[go: up one dir, main page]

WO2014131150A1 - 一种电容器级钽铌合金丝材用粉料及其制备方法 - Google Patents

一种电容器级钽铌合金丝材用粉料及其制备方法 Download PDF

Info

Publication number
WO2014131150A1
WO2014131150A1 PCT/CN2013/071875 CN2013071875W WO2014131150A1 WO 2014131150 A1 WO2014131150 A1 WO 2014131150A1 CN 2013071875 W CN2013071875 W CN 2013071875W WO 2014131150 A1 WO2014131150 A1 WO 2014131150A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tantalum
tantalum powder
mixing
mesh
Prior art date
Application number
PCT/CN2013/071875
Other languages
English (en)
French (fr)
Inventor
万庆峰
刘云峰
解永旭
韩鹏
马跃忠
陈林
张晓�
郭林波
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Priority to PCT/CN2013/071875 priority Critical patent/WO2014131150A1/zh
Priority to MX2015000570A priority patent/MX2015000570A/es
Priority to JP2015558324A priority patent/JP2016516124A/ja
Priority to CN201380032441.3A priority patent/CN104379792B/zh
Publication of WO2014131150A1 publication Critical patent/WO2014131150A1/zh
Priority to IL236833A priority patent/IL236833A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Definitions

  • the present invention relates to the field of capacitors, and more particularly to a powder for capacitor grade bismuth alloy wire and a method of preparing the same. Background technique
  • Capacitor grade niobium alloy wire is used in capacitors and is commonly used to make capacitor anode leads.
  • the raw materials used in the manufacture of capacitor grade niobium alloy wires are tantalum powder and niobium powder.
  • a certain proportion of tantalum powder and tantalum powder are finally produced into a capacitor grade tantalum alloy wire by mixing, pressing, vacuum sintering or smelting, rolling or forging, intermediate annealing, drawing, and finishing annealing.
  • the powder for capacitor grade niobium alloy wire is a raw material for the manufacture of container grade niobium alloy wire, and the uniformity of the powder directly affects the quality of the final product.
  • the conventional capacitor-grade crepe powder is a single powder, and because it does not contain other metals, the uniformity of the mixture is easy to achieve.
  • the particle size of the tantalum powder in the powder grade of the capacitor grade niobium alloy wire is small, and the number of particles per unit volume is relatively larger than that of the niobium powder. A large amount of small particle powders are gathered together and are not easily dispersed during the mixing process, so there is unevenness in microscopic view. Therefore, in order to prepare a capacitor grade niobium alloy wire, it is necessary to provide a well mixed niobium powder mixture. Summary of the invention
  • An object of the present invention is to provide a powder for a capacitor-grade niobium alloy wire and a method for stably producing the same, by which a powder for niobium alloy wire can be produced on an industrial scale, the niobium alloy wire
  • the powder for the material has a very high uniformity.
  • the ratio of the addition of tantalum powder to tantalum powder to a certain extent during the initial mixing process for example, the weight ratio of tantalum powder to the first part of the tantalum powder is about 2:1
  • the speed guarantees that the powder and the powder are thoroughly mixed to further avoid the phenomenon of powder agglomeration caused by the excessively fast mixing speed.
  • the powder is particularly suitable for the manufacture of capacitor grade niobium alloy wires.
  • the present invention provides a powder for a capacitor-grade niobium alloy wire, the powder comprising a tantalum powder and a tantalum powder, wherein the weight ratio of the tantalum powder to the tantalum powder is 1:2 to 3:2, The purity of the tantalum powder and the tantalum powder are both greater than 99.9% by weight, the particle size of the tantalum powder is -80 mesh to -150 mesh, and the particle size of the tantalum powder is -150 mesh to -200 mesh, and ⁇ The bulk of the powder is 3. 0-4. 3 g / cm 3 .
  • the present invention provides a method of preparing a powder for a capacitor grade niobium alloy wire, the method comprising the steps of:
  • the particle size of the powder is -150 mesh to -200 mesh, and wherein the weight ratio of the tantalum powder to the tantalum powder is 1: 2 to 3: 2;
  • the weight of the first portion of the tantalum powder is from 45% to 55%, and preferably 50% by weight of the tantalum powder.
  • the technical features of the method of the invention are: (1) Proportion control of adding silver powder and glutinous powder for the first time: The weight ratio of the first added silver powder and coarse powder should be controlled at about 1: 2, and the remaining mash powder is added to the mixer to continue mixing after the second mixing.
  • “mesh” is used to indicate the particle size of the tantalum powder or tantalum powder (according to the American ASTM standard).
  • the "-" sign before the mesh means “passing” the mesh of the mesh.
  • "-150 mesh” means that the particles of the powder pass through a 150 mesh screen.
  • Example 1 The invention is illustrated by the following specific examples. However, it should be understood that the invention is not limited to the specific embodiments. Example 1
  • the production method according to the present invention was used, and the comparative example was a conventional method.
  • the method for producing a powder for a niobium alloy wire material according to the present invention can obtain a powder having excellent uniformity; the crucible alloy wire can be further produced from the powder by a subsequent processing, and the crucible of the present invention can be further fully embodied.
  • the advantage of the powder for bismuth alloy wire In the processing of niobium alloy wire, the yarn breakage usually occurs during the drawing process of niobium alloy wire. It is generally believed that the frequency of such breakage is closely related to the uniformity of the powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

电容器级钽铌合金丝材用粉料及其制备方法,所述粉料由钽粉和铌粉组成,其中钽粉与铌粉的重量比例为1:2至3:2,钽粉和铌粉的纯度均大于99.9重量%,钽粉的粒度为-80目至-150目,铌粉的粒度为-150目至-200目,粉料的松装比重为3.0-4.3g/cm3;该粉料的制备方法包括配料、手动混合、初次混料、二次混料、和三次混料,从而得到电容器级钽铌合金丝材用粉料。该制备方法设计合理,有利于两种不同种类的金属粉料的充分均匀;整个生产过程高度受控,产品质量稳定从而有利于电容器级钽铌合金丝材的生产。

Description

一种电容器级钽铌合金丝材用粉料及其制备方法
技术领域
本发明涉及电容器领域, 且更具体涉及一种电容器级钽铌 合金丝材用粉料及其制备方法。 背景技术
电容器级钽铌合金丝材应用于电容器, 通常用于制作电容 器阳极引线。 制造电容器级钽铌合金丝材所用原料为钽粉和铌 粉。 将一定比例的钽粉和铌粉经过混料、 压制成型、 真空烧结 或熔炼、 轧制或锻造、 中间退火、 拉拔、 成品退火等工艺最终 制造成电容器级钽铌合金丝材。
电容器级钽铌合金丝材用粉料是制造容器级钽铌合金丝材 的原料, 所述粉料的均匀性直接影响最终产品的品质。 传统电 容器级钽丝用粉料为单一钽粉, 因为不含有其他金属所以混料 均匀性容易实现。 电容器级钽铌合金丝材用粉料中铌粉的粒度 较小, 单位体积所含颗粒数相对钽粉较多。 大量的小颗粒铌粉 聚集在一起, 并且在混料过程中不易分散, 因此在微观上看存 在不均匀现象。 因此, 为了制备电容器级钽铌合金丝材, 需要 提供良好混合的钽铌粉末混合物。 发明内容
本发明的目的在于提供一种电容器级钽铌合金丝材用粉料 以及稳定生产该粉料的方法, 利用此方法能够以工业规模生产 钽铌合金丝材用粉料, 所述钽铌合金丝材用粉料具有极高的均 匀性。 通过在初次混料过程中一定程度确定钽粉与铌粉的添加 比例 (例如, 钽粉与第一部分铌粉重量比为 2: 1 左右)会避免 因为一次性铌粉添加过多而导致的不均句现象。 并且控制混料 速度保证铌粉与钽粉充分混合进一步避免因为混料速度过快而 导致的粉料团化现象。 所述粉料特别适用于制造电容器级钽铌 合金丝。
一方面, 本发明提供了一种电容器级钽铌合金丝材用粉料, 所述粉料由钽粉和铌粉组成,其中钽粉与铌粉的重量比例为 1: 2 至 3: 2, 所述钽粉和铌粉的纯度均大于 99. 9重量%, 所述钽粉的 粒度为 -80目至 -150目,且所述铌粉的粒度为 -150目至 -200目, 并且所述粉料的松装比重为 3. 0-4. 3 g/cm3
另一方面, 本发明提供了制备电容器级钽铌合金丝材用粉 料的方法, 该方法包括步骤:
( 1 ) 配料: 按配比称取铌粉和钽粉, 所述钽粉和铌粉的纯 度均大于 99. 9重量%, 所述钽粉的粒度为 -80 目至 -150 目, 所 述铌粉的粒度为 -150目至 -200目, 并且其中钽粉与铌粉的重量 比例为 1: 2至 3: 2;
( 2 )手动混合: 将所述铌粉分为第一部分和第二部分, 并 将所称取的全部钽粉和第一部分铌粉放置到不锈钢容器内, 然 后用料铲进行手动搅拌混合;
( 3 )初次混料: 然后将手动混合后的粉料放入混料机内并 进一步混合, 先用 10-15转 /分钟的速度混合 0. 4-0. 6小时,
( 4 )二次混料: 再用 20-25 转 /分钟的速度混合 0. 9-1. 1 小时, 以及
( 5 ) 三次混料: 将剩余的第二部分铌粉放入混料机内, 并 进一步用 25-30转 /分钟的速度混合 0. 9-1. 1小时从而得到电容 器级钽铌合金丝材用粉料。
在本发明方法的步骤(2 ) 中, 所述第一部分铌粉的重量是 所述钽粉重量的 45%-55%, 且优选为 50%。 本发明方法的技术特点为: (1)初次添加银粉和钽粉的比例控制: 初次添加银粉和粗粉 的重量比应控制在 1: 2 左右, 二次混料后再将剩余铌粉添加到 混料机内继续混料。
(2)混料: 手动混料控制在 3-6分钟、 初次混料速度为 10-15 转 /分钟且混料时间为 0. 4-0. 6小时, 二次混料速度为 20-25转 /分钟且混料时间为 0. 9-1. 1小时, 三次混料的速度为 25-30转 /分钟且混料时间为 0. 9-1. 1小时。 具体实施方式
在本发明中, 使用 "目" 来表示铌粉或钽粉的粒度(依照 美国 ASTM标准) 。 正如本申请中所使用的和本领域技术人员所 公知的, 当用目数表示粉末的粒度时, 在目数之前的 " - " 号 表示 "通过" 所述目数的筛网。 例如 " - 150目" 表示粉末的颗 粒通过 150目的筛网。
下面通过具体的实施例对本发明进行举例说明。 然而应当 清楚的是, 本发明不限于这些具体实施例。 实施例 1
按配比称取 -160 目铌粉 4kg和 -100 目钽粉 6kg, 然后将所 称取的全部重量钽粉和 3kg 铌粉放置到不锈钢容器内。 先用料 铲手动匀速搅拌 3分钟, 然后将手动混合后的粉料放入 V型混 料机内, 先用 10转 /分钟的速度混合 0. 5小时, 再用 20转 /分 钟的速度混合 1 小时, 然后停机将剩余铌粉放入混料机内并用 25转 /分钟的速度混合 1小时。所得粉料即为电容器级钽铌合金 丝材用粉料,所得粉料松比为 4. 21g/cm3。 实施例 2
按比例称取 -160 目铌粉 10kg和 -100 目钽粉 10kg, 然后将 所称取的全部重量钽粉和 5kg 铌粉放置到不锈钢容器内。 先用 料铲手动句速搅拌 3分钟, 然后将手动混合后的粉料放入 V型 混料机内, 先用 12转 /分钟的速度混合 0. 5小时, 再用 22转 / 分钟的速度混合 1 小时, 然后停机将剩余铌粉放入混料机内并 用 27转 /分钟的速度混合 1 小时。 所得粉料即为电容器级钽铌 合金丝材用粉料,所得粉料松比为 4. l lg/cm3。 实施例 3
按配比称取 -150 目铌粉 12kg和 -90 目钽粉 8kg, 然后将所 称取的全部重量钽粉和 4kg 铌粉放置到不锈钢容器内。 先用料 铲手动匀速搅拌 3分钟, 然后将手动混合后的粉料放入 V型混 料机内, 先用 12转 /分钟的速度混合 0. 5小时, 再用 22转 /分 钟的速度混合 1 小时, 然后停机将剩余铌粉放入混料机内并用 27转 /分钟的速度混合 1小时。所得粉料即为电容器级钽铌合金 丝材用粉料,所得粉料松比为 4. 01g/cm3 o 实施例 4
按配比称取 -150目铌粉 30kg和 -90目钽粉 24kg,然后将所 称取的全部重量钽粉和 12kg铌粉放置到不锈钢容器内。 先用料 铲手动匀速搅拌 3分钟, 然后将手动混合后的粉料放入 V型混 料机内, 先用 15转 /分钟的速度混合 0. 5小时, 再用 25转 /分 钟的速度混合 1 小时, 然后停机将剩余铌粉放入混料机内并用 30转 /分钟的速度混合 1小时。所得粉料即为电容器级钽铌合金 丝材用粉料,所得粉料松比为 4. 07g/cm3 o 比较例
称取 -160 目铌粉 4kg和 -100 目钽粉 6kg, 然后将所称取的 全部重量钽粉和铌粉放置到混料机内, 使用 25 转 /分钟的速度 混合 2. 5小时。 所得粉料松比为 4. 16g/cm3
以上实施例 1-4 使用的是本发明所涉及的制造方法, 比较 例为常规方法。 本发明涉及的钽铌合金丝材用粉料制造方法可 获得具有极好均句性的粉料; 通过后续加工过程由该粉料制造 钽铌合金丝材, 可以进一步充分体现出本发明的钽铌合金丝材 用粉料的优点。 在钽铌合金丝材加工过程中, 钽铌合金丝材拉 拔加工过程中通常会发生断丝现象。 通常认为这种断丝现象的 发生频率与粉料的均匀性密切相关。 具体地, 粉料越均匀, 则 丝材拉拔加工过程中的断丝频率越低; 换而言之, 粉料越不均 匀, 则丝材拉拔加工过程中的断丝频率越高。 使用实施例 1-4 以及比较例所得粉料进行合金丝材加工, 在加工过程中所有工 艺条件以及设备均保持一致, 并且统计加工过程中的断丝频率 (以每加工出 10000 米丝材发生的断丝次数表示) 。 所使用的 拉丝设备为 LZ180型直线拉丝机, 所拉拔丝材直径为 0. 18mm具 体结果如下表 1所示。
表 1
Figure imgf000006_0001
从表 1可以看出, 在钽铌合金丝材拉拔过程中, 实施例 1-4 所得粉料的断丝频率显著低于比较例; 这表明了本发明的钽铌 合金粉料的均匀性显著优于比较例。 此外, 由于较低的断丝频 率可显著提高生产效率, 因此本发明的钽铌合金粉料非常适用 于制造电容器级钽铌合金丝材, 并且可实现优异的技术效果。

Claims

权 利 要 求
1. 一种电容器级钽铌合金丝材用粉料, 所述粉料由钽粉和 铌粉组成, 其中钽粉与铌粉的重量比例为 1: 2至 3: 2, 所述钽粉 和铌粉的纯度均大于 99.9 重量%, 所述钽粉的粒度为 -80 目至 -150目, 且所述铌粉的粒度为 -150目至 -200目, 并且所述粉料 的松装比重为 3.0-4.3g/cm3
2. 制备如权利要求 1 所述的电容器级钽铌合金丝材用粉料 的方法, 该方法包括以下步骤:
(1) 配料: 按配比称取铌粉和钽粉, 所述钽粉和铌粉的纯 度均大于 99.9重量%, 所述钽粉的粒度为- 80目至 -150目, 所 述铌粉的粒度为 -150目至 -200目, 并且其中钽粉与铌粉的重量 比例为 1: 2至 3: 2;
(2)手动混合: 将所述铌粉分为第一部分和第二部分, 并 将所称取的全部钽粉和第一部分铌粉放置到不锈钢容器内, 然 后用料铲进行手动搅拌混合;
( 3) 初次混料: 将手动混合后的粉料放入混料机内, 用 10-15转 /分钟的速度混合 0.4-0.6小时;
(4)二次混料: 再用 20-25 转 /分钟的速度混合 0.9-1.1 小时;
(5) 三次混料: 将剩余的第二部分铌粉放入混料机内, 并 进一步用 25-30转 /分钟的速度混合 0.9-1.1小时, 从而得到电 容器级钽铌合金丝材用粉料。
3. 根据权利要求 2所述的方法, 其中在步骤(2) 中, 所述 第一部分铌粉的重量是所述钽粉重量的 45%-55%。
PCT/CN2013/071875 2013-02-26 2013-02-26 一种电容器级钽铌合金丝材用粉料及其制备方法 WO2014131150A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2013/071875 WO2014131150A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝材用粉料及其制备方法
MX2015000570A MX2015000570A (es) 2013-02-26 2013-02-26 Material en polvo usado para material de alambre de aleacion de tantalo-niobio con grado de condesador y metodo de preparacion del mismo.
JP2015558324A JP2016516124A (ja) 2013-02-26 2013-02-26 コンデンサ・グレードのタンタル・ニオブ合金ワイヤ用の粉末材料及びその調製方法
CN201380032441.3A CN104379792B (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝材用粉料及其制备方法
IL236833A IL236833A0 (en) 2013-02-26 2015-01-21 Powder material for a tantalum-niobium alloy wire to receive a grade and a process for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071875 WO2014131150A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝材用粉料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014131150A1 true WO2014131150A1 (zh) 2014-09-04

Family

ID=51427455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071875 WO2014131150A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝材用粉料及其制备方法

Country Status (5)

Country Link
JP (1) JP2016516124A (zh)
CN (1) CN104379792B (zh)
IL (1) IL236833A0 (zh)
MX (1) MX2015000570A (zh)
WO (1) WO2014131150A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
CN1410209A (zh) * 2001-09-29 2003-04-16 宁夏东方钽业股份有限公司 高比表面积钽粉和/或铌粉的制备方法
CN101184568A (zh) * 2005-05-31 2008-05-21 卡伯特超金属株式会社 金属粉末及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
EP2055412B1 (en) * 1998-05-06 2012-08-22 H.C. Starck GmbH Niobium or tantalum based powder produced by the reduction of the oxides with a gaseous metal
RU2230629C2 (ru) * 1998-05-06 2004-06-20 Х.Ц. Штарк, Инк. Металлические порошки, полученные восстановлением оксидов газообразным магнием
CN101859649B (zh) * 2010-04-16 2012-02-08 株洲宏达电子有限公司 一种固体电解质铌钽复合电容器的制备方法及复合电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
CN1410209A (zh) * 2001-09-29 2003-04-16 宁夏东方钽业股份有限公司 高比表面积钽粉和/或铌粉的制备方法
CN101184568A (zh) * 2005-05-31 2008-05-21 卡伯特超金属株式会社 金属粉末及其制造方法

Also Published As

Publication number Publication date
CN104379792A (zh) 2015-02-25
JP2016516124A (ja) 2016-06-02
CN104379792B (zh) 2016-11-16
MX2015000570A (es) 2015-04-10
IL236833A0 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5288063B2 (ja) 銀粉及びその製造方法
TWI525641B (zh) Silver powder and its manufacturing method
CN107585768B (zh) 一种氧化-还原法制备超细碳化钨粉末的方法
JP6179274B2 (ja) ニッケルペーストの製造方法及びニッケルペースト
JP5510531B1 (ja) 銀粉及び銀ペースト
JP2015183200A (ja) 銀粉及びその製造方法
CN104651653B (zh) 一种稀土微合金化高密度高强钨镍铜合金的制备方法
CN109794598A (zh) 一种超高纯铼锭的制备方法
WO2014131150A1 (zh) 一种电容器级钽铌合金丝材用粉料及其制备方法
CN101792846A (zh) 一种含稀土钢铁变质剂及其制备方法
JP2017204474A (ja) ニッケルペースト
CN113579237B (zh) 一种降低铜锡合金粉松装密度的制备方法
CN103484703A (zh) 一种碳化钨-碳化钛固溶体的制备方法
CN110846528B (zh) 一种钼板坯的制备方法
CN105463249B (zh) 一种高强低模医用β‑Ti合金材料及其制备方法
CN101838756B (zh) 一种含稀土的钛合金
CN117821794A (zh) 一种氧化镧掺杂钼钨合金及其制备方法
CN108893660A (zh) 一种高导电率铝合金导线及其制备方法
JP2014111812A (ja) 銀粉
JP2007138198A (ja) 蒸着材用酸化マグネシウム焼結体
CN115490512B (zh) 5g微波介质陶瓷材料及其制备方法、微波介质陶瓷器件
CN108796254A (zh) 一种高纯度钒铁合金制备工艺
CN118026264A (zh) 一种仲钨酸铵晶体的真空蒸发结晶方法
JP2009067603A (ja) 酸化マグネシウム焼結体
CN106282712A (zh) 一种钒铝合金及其选择性熔化粉末制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/000570

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 236833

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015558324

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013876186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE