[go: up one dir, main page]

WO2014136650A1 - Manufacturing method of lithium ion conductive glass-ceramic, lithium ion conductive glass-ceramic and lithium ion secondary cell - Google Patents

Manufacturing method of lithium ion conductive glass-ceramic, lithium ion conductive glass-ceramic and lithium ion secondary cell Download PDF

Info

Publication number
WO2014136650A1
WO2014136650A1 PCT/JP2014/054902 JP2014054902W WO2014136650A1 WO 2014136650 A1 WO2014136650 A1 WO 2014136650A1 JP 2014054902 W JP2014054902 W JP 2014054902W WO 2014136650 A1 WO2014136650 A1 WO 2014136650A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
conductive glass
raw material
ion conductive
material mixture
Prior art date
Application number
PCT/JP2014/054902
Other languages
French (fr)
Japanese (ja)
Inventor
知之 ▲辻▼村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015504265A priority Critical patent/JPWO2014136650A1/en
Publication of WO2014136650A1 publication Critical patent/WO2014136650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium ion conductive glass ceramic, a lithium ion conductive glass ceramic, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are used as small and high capacity drive power sources in various fields such as automobiles, personal computers, and mobile phones.
  • organic solvent-based liquid electrolytes such as diethyl carbonate and ethyl methyl carbonate are used as electrolytes for lithium ion secondary batteries.
  • organic solvent-based liquid electrolyte may be decomposed or deteriorated when a high voltage is applied.
  • an inorganic solid electrolyte that is nonflammable and has high stability against voltage application is expected as an electrolyte for the next-generation lithium ion secondary battery.
  • inorganic solid electrolytes made of ceramics and inorganic solid electrolytes made of glass ceramics (glass containing crystals, also called crystallized glass) have been proposed.
  • an inorganic solid electrolyte made of glass ceramics for example, Li 1 + x + y (Al, Ga) x (Ti, Ge) 2-x Si y P 3-y O 12 (where 0 ⁇ a ⁇ 1, 0 ⁇ y ⁇ 1 There is proposed a material composed of (A).
  • the inorganic solid electrolyte made of glass ceramics of Patent Document 1 has titanium and germanium. Titanium and germanium ions can have multiple valence states. Therefore, at the time of charge / discharge of the lithium ion secondary battery, the valence state of titanium ions and germanium ions may change, and battery characteristics such as cycle characteristics may become unstable. In particular, titanium and germanium are likely to change in valence state due to a reduction reaction when metallic lithium is used for the negative electrode, and the potential window becomes narrow and unstable.
  • an object of the present invention is to provide a method for producing a lithium ion conductive glass ceramic that is relatively stable with respect to metallic lithium and has improved ion conductivity.
  • Another object of the present invention is to provide a lithium ion secondary battery having a lithium ion conductive glass ceramic produced by such a method and a solid electrolyte containing the lithium ion conductive glass ceramic.
  • the raw material mixture is 25% or more and 50% or less of SiO 2 , 10% or more and 45% or less of ZrO 2 , and more than 0% and 30% or less in terms of mol% converted to oxide.
  • raw materials were blended to obtain a raw material mixture, the raw material mixture to be treated made of glass ceramics in the process of solidifying melted cooled to include a P 2 O 5, and 5% to 40% of Na 2 O
  • a method for producing a lithium ion conductive glass ceramic comprising: a step of obtaining a body; and (b) a step of subjecting the object to be treated to an ion exchange treatment in a molten salt containing lithium ions.
  • the object to be processed may have a NASICON type crystal structure.
  • the step (c) may include a step of processing the thickness of the treatment body to 1 mm or less between the steps (a) and (b).
  • the melting may be performed by heating the raw material mixture at a temperature of 1400 ° C. or higher and 1700 ° C. or lower.
  • the cooling may be performed at a cooling rate of 0.2 ° C./min to 2 ° C./min.
  • the ion exchange treatment is performed at a temperature of 200 ° C. or more and 500 ° C. or less and the object to be treated is held in the molten salt containing lithium ions for 24 hours to 120 hours. May be implemented.
  • a lithium ion conductive glass ceramic manufactured by the method as described above.
  • a lithium ion secondary battery having a positive electrode, a negative electrode, and a solid electrolyte disposed between the two electrodes, wherein the solid electrolyte is manufactured by the method as described above.
  • a lithium ion secondary battery that is a solid electrolyte containing conductive glass ceramics.
  • the present invention can provide a method for producing a lithium ion conductive glass ceramic that is relatively stable with respect to metallic lithium and has improved ion conductivity. Moreover, in this invention, the lithium ion secondary battery which has a solid electrolyte containing the lithium ion conductive glass ceramics manufactured by such a method and this lithium ion conductive glass ceramics can be provided.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 2.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 3.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 4.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 5.
  • the production method of lithium ion conductive glass ceramics and the content of each component in the lithium ion conductive glass ceramics obtained thereby are in mol% units converted to oxides. It expresses by. This is a unit when the content of each component converted to oxide is expressed as a percentage when the total content of each component converted to oxide is 100 mol%.
  • the method for producing the lithium ion conductive glass ceramic of the present embodiment is as follows: (A) The raw material mixture is in mol% unit converted to oxide, 25% or more and 50% or less of SiO 2 , 10% or more and 45% or less of ZrO 2 , more than 0% and 30% or less of P 2 O 5 , and Preparing a raw material mixture by preparing a raw material so as to contain 5% or more and 40% or less Na 2 O, and obtaining an object to be processed made of glass ceramics in the process of melting, cooling and solidifying the raw material mixture; (B) performing an ion exchange process on the object to be processed in a molten salt containing lithium ions.
  • the manufacturing method of the present embodiment may include a step of processing the object to be processed to 1 mm or less between the step (a) and the step (b).
  • the manufacturing method of the present embodiment does not have to have a heat treatment step after the step (a) and before the step (b). That is, the glass ceramic obtained in the process of melting and cooling the raw material mixture in the step (a) is once cooled to a predetermined temperature (for example, room temperature), and then is not heat-treated in the step (b). Ion exchange treatment may be performed.
  • the object to be processed made of glass ceramics preferably has a clear diffraction peak in an X-ray diffraction pattern by X-ray diffraction measurement using CuK ⁇ rays, and has a diffraction peak with a half-value width of 3 ° or less. More preferably.
  • the object to be processed made of glass ceramics preferably has a NASICON type crystal structure.
  • the identification of the “crystal structure” is performed by performing X-ray diffraction measurement of an object, and collating the obtained X-ray diffraction pattern based on a JCPDS (Joint of Committee on Powder Standards) card, Can be easily identified.
  • JCPDS Joint of Committee on Powder Standards
  • SiO 2 is an essential component for expanding the composition range (hereinafter also referred to as vitrification range) to become glass and obtaining glass ceramics having a NASICON type crystal structure. If the content of SiO 2 is too small, it becomes difficult to obtain glass ceramics having a NASICON type crystal structure. Therefore, SiO 2 is set to 25% or more. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, SiO 2 is preferably 30% or more, and more preferably 32% or more.
  • SiO 2 is set to 50% or less. Further, since it becomes easy to lower the viscosity at the time of melting of the raw material mixture, and it becomes easy to precipitate crystals having a NASICON type crystal structure in the obtained glass ceramic, SiO 2 is preferably 45% or less, and 43% or less. More preferably.
  • ZrO 2 is an essential component for obtaining glass ceramics having a NASICON type crystal structure. If the content of ZrO 2 is too small, it becomes difficult to obtain glass ceramics having a NASICON type crystal structure, so ZrO 2 is made 10% or more. Further, it becomes easier to precipitate crystals having a crystal structure of the NASICON type, ZrO 2 is preferably 15% or more, and more preferably 17% or more.
  • ZrO 2 is set to 45% or less.
  • ZrO 2 is preferably set to 40% or less, and 38% or less. More preferably.
  • P 2 O 5 is an essential component for expanding the vitrification range and obtaining glass ceramics having a NASICON type crystal structure. If P 2 O 5 is not contained, glass ceramics having a NASICON type crystal structure cannot be obtained. Therefore, P 2 O 5 is set to exceed 0%. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, P 2 O 5 is preferably 2% or more, and more preferably 5% or more.
  • P 2 O 5 is set to 30% or less. Further, it becomes easier to precipitate crystals only having a crystal structure of the NASICON type obtained glass ceramic, it is preferred that the P 2 O 5 is 25% or less, and more preferably 20% or less.
  • Na 2 O is an essential component for obtaining glass ceramics having a NASICON type crystal structure. If the content of Na 2 O is too small, the ion conductivity of the lithium ion conductive glass ceramic obtained later by ion exchange treatment will be low, so Na 2 O is made 5% or more. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, Na 2 O is preferably 10% or more, and more preferably 15% or more.
  • Na 2 O is 40% or less.
  • Na 2 O is preferably 35% or less, and more preferably 30% or less, because an objective glass ceramic having a NASICON crystal structure can be obtained more stably.
  • lithium ion conductivity which is relatively stable with respect to metallic lithium, is prevented by substantially not including an element whose valence state changes due to a reduction reaction, such as titanium or germanium. Glass ceramics can be obtained.
  • the raw material mixture is SiO 2 of 25% to 50%, ZrO 2 of 10% to 45%, P 2 O 5 of more than 0% to 30% and Na of 5% to 40%. It is preferable to prepare the raw material so as to contain 2 O.
  • the raw material mixture contains 30% to 45% SiO 2 , 15% to 40% ZrO 2 , 2% to 25% P 2 O 5 , and 10% to 35% Na 2 O. It is more preferable to prepare the raw materials so as to include them.
  • the raw material mixture contains SiO 2 of 32% to 43%, ZrO 2 of 17% to 38%, P 2 O 5 of 5% to 20%, and Na 2 O of 15% to 30%. It is more preferable to prepare the raw materials so as to include them.
  • the raw material mixture is prepared such that each component is included in the above range to obtain the raw material mixture, and the raw material mixture is melted, cooled and solidified to precipitate crystals in the amorphous state.
  • Raw materials are prepared by a general method to obtain a raw material mixture, and the raw material mixture is melted to obtain a melt. Specifically, a raw material mixture prepared by mixing raw materials so as to include each component in the above range is heated and melted by a general method to obtain a melt.
  • the raw material is not particularly limited as long as it is a raw material used for production of ordinary glass ceramics.
  • raw materials include silica sand, sodium carbonate, diphosphorus pentoxide, zirconium oxide, sodium silicate, trisodium phosphate, ammonium phosphate, sodium metasilicate, sodium disilicate ⁇ n hydrate, sodium diphosphate Hydrates, sodium metaphosphate, sodium hexametaphosphate, zirconium hydroxide, and the like can be used.
  • the melting temperature is preferably from 1400 ° C to 1700 ° C, more preferably from 1450 ° C to 1650 ° C.
  • the melt is preferably solidified by slow cooling.
  • the melt is poured on a carbon plate.
  • the melt poured out on the carbon plate is heated at a glass transition temperature + 20 ° C. (for example, 750 ° C.) for 1 hour and then cooled to room temperature.
  • the cooling rate in cooling from the glass transition temperature + 20 ° C. to room temperature is preferably 2 ° C./min or less, and more preferably 1 ° C./min or less. It is preferable to make the cooling rate slower because crystals are easily precipitated. Moreover, this cooling rate can be 0.2 degree-C / min or more.
  • an object to be processed made of glass ceramics is directly obtained in the process of heating and melting the raw material mixture to obtain a melt, and cooling and solidifying the melt. Therefore, the reheating process in the normal method for producing glass ceramics can be omitted. That is, it is not necessary to have a step of further heat-treating (for example, 800 ° C. or higher) the solidified product (glass ceramic) that has been melted and then cooled to room temperature.
  • the object to be processed may be in any form.
  • the object to be processed may be, for example, a block shape, a plate shape, or a disk shape.
  • the ion exchange treatment replaces part or all of the sodium ions in the object to be treated with lithium ions.
  • the ion-exchanged lithium ions are considered to be introduced into the sites occupied by sodium ions.
  • Lithium ions introduced to the site occupied by sodium ions are easy to move, and therefore the degree of freedom is increased. This is because lithium ions have a smaller ionic radius than sodium ions. That is, lithium ion conductive glass ceramics having a large ion conductivity can be formed by ion exchange treatment.
  • the object to be processed has a NASICON type crystal structure
  • lithium ion conductive glass ceramics having higher ion conductivity can be obtained.
  • the NASICON type crystal structure originally has a characteristic that the ionic conductivity of sodium ions is relatively high. Therefore, when an object to be processed having a NASICON type crystal structure is subjected to ion exchange treatment with lithium ions, two steps of ionic conductivity, ie, good ion conductivity derived from the crystal structure and improvement of ion conductivity by the ion exchange treatment. Improvement effect is obtained. For this reason, it becomes possible to provide lithium ion conductive glass-ceramics with improved ion conductivity compared to the prior art.
  • the conditions for the ion exchange treatment are not particularly limited as long as lithium ions can be introduced into some or all of the sites occupied by sodium ions in the object to be treated.
  • the ion exchange treatment may be performed by immersing the object to be processed in a molten salt containing lithium ions for a predetermined time.
  • the molten salt containing lithium ions for example, lithium nitrate, lithium nitrite, lithium sulfate, lithium chloride, lithium fluoride, and a mixed salt thereof may be used.
  • the temperature condition of the ion exchange treatment varies depending on the molten salt to be used, but may be, for example, 200 ° C. or more and 500 ° C. or less, preferably 300 ° C. or more and 400 ° C. or less.
  • the treatment time of the ion exchange treatment varies depending on temperature conditions, but may be, for example, 24 hours or more and 120 hours or less, preferably 24 hours or more and 80 hours or less.
  • the manufacturing method of the present embodiment may include a step (c) of thinning the thickness of the object to be processed before the ion exchange treatment in the step (b).
  • Process (c) The object to be processed obtained in the step (a) is thinned. Polishing etc. are mentioned as a processing method which makes a to-be-processed object thin.
  • the thickness of the object to be processed is preferably 1 mm or less, more preferably 0.6 mm or less, and further preferably 0.25 mm or less.
  • the thickness of the object to be processed is preferably 0.1 mm or more.
  • the manufacturing method of this embodiment prepares the to-be-processed object which consists of glass ceramics at a process (a), Then, the process to thin the to-be-processed object of a process (c) is performed, and the to-be-processed object of a process (b) Can be performed in the order of ion exchange treatment.
  • the thin target object is only subjected to a temperature load of about 200 to 500 ° C. during the ion exchange process. Therefore, the manufacturing method of the present embodiment can prevent defects such as warpage that are likely to occur on a thin glass substrate or the like.
  • the lithium ion conductive glass ceramic produced according to the present embodiment includes 25% to 50% SiO 2 , 10% to 45% ZrO 2 , more than 0% to 30% P 2 O 5 , and 5%. It is preferable to contain Na 2 O of 40% or less, 30% or more and 45% or less of SiO 2 , 15% or more and 40% or less of ZrO 2 , 2% or more and 25% or less of P 2 O 5 , and 10% or more.
  • it contains 35% or less Na 2 O, 32% or more and 43% or less SiO 2 , 17% or more and 38% or less ZrO 2 , 5% or more and 20% or less P 2 O 5 , and 15% or more More preferably, it contains 30% or less of Na 2 O.
  • the lithium ion conductive glass ceramic preferably has a clear diffraction peak in an X-ray diffraction pattern by X-ray diffraction measurement using CuK ⁇ rays, and has a diffraction peak with a half-value width of 3 ° or less. It is more preferable.
  • the lithium ion conductive glass ceramics preferably has a NASICON type crystal structure.
  • the ion conductivity of the lithium ion conductive glass ceramic is preferably 1.0 ⁇ 10 ⁇ 7 (S / cm) or more.
  • the ionic conductivity means a value obtained by AC impedance measurement at room temperature (20 ° C. or more and 25 ° C. or less; the same applies hereinafter).
  • the ionic conductivity is obtained by measurement by an alternating current impedance method using a sample having electrodes formed on both sides.
  • the ion conductivity of the lithium ion conductive glass ceramic in the present embodiment is calculated from the arc diameter of the colle-core plot obtained by AC impedance measurement under the measurement conditions of an applied voltage of 50 mV and a measurement frequency range of 1 Hz to 1 MHz.
  • the lithium ion conductive glass ceramic produced according to this embodiment can be applied to an inorganic solid electrolyte for a lithium ion secondary battery.
  • the solid electrolyte according to the present embodiment can be applied to a solid electrolyte for a metal-air battery or an all-solid battery.
  • the lithium ion conductive glass ceramic produced by the production method of the present embodiment can be used, for example, as a solid electrolyte of a lithium ion secondary battery, a metal-air battery, or an all-solid battery.
  • FIG. 1 schematically shows an example of the configuration of a lithium ion secondary battery.
  • a lithium ion secondary battery 100 has a cathode electrode 110, an anode electrode 150, and an electrolyte 120 between the electrodes.
  • cathode electrode 110 for example, LiCoO 2 , LiMn 2 O 4 , LiFePO 4 or the like is used.
  • anode electrode 150 for example, metallic lithium, graphite, Li 4 Ti 5 O 12 or the like is used. However, this is merely an example, and it will be apparent to those skilled in the art that other electrode materials may be used for both electrodes.
  • the electrolyte 120 a solid electrolyte containing the lithium ion conductive glass ceramic in the present embodiment is used.
  • the lithium ion conductive glass ceramic according to the present embodiment is used as the electrolyte 120, higher safety can be provided to the lithium ion secondary battery than when a conventional organic solvent-based liquid electrolyte is used.
  • the lithium ion conductive glass ceramic in the present embodiment has higher stability against voltage application than a conventional organic solvent-based liquid electrolyte. For this reason, when a large voltage is applied to the lithium ion secondary battery, the conventional problem that the electrolyte is decomposed or deteriorated is reduced.
  • the lithium ion conductive glass ceramic in this embodiment has high lithium ion conductivity. Therefore, the lithium ion secondary battery 100 having the electrolyte 120 made of the lithium ion conductive glass ceramic according to the present embodiment exhibits better characteristics than a conventional lithium ion secondary battery using a solid electrolyte. be able to.
  • Examples and comparative examples of this embodiment are shown below.
  • Examples 1 to 4 are examples, and example 5 is a comparative example.
  • Table 1 shows the composition (mol% unit) of the raw material mixture and the ionic conductivity of the sample for evaluation obtained after the ion exchange treatment.
  • Example 1 preparation of sample for evaluation
  • the sample for evaluation was produced in the following procedures, and the characteristics were evaluated.
  • the raw material powder is weighed and mixed so that the raw material mixture contains each component in the composition shown in the column of “raw material mixture composition” of Example 1 in Table 1 below (indicated as the raw material mixture composition (mol%) in Table 1).
  • a raw material mixture was obtained.
  • the raw material mixture was put in a platinum crucible, heated at 1650 ° C. for 120 minutes, and melted to obtain a melt of the raw material mixture.
  • the molten material was poured onto a carbon plate. In order to remove the distortion in the sample, the sample was heated at 830 ° C.
  • a sample obtained by heating and melting the raw material mixture to obtain a melt, and cooling and solidifying the melt is referred to as a sample before ion exchange treatment.
  • the sample before ion exchange treatment was pulverized, and X-ray diffraction measurement using CuK ⁇ rays was performed. Since a clear diffraction peak was observed in the obtained X-ray diffraction pattern, it was confirmed that the sample before the ion exchange treatment was glass ceramics. As a result of peak analysis of the X-ray diffraction pattern, it was confirmed that the sample before the ion exchange treatment had a NASICON type crystal structure.
  • ion exchange treatment was performed using the sample before ion exchange treatment after polishing.
  • the ion exchange treatment was performed by immersing the sample before the ion exchange treatment in a 400 ° C. lithium nitrate molten salt.
  • the processing time was 72 hours. Thereby, the sample for evaluation was obtained.
  • FIG. 2 shows an X-ray diffraction pattern of the evaluation sample.
  • the sample for evaluation of Example 1 was the same glass ceramics as before the ion exchange treatment.
  • the sample for evaluation of Example 1 has the same crystal structure as that before the ion exchange treatment, that is, the NASICON type crystal structure.
  • the composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 30%, ZrO 2 was 35%, P 2 O 5 was 15%, Li 2 O was 20%, and Na 2 O was the detection limit. It was the following. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
  • the ionic conductivity was 5.5 ⁇ 10 ⁇ 5 S / cm.
  • Example 2 In Example 2, the raw material powder was weighed and mixed so that the raw material mixture contained each component with the composition shown in the column of “Raw material mixture composition” in Example 2 in Table 1 above to obtain a raw material mixture. In Example 2, the sample before the ion exchange treatment was polished until the thickness became 0.6 mm. The other production conditions were the same as in Example 1.
  • the X-ray diffraction measurement using CuK ⁇ rays was performed on the sample before ion exchange treatment and the sample for evaluation.
  • FIG. 3 the X-ray-diffraction result of the sample for evaluation is shown.
  • the X-ray diffraction patterns of the sample before and after the ion exchange treatment that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
  • SiO 2 was 42.5%
  • ZrO 2 was 22.5%
  • P 2 O 5 was 15%
  • Li 2 O was 20%
  • Na 2 O was below the detection limit. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
  • the ionic conductivity of the sample for evaluation was 1.6 ⁇ 10 ⁇ 5 S / cm.
  • Example 3 the raw material powder was weighed and mixed so as to include each component in the composition shown in the column of “Raw material mixture composition” in Example 3 in Table 1 above to obtain a raw material mixture.
  • Other manufacturing conditions were the same as in Example 2.
  • the X-ray diffraction measurement using CuK ⁇ rays was performed on the sample before ion exchange treatment and the sample for evaluation.
  • FIG. 4 the X-ray-diffraction result of the sample for evaluation is shown.
  • the X-ray diffraction patterns of the sample before and after the ion exchange treatment that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
  • the composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 40%, ZrO 2 was 20%, P 2 O 5 was 10%, Li 2 O was 30%, and Na 2 O was the detection limit. It was the following. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
  • the ionic conductivity of the sample for evaluation was 4.1 ⁇ 10 ⁇ 6 S / cm.
  • Example 4 the raw material powder was weighed and mixed so that the raw material mixture contained each component with the composition shown in the column of “Raw material mixture composition” in Example 4 in Table 1 above to obtain a raw material mixture.
  • Other manufacturing conditions were the same as in Example 2.
  • the X-ray diffraction measurement using CuK ⁇ rays was performed on the sample before ion exchange treatment and the sample for evaluation.
  • FIG. 5 the X-ray-diffraction result of the sample for evaluation is shown.
  • the X-ray diffraction patterns of the sample before and after the ion exchange treatment that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
  • the composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 32.5%, ZrO 2 was 22.5%, P 2 O 5 was 15%, Li 2 O was 30%, Na 2 O was below the detection limit. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
  • the ionic conductivity was measured by the method described above. As a result of the measurement, the ionic conductivity of the sample for evaluation was 3.4 ⁇ 10 ⁇ 7 S / cm.
  • Example 5 the raw material powder was weighed and mixed so as to include each component in the composition shown in the column of “Raw material mixture composition” in Example 5 in Table 1 to obtain a raw material mixture.
  • Other manufacturing conditions were the same as in Example 2.
  • the X-ray diffraction measurement using CuK ⁇ rays was performed on the sample before ion exchange treatment and the sample for evaluation.
  • FIG. 6 the X-ray-diffraction result of the sample for evaluation is shown.
  • the sample before ion exchange treatment and the sample for evaluation were hardly changed.
  • the sample before ion exchange treatment and the sample for evaluation are ZrSiO 4 (h mark), Li 3 PO 4 (i mark), SiO 2 (j mark), and ZrO 2 (k mark). ). Further, it did not contain a NASICON type crystal structure.
  • ZrO (m mark) is an internal standard substance put in the case of X-ray diffraction measurement.
  • the ionic conductivity of the sample for evaluation was as low as 2.9 ⁇ 10 ⁇ 8 S / cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

This manufacturing method of a lithium ion conductive glass-ceramic is characterized by involving (a) a step for mixing raw materials to obtain a raw material mixture that contains, expressed in mol% in terms of oxides, 25-50% SiO2, 10-45% ZrO2, more than 0% and no more than 30% P2O5, and 5-40% Na2O, and obtaining, through a process of melting, cooling and solidifying the raw material mixture, a workpiece consisting of a glass-ceramic, and (b) a step in which the workpiece undergoes ion exchange treatment in a molten salt containing lithium ions.

Description

リチウムイオン伝導性ガラスセラミックスの製造方法、リチウムイオン伝導性ガラスセラミックスおよびリチウムイオン二次電池Method for producing lithium ion conductive glass ceramics, lithium ion conductive glass ceramics and lithium ion secondary battery
 本発明は、リチウムイオン伝導性ガラスセラミックスの製造方法、リチウムイオン伝導性ガラスセラミックスおよびリチウムイオン二次電池に関する。 The present invention relates to a method for producing a lithium ion conductive glass ceramic, a lithium ion conductive glass ceramic, and a lithium ion secondary battery.
 リチウムイオン二次電池は、自動車、パーソナルコンピュータ、および携帯電話等、様々な分野において小型で高容量の駆動電源として使用されている。 Lithium ion secondary batteries are used as small and high capacity drive power sources in various fields such as automobiles, personal computers, and mobile phones.
 現在、リチウムイオン二次電池用の電解質には、炭酸ジエチル、炭酸エチルメチル等の有機溶媒系の液体電解質が使用されている。しかし、有機溶媒系の液体電解質は、高電圧を印加すると、電解質が分解または変質する恐れがある。 Currently, organic solvent-based liquid electrolytes such as diethyl carbonate and ethyl methyl carbonate are used as electrolytes for lithium ion secondary batteries. However, an organic solvent-based liquid electrolyte may be decomposed or deteriorated when a high voltage is applied.
 そこで、次世代のリチウムイオン二次電池用の電解質として、不燃性で、電圧印加に対して高い安定性を有する無機固体電解質が期待されている。例えば、セラミックス製の無機固体電解質や、ガラスセラミックス(結晶を含むガラスであり、結晶化ガラスともいわれる)製の無機固体電解質が提案されている。 Therefore, an inorganic solid electrolyte that is nonflammable and has high stability against voltage application is expected as an electrolyte for the next-generation lithium ion secondary battery. For example, inorganic solid electrolytes made of ceramics and inorganic solid electrolytes made of glass ceramics (glass containing crystals, also called crystallized glass) have been proposed.
 ガラスセラミックス製の無機固体電解質として、例えば、Li1+x+y(Al,Ga)(Ti,Ge)2-xSi3-y12(ただし、0≦a≦1、0≦y≦1である)で構成される材料が提案されている(特許文献1)。 As an inorganic solid electrolyte made of glass ceramics, for example, Li 1 + x + y (Al, Ga) x (Ti, Ge) 2-x Si y P 3-y O 12 (where 0 ≦ a ≦ 1, 0 ≦ y ≦ 1 There is proposed a material composed of (A).
特開2007-66703号公報JP 2007-66703 A
 特許文献1のガラスセラミックス製の無機固体電解質は、チタンおよびゲルマニウムを有する。チタンおよびゲルマニウムのイオンは、複数の価数状態を取り得る。そのため、リチウムイオン二次電池の充放電時に、チタンイオンおよびゲルマニウムイオンの価数状態が変化し、サイクル特性等の電池特性が不安定になる恐れがある。特に、チタンおよびゲルマニウムは、負極に金属リチウムを用いた場合に、還元反応により価数状態が変化しやすく、電位窓が狭くなって不安定になる恐れが高い。 The inorganic solid electrolyte made of glass ceramics of Patent Document 1 has titanium and germanium. Titanium and germanium ions can have multiple valence states. Therefore, at the time of charge / discharge of the lithium ion secondary battery, the valence state of titanium ions and germanium ions may change, and battery characteristics such as cycle characteristics may become unstable. In particular, titanium and germanium are likely to change in valence state due to a reduction reaction when metallic lithium is used for the negative electrode, and the potential window becomes narrow and unstable.
 上述のような問題があり、サイクル特性等の電池特性の安定性およびイオン伝導度をより向上させたリチウムイオン二次電池用の無機固体電解質が求められている。 There is a problem as described above, and there is a demand for an inorganic solid electrolyte for a lithium ion secondary battery in which stability of battery characteristics such as cycle characteristics and ion conductivity are further improved.
 本発明は、上述のような問題を鑑み、金属リチウムに対して比較的安定であり、イオン伝導度がより改善されたリチウムイオン伝導性ガラスセラミックスの製造方法を提供することを課題とする。また、本発明では、そのような方法により製造されたリチウムイオン伝導性ガラスセラミックスおよび該リチウムイオン伝導性ガラスセラミックスを含む固体電解質を有するリチウムイオン二次電池を提供することを課題とする。 In view of the above-described problems, an object of the present invention is to provide a method for producing a lithium ion conductive glass ceramic that is relatively stable with respect to metallic lithium and has improved ion conductivity. Another object of the present invention is to provide a lithium ion secondary battery having a lithium ion conductive glass ceramic produced by such a method and a solid electrolyte containing the lithium ion conductive glass ceramic.
 一つの形態によれば、(a)原料混合物が、酸化物に換算したモル%単位で、25%以上50%以下のSiO、10%以上45%以下のZrO、0%超30%以下のP、および5%以上40%以下のNaOを含むように原料を調合して原料混合物を得、前記原料混合物を溶融し冷却して固化させる過程でガラスセラミックスからなる被処理体を得る工程と、(b)前記被処理体を、リチウムイオンを含む溶融塩中でイオン交換処理する工程と、を有するリチウムイオン伝導性ガラスセラミックスの製造方法が提供される。 According to one embodiment, (a) the raw material mixture is 25% or more and 50% or less of SiO 2 , 10% or more and 45% or less of ZrO 2 , and more than 0% and 30% or less in terms of mol% converted to oxide. raw materials were blended to obtain a raw material mixture, the raw material mixture to be treated made of glass ceramics in the process of solidifying melted cooled to include a P 2 O 5, and 5% to 40% of Na 2 O There is provided a method for producing a lithium ion conductive glass ceramic, comprising: a step of obtaining a body; and (b) a step of subjecting the object to be treated to an ion exchange treatment in a molten salt containing lithium ions.
 上記リチウムイオン伝導性ガラスセラミックスの製造方法において、前記被処理体が、NASICON型の結晶構造を有してもよい。 In the method for producing a lithium ion conductive glass ceramic, the object to be processed may have a NASICON type crystal structure.
 上記リチウムイオン伝導性ガラスセラミックスの製造方法において、前記(a)と前記(b)の工程の間に、(c)前記処理体の厚さを1mm以下に加工する工程を有してもよい。 In the method for producing a lithium ion conductive glass ceramic, the step (c) may include a step of processing the thickness of the treatment body to 1 mm or less between the steps (a) and (b).
 上記リチウムイオン伝導性ガラスセラミックスの製造方法において、前記溶融は、1400℃以上1700℃以下の温度で、前記原料混合物を加熱することにより実施されてもよい。 In the method for producing a lithium ion conductive glass ceramic, the melting may be performed by heating the raw material mixture at a temperature of 1400 ° C. or higher and 1700 ° C. or lower.
 上記リチウムイオン伝導性ガラスセラミックスの製造方法において、前記冷却は、0.2℃/分以上2℃/分以下の冷却速度で実施されてもよい。 In the method for producing a lithium ion conductive glass ceramic, the cooling may be performed at a cooling rate of 0.2 ° C./min to 2 ° C./min.
 上記リチウムイオン伝導性ガラスセラミックスの製造方法において、前記イオン交換処理は、200℃以上500℃以下の温度で、前記リチウムイオンを含む溶融塩中に、前記被処理体を24時間~120時間保持することにより実施されてもよい。 In the method for producing a lithium ion conductive glass ceramic, the ion exchange treatment is performed at a temperature of 200 ° C. or more and 500 ° C. or less and the object to be treated is held in the molten salt containing lithium ions for 24 hours to 120 hours. May be implemented.
 また、他の形態によれば、前述のような方法で製造されたリチウムイオン伝導性ガラスセラミックスが提供される。 Further, according to another embodiment, there is provided a lithium ion conductive glass ceramic manufactured by the method as described above.
 また、他の形態によれば、正極、負極、および両極の間に配置された固体電解質を有するリチウムイオン二次電池であって、固体電解質が、前述のような方法で製造されたリチウムイオン伝導性ガラスセラミックスを含む固体電解質であるリチウムイオン二次電池が提供される。 According to another aspect, there is provided a lithium ion secondary battery having a positive electrode, a negative electrode, and a solid electrolyte disposed between the two electrodes, wherein the solid electrolyte is manufactured by the method as described above. Provided is a lithium ion secondary battery that is a solid electrolyte containing conductive glass ceramics.
 本発明では、金属リチウムに対して比較的安定であり、イオン伝導度がより改善されたリチウムイオン伝導性ガラスセラミックスの製造方法を提供することができる。また、本発明では、そのような方法により製造されたリチウムイオン伝導性ガラスセラミックスおよび該リチウムイオン伝導性ガラスセラミックスを含む固体電解質を有するリチウムイオン二次電池を提供することができる。 The present invention can provide a method for producing a lithium ion conductive glass ceramic that is relatively stable with respect to metallic lithium and has improved ion conductivity. Moreover, in this invention, the lithium ion secondary battery which has a solid electrolyte containing the lithium ion conductive glass ceramics manufactured by such a method and this lithium ion conductive glass ceramics can be provided.
本実施形態のリチウムイオン二次電池を模式的に示した図である。It is the figure which showed typically the lithium ion secondary battery of this embodiment. 例1の評価用サンプルのX線回折パターンである。2 is an X-ray diffraction pattern of an evaluation sample of Example 1. FIG. 例2の評価用サンプルのX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 2. FIG. 例3の評価用サンプルのX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 3. FIG. 例4の評価用サンプルのX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 4. FIG. 例5の評価用サンプルのX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of an evaluation sample of Example 5. FIG.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.
 なお、本明細書において、特に明記しない限りは、リチウムイオン伝導性ガラスセラミックスの製造方法およびそれにより得られたリチウムイオン伝導性ガラスセラミックスにおける各成分の含有量は、酸化物に換算したモル%単位で表わす。これは、酸化物に換算した各成分の合計含有量を100モル%としたときに、酸化物に換算した各成分の含有量を百分率で表記する際の単位である。 In the present specification, unless otherwise specified, the production method of lithium ion conductive glass ceramics and the content of each component in the lithium ion conductive glass ceramics obtained thereby are in mol% units converted to oxides. It expresses by. This is a unit when the content of each component converted to oxide is expressed as a percentage when the total content of each component converted to oxide is 100 mol%.
 (リチウムイオン伝導性ガラスセラミックスの製造方法)
 本実施形態のリチウムイオン伝導性ガラスセラミックスの製造方法は、
 (a)原料混合物が、酸化物に換算したモル%単位で、25%以上50%以下のSiO、10%以上45%以下のZrO、0%超30%以下のP、および5%以上40%以下のNaOを含むように原料を調合して原料混合物を得、前記原料混合物を溶融し冷却して固化させる過程でガラスセラミックスからなる被処理体を得る工程と、
 (b)前記被処理体を、リチウムイオンを含む溶融塩中でイオン交換処理する工程と、を有する。
(Method for producing lithium ion conductive glass ceramics)
The method for producing the lithium ion conductive glass ceramic of the present embodiment is as follows:
(A) The raw material mixture is in mol% unit converted to oxide, 25% or more and 50% or less of SiO 2 , 10% or more and 45% or less of ZrO 2 , more than 0% and 30% or less of P 2 O 5 , and Preparing a raw material mixture by preparing a raw material so as to contain 5% or more and 40% or less Na 2 O, and obtaining an object to be processed made of glass ceramics in the process of melting, cooling and solidifying the raw material mixture;
(B) performing an ion exchange process on the object to be processed in a molten salt containing lithium ions.
 本実施形態の製造方法は、工程(a)と工程(b)の間に、前記被処理体を1mm以下に加工する工程を有してもよい。 The manufacturing method of the present embodiment may include a step of processing the object to be processed to 1 mm or less between the step (a) and the step (b).
 また、本実施形態の製造方法は、工程(a)の後であって、工程(b)の前には、熱処理する工程を有さなくともよい。すなわち、工程(a)で原料混合物を溶融し冷却して固化させる過程で得られたガラスセラミックスは、一旦所定の温度(例えば室温)まで冷却した後は、熱処理することなく、工程(b)でイオン交換処理してもよい。 Further, the manufacturing method of the present embodiment does not have to have a heat treatment step after the step (a) and before the step (b). That is, the glass ceramic obtained in the process of melting and cooling the raw material mixture in the step (a) is once cooled to a predetermined temperature (for example, room temperature), and then is not heat-treated in the step (b). Ion exchange treatment may be performed.
 本実施形態において、ガラスセラミックスからなる被処理体は、CuKα線を用いたX線回折測定によるX線回折パターンが、明瞭な回折ピークを有することが好ましく、半価幅3°以下の回折ピークを有することがより好ましい。 In the present embodiment, the object to be processed made of glass ceramics preferably has a clear diffraction peak in an X-ray diffraction pattern by X-ray diffraction measurement using CuKα rays, and has a diffraction peak with a half-value width of 3 ° or less. More preferably.
 また、本実施形態において、ガラスセラミックスからなる被処理体は、NASICON型の結晶構造を有することが好ましい。 In the present embodiment, the object to be processed made of glass ceramics preferably has a NASICON type crystal structure.
 ここで、「結晶構造」の同定は、対象物のX線回折測定を行い、得られたX線回折パターンを、JCPDS(Joint of Committee on Powder Diffraction Standards)カードを元に照合を行うことにより、容易に同定することができる。 Here, the identification of the “crystal structure” is performed by performing X-ray diffraction measurement of an object, and collating the obtained X-ray diffraction pattern based on a JCPDS (Joint of Committee on Powder Standards) card, Can be easily identified.
 以下、各工程について、詳しく説明する。 Hereinafter, each process will be described in detail.
 (工程(a))
 原料混合物が、SiO、ZrO、P、およびNaOを下記の範囲で含むように原料を調合して原料混合物を得、該原料混合物を溶融し冷却して固化させる過程でガラスセラミックスからなる被処理体を得る。
SiO:25%以上50%以下、好ましくは30%以上45%以下、より好ましくは32%以上43%以下。
ZrO:10%以上45%以下、好ましくは15%以上40%以下、より好ましくは17%以上38%以下。
:0%超30%以下、好ましくは2%以上25%以下、より好ましくは5%以上20%以下。
NaO:5%以上40%以下、好ましくは10%以上35%以下、より好ましくは15%以上30%以下。
(Process (a))
In the process of preparing the raw material mixture by preparing the raw material mixture so that the raw material mixture contains SiO 2 , ZrO 2 , P 2 O 5 , and Na 2 O in the following ranges, and melting and cooling the raw material mixture to solidify An object to be processed made of glass ceramics is obtained.
SiO 2 : 25% to 50%, preferably 30% to 45%, more preferably 32% to 43%.
ZrO 2 : 10% to 45%, preferably 15% to 40%, more preferably 17% to 38%.
P 2 O 5 : more than 0% and 30% or less, preferably 2% or more and 25% or less, more preferably 5% or more and 20% or less.
Na 2 O: 5% to 40%, preferably 10% to 35%, more preferably 15% to 30%.
 SiOはガラスになる組成範囲(以下、ガラス化範囲ともいう)を拡大し、且つ、NASICON型の結晶構造を有するガラスセラミックスを得るために、必須の成分である。SiOの含有量が少なすぎるとNASICON型の結晶構造を有するガラスセラミックスを得ることが難しくなるため、SiOは25%以上とする。また、NASICON型の結晶構造を有するガラスセラミックスをより安定して得ることができるため、SiOは30%以上とすることが好ましく、32%以上とすることがより好ましい。 SiO 2 is an essential component for expanding the composition range (hereinafter also referred to as vitrification range) to become glass and obtaining glass ceramics having a NASICON type crystal structure. If the content of SiO 2 is too small, it becomes difficult to obtain glass ceramics having a NASICON type crystal structure. Therefore, SiO 2 is set to 25% or more. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, SiO 2 is preferably 30% or more, and more preferably 32% or more.
 SiOの含有量が多すぎると原料混合物を溶融させることが困難になるため、SiOは50%以下とする。また、原料混合物の溶融時の粘性を低くさせやすくなり、得られるガラスセラミックスにNASICON型の結晶構造を有する結晶を析出させやすくなるため、SiOは45%以下とすることが好ましく、43%以下とすることがより好ましい。 If the content of SiO 2 is too large, it is difficult to melt the raw material mixture, so SiO 2 is set to 50% or less. Further, since it becomes easy to lower the viscosity at the time of melting of the raw material mixture, and it becomes easy to precipitate crystals having a NASICON type crystal structure in the obtained glass ceramic, SiO 2 is preferably 45% or less, and 43% or less. More preferably.
 ZrOは、NASICON型の結晶構造を有するガラスセラミックスを得るために、必須の成分である。ZrOの含有量が少なすぎるとNASICON型の結晶構造を有するガラスセラミックスを得ることが難しくなるため、ZrOは10%以上とする。また、NASICON型の結晶構造を有する結晶を析出させやすくなるため、ZrOは15%以上とすることが好ましく、17%以上とすることがより好ましい。 ZrO 2 is an essential component for obtaining glass ceramics having a NASICON type crystal structure. If the content of ZrO 2 is too small, it becomes difficult to obtain glass ceramics having a NASICON type crystal structure, so ZrO 2 is made 10% or more. Further, it becomes easier to precipitate crystals having a crystal structure of the NASICON type, ZrO 2 is preferably 15% or more, and more preferably 17% or more.
 ZrOの含有量が多すぎると原料混合物を溶融させることが困難になるため、ZrOは45%以下とする。また、原料混合物の溶融時の粘性を低くさせやすくなり、得られるガラスセラミックスにNASICON型の結晶構造を有する結晶を析出させやすくなるため、ZrOは40%以下とすることが好ましく、38%以下とすることがより好ましい。 If the content of ZrO 2 is too large, it is difficult to melt the raw material mixture, so ZrO 2 is set to 45% or less. In addition, since the viscosity of the raw material mixture during melting is easily lowered, and crystals having a NASICON type crystal structure are easily precipitated in the obtained glass ceramic, ZrO 2 is preferably set to 40% or less, and 38% or less. More preferably.
 Pはガラス化範囲を拡大し、且つ、NASICON型の結晶構造を有するガラスセラミックスを得るために、必須の成分である。Pを含有していないとNASICON型の結晶構造を有するガラスセラミックスを得ることができないため、Pは0%超とする。また、NASICON型の結晶構造を有するガラスセラミックスをより安定して得ることができるため、Pは2%以上とすることが好ましく、5%以上とすることがより好ましい。 P 2 O 5 is an essential component for expanding the vitrification range and obtaining glass ceramics having a NASICON type crystal structure. If P 2 O 5 is not contained, glass ceramics having a NASICON type crystal structure cannot be obtained. Therefore, P 2 O 5 is set to exceed 0%. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, P 2 O 5 is preferably 2% or more, and more preferably 5% or more.
 Pの含有量が多すぎるとNASICON型の結晶構造を有するガラスセラミックスを得ることが難しく、吸湿性が悪化しやすくなるため、Pは30%以下とする。また、得られるガラスセラミックスにNASICON型の結晶構造を有する結晶のみを析出させやすくなるため、Pは25%以下とすることが好ましく、20%以下とすることがより好ましい。 If the content of P 2 O 5 is too large, it is difficult to obtain glass ceramics having a NASICON type crystal structure, and the hygroscopicity is likely to deteriorate, so P 2 O 5 is set to 30% or less. Further, it becomes easier to precipitate crystals only having a crystal structure of the NASICON type obtained glass ceramic, it is preferred that the P 2 O 5 is 25% or less, and more preferably 20% or less.
 NaOは、NASICON型の結晶構造を有するガラスセラミックスを得るために、必須の成分である。NaOの含有量が少なすぎると、後にイオン交換処理して得られるリチウムイオン伝導性ガラスセラミックスのイオン伝導度が低くなってしまうため、NaOは5%以上とする。また、NASICON型の結晶構造を有するガラスセラミックスをより安定して得ることができるため、NaOは10%以上とすることが好ましく、15%以上とすることがより好ましい。 Na 2 O is an essential component for obtaining glass ceramics having a NASICON type crystal structure. If the content of Na 2 O is too small, the ion conductivity of the lithium ion conductive glass ceramic obtained later by ion exchange treatment will be low, so Na 2 O is made 5% or more. Further, since glass ceramics having a NASICON type crystal structure can be obtained more stably, Na 2 O is preferably 10% or more, and more preferably 15% or more.
 NaOの含有量が多すぎると原料混合物の溶融時にアルカリ成分(Na)の揮発が激しくなって、目的とするNASICON型の結晶構造を有するガラスセラミックスが得られにくくなるため、NaOは40%以下とする。また、目的とするNASICON型の結晶構造を有するガラスセラミックスをより安定して得ることができるため、NaOは35%以下とするのが好ましく、30%以下とするのがより好ましい。 Volatilization becomes violently Na 2 O alkali component during the melting of the content is too large raw material mixture (Na), the glass ceramics becomes difficult to obtain with a crystal structure of the NASICON type of interest, Na 2 O is 40% or less. In addition, Na 2 O is preferably 35% or less, and more preferably 30% or less, because an objective glass ceramic having a NASICON crystal structure can be obtained more stably.
 各成分を上記の範囲で含むように原料を調合することで、原料混合物を溶融し冷却して固化させる過程で、原料が揮発することによる組成ずれを防ぎながら、結晶を析出させることができる。また、NASICON型結晶構造を有する結晶を析出させやすくなる。 By preparing the raw materials so as to include each component in the above range, crystals can be precipitated while preventing composition deviation due to volatilization of the raw materials in the process of melting the raw material mixture and cooling to solidify. Moreover, it becomes easy to precipitate a crystal having a NASICON type crystal structure.
 また、原料混合物の成分として、チタンやゲルマニウムのように還元反応により価数状態が変化する元素を実質的に含ませないようにすることで、金属リチウムに対して比較的安定なリチウムイオン伝導性ガラスセラミックスを得ることができる。 In addition, as a component of the raw material mixture, lithium ion conductivity, which is relatively stable with respect to metallic lithium, is prevented by substantially not including an element whose valence state changes due to a reduction reaction, such as titanium or germanium. Glass ceramics can be obtained.
 具体的には、原料混合物が、25%以上50%以下のSiO、10%以上45%以下のZrO、0%超30%以下のP、および5%以上40%以下のNaOを含むように原料を調合することが好ましい。 Specifically, the raw material mixture is SiO 2 of 25% to 50%, ZrO 2 of 10% to 45%, P 2 O 5 of more than 0% to 30% and Na of 5% to 40%. It is preferable to prepare the raw material so as to contain 2 O.
 また、原料混合物が、30%以上45%以下のSiO、15%以上40%以下のZrO、2%以上25%以下のP、および10%以上35%以下のNaOを含むように原料を調合することがより好ましい。 In addition, the raw material mixture contains 30% to 45% SiO 2 , 15% to 40% ZrO 2 , 2% to 25% P 2 O 5 , and 10% to 35% Na 2 O. It is more preferable to prepare the raw materials so as to include them.
 また、原料混合物が、32%以上43%以下のSiO、17%以上38%以下のZrO、5%以上20%以下のP、および15%以上30%以下のNaOを含むように原料を調合することがさらに好ましい。 Further, the raw material mixture contains SiO 2 of 32% to 43%, ZrO 2 of 17% to 38%, P 2 O 5 of 5% to 20%, and Na 2 O of 15% to 30%. It is more preferable to prepare the raw materials so as to include them.
 本実施形態では、原料混合物が、上記範囲で各成分を含むように原料を調合して原料混合物を得、該原料混合物を溶融し冷却して固化させる過程で、非晶質中に結晶を析出させることができる。すなわち、ガラスセラミックスからなる被処理体を、原料混合物を溶融し冷却して固化させる過程で直接得ることができる。 In this embodiment, the raw material mixture is prepared such that each component is included in the above range to obtain the raw material mixture, and the raw material mixture is melted, cooled and solidified to precipitate crystals in the amorphous state. Can be made. That is, an object to be processed made of glass ceramics can be obtained directly in the process of melting and cooling the raw material mixture and solidifying it.
 具体的には、以下の手順を経て、ガラスセラミックスからなる被処理体を得ることが好ましい。 Specifically, it is preferable to obtain an object to be processed made of glass ceramics through the following procedure.
 一般的な方法で、原料を調合して原料混合物を得、該原料混合物を溶融して、溶融物を得る。具体的には、上記の範囲で各成分を含むように原料を調合した原料混合物を、一般的な方法で加熱し溶融して、溶融物を得る。 原料 Raw materials are prepared by a general method to obtain a raw material mixture, and the raw material mixture is melted to obtain a melt. Specifically, a raw material mixture prepared by mixing raw materials so as to include each component in the above range is heated and melted by a general method to obtain a melt.
 原料は、通常のガラスセラミックスの製造に用いる原料であれば特に限定されない。例えば、原料には、珪砂、炭酸ナトリウム、五酸化二燐、酸化ジルコニウム、珪酸ソーダ、リン酸三ナトリウム、リン酸アンモニウム、メタケイ酸ナトリウム、二ケイ酸ナトリウム・n水和物、二リン酸ナトリウム十水和物、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、および水酸化ジルコニウム等を使用することができる。 The raw material is not particularly limited as long as it is a raw material used for production of ordinary glass ceramics. For example, raw materials include silica sand, sodium carbonate, diphosphorus pentoxide, zirconium oxide, sodium silicate, trisodium phosphate, ammonium phosphate, sodium metasilicate, sodium disilicate · n hydrate, sodium diphosphate Hydrates, sodium metaphosphate, sodium hexametaphosphate, zirconium hydroxide, and the like can be used.
 溶融温度は1400℃以上1700℃以下が好ましく、1450℃以上1650℃以下がより好ましい。 The melting temperature is preferably from 1400 ° C to 1700 ° C, more preferably from 1450 ° C to 1650 ° C.
 次に、溶融物を冷却して固化させる過程で、ガラスセラミックスからなる被処理体を得る。溶融物は、徐冷して固化させることが好ましい。 Next, in the process of cooling and solidifying the melt, an object to be processed made of glass ceramics is obtained. The melt is preferably solidified by slow cooling.
 具体的には、まず溶融物をカーボン板上に流し出す。ガラスセラミックス中の歪みを除去するために、カーボン板上に流し出した溶融物をガラス転移温度+20℃(例えば750℃)で1時間加熱した後、室温まで冷却する。このガラス転移温度+20℃から室温までの冷却における冷却速度は2℃/分以下が好ましく、1℃/分以下がより好ましい。冷却速度をより遅くすることで、結晶を析出させやすくなるため好ましい。また、この冷却速度は、0.2℃/分以上とすることができる。溶融物を徐冷して固化させることで、得られる固化物であるガラスセラミックスの歪みを除去することができる。溶融物を冷却して固化させる際、ガラスセラミックスの歪みを除去するために、冷却途中に、一定温度を一定時間維持してもよい。 Specifically, first, the melt is poured on a carbon plate. In order to remove the distortion in the glass ceramic, the melt poured out on the carbon plate is heated at a glass transition temperature + 20 ° C. (for example, 750 ° C.) for 1 hour and then cooled to room temperature. The cooling rate in cooling from the glass transition temperature + 20 ° C. to room temperature is preferably 2 ° C./min or less, and more preferably 1 ° C./min or less. It is preferable to make the cooling rate slower because crystals are easily precipitated. Moreover, this cooling rate can be 0.2 degree-C / min or more. By slowly cooling and solidifying the melt, it is possible to remove distortion of the glass ceramic that is the obtained solidified product. When the melt is cooled and solidified, a constant temperature may be maintained for a certain time during the cooling in order to remove the distortion of the glass ceramic.
 本実施形態では、原料混合物を加熱し溶融して溶融物を得、該溶融物を冷却して固化させる過程で直接ガラスセラミックスからなる被処理体が得られる。そのため、通常のガラスセラミックスを製造する方法における再加熱の工程を省くことができる。すなわち、原料混合物を溶融し、一旦室温まで冷却した固化物(ガラスセラミックス)を、さらに熱処理(例えば800℃以上)する工程は有さなくともよい。 In the present embodiment, an object to be processed made of glass ceramics is directly obtained in the process of heating and melting the raw material mixture to obtain a melt, and cooling and solidifying the melt. Therefore, the reheating process in the normal method for producing glass ceramics can be omitted. That is, it is not necessary to have a step of further heat-treating (for example, 800 ° C. or higher) the solidified product (glass ceramic) that has been melted and then cooled to room temperature.
 被処理体は、いかなる形態であってもよい。被処理体は、例えば、ブロック状、板状、およびディスク状等であってもよい。 The object to be processed may be in any form. The object to be processed may be, for example, a block shape, a plate shape, or a disk shape.
 (工程(b))
 工程(a)で得られた被処理体を、リチウムイオンを含む溶融塩中でイオン交換処理して、リチウムイオン伝導性ガラスセラミックスを得る。
(Process (b))
The object to be treated obtained in the step (a) is subjected to ion exchange treatment in a molten salt containing lithium ions to obtain lithium ion conductive glass ceramics.
 イオン交換処理により、被処理体中のナトリウムイオンの一部または全部がリチウムイオンと置換される。イオン交換されたリチウムイオンは、ナトリウムイオンが占有していたサイトに導入されると考えられる。ナトリウムイオンが占有していたサイトに導入されたリチウムイオンは、移動しやすいため、自由度が大きくなる。リチウムイオンは、ナトリウムイオンに比べてイオン半径が小さいからである。すなわち、イオン交換処理により、大きなイオン伝導度を有するリチウムイオン伝導性ガラスセラミックスを形成できる。 The ion exchange treatment replaces part or all of the sodium ions in the object to be treated with lithium ions. The ion-exchanged lithium ions are considered to be introduced into the sites occupied by sodium ions. Lithium ions introduced to the site occupied by sodium ions are easy to move, and therefore the degree of freedom is increased. This is because lithium ions have a smaller ionic radius than sodium ions. That is, lithium ion conductive glass ceramics having a large ion conductivity can be formed by ion exchange treatment.
 また、ガラスセラミックスからなる被処理体をイオン交換処理することにより、非晶質物質中のナトリウムイオンも、リチウムイオンと置換される。これにより、非晶質物質中のイオン伝導度も向上するため、よりイオン伝導度が高いリチウムイオン伝導性ガラスセラミックスを得ることができると考えられる。 Further, by subjecting the object made of glass ceramics to an ion exchange treatment, sodium ions in the amorphous substance are also replaced with lithium ions. Thereby, since the ionic conductivity in an amorphous substance also improves, it is thought that the lithium ion conductive glass ceramics with higher ionic conductivity can be obtained.
 また、被処理体がNASICON型の結晶構造を有する場合は、よりイオン伝導度が高いリチウムイオン伝導性ガラスセラミックスを得ることができると考えられる。これは、NASICON型の結晶構造は、元来、ナトリウムイオンのイオン伝導性が比較的高いという特徴を有するからである。したがって、NASICON型の結晶構造を有する被処理体をリチウムイオンでイオン交換処理した場合、結晶構造由来の良好なイオン伝導性と、イオン交換処理によるイオン伝導性の向上という、2段階のイオン伝導度向上効果が得られる。このため、従来に比べて、イオン伝導性がより向上したリチウムイオン伝導性ガラスセラミックスを提供することが可能となる。 Further, when the object to be processed has a NASICON type crystal structure, it is considered that lithium ion conductive glass ceramics having higher ion conductivity can be obtained. This is because the NASICON type crystal structure originally has a characteristic that the ionic conductivity of sodium ions is relatively high. Therefore, when an object to be processed having a NASICON type crystal structure is subjected to ion exchange treatment with lithium ions, two steps of ionic conductivity, ie, good ion conductivity derived from the crystal structure and improvement of ion conductivity by the ion exchange treatment. Improvement effect is obtained. For this reason, it becomes possible to provide lithium ion conductive glass-ceramics with improved ion conductivity compared to the prior art.
 イオン交換処理の条件は、被処理体のナトリウムイオンが占めるサイトの一部または全部に、リチウムイオンを導入することができれば、特に限定されない。例えば、イオン交換処理は、リチウムイオンを含む溶融塩中に、被処理体を所定時間浸漬することにより行われてもよい。リチウムイオンを含む溶融塩としては、例えば、硝酸リチウム、亜硝酸リチウム、硫酸リチウム、塩化リチウム、フッ化リチウム、およびこれらの混合塩等を使用してもよい。 The conditions for the ion exchange treatment are not particularly limited as long as lithium ions can be introduced into some or all of the sites occupied by sodium ions in the object to be treated. For example, the ion exchange treatment may be performed by immersing the object to be processed in a molten salt containing lithium ions for a predetermined time. As the molten salt containing lithium ions, for example, lithium nitrate, lithium nitrite, lithium sulfate, lithium chloride, lithium fluoride, and a mixed salt thereof may be used.
 イオン交換処理の温度条件は、使用する溶融塩によっても変化するが、例えば、200℃以上500℃以下、好ましくは300℃以上400℃以下とすればよい。また、イオン交換処理の処理時間は、温度条件によっても変化するが、例えば、24時間以上120時間以下、好ましくは24時間以上80時間以下とすればよい。上述の温度および処理時間とすることで、被処理体の90%以上のナトリウムイオンをリチウムイオンに置換したリチウムイオン伝導性ガラスセラミックスを得ることができる。 The temperature condition of the ion exchange treatment varies depending on the molten salt to be used, but may be, for example, 200 ° C. or more and 500 ° C. or less, preferably 300 ° C. or more and 400 ° C. or less. Further, the treatment time of the ion exchange treatment varies depending on temperature conditions, but may be, for example, 24 hours or more and 120 hours or less, preferably 24 hours or more and 80 hours or less. By setting the above temperature and treatment time, lithium ion conductive glass ceramics in which 90% or more of sodium ions in the object to be treated are replaced with lithium ions can be obtained.
 本実施形態の製造方法は、工程(b)のイオン交換処理の前に、被処理体の厚さを薄く加工する工程(c)を有してもよい。 The manufacturing method of the present embodiment may include a step (c) of thinning the thickness of the object to be processed before the ion exchange treatment in the step (b).
 (工程(c))
 工程(a)で得られた被処理体を薄くする。被処理体を薄くする加工方法としては、研磨等が挙げられる。
(Process (c))
The object to be processed obtained in the step (a) is thinned. Polishing etc. are mentioned as a processing method which makes a to-be-processed object thin.
 被処理体の厚さは、1mm以下が好ましく、0.6mm以下がより好ましく、0.25mm以下がさらに好ましい。また、被処理体の厚さは、0.1mm以上とすることが好ましい。被処理体の厚さを0.1mm以上1.0mm以下とすることで、工程(b)でより迅速かつ効率的に、ナトリウムイオンとリチウムイオンをイオン交換できる。したがって、イオン交換の処理時間を短縮する、および/または処理温度を抑制できる。また、本実施形態の製造方法は、工程(a)でガラスセラミックスからなる被処理体を準備した後、工程(c)の被処理体を薄くする加工を行い、工程(b)の被処理体をイオン交換処理する、という順序で行うことができる。薄くした被処理体には、イオン交換処理の際の200~500℃程度の温度の負荷しかからない。そのため、本実施形態の製造方法は、薄いガラス基板等で発生しやすい反り等の不良を防ぐことができる。 The thickness of the object to be processed is preferably 1 mm or less, more preferably 0.6 mm or less, and further preferably 0.25 mm or less. The thickness of the object to be processed is preferably 0.1 mm or more. By setting the thickness of the object to be processed to 0.1 mm or more and 1.0 mm or less, sodium ions and lithium ions can be ion-exchanged more quickly and efficiently in the step (b). Accordingly, the ion exchange treatment time can be shortened and / or the treatment temperature can be suppressed. Moreover, the manufacturing method of this embodiment prepares the to-be-processed object which consists of glass ceramics at a process (a), Then, the process to thin the to-be-processed object of a process (c) is performed, and the to-be-processed object of a process (b) Can be performed in the order of ion exchange treatment. The thin target object is only subjected to a temperature load of about 200 to 500 ° C. during the ion exchange process. Therefore, the manufacturing method of the present embodiment can prevent defects such as warpage that are likely to occur on a thin glass substrate or the like.
 (リチウムイオン伝導性ガラスセラミックス)
 本実施形態により製造されたリチウムイオン伝導性ガラスセラミックスは、25%以上50%以下のSiO、10%以上45%以下のZrO、0%超30%以下のP、および5%以上40%以下のNaOを含むことが好ましく、30%以上45%以下のSiO、15%以上40%以下のZrO、2%以上25%以下のP、および10%以上35%以下のNaOを含むことがより好ましく、32%以上43%以下のSiO、17%以上38%以下のZrO、5%以上20%以下のP、および15%以上30%以下のNaOを含むことがさらに好ましい。
(Lithium ion conductive glass ceramics)
The lithium ion conductive glass ceramic produced according to the present embodiment includes 25% to 50% SiO 2 , 10% to 45% ZrO 2 , more than 0% to 30% P 2 O 5 , and 5%. It is preferable to contain Na 2 O of 40% or less, 30% or more and 45% or less of SiO 2 , 15% or more and 40% or less of ZrO 2 , 2% or more and 25% or less of P 2 O 5 , and 10% or more. More preferably, it contains 35% or less Na 2 O, 32% or more and 43% or less SiO 2 , 17% or more and 38% or less ZrO 2 , 5% or more and 20% or less P 2 O 5 , and 15% or more More preferably, it contains 30% or less of Na 2 O.
 本実施形態において、リチウムイオン伝導性ガラスセラミックスは、CuKα線を用いたX線回折測定によるX線回折パターンが、明瞭な回折ピークを有することが好ましく、半価幅3°以下の回折ピークを有することがより好ましい。また、リチウムイオン伝導性ガラスセラミックスは、NASICON型の結晶構造を有することが好ましい。 In the present embodiment, the lithium ion conductive glass ceramic preferably has a clear diffraction peak in an X-ray diffraction pattern by X-ray diffraction measurement using CuKα rays, and has a diffraction peak with a half-value width of 3 ° or less. It is more preferable. The lithium ion conductive glass ceramics preferably has a NASICON type crystal structure.
 本実施形態において、リチウムイオン伝導性ガラスセラミックスのイオン伝導度は、1.0×10-7(S/cm)以上が好ましい。本明細書において、イオン伝導度は、室温(20℃以上25℃以下。以下同じ)での交流インピーダンス測定によって得られた値を意味する。イオン伝導度は、両面に電極を形成したサンプルを用いて、交流インピーダンス法による測定により求められる。本実施形態におけるリチウムイオン伝導性ガラスセラミックスのイオン伝導度は、測定条件を印加電圧50mV、測定周波数域1Hz~1MHzとし、交流インピーダンス測定により得られたcole-coleプロットの円弧径から算出する。 In the present embodiment, the ion conductivity of the lithium ion conductive glass ceramic is preferably 1.0 × 10 −7 (S / cm) or more. In this specification, the ionic conductivity means a value obtained by AC impedance measurement at room temperature (20 ° C. or more and 25 ° C. or less; the same applies hereinafter). The ionic conductivity is obtained by measurement by an alternating current impedance method using a sample having electrodes formed on both sides. The ion conductivity of the lithium ion conductive glass ceramic in the present embodiment is calculated from the arc diameter of the colle-core plot obtained by AC impedance measurement under the measurement conditions of an applied voltage of 50 mV and a measurement frequency range of 1 Hz to 1 MHz.
 本実施形態により製造されたリチウムイオン伝導性ガラスセラミックスは、リチウムイオン二次電池用の無機固体電解質に適用できる。例えば、本実施形態による固体電解質は、金属空気電池または全固体電池用の固体電解質に適用できる。 The lithium ion conductive glass ceramic produced according to this embodiment can be applied to an inorganic solid electrolyte for a lithium ion secondary battery. For example, the solid electrolyte according to the present embodiment can be applied to a solid electrolyte for a metal-air battery or an all-solid battery.
 (リチウムイオン二次電池)
 本実施形態の製造方法により製造されたリチウムイオン伝導性ガラスセラミックスは、例えば、リチウムイオン二次電池、金属空気電池、または全固体電池の固体電解質として使用することができる。図1に、リチウムイオン二次電池の構成の一例を概略的に示す。
(Lithium ion secondary battery)
The lithium ion conductive glass ceramic produced by the production method of the present embodiment can be used, for example, as a solid electrolyte of a lithium ion secondary battery, a metal-air battery, or an all-solid battery. FIG. 1 schematically shows an example of the configuration of a lithium ion secondary battery.
 図1に示すように、リチウムイオン二次電池100は、カソード電極110、アノード電極150、および電極間の電解質120を有する。 As shown in FIG. 1, a lithium ion secondary battery 100 has a cathode electrode 110, an anode electrode 150, and an electrolyte 120 between the electrodes.
 カソード電極110には、例えば、LiCoO、LiMn、またはLiFePO等が使用される。アノード電極150には、例えば、金属リチウム、グラファイトまたはLiTi12等が使用される。ただし、これは、一例であって、両電極に、その他の電極材料を使用してもよいことは、当業者には明らかである。 For the cathode electrode 110, for example, LiCoO 2 , LiMn 2 O 4 , LiFePO 4 or the like is used. For the anode electrode 150, for example, metallic lithium, graphite, Li 4 Ti 5 O 12 or the like is used. However, this is merely an example, and it will be apparent to those skilled in the art that other electrode materials may be used for both electrodes.
 ここで、電解質120には、本実施形態におけるリチウムイオン伝導性ガラスセラミックスを含む固体電解質が使用されている。 Here, as the electrolyte 120, a solid electrolyte containing the lithium ion conductive glass ceramic in the present embodiment is used.
 電解質120として、本実施形態におけるリチウムイオン伝導性ガラスセラミックスを使用した場合、従来の有機溶媒系の液体電解質を使用した場合に比べて、リチウムイオン二次電池に高い安全性を提供できる。また、本実施形態におけるリチウムイオン伝導性ガラスセラミックスは、従来の有機溶媒系の液体電解質に比べて、電圧印加に対して高い安定性を有する。このため、リチウムイオン二次電池に大きな電圧を印加した際に、電解質が分解または変質してしまうという従来の問題が軽減される。 When the lithium ion conductive glass ceramic according to the present embodiment is used as the electrolyte 120, higher safety can be provided to the lithium ion secondary battery than when a conventional organic solvent-based liquid electrolyte is used. In addition, the lithium ion conductive glass ceramic in the present embodiment has higher stability against voltage application than a conventional organic solvent-based liquid electrolyte. For this reason, when a large voltage is applied to the lithium ion secondary battery, the conventional problem that the electrolyte is decomposed or deteriorated is reduced.
 さらに、本実施形態におけるリチウムイオン伝導性ガラスセラミックスは、高いリチウムイオン伝導度を有する。したがって、本実施形態のリチウムイオン伝導性ガラスセラミックスで構成された電解質120を有するリチウムイオン二次電池100は、従来の固体電解質を使用したリチウムイオン二次電池に比べて、良好な特性を発揮することができる。 Furthermore, the lithium ion conductive glass ceramic in this embodiment has high lithium ion conductivity. Therefore, the lithium ion secondary battery 100 having the electrolyte 120 made of the lithium ion conductive glass ceramic according to the present embodiment exhibits better characteristics than a conventional lithium ion secondary battery using a solid electrolyte. be able to.
 本実施形態の実施例および比較例を以下に示す。例1~例4は実施例であり、例5は比較例である。表1には、原料混合物の組成(モル%単位)、イオン交換処理後に得られた評価用サンプルのイオン伝導度を示す。 Examples and comparative examples of this embodiment are shown below. Examples 1 to 4 are examples, and example 5 is a comparative example. Table 1 shows the composition (mol% unit) of the raw material mixture and the ionic conductivity of the sample for evaluation obtained after the ion exchange treatment.
 (例1)
 (評価用サンプルの作製)
 以下の手順で評価用サンプルを作製し、特性を評価した。
(Example 1)
(Preparation of sample for evaluation)
The sample for evaluation was produced in the following procedures, and the characteristics were evaluated.
 原料混合物が、下記の表1における例1の「原料混合物組成」の欄に示す組成(表1では原料混合物組成(モル%)と記す)で各成分を含むように、原料粉を秤量、混合して原料混合物を得た。次に、原料混合物を、白金坩堝に入れ、1650℃で120分間加熱し、溶融させ、原料混合物の溶融物を得た。次に、該溶融物を用いて、カーボン板上に流しだしを行った。サンプル中の歪みを除去するため、830℃で1時間加熱した後、冷却速度1℃/分、すなわち13時間25分で室温(25℃)まで冷却し、ブロック状のサンプルを作製した。以下、本実施例では、原料混合物を加熱し溶融して溶融物を得、該溶融物を冷却して固化させて得られたサンプルを、イオン交換処理前サンプルという。 The raw material powder is weighed and mixed so that the raw material mixture contains each component in the composition shown in the column of “raw material mixture composition” of Example 1 in Table 1 below (indicated as the raw material mixture composition (mol%) in Table 1). Thus, a raw material mixture was obtained. Next, the raw material mixture was put in a platinum crucible, heated at 1650 ° C. for 120 minutes, and melted to obtain a melt of the raw material mixture. Next, the molten material was poured onto a carbon plate. In order to remove the distortion in the sample, the sample was heated at 830 ° C. for 1 hour, and then cooled to room temperature (25 ° C.) at a cooling rate of 1 ° C./min, that is, 13 hours and 25 minutes, to produce a block-like sample. Hereinafter, in this example, a sample obtained by heating and melting the raw material mixture to obtain a melt, and cooling and solidifying the melt is referred to as a sample before ion exchange treatment.
Figure JPOXMLDOC01-appb-T000001
 イオン交換処理前サンプルを粉砕し、CuKα線を用いたX線回折測定を行った。得られたX線回折パターンに明瞭な回折ピークが認められたことから、イオン交換処理前サンプルがガラスセラミックスであることが確認された。また、X線回折パターンのピーク解析の結果、イオン交換処理前サンプルは、NASICON型の結晶構造を有することが確認された。
Figure JPOXMLDOC01-appb-T000001
The sample before ion exchange treatment was pulverized, and X-ray diffraction measurement using CuKα rays was performed. Since a clear diffraction peak was observed in the obtained X-ray diffraction pattern, it was confirmed that the sample before the ion exchange treatment was glass ceramics. As a result of peak analysis of the X-ray diffraction pattern, it was confirmed that the sample before the ion exchange treatment had a NASICON type crystal structure.
 次に、イオン交換処理前サンプルを、厚さが0.25mmになるまで研磨した。 Next, the sample before the ion exchange treatment was polished until the thickness became 0.25 mm.
 次に、研磨後のイオン交換処理前サンプルを用いて、イオン交換処理を行った。イオン交換処理は、イオン交換処理前サンプルを、400℃の硝酸リチウム溶融塩中に浸漬することにより行った。処理時間は、72時間とした。これにより、評価用サンプルが得られた。 Next, ion exchange treatment was performed using the sample before ion exchange treatment after polishing. The ion exchange treatment was performed by immersing the sample before the ion exchange treatment in a 400 ° C. lithium nitrate molten salt. The processing time was 72 hours. Thereby, the sample for evaluation was obtained.
 評価用サンプルについて、CuKα線を用いたX線回折測定を行った。図2に、評価用サンプルのX線回折パターンを示す。イオン交換処理の前後、すなわちイオン交換処理前サンプルと評価用サンプルのX線回折パターンは、ほとんど変化していなかった。この結果から、例1の評価用サンプルは、イオン交換処理前と同様のガラスセラミックスであることが確認された。また、例1の評価用サンプルは、イオン交換処理前と同様の結晶構造、すなわちNASICON型の結晶構造を有することが確認された。 X-ray diffraction measurement using CuKα ray was performed on the sample for evaluation. FIG. 2 shows an X-ray diffraction pattern of the evaluation sample. Before and after the ion exchange treatment, that is, the X-ray diffraction patterns of the sample before the ion exchange treatment and the sample for evaluation were hardly changed. From this result, it was confirmed that the sample for evaluation of Example 1 was the same glass ceramics as before the ion exchange treatment. Moreover, it was confirmed that the sample for evaluation of Example 1 has the same crystal structure as that before the ion exchange treatment, that is, the NASICON type crystal structure.
 評価用サンプルの組成を、ICP分析法により測定した結果、SiOが30%、ZrOが35%、Pが15%、LiOが20%であり、NaOは検出限界以下であった。イオン交換処理によって、イオン交換処理前サンプル中のナトリウムイオンのほとんどがリチウムイオンに置換された評価用サンプルが得られたことを確認した。 The composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 30%, ZrO 2 was 35%, P 2 O 5 was 15%, Li 2 O was 20%, and Na 2 O was the detection limit. It was the following. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
 (特性評価)
 評価用サンプルを用いて、以下の方法でイオン伝導度を測定した。まず、評価用サンプルの両面に、蒸着法により金膜(厚さ約200nm)を形成した。前記金膜を電極として、両電極間に50mVの測定電圧を印加し、交流インピーダンス法により、インピーダンス測定を行った。測定には、FRA(周波数応答アナライザ)を備えるソーラトロン1260(Solartron社製)を使用し、測定周波数は、10Hz~10Hzとした。Cole-Coleプロットで求められる円弧径より、例1の評価用サンプルのイオン伝導度を算定した。
(Characteristic evaluation)
Ionic conductivity was measured by the following method using the sample for evaluation. First, gold films (thickness: about 200 nm) were formed on both surfaces of the evaluation sample by vapor deposition. Using the gold film as an electrode, a measurement voltage of 50 mV was applied between both electrodes, and impedance measurement was performed by an AC impedance method. For the measurement, Solartron 1260 (manufactured by Solartron) equipped with FRA (frequency response analyzer) was used, and the measurement frequency was set to 10 7 Hz to 10 Hz. The ionic conductivity of the evaluation sample of Example 1 was calculated from the arc diameter determined by the Cole-Cole plot.
 測定の結果、イオン伝導度は、5.5×10-5S/cmであった。 As a result of the measurement, the ionic conductivity was 5.5 × 10 −5 S / cm.
 (例2)
 例2では、原料混合物が、上記表1における例2の「原料混合物組成」の欄に示す組成で各成分を含むように、原料粉を秤量、混合して原料混合物を得た。また、例2では、イオン交換処理前サンプルを、厚さ0.6mmになるまで研磨した。その他の作製条件は、例1の場合と同様にした。
(Example 2)
In Example 2, the raw material powder was weighed and mixed so that the raw material mixture contained each component with the composition shown in the column of “Raw material mixture composition” in Example 2 in Table 1 above to obtain a raw material mixture. In Example 2, the sample before the ion exchange treatment was polished until the thickness became 0.6 mm. The other production conditions were the same as in Example 1.
 イオン交換処理前サンプルおよび評価用サンプルについて、CuKα線を用いたX線回折測定を行った。図3には、評価用サンプルのX線回折結果を示す。 The X-ray diffraction measurement using CuKα rays was performed on the sample before ion exchange treatment and the sample for evaluation. In FIG. 3, the X-ray-diffraction result of the sample for evaluation is shown.
 イオン交換処理前後、すなわちイオン交換処理前サンプルと評価用サンプルのX線回折パターンは、ほとんど変化していなかった。イオン交換処理前および評価用サンプルは、X線回折パターンに明瞭な回折ピークが認められたことから、ガラスセラミックスであることが確認された。また、X線回折パターンのピーク解析の結果、NASICON型の結晶構造を有することが確認された。 The X-ray diffraction patterns of the sample before and after the ion exchange treatment, that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
 評価用サンプルの組成を、ICP分析法により測定した結果、SiOが42.5%、ZrOが22.5%、Pが15%、LiOが20%であり、NaOは検出限界以下であった。イオン交換処理によって、イオン交換処理前サンプル中のナトリウムイオンのほとんどがリチウムイオンに置換された評価用サンプルが得られたことを確認した。 As a result of measuring the composition of the sample for evaluation by ICP analysis, SiO 2 was 42.5%, ZrO 2 was 22.5%, P 2 O 5 was 15%, Li 2 O was 20%, Na 2 O was below the detection limit. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
 評価用サンプルを用いて、前述の方法でイオン伝導度を測定した。測定の結果、評価用サンプルのイオン伝導度は、1.6×10-5S/cmであった。 Using the evaluation sample, the ionic conductivity was measured by the method described above. As a result of the measurement, the ionic conductivity of the sample for evaluation was 1.6 × 10 −5 S / cm.
 (例3)
 例3では、上記表1における例3の「原料混合物組成」の欄に示す組成で各成分を含むように、原料粉を秤量、混合して原料混合物を得た。その他の作製条件は、例2の場合と同様にした。
(Example 3)
In Example 3, the raw material powder was weighed and mixed so as to include each component in the composition shown in the column of “Raw material mixture composition” in Example 3 in Table 1 above to obtain a raw material mixture. Other manufacturing conditions were the same as in Example 2.
 イオン交換処理前サンプルおよび評価用サンプルについて、CuKα線を用いたX線回折測定を行った。図4には、評価用サンプルのX線回折結果を示す。 The X-ray diffraction measurement using CuKα rays was performed on the sample before ion exchange treatment and the sample for evaluation. In FIG. 4, the X-ray-diffraction result of the sample for evaluation is shown.
 イオン交換処理前後、すなわちイオン交換処理前サンプルと評価用サンプルのX線回折パターンは、ほとんど変化していなかった。イオン交換処理前および評価用サンプルは、X線回折パターンに明瞭な回折ピークが認められたことから、ガラスセラミックスであることが確認された。また、X線回折パターンのピーク解析の結果、NASICON型の結晶構造を有することが確認された。 The X-ray diffraction patterns of the sample before and after the ion exchange treatment, that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
 評価用サンプルの組成を、ICP分析法により測定した結果、SiOが40%、ZrOが20%、Pが10%、LiOが30%であり、NaOは検出限界以下であった。イオン交換処理によって、イオン交換処理前サンプル中のナトリウムイオンのほとんどがリチウムイオンに置換された評価用サンプルが得られたことを確認した。 The composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 40%, ZrO 2 was 20%, P 2 O 5 was 10%, Li 2 O was 30%, and Na 2 O was the detection limit. It was the following. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
 評価用サンプルを用いて、前述の方法でイオン伝導度を測定した。測定の結果、評価用サンプルのイオン伝導度は、4.1×10-6S/cmであった。 Using the evaluation sample, the ionic conductivity was measured by the method described above. As a result of the measurement, the ionic conductivity of the sample for evaluation was 4.1 × 10 −6 S / cm.
 (例4)
 例4では、原料混合物が、上記表1における例4の「原料混合物組成」の欄に示す組成で各成分を含むように、原料粉を秤量、混合して原料混合物を得た。その他の作製条件は、例2の場合と同様にした。
(Example 4)
In Example 4, the raw material powder was weighed and mixed so that the raw material mixture contained each component with the composition shown in the column of “Raw material mixture composition” in Example 4 in Table 1 above to obtain a raw material mixture. Other manufacturing conditions were the same as in Example 2.
 イオン交換処理前サンプルおよび評価用サンプルについて、CuKα線を用いたX線回折測定を行った。図5には、評価用サンプルのX線回折結果を示す。 The X-ray diffraction measurement using CuKα rays was performed on the sample before ion exchange treatment and the sample for evaluation. In FIG. 5, the X-ray-diffraction result of the sample for evaluation is shown.
 イオン交換処理前後、すなわちイオン交換処理前サンプルと評価用サンプルのX線回折パターンは、ほとんど変化していなかった。イオン交換処理前および評価用サンプルは、X線回折パターンに明瞭な回折ピークが認められたことから、ガラスセラミックスであることが確認された。また、X線回折パターンのピーク解析の結果、NASICON型の結晶構造を有することが確認された。 The X-ray diffraction patterns of the sample before and after the ion exchange treatment, that is, the sample before the ion exchange treatment and the sample for evaluation were hardly changed. Since the clear diffraction peak was recognized in the X-ray diffraction pattern, the sample before the ion exchange treatment and the evaluation sample were confirmed to be glass ceramics. Further, as a result of peak analysis of the X-ray diffraction pattern, it was confirmed that it had a NASICON type crystal structure.
 評価用サンプルの組成を、ICP分析法により測定した結果、SiOが32.5%、ZrOが22.5%、Pが15%、LiOが30%であり、NaOは検出限界以下であった。イオン交換処理によって、イオン交換処理前サンプル中のナトリウムイオンのほとんどがリチウムイオンに置換された評価用サンプルが得られたことを確認した。 The composition of the sample for evaluation was measured by ICP analysis. As a result, SiO 2 was 32.5%, ZrO 2 was 22.5%, P 2 O 5 was 15%, Li 2 O was 30%, Na 2 O was below the detection limit. It was confirmed that the sample for evaluation in which most of the sodium ions in the sample before the ion exchange treatment were replaced with lithium ions was obtained by the ion exchange treatment.
 評価用サンプルを用いて、前述の方法でイオン伝導度を測定した。測定の結果、評価用サンプルのイオン伝導度は、3.4×10-7S/cmであった。 Using the evaluation sample, the ionic conductivity was measured by the method described above. As a result of the measurement, the ionic conductivity of the sample for evaluation was 3.4 × 10 −7 S / cm.
 (例5)
 例5では、上記表1における例5の「原料混合物組成」の欄に示す組成で各成分を含むように、原料粉を秤量、混合し原料混合物を得た。その他の作製条件は、例2の場合と同様にした。
(Example 5)
In Example 5, the raw material powder was weighed and mixed so as to include each component in the composition shown in the column of “Raw material mixture composition” in Example 5 in Table 1 to obtain a raw material mixture. Other manufacturing conditions were the same as in Example 2.
 イオン交換処理前サンプルおよび評価用サンプルについて、CuKα線を用いたX線回折測定を行った。図6には、評価用サンプルのX線回折結果を示す。 The X-ray diffraction measurement using CuKα rays was performed on the sample before ion exchange treatment and the sample for evaluation. In FIG. 6, the X-ray-diffraction result of the sample for evaluation is shown.
 イオン交換処理前後、すなわちイオン交換処理前サンプルと評価用サンプルのX線回折パターンは、ほとんど変化していなかった。X線回折パターンのピーク解析の結果、イオン交換処理前サンプルおよび評価用サンプルは、ZrSiO(h印)、LiPO(i印)、SiO(j印)、およびZrO(k印)を含んでいた。また、NASICON型の結晶構造は含んでいなかった。なお、ZrO(m印)は、X線回折測定の際に入れた内部標準物質である。 Before and after the ion exchange treatment, that is, the X-ray diffraction patterns of the sample before the ion exchange treatment and the sample for evaluation were hardly changed. As a result of peak analysis of the X-ray diffraction pattern, the sample before ion exchange treatment and the sample for evaluation are ZrSiO 4 (h mark), Li 3 PO 4 (i mark), SiO 2 (j mark), and ZrO 2 (k mark). ). Further, it did not contain a NASICON type crystal structure. ZrO (m mark) is an internal standard substance put in the case of X-ray diffraction measurement.
 評価用サンプルを用いて、前述の方法でイオン伝導度を測定した。測定の結果、評価用サンプルのイオン伝導度は、2.9×10-8S/cmと低かった。 Using the evaluation sample, the ionic conductivity was measured by the method described above. As a result of the measurement, the ionic conductivity of the sample for evaluation was as low as 2.9 × 10 −8 S / cm.
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。 The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments and examples described above, and is based on the gist of the present invention described in the claims. Various modifications and changes can be made within the range.
 本国際出願は2013年3月5日に出願された日本国特許出願2013-042736号に基づく優先権を主張するものであり、その全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2013-042736 filed on March 5, 2013, the entire contents of which are incorporated herein by reference.

Claims (8)

  1.  (a)原料混合物が、酸化物に換算したモル%単位で、25%以上50%以下のSiO、10%以上45%以下のZrO、0%超30%以下のP、および5%以上40%以下のNaOを含むように原料を調合して原料混合物を得、前記原料混合物を溶融し冷却して固化させる過程でガラスセラミックスからなる被処理体を得る工程と、
     (b)前記被処理体を、リチウムイオンを含む溶融塩中でイオン交換処理する工程と、
    を有することを特徴とするリチウムイオン伝導性ガラスセラミックスの製造方法。
    (A) The raw material mixture is in mol% unit converted to oxide, 25% or more and 50% or less of SiO 2 , 10% or more and 45% or less of ZrO 2 , more than 0% and 30% or less of P 2 O 5 , and Preparing a raw material mixture by preparing a raw material so as to contain 5% or more and 40% or less Na 2 O, and obtaining an object to be processed made of glass ceramics in the process of melting, cooling and solidifying the raw material mixture;
    (B) a step of subjecting the workpiece to an ion exchange treatment in a molten salt containing lithium ions;
    A method for producing a lithium ion conductive glass ceramic, comprising:
  2.  前記被処理体が、NASICON型の結晶構造を有する請求項1に記載のリチウムイオン伝導性ガラスセラミックスの製造方法。 The method for producing a lithium ion conductive glass ceramic according to claim 1, wherein the object to be treated has a NASICON type crystal structure.
  3.  前記(a)と前記(b)の工程の間に、
     (c)前記被処理体の厚さを1mm以下に加工する工程
    を有する請求項1または2に記載のリチウムイオン伝導性ガラスセラミックスの製造方法。
    Between the steps (a) and (b),
    (C) The manufacturing method of the lithium ion conductive glass ceramics of Claim 1 or 2 which has the process of processing the thickness of the said to-be-processed object into 1 mm or less.
  4.  前記溶融は、1400℃以上1700℃以下の温度で、前記原料混合物を加熱することにより実施される請求項1から3のいずれか一項に記載のリチウムイオン伝導性ガラスセラミックスの製造方法。 The method for producing a lithium ion conductive glass ceramic according to any one of claims 1 to 3, wherein the melting is performed by heating the raw material mixture at a temperature of 1400 ° C or higher and 1700 ° C or lower.
  5.  前記冷却は、0.2℃/分以上2℃/分以下の冷却速度で実施される請求項1から4のいずれか一項に記載のリチウムイオン伝導性ガラスセラミックスの製造方法。 The method for producing a lithium ion conductive glass ceramic according to any one of claims 1 to 4, wherein the cooling is performed at a cooling rate of 0.2 ° C / min to 2 ° C / min.
  6.  前記イオン交換処理は、200℃以上500℃以下の温度で、前記リチウムイオンを含む溶融塩中に、前記被処理体を24時間~120時間保持することにより実施される請求項1から5のいずれか一項に記載のリチウムイオン伝導性ガラスセラミックスの製造方法。 The ion exchange treatment is performed by holding the object to be treated in a molten salt containing lithium ions at a temperature of 200 ° C or higher and 500 ° C or lower for 24 hours to 120 hours. A method for producing a lithium ion conductive glass ceramic according to claim 1.
  7.  請求項1から6のいずれか一項に記載の方法で製造されたリチウムイオン伝導性ガラスセラミックス。 A lithium ion conductive glass ceramic produced by the method according to any one of claims 1 to 6.
  8.  正極、負極、および両極の間に配置された固体電解質を有するリチウムイオン二次電池であって、
     前記固体電解質は、請求項1から6のいずれか一項に記載の方法で製造されたリチウムイオン伝導性ガラスセラミックスを含む固体電解質であるリチウムイオン二次電池。
    A lithium ion secondary battery having a positive electrode, a negative electrode, and a solid electrolyte disposed between the two electrodes,
    The said solid electrolyte is a lithium ion secondary battery which is a solid electrolyte containing the lithium ion conductive glass ceramic manufactured by the method as described in any one of Claim 1 to 6.
PCT/JP2014/054902 2013-03-05 2014-02-27 Manufacturing method of lithium ion conductive glass-ceramic, lithium ion conductive glass-ceramic and lithium ion secondary cell WO2014136650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504265A JPWO2014136650A1 (en) 2013-03-05 2014-02-27 Method for producing lithium ion conductive glass ceramics, lithium ion conductive glass ceramics and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-042736 2013-03-05
JP2013042736 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136650A1 true WO2014136650A1 (en) 2014-09-12

Family

ID=51491169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054902 WO2014136650A1 (en) 2013-03-05 2014-02-27 Manufacturing method of lithium ion conductive glass-ceramic, lithium ion conductive glass-ceramic and lithium ion secondary cell

Country Status (2)

Country Link
JP (1) JPWO2014136650A1 (en)
WO (1) WO2014136650A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487441B2 (en) 2011-10-28 2016-11-08 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
US10116035B2 (en) 2015-04-30 2018-10-30 Corning Incorporated Electrically conductive articles with discrete metallic silver layers and methods for making same
GB2568613A (en) * 2018-02-01 2019-05-22 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
CN112397774A (en) * 2020-10-19 2021-02-23 上海空间电源研究所 A kind of solid electrolyte membrane, preparation method and solid state battery
CN112563565A (en) * 2020-11-13 2021-03-26 上海空间电源研究所 Preparation method of lithium-sodium ion mixed solid electrolyte and solid-state mixed battery
CN112563564A (en) * 2020-11-13 2021-03-26 上海空间电源研究所 Soft chemical synthesis method for preparing sodium ion solid electrolyte
US11264614B2 (en) 2018-02-01 2022-03-01 Thermal Ceramics Uk Limited Energy storage device and ionic conducting composition for use therein
JP2022530939A (en) * 2019-06-26 2022-07-05 上海空間電源研究所 Lithium-ion solid electrolyte and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156200A (en) * 1976-06-21 1977-12-26 Massachusetts Inst Technology Composition for transporting alkali metal ion rapidly
JPS59107942A (en) * 1982-11-30 1984-06-22 アメリカ合衆国 Ion conductive glass
JP2002519836A (en) * 1998-06-26 2002-07-02 ヴァレンス テクノロジー、 インク. Lithium-containing silicon phosphate and method for producing and using the same
JP2010275130A (en) * 2009-05-27 2010-12-09 Hoya Corp Method for producing lithium ion conductive glass
JP2012531709A (en) * 2009-06-26 2012-12-10 セラマテック インコーポレイテッド Alkali metal superionic conductive ceramic
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156200A (en) * 1976-06-21 1977-12-26 Massachusetts Inst Technology Composition for transporting alkali metal ion rapidly
JPS59107942A (en) * 1982-11-30 1984-06-22 アメリカ合衆国 Ion conductive glass
JP2002519836A (en) * 1998-06-26 2002-07-02 ヴァレンス テクノロジー、 インク. Lithium-containing silicon phosphate and method for producing and using the same
JP2010275130A (en) * 2009-05-27 2010-12-09 Hoya Corp Method for producing lithium ion conductive glass
JP2012531709A (en) * 2009-06-26 2012-12-10 セラマテック インコーポレイテッド Alkali metal superionic conductive ceramic
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same
WO2013031507A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586861B2 (en) 2011-10-28 2017-03-07 Corning Incorporated Glass articles with discrete metallic silver layers and methods for making the same
US9975805B2 (en) 2011-10-28 2018-05-22 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
US9487441B2 (en) 2011-10-28 2016-11-08 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
US11535555B2 (en) 2011-10-28 2022-12-27 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
US10116035B2 (en) 2015-04-30 2018-10-30 Corning Incorporated Electrically conductive articles with discrete metallic silver layers and methods for making same
US11264614B2 (en) 2018-02-01 2022-03-01 Thermal Ceramics Uk Limited Energy storage device and ionic conducting composition for use therein
GB2568613A (en) * 2018-02-01 2019-05-22 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
GB2568613B (en) * 2018-02-01 2020-06-24 Thermal Ceram Uk Ltd Energy storage device and ionic conducting composition for use therein
JP7253075B2 (en) 2019-06-26 2023-04-05 上海空間電源研究所 Lithium ion solid electrolyte and manufacturing method thereof
JP2022530939A (en) * 2019-06-26 2022-07-05 上海空間電源研究所 Lithium-ion solid electrolyte and its manufacturing method
CN112397774A (en) * 2020-10-19 2021-02-23 上海空间电源研究所 A kind of solid electrolyte membrane, preparation method and solid state battery
CN112563565B (en) * 2020-11-13 2022-03-25 上海空间电源研究所 Preparation method of lithium-sodium ion mixed solid electrolyte and solid-state mixed battery
CN112563564B (en) * 2020-11-13 2021-11-09 上海空间电源研究所 Soft chemical synthesis method for preparing sodium ion solid electrolyte
CN112563564A (en) * 2020-11-13 2021-03-26 上海空间电源研究所 Soft chemical synthesis method for preparing sodium ion solid electrolyte
CN112563565A (en) * 2020-11-13 2021-03-26 上海空间电源研究所 Preparation method of lithium-sodium ion mixed solid electrolyte and solid-state mixed battery

Also Published As

Publication number Publication date
JPWO2014136650A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6007909B2 (en) Method for producing lithium ion conductive glass ceramics
WO2014136650A1 (en) Manufacturing method of lithium ion conductive glass-ceramic, lithium ion conductive glass-ceramic and lithium ion secondary cell
US8476174B2 (en) Glass and glass-ceramics
Jadhav et al. Influence of B2O3 addition on the ionic conductivity of Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass ceramics
JP5518371B2 (en) Method for producing lithium ion conductive glass
JP2018092936A (en) Reaction sintering of ceramic lithium ion solid electrolyte
JP6479629B2 (en) Method for producing glass ceramic ion conductor
TW201518243A (en) Lithium orthophosphate glasses, corresponding glass-ceramics and lithium ion-conducting NZP glass ceramics
KR102445216B1 (en) Lithium Ion Conductor Precursor Glass and Lithium Ion Conductor
KR20220129674A (en) Positive electrode active material for sodium ion secondary battery and manufacturing method thereof
KR20150050552A (en) Method for manufacturing lithium-ion-conducting glass ceramic
Pietrzak et al. Syntheses and nanocrystallization of NaF–M2O3–P2O5 NASICON‐like phosphate glasses (M= V, Ti, Fe)
JP2015046359A (en) Method for manufacturing lithium ion-conducting glass ceramic, lithium ion-conducting glass ceramic, solid electrolyte, and lithium ion secondary battery
JP2000026135A (en) Lithium-ionically conductive glass-ceramics and cell and gas sensor, using the same
JP2013237578A (en) Method for producing lithium ion conducting glass ceramics
JP2014017137A (en) Lithium ion conductive glass ceramic
JP2014162652A (en) Lithium ion conducting glass ceramics and method for manufacturing the same
JP2014154216A (en) Lithium ion conductor
WO2024062944A1 (en) Glass frit, and method for manufacturing glass frit
WO2023053609A1 (en) Sulfide solid electrolyte and method for producing same
Es-Soufi et al. Some physical properties of the glasses within the Li2O-Li2WO4-TiO2-P2O5 system
WO2024062945A1 (en) Crystallized glass and method for manufacturing crystallized glass
JP2016152220A (en) Electrolyte, secondary battery and method for manufacturing electrolyte
WO2025069783A1 (en) Sulfide solid electrolyte and method for manufacturing same
JP2013237577A (en) Lithium ion conductive glass ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761166

Country of ref document: EP

Kind code of ref document: A1