurement IE, no mobility IE, depending on whether mobility support required or not). The MME 122 may also send an updated RRC inactivity timer value for fast connection release. If the core network 120 knows this is a small-data transfer connection, it may not retain the tunnel information between the S-GW 124 and the eNB 104 and between PDN-GW 126 and the S-GW 124 for long periods of time and may release bearer resources earlier as well.
[0030] In Table 1, the new RRC Connection request message with a new establishment cause is illustrated.
Table 1 : Updated RRC Connection Request Message - ASN1 START
RRCConnectionRequest ::= SEQUENCE {
criticalExtensions CHOICE {
rrcConnectionRequest-r8 RRCConnectionRequest-r8-IEs, criticalExtensionsFuture SEQUENCE { }
}
}
RRCConnectionRequest-r8-IEs ::= SEQUENCE { ue-Identity InitialUE-Identity, establi shmentC ause EstablishmentCause, spare BIT STRING (SrZE (l))
InitialUE-Identity ::= CHOICE
s-TMSI S-TMSI,
randomValue BIT STRING (SEE (40))
EstablishmentCause : ENUMERATED {
emergency, highPriorityAccess, mt-Access, mo-Signalling,
mo-Data, delayTolerantAccess- vl 020, SmallDataTraffic withMobilityv 12,
SmallDataTrafficwithNoMobility-vl2}
- ASN1STOP
[0031] Embodiments disclosed here may be applicable to small-data transmissions for both MTC and non-MTC devices. Embodiments disclosed herein may allow sending multiple IP packets and also TCP/IP packets.
Embodiments disclosed herein may be flexible for mobile and non-mobile devices. Embodiments disclosed herein may reduce the impact of measurement configuration for mobile devices, saving signaling overhead. Embodiments disclosed do not compromise security. Embodiments disclosed herein may save UE power by releasing the connection quickly, also saving network resources.
[0032] In some embodiments, the packets for small-data transfer are smaller in size (e.g. in the order of hundreds of bytes) with average packet size of 100 bits and may have a predetermined maximum size of 1 Kbyte, although the scope of the embodiments is not limited in this respect. In some
embodiments, an eNB 104 may refrain from including an establishment clause value indicating small-data traffic for RRC connection requests that are not for small-data traffic.
[0033] FIG. 4 illustrates a functional block diagram of a UE in accordance with some embodiments. UE 400 may be suitable for use as UE 102 (FIG. 1) although other UE configurations may also be suitable. The UE 400 may include physical layer circuitry 402 for transmitting and receiving signals to and from eNBs 104 (FIG. 1) using one or more antennas 401. UE 400 may also include medium access control layer (MAC) circuitry 404 for controlling access to the wireless medium. UE 400 may also include processing circuitry 406 and memory 408 arranged to perform the operations described herein. The block diagram illustrated by FIG. 4 may also be functionally suitable for an eNB, such as eNB 104 (FIG. 1) although other configurations for an eNB may also be suitable. In some embodiments, the eNB may include network interface circuitry arranged to perform at least some of the operations described herein.
[0034] In some embodiments, the UE 400 may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone, a smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly. In some embodiments, the UE 400 may include one or more of a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements. The display may be an LCD screen including a touch screen.
[0035] The one or more antennas 401 utilized by the UE 400 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some embodiments, instead of two or more antennas, a single antenna with multiple apertures may be used. In these embodiments, each aperture may be considered a separate antenna. In some multiple -input multiple-output (MIMO) embodiments, the antennas may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result between each of antennas and the antennas of a transmitting station. In some MIMO embodiments, the antennas may be separated by up to 1/10 of a wavelength or more.
[0036] Although the UE 400 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements may refer to one or more processes operating on one or more processing elements.
[0037] Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage medium, which may be read and executed by at least one processor to perform the operations described herein. A computer-readable storage medium may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage medium may include readonly memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media. In these embodiments, one or more processors may be configured with the instructions to perform the operations described herein.
[0038] In some embodiments, the UE 400 may be configured to receive
OFDM communication signals over a multicarrier communication channel in accordance with an OFDMA communication technique. The OFDM signals may comprise a plurality of orthogonal subcarriers. In some broadband multicarrier embodiments, eNBs may be part of a broadband wireless access (BWA) network communication network, such as a 3rd Generation Partnership Project (3 GPP) Universal Terrestrial Radio Access Network (UTRAN) Long-Term-Evolution (LTE) or a Long-Term-Evolution (LTE) communication network, although the scope of the invention is not limited in this respect. In these broadband multicarrier embodiments, the UE 400 and the eNBs 104 (FIG. 1) may be configured to communicate in accordance with an orthogonal frequency division multiple access (OFDMA) technique.
[0039] In some LTE embodiments, the basic unit of the wireless resource is the Physical Resource Block (PRB). The PRB may comprise 12 sub-carriers in the frequency domain x 0.5 ms in the time domain. The PRBs may be allocated in pairs (in the time domain). In these embodiments, the PRB may comprise a plurality of resource elements (REs). A RE may comprise one sub- carrier x one symbol.
[0040] Two types of reference signals may be transmitted by an eNB including demodulation reference signals (DM-RS), channel state information reference signals (CIS-RS) and/or a common reference signal (CRS). The DM- RS may be used by the UE for data demodulation. The reference signals may be transmitted in predetermined PRBs.
[0041] In some embodiments, the OFDM A technique may be either a frequency domain duplexing (FDD) technique that uses different uplink and downlink spectrum or a time-domain duplexing (TDD) technique that uses the same spectrum for uplink and downlink.
[0042] In some other embodiments, the UE 400 and the eNBs may be configured to communicate signals that were transmitted using one or more other modulation techniques such as spread spectrum modulation (e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), time-division multiplexing (TDM) modulation, and/or frequency-division multiplexing (FDM) modulation, although the scope of the embodiments is not limited in this respect.
[0043] In some LTE embodiments, the UE 400 may calculate several different feedback values which may be used to perform channel adaption for closed-loop spatial multiplexing transmission mode. These feedback values may include a channel-quality indicator (CQI), a rank indicator (RI) and a precoding matrix indicator (PMI). By the CQI, the transmitter selects one of several modulation alphabets and code rate combinations. The RI informs the transmitter about the number of useful transmission layers for the current MIMO channel, and the PMI indicates the codebook index of the precoding matrix (depending on the number of transmit antennas) that is applied at the transmitter. The code rate used by the eNB may be based on the CQI. The PMI may be a vector that is calculated by the UE and reported to the eNB. In some embodiments, the UE may transmit a physical uplink control channel (PUCCH) of format 2, 2a or 2b containing the CQI/PMI or RI. [0044] In these embodiments, the CQI may be an indication of the downlink mobile radio channel quality as experienced by the UE 400. The CQI allows the UE 400 to propose to an eNB an optimum modulation scheme and coding rate to use for a given radio link quality so that the resulting transport block error rate would not exceed a certain value, such as 10%. In some embodiments, the UE 400 may report a wideband CQI value which refers to the channel quality of the system bandwidth. The UE 400 may also report a sub- band CQI value per sub-band of a certain number of resource blocks which may be configured by higher layers. The full set of sub-bands may cover the system bandwidth. In case of spatial multiplexing, a CQI per code word may be reported.
[0045] In some embodiments, the PMI may indicate an optimum precoding matrix to be used by the eNB 104 for a given radio condition. The PMI value refers to the codebook table. The network configures the number of resource blocks that are represented by a PMI report. In some embodiments, to cover the system bandwidth, multiple PMI reports may be provided. PMI reports may also be provided for closed loop spatial multiplexing, multi-user MIMO and closed-loop rank 1 precoding MIMO modes.
[0046] In some cooperating multipoint (CoMP) embodiments, the network may be configured for joint transmissions to a UE 400 in which two or more cooperating/coordinating points, such as remote-radio heads (RRHs) transmit jointly. In these embodiments, the joint transmissions may be MIMO transmissions and the cooperating points are configured to perform joint beamforming.
[0047] The Abstract is provided to comply with 37 C.F.R. Section
1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.

Claims

CLAIMS What is claimed is:
1. A method performed by an enhanced node B (eNB) for small-data radio-resource control (RRC) connection establishment in a 3GPP LTE network, the method comprising:
receiving a small-data RRC connection request message from user equipment (UE), the small-data RRC connection request message including an establishment clause value indicating small-data traffic either with or without mobility;
sending an initial UE setup request message to inform a mobility management entity (MME) that a small-data RRC connection for the UE is being established;
indicating to the MME whether or not the small-data RRC connection is to be established with mobility;
receiving an acceptance message from the MME for the small-data RRC connection, the acceptance message including a reduction of an RRC inactivity timer for fast connection release; and
sending an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.
2. The method of claim 1 wherein indicating whether or not the small- data RRC connection is being established with mobility is part of the initial UE setup request message.
3. The method of claim 1 further comprising adding a field to an attach request message received from the UE to generate the initial UE setup request message, the added field to indicate small data in a dedicated non-access spectrum (NAS) information element (IE), and wherein the attach request message with the added field is forwarded by the eNB to the MME.
4. The method of claim 1 further comprising communicating small-data packets with the UE over the established small-data RRC connection prior to expiration of the reduced RRC inactivity timer,
wherein the small-data packets have a predetermined maximum size for small-data transfer.
5. The method of claim 4 wherein the UE is machine-type
communications (MTC) device.
6. The method of claim 4 wherein the small-data RRC connection request message includes an establishment clause value indicating small-data traffic without mobility.
7. The method of claim 4 wherein the UE is a mobile device including a smart phone.
8. The method of claim 4 wherein the small-data RRC connection request message includes an establishment clause value indicating small-data traffic with mobility.
9. The method of claim 4 wherein the predetermined maximum size for small-data transfer is 1 -Kbyte.
10. The method of claim 1 further comprising refraining from including an establishment clause value indicating small-data traffic for RRC connection requests that are not for small-data traffic.
11. An enhanced node B (eNB) arranged for small-data radio -resource control (RRC) connection establishment, the eNB having network interface circuitry arranged to : receive a small-data RRC connection request message from user equipment (UE), the small-data RRC connection request message including an establishment clause value indicating small-data traffic either with or without mobility;
send an initial UE setup request message to inform a mobility management entity (MME) that a small-data RRC connection for the UE is being established;
indicate to the MME whether or not the small-data RRC connection is to be established with mobility;
receive an acceptance message from the MME for the small-data RRC connection, the acceptance message including a reduction of an RRC inactivity timer for fast connection release; and
send an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.
12. The eNB of claim 11 wherein the eNB is arranged to indicate whether or not the small-data RRC connection is being established with mobility as part of the initial UE setup request message.
13. The eNB of claim 11 wherein the eNB is further arranged to a field to an attach request message received from the UE to generate the initial UE setup request message, the added field to indicate small data in a dedicated non-access spectrum (NAS) information element (IE), and
wherein the attach request message with the added field is forwarded by the eNB to the MME.
14. The eNB of claim 11 wherein the eNB is further arranged to communicate small-data packets with the UE over the established small-data RRC connection prior to expiration of the reduced RRC inactivity timer,
wherein the small-data packets have a predetermined maximum size for small-data transfer.
15. The eNB of claim 14 wherein the UE is machine-type
communications (MTC) device.
16. The eNB of claim 14 wherein the small-data RRC connection request message includes an establishment clause value indicating small-data traffic without mobility.
17. The eNB of claim 14 wherein the UE is a mobile device including a smart phone.
18. The eNB of claim 14 wherein the small-data RRC connection request message includes an establishment clause value indicating small-data traffic with mobility.
19. The eNB of claim 14 wherein the predetermined maximum size small-data transfer is 1 -Kbyte.
20. A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations for small-data radio -resource control (RRC) connection establishment, the operations to configure an enhanced node B (eNB) to:
receive a small-data RRC connection request message from user equipment (UE), the small-data RRC connection request message including an establishment clause value indicating small-data traffic either with or without mobility;
send an initial UE setup request message to inform a mobility management entity (MME) that a small-data RRC connection for the UE is being established;
indicate to the MME whether or not the small-data RRC connection is to be established with mobility;
receive an acceptance message from the MME for the small-data RRC connection, the acceptance message including a reduction of an RRC inactivity timer for fast connection release; and
send an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.
PCT/US2014/032797 2013-04-04 2014-04-03 Enhanced node b and method for rrc connection establishment for small data transfers WO2014165657A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14778074.6A EP2982055A4 (en) 2013-04-04 2014-04-03 IMPROVED NODE B, AND METHOD FOR ESTABLISHING RRC CONNECTION FOR SMALL DATA TRANSFERS
CN201480010992.4A CN105027468B (en) 2013-04-04 2014-04-03 For being directed to the enhancement mode node B and method of the RRC of small data transmission connections foundation
PCT/US2014/032797 WO2014165657A1 (en) 2013-04-04 2014-04-03 Enhanced node b and method for rrc connection establishment for small data transfers
HK16104928.1A HK1216953A1 (en) 2013-04-04 2016-04-29 Enhanced node b and method for rrc connection establishment for small data transfers rrc b

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361808597P 2013-04-04 2013-04-04
US61/808,597 2013-04-04
US14/140,932 2013-12-26
US14/140,932 US9191178B2 (en) 2013-04-04 2013-12-26 Enhanced node B and method for RRC connection establishment for small data transfers
PCT/US2014/032797 WO2014165657A1 (en) 2013-04-04 2014-04-03 Enhanced node b and method for rrc connection establishment for small data transfers

Publications (1)

Publication Number Publication Date
WO2014165657A1 true WO2014165657A1 (en) 2014-10-09

Family

ID=94380284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/032797 WO2014165657A1 (en) 2013-04-04 2014-04-03 Enhanced node b and method for rrc connection establishment for small data transfers

Country Status (4)

Country Link
EP (1) EP2982055A4 (en)
CN (1) CN105027468B (en)
HK (1) HK1216953A1 (en)
WO (1) WO2014165657A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191178B2 (en) 2013-04-04 2015-11-17 Intel IP Corporation Enhanced node B and method for RRC connection establishment for small data transfers
US9445338B2 (en) 2013-04-04 2016-09-13 Intel IP Corporation Reconfiguration control channel resource mapping collision avoidance
US9674757B2 (en) 2013-04-04 2017-06-06 Intel IP Corporation User equipment and methods for cell reselection using scaled time-to-trigger and A3 offset values
CN107113893A (en) * 2015-05-29 2017-08-29 华为技术有限公司 A kind of carrying establishing method and device
US9794876B2 (en) 2013-03-29 2017-10-17 Intel IP Corporation Extended paging discontinuous reception (DRX) cycles in wireless communication networks
US20180070240A1 (en) * 2013-10-31 2018-03-08 Nec Corporation Apparatus, system and method for mobile communication
US10057800B2 (en) 2015-02-13 2018-08-21 Mediatek Inc. Apparatuses and methods for user equipment (UE)-initiated connection and resource release
US10587389B2 (en) 2013-01-03 2020-03-10 Apple Inc. Apparatus and method for single-tone device discovery in wireless communication networks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499307B2 (en) 2017-03-27 2019-12-03 Futurewei Technologies, Inc. System and method for dynamic data relaying
EP3881643A1 (en) * 2018-11-16 2021-09-22 Google LLC Uplink communication in an inactive state in a celluar network
CN114980367B (en) * 2021-02-19 2025-02-25 上海朗帛通信技术有限公司 A method and device used in a communication node for wireless communication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119680A2 (en) * 2010-03-23 2011-09-29 Interdigital Patent Holdings, Inc. Efficient signaling for machine type communication
US20120163296A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method of transmitting small amount of uplink data and method of receiving small amount of uplink data
US20130028235A1 (en) * 2011-07-29 2013-01-31 Intellectual Ventures Holding 81 Llc Mobile communications network, infrastructure equipment and method
US20130051338A1 (en) * 2011-08-24 2013-02-28 Ki Seon Ryu Method and apparatus for transmitting uplink data associated with mtc device trigger function
EP2568758A1 (en) * 2010-08-30 2013-03-13 China Academy of Telecommunications Technology Method and device for processing data transmission of machine-type communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340826B (en) * 2011-11-17 2016-05-25 电信科学技术研究院 A kind of method and apparatus of transfer of data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119680A2 (en) * 2010-03-23 2011-09-29 Interdigital Patent Holdings, Inc. Efficient signaling for machine type communication
EP2568758A1 (en) * 2010-08-30 2013-03-13 China Academy of Telecommunications Technology Method and device for processing data transmission of machine-type communication device
US20120163296A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Method of transmitting small amount of uplink data and method of receiving small amount of uplink data
US20130028235A1 (en) * 2011-07-29 2013-01-31 Intellectual Ventures Holding 81 Llc Mobile communications network, infrastructure equipment and method
US20130051338A1 (en) * 2011-08-24 2013-02-28 Ki Seon Ryu Method and apparatus for transmitting uplink data associated with mtc device trigger function

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project, Technical Specification Group Services and System Aspects; Machine-Type and other Mobile Data Applications Communications Enhancements (Release 12", 3GPP STANDARD; 3GPP TR 23.887, vol. SA WG2, no. V0.8.0, 12 February 2013 (2013-02-12)
ALCATEL-LUCENT ET AL.: "Core Network assisted eNB parameters tuning for small data transfer", 3GPP DRAFTS, vol. SA WG2, 6 November 2012 (2012-11-06), XP050683987
CMCC ET AL.: "Solutions to decrease signaling overhead in R11 eDDA", 3GPP DRAFT, vol. RAN WG2, 20 March 2012 (2012-03-20), XP050606154
See also references of EP2982055A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587389B2 (en) 2013-01-03 2020-03-10 Apple Inc. Apparatus and method for single-tone device discovery in wireless communication networks
US9794876B2 (en) 2013-03-29 2017-10-17 Intel IP Corporation Extended paging discontinuous reception (DRX) cycles in wireless communication networks
US9445338B2 (en) 2013-04-04 2016-09-13 Intel IP Corporation Reconfiguration control channel resource mapping collision avoidance
US9674757B2 (en) 2013-04-04 2017-06-06 Intel IP Corporation User equipment and methods for cell reselection using scaled time-to-trigger and A3 offset values
US9191178B2 (en) 2013-04-04 2015-11-17 Intel IP Corporation Enhanced node B and method for RRC connection establishment for small data transfers
US9930647B2 (en) 2013-04-04 2018-03-27 Intel IP Corporation Enhanced node B and method for RRC connection establishment for small data transfers
US20180077578A1 (en) * 2013-10-31 2018-03-15 Nec Corporation Apparatus, system and method for mobile communication
US20180070240A1 (en) * 2013-10-31 2018-03-08 Nec Corporation Apparatus, system and method for mobile communication
US11601790B2 (en) 2013-10-31 2023-03-07 Nec Corporation Apparatus, system and method for mobile communication
US10299134B2 (en) * 2013-10-31 2019-05-21 Nec Corporation Apparatus, system and method for mobile communication
US10306475B2 (en) * 2013-10-31 2019-05-28 Nec Corporation Apparatus, system and method for mobile communication
US10681553B2 (en) 2013-10-31 2020-06-09 Nec Corporation Apparatus, system, and method for mobile communication
US10057800B2 (en) 2015-02-13 2018-08-21 Mediatek Inc. Apparatuses and methods for user equipment (UE)-initiated connection and resource release
EP3294035A4 (en) * 2015-05-29 2018-04-25 Huawei Technologies Co., Ltd. Method and device for establishing bearer
US10425955B2 (en) 2015-05-29 2019-09-24 Huawei Technologies Co., Ltd. Bearer setup method and apparatus
CN107113893B (en) * 2015-05-29 2020-10-09 华为技术有限公司 Bearer establishment method and device
CN107113893A (en) * 2015-05-29 2017-08-29 华为技术有限公司 A kind of carrying establishing method and device

Also Published As

Publication number Publication date
HK1216953A1 (en) 2016-12-09
CN105027468A (en) 2015-11-04
EP2982055A1 (en) 2016-02-10
EP2982055A4 (en) 2016-12-14
CN105027468B (en) 2018-06-22

Similar Documents

Publication Publication Date Title
US9930647B2 (en) Enhanced node B and method for RRC connection establishment for small data transfers
US11057814B2 (en) Seamless mobility for 5G and LTE systems and devices
US10194482B2 (en) Enhanced node B and methods for providing system information updates to user equipment with extended paging cycles
CN105027468B (en) For being directed to the enhancement mode node B and method of the RRC of small data transmission connections foundation
EP3419317B1 (en) User equipment and methods of bearer operation for carrier aggregation
EP3050395B1 (en) User equipment and method for device-to-device (d2d) communication
EP3061309B1 (en) Method and ue for transmitting uplink data in a dual connectivity and a device therefor
JP2023542449A (en) Intercell mobility across serving and non-serving cells
JP2022539715A (en) UE assisted fast transition between RRC states
US20180198566A1 (en) Method for transmitting information for lte-wlan aggregation system and a device therefor
EP3014790A1 (en) User equipment and method for resource allocation and device-to-device discovery hopping
CN111742582A (en) Data transfer between inactive mode user equipment and wireless network
US20170311215A1 (en) User equipment and methods for measurement of reference signal received quality
CN113039857A (en) Optimized secondary node reporting for multiple radio access technology dual connectivity
US9807672B1 (en) Wireless communication system control of uplink carrier aggregation
EP3094035B1 (en) Device and method of aggregating wlan and lte system
JP2024514068A (en) Dummy instructions in DCI using unified TCI instructions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010992.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014778074

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE