[go: up one dir, main page]

WO2014156950A1 - 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法 - Google Patents

乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法 Download PDF

Info

Publication number
WO2014156950A1
WO2014156950A1 PCT/JP2014/057751 JP2014057751W WO2014156950A1 WO 2014156950 A1 WO2014156950 A1 WO 2014156950A1 JP 2014057751 W JP2014057751 W JP 2014057751W WO 2014156950 A1 WO2014156950 A1 WO 2014156950A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
rubber composition
emulsion
conjugated diene
weight
Prior art date
Application number
PCT/JP2014/057751
Other languages
English (en)
French (fr)
Inventor
服部岩和
小野壽男
三崎皇雄
実綿浩
Original Assignee
有限会社Etic
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Etic, 日本エイアンドエル株式会社 filed Critical 有限会社Etic
Priority to US14/779,989 priority Critical patent/US20160122501A1/en
Priority to JP2015508410A priority patent/JP6120949B2/ja
Priority to CN201480016345.4A priority patent/CN105051071A/zh
Publication of WO2014156950A1 publication Critical patent/WO2014156950A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene

Definitions

  • the present invention relates to an aqueous solution or suspension of silica (sometimes simply referred to as a suspension) and an emulsion-polymerized conjugated diene copolymer containing a functional group having high affinity with silica.
  • the present invention relates to a rubber composition comprising a silica masterbatch mixed, coagulated and dried in a latex state.
  • the present invention relates to a rubber component, a masterbatch composed of silica, and a tire rubber composition using the same.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • wet grip wet grip carbon black with a small particle size is used as a reinforcing agent, and end-modified solution-polymerized styrene-butadiene rubber (S-SBR) is used to achieve high dispersion. It has been continued.
  • S-SBR terminal-modified solution-polymerized styrene butadiene rubber
  • silica is mixed with a Banbury mixer or roll in the same manner as carbon black
  • the silica compounded rubber composition was manufactured by kneading with a mixer (Roll mixer).
  • a wet master-batch method has been proposed in which rubber and silica are mixed in a solution, solidified, and dried.
  • Patent Document 1 Attempts have been made to introduce an alkoxysilyl group highly reactive with silica at the terminal end of S-SBR and mix it with silica in an organic solvent. However, both components can be stably dispersed uniformly in an organic solvent. It was difficult, and it was difficult to completely remove the organic solvent. (Patent Document 1)
  • Patent Document 2 As an improvement plan for the dry master-batch method instead of a solution, an attempt was made to use a silane coupling agent that is highly reactive with silica in a rubber compound that uses silica and carbon black together.
  • Patent Document 3 Patent Document 3
  • a rubber composition in which a terpolymer obtained by copolymerizing a monomer containing a functional group highly reactive with silica is employed as E-SBR and silica is blended is also disclosed.
  • Patent Document 6 and Non-Patent Document 1 A rubber composition in which a terpolymer obtained by copolymerizing a monomer containing a functional group highly reactive with silica is employed as E-SBR and silica is blended is also disclosed.
  • the silica since both are mixed in a dry state, the silica remains in secondary agglomeration, and the dispersion state of the silica is not good.
  • Patent Document 8 A rubber composition in which a conjugated diene rubber having a different glass transition temperature in a specific range is blended with a rubber composition obtained by co-coagulation of E-SBR having a specific glass transition temperature and a silica suspension, and its production method and molding are also tried. ing. (Patent Document 8)
  • Japanese Patent No. 2667420 Japanese Patent Laid-Open No. 10-1565 Japanese Patent Laid-Open No. 10-25368 JP 2004-99625 A JP 2005-179436 A JP 2003-238604 A Japanese Patent No. 4583308 Japanese Patent No. 4583308
  • the above-described prior art aims to improve the performance by highly dispersing silica, but it is not easy to disaggregate the aggregated silica again, and the silica and the rubber-based polymer are not easily separated. Since there was no dispersion while reacting, the performance improvement was insufficient.
  • a dispersion in which wet silica is not subjected to secondary agglomeration, or a suspension in which silica obtained by mechanically dissociating secondary agglomerates is highly dispersed in water is made reactive or compatible with silica.
  • a rubber composition (silica masterbatch) in which silica is highly dispersed is obtained by mixing with an emulsion of emulsion polymerization conjugated diene polymers containing a high functional group, and a method for producing the same.
  • the rubber composition of the present invention for a tire, there is provided a tire that is excellent in reducing power during kneading, reducing rolling resistance, abrasion resistance, and wet grip.
  • the present invention relates to an emulsion polymerization conjugated diene system obtained by copolymerizing 0.02 to 10% by weight of a monomer having at least one functional group selected from amino group, pyridyl group, alkoxysilyl group, epoxy group, carboxyl group and hydroxyl group Emulsion of emulsion polymerized conjugated diene copolymer and silica suspension so that the solid content of the silica suspension is 10 to 120 parts by weight with respect to 100 parts by weight of the solid content in the copolymer emulsion.
  • the present invention relates to a rubber composition which is mixed with a liquid, solidified by adding an acid and / or a monovalent to trivalent metal salt, and then dried.
  • the present invention emulsifies a conjugated diene copolymer using a silica suspension having a silica primary particle size of 1 to 200 nm and a silica water content of 30% by weight or less, which has not been subjected to a drying step.
  • the present invention relates to a rubber composition which is mixed, solidified and dried so that the solid content of silica is 10 to 120 parts by weight with respect to 100 parts by weight of the solid content in the liquid.
  • the present invention also emulsifies a conjugated diene copolymer using a silica suspension obtained by adding a compound having 6 to 50 carbon atoms having reactivity with silanol groups on the silica surface to a silica suspension in advance.
  • the present invention relates to a rubber composition which is mixed, coagulated and dried with a conjugated diene copolymer emulsion so that the solid content of silica is 10 to 120 parts by weight with respect to 100 parts by weight of the solid content in the liquid.
  • the present invention also relates to a rubber composition which is an emulsion polymerization conjugated diene copolymer obtained by copolymerizing a monomer having at least one functional group selected from an alkoxysilyl group, an epoxy group, and a carboxyl group.
  • the present invention also relates to an emulsion polymerization conjugated diene-based rubber composition obtained by copolymerizing 0.02 to 10% by weight of a monomer having at least one functional group selected from an alkoxysilyl group, an epoxy group, and a carboxyl group.
  • the present invention also relates to a rubber composition in which 1 to 50 parts by weight of an extending oil is further blended with the above rubber composition.
  • the present invention also relates to a rubber composition obtained by blending 1 to 50 parts by weight of carbon black with the above rubber composition.
  • this invention relates to the manufacturing method of the rubber composition which mixes the silica suspension prepared under alkaline conditions whose pH is 7 or more, and a conjugated diene copolymer emulsion, heat-coagulates, and then dries. .
  • the silica suspension and the conjugated diene copolymer emulsion are mixed, and the acid and / or the monovalent to trivalent metal salt is added, followed by heating to 30 ° C. to 100 ° C. Then, the present invention relates to a method for producing a dried rubber composition.
  • the drying step in the production method is a step in which the crumb (small rubber lump) after coagulation is dried with hot air and subsequently dried in a sheet form through a hot roll having a temperature of 100 ° C. or higher.
  • the present invention relates to a method for producing a composition.
  • the present invention relates to a tire rubber composition containing at least 30% by weight of the above rubber composition.
  • a suspension of dispersed aggregates of silica is converted into a functional group-containing monomer (amino group, pyridyl group, alkoxysilyl group, epoxy group, carboxyl group) having high reactivity or affinity with silanol groups present on the silica surface.
  • the rubber composition of the present invention has high reinforcing properties, has stabilized quality during vulcanization, and when the rubber composition is used in a tire, it is easy to knead, reduces rolling resistance, and wear resistance. Provided are tires having excellent wettability.
  • the emulsion polymerization conjugated diene copolymer emulsion and the silica suspension can be mixed not only by stirring and mixing, but also by using a steam ejector to apply heat and pressure to the mixed system. It is also desirable to perform co-coagulation by mixing uniformly while applying a stimulus.
  • FIG. 1 shows an inflow system of a mixture of an emulsion of an emulsion polymerization conjugated diene copolymer and a silica suspension.
  • 1 in FIG. 1 indicates an inflow system of high-pressure steam.
  • Reference numeral 4 in FIG. 1 denotes a main body of a steam ejector.
  • FIG. 1 denotes a discharge system for a mixture of an emulsion of an emulsion polymerization conjugated diene copolymer and a silica suspension, which has been processed by stimulation of the temperature and pressure of high-pressure steam.
  • Reference numeral 7 in FIG. 1 denotes a discharge piping system.
  • 1 in FIG. 1 is a creaming tank.
  • 1 in FIG. 1 is a coagulation tank. Water and a coagulant are added and stirred.
  • FIG. 2 indicates an inflow system of a mixture of an emulsion of an emulsion polymerization conjugated diene copolymer and a silica suspension.
  • 2 in FIG. 2 indicates an inflow system of high-pressure steam.
  • 2 in FIG. 2 shows the nozzle of a steam ejector.
  • 2 in FIG. 2 indicates a main body of the steam ejector.
  • 2 in FIG. 2 shows the diffuser of a steam ejector.
  • FIG. 2 shows a discharge system for a mixture of an emulsion of an emulsion polymerization conjugated diene copolymer and a silica suspension, which has been processed under the stimulation of steam temperature and pressure.
  • Silica combines with primary particles to form a strong aggregate (primary aggregate). When the aggregate is dried, it further aggregates to form an agglomerate (secondary aggregate). Agglomerates can be dispersed relatively easily in water and returned to the aggregate, but it is very difficult to mix and disperse in rubber or the like in a dry state.
  • the present invention emulsifies E-SBR emulsification in which a suspension of dispersed silica aggregate is copolymerized with a functional group-containing monomer having reactivity or high affinity with silanol groups present on the silica surface.
  • a highly reinforcing rubber composition in which silica is highly dispersed is produced.
  • ⁇ Emulsion polymerization conjugated diene polymer monomer As monomers of the emulsion polymerization conjugated diene polymer, 1,3-butadiene and styrene are essential, and as other monomers, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene and the like can also be used in combination.
  • 1,3-butadiene and styrene are essential, and as other monomers, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diis
  • the 1,3-butadiene content in the emulsion polymerized conjugated diene polymer is 50 to 95% by weight, preferably 60 to 90% by weight, more preferably 65 to 80% by weight.
  • the styrene content is 5 to 50% by weight, preferably 10 to 40% by weight, more preferably 20 to 35% by weight.
  • the polar group in the polar group-containing monomer is not particularly limited as long as it can react with the silica surface, and examples thereof include an amino group, a pyridyl group, an alkoxysilyl group, an epoxy group, a carboxy group, and a hydroxyl group.
  • an amino group, an alkoxysilyl group, a carboxyl group, and an epoxy group are preferable, and an alkoxysilyl group, a carboxyl group, and an epoxy group are more preferable.
  • a suitable content of the polar group-containing monomer in E-SBR is 0.02 to 10% by weight of the total monomers in E-SBR, preferably 0.05 to 5% by weight, more preferably 0.1%. ⁇ 3% by weight.
  • Examples of the primary amino group-containing monomer include p-aminostyrene, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, aminopropyl (meth) acrylate, aminobutyl (meth) acrylate, and the like.
  • Secondary amino group-containing monomers include N-mono (meth) acrylamides such as N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylolacrylamide, N- (4-anilinophenyl) methacrylamide And the like.
  • tertiary amino group-containing monomers include N, N-disubstituted aminoalkyl (meth) acrylates, N, N-disubstituted aminoalkyl (meth) acrylamides, N, N-disubstituted aminoaromatic vinyl compounds and Examples thereof include a monomer having a pyridyl group.
  • N, N-disubstituted amino (meth) acrylates examples include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and N, N-dimethylaminopropyl (meth).
  • N- dioctyl aminoethyl (meth) acrylate N- dioctyl aminoethyl (meth) acrylate.
  • N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, and N, N-dipropylaminoethyl (meth) acrylate are preferable.
  • N, N-disubstituted aminoaromatic vinyl compounds include N, N-dimethylaminoethyl styrene, N, N-diethylaminoethyl styrene, N, N-dipropylaminoethyl styrene, N, N-dioctylaminoethyl.
  • Examples include styrene.
  • the monomer having a pyridyl group include 2-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine and the like. Of these, 2-vinylpyridine and 4-vinylpyridine are preferable.
  • amino group-containing monomers can be used alone or in combination of two or more.
  • the alkoxysilyl group-containing monomer is a monomer having at least one alkoxysilyl group in one molecule.
  • Examples of the alkoxysilyl group-containing monomer include (meth) acryloxymethyltrimethoxysilane, (meth) acryloxymethyltriethoxysilane, ⁇ - (meth) acryloxyethyltrimethoxysilane, and ⁇ - (meth) acryloxyethyl.
  • alkoxysilyl group-containing monomers can be used alone or in combination of two or more.
  • the carboxyl group-containing monomer is a monomer having at least one carboxyl group in one molecule.
  • carboxyl group-containing monomer methacrylic acid and acrylic acid are preferable. These carboxyl group-containing monomers can be used alone or in combination of two or more.
  • the epoxy group-containing monomer is a monomer having at least one epoxy group in one molecule.
  • the epoxy group-containing monomer include glycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, N-glycidyl (meth) acrylamide, vinyl glycidyl ether, allyl Glycidyl ether, 2-methylallyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-methyl-1-butene, 3,4-epoxy-1-pentene, 3,4-epoxy 3-methyl-1-pentene, 5,6-epoxy-1-hexene, vinylcyclohexene monoxide, styrene-p-glycidyl ether, N- [4- (2,3-epoxy-1-oxo-3-phenylpropane) -1-
  • the hydroxyl group-containing monomer is a monomer having at least one primary, secondary, or tertiary hydroxyl group in one molecule.
  • Specific examples of the hydroxyl group-containing monomer include, for example, hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-chloro- 2-hydroxypropyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, glycerol mono (meth) acrylate, hydroxybutyl (meth) acrylate, 2-chloro-3-hydroxypropyl (meth) acrylate, hydroxy Hexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxymethyl (meth) acrylamide, 2-hydroxypropyl (meth) acrylamide, 3-hydroxypropyl (meth) acrylate Ril
  • Glycerol mono (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, 2-hydroxypropyl (meth) acrylamide, 3-hydroxypropyl (meth) acrylamide and the like are preferable.
  • ⁇ Polymerization method> As the polymerization method that can be employed in the present invention, various polymerization methods can be applied. From the viewpoint of ease of removal of reaction heat during the polymerization reaction and productivity, the emulsion polymerization method is preferably employed.
  • a normal emulsion polymerization method may be used. For example, a method in which a predetermined amount of the above monomer is emulsified and dispersed in an aqueous medium in the presence of an emulsifier, and emulsion polymerization is performed using a polymerization initiator. .
  • the amount of each monomer used is appropriately selected so that each monomer unit amount in the polymer has a desired content.
  • a long chain fatty acid salt having 10 or more carbon atoms and / or a rosinate is used as the emulsifier.
  • Specific examples include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid.
  • the amount of the emulsifier used is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight with respect to 100 parts by weight of the total monomers.
  • polymerization initiator examples include persulfates such as ammonium persulfate and potassium persulfate; a combination of ammonium persulfate and ferric sulfate, a combination of organic peroxide and ferric sulfate, and water peroxide. And redox initiators such as a combination with ferric sulfate.
  • the amount of the polymerization initiator used is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total monomers.
  • a molecular weight modifier In order to adjust the Mooney viscosity of the polymer, a molecular weight modifier is used.
  • the molecular weight modifier include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, and ⁇ -terpinene.
  • mercaptans are preferable, and t-dodecyl mercaptan is more preferable and can be used.
  • the amount of the molecular weight modifier used is not particularly limited, but is usually 0.01 to 5 parts by weight, preferably 0.02 to 1 part by weight, and more preferably 0.05 to 100 parts by weight of the total monomers. ⁇ 0.5 parts by weight.
  • the temperature of the emulsion polymerization can be appropriately selected depending on the kind of the polymerization initiator to be used, but is usually 0 to 100 ° C., preferably 0 to 60 ° C.
  • the polymerization mode may be any of continuous polymerization, batch polymerization and the like.
  • the polymerization conversion rate when the polymerization reaction is stopped is preferably 85% by weight or less, and more preferably in the range of 50 to 80% by weight, from the viewpoint of preventing gelation of the polymer.
  • the polymerization reaction is usually stopped by adding a polymerization terminator to the polymerization system when a predetermined polymerization conversion rate is reached.
  • the polymerization terminator include amine compounds such as diethylhydroxylamine and hydroxylamine; quinone compounds such as hydroquinone and benzoquinone; sodium nitrite and sodium dithiocarbamate.
  • an antioxidant may be added as necessary.
  • unreacted monomers are removed from the obtained polymer emulsion.
  • an oil-extended rubber can be obtained by previously blending and mixing an extending oil in the form of an emulsified dispersion with a polymer emulsion.
  • salt such as sodium chloride, potassium chloride, calcium chloride is used as a coagulant
  • polymer coagulant (flocculant) or acid such as hydrochloric acid or sulfuric acid is added as necessary to adjust the pH of the coagulation system to a predetermined value.
  • wet silica before secondary agglomeration, or a suspension in which silica that mechanically dissociated secondary agglomerates is highly dispersed in water, and a functional group having high reactivity or affinity with silica is added.
  • a method of mixing an emulsion of a conjugated diene copolymer and a silica suspension not only stirring and mixing, but also using a steam ejector (Fig. 1). Also preferred is a step of co-solidifying by mixing them uniformly while applying a stimulus of heat or pressure to the mixed system.
  • a mixed solution of an emulsion of an emulsion-polymerized conjugated diene copolymer and a silica suspension is uniformly mixed through a steam blower while applying heat and pressure, and co-coagulated. The structural example of a process is shown.
  • the mixture solution in the mixed solution inflow system is sucked by the vigorous flow from the jet / inflow system of the high pressure steam to the discharge system, and is discharged as a more uniform solution under shearing force and thermal stimulation at high temperature.
  • a stable mixed quality rubber composition in which silica is uniformly dispersed in the rubber can be produced.
  • the mixed solution discharged together with steam is stirred in a creaming tank, then transferred to a coagulation tank and stirred while adding water or a coagulant.
  • a composition can be produced.
  • a steam ejector as shown in FIG. 2 can be used as a mixer for passing the high-pressure steam, the emulsion-conjugated emulsion-conjugated diene copolymer emulsion, and the silica suspension.
  • the high-pressure steam used here is 0.1 MPa to 2 MPa, preferably 0.3 MPa to 1.8 MPa, more preferably 0.5 MPa to 1.5 MPa.
  • the diameter of the outlet pipe (7 in FIG. 1) is larger than the diameter of the pipe immediately after mixing (6 in FIG. 1).
  • the crumb can be washed and dehydrated and then dried with a hot air drier, hot roll, etc. to obtain the desired conjugated diene rubber.
  • silica easily adsorbs moisture and is highly likely to cause quality variations in the vulcanization process, which is a subsequent process, it is not sufficient to dry only a normal dehydrator and a hot air dryer, and the temperature is 100 ° C. It is preferable to sufficiently dry using the above heat roll.
  • silica examples include dry silica, wet silica, colloidal silica, and precipitated silica.
  • wet silica containing hydrous silicic acid as a main component is particularly preferable.
  • These silicas can be used alone or in combination of two or more.
  • the particle size of the primary particles of silica is not particularly limited, but is 1 to 200 nm, more preferably 3 to 100 nm, and particularly preferably 5 to 60 nm. When the particle size of the primary particles of silica is within this range, the balance between tensile properties and low heat build-up is excellent.
  • the particle size of the primary particles can be measured with an electron microscope, a specific surface area, or the like.
  • the highly dispersed silica suspension can be produced by using undried wet silica as it is or by redispersing the dried silica in water with a thin film swirl type high speed stirrer or the like.
  • silane coupling agent In order to further improve the tensile properties and low heat build-up, it is preferable to add a silane coupling agent to the rubber composition of the present invention.
  • the silane coupling agent may be added to the silica suspension, or may be added when the rubber composition after drying and other chemicals are mixed for mixing.
  • silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, bis (3- Triethoxysilylpropyl) tetrasulfide, bis (3-tri-iso-propoxysilylpropyl) tetrasulfide, bis (3-tributoxysilylpropyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, ⁇ - Tetrasulfides such as trimethoxysilylpropylbenzothiazyltetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-tri-iso-propoxysilylpropyl) disulfide
  • the silane coupling agent preferably has 4 or less sulfur contained in one molecule. More preferably, those having 2 or less sulfur are preferred. These silane coupling agents can be used alone or in combination of two or more.
  • the amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight, and particularly preferably 2 to 10 parts by weight with respect to 100 parts by weight of silica.
  • the step of adding the silane coupling agent can be added at the time of kneading before the vulcanization step.
  • a silane coupling agent can be added in the mixing step of the silica suspension and the conjugated diene copolymer emulsion before coagulation, and the silica suspension or conjugated diene copolymer can be added.
  • the emulsion can be added to a mixed liquid of a suspension of silica and an emulsion of a conjugated diene copolymer.
  • silane coupling agent When the silane coupling agent is added before solidification, a type having a bulky alkoxysilyl group is preferable, and a disulfide silane coupling agent is more preferable than a tetrasulfide type in terms of stability and reinforcement.
  • the rubber composition of the present invention can contain an extending oil so that the viscosity of the blend when silica is blended does not become too high.
  • an extending oil those usually used in the rubber industry can be used, and examples thereof include paraffinic extending oil, aromatic extending oil, and naphthenic extending oil.
  • the pour point of the extending oil is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C. If it is this range, it will be easy to extend and the rubber composition excellent in the balance of a tensile characteristic and low exothermic property will be obtained.
  • the suitable aroma carbon content (CA%, Kurz analysis method) of the extender oil is preferably 20% or more, more preferably 25% or more, and the suitable paraffin carbon content (CP%) of the extender oil is , Preferably 55% or less, more preferably 45%. If CA% is too small or CP% is too large, tensile properties will be insufficient.
  • the content of the polycyclic aromatic compound in the extending oil is preferably less than 3%. This content is measured by the IP346 method (The Institution of Petroleum, UK).
  • the content of the extending oil is preferably 1 to 50 parts by weight, more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the rubber composition.
  • the content of the extending oil is within this range, the viscosity of the rubber composition containing silica becomes appropriate, and the balance between tensile properties and low exothermic properties is excellent.
  • furnace black As carbon black, furnace black, acetylene black, thermal black, channel black, graphite, etc. can be used, for example. Of these, furnace black is particularly preferable, and specific examples thereof include those of grades such as SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF. It is done. These carbon blacks can be used alone or in combination of two or more.
  • the specific surface area of carbon black is not particularly limited, but is preferably a nitrogen adsorption specific surface area (N 2 SA), preferably 5 to 200 m 2 / g, more preferably 50 to 150 m 2 / g, and particularly preferably 80 to 130 m 2. / G. When the nitrogen adsorption specific surface area is within this range, the tensile properties are more excellent.
  • the DBP adsorption amount of carbon black is not particularly limited, but is preferably 5 to 300 ml / 100 g, more preferably 50 to 200 ml / 100 g, and particularly preferably 80 to 160 ml / 100 g. When the DBP adsorption amount is within this range, a rubber composition having more excellent tensile properties can be obtained.
  • the adsorption (CTAB) specific surface area of cetyltrimethylammonium bromide disclosed in JP-A-5-230290 is 110 to 170 m 2 / g, and compression is repeated four times at a pressure of 24,000 psi.
  • Abrasion resistance can be improved by using high structure carbon black having a DBP (24M4DBP) oil absorption of 110 to 130 ml / 100 g after addition.
  • the compounding amount of carbon black is 1 to 50 parts by weight, preferably 2 to 30 parts by weight, and particularly preferably 3 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the rubber composition of the present invention When used as a rubber composition for tires, it contains a rubber other than the rubber composition composed of an emulsion-polymerized conjugated diene polymer and silica as long as the effects of the present invention are not essentially impaired. But it ’s okay.
  • other rubbers include natural rubber, isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, butyl rubber, and ethylene-propylene-diene rubber.
  • the rubber composition of the present invention When using the rubber composition of the present invention, various chemicals usually used in the rubber industry, for example, a vulcanizing agent, a vulcanization accelerator, a process oil, and an antiaging agent, as long as the object of the present invention is not impaired. Further, a scorch inhibitor, zinc white, stearic acid, and the like can be contained.
  • the rubber composition of the present invention can be kneaded using a kneader such as a roll or an internal mixer. After molding, it can be vulcanized and used for tire treads, under treads, carcass, sidewalls, bead parts, etc., as well as for applications such as anti-vibration rubber, belts, hoses and other industrial products. In particular, it is suitably used for tire tread rubber.
  • the pneumatic tire of the present invention is produced by a normal method using the rubber composition of the present invention. That is, if necessary, the rubber composition of the present invention containing various chemicals as described above is extruded into a tread member at an unvulcanized stage, and pasted and molded by a normal method on a tire molding machine. A green tire is formed. The green tire is heated and pressed in a vulcanizer to obtain a tire.
  • the pneumatic tire of the present invention thus obtained has excellent fuel efficiency, fracture characteristics and wear resistance, and also has good processability of the rubber composition, so that it has excellent productivity. Yes.
  • the weight average molecular weight (Mw) of the polymer was measured by gel permeation chromatography “GPC: HLC-8020 manufactured by Tosoh Corporation, column: GMHXL manufactured by Tosoh Corporation (two in series)”, and the refractive index (R1) was used. The measurement was performed in terms of polystyrene using dispersed polystyrene as a standard. The styrene unit content in the polymer was calculated from the integral ratio of the 1 H-NMR spectrum.
  • the glass transition point (T g ) of the polymer was measured using a differential scanning calorimeter (DSC) type 7 apparatus manufactured by PerkinElmer, Inc., under the condition of cooling to ⁇ 100 ° C. and increasing the temperature at 10 ° C./min.
  • DSC differential scanning calorimeter
  • the kneading characteristics and physical properties of the vulcanized rubber were measured by the following methods, and the Mooney viscosity of the rubber composition was measured as follows.
  • the kneading conditions (A kneading) of the rubber composition not containing the vulcanizing agent were conducted using a lab plast mill Banbury mixer manufactured by Toyo Seiki Seisakusho Co., Ltd., with a filling rate of about 65% (volume ratio) and a rotor rotation speed of 50 rpm.
  • the kneading start temperature was 90 ° C.
  • the kneading characteristics are judged based on the maximum value of the kneading torque (Nm) at the time of kneading A, and the smaller the value, the easier the kneading.
  • a kneading condition (B kneading) for blending the vulcanizing agent into the rubber composition after kneading was blended with a vulcanizing agent at room temperature using a Daihan Co., Ltd., 8 inch roll made by Daihan Co., Ltd.
  • Abrasion resistance According to JIS K 6264-2: 2005 "vulcanized rubber and thermoplastic rubber-Determination of abrasion resistance-Part 7: Test method", Akron abrasion test, B method, vulcanized rubber composition The amount of wear of the object was measured. The abrasion resistance of the control sample was taken as 100, and the index was displayed as an abrasion resistance index. A larger index is better.
  • Mooney viscosity of rubber composition The Mooney viscosity [ML 1 + 4/100 ° C. ] was measured at 100 ° C. according to JIS K 6300-2001.
  • Production Example 1 Using a 100 L polymerization reactor, a predetermined amount of water, an emulsifier, styrene, and butadiene were charged without using a functional group-containing monomer according to the polymerization prescription in Table 1. Thereafter, the temperature of the polymerization vessel was set to 5 ° C., and the polymerization initiator was started by adding the initiator, molecular weight regulator and electrolyte shown in Table 1 as radical polymerization initiators. After about 6 hours, when the polymerization conversion reached 60%, diethylhydroxylamine was added to terminate the polymerization. Subsequently, the unreacted monomer was recovered by steam stripping to obtain an emulsion of a conjugated diene polymer.
  • Table 1 shows the basic polymerization prescription of the conjugated diene polymer.
  • Production Example 2 According to Production Example 1, 3 parts by weight of methacrylic acid was added, and after emulsion polymerization conditions were optimized, emulsion polymerization was performed in the same manner. The analysis was conducted with the same formulation, and the analysis values of the obtained emulsion copolymer were also summarized in Table 2. The resulting emulsion of the emulsion polymer was designated as “M-SB-L1”.
  • Production Example 3 According to Production Example 1, 6 parts by weight of ⁇ -glycidyl methacrylate was added, and emulsion polymerization was carried out in the same manner.
  • the analytical values of the obtained emulsion copolymer are also summarized in Table 2.
  • the resulting emulsion of the emulsion polymer was designated as “M-SB-L2”.
  • Production Example 4 According to Production Example 3, 3 parts by weight of ⁇ -glycidyl methacrylate was added, and emulsion polymerization was performed in the same manner.
  • the analytical values of the obtained emulsion copolymer are also summarized in Table 2.
  • the resulting emulsion of the emulsion polymer was designated as “M-SB-L3”.
  • Production Example 5 According to Production Example 3, 1 part by weight of ⁇ -glycidyl methacrylate was added, and emulsion polymerization was carried out in the same manner.
  • the analytical values of the obtained emulsion copolymer are also summarized in Table 2.
  • the resulting emulsion of the emulsion polymer was designated as “M-SB-L4”.
  • Production Example 6 According to Production Example 3, 1 part by weight of N, N-dimethylaminoethyl (meth) acrylate was added, and emulsion polymerization was carried out in the same manner.
  • the analytical values of the obtained emulsion copolymer are also summarized in Table 2.
  • the resulting emulsion of the emulsion polymer was designated as “M-SB-L5”.
  • Production Example 7 According to Production Example 3, 1 part by weight of vinyltri-tert-butoxysilane was added and emulsion polymerization was performed in the same manner.
  • the analytical values of the obtained emulsion copolymer are also summarized in Table 2.
  • the resulting emulsion of the emulsion polymer was designated as “M-SB-L6”.
  • Example 1 A rubber composition was produced by co-coagulating “M-SB-L1” produced in Production Example 2 and silica under the following conditions.
  • silica When silica is measured by a silica manufacturing company through a normal drying manufacturing process, the BET surface area is 175 m 2 / g, the DBP oil absorption is 220 ml / 100 g, and the secondary particle average particle size is 120 ⁇ m before drying the silica. A silica cake having a silica content of 20% was obtained. The average primary particle diameter of the silica was 20 nm. This silica cake is designated “WS-1”.
  • Emulsion copolymer of functional group-containing emulsion copolymer “M-SB-L1” with a solid content equivalent to 1000 g is added little by little with stirring to a solid content of 550 g of silica cake “WS-1” with stirring.
  • an emulsion of styrenated phenol as an anti-aging agent so as to be 1 part per SBR.
  • 900 ml of 10% saline, 1% aqueous polyethylene glycol solution and 5% sulfuric acid were added to adjust the pH to 4.
  • a silica rubber composition having a size of about 1 cm was deposited in a crumb shape.
  • silica rubber composition This was filtered through a 40 mesh stainless steel wire mesh and then washed with water to obtain a silica rubber composition. This composition was put into a 100 ° C. hot air dryer and dried. Considering the operational loss of the rubber composition, almost the entire amount was recovered. By burning this rubber composition, the silica content was determined to be 54 phr.
  • Comparative Examples 2-4 Comparative Example 2 uses “N-SB-L1”, “N-SB-R1” coagulated alone without using silica, and a rubber composition dried with hot air to obtain vulcanized physical properties as in Example 1. The results were evaluated and summarized in Table 4. Comparative Example 3 was evaluated by silica compounding using emulsion polymerization SBR # 1502 manufactured by JSR Corporation, Comparative Example 4 was evaluated by vulcanizing physical properties by the same # 1502 and by compounding by replacing silica with carbon black, The results are summarized in Table 4.
  • Table 3 shows the vulcanized compounding formulation of the rubber composition of the emulsion polymer and silica.
  • English abbreviations, such as a chemical name used in Table 3 are well-known to those skilled in the art, it is as follows when the meaning content is shown just in case.
  • Silane coupling agent “Si69” bis (3-triethoxysilylpropyl) tetrasulfide polyethylene glycol “PEG 4000”: polyethylene glycol 4000
  • Anti-aging agent “6C” N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenyldiamine
  • Vulcanization accelerator “D” N, N′-diphenylguanidine
  • Table 4 shows the evaluation results of the vulcanization properties of the rubber composition of the emulsion polymer and silica.
  • Example 7 In the same formulation as Example 1, when co-solidifying “M-SB-L4” and silica “WS-1”, the silane coupling agent, bis (3-tributoxysilylpropyl) disulfide, per silica solid content A rubber composition was prepared in the same manner as in Example 1 except that 2 phr was added. As in Example 1, vulcanized physical properties were evaluated and summarized in Table 5.
  • Example 8 The rubber composition of Example 7 was further dried with a hot roll at 120 ° C. for 10 minutes to prepare a rubber composition. The rubber properties of this rubber composition were evaluated and are summarized in Table 5.
  • Example 9 A rubber composition was prepared by coagulating using “M-SB-L4” and silica “WS-1”, followed by hot air drying and additional drying with a hot roll, in the same formulation as in Example 1. The rubber properties of this rubber composition were evaluated and are summarized in Table 5.
  • Example 10 Silica dried through the drying step of the silica cake used in Example 1 was added to distilled water so as to have a content of 20%. K. A suspension of silica was prepared using Hibis Disper mix. This silica suspension is designated as “WS-2”. Subsequently, the rubber composition was prepared by coagulation and hot-air drying using “M-SB-L4” and silica “WS-2” in the same formulation as in Example 1. The rubber properties of this rubber composition were evaluated and are summarized in Table 5.
  • Example 11 Emulsion of emulsion polymer “M-SB-L1” and silica suspension (WS-1) were mixed in advance and the mixed solution was mixed using a steam blower. Coagulated as in Example 1.
  • Emulsion polymerization Emulsion of conjugated diene copolymer and silica suspension are mixed using a steam blower, and the mixture of both is emulsified under the influence of high pressure steam temperature and pressure.
  • the emulsified fine particles of the polymerized conjugated diene copolymer and the silica suspension particles were mixed more uniformly.
  • This coagulated product was dried with hot air and then further dried with a hot roll to prepare a rubber composition.
  • the silica content was approximately 55 phr.
  • the rubber properties of this rubber composition were evaluated and summarized in Table 6.
  • Examples 12 to 14 A mixed solution of the emulsion polymer emulsion “M-SB-L4” and the silica suspension “WS-1” with the same formulation as in Example 11 was used to express the pressure of the high-pressure steam using a steam jet. As shown in Fig. 4, the mixed solution was homogenized and co-solidified by changing the pressure to 0.3 MPa, 0.6 MPa, and 0.9 MPa. The silica content was approximately 55 phr, but the turbidity of the cleaning liquid of the rubber composition tended to increase as the steam pressure decreased.
  • the coagulated product was dried with hot air and further dried with a hot roll to prepare a rubber composition.
  • the rubber properties of this rubber composition were evaluated and summarized in Table 6. From the results summarized in Table 6, it is believed that the higher the temperature and the higher the blowing shear force, the more uniform the emulsion polymer emulsion and the silica suspension, and the better the vulcanization properties. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 二次凝集する前の湿式シリカもしくは二次凝集塊を機械的に解離したシリカを水中で高分散させた懸濁液を、シリカと反応性もしくは親和性の高い官応基を含有する乳化重合共役ジエン系重合体の乳化液と混合、凝固することによって調製された、シリカが高度に分散したゴム組成物(シリカマスターバッチ)、およびその製造方法を提供する。 高度に分散したシリカを含むクラム(ゴムの小さい塊)は乾燥しにくいため、脱水機と熱風乾燥機からなる乾燥装置に、乾燥用の熱ロールを加えた装置で乾燥して、シリカが高分散した補強性の高いゴム組成物を製造する。 乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合方法としては、単に撹拌混合だけでなく、スチーム噴出器(steam ejector)を用いて、両者の混合系に熱や圧力の刺激を加えながら均一に混合させて、共凝固させる工程も望ましい。

Description

乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法
 本発明は、シリカの水溶液もしくは懸濁液(単に懸濁液という場合もある)と、シリカと親和性(affinity)の高い官能基を含有する乳化重合共役ジエン系共重合体とを、重合体の乳化液(latex)の状態で混合、凝固(coagulate)し、乾燥したシリカマスターバッチ(silica master-batch)からなるゴム組成物に関する。とりわけ、ゴム成分、シリカからなるマスターバッチ、ならびにそれを用いてなるタイヤ用ゴム組成物に関する。
 以下、乳化重合スチレンブタジエンゴム(emulsion-polymerized styrene-butadiene rubber) (E-SBR)単独、ないしこれに他のモノマーや官応基を含むモノマーを含む乳化重合ジエン共重合体を配合したものも含めてE-SBRと表記する場合がある。
 自動車に対する省エネルギーの社会的要求は古くからあり、自動車の低燃費化への対応は最近特に厳しくなっている。自動車などのタイヤに関しては、1980年代ごろより自動車の低燃費性向上及び耐摩耗性の改良によるタイヤ交換時期の長期間化、濡れた路面でのブレーキ性能(以後、ウエットグリップ性wet gripという)向上の観点から粒径の小さいカーボンブラックを補強剤として、高分散化するために末端変性の溶液重合スチレンブタジエンゴム(solution polymerized styrene-butadiene rubber)(S-SBR)が使用され、今でも改良検討が続けられている。
 一方、1990年代初めにミシュランタイヤ社Michelinがシリカ配合タイヤを発売し、シリカ配合の特長が再認識され、現在ではシリカ配合タイヤが低燃費性やウエットグリップ性の向上には必須であると考えられている。しかしながら、シリカ配合にはシランカップリング剤が必要であり、この試薬を使用するためにゴム混練の温度条件に制限があり、さらにタイヤ用ゴムに配合する場合、カーボンブラックより分散しにくいことから練り工程数が多くコスト高の課題もある。
 当初、シリカと反応性の高いアルコキシシリル基やアミノ基を末端に導入したS‐SBR(末端変性溶液重合スチレンブタジエンゴム)とシリカとをカーボンブラック配合と同じようにバンバリーミキサー(Banbury mixer)やロールミキサー(Roll mixer)で混練りして、シリカ配合ゴム組成物を製造していた。しかし、練りにくくシリカの分散が不十分であるため、溶液でゴムとシリカとを混合し、凝固、乾燥するウエットマスターバッチ(wet maser-batch)法が提案された。
 S-SBRの停止末端にシリカと反応性の高いアルコキシシリル基を導入し、有機溶媒中でシリカと混合することが試みられたが、有機溶媒中では安定的に両成分を均一分散することが困難であり、有機溶媒を完全に除去することが困難である等から工業生産には至らなかった。(特許文献1)
 溶液ではなくドライマスターバッチ(Dry master-batch)法の改良案として、シリカとカーボンブラックを併用するゴム配合物で、シリカと反応性の高いシランカップリング剤等を使用することが試みられたが、種々の工業化への課題が解決できていない。(特許文献2と特許文献3)
 天然ゴムラテックス(natural rubber latex)を用いる改良法では、カーボンブラックやシリカをあらかじめ水中に分散させた懸濁液を混合、凝固するウエットマスターバッチの調製法が挙げられるが、天然ゴム中のアミド結合を分解する工程が必須であることや、天然ゴム自身が充てん材による補強効果が低いこと、および天然ゴム自体がシリカと反応性の高い官能基をもたないこと等から、物性の改良効果は乏しい。(特許文献4)
 E‐SBR(乳化重合スチレンブタジエンゴム)と未乾燥シリカ、シランカップリング剤とを水溶液状態で混合、凝固、乾燥したシリカマスターバッチが試みられているが、水溶液状態でシランカップリング剤を使用することや、E‐SBR自体にシリカと反応性の高い官能基が無いことから、性能向上にはシリカ、シランカップリング剤、E‐SBRの三者結合の形成が必須のところから、安定的な調製が困難とされている。(特許文献5)
 E‐SBRとしてシリカと反応性の高い官能基を含むモノマーを共重合した三元共重合体を採用し、シリカを配合したゴム組成物も開示されている。(特許文献6と非特許文献1)
 しかし、いずれもドライ状態で混合するため、シリカが二次凝集したままであり、シリカの分散状態は良くない。
 E-SBR乳化液(E-SBR latex)とシリカ懸濁液、さらにカチオン性高分子の3成分を共凝固(coagulate)するゴム組成物とその製法も試みられている。(特許文献7)
 特定のガラス転移温度のE-SBRとシリカ懸濁液を共凝固したゴム組成物に特定の範囲でガラス転移温度が異なる共役ジエン系ゴムを配合したゴム組成物とその製法や成形体も試みられている。(特許文献8)
特許2667420号 特開平10-1565号公報 特開平10-25368号公報 特開2004-99625号公報 特開2005-179436号公報 特開2003-238604号公報 特許4583308号 特許4583308号
G. Thielen, C. Berg: Kautsch. Gummi Kunstst., 07‐08/2008, 377(2008)
 これらの技術は、配合成分や混合組み合わせ条件などで課題が多く工業化の端緒にも至っていない。
 上記した従来技術は、シリカを高分散することで性能向上を目指すものであるが、凝集した(aggregated)シリカを再度解離(disaggregate)することは容易ではなく、またシリカとゴム系重合体とが反応しながら分散することは無いので、性能向上は不十分であった。
 本発明は、湿式シリカが二次凝集する前の分散液、もしくは二次凝集塊(agglomerate)を機械的に解離したシリカを水中で高分散した懸濁液を、シリカと反応性もしくは親和性の高い官能基を含有する乳化重合共役ジエン系重合体類の乳化液と混合することによって、シリカが高分散したゴム組成物(シリカマスターバッチ)を得ること、およびその製造方法を提供する。
 さらに、本願発明のゴム組成物をタイヤに用いて、混練り時の電力削減、転がり抵抗(rolling resistance)の低減効果、耐摩耗性(abrasion resistance)、ウエットグリップ性に優れるタイヤを提供する。
 本発明は、アミノ基、ピリジル基、アルコキシシリル基、エポキシ基、カルボキシル基および水酸基から選択される少なくとも1種の官能基を有するモノマーを0.02~10重量%共重合した乳化重合共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカ懸濁液の固形分が10~120重量部になるように、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液とを混合し、酸および/または1価ないし3価の金属塩を加え凝固した後、乾燥したゴム組成物に関する。
 また、本発明は、シリカの一次粒子径が1~200nmで、シリカの含水量が30重量%以下になる乾燥工程を経ていないシリカの懸濁液を用いて、共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカの固形分が10~120重量部になるように混合し、凝固、乾燥したゴム組成物に関する。
 また、本発明は、シリカ表面のシラノール基と反応性を有する炭素数が6~50の化合物を予めシリカ懸濁液へ加えたシリカの懸濁液を用いて、共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカの固形分が10~120重量部になるように、共役ジエン系共重合体乳化液と混合、凝固し、乾燥したゴム組成物に関する。
 また、本発明は、アルコキシシリル基かエポキシ基、カルボキシル基から選択される少なくとも1種の官能基を有するモノマーを共重合した乳化重合共役ジエン系共重合体であるゴム組成物に関する。
 また、本発明は、アルコキシシリル基、エポキシ基、カルボキシル基から選択される少なくとも1種の官能基を有するモノマーを0.02~10重量%共重合した乳化重合共役ジエン系のゴム組成物に関する。
 また、本発明は、上記のゴム組成物にさらに1~50重量部の伸展油を配合したゴム組成物に関する。
 また、本発明は、上記のゴム組成物に1~50重量部のカーボンブラックを配合したゴム組成物に関する。
 さらに、本発明は、pHが7以上のアルカリ条件下で調製したシリカ懸濁液と、共役ジエン系共重合体乳化液とを混合し、加熱凝固した後、乾燥するゴム組成物の製造方法に関する。
 また、本発明は、シリカ懸濁液と、共役ジエン系共重合体乳化液とを混合し、酸および/または1価ないし3価の金属塩を加えてから、30℃~100℃に加熱凝固した後、乾燥するゴム組成物の製造方法に関する。
 また、本発明は、製造方法における乾燥工程が、凝固後のクラム(ゴムの小さい塊)を熱風乾燥し、引き続いて少なくとも温度が100℃以上の熱ロールを通してシート状で乾燥する工程である、ゴム組成物の製造方法に関する。
 さらに、本発明は、上記のゴム組成物を少なくとも30重量%以上含むタイヤ用ゴム組成物に関する。
 本発明は、分散したシリカのアグリゲートの懸濁液を、シリカ表面に存在するシラノール基と反応性もしくは親和性の高い官能基含有モノマー(アミノ基 、ピリジル基、アルコキシシリル基、エポキシ基、カルボキシル基および水酸基を含有するモノマー)を共重合した乳化重合共役ジエン系重合体の乳化液とを混合、凝固し、さらに乾燥することによって、シリカが高度に分散した補強性の高いゴム組成物が得られる。
 このシリカを含んだクラム(crumb)は乾燥しにくいため、通常のE-SBRの乾燥装置である、脱水機と熱風乾燥器の組み合わせでは乾燥が不十分である。そのため、更に熱ロールを加えた従来にない乾燥プロセスを含む製造工程も開発している。
 本発明のゴム組成物は、補強性が高く、加硫時の品質が安定化しており、さらに本ゴム組成物をタイヤに用いた場合、混練りが容易で、転がり抵抗の低減効果、耐摩耗性、ウエットグリップ性に優れるタイヤを提供する。
 乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合方法としては、単に撹拌混合だけでなく、スチーム噴出器(steam ejector)を用いて、両者の混合系に熱や圧力の刺激を加えながら均一に混合させて、共凝固させる工程も望ましい。
乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液とのスチーム噴出器(steam ejector)を用いた混合工程の構成例を示す。図1中の1は、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液(silica suspension solution)との混合物の流入系を示す。図1中の2は、高圧スチームの流入系を示す。図1中の4は、スチーム噴出器(steam ejector)の本体を示す。図1中の6は、高圧スチームの温度と圧力の刺激を受けて処理された、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合物の吐出系を示す。図1中の7は、吐出物の配管系である。図1中の8は、クリーミングタンクである。図1中の9は、凝固タンクである。水や凝固剤が加えられ撹拌される。
スチーム噴出器の構成例を示す。図2中の1は、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合物の流入系を示す。図2中の2は、高圧スチームの流入系を示す。図2中の3は、スチーム噴出器のノズルを示す。図2中の4は、スチーム噴出器の本体ボディーを示す。図2中の5は、スチーム噴出器のディフューザーを示す。図2中の6は、スチームの温度と圧力の刺激を受けて処理された、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合物の吐出系を示す。
 以下に、本発明を実施するための具体的な形態を説明する。
 シリカは一次粒子同士が結合して、強固なアグリゲート(aggregate、一次凝集体)となる。アグリゲートは乾燥するとさらに凝集してアグロメレート(agglomerate、二次凝集体)となる。アグロメレートは水中では比較的容易に分散でき、アグリゲートに戻すことができるが、乾燥した状態でゴム等に混合、分散することは非常に難しい。
 そのため、本発明は、分散したシリカのアグリゲートの懸濁液を、シリカ表面に存在するシラノール基と反応性を有するかもしくは、親和性の高い官能基含有モノマーを共重合したE-SBRの乳化液と混合し、凝固し、さらに乾燥することによって、シリカが高分散した補強性の高いゴム組成物を製造する。
<乳化重合共役ジエン系重合体のモノマー>
 乳化重合共役ジエン系重合体のモノマーとしては、1,3-ブタジエンとスチレンが必須であり、その他のモノマーとして2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンやα-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン等も併用することもできる。
 乳化重合共役ジエン系重合体中の1,3-ブタジエン含量は50~95重量%であり、好ましくは60~90重量%、さらに好ましくは65~80重量%である。スチレン含量は5~50重量%であり、好ましくは10~40重量%、さらに好ましくは20~35重量%である。
 ここに示すその他のモノマーはE-SBRのモノマーの10重量%以内なら1,3-ブタジエンとスチレンとを任意の割合で置換えることができる。
 極性基含有モノマーにおける極性基としては、シリカ表面と反応し得るものであれば特に限定されなく、例えば、アミノ基、ピリジル基、アルコキシシリル基、エポキシ基、カルボキシ基、水酸基等が挙げられる。これらの中でも、アミノ基、アルコキシシリル基、カルボキシル基、エポキシ基が好ましく、さらに好ましいのは、アルコキシシリル基やカルボキシル基、エポキシ基である。
 E‐SBR中の極性基含有モノマーの好適な含有量は、E-SBR中の全モノマーの0.02~10重量%、好ましくは0.05~5重量%であり、さらに好ましくは0.1~3重量%である。
 第1級アミノ基含有モノマーとしては、例えば、p-アミノスチレン、アミノメチル(メタ)アクリレート、アミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート、アミノブチル(メタ)アクリレートなどが挙げられる。
 第2級アミノ基含有モノマーとしてはN-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-メチロールアクリルアミド、N-(4-アニリノフェニル)メタアクリルアミドなどN-モノ置換(メタ)アクリルアミド類等が挙げられる。
 第3級アミノ基含有モノマーとしては、例えば、N,N-ジ置換アミノアルキル(メタ)アクリレート、N,N-ジ置換アミノアルキル(メタ)アクリルアミド、N,N-ジ置換アミノ芳香族ビニル化合物およびピリジル基を有するモノマー等が挙げられる。
 N,N-ジ置換アミノ(メタ)アクリレートとしては、例えば、N,N-ジメチルアミノメチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノブチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノブチル(メタ)アクリレート、N-メチル-N-エチルアミノエチル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノプロピル(メタ)アクリレート、N,N-ジブチルアミノブチル(メタ)アクリレート、N,N-ジヘキシルアミノエチル(メタ)アクリレート、N,N-ジオクチルアミノエチル(メタ)アクリレートなどが挙げられる。これらの中でも、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレートが好ましい。
 N,N-ジ置換アミノ芳香族ビニル化合物としては、例えば、N,N-ジメチルアミノエチルスチレン、N,N-ジエチルアミノエチルスチレン、N,N-ジプロピルアミノエチルスチレン、N,N-ジオクチルアミノエチルスチレンなどが挙げられる。ピリジル基を有するモノマーとしては、例えば、2-ビニルピリジン、4-ビニルピリジン、5-メチル-2-ビニルピリジン、5-エチル-2-ビニルピリジンなどが挙げられる。これらの中でも、2-ビニルピリジン、4-ビニルピリジンが好ましい。
 これらのアミノ基含有モノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 アルコキシシリル基含有モノマーは、1分子中に少なくとも1個のアルコキシシリル基を有するモノマーである。アルコキシシリル基含有モノマーとしては、例えば、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン、β-(メタ)アクリロキシエチルトリメトキシシラン、β-(メタ)アクリロキシエチルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリプロポキシシラン、γ-(メタ)アクリロキシプロピルトリブトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルエチルジメトキシシラン、γ-(メタ)アクリロキシプロピルヘキシルジメトキシシラン、β-アクリロキシエチルオキシメチルトリメトキシシラン、γ-(β-アクリロキシエチルオキシ)プロピルトリメトキシシラン、γ-(γ-メタクリロキシプロピルオキシ)プロピルトリメトキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-tert-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、ビニルトリイソプロポキシシランなどが挙げられる。
 これらの中でも、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリプロポキシシラン、γ-(メタ)アクリロキシプロピルトリブトキシシラン、γ-(β-アクリロキシエチルオキシ)プロピルトリブトキシシラン、γ-(γ-メタクリロキシプロピルオキシ)プロピルトリブトキシシラン、ビニルアルコキシシラン類が好ましく、γ-(メタ)アクリロキシプロピルトリプロポキシシラン、γ-(メタ)アクリロキシプロピルトリブトキシシラン、ビニルトリ-tert-ブトキシシランがより好ましい。
 これらのアルコキシシリル基含有モノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 カルボキシル基含有モノマーは、1分子中に少なくとも1つのカルボキシル基を有するモノマーである。カルボキシル基含有モノマーとしては、メタクリル酸、アクリル酸が好ましい。これらのカルボキシル基含有モノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 エポキシ基含有モノマーは、1分子中に少なくとも1つのエポキシ基を有するモノマーである。エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-オキシシクロヘキシル(メタ)アクリレート、N-グリシジル(メタ)アクリルアミド、ビニルグリシジルエーテル、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-メチル-1-ブテン、3,4-エポキシ-1-ペンテン、3,4-エポキシ-3-メチル-1-ペンテン、5,6-エポキシ-1-ヘキセン、ビニルシクロヘキセンモノオキシド、スチレン-p-グリシジルエーテル、N-[4-(2,3-エポキシ-1-オキソ-3-フェニルプロパン-1-イル)フェニル]メタクリルアミドなどが挙げられる。なかでも、グリシジル(メタ)アクリレートが好ましい。これらのエポキシ基含有モノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 ヒドロキシル基含有モノマーは、1分子中に少なくとも1個の第1級、第2級または第3級ヒドロキシル基を有するモノマーである。ヒドロキシル基含有モノマーの具体例としては、例えば、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2-クロロ-3-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシオクチル(メタ)アクリレート、ヒドロキシメチル(メタ)アクリルアミド、2-ヒドロキシプロピル(メタ)アクリルアミド、3-ヒドロキシプロピル(メタ)アクリルアミド、ジ-(エチレングリコール)イタコネート、ジ-(プロピレングリコール)イタコネート、ビス(2-ヒドロキシプロピル)イタコネート、ビス(2-ヒドロキシエチル)イタコネート、ビス(2-ヒドロキシエチル)フマレート、ビス(2-ヒドロキシエチル)マレート、2-ヒドロキシエチルビニルエーテル、ヒドロキシメチルビニルケトン、アリルアルコールなどが挙げられる。これらの中でも、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシオクチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリルアミド、3-ヒドロキシプロピル(メタ)アクリルアミドなどが好ましい。
<重合方法>
 本発明で採用できる重合方法としては、種々の重合方法が適用できるが、重合反応時の反応熱の除去の容易性や生産性の点で、乳化重合法が好ましく採用できる。
 乳化重合法としては、通常の乳化重合法を用いればよく、例えば、所定量の上記単量体を乳化剤の存在下に水性媒体中に乳化分散し、重合開始剤により乳化重合する方法が挙げられる。各単量体の使用量は、重合体における各単量体単位量が所望の含有量になるよう、適宜選択される。
 乳化剤としては、例えば、炭素数10以上の長鎖脂肪酸塩および/またはロジン酸塩が用いられる。具体例としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸などの脂肪酸のカリウム塩またはナトリウム塩が例示される。乳化剤の使用量は、全単量体100重量部に対して、好ましくは0.5~10重量部、より好ましくは1~8重量部である。
 重合開始剤としては、例えば、過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩;過硫酸アンモニウムと硫酸第二鉄との組み合わせ、有機過酸化物と硫酸第二鉄との組み合わせ、及び過酸化水と硫酸第二鉄との組み合わせなどのレドックス系開始剤;などが挙げられる。重合開始剤の使用量は、全単量体100重量部に対して、好ましくは0.01~5重量部、より好ましくは0.05~3重量部である。
 重合体のムーニー粘度を調節するために、分子量調整剤を使用する。分子量調整剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン類、四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン類などが挙げられる。なかでも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましく、使用できる。分子量調整剤の使用量は、特に限定されないが、全単量体100重量部に対して、通常、0.01~5重量部、好ましくは0.02~1重量部、より好ましくは0.05~0.5重量部である。
 乳化重合の温度は、使用する重合開始剤の種類によって適宜選択することができるが、通常、0~100℃で、好ましくは0~60℃である。重合様式は、連続重合、回分重合等のいずれでの様式でも構わない。
 重合反応停止の際の重合転化率は、重合体のゲル化を防止する観点から、85重量%以下とすることが好ましく、50~80重量%の範囲とすることがより好ましい。重合反応停止は、通常、所定の重合転化率に達した時点で、重合系に重合停止剤を添加することによって行われる。重合停止剤としては、例えば、ジエチルヒドロキシルアミンやヒドロキシルアミン等のアミン系化合物;ヒドロキノンやベンゾキノンなどのキノン系化合物;亜硝酸ナトリウム、ソジウムジチオカーバメートなどが挙げられる。
 重合反応停止後、必要に応じて、老化防止剤(antioxidant)を添加してもよい。重合反応停止後、得られた重合体乳化液から未反応モノマーを除去する。所望により、予め重合体乳化液に、乳化分散液とした伸展油を配合、混合して、油展ゴムとすることもできる。
 共凝固方法としては塩化ナトリウム、塩化カリウム、塩化カルシウムなどの塩を凝固剤とし、必要に応じて高分子凝集剤(flocculant)や塩酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、二次凝集する前の湿式シリカ、もしくは二次凝集塊を機械的に解離したシリカを水中で高分散した懸濁液を、シリカと反応性もしくは親和性の高い官能基を含有する乳化重合共役ジエン系重合体類の乳化液とを混合することによって、クラム(crumb)として凝固させ回収できる。
 乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合方法としては、単に撹拌したりして混合するだけでなく、[図1]のスチーム噴出器(steam ejector)を用いて、両者の混合系に熱や圧力の刺激を加えながら均一に混合させて、共凝固させる工程も望ましい。[図1]では、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合溶液を、スチーム噴出器を通じて、熱や圧力の刺激を加えながら均一に混合させて、共凝固させる工程の構成例を示す。
 高圧スチームの噴出・流入系から吐出系への勢いのある流れによって、混合溶液流入系の混合溶液は吸引されて、高温下で剪断力と熱刺激を受けてより均一な溶液となり吐出される。吐出物を凝固させると、ゴムにシリカが均一分散した、安定した混合品質のゴム組成物を製造することができる。
 [図1]のように、スチームとともに吐出された混合溶液を、クリーミングタンクで撹拌の後、凝固タンクに移して水や凝固剤を加えつつ撹拌すると、均一な混合により更に安定した混合品質のゴム組成物を製造することができる。
 高圧スチームと、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液との混合液を通す混合器は、例えば、[図2]のようなスチーム噴出器を用いることができる。
 ここで使用する高圧スチームとしては0.1MPa~2MPa、好ましくは0.3MPa~1.8MPa、さらに好ましくは0.5MPa~1.5MPaである。
 噴出口の形状としては、混合された直後の配管(図1中の6)の口径よりも、出口配管(図1中の7)の口径が大きくなる方が好ましい。
 クラムは洗浄、脱水後、熱風乾燥機、熱ロールなどで乾燥し、目的とする共役ジエン系ゴムを得ることができる。
 しかしながら、シリカは水分を吸着しやすく、後工程に当たる加硫工程で品質のばらつきを引起す可能性が高いので、通常の脱水機と熱風乾燥機の乾燥だけでは不十分で、さらに温度が100℃以上の熱ロールを使用して十分に乾燥するのが好ましい。
<シリカ>
 シリカとしては、例えば、乾式シリカ、湿式シリカ、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式シリカが特に好ましい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 シリカの一次粒子の粒径は、特に制限されないが、1~200nmであり、より好ましくは3~100nmで、特に好ましくは5~60nmである。シリカの一次粒子の粒径がこの範囲であると、引張特性および低発熱性のバランスに優れる。なお、一次粒子の粒径は、電子顕微鏡や比表面積等で測定できる。
 高分散したシリカ懸濁液は、未乾燥の湿式シリカをそのまま使用するか、乾燥したシリカを水中で薄膜旋回型高速撹拌機等により再分散することで製造できる。
<シランカップリング剤>
 本発明のゴム組成物に、引張特性および低発熱性をさらに改善する目的で、シランカップリング剤を配合することが好ましい。シランカップリング剤はシリカの懸濁液に加えても良いし、乾燥後のゴム組成物と他の薬剤とを配合するために混合する際に加えても良い。シランカップリング剤としては、例えば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリ-iso-プロポキシシリルプロピル)テトラスルフィド、ビス(3-トリブトキシシリルプロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどのテトラスルフィド類、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリ-iso-プロポキシシリルプロピル)ジスルフィド、ビス(3-トリブトキシシリルプロピル)ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルジスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルジスルフィドなどを挙げることができる。
 混練時のスコーチ(scorch、熱変色、焦げ)を避けられるので、シランカップリング剤は、一分子中に含有される硫黄が4個以下のものが好ましい。さらに好ましくは硫黄が2個以下のものが好ましい。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~20重量部、特に好ましくは2~10重量部である。
 シランカップリング剤の添加する工程は、加硫工程前の混練り時に添加することができる。また、凝固前にシリカの懸濁液と共役ジエン系共重合体の乳化液との混合工程で、シランカップリング剤を添加することもでき、シリカ懸濁液もしくは、共役ジエン系共重合体の乳化液、さらにシリカの懸濁液と共役ジエン系共重合体の乳化液との混合液への添加もできる。
 凝固前にシランカップリング剤を添加する際は、嵩高いアルコキシシリル基を有するタイプが好ましく、さらにテトラスルフィド系よりもジスルフィド系のシランカップリング剤のほうが安定性と補強性の面から好ましい。
<伸展油>
 本発明のゴム組成物はシリカを配合した際の配合物粘度が高くなりすぎないように伸展油を含有することができる。伸展油としてはゴム工業において通常使用されるものが使用でき、パラフィン系伸展油、芳香族系伸展油、ナフテン系伸展油などがあげられる。
 伸展油の流動点は、好ましくは-20~50℃、より好ましくは-10~30℃である。この範囲であれば、伸展しやすく、引張特性と低発熱性のバランスに優れたゴム組成物が得られる。伸展油の好適なアロマ炭素含有量(CA%、クルツ分析法)は、好ましくは20%以上、より好ましくは25%以上であり、また、伸展油の好適なパラフィン炭素含有量(CP%)は、好ましくは55%以下、より好ましくは45%である。CA%が小さすぎたり、CP%が大きすぎたりすると、引張特性が不十分となる。伸展油の中の多環芳香族系化合物の含有量は、好ましくは3%未満である。この含有量は、IP346法(英国のThe Institute Petroleum の検査方法)により測定される。
 伸展油の含有量は、ゴム組成物100重量部に対して、好ましくは1~50重量部、より好ましくは5~30重量部である。伸展油の含有量がこの範囲にあると、シリカを配合したゴム組成物の粘度が適度となり、かつ引張特性および低発熱性のバランスに優れる。
<カーボンブラック>
 カーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどを用いることができる。これらの中でも、特にファーネスブラックが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、FEFなどのグレードのものが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 カーボンブラックの比表面積は、特に制限はないが、窒素吸着比表面積(N2SA)で、好ましくは5~200m/g、より好ましくは50~150m/g、特に好ましくは80~130m/gである。窒素吸着比表面積がこの範囲であると、より引張特性に優れる。また、カーボンブラックのDBP吸着量も、特に制限はないが、好ましくは5~300ml/100g、より好ましくは50~200ml/100g、特に好ましくは80~160ml/100gである。DBP吸着量がこの範囲であると、より引張特性に優れたゴム組成物が得られる。さらに、カーボンブラックとして、特開平5-230290号公報に開示されているセチルトリメチルアンモニウムブロマイドの吸着(CTAB)比表面積が110~170m/gであり、24,000psiの圧力で4回繰り返し圧縮を加えた後のDBP(24M4DBP)吸油量が110~130ml/100gであるハイストラクチャーカーボンブラックを用いることにより、耐摩耗性を改善できる。
 カーボンブラックの配合量は、ゴム成分100重量部に対して、1~50重量部、好ましくは2~30重量部、特に好ましくは3~20重量部である。
 本発明のゴム組成物をタイヤ用ゴム組成物として使用する場合は、本発明の効果を本質的に損なわない範囲で、乳化重合共役ジエン系重合体とシリカからなるゴム組成物以外のゴムを含んでも良い。その他のゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、ブチルゴム、エチレン-プロピレン-ジエンゴムなどが挙げられる。
 本発明のゴム組成物の使用時には、本発明の目的が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。本発明のゴム組成物は、ロール、インターナルミキサー等の混練り機を用いて混練りすることができる。成形加工後、加硫を行い、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等のタイヤ用途を始め、防振ゴム、ベルト、ホースその他の工業品等の用途にも用いることができるが、特にタイヤトレッド用ゴムに好適に使用される。
 本発明の空気入りタイヤは、本発明のゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて、上記のように各種薬品を含有させた本発明のゴム組成物が未加硫の段階でトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。このようにして得られた本発明の空気入りタイヤは、低燃費性、破壊特性及び耐摩耗性に優れており、しかも該ゴム組成物の加工性が良好であるので、生産性にも優れている。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。なお、重合体の物性は、下記の方法に従って測定した。
<重合体の物性>
 重合体の重量平均分子量(Mw)の測定はゲルパーミエーションクロマトグラフィ「GPC;東ソー製HLC-8020、カラム;東ソー製GMHXL(2本直列)」により行い、示差屈折率(R1)を用いて、単分散ポリスチレンを標準としてポリスチレン換算で行った。重合体中のスチレン単位含有量はH‐NMRスペクトルの積分比より算出した。重合体のガラス転移点(T)はパーキンエルマー社製の示差走査熱分析機(DSC)7型装置を用い、-100℃まで冷却した後に10℃/minで昇温する条件で測定した。
 混練り特性、加硫ゴムの物性を下記の方法で測定すると共に、ゴム組成物のムーニー粘度を下記のようにして測定した。
<混練り方法>
 ゴム組成物の加硫物作成のための混練りは、JIS K 6299:2001「ゴム-試験用試料の作製方法」に従った。
 加硫剤を含まないゴム組成物の混練条件(A 練り)は東洋精機製作所(株)製のラボプラストミルバンバリー形ミキサーを用い、充てん率が約65%(体積比)、ローター回転数が50rpm、混練り開始温度を90℃で実施した。
 A練り配合時の混練りトルク(Nm)の最高値で混練り特性を判定し、数値が小さいほど、容易に混練りできることを示す。
 A練り後のゴム組成物に加硫剤を配合する混練条件(B 練り)は(株)ダイハンDaihan Co., Ltd.製 8インチロールを用いて、室温で加硫剤を配合した。
<加硫ゴムの物性>
(1)低発熱性
 粘弾性試験の温度分散は「TA INSTRUMENTS 製粘弾性測定装置RSA3」を用いて、JIS K 7244-7:2007「プラスチック-動的機械特性の試験方法-第7部:ねじり振動-非共振法」に従って、測定周波数が10Hz、測定温度が-50~80℃、動的ひずみが0.1%、昇温速度が4℃/minで、試験片形状が「幅5mm×長さ40mm×厚さ1mm」のサンプルで測定した。tanδ(60℃)が小さい程、低発熱性である。
(2)破壊特性
 切断時の強力(T)をJIS K 6251:2004に従って測定した。
(3)耐摩耗性
 JIS K 6264-2:2005「加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第7部:試験方法」に従って、アクロン摩耗試験、B法で、加硫ゴム組成物の摩耗量を測定した。コントロールサンプルの耐摩耗性を100として、耐摩耗指数として指数表示した。指数が大きい方が良好である。
<ゴム組成物のムーニー粘度>
 JIS K 6300-2001に準じ、100℃にてムーニー粘度[ML1+4/100℃]を測定した。
製造例1
 100Lの重合反応器を用いて、第1表の重合処方に応じて官能基含有モノマー用いずに所定量の水、乳化剤、スチレン、ブタジエンを仕込んだ。その後、重合用容器の温度を5℃に設定し、ラジカル重合開始剤として第1表の開始剤、分子量調節剤、電解質を添加して重合を開始した。約6時間後に重合転化率が60%に達した時点で、ジエチルヒドロキシルアミンを添加して重合を停止させた。次いで、スチームストリッピングにより未反応モノマーを回収し、共役ジエン系重合体の乳化液を得た。この乳化液の一部を分析用に抜き取り、硫酸と塩化ナトリウムにより凝固させてクラム(crumb)とした。次いで、このクラムを熱風乾燥機により乾燥させた。得られた共重合体の分析値は第2表にまとめた。得られた本乳化重合体の乳化液を「N-SB-L1」とし、凝固した乳化共重合体を「N-SB-R1」とした。
 共役ジエン系重合体の基本の重合処方を表1に示す。
Figure JPOXMLDOC01-appb-T000001
製造例2
 製造例1にしたがって、メタクリル酸を3重量部添加し、乳化重合条件を適切化後、同様に乳化重合した。同様な処方で分析し、得られた乳化共重合体の分析値を同じく第2表にまとめた。得られた本乳化重合体の乳化液を「M-SB-L1」とした。
製造例3
 製造例1にしたがって、γ-グリシジルメタクリレートを6重量部添加し、同様に乳化重合した。得られた乳化共重合体の分析値を同じく第2表にまとめた。得られた本乳化重合体の乳化液を「M-SB-L2」とした。
製造例4
 製造例3にしたがって、γ-グリシジルメタクリレートを3重量部添加し、同様に乳化重合した。得られた乳化共重合体の分析値を同じく第2表にまとめた。得られた本乳化重合体の乳化液を「M-SB-L3」とした。
製造例5
 製造例3にしたがって、γ-グリシジルメタクリレートを1重量部添加し、同様に乳化重合した。得られた乳化共重合体の分析値を同じく第2表にまとめた。得られた本乳化重合体の乳化液を「M-SB-L4」とした。
製造例6
 製造例3にしたがって、N,N-ジメチルアミノエチル(メタ)アクリレートを1重量部添加し、同様に乳化重合した。得られた乳化共重合体の分析値を同じく表2にまとめた。得られた本乳化重合体の乳化液を「M-SB-L5」とした。
製造例7
 製造例3にしたがって、ビニルトリ-tert-ブトキシシランを1重量部添加し、同様に乳化重合した。得られた乳化共重合体の分析値を同じく表2にまとめた。得られた本乳化重合体の乳化液を「M-SB-L6」とした。
 得られた乳化共重合体の分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例1
 製造例2で製造した「M-SB-L1」とシリカを次の条件で共凝固することによってゴム組成物を製造した。
 シリカはシリカ製造会社より、通常の乾燥製造工程を経て計測すると、BET表面積が175m/g、DBP吸油量が220ml/100g、二次粒子平均粒径が120μmとなる特性のシリカの乾燥前のものの水との混合物であって、シリカ含量が20%のシリカケーキを入手した。このシリカの一次粒子平均粒径は20nmであった。このシリカケーキを「WS-1」とする。
 官能基含有乳化共重合体「M-SB-L1」の固形分1000g相当の乳化液にシリカケーキ「WS-1」の固形分550g相当を撹拌下少量ずつ加え乳化共重合体とシリカとの均一な懸濁液とした。これに老化防止剤としてスチレン化フェノールの乳化液をSBRあたり1部になるように添加した。次に10%の食塩水を900mlと1%のポリエチレングリコール水溶液と5%硫酸を加えてpHを4にした。1cm前後の大きさのシリカ・ゴム組成物がクラム状に析出した。これを40メッシュのステンレス製金網でろ過した後、水で洗浄して、シリカ・ゴム組成物を得た。この組成物を100℃の熱風乾燥機に入れ乾燥した。ゴム組成物の作業上のロスを考慮すると、ほぼ全量を回収した。このゴム組成物を燃焼することによって、シリカの含量を求めると54phrであった。
実施例2~6
 実施例1と同様に製造例3~7で製造した「M-SB-L2~6」とシリカ「WS-1」を共凝固することによってゴム組成物を製造した。これらの組成物を用いて、第3表の配合処方で、加硫物性を評価し、表4にまとめた。
比較例1
 実施例1と同様に製造例1で製造した「N-SB-L1」とシリカ、「WS-1」を共凝固することによってゴム組成物を製造した。これらの組成物の加硫物性を表4にまとめた。
比較例2~4
 比較例2は「N-SB-L1」を、シリカを用いないで単独で凝固した「N-SB-R1」と熱風乾燥したゴム組成物を用いて、実施例1と同様に加硫物性を評価し、第4表にまとめた。比較例3はJSR(株)製、乳化重合SBR#1502を用いて、シリカ配合で評価し、比較例4は同じ#1502と、シリカをカーボンブラックに置きかえた配合で加硫物性を評価し、表4にまとめた。
 乳化重合体とシリカとのゴム組成物の加硫物性配合処方を表3に示す。なお、表3で用いられている薬品名などの英語略号は、当業者に周知のものであるが、念のため、意味内容を示すと、以下の通りである。
シランカップリング剤「Si69」:ビス(3-トリエトキシシリルプロピル)テトラスルフィド
ポリエチレングリコール「PEG4000」:ポリエチレングリコール4000
老化防止剤「6C」:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニルジアミン、
加硫促進剤「D」:N,N’―ジフェニルグアニジン、
加硫促進剤「CZ」:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
Figure JPOXMLDOC01-appb-T000003
 乳化重合体とシリカとのゴム組成物の加硫物性の評価結果を第4表に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果より、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液 とより共凝固したゴム組成物は、混練り時の最大平均トルクが低く、良混練り性であった。
 実施例1~6において、モジュラス(M100,M300)が高く、官応基含有乳化共重合体とシリカとの相互作用が高いと推定される。そのため、アクロン耐摩耗性も市販E-SBRとカーボンブラックの配合からなるゴム組成物と同等以上の良好な値を示した。低燃費性の指標となるtanδ(60℃)も、カーボンブラック配合のゴム組成物より非常に優れている。
 混練り時の加工性と耐久性、低燃費性、ウエットグリップ性さらに耐摩耗性のバランスが良好な加硫物性を示す結果である。
実施例7
 実施例1と同様処方で、「M-SB-L4」とシリカ「WS-1」を共凝固する際に、シランカップリング剤、ビス(3-トリブトキシシリルプロピル)ジスルフィドをシリカの固形分あたり、2phr添加した以外は実施例1と同様にゴム組成物を調製した。実施例1と同様に、加硫物性を評価し、第5表にまとめた。
実施例8
 実施例7のゴム組成物を120℃の熱ロールで、10分間さらに追加乾燥し、ゴム組成物を調製した。このゴム組成物の加硫物性を評価し、表5にまとめた。
実施例9
 実施例1と同様処方で、「M-SB-L4」とシリカ「WS-1」を用いて、凝固し、熱風乾燥後、熱ロールで追加乾燥して、ゴム組成物を調製した。このゴム組成物の加硫物性を評価し、表5にまとめた。
実施例10
 実施例1で使用したシリカケーキの乾燥工程を経て乾燥されたシリカを、20%含有量になるように蒸留水に添加し、プライミクス(株)製、T.K.ハイビスディスパーミックスを用いて、シリカの懸濁液を調製した。このシリカ懸濁液を「WS-2」とする。引続いて、実施例1と同様処方で、「M-SB-L4」とシリカ「WS-2」を用いて、凝固、熱風乾燥して、ゴム組成物を調製した。このゴム組成物の加硫物性を評価し、表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表5にまとめた結果より、重合体とシリカがより反応しやすい条件ほど加硫物性が良いと思われる。また、シリカの二次凝集体はある程度解離することが可能と思われる。
実施例11
 乳化重合体の乳化液「M-SB-L1」とシリカ懸濁液(silica water suspension solution)「WS-1」とをあらかじめ混合し、その混合溶液をスチーム噴出器を用いて混合する以外は実施例1と同様に、共凝固した。
 乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液とをスチーム噴出器を用いて混合すると、両者の混合物は、高圧スチームの温度と圧力の刺激を受けるなどの作用を受けて、乳化重合共役ジエン系共重合体の乳化微粒子とシリカ懸濁粒子とがより均一に混合した。
 この凝固物を熱風乾燥後、さらに熱ロールで追加乾燥して、ゴム組成物を調製した。シリカの含量はほぼ55phrであった。このゴム組成物の加硫物性を評価し、第6表にまとめた。
実施例12~実施例14
 実施例11と同様な処方で、乳化重合体の乳化液「M-SB-L4」とシリカ懸濁液 「WS-1」との混合溶液をスチーム噴出器を用いて、高圧スチームの圧力を表に示すように、0.3MPa、0.6MPa、0.9MPaと変えて、混合溶液を均一化し、共凝固した。シリカの含量はほぼ55phrであったが、スチームの圧力が低くなるとゴム組成物の洗浄液は濁りが増加する傾向であった。
 この凝固物を熱風乾燥後、さらに熱ロールで追加乾燥して、ゴム組成物を調製した。このゴム組成物の加硫物性を評価し、第6表にまとめた。
Figure JPOXMLDOC01-appb-T000006

 第6表にまとめた結果より、より高温で、より勢いよく吹き出し剪断力が大きい条件ほど乳化重合体の乳化液とシリカ懸濁液との均一化が促進され、加硫物性が良くなったと思われる。

Claims (13)

  1.  アミノ基、ピリジル基、アルコキシシリル基、エポキシ基、カルボキシル基および水酸基から選択される少なくとも1種の官能基を有するモノマーを0.02~10重量%共重合した乳化重合共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカ懸濁液の固形分が10~120重量部になるように、乳化重合共役ジエン系共重合体の乳化液とシリカ懸濁液とを混合し、酸および/または1価ないし3価の金属塩を加え凝固した後、乾燥したゴム組成物。
  2.  シリカの一次粒子径が1~200nmで、シリカの含水量が30重量%以下になる乾燥工程を経ていないシリカの懸濁液を用いて、共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカの固形分が10~120重量部になるように混合し、凝固、乾燥した請求項1に記載のゴム組成物。
  3.  シリカ懸濁液と、共役ジエン系共重合体乳化液とを混合するにあたり、スチーム噴出器(steam ejector)を用いて混合した後、凝固、乾燥した請求項1ないし2記載のゴム組成物。
  4.  シリカ表面のシラノール基と反応性を有する炭素数が6~50の化合物を予めシリカ懸濁液へ加えたシリカの懸濁液を用いて、共役ジエン系共重合体の乳化液中の固形分100重量部に対して、シリカの固形分が10~120重量部になるように、共役ジエン系共重合体乳化液と混合、凝固し、乾燥した請求項1ないし3に記載のゴム組成物。
  5.  乳化重合共役ジエン系共重合体が、アルコキシシリル基、エポキシ基、カルボキシル基から選択される少なくとも1種の官能基を有するモノマーを共重合した乳化重合共役ジエン系共重合体である請求項1~4のゴム組成物。
  6.  乳化重合共役ジエン系共重合体が、アルコキシシリル基、エポキシ基、カルボキシル基から選択される少なくとも1種の官能基を有するモノマーを0.02~10重量%共重合した乳化重合共役ジエン系共重合体である請求項1~5のゴム組成物。
  7.  請求項1ないし6に記載のゴム組成物に1~50重量部の伸展油を配合したことを特徴とするゴム組成物。
  8.  請求項1ないし7に記載のゴム組成物に1~50重量部のカーボンブラックを配合したことを特徴とするゴム組成物。
  9.  pHが7以上のアルカリ条件下で調製したシリカ懸濁液と、共役ジエン系共重合体乳化液とを混合し、加熱凝固した後、乾燥する請求項8のゴム組成物の製造方法。
  10.  シリカ懸濁液と、共役ジエン系共重合体乳化液とを混合し、酸および/または1価ないし3価の金属塩を加えてから、30℃~100℃に加熱凝固した後、乾燥する請求項9のゴム組成物の製造方法。
  11.  シリカ懸濁液と、共役ジエン系共重合体乳化液とを混合するにあたり、スチーム噴出器(steam ejector)を用いて混合した後、凝固、乾燥する請求項9ないし10記載のゴム組成物の製造方法。
  12.  請求項9ないし11に記載のゴム組成物の製造方法における乾燥工程が、凝固後のクラム(ゴムの小さい塊)を熱風乾燥し、引き続いて少なくとも温度が100℃以上の熱ロールを通してシート状で乾燥する工程である、ゴム組成物の製造方法。
  13.  請求項1ないし8に記載されたゴム組成物を少なくとも30重量%以上含むタイヤ用ゴム組成物。
PCT/JP2014/057751 2013-03-25 2014-03-20 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法 WO2014156950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/779,989 US20160122501A1 (en) 2013-03-25 2014-03-20 Rubber composition comprising emulsion-polymerized conjugated diene polymer and silica suspension, and method for producing same
JP2015508410A JP6120949B2 (ja) 2013-03-25 2014-03-20 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法
CN201480016345.4A CN105051071A (zh) 2013-03-25 2014-03-20 乳化聚合共轭二烯系聚合物与二氧化硅悬浮液所组成的橡胶组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-062996 2013-03-25
JP2013062996 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156950A1 true WO2014156950A1 (ja) 2014-10-02

Family

ID=51623929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057751 WO2014156950A1 (ja) 2013-03-25 2014-03-20 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法

Country Status (5)

Country Link
US (1) US20160122501A1 (ja)
JP (1) JP6120949B2 (ja)
CN (1) CN105051071A (ja)
TW (1) TW201441310A (ja)
WO (1) WO2014156950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133005A (ja) * 2016-01-25 2017-08-03 日本エイアンドエル株式会社 ゴム組成物及びその製造方法、配合物、ならびに、ゴム組成物におけるシリカの歩留り比率向上方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374187B1 (ko) * 2019-12-24 2022-03-14 한화토탈 주식회사 고무 조성물의 제조방법, 이의 방법으로 제조된 고무 조성물 및 이를 이용하여 제조된 타이어
KR102446296B1 (ko) * 2020-12-15 2022-09-22 한화토탈에너지스 주식회사 고무 조성물의 제조방법, 이의 방법으로 제조된 고무 조성물 및 이를 이용하여 제조된 타이어

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
WO2005000957A1 (ja) * 2003-06-30 2005-01-06 Zeon Corporation シリカ含有ゴム組成物及びその製造方法
JP2006123272A (ja) * 2004-10-27 2006-05-18 Yokohama Rubber Co Ltd:The 未加硫ゴムの混練方法
JP2008101055A (ja) * 2006-10-17 2008-05-01 Nippon Zeon Co Ltd シリカ含有ゴム組成物、その製造方法、及びその架橋成形体
WO2008114756A1 (ja) * 2007-03-15 2008-09-25 Jsr Corporation 共役ジオレフィン共重合ゴム、その製造方法、ゴム組成物およびタイヤ
JP2009242709A (ja) * 2008-03-31 2009-10-22 Nippon Zeon Co Ltd 無機充填剤が分散されたゴム組成物の製造方法
JP2011012142A (ja) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd ゴムを連続的に製造する方法
JP2011079912A (ja) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd 複合体、ゴム組成物及び空気入りタイヤ
JP2012251086A (ja) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd シリカ含有ゴムマスターバッチ及びゴム組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202647A (en) * 1962-11-19 1965-08-24 Shell Oil Co Elastomer recovery process
CN100415814C (zh) * 2003-06-30 2008-09-03 日本瑞翁株式会社 含二氧化硅的橡胶组合物及其制备方法
TW200602430A (en) * 2004-03-03 2006-01-16 Jsr Corp Rubber composition
JP5745733B2 (ja) * 2006-10-25 2015-07-08 Jsr株式会社 変性重合体の製造方法、その方法により得られた変性重合体とそのゴム組成物
BRPI0720920B1 (pt) * 2006-12-27 2019-06-25 Jsr Corporation Método para produção de um polímero diênico conjugado modificado, polímero diênico conjugado modificado, composições de borracha, pneu e elemento de pneu

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
WO2005000957A1 (ja) * 2003-06-30 2005-01-06 Zeon Corporation シリカ含有ゴム組成物及びその製造方法
JP2006123272A (ja) * 2004-10-27 2006-05-18 Yokohama Rubber Co Ltd:The 未加硫ゴムの混練方法
JP2008101055A (ja) * 2006-10-17 2008-05-01 Nippon Zeon Co Ltd シリカ含有ゴム組成物、その製造方法、及びその架橋成形体
WO2008114756A1 (ja) * 2007-03-15 2008-09-25 Jsr Corporation 共役ジオレフィン共重合ゴム、その製造方法、ゴム組成物およびタイヤ
JP2009242709A (ja) * 2008-03-31 2009-10-22 Nippon Zeon Co Ltd 無機充填剤が分散されたゴム組成物の製造方法
JP2011012142A (ja) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd ゴムを連続的に製造する方法
JP2011079912A (ja) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd 複合体、ゴム組成物及び空気入りタイヤ
JP2012251086A (ja) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd シリカ含有ゴムマスターバッチ及びゴム組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133005A (ja) * 2016-01-25 2017-08-03 日本エイアンドエル株式会社 ゴム組成物及びその製造方法、配合物、ならびに、ゴム組成物におけるシリカの歩留り比率向上方法

Also Published As

Publication number Publication date
CN105051071A (zh) 2015-11-11
US20160122501A1 (en) 2016-05-05
TW201441310A (zh) 2014-11-01
JPWO2014156950A1 (ja) 2017-02-16
JP6120949B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP4746989B2 (ja) シリカ含有共役ジエン系ゴム組成物及び成形体
JP2002241507A (ja) ジエン系ゴム・無機化合物複合体及びその製造方法並びにそれを含有するゴム組成物
WO2014192635A1 (ja) 空気入りタイヤ及びゴムマスターバッチ
JP4609321B2 (ja) シリカ含有ゴム組成物及びその製造方法
WO2004067625A1 (ja) ジエン系ゴム組成物及びその製造方法
JP5063919B2 (ja) 紙繊維マスターバッチの製造方法および該紙繊維マスターバッチならびにタイヤ用ゴム組成物の製造方法
JP2005112918A (ja) ゴム組成物
JP4425653B2 (ja) シリカ充填ゴム組成物および成形体
JP6120949B2 (ja) 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法
JP5092344B2 (ja) シリカ含有ゴム組成物、その製造方法、及びその架橋成形体
JP5719875B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP5719881B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP5719878B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP5719879B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP4963865B2 (ja) ゴム組成物の製造方法
JP5719876B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5719880B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP5719877B2 (ja) タイヤ内部部材用ゴム組成物及び空気入りタイヤ
JP5607320B2 (ja) タイヤ
JP6753035B2 (ja) ゴム組成物
JP2008075035A (ja) 架橋性ゴム組成物の製造方法、架橋性ゴム組成物及び架橋成形体
JP2011213913A (ja) ゴム組成物及びそれを用いたタイヤ
JP4272289B2 (ja) タイヤトレッド用ゴム組成物
JP3904063B2 (ja) 共役ジエン系ゴム、油展ゴムおよびゴム組成物
WO2016047633A1 (ja) シリカ充填ゴム組成物の製造方法およびその組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016345.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14779989

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14775258

Country of ref document: EP

Kind code of ref document: A1