WO2014148165A1 - Energy network operation control method and device - Google Patents
Energy network operation control method and device Download PDFInfo
- Publication number
- WO2014148165A1 WO2014148165A1 PCT/JP2014/053452 JP2014053452W WO2014148165A1 WO 2014148165 A1 WO2014148165 A1 WO 2014148165A1 JP 2014053452 W JP2014053452 W JP 2014053452W WO 2014148165 A1 WO2014148165 A1 WO 2014148165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- heat source
- temperature
- operation control
- air conditioning
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000004378 air conditioning Methods 0.000 claims abstract description 141
- 238000005265 energy consumption Methods 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 65
- 230000009467 reduction Effects 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000001737 promoting effect Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000035807 sensation Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 18
- 238000007796 conventional method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000037323 metabolic rate Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
Definitions
- the present invention relates to a method and apparatus for performing optimum operation of heat source equipment in an energy network composed of a heat supply plant and a heat consumer such as a building.
- FIG. 5 shows an example of a conventional general energy network configuration.
- the energy network comprises a heat supply plant 1 and a plurality of heat consumers 15 such as buildings.
- the heat supply plant may be any type of cooling and heating, but here a case of using water as a heat medium and supplying cold water will be described.
- heat source equipment such as a plurality of refrigerators 2 and a water pump 3 are installed in the heat supply plant 1 on the side of supplying heat, and a plurality of heat demands of the chilled water 10 cooled by the respective refrigerators 2 Supply to the house 15 side.
- the heat source equipment operation control device 13 is installed, and the heat source equipment operation control device 13 takes in the cold water water supply temperature, the cold water return temperature, etc. from the temperature detectors 6, 7
- the operation control of the number of heat source devices such as the refrigerator 2 and the water pump 3 is performed.
- the heat demander 15 is a building or the like, and heat is generally supplied from a heat supply plant to a plurality of buildings to constitute a district cooling and heating system or the like.
- the customer 15 is provided with a heat exchanger 4 for receiving cold heat from the cold water 10 supplied from the heat supply plant 1, and the cold water 11 is supplied from the heat exchanger 4 to each air conditioner 5 via the water pump 8.
- Each customer 15 arbitrarily sets the air conditioning set temperature 9 of each room, and supplies the air 12 heat-exchanged by the air conditioning equipment 5 to each room to perform cooling.
- the customer 15 is provided with an air conditioning control device 14 for temperature control.
- the air conditioning control device 14 generally has a portion for controlling the air conditioning of the entire building (or each floor of the building) and a portion for controlling the air conditioning of each room, and in FIG. The part of the apparatus which sets temperature 9 arbitrarily is shown.
- the air conditioning of each room is performed by an indoor temperature control circuit provided on a wall or the like, and the temperature setting by the occupant is generally performed manually.
- the cold water 10 warmed by the heat exchanger 4 at the customer 15 is returned to the heat supply plant 1, cooled again, and circulated and used between the customer 15 and the heat supply plant 1.
- the system of the reception facility of the customer 15 who receives the thermal energy supplied from the heat supply plant 1 is an indirect connection system via the heat exchanger 4.
- there are two types of direct connection methods as another method one is a direct connection method in which the heat medium (cold water, hot water, steam) to be supplied is used as it is in the air conditioner 5, and the other is supply It is a bleed-in system in which the forward heat transfer medium (cold water, hot water) and the return heat transfer medium from the air conditioner 5 are mixed.
- FIG. 5 shows an example of the indirect connection method, it may be a direct connection method.
- a plurality of heat source equipment are operated according to the heat demand on the demand side. It is carried out. Specifically, the number operation of the heat source equipment is determined from the heat quantity based on the water supply temperature, the return temperature and the water supply flow rate of the heat medium of the heat source equipment.
- the necessary heat supply amount Q (W) is the water temperature Ts (° C.) of the cold water 10 sent from the heat supply plant 1, the return temperature Tr (° C.), the water flow rate W (m 3 / s) from the total refrigerator 2
- the density w w (kg / m 3 ) of the cold water 10 and the specific heat C Pw (J / kg / ° C.) are used to calculate the equation (1).
- Q w w C Pw W (TsTr) (1)
- the amount of cold heat is represented by ( ⁇ Q).
- the refrigerator is controlled so that the water supply temperature Ts becomes constant.
- the return temperature Tr changes in the heat exchanger 4 according to the air-conditioning cold heat amount.
- the flow rate is controlled by the flow control valve of the heat exchanger 4, and the water flow rate W changes. Therefore, the amount of cold heat (-Q) supplied from the refrigerator is automatically controlled to match the amount of cold air required by the customer.
- FIG. 6 shows from the top the air conditioning set temperature Td of the customer, the air conditioning cold energy (-Q), the overall coefficient of performance (total COP: coefficient of performance) of the heat source device (refrigerator), the energy consumption of the heat source device (refrigerator) Is shown.
- the horizontal axis shows the time of day. Further, the outside air temperature rises to a peak at, for example, noon (time T6 in FIG. 6), and thereafter decreases.
- the room temperature Td of the topmost customer is generally constant (for example, 26 degrees).
- the cold water water supply temperature Ts is assumed to be operated to maintain, for example, 7 degrees.
- the solid line is the air conditioning cold heat amount at the reference temperature, which fluctuates due to the increase or decrease of the outside air temperature change.
- the dimmed portion indicates the supplyable cold energy of the refrigerator.
- the air conditioning cold heat amount increases due to the rise of the outside air temperature from time T1, the air conditioning cold heat amount coincides with the maximum heat supply amount of one refrigerator at time T2, and the outside air temperature rises thereafter.
- cooling is insufficient in one refrigerator, and rising of cold water supply temperature or return temperature is detected, or air conditioning cold heat is compared with the maximum amount of heat supplied from the operating refrigerator.
- the first refrigerator is activated.
- a similar under-cooling condition also occurs at time T5, and the third refrigerator is activated.
- the air-conditioning cold heat amount decreases.
- the third refrigerator is stopped.
- the second refrigerator is stopped.
- the refrigerator is almost in the rated operation state, but in other time periods it is the partial load operation .
- FIG. 4 shows an example of the energy consumption characteristic of the heat source equipment whose abscissa represents the load factor and the ordinate represents the coefficient of performance COP of one turbo refrigerator. According to this, assuming that the COP when the load factor is 100% is 6, when the load factor is 66.7%, the COP is about 5.4, and when the load factor is 50%, the COP is about 4.7 Show a tendency to
- the overall COP shown in the third stage of FIG. 6 shows the result when the above operation control is carried out, and immediately after the stage increase of the refrigerator at time T2 and immediately before the stage decrease of the refrigerator at time T10, the refrigerator The load factor for one unit will be 50%, and the total COP will be about 4.7. Further, immediately after the stage increase of the refrigerator at time T5 and immediately before the stage reduction of the refrigerator at time T7, the load factor of one refrigerator is 66.7%, and the total COP is approximately 5.4.
- turbo refrigerator is shown in FIG. 4 and FIG. 6, the same tendency is shown also in the case of other heat source devices such as an absorption type refrigerator and a heat pump.
- the energy consumption efficiency of the heat source equipment changes with the load factor. Therefore, in the conventional heat source equipment operation, the heat source equipment operating according to the heat demand is shared with the heat demand and supplied, so that each heat source equipment is not operated at the highest efficiency condition, especially low In the case of operating at a load factor, the operating efficiency is lowered, so there is a problem that the energy saving and CO 2 emission reduction effects are smaller than in the case of operating at a high efficiency.
- the present invention has been made in view of the problems of the prior art as described above, and in order to further reduce the energy consumption of the heat source equipment, while reducing the air conditioning heat demand of the customer within the set air conditioning temperature range, Provided is an operation control method and apparatus for an energy network that changes the air conditioning temperature of a customer so as to reduce the number of operating heat source devices or improve the operation efficiency.
- the present invention is a method for controlling the operation of an energy network comprising a heat supply plant having a plurality of heat source devices and a plurality of heat consumers having a plurality of air conditioning facilities, the plurality of heat consumers
- the set temperature of the air conditioner is variably set from the viewpoint of reducing the energy consumption of the heat source equipment of the heat supply plant, and on the heat supply plant side, the number of operating heat source equipment is controlled.
- the present invention is an operation control apparatus of an energy network comprising a heat supply plant including a plurality of heat source devices, and a plurality of heat consumers including a plurality of air conditioners, Air conditioning measurement data input unit, room temperature upper limit / lower limit decision unit, air conditioning operation control plan unit and air conditioning operation command unit for control of heat consumers on multiple heat consumers
- the temperature is set variably in terms of reducing the energy consumption of the heat source equipment of the heat supply plant, Heat source equipment measurement data input unit of heat supply plant, supplied heat quantity calculation unit, number-of-operations determination unit, heat source equipment operation control plan unit, and heat source equipment operation command unit for control on the heat supply plant side Control of the number of operating units
- the figure which shows the structure of the energy network which concerns on a present Example The figure which shows the concrete apparatus structure of the control apparatus in a present Example.
- the figure which shows an example of the energy consumption characteristic of a heat-source apparatus The figure which shows an example of a general energy network structure.
- FIG. 1 shows the configuration of an energy network according to an embodiment of the present invention. Comparing FIG. 1 with the conventional energy network of FIG. 5, the configuration of the heat supply system 1 and the customer 15 remains unchanged.
- a plurality of refrigerators 2 are installed in the heat supply plant 1, and the cold water 10 generated by each refrigerator is sent to each customer 15 by each water pump 3.
- the customer 15 is provided with a heat exchanger 4 for receiving cold heat from the cold water 10 supplied from the heat supply plant, and the cold water 11 is sent from the heat exchanger 4 to each air conditioner 5.
- the air 12 thus supplied is supplied to each room to perform cooling.
- the system of the reception facility of the customer 15 who receives the heat energy supplied from the heat supply plant 1 is an indirect connection system via the heat exchanger 4.
- direct connection methods there are two types of direct connection methods as another method, one is a direct connection method in which the heat medium (cold water, hot water, steam) to be supplied is used as it is in the air conditioner 5, and the other is supply It is a bleed-in system in which the forward heat transfer medium (cold water, hot water) and the return heat transfer medium from the air conditioner 5 are mixed.
- FIG. 1 shows an example of the indirect connection method, it may be a direct connection method.
- control device configurations for controlling the heat supply system 1 and the customer 15 are different.
- a heat source equipment operation control device 13 for controlling the heat supply system 1 and an air conditioning-heat source equipment cooperation control device 20 for controlling the air conditioning control device 14 for controlling the customer 15 in association with each other are provided.
- the heat source equipment operation control device 13, the air conditioning control device 14, and the air conditioning-heat source device cooperation control device 20 are connected by the information network 16 and share information.
- the air conditioning-heat source equipment cooperation control device 20 includes an air conditioning-heat source equipment cooperation control planning unit 21, a heat source equipment operation control planning unit 221, and an air conditioning operation control planning unit 231. Controls the heat source operation control planning unit 221 and the air conditioning operation control planning unit 231 in cooperation with each other.
- the heat source device measurement data input unit 222 acquires measurement data regarding the operating state of the heat source device 2 of the heat supply plant 1, the water pump 3 and the like. What is actually acquired is the supply temperature (cold water supply water temperature) Ts of the cold water 10 supplied from the heat supply plant, the return temperature Tr, the water supply flow rate W from all the refrigerators, the start / stop state of the heat source equipment 2 and the like.
- the heat quantity calculation unit 223 of the heat source equipment operation control planning unit 221 performs the above (1) based on the water supply temperature Ts of the cold water 10 supplied from the heat supply plant 1, the return temperature Tr, and the water supply flow rate W from all the refrigerators.
- the total cold demand (air conditioning cold heat) (-Q) is calculated by the equation.
- the operation number determination unit 224 of the heat source device operation control planning unit 221 determines the operation number of heat source devices based on the total cold energy demand ( ⁇ Q).
- ⁇ Q total cold energy demand
- the supply and demand balance is determined by the comparison of -Q), and then the heat source equipment to be started or stopped is determined, and the number of units to be operated is set.
- the heat source equipment operation control planning unit 221 judges from the balance of supply and demand by the change of the water supply temperature Ts or the comparison of the maximum cold heat of the heat source equipment and the total cold demand (-Q). Determine the time of increase of equipment.
- the time of stage reduction of the heat source equipment is obtained by comparing the total maximum amount of cold heat from the operating heat source equipment when the stage reduction is performed and the predicted total cold energy demand ( ⁇ Q).
- the heat source device operation command unit 225 instructs the heat source device whose heat source device control plan unit 221 decides to increase or decrease the stage to start and stop. put out.
- the air conditioning measurement data input unit 232 on the air conditioning operation control planning unit 231 side acquires the operation information and the room temperature data of the air conditioner 5 from all the air conditioners 5 of the customers managed by itself.
- the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature determination unit 233 set the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature based on the specifications and conditions of each room.
- the air conditioning operation control plan unit 231 acquires operation data of each heat source facility, and controls the room temperature of each room in consideration of the air conditioning measurement data.
- the air conditioning operation command unit 234 instructs each air conditioning control device 14 the air conditioning operation condition determined by the air conditioning operation control plan unit 231.
- the heat source equipment operation control planning unit 221 and the air conditioning operation control planning unit 231 perform coordinated operation according to the command signal given by the air conditioning-heat source equipment cooperation control planning unit 21.
- FIG. 7 shows a heat load model in a customer 15 such as a building.
- a customer 15 such as a building.
- many forms of heat are applied to the room 17 of the building.
- Part of the heat applied to the room 17 of the building is from the outside, for example, ventilation heat of entry q V which enters the building by ventilation, window heat passing through the surface of the window by solar radiation q G , and the like wall throughflow heat q W caused by contact.
- ventilation heat of entry q V which enters the building by ventilation
- window heat passing through the surface of the window by solar radiation q G and the like wall throughflow heat q W caused by contact.
- equipment heat generation q E emitted from equipment such as lighting and personal computer
- human body heat generation q P emitted from the resident himself are examples of equipment heat generation q E emitted from equipment such as lighting and personal computer.
- ⁇ C P V (dT / dt) on the left side is the rate of change in heat of the building room 17
- ⁇ is the air density (kg / m 3 )
- C P is the specific heat of air (J / kg / C)
- V is the volume of the room (m 3 )
- dT / dt represents the temperature change per unit time.
- q A when the value of q A is positive, it means heating, and when it is negative, it means cooling.
- Equation (3) is obtained by modifying equation (2).
- T i T i * + ( ⁇ k q ki * + q Ai * ) ⁇ t / ⁇ C P V i (3)
- symbol i means any room
- * means the value before ⁇ t.
- the heat quantity Q to be supplied by the heat source plant is the sum of the air conditioning heat loads q Ai of all rooms of a plurality of consumers.
- ⁇ k q ki and q Ai use values before ⁇ t in equation (3), they may be calculated using values after ⁇ t.
- Q ⁇ i q Ai (4 )
- the size of q Ai is, for example, distributed in proportion to the volume V of each room or the total ⁇ k q k of the heat load of the room.
- FIG. 3 shows the state of each part when the operation of the present invention is carried out, the above-mentioned idea is clearly shown.
- the state of each part in FIG. 3 indicates the air conditioning set temperature Td, the air conditioning cold heat amount (-Q), the overall coefficient of performance COP, and the consumption energy of the heat source equipment in order from the top.
- Td the air conditioning set temperature
- -Q the air conditioning cold heat amount
- COP the overall coefficient of performance COP
- consumption energy of the heat source equipment in order from the top.
- the air conditioning equipment and operation method of all rooms are the same.
- the reference temperature and the allowable lower limit temperature are 26 ° C.
- the allowable upper limit temperature is 28 ° C.
- the air conditioning set temperature is controlled within this temperature range so as to reduce the energy consumption of the refrigerator.
- an air conditioner and one refrigerator in each room are started from time T1, and the air conditioning set temperature is a reference temperature (26 ° C.).
- the air-conditioning cold energy increases with the rise of the outside air temperature, and at time T2, the air-conditioning cold energy reaches the maximum cold energy of one refrigerator.
- the number of refrigerators is increased to two at time T2, whereas in method A, which is the present embodiment, the air-conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the number of refrigerators
- the air conditioning set temperature is increased.
- the air conditioning set temperature reaches the allowable upper limit temperature (28 ° C.) at time T3, the number of refrigerators is increased to two. From time T3 to T4, the air-conditioning set temperature is decreased to the reference temperature by maintaining the air-conditioning cold heat amount as the maximum cold heat amount of the two refrigerators. At time T4 to T5, the air conditioning set temperature is maintained at the reference temperature, and at time T5, the air conditioning cold heat amount reaches the maximum cold heat amount of two refrigerators. From time T5 to T7, the air conditioning set temperature is increased in order to maintain the air conditioning cold heat amount as the maximum cold heat amount of the two refrigerators to suppress an increase in the number of stages of the refrigerator.
- the outside air temperature decreases at time T6, and the air-conditioning cold heat amount also starts to decrease.
- the air conditioning cold energy is maintained at the maximum cold energy of the two refrigerators to lower the air conditioning set temperature to the reference temperature.
- the room temperature is maintained at the reference temperature from time T8.
- the air conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the air conditioning set temperature.
- the air conditioning cold energy is maintained at the maximum cold energy of one refrigerator to lower the air conditioning set temperature.
- time T11 to T12 if the air conditioning set temperature is maintained at the reference temperature, the amount of heat generated by the air conditioning decreases with the passage of time, and the operation of the air conditioner and the refrigerator is stopped at time T12.
- the air conditioning set temperature is the reference temperature in each of the time periods T1 to T2, T4 to T5, T8 to T9, and T11 to T12
- the air conditioning cold heat is the maximum of the activated refrigerator It is smaller than the amount of cold heat, and the refrigerator is in a state of partial load operation. Therefore, the total COP is smaller than the maximum COP (6).
- the total COP becomes maximum COP (6).
- the energy consumption of the refrigerator is reduced compared to the conventional method. ing.
- the energy consumption of the refrigerator is increased as compared with the conventional method.
- the required air conditioning cold energy is smaller because the air conditioning set temperature is higher in method A than in the conventional method, and the total COP of the refrigerator is high. The total energy consumption of the aircraft is reduced.
- the total energy consumption of the refrigerator is smaller in the method A than in the conventional method.
- FIG. 3 is also illustrated on the premise.
- the heat source equipment should be increased from one to two in the conventional method, and in the present invention, operation is performed by controlling the room temperature Td within a predetermined upper and lower temperature range. It is possible to suppress an increase in the number of heat source devices inside.
- the increase can be suppressed by controlling the room temperature at or below the upper limit temperature so as to be equal to or less than the maximum cold heat supply amount of the heat source device in operation.
- the maximum cold heat supply amount of the heat source apparatus after the stage reduction at time T9 in FIG. Step-down can be promoted by controlling the room temperature below the upper limit temperature.
- the temperature increase is controlled by controlling the room temperature above the lower limit temperature so as to be equal to or less than the maximum heat supply of the operating heat source equipment. can do.
- promote the reduction by controlling the room temperature above the lower limit temperature so as to be equal to or less than the maximum heat supply of the heat source equipment after the stage reduction. be able to.
- the concept of control in the operation control device of the energy network of the present invention is shown.
- the preset temperature Td of each room reaches the upper limit temperature at time T3 in FIG. 3
- the heat source equipment for generating cold water is increased to be equal to or less than the maximum cooling heat supply amount of the heat source equipment in operation at time T3 to T4.
- the set temperature Td of each room is lowered to the reference temperature.
- the set temperature Td of each room reaches the lower limit temperature in the scene of time T3 in FIG.
- the set temperature Td of each room is raised to the reference temperature so as to be equal to or less than the maximum heat supply amount of the heat source device in operation in the time zone corresponding to the time T3 to T4.
- the set temperature of each room is set to be equal to or less than the maximum cooling energy supply amount of the heat source device generating cold water in operation T10 to T11. Decrease Td to the reference temperature.
- the set temperature Td of each room reaches the lower limit temperature in the scene of time T10 in FIG. 3 and therefore the time corresponding to the subsequent times T10 to T11
- the set temperature Td of each room is raised to the reference temperature so as to be equal to or less than the maximum heat supply amount of the heat source device in operation in the zone.
- the air conditioning thermal load can be reduced by changing the air conditioning set temperature within the allowable temperature range, and the heat source equipment increase suppression and reduction in stages are promoted. Energy consumption can be reduced by minimizing the number of operating heat source devices.
- the reference temperature, the upper limit, and the lower limit temperature of the air conditioning are determined based on the comfort index.
- the necessary heat amount is preferentially supplied (load distribution) to the special circumstances such as a hospital, and the remaining equipment may perform variable setting according to the heat demand.
- PMV Predicted Mean Vote
- ISO7730 2005, Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
- FIG. 8 shows an overview of the comfort index PMV.
- room temperature ta room temperature ta
- humidity rh radiation temperature tr
- room air velocity vs room air velocity vs
- metabolic rate M dressing amount Icl.
- a constant value is usually set and input for the wind speed vs, the metabolic amount M, and the dressing amount Icl in the room.
- measured values are used for the room temperature ta and the humidity rh.
- the radiation temperature tr is evaluated based on the measurement value of the glove thermometer, but there is also a method of evaluating it using an indoor air conditioning temperature analysis.
- L (MW) EdEsEreCreR-C
- M a metabolic rate
- W a mechanical work amount
- Ed an insensitive steaming amount
- Es an evaporation heat loss amount by perspiration
- Ere is a latent heat loss amount by respiration
- Cre is a sensible heat loss amount by respiration
- R is The amount of radiant heat loss
- C indicates the amount of convective heat loss.
- the method B which is air conditioning-heat source equipment cooperation control using PMV which is one example of the present invention is explained below.
- the basic control method of method B is the same as method A shown in FIG. 3, but when evaluating the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature, evaluation is performed using PMV, and the reference temperature, the allowable upper limit Temperature and allowable lower limit temperature change with time depending on conditions.
- the air-conditioning cold energy increases with the rise of the outside air temperature, and at time T2, the air-conditioning cold energy reaches the maximum cold energy of one refrigerator.
- the number of refrigerators is increased to two at time T2
- the air-conditioning cold energy is the maximum of one refrigerator
- the air conditioning set temperature is increased in order to maintain the amount of cold heat and to suppress an increase in the number of stages of the refrigerator.
- the outside air temperature decreases at time T6, and the air-conditioning cold heat amount also starts to decrease.
- the air conditioning cold energy is maintained at the maximum cold energy of the two refrigerators to lower the air conditioning set temperature to the reference temperature.
- the room temperature is maintained at the reference temperature from time T8.
- the air conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the air conditioning set temperature.
- the air conditioning cold energy is maintained at the maximum cold energy of one refrigerator to lower the air conditioning set temperature.
- time T11 to T12 if the air conditioning set temperature is maintained at the reference temperature, the amount of heat generated by the air conditioning decreases with the passage of time, and the operation of the air conditioner and the refrigerator is stopped at time T12.
- the air conditioning set temperature is the reference temperature, so the air conditioning cold heat is smaller than the maximum cold heat of the activated refrigerator, The machine is in partial load operation. Therefore, the total COP is smaller than the maximum COP (6).
- the total COP becomes maximum COP (6).
- the energy consumption of the refrigerator decreases compared to the method C. ing.
- the energy consumption of the refrigerator decreases compared to the method C.
- the required air conditioning cold heat is small because the air conditioning set temperature is higher in method B than in method C, and furthermore, since the total COP of the refrigerator is high, refrigeration at time T2 to T4 The total energy consumption of the aircraft is reduced.
- the total energy consumption of the refrigerator is smaller in method B than in method C.
- the room temperature is controlled at a constant value, so the room tends to be too cold and energy consumption tends to be large.
- the reference temperature is calculated at each time using the comfort index PMV, an appropriate air conditioning set temperature is obtained, and the average temperature is higher than in the conventional method. Energy can be reduced.
- a heat source equipment operation control planning unit comprising a heat source equipment measurement data input unit, a heat supply quantity calculation unit, an operation quantity determination unit and a heat source equipment operation command unit, an air conditioning measurement data input unit for a heat consumer
- An air conditioning-heat source equipment cooperation control device comprising an air conditioning control planning unit having a reference temperature, an allowable upper limit temperature, an allowable lower limit temperature determination unit and an air conditioning operation command unit, and an air conditioning-heat source equipment cooperation control planning unit linking these Information on the operating state of the heat source equipment of the supply plant is taken in, and the set temperature of each room is controlled so as to reduce the energy consumption of each heat source equipment.
- the present invention can provide an optimum operation method and apparatus of a heat supply facility which realizes reduction of CO 2 emissions.
- SYMBOLS 1 Heat supply plant, 2 ... Refrigerator, 3 ... Water pump of a refrigerator, 4 ... Heat exchanger of a demander, 5 ... Air conditioning equipment of a demander, 6 ... Cold water water temperature, 7 ... Cold water return temperature, 8 ... Water exchanger pump of heat exchanger, 9 ... Air conditioning set temperature, 10 ... Cold water from heat source equipment, 11 ... Cold water of heat exchanger, 12 ... Air from air conditioning equipment, 13 ... Heat source equipment operation control device, 14 ... Air conditioning control device , 15 ... consumer, 16 ... information network, 17 ... room
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Provided is an energy network operation control method and device that varies the consumer-side air conditioning temperature in order to further decrease energy consumption of a heat source device so that, while reducing air conditioning heat demand of the customer to within an air conditioning temperature range that is set taking comfort into consideration, the number of operating heat source devices is reduced or operational efficiency thereof is improved. An operation control method for an energy network that comprises a plurality of heat consumers provided with a plurality of air conditioning apparatuses, and a heat supply plant comprising a plurality of heat source devices, is characterized in that the set temperature for an air conditioning apparatus is variably set on the side of the plurality of heat consumers from the view point of reducing energy consumption of the heat source devices of the heat supply plant, and the number of the plurality of heat source devices in operation is controlled on the heat supply plant side.
Description
本発明は、熱供給プラントとビル等の熱需要家から構成されるエネルギーネットワークにおいて、熱源機器の最適運転を実施する方法および装置に関するものである。
The present invention relates to a method and apparatus for performing optimum operation of heat source equipment in an energy network composed of a heat supply plant and a heat consumer such as a building.
近年、地球温暖化防止が喫緊の課題となっており、エネルギー起源のCO2排出を削減することが求められている。この点に関し製造業では、石油ショックを契機に、製造プロセスの改変、高効率省エネ機器の導入、燃料転換等による省エネ化が積極的に進められ、エネルギー消費はほぼ横ばいで推移している。
In recent years, global warming prevention has become an urgent issue, and it is required to reduce energy-derived CO 2 emissions. In this regard, in the manufacturing industry, energy shocks have been almost flat, with the oil shock taking the lead in actively promoting energy saving through modification of manufacturing processes, introduction of high-efficiency energy saving equipment, fuel conversion etc.
しかし、製造業のエネルギー消費量は国内の約40%と依然として高い割合を占めている。また、住宅、業務部門では、快適さや利便性を求めるライフスタイルの普及を背景にエネルギー消費は年々増加している。
However, energy consumption in the manufacturing sector remains high, at about 40% in Japan. In addition, in the housing and business sectors, energy consumption is increasing year after year due to the spread of lifestyles that demand comfort and convenience.
今後、より一層の省エネ・CO2排出削減を実現するためには、再生可能エネルギーの積極的な活用や、電気や熱の相互融通によりエネルギーを有効利用することや、需要家のエネルギー消費を制御することが求められている。
In order to achieve further energy saving and CO 2 emission reductions in the future, active use of renewable energy, mutual use of electricity and heat, effective use of energy, and control of consumers' energy consumption It is required to do.
これらの課題を実現すべき具体的な適用事例として、熱供給プラントとビル等の熱需要家から構成されるエネルギーネットワークがある。係るエネルギーネットワークの、需要家に熱を供給する熱供給プラント側における省エネ・CO2削減を行う従来技術としては、例えば特許文献1に示すように、熱源機器を最適に台数運転する運転制御装置が知られている。
As a specific application example to realize these problems, there is an energy network composed of a heat supply plant and a heat consumer such as a building. As a conventional technology for performing energy saving and CO 2 reduction on the heat supply plant side that supplies heat to consumers in the energy network, for example, as shown in Patent Document 1, an operation control apparatus that optimally operates the number of heat source devices Are known.
図5に従来の一般的なエネルギーネットワーク構成の一例を示している。エネルギーネットワークは、熱供給プラント1とビル等の複数の熱需要家15から構成されている。熱供給プラントは、冷房暖房いずれであってもよいがここでは熱媒体に水を使用し、冷水を供給する事例で説明する。
FIG. 5 shows an example of a conventional general energy network configuration. The energy network comprises a heat supply plant 1 and a plurality of heat consumers 15 such as buildings. The heat supply plant may be any type of cooling and heating, but here a case of using water as a heat medium and supplying cold water will be described.
このうち、熱を供給する側の熱供給プラント1内には複数の冷凍機2と送水ポンプ3などの熱源機器が設置されており、それぞれの冷凍機2で冷却した冷水10を複数の熱需要家15側に供給する。熱供給プラント1が供給する冷水の制御のために、熱源機器運転制御装置13が設置されており、熱源機器運転制御装置13は温度検出器6、7から冷水送水温度、冷水戻り温度などを取り込み、冷凍機2、送水ポンプ3などの熱源機器の台数運転制御を行っている。なお熱需要家15はビルなどであり、一般には熱供給プラントから熱が複数のビルに供給されて地域冷暖房システムなどを構成する。
Among them, heat source equipment such as a plurality of refrigerators 2 and a water pump 3 are installed in the heat supply plant 1 on the side of supplying heat, and a plurality of heat demands of the chilled water 10 cooled by the respective refrigerators 2 Supply to the house 15 side. In order to control the cold water supplied by the heat supply plant 1, the heat source equipment operation control device 13 is installed, and the heat source equipment operation control device 13 takes in the cold water water supply temperature, the cold water return temperature, etc. from the temperature detectors 6, 7 The operation control of the number of heat source devices such as the refrigerator 2 and the water pump 3 is performed. The heat demander 15 is a building or the like, and heat is generally supplied from a heat supply plant to a plurality of buildings to constitute a district cooling and heating system or the like.
需要家15には、熱供給プラント1から送水されてきた冷水10から冷熱を受入れる熱交換器4が設置され、熱交換器4から各空調設備5に送水ポンプ8を介して冷水11が送水され、各需要家15は各部屋の空調設定温度9を任意に設定し、空調設備5で熱交換された空気12を各部屋に供給して冷房を行う。
The customer 15 is provided with a heat exchanger 4 for receiving cold heat from the cold water 10 supplied from the heat supply plant 1, and the cold water 11 is supplied from the heat exchanger 4 to each air conditioner 5 via the water pump 8. Each customer 15 arbitrarily sets the air conditioning set temperature 9 of each room, and supplies the air 12 heat-exchanged by the air conditioning equipment 5 to each room to perform cooling.
需要家15には、温度制御のための空調制御装置14が設置されている。空調制御装置14は、一般にはビル全体(あるいはビルの各階)の空調を制御する部分と、各部屋の空調を制御する部分を備えており、図5にはこのうち後者の各部屋の空調設定温度9を任意に設定する装置部分を示している。なお、各部屋の空調は壁などに設けられた室内温度調整回路で実施され、居住者による温度設定が手動にて行われるものが一般的である。
The customer 15 is provided with an air conditioning control device 14 for temperature control. The air conditioning control device 14 generally has a portion for controlling the air conditioning of the entire building (or each floor of the building) and a portion for controlling the air conditioning of each room, and in FIG. The part of the apparatus which sets temperature 9 arbitrarily is shown. The air conditioning of each room is performed by an indoor temperature control circuit provided on a wall or the like, and the temperature setting by the occupant is generally performed manually.
需要家15での熱交換器4により暖められた冷水10は熱供給プラント1に戻され、再度冷却されて需要家15と熱供給プラント1の間で循環利用される。
The cold water 10 warmed by the heat exchanger 4 at the customer 15 is returned to the heat supply plant 1, cooled again, and circulated and used between the customer 15 and the heat supply plant 1.
ここで、図5に示す従来技術の一例では、熱供給プラント1から供給される熱エネルギーを受け入れる需要家15の受入設備の方式は、熱交換器4を介する間接接続方式である。また、他の方式としては2種類の直接接続方式があり、ひとつは、供給される熱媒(冷水、温水、蒸気)をそのまま空調設備5で使用する直結接続方式であり、もうひとつは、供給される往き熱媒(冷水、温水)と空調設備5からの返り熱媒を混合するブリードイン方式である。図5では間接接続方式の例を示しているが、直接接続方式の場合であってもよい。
Here, in the example of the prior art shown in FIG. 5, the system of the reception facility of the customer 15 who receives the thermal energy supplied from the heat supply plant 1 is an indirect connection system via the heat exchanger 4. Also, there are two types of direct connection methods as another method, one is a direct connection method in which the heat medium (cold water, hot water, steam) to be supplied is used as it is in the air conditioner 5, and the other is supply It is a bleed-in system in which the forward heat transfer medium (cold water, hot water) and the return heat transfer medium from the air conditioner 5 are mixed. Although FIG. 5 shows an example of the indirect connection method, it may be a direct connection method.
特許文献1に開示された熱供給プラント1では、熱源機器で消費する電力や燃料を低減して省エネ・CO2排出低減を行うため、複数の熱源機器を需要側の熱需要に合わせて台数運転を行っている。具体的には、熱源機器の台数運転を、熱源機器の熱媒体の送水温度、戻り温度および送水流量に基づく熱量から決定している。
In the heat supply plant 1 disclosed in Patent Document 1, in order to save energy and reduce CO 2 emissions by reducing the power and fuel consumed by the heat source equipment, a plurality of heat source equipment are operated according to the heat demand on the demand side. It is carried out. Specifically, the number operation of the heat source equipment is determined from the heat quantity based on the water supply temperature, the return temperature and the water supply flow rate of the heat medium of the heat source equipment.
特許文献1の熱供給プラント1では、全ての需要家15で必要とされる熱需要を満たすように冷凍機2を運転する。必要な供給熱量Q(W)は、熱供給プラント1から送水される冷水10の送水温度Ts(℃)、戻り温度Tr(℃)、全冷凍機2からの送水流量W(m3/s)、冷水10の密度ρw(kg/m3)および比熱CPw(J/kg/℃)を用いて(1)式で算出される。
[数1]
Q=ρwCPw W(TsTr) (1)
ここで、冷水の場合、(1)式より供給熱量Qは負の値となるため、冷熱量は(-Q)で表す。 In theheat supply plant 1 of patent document 1, the refrigerator 2 is operated so that the heat demand required by all the consumers 15 may be satisfy | filled. The necessary heat supply amount Q (W) is the water temperature Ts (° C.) of the cold water 10 sent from the heat supply plant 1, the return temperature Tr (° C.), the water flow rate W (m 3 / s) from the total refrigerator 2 The density w w (kg / m 3 ) of the cold water 10 and the specific heat C Pw (J / kg / ° C.) are used to calculate the equation (1).
[Equation 1]
Q = w w C Pw W (TsTr) (1)
Here, in the case of cold water, since the amount of heat supply Q is a negative value according to the equation (1), the amount of cold heat is represented by (−Q).
[数1]
Q=ρwCPw W(TsTr) (1)
ここで、冷水の場合、(1)式より供給熱量Qは負の値となるため、冷熱量は(-Q)で表す。 In the
[Equation 1]
Q = w w C Pw W (TsTr) (1)
Here, in the case of cold water, since the amount of heat supply Q is a negative value according to the equation (1), the amount of cold heat is represented by (−Q).
冷凍機は、送水温度Tsが一定になるように制御される。送水流量Wが一定に制御されている場合、空調冷熱量に応じて熱交換器4で戻り温度Trが変化する。また、戻り温度Trを一定に制御する場合には、熱交換器4の流量調節弁で流量制御され、送水流量Wが変化する。したがって、冷凍機から供給される冷熱量(-Q)は、需要家で必要な空調冷熱量に一致するように自動で制御される。
The refrigerator is controlled so that the water supply temperature Ts becomes constant. When the water supply flow rate W is controlled to be constant, the return temperature Tr changes in the heat exchanger 4 according to the air-conditioning cold heat amount. In addition, when the return temperature Tr is controlled to be constant, the flow rate is controlled by the flow control valve of the heat exchanger 4, and the water flow rate W changes. Therefore, the amount of cold heat (-Q) supplied from the refrigerator is automatically controlled to match the amount of cold air required by the customer.
この場合の冷凍機の台数運転方法の一例を図6に示す。図6は、上から需要家の空調設定温度Td、空調冷熱量(-Q)、熱源機器(冷凍機)の総合成績係数(総合COP:coefficient of performance)、熱源機器(冷凍機)の消費エネルギーを示している。なお、横軸は一日の時間を示している。また外気温度は、例えば正午(図6では時刻T6)をピークに上昇し、以後低下するものとする。
An example of the method of operating the number of refrigerators in this case is shown in FIG. FIG. 6 shows from the top the air conditioning set temperature Td of the customer, the air conditioning cold energy (-Q), the overall coefficient of performance (total COP: coefficient of performance) of the heat source device (refrigerator), the energy consumption of the heat source device (refrigerator) Is shown. The horizontal axis shows the time of day. Further, the outside air temperature rises to a peak at, for example, noon (time T6 in FIG. 6), and thereafter decreases.
これらの諸量のうち、最上段の需要家の室内温度Tdは一般には一定(例えば26度)とされている。また冷水送水温度Tsは例えば7度を維持するように運転されるものとする。
Of these quantities, the room temperature Td of the topmost customer is generally constant (for example, 26 degrees). In addition, the cold water water supply temperature Ts is assumed to be operated to maintain, for example, 7 degrees.
需要家の総熱需要(空調冷熱量)は、主に外気温度に連動して変化することが知られている。先にも述べたように、外気温度は正午をピークに上昇し、以後低下する。この場合の温度上昇に伴う冷凍機2の台数運転制御は、以下の方法で行われる。
It is known that the total heat demand (air conditioning cold heat amount) of consumers changes mainly in conjunction with the outside air temperature. As mentioned earlier, the outside air temperature rises to a peak at noon and then falls. The number operation control of the refrigerator 2 accompanying the temperature rise in this case is performed by the following method.
まず図6上から2段目の空調冷熱量(-Q)の時系列変化において、実線は基準温度における空調冷熱量であり、これが外気温度変化の増減により変動する。薄墨された部分は、冷凍機の供給可能冷熱量を示している。
First, in the time-series change of the second stage air conditioning cold heat amount (−Q) from the top of FIG. 6, the solid line is the air conditioning cold heat amount at the reference temperature, which fluctuates due to the increase or decrease of the outside air temperature change. The dimmed portion indicates the supplyable cold energy of the refrigerator.
この事例では、時刻T1から外気温度の上昇により空調冷熱量が増大し、時刻T2で空調冷熱量が冷凍機1台の最大供給熱量に一致し、かつその後も外気温が上昇する。時刻T2以降は冷凍機1台では冷却不足状態であり、冷水送水温度または戻り温度等の上昇を検知、あるいは、空調冷熱量と起動している冷凍機の最大供給熱量を比較することにより、2台目の冷凍機が起動される。同様の冷却不足状態は時刻T5でも生じ、3台目の冷凍機が起動される。
In this case, the air conditioning cold heat amount increases due to the rise of the outside air temperature from time T1, the air conditioning cold heat amount coincides with the maximum heat supply amount of one refrigerator at time T2, and the outside air temperature rises thereafter. After time T2, cooling is insufficient in one refrigerator, and rising of cold water supply temperature or return temperature is detected, or air conditioning cold heat is compared with the maximum amount of heat supplied from the operating refrigerator. The first refrigerator is activated. A similar under-cooling condition also occurs at time T5, and the third refrigerator is activated.
これに対し、外気温度が低下し始める時刻T6(12時)以後は、空調冷熱量が減少する。そして時刻T7では、実線の基準温度における空調冷熱量が冷凍機2台運転で与える最大冷熱量と同じ程度まで減少してくるので3台目の冷凍機を停止させる。時刻T10では、実線の基準温度における空調冷熱量が冷凍機1台運転で与える最大冷熱量と同じ程度まで減少してくるので2台目の冷凍機を停止させる。なお、時刻T2とT5の冷凍機の増段直前、時刻T7とT10の冷凍機の減段直後は、冷凍機はほぼ定格運転の状態となるが、それ以外の時間帯は部分負荷運転となる。
On the other hand, after the time T6 (12 o'clock) when the outside air temperature starts to decrease, the air-conditioning cold heat amount decreases. At time T7, since the air-conditioned cold heat at the reference temperature shown by the solid line decreases to the same extent as the maximum cold heat given by the operation of two refrigerators, the third refrigerator is stopped. At time T10, since the air-conditioned cold energy at the reference temperature shown by the solid line decreases to the same extent as the maximum cold energy given by one refrigerator operation, the second refrigerator is stopped. Immediately before the step-up of the refrigerator at time T2 and T5, and immediately after the step-down of the refrigerator at time T7 and T10, the refrigerator is almost in the rated operation state, but in other time periods it is the partial load operation .
ターボ冷凍機の負荷率(定格供給熱量に対する供給熱量の割合)と冷凍機の効率(COP:成績係数)の一例を図4に示す。図4は横軸に負荷率、縦軸にターボ冷凍機1台の成績係数COPを示した熱源機器のエネルギー消費特性の一例である。これによれば負荷率が100%のときのCOPを6としたとき、負荷率が66.7%になるとCOPは5.4程度、負荷率が50%になるとCOPは4.7程度に低下する傾向を示す。
An example of the load factor of the turbo refrigerator (the ratio of the amount of heat supply to the rated heat supply) and the efficiency of the refrigerator (COP: coefficient of performance) is shown in FIG. FIG. 4 shows an example of the energy consumption characteristic of the heat source equipment whose abscissa represents the load factor and the ordinate represents the coefficient of performance COP of one turbo refrigerator. According to this, assuming that the COP when the load factor is 100% is 6, when the load factor is 66.7%, the COP is about 5.4, and when the load factor is 50%, the COP is about 4.7 Show a tendency to
図6の3段目の図で示す総合COPは、上記の運転制御を実施した時の結果を示しており、時刻T2の冷凍機増段直後および時刻T10の冷凍機減段直前では、冷凍機1台分の負荷率は50%となり、総合COPは約4.7となる。また、時刻T5の冷凍機増段直後および時刻T7の冷凍機減段直前では、冷凍機1台分の負荷率は66.7%となり、総合COPは約5.4となる。
The overall COP shown in the third stage of FIG. 6 shows the result when the above operation control is carried out, and immediately after the stage increase of the refrigerator at time T2 and immediately before the stage decrease of the refrigerator at time T10, the refrigerator The load factor for one unit will be 50%, and the total COP will be about 4.7. Further, immediately after the stage increase of the refrigerator at time T5 and immediately before the stage reduction of the refrigerator at time T7, the load factor of one refrigerator is 66.7%, and the total COP is approximately 5.4.
ここで、図4および図6では、ターボ冷凍機の例を示しているが、吸収式冷凍機およびヒートポンプなどの他の熱源機器の場合も同様の傾向を示す。
Here, although the example of the turbo refrigerator is shown in FIG. 4 and FIG. 6, the same tendency is shown also in the case of other heat source devices such as an absorption type refrigerator and a heat pump.
一般に熱源機器は負荷率によってエネルギー消費効率は変化する。そのため、従来の熱源機器の台数運転では、熱需要に合わせて運転している熱源機器で熱需要を分担して供給するため、各熱源機器は最高効率条件での運転にはならず、特に低負荷率で運転する場合には運転効率が低下するため、高効率で運転した場合に比べて省エネ、CO2排出削減効果が小さいという課題がある。
Generally, the energy consumption efficiency of the heat source equipment changes with the load factor. Therefore, in the conventional heat source equipment operation, the heat source equipment operating according to the heat demand is shared with the heat demand and supplied, so that each heat source equipment is not operated at the highest efficiency condition, especially low In the case of operating at a load factor, the operating efficiency is lowered, so there is a problem that the energy saving and CO 2 emission reduction effects are smaller than in the case of operating at a high efficiency.
また、従来の熱源機器の運転制御は、需要家で必要となる熱需要に対して、熱源機器の最適運転を行うことにより省エネおよびCO2排出削減を実施していたが、今後、更なる省エネおよびCO2排出削減を実現するためには、需要家の熱需要制御と熱供給側の熱源機器の最適運転を連携して行うことが必要となる。
Also, in the conventional operation control of heat source equipment, energy saving and CO 2 emission reduction were carried out by performing optimal operation of heat source equipment to the heat demand required by customers, but in the future, further energy saving And in order to realize the reduction of CO 2 emissions, it is necessary to carry out the optimum operation of the heat demand control of the customer and the heat source equipment on the heat supply side in cooperation.
本発明は上述したような従来技術の問題点に鑑みてなされたものであり、熱源機器の消費エネルギーをさらに低減するため、設定した空調温度範囲内で需要家の空調熱需要を低減しつつ、熱源機器の運転台数を低減、または運転効率を向上させるように、需要家の空調温度を変化させるエネルギーネットワークの運転制御方法および装置を提供する。
The present invention has been made in view of the problems of the prior art as described above, and in order to further reduce the energy consumption of the heat source equipment, while reducing the air conditioning heat demand of the customer within the set air conditioning temperature range, Provided is an operation control method and apparatus for an energy network that changes the air conditioning temperature of a customer so as to reduce the number of operating heat source devices or improve the operation efficiency.
以上のことから本発明は、複数の熱源機器を備える熱供給プラントと、複数の空調設備を備えた複数の熱需要家から構成されるエネルギーネットワークの運転制御方法であって、複数の熱需要家側では空調設備の設定温度を、熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、熱供給プラント側では複数の熱源機器の運転台数を制御することを特徴とする。
From the above, the present invention is a method for controlling the operation of an energy network comprising a heat supply plant having a plurality of heat source devices and a plurality of heat consumers having a plurality of air conditioning facilities, the plurality of heat consumers On the side, the set temperature of the air conditioner is variably set from the viewpoint of reducing the energy consumption of the heat source equipment of the heat supply plant, and on the heat supply plant side, the number of operating heat source equipment is controlled.
以上のことから本発明は、複数の熱源機器を備える熱供給プラントと、複数の空調設備を備えた複数の熱需要家から構成されるエネルギーネットワークの運転制御装置であって、
複数の熱需要家側での制御のために複数の熱需要家の空調計測データ入力部、室温上限・下限値決定部、空調運転制御計画部および空調運転指令部を備えて、空調設備の設定温度を、熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、
熱供給プラント側での制御のために熱供給プラントの熱源機器計測データ入力部、供給熱量算出部、運転台数決定部、熱源機器運転制御計画部および熱源機器運転指令部を備えて複数の熱源機器の運転台数制御を行うことを特徴とする。 From the above, the present invention is an operation control apparatus of an energy network comprising a heat supply plant including a plurality of heat source devices, and a plurality of heat consumers including a plurality of air conditioners,
Air conditioning measurement data input unit, room temperature upper limit / lower limit decision unit, air conditioning operation control plan unit and air conditioning operation command unit for control of heat consumers on multiple heat consumers The temperature is set variably in terms of reducing the energy consumption of the heat source equipment of the heat supply plant,
Heat source equipment measurement data input unit of heat supply plant, supplied heat quantity calculation unit, number-of-operations determination unit, heat source equipment operation control plan unit, and heat source equipment operation command unit for control on the heat supply plant side Control of the number of operating units
複数の熱需要家側での制御のために複数の熱需要家の空調計測データ入力部、室温上限・下限値決定部、空調運転制御計画部および空調運転指令部を備えて、空調設備の設定温度を、熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、
熱供給プラント側での制御のために熱供給プラントの熱源機器計測データ入力部、供給熱量算出部、運転台数決定部、熱源機器運転制御計画部および熱源機器運転指令部を備えて複数の熱源機器の運転台数制御を行うことを特徴とする。 From the above, the present invention is an operation control apparatus of an energy network comprising a heat supply plant including a plurality of heat source devices, and a plurality of heat consumers including a plurality of air conditioners,
Air conditioning measurement data input unit, room temperature upper limit / lower limit decision unit, air conditioning operation control plan unit and air conditioning operation command unit for control of heat consumers on multiple heat consumers The temperature is set variably in terms of reducing the energy consumption of the heat source equipment of the heat supply plant,
Heat source equipment measurement data input unit of heat supply plant, supplied heat quantity calculation unit, number-of-operations determination unit, heat source equipment operation control plan unit, and heat source equipment operation command unit for control on the heat supply plant side Control of the number of operating units
設定した空調温度範囲内で需要家の空調熱需要を低減しつつ、熱源機器の消費エネルギーを低減させるように需要家の空調温度を変化させることにより、エネルギーネットワーク全体の省エネ・CO2削減を実現する熱源機器の台数および負荷率を制御する方法および装置を提供できる。
Achieve energy saving and CO 2 reduction of the entire energy network by changing the air conditioning temperature of the customer to reduce the energy consumption of the heat source equipment while reducing the air conditioning heat demand of the customer within the set air conditioning temperature range It is possible to provide a method and apparatus for controlling the number and load factor of heat source equipment to be
以下本発明の実施形態について図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.
図1に本発明の一実施例に係るエネルギーネットワークの構成を示している。図1を図5の従来のエネルギーネットワークと比較すると、熱供給システム1および需要家15の構成には変わるところがない。
FIG. 1 shows the configuration of an energy network according to an embodiment of the present invention. Comparing FIG. 1 with the conventional energy network of FIG. 5, the configuration of the heat supply system 1 and the customer 15 remains unchanged.
この場合にも熱供給プラント1内には複数の冷凍機2が設置されており、それぞれの冷凍機で生成された冷水10はそれぞれの送水ポンプ3で各需要家15に送られる。需要家15には、熱供給プラントから送水されてきた冷水10から冷熱を受入れる熱交換器4が設置され、熱交換器4から各空調設備5に冷水11が送水され、空調設備5で熱交換された空気12を各部屋に供給して冷房を行う。
Also in this case, a plurality of refrigerators 2 are installed in the heat supply plant 1, and the cold water 10 generated by each refrigerator is sent to each customer 15 by each water pump 3. The customer 15 is provided with a heat exchanger 4 for receiving cold heat from the cold water 10 supplied from the heat supply plant, and the cold water 11 is sent from the heat exchanger 4 to each air conditioner 5. The air 12 thus supplied is supplied to each room to perform cooling.
ここで、図1に示す本発明の一実施例では、熱供給プラント1から供給される熱エネルギーを受け入れる需要家15の受入設備の方式は、熱交換器4を介する間接接続方式である。また、他の方式としては2種類の直接接続方式があり、ひとつは、供給される熱媒(冷水、温水、蒸気)をそのまま空調設備5で使用する直結接続方式であり、もうひとつは、供給される往き熱媒(冷水、温水)と空調設備5からの返り熱媒を混合するブリードイン方式である。図1では間接接続方式の例を示しているが、直接接続方式の場合であってもよい。
Here, in the embodiment of the present invention shown in FIG. 1, the system of the reception facility of the customer 15 who receives the heat energy supplied from the heat supply plant 1 is an indirect connection system via the heat exchanger 4. Also, there are two types of direct connection methods as another method, one is a direct connection method in which the heat medium (cold water, hot water, steam) to be supplied is used as it is in the air conditioner 5, and the other is supply It is a bleed-in system in which the forward heat transfer medium (cold water, hot water) and the return heat transfer medium from the air conditioner 5 are mixed. Although FIG. 1 shows an example of the indirect connection method, it may be a direct connection method.
本実施例では、熱供給システム1および需要家15を制御する制御装置構成が相違している。熱供給システム1を制御する熱源機器運転制御装置13と需要家15を制御する空調制御装置14を関連付けて制御する空調―熱源機器連携制御装置20を備える。本実施例では、熱源機器運転制御装置13と空調制御装置14と空調―熱源機器連携制御装置20は、情報ネットワーク16で接続され情報を共有している。
In the present embodiment, control device configurations for controlling the heat supply system 1 and the customer 15 are different. A heat source equipment operation control device 13 for controlling the heat supply system 1 and an air conditioning-heat source equipment cooperation control device 20 for controlling the air conditioning control device 14 for controlling the customer 15 in association with each other are provided. In the present embodiment, the heat source equipment operation control device 13, the air conditioning control device 14, and the air conditioning-heat source device cooperation control device 20 are connected by the information network 16 and share information.
本実施例における具体的な制御装置構成を図2に示す。図2において、空調-熱源機器連携制御装置20は、空調-熱源機器連携制御計画部21、熱源機器運転制御計画部221、空調運転制御計画部231を含み、空調-熱源機器連携制御計画部21は、熱源機器運転制御計画部221と空調運転制御計画部231を連携して制御する。
A specific controller configuration in this embodiment is shown in FIG. In FIG. 2, the air conditioning-heat source equipment cooperation control device 20 includes an air conditioning-heat source equipment cooperation control planning unit 21, a heat source equipment operation control planning unit 221, and an air conditioning operation control planning unit 231. Controls the heat source operation control planning unit 221 and the air conditioning operation control planning unit 231 in cooperation with each other.
熱源機器運転制御計画部221側において、熱源機器計測データ入力部222では、熱供給プラント1の熱源機器2および送水ポンプ3等の運転状態に関する計測データを取得する。実際に取得するのは、熱供給プラントから送水される冷水10の供給温度(冷水送水温度)Ts、戻り温度Tr、全冷凍機からの送水流量W、熱源機器2の起動停止状態などである。
On the heat source device operation control planning unit 221 side, the heat source device measurement data input unit 222 acquires measurement data regarding the operating state of the heat source device 2 of the heat supply plant 1, the water pump 3 and the like. What is actually acquired is the supply temperature (cold water supply water temperature) Ts of the cold water 10 supplied from the heat supply plant, the return temperature Tr, the water supply flow rate W from all the refrigerators, the start / stop state of the heat source equipment 2 and the like.
熱源機器運転制御計画部221側の供給熱量算出部223では、熱供給プラント1から送水される冷水10の送水温度Ts、戻り温度Tr、全冷凍機からの送水流量Wに基づき、前記(1)式で総冷熱需要(空調冷熱量)(-Q)を算出する。
The heat quantity calculation unit 223 of the heat source equipment operation control planning unit 221 performs the above (1) based on the water supply temperature Ts of the cold water 10 supplied from the heat supply plant 1, the return temperature Tr, and the water supply flow rate W from all the refrigerators. The total cold demand (air conditioning cold heat) (-Q) is calculated by the equation.
熱源機器運転制御計画部221側の運転台数決定部224では、総冷熱需要(-Q)に基づき熱源機器の運転台数を決定する。この前提として、各冷凍機の定格容量などから熱源機器ごとの最大冷熱量が知られているので、現在の運転熱源機器による合計の最大冷熱量と、(1)式で求めた総冷熱需要(-Q)の比較により需給バランスを求め、次に運転開始し、あるいは運転停止する熱源機器を決定し、運転台数を設定する。
The operation number determination unit 224 of the heat source device operation control planning unit 221 determines the operation number of heat source devices based on the total cold energy demand (−Q). As this premise, since the maximum cold energy of each heat source equipment is known from the rated capacity of each refrigerator etc., the total maximum cold energy calculated by the current operation heat source equipment and the total cold energy demand obtained by the equation (1) The supply and demand balance is determined by the comparison of -Q), and then the heat source equipment to be started or stopped is determined, and the number of units to be operated is set.
これらの情報をもとに、熱源機器運転制御計画部221では、送水温度Ts等の変化、または熱源機器の最大冷熱量と総冷熱需要(-Q)の比較により需給バランスから判断して、熱源機器の増段の時刻を決定する。なお、熱源機器の減段の時刻は、減段した場合の運転熱源機器による合計の最大冷熱量と、予測した総冷熱需要(-Q)の比較により求める。
Based on the above information, the heat source equipment operation control planning unit 221 judges from the balance of supply and demand by the change of the water supply temperature Ts or the comparison of the maximum cold heat of the heat source equipment and the total cold demand (-Q). Determine the time of increase of equipment. The time of stage reduction of the heat source equipment is obtained by comparing the total maximum amount of cold heat from the operating heat source equipment when the stage reduction is performed and the predicted total cold energy demand (−Q).
熱源機器運転制御計画部221での処理結果を受けて熱源機器運転指令部225では、熱源機器制御計画部221で増段および減段することを判断した熱源機器に対して起動、停止の指令を出す。
In response to the processing result of the heat source device operation control plan unit 221, the heat source device operation command unit 225 instructs the heat source device whose heat source device control plan unit 221 decides to increase or decrease the stage to start and stop. put out.
他方、空調運転制御計画部231側の空調計測データ入力部232では、自己が管理する需要家の各空調設備5の全てから空調設備5の運転情報および室温データを取得する。
On the other hand, the air conditioning measurement data input unit 232 on the air conditioning operation control planning unit 231 side acquires the operation information and the room temperature data of the air conditioner 5 from all the air conditioners 5 of the customers managed by itself.
基準温度、許容上限温度、許容下限温度決定部233では、各部屋の仕様および状況を考量して基準温度、許容上限温度、および許容下限温度を設定する。
The reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature determination unit 233 set the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature based on the specifications and conditions of each room.
空調運転制御計画部231は、各熱源設備の運転データを取得し、空調計測データも考慮して各部屋の室温を制御する。
The air conditioning operation control plan unit 231 acquires operation data of each heat source facility, and controls the room temperature of each room in consideration of the air conditioning measurement data.
空調運転指令部234では、空調運転制御計画部231で決定した空調運転条件を各空調制御装置14へ指令する。
The air conditioning operation command unit 234 instructs each air conditioning control device 14 the air conditioning operation condition determined by the air conditioning operation control plan unit 231.
本発明の空調―熱源機器連携制御装置20では、空調―熱源機器連携制御計画部21が与える指令信号に応じて熱源機器運転制御計画部221と空調運転制御計画部231の協調動作をおこなわせる。
In the air conditioning-heat source equipment cooperation control device 20 of the present invention, the heat source equipment operation control planning unit 221 and the air conditioning operation control planning unit 231 perform coordinated operation according to the command signal given by the air conditioning-heat source equipment cooperation control planning unit 21.
本発明で追加された空調―熱源機器連携制御装置20内の空調―熱源機器連携制御計画部21による熱源機器運転制御計画部221と空調運転制御計画部231の協調動作の考え方について図7を用いて説明する。
The concept of the coordinated operation of the heat source equipment operation control planning unit 221 and the air conditioning operation control planning unit 231 by the air conditioning-heat source equipment cooperation control planning unit 21 added by the present invention in the air conditioning-heat source equipment cooperation control device 20 Explain.
図7は、ビルなどの需要家15における熱負荷モデルを示している。この図に示すようにビルの部屋17には多くの形態の熱が加えられる。ビルの部屋17に加えられる熱の一部は外部からのものであり、例えば換気によりビル内に侵入する換気侵入熱qV、窓からの日射による窓面通過日射熱qG、壁が大気に接することで生じる壁体貫流熱qWなどがある。またビルの内部で発生するものとして、照明やパソコンなどの機器が発する機器発熱qE、居住者自身が発する人体発熱qPなどがある。
FIG. 7 shows a heat load model in a customer 15 such as a building. As shown in this figure, many forms of heat are applied to the room 17 of the building. Part of the heat applied to the room 17 of the building is from the outside, for example, ventilation heat of entry q V which enters the building by ventilation, window heat passing through the surface of the window by solar radiation q G , and the like wall throughflow heat q W caused by contact. Further, as things generated inside the building, there are equipment heat generation q E emitted from equipment such as lighting and personal computer, and human body heat generation q P emitted from the resident himself.
これに対して、ビルなどの需要家15から供給される熱がある。これが空調熱負荷qAであり、空調設備5により供給されることでビルの部屋17の空調を行っている。図7のビル熱負荷モデルでは、加えられた熱の和Σkqk(=qV+qG+qW+qE+qP)と、供給された熱qAの間に(2)式が成立する。
[数2]
ρCPV(dT/dt)=qV+qG+qW+qE+qP+qA=Σkqk+qA (2)
(2)式で左辺のρCPV(dT/dt)は、ビルの部屋17の熱量変化率であり、ρは空気密度(kg/m3)、CPは空気の比熱(J/kg/℃)、Vは部屋の容積(m3)、dT/dtは単位時間当たりの温度変化を表している。また、qAの値が正の場合は暖房、負の場合は冷房を意味する。 On the other hand, there is heat supplied from acustomer 15 such as a building. This is the air conditioning heat load q A, doing conditioning of buildings the room 17 by being supplied by the air conditioning equipment 5. In the building heat load model of FIG. 7, the equation (2) is established between the sum of the applied heat k k q k (= q v + q G + q W + q E + q P ) and the supplied heat q A .
[Equation 2]
CC P V (dT / dt) = q V + q G + q W + q E + q P + q A = k k q k + q A (2)
In the equation (2), 左 C P V (dT / dt) on the left side is the rate of change in heat of thebuilding room 17, ρ is the air density (kg / m 3 ), and C P is the specific heat of air (J / kg / C), V is the volume of the room (m 3 ), dT / dt represents the temperature change per unit time. In addition, when the value of q A is positive, it means heating, and when it is negative, it means cooling.
[数2]
ρCPV(dT/dt)=qV+qG+qW+qE+qP+qA=Σkqk+qA (2)
(2)式で左辺のρCPV(dT/dt)は、ビルの部屋17の熱量変化率であり、ρは空気密度(kg/m3)、CPは空気の比熱(J/kg/℃)、Vは部屋の容積(m3)、dT/dtは単位時間当たりの温度変化を表している。また、qAの値が正の場合は暖房、負の場合は冷房を意味する。 On the other hand, there is heat supplied from a
[Equation 2]
CC P V (dT / dt) = q V + q G + q W + q E + q P + q A = k k q k + q A (2)
In the equation (2), 左 C P V (dT / dt) on the left side is the rate of change in heat of the
本実施例では、計算機を用いた処理を実行するので、(2)式の変形により(3)式を得る。
[数3]
Ti=Ti *+(Σkqki *+qAi *)Δt/ρCPVi (3)
この式において、記号iは任意の部屋、*はΔt前の値を意味している。ここで、複数の需要家の全部屋の空調熱負荷qAiを足し合わせたものが、熱源プラントで供給する熱量Qとなる。尚、(3)式ではΣkqkiおよびqAiは、Δt前の値を使用したが、Δt後の値を用いて計算してもよい。
[数4]
Q=ΣiqAi (4)
ここで、qAiの大きさは、一例として、各部屋の容積V、または、部屋の熱負荷の合計Σkqkに比例して配分する。 In the present embodiment, since processing using a computer is performed, equation (3) is obtained by modifying equation (2).
[Equation 3]
T i = T i * + (Σ k q ki * + q Ai * ) Δt / ρC P V i (3)
In this equation, symbol i means any room, and * means the value before Δt. Here, the heat quantity Q to be supplied by the heat source plant is the sum of the air conditioning heat loads q Ai of all rooms of a plurality of consumers. Although Σ k q ki and q Ai use values before Δt in equation (3), they may be calculated using values after Δt.
[Equation 4]
Q = Σ i q Ai (4 )
Here, the size of q Ai is, for example, distributed in proportion to the volume V of each room or the total Σ k q k of the heat load of the room.
[数3]
Ti=Ti *+(Σkqki *+qAi *)Δt/ρCPVi (3)
この式において、記号iは任意の部屋、*はΔt前の値を意味している。ここで、複数の需要家の全部屋の空調熱負荷qAiを足し合わせたものが、熱源プラントで供給する熱量Qとなる。尚、(3)式ではΣkqkiおよびqAiは、Δt前の値を使用したが、Δt後の値を用いて計算してもよい。
[数4]
Q=ΣiqAi (4)
ここで、qAiの大きさは、一例として、各部屋の容積V、または、部屋の熱負荷の合計Σkqkに比例して配分する。 In the present embodiment, since processing using a computer is performed, equation (3) is obtained by modifying equation (2).
[Equation 3]
T i = T i * + (Σ k q ki * + q Ai * ) Δt / ρC P V i (3)
In this equation, symbol i means any room, and * means the value before Δt. Here, the heat quantity Q to be supplied by the heat source plant is the sum of the air conditioning heat loads q Ai of all rooms of a plurality of consumers. Although Σ k q ki and q Ai use values before Δt in equation (3), they may be calculated using values after Δt.
[Equation 4]
Q = Σ i q Ai (4 )
Here, the size of q Ai is, for example, distributed in proportion to the volume V of each room or the total Σ k q k of the heat load of the room.
(3)、(4)式の関係を用いて、設定した空調温度範囲内で需要家の空調冷熱量を低減しつつ、熱源機器の消費エネルギーを低減させるように冷水熱量(-Q)を設定し、需要家の空調温度を変化させることにより、エネルギーネットワークの省エネ・CO2削減を実現する。
Set the cold water heat quantity (-Q) to reduce the consumption energy of the heat source equipment while reducing the air conditioning cold energy of the customer within the set air conditioning temperature range using the relationship between the equations (3) and (4) and, by changing the air-conditioning temperature of the customer, realizing energy saving · CO 2 reduced energy network.
図3に本発明の運転を実施した時の各部状態を示しているが、上記の考え方が顕著に表れている。なお図3の各部状態は、上部から順に、空調設定温度Td、空調冷熱量(-Q)、総合成績係数COP、熱源設備の消費エネルギーを示している。この図では、理解を容易にするため、全ての部屋の空調設備および運転方法を同一とした。
Although FIG. 3 shows the state of each part when the operation of the present invention is carried out, the above-mentioned idea is clearly shown. The state of each part in FIG. 3 indicates the air conditioning set temperature Td, the air conditioning cold heat amount (-Q), the overall coefficient of performance COP, and the consumption energy of the heat source equipment in order from the top. In this figure, in order to facilitate understanding, the air conditioning equipment and operation method of all rooms are the same.
本実施例では、基準温度および許容下限温度を26℃、許容上限温度を28℃として、冷凍機の消費エネルギーを低減するように、この温度範囲内で空調設定温度を制御する。
In this embodiment, the reference temperature and the allowable lower limit temperature are 26 ° C., and the allowable upper limit temperature is 28 ° C. The air conditioning set temperature is controlled within this temperature range so as to reduce the energy consumption of the refrigerator.
図3を用いて、本実施例である方式Aに関して、運用における時系列的な処理の変遷とその時の各部状態量について説明する。
The transition of time-series processing in operation and state quantities of each part at that time will be described with reference to the method A of this embodiment with reference to FIG.
まず、時刻T1から各部屋の空調機および冷凍機1台が起動し、空調設定温度は基準温度(26℃)である。時間が経過すると外気温の上昇に伴い空調冷熱量は増大し、時刻T2になると空調冷熱量は冷凍機1台の最大冷熱量に達する。従来方式では、時刻T2で冷凍機を2台に増段するのに対して、本実施例である方式Aでは、空調冷熱量を冷凍機1台の最大冷熱量に維持して冷凍機の増段を抑制するため、空調設定温度を増加させる。
First, an air conditioner and one refrigerator in each room are started from time T1, and the air conditioning set temperature is a reference temperature (26 ° C.). As time passes, the air-conditioning cold energy increases with the rise of the outside air temperature, and at time T2, the air-conditioning cold energy reaches the maximum cold energy of one refrigerator. In the conventional method, the number of refrigerators is increased to two at time T2, whereas in method A, which is the present embodiment, the air-conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the number of refrigerators In order to suppress the stage, the air conditioning set temperature is increased.
時刻T3で空調設定温度が許容上限温度(28℃)に達するため、冷凍機を2台に増段させる。時刻T3~T4では、空調冷熱量を冷凍機2台の最大冷熱量に維持して空調設定温度を基準温度まで低下させる。時刻T4~T5では空調設定温度を基準温度に維持し、時刻T5になると空調冷熱量は冷凍機2台の最大冷熱量に達する。時刻T5~T7では、空調冷熱量を冷凍機2台の最大冷熱量に維持して冷凍機の増段を抑制するため、空調設定温度を増加させる。
Since the air conditioning set temperature reaches the allowable upper limit temperature (28 ° C.) at time T3, the number of refrigerators is increased to two. From time T3 to T4, the air-conditioning set temperature is decreased to the reference temperature by maintaining the air-conditioning cold heat amount as the maximum cold heat amount of the two refrigerators. At time T4 to T5, the air conditioning set temperature is maintained at the reference temperature, and at time T5, the air conditioning cold heat amount reaches the maximum cold heat amount of two refrigerators. From time T5 to T7, the air conditioning set temperature is increased in order to maintain the air conditioning cold heat amount as the maximum cold heat amount of the two refrigerators to suppress an increase in the number of stages of the refrigerator.
次に時刻T6を境に外気温は低下し、空調冷熱量も低下し始める。時刻T7~T8では、空調冷熱量を冷凍機2台の最大冷熱量に維持して空調設定温度を基準温度まで低下させる。時刻T8から室温を基準温度に維持する。ここで、冷凍機を2台から1台に減段した場合、空調冷熱量を冷凍機1台の最大冷熱量に維持して、空調設定温度を許容上限温度以下にすることが可能な時刻T9を予測し、時刻T9で冷凍機を2台から1台に減段する。
Next, the outside air temperature decreases at time T6, and the air-conditioning cold heat amount also starts to decrease. From time T7 to T8, the air conditioning cold energy is maintained at the maximum cold energy of the two refrigerators to lower the air conditioning set temperature to the reference temperature. The room temperature is maintained at the reference temperature from time T8. Here, in the case where the number of refrigerators is reduced from two to one, it is possible to maintain the air-conditioning cold heat at the maximum cold heat of one refrigerator and to set the air-conditioning set temperature below the allowable upper limit temperature. And reduce the stage of the refrigerator from two to one at time T9.
時刻T9~T10では、空調冷熱量を冷凍機1台の最大冷熱量に維持して空調設定温度を増加させる。時刻T10~T11では、空調冷熱量を冷凍機1台の最大冷熱量に維持して空調設定温度を低下させる。時刻T11~T12では、空調設定温度を基準温度に維持すると空調冷熱量は時間の経過と共に減少し、時刻T12で空調機および冷凍機の運転を停止する。
From time T9 to T10, the air conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the air conditioning set temperature. From time T10 to T11, the air conditioning cold energy is maintained at the maximum cold energy of one refrigerator to lower the air conditioning set temperature. During time T11 to T12, if the air conditioning set temperature is maintained at the reference temperature, the amount of heat generated by the air conditioning decreases with the passage of time, and the operation of the air conditioner and the refrigerator is stopped at time T12.
上記運転によれば、時刻T1~T2、T4~T5、T8~T9、T11~T12の各時間帯では、空調設定温度は基準温度であるため、空調冷熱量は起動している冷凍機の最大冷熱量より小さく、冷凍機は部分負荷運転の状態となる。したがって、総合COPは最大COP(6)に比べて小さくなる。一方、時刻T2~T4、T5~T8、T9~T11の各時間帯では、冷凍機は定格運転のため、総合COPは最大COP(6)になる。
According to the above operation, since the air conditioning set temperature is the reference temperature in each of the time periods T1 to T2, T4 to T5, T8 to T9, and T11 to T12, the air conditioning cold heat is the maximum of the activated refrigerator It is smaller than the amount of cold heat, and the refrigerator is in a state of partial load operation. Therefore, the total COP is smaller than the maximum COP (6). On the other hand, in each of the time zones from time T2 to T4, T5 to T8, and T9 to T11, since the refrigerator is in rated operation, the total COP becomes maximum COP (6).
図3の熱源機器消費エネルギーに関して、方式Aでは、時刻T2~T3で空調設定温度を増加して冷凍機の増段を抑制しているため、従来方式に比べて冷凍機の消費エネルギーが減少している。一方、時刻T3~T4では、方式Aでは冷凍機の定格負荷で運転しているため、従来方式に比べて冷凍機の消費エネルギーが増大している。しかしながら、時刻T2~T4では、方式Aの方が従来方式に比べて、空調設定温度が高いため必要な空調冷熱量は小さく、さらに、冷凍機の総合COPが高いため、時刻T2~T4の冷凍機の全消費エネルギーが小さくなる。同様に、時刻T5~T8、および時刻T9~T11においても、方式Aの方が従来方式に比べて冷凍機の全消費エネルギーが小さくなる。
With regard to the heat source equipment consumption energy in FIG. 3, in the method A, since the air conditioning set temperature is increased from time T2 to T3 to suppress an increase in the number of stages of the refrigerator, the energy consumption of the refrigerator is reduced compared to the conventional method. ing. On the other hand, at time T3 to T4, in the method A, since the system is operated at the rated load of the refrigerator, the energy consumption of the refrigerator is increased as compared with the conventional method. However, at time T2 to T4, the required air conditioning cold energy is smaller because the air conditioning set temperature is higher in method A than in the conventional method, and the total COP of the refrigerator is high. The total energy consumption of the aircraft is reduced. Similarly, also at time T5 to T8 and time T9 to T11, the total energy consumption of the refrigerator is smaller in the method A than in the conventional method.
なお、図3に示した運用を実行するにあたり、以下のようにするのが良い。但し、熱源機器としては、冷水を生成する熱源機器と、蒸気または温水を生成する熱源機器がある。
ここまでの実施例の説明は、前者の冷水を生成する熱源機器を念頭に置いて説明を行ってきた。また図3もその前提で図示をしている。 Note that, in order to execute the operation shown in FIG. However, as a heat source device, there are a heat source device that generates cold water and a heat source device that generates steam or hot water.
The description of the embodiments so far has been made with the heat source device for producing the former cold water in mind. Moreover, FIG. 3 is also illustrated on the premise.
ここまでの実施例の説明は、前者の冷水を生成する熱源機器を念頭に置いて説明を行ってきた。また図3もその前提で図示をしている。 Note that, in order to execute the operation shown in FIG. However, as a heat source device, there are a heat source device that generates cold water and a heat source device that generates steam or hot water.
The description of the embodiments so far has been made with the heat source device for producing the former cold water in mind. Moreover, FIG. 3 is also illustrated on the premise.
従って以下の説明においては、図3を参照して冷水を生成する熱源機器を運転する場合と、温水を生成する熱源機器の場合の対策についてケースを分けながら、かつ状態が相違することを明確にしながら説明する。
Therefore, in the following description, with reference to FIG. 3, it is clarified that the situation is different while the cases are separated regarding the measures in the case of operating the heat source device generating cold water and the case of the heat source device generating hot water. While explaining.
まず、図3の時刻T2において、従来方式では1台から2台に熱源機器を増段すべきところを、本発明では、所定の上下限温度の範囲内で室温Tdを制御することにより、稼動中の熱源機器の増段を抑制することができる。
First, at time T2 in FIG. 3, in the conventional method, the heat source equipment should be increased from one to two in the conventional method, and in the present invention, operation is performed by controlling the room temperature Td within a predetermined upper and lower temperature range. It is possible to suppress an increase in the number of heat source devices inside.
冷水を生成する熱源機器を使用して増段する場合、稼動中の熱源機器の最大冷熱供給量以下になるように室温を上限温度以下で制御することにより、増段を抑制することができる。他方、減段することを想定すると、冷水を生成する熱源機器を使用して減段する場合には、図3の時刻T9において減段した後の熱源機器の最大冷熱供給量以下になるように室温を上限温度以下で制御することにより減段を促進することができる。
When raising the stage using a heat source device that generates cold water, the increase can be suppressed by controlling the room temperature at or below the upper limit temperature so as to be equal to or less than the maximum cold heat supply amount of the heat source device in operation. On the other hand, assuming that the stage reduction is performed, in the case of stage reduction using the heat source apparatus that generates cold water, the maximum cold heat supply amount of the heat source apparatus after the stage reduction at time T9 in FIG. Step-down can be promoted by controlling the room temperature below the upper limit temperature.
これに対し、蒸気または温水を生成する熱源機器を使用して増段する場合、稼動中の熱源機器の最大熱供給量以下になるように室温を下限温度以上で制御することにより増段を抑制することができる。また蒸気または温水を生成する熱源機器を使用して減段する場合、減段した後の熱源機器の最大熱供給量以下になるように室温を下限温度以上で制御することにより減段を促進することができる。
On the other hand, when raising the stage using heat source equipment that generates steam or hot water, the temperature increase is controlled by controlling the room temperature above the lower limit temperature so as to be equal to or less than the maximum heat supply of the operating heat source equipment. can do. When reducing the stage using heat source equipment that generates steam or hot water, promote the reduction by controlling the room temperature above the lower limit temperature so as to be equal to or less than the maximum heat supply of the heat source equipment after the stage reduction. be able to.
さらに図3の特性によれば、本発明のエネルギーネットワークの運転制御装置における制御の考え方が示されている。まず、図3の時刻T3において各部屋の設定温度Tdが上限温度に達すると冷水を生成する熱源機器を増段し、時刻T3~T4において稼動中の熱源機器の最大冷熱供給量以下になるように各部屋の設定温度Tdを基準温度まで低下させる。
Furthermore, according to the characteristics of FIG. 3, the concept of control in the operation control device of the energy network of the present invention is shown. First, when the preset temperature Td of each room reaches the upper limit temperature at time T3 in FIG. 3, the heat source equipment for generating cold water is increased to be equal to or less than the maximum cooling heat supply amount of the heat source equipment in operation at time T3 to T4. The set temperature Td of each room is lowered to the reference temperature.
これに対し、蒸気または温水を生成する熱源機器を使用する場合では、図3の時刻T3の場面では各部屋の設定温度Tdが下限温度に達することになるので熱源機器を増段し、その後の時刻T3~T4に対応する時間帯において稼動中の熱源機器の最大熱供給量以下になるように各部屋の設定温度Tdを基準温度まで上昇させる。
On the other hand, when using heat source equipment that generates steam or hot water, the set temperature Td of each room reaches the lower limit temperature in the scene of time T3 in FIG. The set temperature Td of each room is raised to the reference temperature so as to be equal to or less than the maximum heat supply amount of the heat source device in operation in the time zone corresponding to the time T3 to T4.
また、図3の時刻T10において各部屋の設定温度Tdが上限温度に達すると、時刻T10~T11において稼動中の冷水を生成する熱源機器の最大冷熱供給量以下になるように各部屋の設定温度Tdを基準温度まで低下させる。
In addition, when the set temperature Td of each room reaches the upper limit temperature at time T10 in FIG. 3, the set temperature of each room is set to be equal to or less than the maximum cooling energy supply amount of the heat source device generating cold water in operation T10 to T11. Decrease Td to the reference temperature.
これに対し、蒸気または温水を生成する熱源機器を使用する場合、図3の時刻T10の場面では各部屋の設定温度Tdが下限温度に達することになるのでその後の時刻T10~T11に対応する時間帯において稼動中の熱源機器の最大熱供給量以下になるように各部屋の設定温度Tdを基準温度まで上昇させる。
On the other hand, when using a heat source device that generates steam or hot water, the set temperature Td of each room reaches the lower limit temperature in the scene of time T10 in FIG. 3 and therefore the time corresponding to the subsequent times T10 to T11 The set temperature Td of each room is raised to the reference temperature so as to be equal to or less than the maximum heat supply amount of the heat source device in operation in the zone.
このように熱源機器の増段または減段を行う可能性がある場合、空調設定温度を許容温度範囲で変更することにより、空調熱負荷を低減し、熱源機器の増段抑制および減段促進により熱源機器の運転台数を極力少なくして消費エネルギーを低減することができる。
Thus, when there is a possibility to increase or decrease the heat source equipment, the air conditioning thermal load can be reduced by changing the air conditioning set temperature within the allowable temperature range, and the heat source equipment increase suppression and reduction in stages are promoted. Energy consumption can be reduced by minimizing the number of operating heat source devices.
さらに図9の特性によれば、空調の基準温度、上限および下限温度は、快適性指標に基づいて決定されている。
Furthermore, according to the characteristic of FIG. 9, the reference temperature, the upper limit, and the lower limit temperature of the air conditioning are determined based on the comfort index.
以上のように、各空調設定温度を可変に制御することにより、熱源機器で消費するエネルギーを削減し、省エネ・CO2排出削減を実現することができる。
As described above, by variably controlling each air conditioning set temperature, it is possible to reduce the energy consumed by the heat source equipment and realize energy saving and CO 2 emission reduction.
なお、例えば地域冷暖房システムでは、1つの熱供給プラントに対して、ビルなどの熱需要家は複数であることが多い。またビル自体を取り上げてみても複数の空調設備を備えているのが通例である。
For example, in a district heating and cooling system, there are often a plurality of heat consumers such as buildings for one heat supply plant. Also, taking up the building itself, it is customary to have multiple air conditioning units.
これらの熱需要家の中には、病院など一定温度維持が必要不可欠な設備もある。本発明では係る事情のものも含めて可変に温度設定することを推奨したものではない。
Among these heat consumers, there are also facilities such as hospitals that are required to maintain a constant temperature. In the present invention, it is not recommended to variably set the temperature including the above circumstances.
このため熱需要家側では、熱供給量の配分を考える必要がある。配分の中では、病院など特殊事情のものに優先的に必要熱量を供給(負荷配分)し、残余の設備で熱需要に応じた可変の設定を実行すればよい。
Therefore, on the heat demander side, it is necessary to consider the distribution of the heat supply amount. In the distribution, the necessary heat amount is preferentially supplied (load distribution) to the special circumstances such as a hospital, and the remaining equipment may perform variable setting according to the heat demand.
本発明の他の実施例として、図2の基準温度、許容上限温度および許容下限温度決定部233において、快適性指標の一例としてPMVを用いる方法を示す。
As another embodiment of the present invention, a method of using PMV as an example of the comfort index in the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature determination unit 233 of FIG. 2 will be shown.
PMV(Predicted Mean Vote:予測平均温冷感申告)は、下記文献のISO-7730で採用されている快適性指標である。
ISO7730:2005,Ergonomics of the thermal environment -- Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
図8に快適性指標PMVの概要を示す。まずPMVを評価する際の入力データとしては、部屋17内の以下の諸量を検知、解析あるいは設定により得る。 PMV (Predicted Mean Vote) is a comfort index adopted in ISO-7730 of the following document.
ISO7730: 2005, Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
FIG. 8 shows an overview of the comfort index PMV. First, as input data when evaluating PMV, the following quantities in theroom 17 are obtained by detection, analysis, or setting.
ISO7730:2005,Ergonomics of the thermal environment -- Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
図8に快適性指標PMVの概要を示す。まずPMVを評価する際の入力データとしては、部屋17内の以下の諸量を検知、解析あるいは設定により得る。 PMV (Predicted Mean Vote) is a comfort index adopted in ISO-7730 of the following document.
ISO7730: 2005, Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
FIG. 8 shows an overview of the comfort index PMV. First, as input data when evaluating PMV, the following quantities in the
これらは、室温ta、湿度rh、放射温度tr、室内の風速vs、代謝量M、着衣量Iclである。このうち室内の風速vs、代謝量M、着衣量Iclについては、通常、一定値が設定入力される。室温ta、湿度rhは、計測値が用いられる。放射温度trは、グローブ温度計の計測値に基づいて評価されるが、室内の空調温度解析を用いて評価する方法もある。
These are room temperature ta, humidity rh, radiation temperature tr, room air velocity vs, metabolic rate M, dressing amount Icl. Among these, a constant value is usually set and input for the wind speed vs, the metabolic amount M, and the dressing amount Icl in the room. For the room temperature ta and the humidity rh, measured values are used. The radiation temperature tr is evaluated based on the measurement value of the glove thermometer, but there is also a method of evaluating it using an indoor air conditioning temperature analysis.
これらの情報は、(5)式に示すFangerの快適方程式に入力され、PMVの値に変換される。PMVの値は-3~+3で与えられ、PMV=0のとき、在籍者の95%が快適と感じると報告されている。また、ISO7730では、-0.5~+0.5を快適範囲としている。
These pieces of information are input to Fanger's comfort equation shown in equation (5) and converted into PMV values. The value of PMV is given as -3 to +3, and when PMV = 0, it is reported that 95% of the students feel comfortable. Also, according to ISO7730, the comfortable range is -0.5 to +0.5.
PMVの評価式を(5)式に示す。
[数5]
PMV=L(0.303exp(-0.036M)+0.028) (5)
但し、L=(MW)EdEsEreCreR-C
ここで、Mは代謝量、Wは機械的仕事量、Edは不感蒸せつ量、Esは発汗による蒸発熱損失量、Ereは呼吸による潜熱損失量、Creは呼吸による顕熱損失量、Rは放射熱損失量、Cは対流熱損失量を示す。 The evaluation equation of PMV is shown in equation (5).
[Equation 5]
PMV = L (0.303 exp (-0.036 M) + 0.028) (5)
However, L = (MW) EdEsEreCreR-C
Here, M is a metabolic rate, W is a mechanical work amount, Ed is an insensitive steaming amount, Es is an evaporation heat loss amount by perspiration, Ere is a latent heat loss amount by respiration, Cre is a sensible heat loss amount by respiration, R is The amount of radiant heat loss, C indicates the amount of convective heat loss.
[数5]
PMV=L(0.303exp(-0.036M)+0.028) (5)
但し、L=(MW)EdEsEreCreR-C
ここで、Mは代謝量、Wは機械的仕事量、Edは不感蒸せつ量、Esは発汗による蒸発熱損失量、Ereは呼吸による潜熱損失量、Creは呼吸による顕熱損失量、Rは放射熱損失量、Cは対流熱損失量を示す。 The evaluation equation of PMV is shown in equation (5).
[Equation 5]
PMV = L (0.303 exp (-0.036 M) + 0.028) (5)
However, L = (MW) EdEsEreCreR-C
Here, M is a metabolic rate, W is a mechanical work amount, Ed is an insensitive steaming amount, Es is an evaporation heat loss amount by perspiration, Ere is a latent heat loss amount by respiration, Cre is a sensible heat loss amount by respiration, R is The amount of radiant heat loss, C indicates the amount of convective heat loss.
以下に本発明の一実施例であるPMVを用いた空調-熱源機器連携制御である方式Bについて説明する。方式Bの基本的な制御方法は、図3に示す方式Aと同様であるが、基準温度、許容上限温度、許容下限温度を評価する際に、PMVを用いて評価し、基準温度、許容上限温度、許容下限温度が条件により時間的に変化する。
The method B which is air conditioning-heat source equipment cooperation control using PMV which is one example of the present invention is explained below. The basic control method of method B is the same as method A shown in FIG. 3, but when evaluating the reference temperature, the allowable upper limit temperature, and the allowable lower limit temperature, evaluation is performed using PMV, and the reference temperature, the allowable upper limit Temperature and allowable lower limit temperature change with time depending on conditions.
図9を用いて本実施例である方式Bに関して、運用における時系列的な処理の変遷とその時の各部状態量について説明する。まず、時刻T1から各部屋の空調機および冷凍機1台が起動し、空調設定温度は、例えば、PMV=0に基づく基準温度に設定する。時間が経過すると外気温の上昇に伴い空調冷熱量は増大し、時刻T2になると空調冷熱量は冷凍機1台の最大冷熱量に達する。
The transition of time-series processing in operation and state quantities of each part at that time will be described with respect to the method B of the present embodiment with reference to FIG. First, one air conditioner and refrigerator in each room are activated from time T1, and the air conditioning set temperature is set to, for example, a reference temperature based on PMV = 0. As time passes, the air-conditioning cold energy increases with the rise of the outside air temperature, and at time T2, the air-conditioning cold energy reaches the maximum cold energy of one refrigerator.
PMV=0に基づく基準温度に制御する方式Cでは、時刻T2で冷凍機を2台に増段するのに対して、本実施例である方式Bでは、空調冷熱量を冷凍機1台の最大冷熱量に維持して冷凍機の増段を抑制するため、空調設定温度を増加させる。
In the method C in which the reference temperature is controlled based on PMV = 0, the number of refrigerators is increased to two at time T2, whereas in the method B according to the present embodiment, the air-conditioning cold energy is the maximum of one refrigerator The air conditioning set temperature is increased in order to maintain the amount of cold heat and to suppress an increase in the number of stages of the refrigerator.
時刻T3で空調設定温度が、例えばPMV=0.5に基づく許容上限温度に達するため、冷凍機を2台に増段させる。時刻T3~T4では、空調冷熱量を冷凍機2台の最大冷熱量に維持して空調設定温度を基準温度まで低下させる。時刻T4~T5では空調設定温度を基準温度に維持し、時刻T5になると空調冷熱量は冷凍機2台の最大冷熱量に達する。
時刻T5~T7では、空調冷熱量を冷凍機2台の最大冷熱量に維持して冷凍機の増段を抑制するため、空調設定温度を増加させる。 Since the air conditioning set temperature reaches the allowable upper limit temperature based on, for example, PMV = 0.5 at time T3, the number of stages of the refrigerator is increased to two. From time T3 to T4, the air-conditioning set temperature is decreased to the reference temperature by maintaining the air-conditioning cold heat amount as the maximum cold heat amount of the two refrigerators. At time T4 to T5, the air conditioning set temperature is maintained at the reference temperature, and at time T5, the air conditioning cold heat amount reaches the maximum cold heat amount of two refrigerators.
From time T5 to T7, the air conditioning set temperature is increased in order to maintain the air conditioning cold heat amount as the maximum cold heat amount of the two refrigerators to suppress the stage increase of the refrigerator.
時刻T5~T7では、空調冷熱量を冷凍機2台の最大冷熱量に維持して冷凍機の増段を抑制するため、空調設定温度を増加させる。 Since the air conditioning set temperature reaches the allowable upper limit temperature based on, for example, PMV = 0.5 at time T3, the number of stages of the refrigerator is increased to two. From time T3 to T4, the air-conditioning set temperature is decreased to the reference temperature by maintaining the air-conditioning cold heat amount as the maximum cold heat amount of the two refrigerators. At time T4 to T5, the air conditioning set temperature is maintained at the reference temperature, and at time T5, the air conditioning cold heat amount reaches the maximum cold heat amount of two refrigerators.
From time T5 to T7, the air conditioning set temperature is increased in order to maintain the air conditioning cold heat amount as the maximum cold heat amount of the two refrigerators to suppress the stage increase of the refrigerator.
ここで、時刻T6を境に外気温は低下し、空調冷熱量も低下し始める。時刻T7~T8では、空調冷熱量を冷凍機2台の最大冷熱量に維持して空調設定温度を基準温度まで低下させる。時刻T8から室温を基準温度に維持する。
Here, the outside air temperature decreases at time T6, and the air-conditioning cold heat amount also starts to decrease. From time T7 to T8, the air conditioning cold energy is maintained at the maximum cold energy of the two refrigerators to lower the air conditioning set temperature to the reference temperature. The room temperature is maintained at the reference temperature from time T8.
ここで、冷凍機を2台から1台に減段した場合、空調冷熱量を冷凍機1台の最大冷熱量に維持して、空調設定温度を許容上限温度以下にすることが可能な時刻T9を予測し、時刻T9で冷凍機を2台から1台に減段する。
Here, in the case where the number of refrigerators is reduced from two to one, it is possible to maintain the air-conditioning cold heat at the maximum cold heat of one refrigerator and to set the air-conditioning set temperature below the allowable upper limit temperature. And reduce the stage of the refrigerator from two to one at time T9.
時刻T9~T10では、空調冷熱量を冷凍機1台の最大冷熱量に維持して空調設定温度を増加させる。時刻T10~T11では、空調冷熱量を冷凍機1台の最大冷熱量に維持して空調設定温度を低下させる。時刻T11~T12では、空調設定温度を基準温度に維持すると空調冷熱量は時間の経過と共に減少し、時刻T12で空調機および冷凍機の運転を停止する。
From time T9 to T10, the air conditioning cold heat is maintained at the maximum cold heat of one refrigerator to increase the air conditioning set temperature. From time T10 to T11, the air conditioning cold energy is maintained at the maximum cold energy of one refrigerator to lower the air conditioning set temperature. During time T11 to T12, if the air conditioning set temperature is maintained at the reference temperature, the amount of heat generated by the air conditioning decreases with the passage of time, and the operation of the air conditioner and the refrigerator is stopped at time T12.
時刻T1~T2、T4~T5、T8~T9、T11~T12の各時間帯では、空調設定温度は基準温度であるため、空調冷熱量は起動している冷凍機の最大冷熱量より小さく、冷凍機は部分負荷運転の状態となる。したがって、総合COPは最大COP(6)に比べて小さくなる。一方、時刻T2~T4、T5~T8、T9~T11の各時間帯では、冷凍機は定格運転のため、総合COPは最大COP(6)になる。
In each time zone from time T1 to T2, T4 to T5, T8 to T9, and T11 to T12, the air conditioning set temperature is the reference temperature, so the air conditioning cold heat is smaller than the maximum cold heat of the activated refrigerator, The machine is in partial load operation. Therefore, the total COP is smaller than the maximum COP (6). On the other hand, in each of the time zones from time T2 to T4, T5 to T8, and T9 to T11, since the refrigerator is in rated operation, the total COP becomes maximum COP (6).
図9の熱源機消費エネルギーに関して、方式Bでは、時刻T2~T3で空調設定温度を増加して冷凍機の増段を抑制しているため、方式Cに比べて冷凍機の消費エネルギーが減少している。一方、時刻T3~T4では、方式Bでは冷凍機の定格負荷で運転しているため、方式Cに比べて冷凍機の消費エネルギーが増大している。しかしながら、時刻T2~T4では、方式Bの方が方式Cに比べて、空調設定温度が高いため必要な空調冷熱量は小さく、さらに、冷凍機の総合COPが高いため、時刻T2~T4の冷凍機の全消費エネルギーが小さくなる。同様に、時刻T5~T8、および時刻T9~T11においても、方式Bの方が方式Cに比べて冷凍機の全消費エネルギーが小さくなる。
As for the heat source equipment consumption energy of FIG. 9, in the method B, since the air conditioning set temperature is increased at time T2 to T3 to suppress an increase in the number of stages of the refrigerator, the energy consumption of the refrigerator decreases compared to the method C. ing. On the other hand, at time T3 to T4, in the method B, since the operation is performed at the rated load of the refrigerator, the energy consumption of the refrigerator is increased compared to the method C. However, at time T2 to T4, the required air conditioning cold heat is small because the air conditioning set temperature is higher in method B than in method C, and furthermore, since the total COP of the refrigerator is high, refrigeration at time T2 to T4 The total energy consumption of the aircraft is reduced. Similarly, also at time T5 to T8 and time T9 to T11, the total energy consumption of the refrigerator is smaller in method B than in method C.
さらに、従来の冷房の空調運転では、図9の空調設定温度の図に示すように室温を一定値で制御するため、必要以上に部屋を冷やし過ぎ、エネルギー消費が大きくなる傾向にあった。方式Bおよび方式Cでは、快適性指標PMVを用いて、時刻毎に基準温度を算出しているため、適切な空調設定温度となり、従来手法に比べて平均温度は高くなるため、冷凍機の消費エネルギーを低減することができる。
Furthermore, in the conventional air conditioning operation for cooling, as shown in the diagram of the air conditioning set temperature in FIG. 9, the room temperature is controlled at a constant value, so the room tends to be too cold and energy consumption tends to be large. In method B and method C, since the reference temperature is calculated at each time using the comfort index PMV, an appropriate air conditioning set temperature is obtained, and the average temperature is higher than in the conventional method. Energy can be reduced.
以上により、空調設定温度を快適性指標PMVに基づく基準温度および許容上限温度の範囲内で変化させると、従来手法に比べて更なる省エネ・CO2排出削減が可能となる。
As described above, when the air conditioning set temperature is changed within the range of the reference temperature based on the comfort index PMV and the allowable upper limit temperature, it is possible to further save energy and reduce CO 2 emissions compared to the conventional method.
本発明の実施形態では、熱源機器計測データ入力部、供給熱量算出部、運転台数決定部および熱源機器運転指令部を備えた熱源機器運転制御計画部と、熱需要家の空調計測データ入力部、基準温度・許容上限温度・許容下限温度決定部および空調運転指令部を備えた空調制御計画部と、これらを連携する空調-熱源機器連携制御計画部から成る空調-熱源機器連携制御装置で、熱供給プラントの熱源機器の運転状態の情報を取り込み、各熱源機器の消費エネルギーを低減させるように、各部屋の設定温度を制御する。
In an embodiment of the present invention, a heat source equipment operation control planning unit comprising a heat source equipment measurement data input unit, a heat supply quantity calculation unit, an operation quantity determination unit and a heat source equipment operation command unit, an air conditioning measurement data input unit for a heat consumer An air conditioning-heat source equipment cooperation control device comprising an air conditioning control planning unit having a reference temperature, an allowable upper limit temperature, an allowable lower limit temperature determination unit and an air conditioning operation command unit, and an air conditioning-heat source equipment cooperation control planning unit linking these Information on the operating state of the heat source equipment of the supply plant is taken in, and the set temperature of each room is controlled so as to reduce the energy consumption of each heat source equipment.
以上の方法により、消費エネルギーおよびCO2排出量を最小化する熱供給プラントの最適運転制御方法および装置を提供することができる。
According to the above-described method, it is possible to provide an optimum operation control method and apparatus of a heat supply plant which minimize energy consumption and CO 2 emission.
熱供給プラントとエネルギー需要家から構成される地域内や複数の製造工場が立地する工業団地で使用される電力や熱を相互融通しあうエネルギーネットワークにおいて、需要家空調温度を制御することにより、省エネ、CO2排出低減を実現する熱供給設備の最適運転方法および装置を提供できる。
Save energy by controlling the customer air conditioning temperature in an energy network that mutually interchanges the power and heat used in an area consisting of a heat supply plant and an energy demander or in an industrial park where multiple manufacturing plants are located The present invention can provide an optimum operation method and apparatus of a heat supply facility which realizes reduction of CO 2 emissions.
1…熱供給プラント、2…冷凍機、3…冷凍機の送水ポンプ、4…需要家の熱交換器、5…需要家の空調設備、6…冷水送水温度、7…冷水戻り温度、8…熱交換器の送水ポンプ、9…空調設定温度、10…熱源機器からの冷水、11…熱交換器の冷水、12…空調設備からの空気、13…熱源機器運転制御装置、14…空調制御装置、15…需要家、16…情報ネットワーク、17…部屋
DESCRIPTION OF SYMBOLS 1 ... Heat supply plant, 2 ... Refrigerator, 3 ... Water pump of a refrigerator, 4 ... Heat exchanger of a demander, 5 ... Air conditioning equipment of a demander, 6 ... Cold water water temperature, 7 ... Cold water return temperature, 8 ... Water exchanger pump of heat exchanger, 9 ... Air conditioning set temperature, 10 ... Cold water from heat source equipment, 11 ... Cold water of heat exchanger, 12 ... Air from air conditioning equipment, 13 ... Heat source equipment operation control device, 14 ... Air conditioning control device , 15 ... consumer, 16 ... information network, 17 ... room
Claims (14)
- 複数の熱源機器を備える熱供給プラントと、複数の空調設備を備えた複数の熱需要家から構成されるエネルギーネットワークの運転制御方法であって、
前記複数の熱需要家側では前記空調設備の設定温度を、前記熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、
前記熱供給プラント側では複数の熱源機器の運転台数を制御することを特徴とするエネルギーネットワークの運転制御方法。 An operation control method of an energy network comprising a heat supply plant including a plurality of heat source devices and a plurality of heat consumers including a plurality of air conditioning units,
The plurality of heat consumers set the set temperature of the air conditioner variably in view of reducing the energy consumption of the heat source equipment of the heat supply plant,
A method of controlling an operation of an energy network, comprising controlling the number of operating heat source devices on the side of the heat supply plant. - 請求項1に記載のエネルギーネットワークの運転制御方法であって、
前記熱需要家側における前記空調設備の設定温度は、所定の温度の範囲内で可変に設定されることを特徴とするエネルギーネットワークの運転制御方法。 The energy network operation control method according to claim 1,
The set control temperature of the air conditioning equipment at the heat consumer side is variably set within a predetermined temperature range. - 請求項2記載のエネルギーネットワークの運転制御方法であって、
前記熱源機器を増段する場合、所定の温度の範囲内で室温を制御することにより、稼動中の熱源機器の増段を抑制することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of the energy network according to claim 2, wherein
In the case of increasing the number of heat source devices, an operation control method of an energy network characterized by suppressing the increase of heat source devices in operation by controlling the room temperature within a predetermined temperature range. - 請求項2記載のエネルギーネットワークの運転制御方法であって、
前記熱源機器を減段する場合、所定の温度の範囲内で室温を制御することにより、稼動中の熱源機器の減段を促進することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of the energy network according to claim 2, wherein
In the case of reducing the temperature of the heat source equipment, an operation control method of an energy network characterized by promoting temperature reduction of the heat source equipment in operation by controlling a room temperature within a predetermined temperature range. - 請求項3記載のエネルギーネットワークの運転制御方法であって、
前記熱源機器のうち冷水を生成する熱源機器を増段する場合、熱源機器の冷熱供給量が稼動中の熱源機器の最大冷熱供給量以下になるように室温を許容上限温度以下かつ基準温度以上の範囲で制御することにより増段を抑制することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of the energy network according to claim 3, wherein
When increasing the number of heat source devices that generate cold water among the heat source devices, the room temperature is equal to or lower than the allowable upper limit temperature and not less than the reference temperature so that the cooling energy supply amount of the heat source devices is equal to or less than the maximum cooling energy supply amount An operation control method of an energy network characterized by suppressing an increase in speed by controlling in a range. - 請求項3のエネルギーネットワークの運転制御方法であって、
前記熱源機器のうち蒸気または温水を生成する熱源機器を増段する場合、熱源機器の熱供給量が稼動中の熱源機器の最大熱供給量以下になるように室温を許容下限温度以上かつ基準温度以下の範囲で制御することにより増段を抑制することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of an energy network according to claim 3,
When increasing the number of heat source devices that generate steam or hot water among the heat source devices, room temperature is higher than the allowable lower limit temperature and the reference temperature so that the heat supply amount of the heat source devices becomes equal to or less than the maximum heat supply amount of the heat source devices in operation. An operation control method of an energy network characterized by suppressing an increase in a stage by controlling in the following range. - 請求項4記載のエネルギーネットワークの運転制御方法であって、
前記熱源機器のうち冷水を生成する熱源機器を減段する場合、熱源機器の冷熱供給量が減段した後の熱源機器の最大冷熱供給量以下になるように室温を許容上限温度以下かつ基準温度以上の範囲で制御することにより減段を促進することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of an energy network according to claim 4, wherein
When reducing the heat source equipment that generates cold water among the heat source equipment, the room temperature is equal to or lower than the allowable upper limit temperature and the reference temperature so that the cold heat supply amount of the heat source equipment becomes equal to or less than the maximum cold heat supply amount of the heat source equipment. An operation control method of an energy network characterized by promoting reduction of steps by controlling within the above range. - 請求項4記載のエネルギーネットワークの運転制御方法であって、
前記熱源機器のうち蒸気または温水を生成する熱源機器を減段する場合、熱源機器の熱供給量が減段した後の熱源機器の最大熱供給量以下になるように室温を許容下限温度以上かつ基準温度以下の範囲で制御することにより減段を促進することを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of an energy network according to claim 4, wherein
When reducing the heat source equipment that generates steam or hot water among the heat source equipment, the room temperature is equal to or higher than the allowable lower limit temperature so that the heat supply quantity of the heat source equipment becomes equal to or less than the maximum heat supply quantity of the heat source equipment after reduction. An operation control method of an energy network characterized by promoting step-down by controlling in a range below a reference temperature. - 請求項1に記載のエネルギーネットワークの運転制御方法であって、
前記空調の設定温度は、快適性指標に基づいて決定することを特徴とするエネルギーネットワークの運転制御方法。 The energy network operation control method according to claim 1,
The operation control method of an energy network, wherein the set temperature of the air conditioning is determined based on a comfort index. - 請求項9項に記載のエネルギーネットワークの運転制御方法であって、
前記快適性指標は、PMV(Predicted Mean Vote:予測平均温冷感申告)を用いることを特徴とするエネルギーネットワークの運転制御方法。 The operation control method of an energy network according to claim 9,
The driving control method of an energy network characterized in that the comfort index uses PMV (Predicted Mean Vote: predicted mean thermal sensation report). - 複数の熱源機器を備える熱供給プラントと、複数の空調設備を備えた複数の熱需要家から構成されるエネルギーネットワークの運転制御装置であって、
前記複数の熱需要家側では前記空調設備の設定温度を、前記熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、
前記熱供給プラント側では複数の熱源機器の運転台数を制御することを特徴とするエネルギーネットワークの運転制御装置。 An operation control apparatus of an energy network comprising a heat supply plant including a plurality of heat source devices and a plurality of heat consumers including a plurality of air conditioning units,
The plurality of heat consumers set the set temperature of the air conditioner variably in view of reducing the energy consumption of the heat source equipment of the heat supply plant,
An operation control device for an energy network, wherein the heat supply plant side controls the number of operating heat source devices. - 複数の熱源機器を備える熱供給プラントと、複数の空調設備を備えた複数の熱需要家から構成されるエネルギーネットワークの運転制御装置であって、
前記複数の熱需要家側での制御のために複数の熱需要家の空調計測データ入力部、許容上限温度・許容下限温度決定部、空調運転制御計画部および空調運転指令部を備えて、前記空調設備の設定温度を、前記熱供給プラントの熱源機器の消費エネルギーを低減する観点で可変に設定し、
前記熱供給プラント側での制御のために前記熱供給プラントの熱源機器計測データ入力部、供給熱量算出部、運転台数決定部、熱源機器運転制御計画部および熱源機器運転指令部を備えて前記複数の熱源機器の運転台数制御を行うことを特徴とするエネルギーネットワークの運転制御装置。 An operation control apparatus of an energy network comprising a heat supply plant including a plurality of heat source devices and a plurality of heat consumers including a plurality of air conditioning units,
An air conditioning measurement data input unit, an allowable upper limit temperature / allowable lower limit temperature determination unit of a plurality of heat consumers, an air conditioning operation control plan unit, and an air conditioning operation command unit for control on the plurality of heat consumers. Setting the set temperature of the air conditioner variably in terms of reducing energy consumption of the heat source equipment of the heat supply plant,
The heat source equipment measurement data input unit of the heat supply plant, the heat quantity calculation unit, the operation quantity determination unit, the heat source equipment operation control plan unit, and the heat source equipment operation command unit for control on the heat supply plant side An operation control device for an energy network, comprising controlling the number of operating heat source devices. - 請求項11に記載のエネルギーネットワークの運転制御装置であって、
前記熱需要家側における前記空調設備の設定温度は、所定の温度の範囲内で可変に設定され、
前記熱源機器を増減段する場合、所定の温度の範囲内で室温を制御することにより、稼動中の熱源機器の増段を抑制しまたは減段を促進することを特徴とするエネルギーネットワークの運転制御装置。 The operation control device of the energy network according to claim 11, wherein
The set temperature of the air conditioning equipment on the heat consumer side is variably set within a predetermined temperature range,
When the heat source equipment is increased or decreased, the operation control of the energy network characterized by suppressing the increase of the heat source equipment in operation or promoting the reduction of the heat source equipment by controlling the room temperature within a predetermined temperature range. apparatus. - 請求項11に記載のエネルギーネットワークの運転制御装置において、
空調の設定温度は、許容上限温度と許容下限温度と、これ等の間に設定される基準温度をふくみ、快適性指標に基づいて決定されることを特徴とするエネルギーネットワークの運転制御装置。 In the energy network operation control device according to claim 11,
An operation control apparatus of an energy network, wherein the set temperature of the air conditioning includes an allowable upper limit temperature and an allowable lower limit temperature, and a reference temperature set between them, and is determined based on the comfort index.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2015702650A MY173213A (en) | 2013-03-19 | 2014-02-14 | Energy network operation control method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013056105A JP6060014B2 (en) | 2013-03-19 | 2013-03-19 | Energy network operation control method and apparatus |
JP2013-056105 | 2013-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148165A1 true WO2014148165A1 (en) | 2014-09-25 |
Family
ID=51579859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053452 WO2014148165A1 (en) | 2013-03-19 | 2014-02-14 | Energy network operation control method and device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6060014B2 (en) |
MY (1) | MY173213A (en) |
WO (1) | WO2014148165A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3637217A1 (en) * | 2018-10-08 | 2020-04-15 | E.ON Sverige AB | A method for controlling a thermal energy distribution system |
CN111503842B (en) * | 2020-04-29 | 2021-08-31 | 四川虹美智能科技有限公司 | Control method, control device, control system and readable medium of multi-split air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288595A (en) * | 1992-05-08 | 1994-10-11 | Matsushita Electric Ind Co Ltd | Indoor temperature setter for air conditioner |
JP2003139372A (en) * | 2001-11-02 | 2003-05-14 | Ohbayashi Corp | Optimal restraint control system for air-conditioning/ heat source equipment |
JP2008292043A (en) * | 2007-05-23 | 2008-12-04 | Hitachi Plant Technologies Ltd | Air conditioning system |
JP2009127936A (en) * | 2007-11-22 | 2009-06-11 | Yamatake Corp | Number control device for heat source unit and number control method for heat source unit |
-
2013
- 2013-03-19 JP JP2013056105A patent/JP6060014B2/en active Active
-
2014
- 2014-02-14 WO PCT/JP2014/053452 patent/WO2014148165A1/en active Application Filing
- 2014-02-14 MY MYPI2015702650A patent/MY173213A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288595A (en) * | 1992-05-08 | 1994-10-11 | Matsushita Electric Ind Co Ltd | Indoor temperature setter for air conditioner |
JP2003139372A (en) * | 2001-11-02 | 2003-05-14 | Ohbayashi Corp | Optimal restraint control system for air-conditioning/ heat source equipment |
JP2008292043A (en) * | 2007-05-23 | 2008-12-04 | Hitachi Plant Technologies Ltd | Air conditioning system |
JP2009127936A (en) * | 2007-11-22 | 2009-06-11 | Yamatake Corp | Number control device for heat source unit and number control method for heat source unit |
Also Published As
Publication number | Publication date |
---|---|
JP2014181846A (en) | 2014-09-29 |
JP6060014B2 (en) | 2017-01-11 |
MY173213A (en) | 2020-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6422710B2 (en) | Operation control apparatus and operation control method for energy network | |
Tang et al. | Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting | |
Liu et al. | Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems | |
Mossolly et al. | Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm | |
JP5058325B2 (en) | Air conditioning system controller and air conditioning system | |
Chu et al. | A direct load control of air-conditioning loads with thermal comfort control | |
Yuan et al. | A temperature & humidity setback demand response strategy for HVAC systems | |
Hernández et al. | Analysis of a HVAC zoning control system with an air-to-water heat pump and a ducted fan coil unit in residential buildings | |
WO2015194024A1 (en) | Thermal demand adjustment device for energy network and thermal demand adjustment method for energy network | |
JP5584024B2 (en) | Air conditioner group control device and air conditioning system | |
Yang et al. | Control strategy optimization for energy efficiency and comfort management in HVAC systems | |
JP6389599B2 (en) | Operation plan creation device and operation plan creation method | |
KR102035820B1 (en) | Integrated heating/cooling control method and control system considering thermal dynamics according to building operation characteristics | |
WO2014148165A1 (en) | Energy network operation control method and device | |
CN109698506B (en) | A management method for flexible load interruption response in buildings | |
JP5062555B2 (en) | Energy saving air conditioning control system | |
Ahmed et al. | VAV fan coil and demand controlled active chilled beam systems energy efficiency and thermal comfort performance comparison in a Japanese office building | |
JP7042180B2 (en) | Heat source controller and heat source control program | |
JP6071474B2 (en) | Air conditioning equipment | |
Zheng et al. | A demand response strategy for HVAC systems for peak load shedding | |
Gao et al. | An experimental study of energy consumption and thermal comfort for electric and hydronic reheats | |
Gao et al. | Experimental study on a control method for Air-conditioning system integrated with Small-scale ON/OFF controlled chiller | |
Woradechjumroen et al. | Development of coordination control for multiple rooftop units | |
Kohtaniemi et al. | Energy efficiency and indoor climate benefits of demand-based ventilation in simulated office rooms | |
JP2020008246A (en) | Air conditioning system, model selection method of air conditioning system, model selection device of air conditioning system, and model selection system of air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768088 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201504984 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14768088 Country of ref document: EP Kind code of ref document: A1 |