带宽扩展频带信号的预测方法、 解码设备 Prediction method and decoding device for bandwidth extended frequency band signal
本申请要求于 2013年 1月 29日提交中国专利局、申请号为 201310034240.9, 发明名称为 "带宽扩展频带信号的预测方法、 解码设备" 的中国专利申请优先 权, 上述专利的全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种带宽扩展频带信号的预测 方法、 解码设备。 This application claims to be filed on January 29, 2013, the Chinese Patent Office, the application number is 201310034240.9, and the invention is entitled "Pressure Method of Bandwidth Extended Band Signal, Decoding Device". The entire contents of the above patents are incorporated by reference. In this application. The present invention relates to the field of communications technologies, and in particular, to a method and a decoding device for predicting a bandwidth extended frequency band signal.
背景技术 Background technique
在数字通信领域, 语音、 图像、 音频、 视频的传输有着非常广泛的应用需 求, 如手机通话、 音视频会议、 广播电视、 多媒体娱乐等。 为了降低音视频信 号存储或者传输过程中占用的资源, 音视频压缩编码技术应运而生。 音视频压 缩编码技术的发展中涌现出了很多不同的技术分支, 其中将信号由时域变换到 频域后再进行编码处理的技术, 又称为变换域编码技术由于具有很好的压缩特 性, 得到了非常广泛的应用。 In the field of digital communications, voice, image, audio, and video transmissions have a wide range of application requirements, such as mobile phone calls, audio and video conferencing, broadcast television, multimedia entertainment, and the like. In order to reduce the resources occupied during the storage or transmission of audio and video signals, audio and video compression coding technology has emerged. There are many different technical branches in the development of audio and video compression coding technology. The technique of transforming the signal from the time domain to the frequency domain and then performing the coding process is also called transform domain coding technology because of its good compression characteristics. Got a very wide range of applications.
通信传输中越来越重视音频的质量, 因此要求在保证语音质量的前提下尽 可能的提高音乐信号质量。 同时由于音频信号的信息量极为丰富, 不能采用传 统语音的码激励线性预测 ( Code Excited Linear Prediction; 以下筒称 CELP )编 码模式, 而通常是利用变换域编码的音频编码技术将时域信号转换为频域信号 来处理音频信号, 提升音频信号的编码质量。 More and more attention is paid to the quality of audio in communication transmission, so it is required to improve the quality of music signals as much as possible while ensuring voice quality. At the same time, due to the extremely rich information of the audio signal, the Code Excited Linear Prediction (CELP) coding mode cannot be used, and the time domain signal is usually converted into the audio coding technology using the transform domain coding. The frequency domain signal processes the audio signal to improve the encoding quality of the audio signal.
现有的音频编码技术中,通常采用快速傅立叶变换 ( Fast Fourier Transform; 以下筒称 FFT )或改进离散余弦变换( Modified Discrete Cosine Transform; 以下 筒称 MDCT )或离散余弦变换 ( Discrete Cosine Transform; 以下筒称 DCT )等 变换技术将音频信号中的高频带信号由时域信号转换为频域信号, 然后对频域 信号进行编码。 In the existing audio coding technology, a fast Fourier transform (hereinafter referred to as FFT) or a modified Discrete Cosine Transform (hereinafter referred to as MDCT) or a discrete cosine transform (Discrete Cosine Transform; A transform technique such as DCT) converts a high-band signal in an audio signal from a time domain signal to a frequency domain signal, and then encodes the frequency domain signal.
由于在低比特率下有限的量化比特不能满足量化所有的待量化的音频信 号, 编码设备将大部分比特用于精细量化相对重要的音频信号中的低频带信号, 即低频带信号的量化参数占用大部分比特; 而仅用少量比特粗略量化编码音频 信号中的高频带信号, 得到高频带信号的频域包络。 然后将高频带信号的频域 包络和低频带信号的量化参数以比特流的形式发送至解码设备。 低频带信号的
量化参数可以包括激励信号和频域包络, 低频带信号被量化时也可以先由时域 信号转换为频域信号, 再量化编码为激励信号。 Since the limited quantization bits at a low bit rate cannot satisfy all of the audio signals to be quantized, the encoding device uses most of the bits for fine-quantizing the low-band signals in the relatively important audio signals, that is, the quantization parameters of the low-band signals are occupied. Most of the bits; the high frequency band signal in the encoded audio signal is roughly quantized with only a small number of bits, resulting in a frequency domain envelope of the high frequency band signal. The frequency domain envelope of the high frequency band signal and the quantization parameter of the low frequency band signal are then transmitted to the decoding device in the form of a bit stream. Low frequency band signal The quantization parameter may include an excitation signal and a frequency domain envelope. When the low frequency band signal is quantized, the time domain signal may be first converted into a frequency domain signal, and then quantized and encoded as an excitation signal.
解码设备一般根据接收到的比特流中的低频带信号的量化参数可以恢复出 低频带信号, 然后根据低频带信号获取低频带信号的激励信号, 并采用频带扩 展(band width extension; 以下筒称 BWE )技术和频谱填充技术, 根据低频带 信号的激励信号预测高频带信号的激励信号, 并根据比特流中的高频带信号的 频域包络修正预测的高频带信号的激励信号得到预测的高频带信号, 这里得到 的高频带信号为频域信号。 The decoding device generally recovers the low frequency band signal according to the quantization parameter of the low frequency band signal in the received bit stream, and then acquires the excitation signal of the low frequency band signal according to the low frequency band signal, and adopts a band width extension; a technique and a spectral filling technique for predicting an excitation signal of a high-band signal based on an excitation signal of a low-band signal, and correcting the excitation signal of the predicted high-band signal according to a frequency domain envelope of the high-band signal in the bitstream The high frequency band signal, the high frequency band signal obtained here is the frequency domain signal.
在 BWE技术中, 有比特分配的最高频点可以为有激励信号的最高频点, 即 从该频点以上没有激励信号被解码出。 有比特分配的最高频点之上的频带可以 称为高频带, 有比特分配的最高频点之下的频带可以称为低频带。 根据低频带 信号的激励信号预测高频带信号的激励信号, 具体可以为: 以有比特分配的最 高频点为中心, 将有比特分配的最高频点之下的低频带信号的激励信号拷贝至 该有比特分配的最高频点之上与该低频带信号带宽相等的高频带信号, 作为高 频带信号的激励信号。 In the BWE technique, the highest frequency point with bit allocation can be the highest frequency point with the excitation signal, i.e., no excitation signal is decoded from above the frequency point. A frequency band above a highest frequency point having a bit allocation may be referred to as a high frequency band, and a frequency band below a highest frequency point having a bit allocation may be referred to as a low frequency band. The excitation signal of the high frequency band signal is predicted according to the excitation signal of the low frequency band signal, and specifically, the excitation signal of the low frequency band signal below the highest frequency point with the bit allocation is centered on the highest frequency point with bit allocation. A high-band signal that is equal to the bandwidth of the low-band signal above the highest frequency point with the bit allocation is copied as an excitation signal for the high-band signal.
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 用上述 现有技术的预测带宽扩展频带信号, 根据低频带信号的激励信号预测高频带信 号的激励信号, 不同帧间的同一高频带信号上可能拷贝的是不同低频带信号的 激励信号, 造成激励的不连续性, 降低了预测的带宽扩展频带信号的质量, 从 而降低了音频信号的听觉质量。 In the process of implementing the present invention, the inventors have found that at least the following problems exist in the prior art: using the above-described prior art prediction bandwidth extension band signal, the excitation signal of the high frequency band signal is predicted according to the excitation signal of the low frequency band signal, between different frames The same high-band signal may be copied on the excitation signals of different low-band signals, causing excitation discontinuity, reducing the quality of the predicted bandwidth extension band signal, thereby reducing the auditory quality of the audio signal.
发明内容 Summary of the invention
本发明实施例提供一种带宽扩展频带信号的预测方法、 解码设备, 用以提 高预测的带宽扩展频带信号的质量, 从而实现提升音频信号的听觉质量。 Embodiments of the present invention provide a method for predicting a bandwidth extension band signal and a decoding device for improving the quality of a predicted bandwidth extension band signal, thereby improving the auditory quality of the audio signal.
第一方面, 本发明实施例提供一种带宽扩展频带信号的预测方法, 包括: 解复用接收到的比特流, 对解复用后的比特流进行解码得到频域信号; 判断所述频域信号有比特分配的最高频点是否小于预设的带宽扩展频带的 起始频点; In a first aspect, an embodiment of the present invention provides a method for predicting a bandwidth extended frequency band signal, including: demultiplexing a received bit stream, and decoding the demultiplexed bit stream to obtain a frequency domain signal; determining the frequency domain Whether the highest frequency point of the signal with bit allocation is smaller than the starting frequency point of the preset bandwidth extension band;
当所述有比特分配的最高频点小于所述预设的带宽扩展频带的起始频点 时, 根据所述频域信号预定频带范围内的激励信号和所述预设的带宽扩展频带
的起始频点预测带宽扩展频带的激励信号; And when the highest frequency point of the bit allocation is smaller than a starting frequency point of the preset bandwidth extension frequency band, the excitation signal in the predetermined frequency band range and the preset bandwidth extension frequency band according to the frequency domain signal The starting frequency point predicts the excitation signal of the bandwidth extension band;
当所述有比特分配的最高频点大于等于所述预设的带宽扩展频带的起始频 点时, 根据所述频域信号预定频带范围内的激励信号、 所述预设的带宽扩展频 带的起始频点和所述有比特分配的最高频点预测所述带宽扩展频带的激励信 号; When the highest frequency point of the bit allocation is greater than or equal to the starting frequency point of the preset bandwidth extension frequency band, the excitation signal in the predetermined frequency band range according to the frequency domain signal, the preset bandwidth extension frequency band An initial frequency point and the highest frequency point with bit allocation to predict an excitation signal of the bandwidth extension band;
根据预测的所述带宽扩展频带的激励信号和带宽扩展频带的频域包络预测 带宽扩展频带信号。 The bandwidth extended band signal is predicted based on the predicted frequency band excitation signal of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band.
结合第一方面, 在第一方面的第一种实现方式中, 根据所述频域信号预定 频带范围内的激励信号和所述预设的带宽扩展频带的起始频点预测带宽扩展频 带的激励信号, 包括: With reference to the first aspect, in a first implementation manner of the first aspect, the excitation of the frequency band in the predetermined frequency band and the initial frequency of the preset bandwidth extension band are used to predict the excitation of the bandwidth extension band Signals, including:
拷贝 n份所述频域信号预定频带范围内的激励信号作为所述预设的带宽扩 展频带的起始频点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n为大 于 0的整数或者非整数, n等于所述预设的带宽扩展频带的起始频点与所述带宽 扩展频带的最高频点之间的频点数量和所述频域信号预定频带范围内频点数量 的比值。 And copying an excitation signal in a predetermined frequency band of the frequency domain signal as an excitation signal between a start frequency point of the preset bandwidth extension frequency band and a highest frequency point of the bandwidth extension frequency band; An integer or non-integer greater than 0, n being equal to the number of frequency points between the starting frequency point of the predetermined bandwidth extension band and the highest frequency point of the bandwidth extension band and the predetermined frequency band of the frequency domain signal The ratio of the number of frequency points.
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 拷贝 n 份所述频域信号预定频带范围内的激励信号作为所述预设的带宽扩展频带的起 始频点与所述带宽扩展频带的最高频点之间的激励信号, 包括: With reference to the first aspect and the foregoing implementation manner, in a second implementation manner of the first aspect, the n-th excitation signal in the predetermined frequency band of the frequency domain signal is copied as the initial frequency of the preset bandwidth extension frequency band. The excitation signal between the point and the highest frequency point of the bandwidth extension band includes:
从所述预设的带宽扩展频带的起始频点开始, 依次拷贝所述 n份中的整数份 数的所述频域信号预定频带范围内的激励信号和所述 n份中的非整数份数的所 述频域信号预定频带范围内的激励信号作为所述预设的带宽扩展频带的起始频 点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n份中的非整数份数小 于 1份; 或者 Starting from a starting frequency point of the preset bandwidth extension band, sequentially copying an integer number of the frequency domain signals in the n shares to an excitation signal in a predetermined frequency band and a non-integer number in the n parts And an excitation signal in a predetermined frequency band of the frequency domain signal as an excitation signal between a start frequency point of the preset bandwidth extension frequency band and a highest frequency point of the bandwidth extension frequency band; a non-integer number of less than 1 part; or
从所述带宽扩展频带的最高频点开始, 依次拷贝所述 n份中的非整数份数的 所述频域信号预定频带范围内的激励信号和所述 n份中的整数份数的所述频域 信号预定频带范围内的激励信号作为所述预设的带宽扩展频带的起始频点与所 述带宽扩展频带的最高频点之间的激励信号; 所述 n份中的非整数份数小于 1份。 Starting from the highest frequency point of the bandwidth extension band, sequentially copying the non-integer number of the frequency domain signals in the predetermined frequency band of the n shares to the excitation signal in the predetermined frequency band and the integer number of the n parts And an excitation signal in a predetermined frequency band of the frequency domain signal as an excitation signal between a starting frequency point of the preset bandwidth extension band and a highest frequency point of the bandwidth extension band; a non-integer of the n parts The number of parts is less than 1 part.
结合第一方面, 在第一方面的第三种实现方式中, 根据所述频域信号预定 频带范围内的激励信号、 所述预设的带宽扩展频带的起始频点和所述频域信号 有比特分配的最高频点预测所述带宽扩展频带的激励信号, 包括: With reference to the first aspect, in a third implementation manner of the first aspect, the excitation signal in the predetermined frequency band, the initial frequency point of the preset bandwidth extension band, and the frequency domain signal are determined according to the frequency domain signal The highest frequency point with bit allocation predicts the excitation signal of the bandwidth extension band, including:
拷贝从所述频域信号预定频带范围的起始频点 fexc start之上的第 m个频点开
始到所述频域信号预定频带范围的结束频点 fexc— end之间的激励信号, 和 n份所述 频域信号预定频带范围内的激励信号作为所述频域信号有比特分配的最高频点 与所述带宽扩展频带的最高频点之间的激励信号; 所述 n为零、 大于 0的整数或 者非整数, m为所述有比特分配的最高频点与预设的扩展频带的起始频点之间的 频点数量值。 Copying from the mth frequency point above the starting frequency point f exc start of the predetermined frequency band range of the frequency domain signal An excitation signal between the end frequency points f exc — end of the predetermined frequency band range of the frequency domain signal, and n excitation signals in a predetermined frequency band of the frequency domain signal as the bit allocation of the frequency domain signal An excitation signal between a high frequency point and a highest frequency point of the bandwidth extension band; the n is zero, an integer or non-integer greater than 0, m is the highest frequency point of the bit allocation and a preset The number of frequency points between the starting frequency points of the extended band.
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 拷贝 从所述 fexc— start+ (所述有比特分配的最高频点一所述预设的带宽扩展频带的起始 频点) )到所述 fexc— end频域信号频带范围内的激励信号, 和所述 n份的所述 fexc— start 到所述 fexc— end的频域信号频带范围内的激励信号作为所述有比特分配的最高频 点与所述带宽扩展频带的最高频点之间的激励信号, 包括: In conjunction with the first aspect and the foregoing implementation manner, in a fourth implementation manner of the first aspect, copying from the f exc — start + (the highest frequency point of the bit allocation is one of the preset bandwidth extensions) An initial frequency point of the frequency band)) an excitation signal in the frequency range of the f exc — end frequency domain signal, and a frequency range of the frequency domain signal band of the n parts of the f exc — start to the f exc — end The excitation signal within the excitation signal between the highest frequency point of the bit allocation and the highest frequency point of the bandwidth extension band includes:
从所述有比特分配的最高频点开始, 依次拷贝从所述 fexc— start+ (所述有比特 分配的最高频点一所述预设的带宽扩展频带的起始频点) )到所述 fexc— end频域信 号频带范围内的激励信号、所述 n份中的整数份数的所述 fexc— start到所述 fexc—∞(1的频 域信号频带范围内的激励信号、 和所述 n份中的非整数份数的所述 fexc— start到所述 fexc— end的频域信号频带范围内的激励信号作为所述有比特分配的最高频点与所 述带宽扩展频带的最高频点之间的激励信号; 所述 n份中的非整数份数小于 1份; 或 Starting from the highest frequency point with bit allocation, sequentially copying from the f exc — start + (the highest frequency point of the bit allocation, the starting frequency of the preset bandwidth extension band) An excitation signal in the frequency range of the f exc — end frequency domain, the f exc — start of an integer number of the n parts to the f exc — ∞ (1 in the frequency domain signal band An excitation signal, and a non-integer number of the non-integer fractions of the f exc — start to an excitation signal in a frequency domain signal band of the f exc — end as a highest frequency point of the bit allocation An excitation signal between the highest frequency points of the bandwidth extension band; a non-integer number of the n parts is less than 1 part; or
从所述带宽扩展频带的最高频点开始, 依次拷贝所述 n份中的非整数份数的 所述 feXC— start到所述 feXC—end的频域信号频带范围内的激励信号、所述 n份中的整数份 数的所述 fexc— start到所述 fexc— ^的频域信号频带范围内的激励信号、 和从所述 fexc_start+ (所述有比特分配的最高频点一所述预设的带宽扩展频带的起始频点 ) ) 到所述 fexc— end频域信号频带范围内的激励信号作为所述有比特分配的最高频点 与所述带宽扩展频带的最高频点之间的高频带激励信号; 所述 n份中的非整数份 数小于 1份。 Starting from the highest frequency point of the bandwidth extension band, sequentially copying the non-integer number of the f eXC — start in the n shares to the excitation signal in the frequency domain signal band of the f eXC — end , An excitation signal in the range of the frequency domain signal band of the integer range of the f exc — start to the f exc — ^, and from the f exc _ start + (the bit-allocated a frequency point of the highest frequency point of the predetermined bandwidth extension band)) an excitation signal to the frequency range of the f exc — end frequency domain as the highest frequency point of the bit allocation and the A high-band excitation signal between the highest frequency points of the bandwidth extension band; a non-integer number of the n shares is less than one.
结合第一方面及其上述实现方式, 在第一方面的第五种实现方式中, 根据 预测的所述带宽扩展频带的激励信号和带宽扩展频带的频域包络预测带宽扩展 频带信号之前, 还包括: 从所述比特流中解码获得所述带宽扩展频带的频域包 络。 With reference to the first aspect and the foregoing implementation manner, in a fifth implementation manner of the first aspect, before the bandwidth extension band signal is predicted according to the predicted excitation band of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band, The method includes: decoding from the bitstream to obtain a frequency domain envelope of the bandwidth extension band.
结合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 根据 预测的所述带宽扩展频带的激励信号和带宽扩展频带的频域包络预测带宽扩展 频带信号之前, 还包括:
从所述比特流中解码获得信号类型; With reference to the first aspect and the foregoing implementation manner, in a sixth implementation manner of the first aspect, before the bandwidth extension band signal is predicted according to the predicted excitation band of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band, include: Decoding from the bitstream to obtain a signal type;
根据所述信号类型获取带宽扩展频带的频域包络。 A frequency domain envelope of the bandwidth extension band is obtained according to the signal type.
结合第一方面及其上述实现方式, 在第一方面的第七种实现方式中, 根据 所述信号类型获取带宽扩展频带的频域包络包括: With reference to the first aspect and the foregoing implementation manner, in a seventh implementation manner of the foregoing aspect, the obtaining the frequency domain envelope of the bandwidth extension frequency band according to the signal type includes:
当所述信号类型为非谐波信号时, 解复用接收的所述比特流, 对解复用后 的比特流进行解码得到所述带宽扩展频带的频域包络; When the signal type is a non-harmonic signal, demultiplexing the received bit stream, and decoding the demultiplexed bit stream to obtain a frequency domain envelope of the bandwidth extension band;
当所述信号类型为谐波信号时, 解复用接收的所述比特流, 对解复用后的 比特流进行解码得到带宽扩展频带的初始频域包络; 将所述初始频域包络与相 邻的 N个初始频域包络加权计算得到的值作为所述带宽扩展频带的频域包络,其 中 N大于等于 1。 When the signal type is a harmonic signal, demultiplexing the received bit stream, and decoding the demultiplexed bit stream to obtain an initial frequency domain envelope of a bandwidth extension band; and the initial frequency domain envelope The value calculated by weighting the adjacent N initial frequency domain envelopes is used as the frequency domain envelope of the bandwidth extension band, where N is greater than or equal to 1.
第二方面, 本发明实施例提供一种解码设备, 包括: In a second aspect, an embodiment of the present invention provides a decoding device, including:
解码模块, 用于解复用接收到的比特流, 对解复用后的比特流进行解码得 到频域信号; a decoding module, configured to demultiplex the received bit stream, and decode the demultiplexed bit stream to obtain a frequency domain signal;
判断模块, 用于判断所述频域信号有比特分配的最高频点是否小于预设的 带宽扩展频带的起始频点; a determining module, configured to determine whether a highest frequency point of the frequency domain signal having a bit allocation is smaller than a starting frequency point of the preset bandwidth extension frequency band;
第一处理模块, 用于当所述判断模块确定所述有比特分配的最高频点小于 所述预设的带宽扩展频带的起始频点时, 根据所述频域信号预定频带范围内的 激励信号和所述预设的带宽扩展频带的起始频点预测带宽扩展频带的激励信 号; a first processing module, configured to: when the determining module determines that a highest frequency point of the bit allocation is smaller than a starting frequency point of the preset bandwidth extension frequency band, according to the frequency domain signal, within a predetermined frequency band An excitation signal and an excitation signal of the bandwidth extension band of the preset frequency band of the preset bandwidth extension band;
第二处理模块, 用于当所述判断模块确定当所述有比特分配的最高频点大 于等于所述预设的带宽扩展频带的起始频点时, 根据所述频域信号预定频带范 围内的激励信号、 所述预设的带宽扩展频带的起始频点和所述有比特分配的最 高频点预测所述带宽扩展频带的激励信号; a second processing module, configured to: when the determining module determines, when the highest frequency point of the bit allocation is greater than or equal to a starting frequency point of the preset bandwidth extension frequency band, predetermining a frequency band range according to the frequency domain signal An excitation signal, an initial frequency point of the preset bandwidth extension band, and the highest frequency point of the bit allocation to predict an excitation signal of the bandwidth extension band;
预测模块, 用于根据预测的所述带宽扩展频带的激励信号和带宽扩展频带 的频域包络预测带宽扩展频带信号。 And a prediction module, configured to predict a bandwidth extension band signal according to the predicted frequency band excitation band of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band.
结合第二方面, 在第二方面的第一种实现方式中, 所述第一处理模块, 具 体用于拷贝 n份所述频域信号预定频带范围内的激励信号作为所述预设的带宽 扩展频带的起始频点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n为 大于 0的整数或者非整数, n等于所述预设的带宽扩展频带的起始频点与所述带 宽扩展频带的最高频点之间的频点数量和所述频域信号预定频带范围内频点数 量的比值。
结合第二方面及其上述实现方式, 在第二方面的第二种实现方式中, 所述 第一处理模块, 具体用于从所述预设的带宽扩展频带的起始频点开始, 依次拷 贝所述 n份中的整数份数的所述频域信号预定频带范围内的激励信号和所述 n份 中的非整数份数的所述频域信号预定频带范围内的激励信号作为所述预设的带 宽扩展频带的起始频点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n 份中的非整数份数小于 1份; 或者 With reference to the second aspect, in a first implementation manner of the second aspect, the first processing module is configured to: copy, by using, an excitation signal in a predetermined frequency band of the frequency domain signal as the preset bandwidth extension An excitation signal between a start frequency point of the frequency band and a highest frequency point of the bandwidth extension frequency band; the n is an integer or a non-integer greater than 0, and n is equal to a start frequency point of the preset bandwidth extension frequency band a ratio of the number of frequency points between the highest frequency point of the bandwidth extension band and the number of frequency points in the predetermined frequency band of the frequency domain signal. With reference to the second aspect and the foregoing implementation manner, in a second implementation manner of the second aspect, the first processing module is specifically configured to sequentially start from a starting frequency of the preset bandwidth extension frequency band An excitation signal in a predetermined frequency band of the frequency domain signal and an excitation signal in a predetermined frequency band of the frequency domain signal of the n-part in the n-parts as an integer number of And an excitation signal between a starting frequency point of the bandwidth extension band and a highest frequency point of the bandwidth extension band; the non-integer number of the n parts is less than 1 part; or
所述第一处理模块, 具体用于从所述带宽扩展频带的最高频点开始, 依次 拷贝所述 n份中的非整数份数的所述频域信号预定频带范围内的激励信号和所 述 n份中的整数份数的所述频域信号预定频带范围内的激励信号作为所述预设 的带宽扩展频带的起始频点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n份中的非整数份数小于 1份。 The first processing module is specifically configured to sequentially copy, from the highest frequency point of the bandwidth extension frequency band, a non-integer number of the n-number of the frequency domain signals in a predetermined frequency band and an excitation signal An excitation signal in a predetermined frequency band of the frequency domain signal of the integer number of n parts as an excitation between a starting frequency point of the preset bandwidth extension band and a highest frequency point of the bandwidth extension band Signal; a non-integer fraction of the n parts is less than 1 part.
结合第二方面, 在第二方面的第三种实现方式中, 所述第二处理模块, 具 体用于拷贝从所述频域信号预定频带范围的起始频点 fexc— start之上的第 m个频点 开始到所述频域信号预定频带范围的结束频点 fexc— end之间的激励信号, 和 n份所 述频域信号预定频带范围内的激励信号作为所述频域信号有比特分配的最高频 点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n为零、 大于 0的整数 或者非整数, m为所述有比特分配的最高频点与预设的扩展频带的起始频点之间 的频点数量值。 With reference to the second aspect, in a third implementation manner of the second aspect, the second processing module is specifically configured to copy the first frequency point f exc — start from a predetermined frequency band of the frequency domain signal An excitation signal between m frequency points to an end frequency point f exc — end of a predetermined frequency band range of the frequency domain signal, and n excitation signal signals within a predetermined frequency band of the frequency domain signal as the frequency domain signal An excitation signal between a highest frequency point of the bit allocation and a highest frequency point of the bandwidth extension band; the n is zero, an integer or non-integer greater than 0, and m is the highest frequency point of the bit allocation The value of the frequency point between the frequency of the initial frequency band and the preset extended frequency band.
结合第二方面及其上述实现方式, 在第二方面的第四种实现方式中, 所述 第二处理模块, 具体用于从所述有比特分配的最高频点开始, 依次拷贝从所述 fexc_start+ (所述有比特分配的最高频点一所述预设的带宽扩展频带的起始频点 ) ) 到所述 fexc— end频域信号频带范围内的激励信号、 所述 n份中的整数份数的所述 start到所述 feXC— e。d的频域信号频带范围内的激励信号、和所述 n份中的非整数份 数的所述 fexc— start到所述 fexc—∞(1的频域信号频带范围内的激励信号作为所述有比特 分配的最高频点与所述带宽扩展频带的最高频点之间的激励信号; 所述 n份中的 非整数份数小于 1份; 或 With reference to the second aspect and the foregoing implementation manner, in a fourth implementation manner of the second aspect, the second processing module is specifically configured to sequentially copy from the highest frequency point of the bit allocation f exc _ start + (the highest frequency point of the bit allocation - the starting frequency point of the preset bandwidth extension band)) to the excitation signal in the f exc - end frequency domain signal band Said start of the integer part of the n parts to the f eXC — e. An excitation signal in a frequency domain signal band of d, and said f exc — start of a non-integer number of said n parts to said f exc — ∞ (1 of an excitation signal in a frequency domain signal band An excitation signal between the highest frequency point of the bit allocation and the highest frequency point of the bandwidth extension band; the non-integer number of the n parts is less than 1 part; or
所述第二处理模块, 具体用于从所述带宽扩展频带的最高频点开始, 依次 拷贝所述 n份中的非整数份数的所述 fexc— start到所述 fexc— ^的频域信号频带范围内 的激励信号、所述 n份中的整数份数的所述 fexc— start到所述 fexc— end的频域信号频带范 围内的激励信号、 和从所述 fexc— start+ (所述有比特分配的最高频点一所述预设的 带宽扩展频带的起始频点) )到所述 fexc en 域信号频带范围内的信号的激励信
号作为所述有比特分配的最高频点与所述带宽扩展频带的最高频点之间的高频 带激励信号; 所述 n份中的非整数份数小于 1份。 The second processing module is specifically configured to sequentially copy the non-integer number of the f exc — start to the f exc — ^ from the highest frequency point of the bandwidth extension band. An excitation signal in a frequency domain signal band, an integer number of the n parts of the f exc — start to an excitation signal in a frequency domain signal band of the f exc — end , and from the f exc — start + (the highest frequency point of the bit allocation - the starting frequency of the predetermined bandwidth extension band)) an excitation signal to the signal in the f exc en domain signal band The number is a high-band excitation signal between the highest frequency point of the bit allocation and the highest frequency point of the bandwidth extension band; the non-integer number of the n parts is less than 1 part.
结合第二方面及其上述实现方式, 在第二方面的第五种实现方式中, 所述 解码模块, 还用于在所述预测模块据预测的所述带宽扩展频带的激励信号和带 宽扩展频带的频域包络预测带宽扩展频带信号之前, 从所述比特流中解码获得 所述带宽扩展频带的频域包络。 With reference to the second aspect and the foregoing implementation manner, in a fifth implementation manner of the second aspect, the decoding module is further configured to use, in the prediction module, the excitation signal and the bandwidth extension band of the bandwidth extension band that are predicted by the prediction module. The frequency domain envelope predicts the bandwidth extension band signal, and the frequency domain envelope of the bandwidth extension band is obtained by decoding from the bit stream.
结合第二方面及其上述实现方式, 在第二方面的第六种实现方式中, 还包 括获取模块; With reference to the second aspect and the foregoing implementation manner, in a sixth implementation manner of the second aspect, the method further includes: acquiring the module;
所述解码模块, 还用于在所述预测模块据预测的所述带宽扩展频带的激励 信号和带宽扩展频带的频域包络预测带宽扩展频带信号之前, 从所述比特流中 解码获得信号类型; The decoding module is further configured to: before the prediction module predicts the bandwidth extension band of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band, predict a bandwidth extension band signal, and obtain a signal type from the bit stream. ;
所述获取模块, 用于根据所述信号类型获取带宽扩展频带的频域包络。 结合第二方面及其上述实现方式, 在第二方面的第七种实现方式中, 所述 获取模块, 具体用于当所述信号类型为非谐波信号时, 解复用接收的所述比特 流, 对解复用后的比特流进行解码得到所述带宽扩展频带的频域包络; The acquiring module is configured to acquire a frequency domain envelope of a bandwidth extension frequency band according to the signal type. With reference to the second aspect and the foregoing implementation manner, in a seventh implementation manner of the second aspect, the acquiring module is specifically configured to: when the signal type is a non-harmonic signal, demultiplex the received bit Streaming, decoding the demultiplexed bitstream to obtain a frequency domain envelope of the bandwidth extension band;
或者所述获取模块, 具体用于当所述信号类型为谐波信号时, 解复用接收 的所述比特流, 对解复用后的比特流进行解码得到带宽扩展频带的初始频域包 带宽扩展频带的频域包络, 其中 N大于等于 1。 Or the acquiring module is specifically configured to: when the signal type is a harmonic signal, demultiplex the received bit stream, and decode the demultiplexed bit stream to obtain an initial frequency domain packet bandwidth of the bandwidth extended frequency band. The frequency domain envelope of the extended frequency band, where N is greater than or equal to one.
本发明实施例的带宽扩展频带信号的预测方法、 解码设备, 通过设定一个 带宽扩展的起始频点, 判断有解码出的频域信号的最高频点与起始频点的大小, 来做带宽扩展频带的激励恢复, 使得扩展出来的激励信号帧间是连续的, 而且 保持住了解码出的激励信号的频点, 从而保证了恢复的带宽扩展频带信号的听 觉质量, 提升了输出的音频信号的听觉质量。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中编码设备的结构示意图。 The method for predicting the bandwidth extension band signal and the decoding device in the embodiment of the present invention determine the maximum frequency point and the starting frequency point of the decoded frequency domain signal by setting a starting frequency point of the bandwidth extension. The excitation recovery of the bandwidth extension band is such that the extended excitation signal frames are continuous, and the frequency of the decoded excitation signal is maintained, thereby ensuring the auditory quality of the recovered bandwidth extended frequency band signal, and improving the output. The auditory quality of the audio signal. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the prior art description will be briefly described below, and obviously, the following description will be described below. The drawings in the drawings are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any inventive labor. FIG. 1 is a schematic structural diagram of an encoding device in the prior art.
图 2为现有技术中解码设备的结构示意图。 2 is a schematic structural diagram of a decoding device in the prior art.
图 3为本发明一实施例提供的带宽扩展频带信号的预测方法的流程图。 图 4为本发明另一实施例提供的带宽扩展频带信号的预测方法的流程图。 图 5a、 图 5b为本发明实施例中频带的示意图; FIG. 3 is a flowchart of a method for predicting a bandwidth extended frequency band signal according to an embodiment of the present invention. FIG. 4 is a flowchart of a method for predicting a bandwidth extended frequency band signal according to another embodiment of the present invention. 5a and 5b are schematic diagrams showing frequency bands in an embodiment of the present invention;
图 6为本发明一实施例提供的解码设备的结构示意图。 FIG. 6 is a schematic structural diagram of a decoding device according to an embodiment of the present invention.
图 7为本发明另一实施例提供的解码设备的结构示意图。 FIG. 7 is a schematic structural diagram of a decoding device according to another embodiment of the present invention.
图 8是根据本发明另一实施例的解码设备 80的框图。 FIG. 8 is a block diagram of a decoding device 80 in accordance with another embodiment of the present invention.
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。 数字信号处理领域, 音频编解码器、 视频编解码器广泛应用于各种电子设 备中, 例如: 移动电话, 无线装置, 个人数据助理(PDA ), 手持式或便携式计 算机, GPS接收机 /导航器, 照相机, 音频 /视频播放器, 摄像机, 录像机, 监控 设备等。 通常, 这类电子设备中包括音频编码器或音频解码器, 音频编码器或 者解码器可以直接由数字电路或芯片例如 DSP ( dig i ta l s igna l proces sor ) 实 现, 或者由软件代码驱动处理器执行软件代码中的流程而实现。 例如一种音频编码器, 首先对输入信号进行分帧处理, 得到 20ms—帧的时 域数据; 然后对时域数据进行加窗处理, 得到加窗后的信号; 对加窗后的时域 信号进行频域变换, 将信号由时域变换到频域; 再对频域信号进行编码, 传输 到解码端。 解码端接收到由编码端传输出来的压缩码流以后, 对信号进行相应
的解码操作, 对解码的到的频域信号进行编码端所用变换相对应的逆变换, 将 信号由频域变换到时域, 对时域信号进行后处理后得到合成信号, 即为解码端 输出信号。 The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. The embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention. In the field of digital signal processing, audio codecs and video codecs are widely used in various electronic devices, such as: mobile phones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receivers/navigators. , cameras, audio/video players, camcorders, video recorders, surveillance equipment, etc. Generally, such an electronic device includes an audio encoder or an audio decoder, and the audio encoder or decoder can be directly implemented by a digital circuit or a chip such as a DSP ( dig i ta ls igna l proces sor ), or the processor is driven by software code. Implemented by executing the process in the software code. For example, an audio encoder first performs frame processing on the input signal to obtain time domain data of 20 ms-frame; then window processing the time domain data to obtain a windowed signal; and time-domain signal after windowing The frequency domain transform is performed, and the signal is transformed from the time domain to the frequency domain; then the frequency domain signal is encoded and transmitted to the decoding end. After the decoder receives the compressed code stream transmitted by the encoding end, the signal is correspondingly The decoding operation performs inverse transformation corresponding to the transform used by the encoding end of the decoded frequency domain signal, transforms the signal from the frequency domain to the time domain, and performs post-processing on the time domain signal to obtain a synthesized signal, that is, the decoding end output signal.
图 1为现有技术中编码设备的结构示意图。 如图 1所示, 现有的编码设备中 包括时频变换模块 10、 包络提取模块 11、 包络量化编码模块 12、 比特分配模块 13、 激励生成模块 14、 激励量化编码模块 15和复用模块 16。 FIG. 1 is a schematic structural diagram of an encoding device in the prior art. As shown in FIG. 1, the existing coding apparatus includes a time-frequency transform module 10, an envelope extraction module 11, an envelope quantization coding module 12, a bit allocation module 13, an excitation generation module 14, an excitation quantization coding module 15, and multiplexing. Module 16.
如图 1所示, 时频变换模块 10用于接收输入的音频信号, 然后将音频信号由 时域信号转换为频域信号。 再由包络提取模块 11在时频变换模块 10变换得到的 频域信号中提取频域包络, 该频域包络也可以称为子带归一化因子。 这里的频 域包络包括频域信号中低频带信号的频域包络和高频带信号的频域包络。 包络 量化编码模块 12对包络提取模块 11得到频域包络进行量化编码处理, 得到量化 编码后的频域包络。 比特分配模块 13根据量化后的频域包络确定各个子带的比 特分配。 激励生成模块 14利用包络量化编码模块 12得到的量化编码后的包络信 息对时频变换模块 10得到的频域信号进行归一化处理, 得到激励信号即归一化 的频域信号, 该激励信号也包括高频带信号激励信号和低频带信号激励信号。 激励量化编码模块 15根据比特分配模块 13分配的各个子带的比特分配对激励生 成模块 14生成的激励信号进行量化编码处理, 得到量化后的激励信号。 复用模 块 16分别对包络量化编码模块 12量化后的频域包络和激励量化编码模块 15量化 后的激励信号复用为比特流, 输出给解码设备。 As shown in FIG. 1, the time-frequency transform module 10 is configured to receive an input audio signal and then convert the audio signal from a time domain signal to a frequency domain signal. Then, the envelope extraction module 11 extracts a frequency domain envelope from the frequency domain signal transformed by the time-frequency transform module 10, and the frequency domain envelope may also be referred to as a subband normalization factor. The frequency domain envelope here includes the frequency domain envelope of the low frequency band signal in the frequency domain signal and the frequency domain envelope of the high frequency band signal. The envelope quantization coding module 12 performs a quantization coding process on the envelope extraction module 11 to obtain a frequency domain envelope, and obtains a quantized frequency domain envelope. The bit allocation module 13 determines the bit allocation of each subband based on the quantized frequency domain envelope. The excitation generation module 14 normalizes the frequency domain signal obtained by the time-frequency transform module 10 by using the quantized envelope information obtained by the envelope quantization and coding module 12, and obtains an excitation signal, that is, a normalized frequency domain signal. The excitation signal also includes a high frequency band signal excitation signal and a low frequency band signal excitation signal. The excitation quantization coding module 15 performs quantization coding processing on the excitation signal generated by the excitation generation module 14 based on the bit allocation of each sub-band allocated by the bit allocation module 13, to obtain a quantized excitation signal. The multiplexing module 16 multiplexes the quantized frequency domain envelope and the quantized excitation signal of the excitation quantization coding module 15 into a bit stream, which is output to the decoding device.
图 2为现有技术中解码设备的结构示意图。 如图 2所示, 现有的解码设备中 包括解复用模块 20、 频域包络解码模块 21、 比特分配获取模块 22、 激励信号解 码模块 23、 带宽扩展模块 24、 频域信号恢复模块 25和频时变换模块 26。 2 is a schematic structural diagram of a decoding device in the prior art. As shown in FIG. 2, the existing decoding device includes a demultiplexing module 20, a frequency domain envelope decoding module 21, a bit allocation obtaining module 22, an excitation signal decoding module 23, a bandwidth extension module 24, and a frequency domain signal recovery module 25. And frequency time conversion module 26.
如图 2所示, 解复用模块 20接收编码设备侧发送的比特流, 并对比特流解复
用 (包括解码) , 分别得到其中的量化后的频域包络和量化后的激励信号。 频 域包络解码模块 21从解复用模块 20解复用得到的信号中获取量化后的频域包 络, 并进行量化解码, 得到频域包络。 比特分配获取模块 22根据频域包络解码 模块 21得到的频域包络确定各个子带的比特分配。 激励信号解码模块 23从解复 用模块 20解复用得到的信号中获取量化后的激励信号, 并根据比特分配获取模 块 22得到的各个子带的比特分配进行量化解码, 得到激励信号。 带宽扩展模块 24根据激励信号解码模块 23得到的激励信号对整个带宽进行扩展, 具体地就是 利用低频带信号的激励信号扩展高频带信号的激励信号。 由于激励量化编码模 块 15和包络量化编码模块 12在量化编码激励信号和包络信号时会将大部分比特 用于量化相对重要的低频带信号的信号, 而仅采用很少的比特量化高频带信号 的信号, 甚至可能不包括高频带信号的激励信号, 因此带宽扩展模块 24需要利 用低频带信号的激励信号扩展高频带信号的激励信号, 从而得到整个频带的激 励信号。 频域信号恢复模块 25分别与频域包络解码模块 21和带宽扩展模块 24连 接, 频域信号恢复模块 25根据频域包络解码模块 21得到的频域包络和带宽扩展 模块 24得到的整个频带的激励信号恢复出频域信号。 频时变换模块 26将频域信 号恢复模块 25恢复出的频域信号转换为时域信号, 从而得到原始输入的音频信 号。 As shown in FIG. 2, the demultiplexing module 20 receives the bit stream transmitted by the encoding device side, and decodes the bit stream. Using (including decoding), the quantized frequency domain envelope and the quantized excitation signal are respectively obtained. The frequency domain envelope decoding module 21 obtains the quantized frequency domain envelope from the signal demultiplexed by the demultiplexing module 20, and performs quantization decoding to obtain a frequency domain envelope. The bit allocation acquisition module 22 determines the bit allocation of each sub-band based on the frequency domain envelope obtained by the frequency domain envelope decoding module 21. The excitation signal decoding module 23 obtains the quantized excitation signal from the signal demultiplexed by the demultiplexing module 20, and performs quantization decoding on the bit allocation of each subband obtained by the bit allocation acquisition module 22 to obtain an excitation signal. The bandwidth extension module 24 expands the entire bandwidth according to the excitation signal obtained by the excitation signal decoding module 23, specifically, the excitation signal of the low frequency band signal is used to spread the excitation signal of the high frequency band signal. Since the excitation quantization coding module 15 and the envelope quantization coding module 12 quantize the coded excitation signal and the envelope signal, most of the bits are used to quantize the signals of the relatively important low-band signals, and only a small number of bits are used to quantize the high-frequency signals. The signaled signal may not even include the excitation signal of the high frequency band signal, so the bandwidth extension module 24 needs to spread the excitation signal of the high frequency band signal using the excitation signal of the low frequency band signal to obtain the excitation signal of the entire frequency band. The frequency domain signal recovery module 25 is connected to the frequency domain envelope decoding module 21 and the bandwidth extension module 24, respectively. The frequency domain signal recovery module 25 obtains the entire frequency domain envelope and bandwidth extension module 24 obtained by the frequency domain envelope decoding module 21. The excitation signal of the frequency band recovers the frequency domain signal. The frequency time conversion module 26 converts the frequency domain signal recovered by the frequency domain signal recovery module 25 into a time domain signal, thereby obtaining an original input audio signal.
图 1和图 2为现有技术的一种编码设备和对应的解码设备的结构图。 根据图 1 和图 2所示现有技术的编码设备和解码设备的处理过程, 可以知道现有技术中解 码设备在恢复低频带信号的频域信号时采用的低频带信号的激励信号和包络信 息都是编码设备侧发送的, 因此低频带信号的频域信号恢复较为准确。 高频带 信号的频域信号需要先采用低频带信号的激励信号预测高频带信号的激励信 号, 然后在采用编码设备侧发送的高频带信号的包络信息修正预测的高频带信
号的激励信号, 得到高频带信号的频域信号。 编码设备在预测高频带信号的频 域信号时, 未考虑信号类型, 采用相同的频域包络, 例如当信号类型为谐波时, 采用频域包络覆盖的子带范围较窄 (小于一个谐波从波峰到波谷覆盖的子带范 围) 。 当采用该频域包络修正预测的高频带信号激励时, 会引入更多的噪声, 使得修正得到的高频带信号与真实的高频带信号之间存在的误差较大, 严重影 响了预测高频带信号的准确率, 降低了预测的高频带信号的质量, 从而降低了 音频信号的听觉质量。而且采用上述现有技术中的根据低频带信号的激励信号预 测高频带信号的激励信号, 不同帧间的同一高频带信号上可能拷贝的是不同低 频带信号的激励信号, 造成激励的不连续性, 降低了预测的高频带信号的质量, 从而降低了音频信号的听觉质量。 因此可以采用下述本发明实施例的技术方案 以解决上所述技术问题。 1 and 2 are structural diagrams of an encoding device and a corresponding decoding device of the prior art. According to the processing procedure of the prior art encoding device and decoding device shown in FIG. 1 and FIG. 2, the excitation signal and envelope of the low-band signal used by the decoding device in recovering the frequency domain signal of the low-band signal in the prior art can be known. The information is transmitted by the encoding device side, so the frequency domain signal recovery of the low frequency band signal is relatively accurate. The frequency domain signal of the high frequency band signal needs to first use the excitation signal of the low frequency band signal to predict the excitation signal of the high frequency band signal, and then correct the predicted high frequency band signal by using the envelope information of the high frequency band signal transmitted by the encoding device side. The excitation signal of the number obtains the frequency domain signal of the high frequency band signal. When the encoding device predicts the frequency domain signal of the high-band signal, the signal type is not considered, and the same frequency domain envelope is used. For example, when the signal type is harmonic, the sub-band range covered by the frequency domain envelope is narrower (less than A harmonic from the peak to the range of the sub-band covered by the trough). When the frequency domain envelope is used to correct the predicted high-band signal excitation, more noise is introduced, so that the error between the modified high-band signal and the real high-band signal is large, which seriously affects Predicting the accuracy of the high-band signal reduces the quality of the predicted high-band signal, thereby reducing the auditory quality of the audio signal. Moreover, in the above prior art, the excitation signal of the high frequency band signal is predicted according to the excitation signal of the low frequency band signal, and the excitation signal of the different low frequency band signal may be copied on the same high frequency band signal between different frames, resulting in no excitation. Continuity reduces the quality of the predicted high-band signal, thereby reducing the auditory quality of the audio signal. Therefore, the technical solutions of the embodiments of the present invention described below can be adopted to solve the above technical problem.
图 3为本发明一实施例提供的带宽扩展频带信号的预测方法的流程图。 本实 施例的带宽扩展频带信号的预测方法的执行主体可以为解码设备。 如图 3所示, 本实施例的带宽扩展频带信号的预测方法, 具体可以包括如下步骤: FIG. 3 is a flowchart of a method for predicting a bandwidth extended frequency band signal according to an embodiment of the present invention. The execution body of the prediction method of the bandwidth extension band signal of this embodiment may be a decoding device. As shown in FIG. 3, the method for predicting a bandwidth extension band signal in this embodiment may specifically include the following steps:
100、 解码设备解复用接收到的比特流, 对解复用后的比特流进行解码得到 频域信号; 100. The decoding device demultiplexes the received bit stream, and decodes the demultiplexed bit stream to obtain a frequency domain signal.
101、 解码设备判断频域信号有比特分配的最高频点是否小于预设的带宽扩 展频带的起始频点; 当有比特分配的最高频点小于预设的带宽扩展频带的起始 频点时, 执行步骤 102; 否则当有比特分配的最高频点大于等于预设的带宽扩展 频带的起始频点时, 执行步骤 103; 101. The decoding device determines whether the highest frequency point of the bit-domain allocation of the frequency domain signal is smaller than a starting frequency point of the preset bandwidth extension frequency band; when the highest frequency point of the bit allocation is smaller than a starting frequency of the preset bandwidth extension frequency band Point, step 102 is performed; otherwise, when the highest frequency point with bit allocation is greater than or equal to the starting frequency point of the preset bandwidth extension band, step 103 is performed;
102、 解码设备根据频域信号预定频带范围内的激励信号和预设的带宽扩展 频带的起始频点预测带宽扩展频带的激励信号; 执行步骤 104; 102, the decoding device predicts the excitation signal of the bandwidth extension band according to the excitation signal in the predetermined frequency band of the frequency domain signal and the initial frequency band of the preset bandwidth extension band; performing step 104;
103、 解码设备根据频域信号预定频带范围内的激励信号、 预设的带宽扩展
频带的起始频点和有比特分配的最高频点预测带宽扩展频带的激励信号; 执行 步骤 104; 103. The decoding device presets a frequency range of the excitation signal according to the frequency domain signal, and presets a bandwidth extension. The starting frequency point of the frequency band and the highest frequency point of the bit allocation are used to predict the excitation signal of the bandwidth extended frequency band; performing step 104;
104、 解码设备根据预测的带宽扩展频带的激励信号和带宽扩展频带的频域 包络预测带宽扩展频带信号。 104. The decoding device predicts the bandwidth extension band signal according to the predicted excitation bandwidth extension band and the frequency domain envelope of the bandwidth extension band.
本实施例的带宽扩展频带信号的预测方法, 通过设定一个带宽扩展的起始 频点, 判断有解码出的频域信号的最高频点与起始频点的大小, 来做带宽扩展 频带的激励恢复, 使得扩展出来的激励信号帧间是连续的, 而且保持住了解码 出的激励信号的频点, 从而保证了恢复的带宽扩展频带信号的听觉质量, 提升 了输出的音频信号的听觉质量。 In the method for predicting the bandwidth extension band signal of the embodiment, by setting a starting frequency point of the bandwidth extension, determining the size of the highest frequency point and the starting frequency point of the decoded frequency domain signal, and performing the bandwidth extension frequency band The excitation recovery is such that the extended excitation signal frames are continuous, and the frequency of the decoded excitation signal is maintained, thereby ensuring the auditory quality of the recovered bandwidth extended frequency band signal, and improving the hearing of the output audio signal. quality.
可选地, 在上述实施例的技术方案的基础上, 还可以包括由如下扩展技术 方案, 构成图 3所示实施例的扩展实施例, 在该扩展实施例中, 步骤 100之前, 具体还可以包括如下: Optionally, on the basis of the technical solution of the foregoing embodiment, the following extended technical solutions are used to form an extended embodiment of the embodiment shown in FIG. 3. In the extended embodiment, before step 100, Includes the following:
( a )解码设备接收编码设备发送的比特流; 该比特流中携带低频带信号的 量化参数和带宽扩展频带信号的频域包络; 本实施例中采用低频带信号的量化 参数唯一标识低频带信号。 (a) the decoding device receives the bit stream sent by the encoding device; the bit stream carries the quantization parameter of the low frequency band signal and the frequency domain envelope of the bandwidth extended frequency band signal; in this embodiment, the quantization parameter of the low frequency band signal is used to uniquely identify the low frequency band. signal.
( b )解码设备根据低频带信号的量化参数获取低频带信号的激励信号。 具体地, 解码设备根据低频带信号的量化参数获取低频带信号的激励信号 的具体过程可以参考现有技术。 例如当低频带信号的量化参数为低频带信号的 激励信号和低频带信号的频域包络时, 解码设备根据低频带信号的量化参数获 取低频带信号的激励信号具体可以为: 解码设备先根据低频带信号的激励信号 和低频带信号的频域包络恢复低频带信号 (这里的低频带信号为频域信号) ; 再对低频带信号进行自适应归一化处理, 得到低频带信号的激励信号。 当利用 量化参数中低频带信号的激励信号预测带宽扩展频带信号的激励信号时能够满
足高频带信号的能量要求时, 可以直接利用量化参数中的低频带信号的激励信 号预测带宽扩展频带的激励信号。 (b) The decoding device acquires the excitation signal of the low-band signal according to the quantization parameter of the low-band signal. Specifically, a specific process of the decoding apparatus acquiring the excitation signal of the low frequency band signal according to the quantization parameter of the low frequency band signal may refer to the prior art. For example, when the quantization parameter of the low frequency band signal is the excitation signal of the low frequency band signal and the frequency domain envelope of the low frequency band signal, the decoding device may obtain the excitation signal of the low frequency band signal according to the quantization parameter of the low frequency band signal, and the decoding device may be: The excitation signal of the low-band signal and the frequency domain envelope of the low-band signal recover the low-band signal (where the low-band signal is the frequency-domain signal); then adaptively normalize the low-band signal to obtain the excitation of the low-band signal. signal. When the excitation signal of the bandwidth extension band signal is predicted by using the excitation signal of the low frequency band signal in the quantization parameter, it can be full When the energy requirement of the high-band signal is required, the excitation signal of the bandwidth extension band can be directly predicted by using the excitation signal of the low-band signal in the quantization parameter.
上述所述的自适应归一化处理的方式可以采用如下几种方式: The manner of the adaptive normalization processing described above may be as follows:
一、 解码设备通过解码的低频带信号的量化参数(如低频带信号的激励信 号和低频带信号频域包络) 恢复低频带信号; 在频域系数中设定移动窗, 求解 每个移动窗内频域系数幅度平均值, 求解和低频带信号频域系数相同个数的平 均值, 让低频带信号 (频域信号) 除以相应的频域系数幅度平均值, 得到低频 带信号的激励信号。 如: 低频带信号有 N1个频域系数, 从第 1个频域系数到第 10 个频域系数求解一个平均值, 从第 2个频域系数到第 11个频域系数求解一个平均 值, 从第 3个频域系数到第 12个频域系数求解一个平均值…, 以此类推, 求解 N1 个平均值; 然后将 N1个低频带信号 (频域信号) 除以相对应的平均值, 得到低 频带信号的激励信号。 1. The decoding device recovers the low frequency band signal by using the quantized parameters of the decoded low frequency band signal (such as the excitation signal of the low frequency band signal and the frequency domain envelope of the low frequency band signal); setting a moving window in the frequency domain coefficient to solve each moving window The average value of the internal frequency domain coefficient amplitude is solved, and the average value of the frequency domain coefficient of the low frequency band signal is solved, and the low frequency band signal (frequency domain signal) is divided by the corresponding average frequency domain coefficient amplitude to obtain the excitation signal of the low frequency band signal. . For example, the low frequency band signal has N1 frequency domain coefficients, and an average value is solved from the first frequency domain coefficient to the tenth frequency domain coefficient, and an average value is solved from the second frequency domain coefficient to the eleventh frequency domain coefficient. Solving an average value from the third frequency domain coefficient to the twelfth frequency domain coefficient, and so on, solving N1 average values; then dividing the N1 low frequency band signals (frequency domain signals) by the corresponding average value, An excitation signal of the low frequency band signal is obtained.
二、 解码设备通过解码低频带信号的量化参数 (如低频带信号的激励信号 和低频带信号频域包络) 恢复低频带信号 (频域信号) ; 对谐波信号, 将相邻 的 N ( N>1 )个低频带信号频域包络求一个平均值作为相邻 N个子带频域包络, 将相邻的 N个子带的频域信号统一除以此平均值得到此相邻 N个子带的低频带 信号激励信号, 以此类推, 求得整个低频带信号的激励信号; 对非谐波信号, 将每个低频带信号的子带再分成 M ( M>1 )个小子带, 每个小子带再求解一个频 域包络, 将此小子带的频域信号除以求解的此小子带的频域包络, 得到此小子 带的激励信号, 以此类推, 得到整个低频带信号的激励信号。 详细的自适应归 一化处理过程可以参考现有技术的记载, 在此不再赘述。 2. The decoding device recovers the low frequency band signal (frequency domain signal) by decoding the quantization parameter of the low frequency band signal (such as the excitation signal of the low frequency band signal and the frequency domain envelope of the low frequency band signal); for the harmonic signal, the adjacent N ( N>1) The frequency domain envelope of the low-band signal is averaged as the envelope of the adjacent N sub-bands, and the frequency domain signals of the adjacent N sub-bands are uniformly divided by the average to obtain the adjacent N sub-bands. With the low-band signal excitation signal, and so on, the excitation signal of the entire low-band signal is obtained; for the non-harmonic signal, the sub-band of each low-band signal is subdivided into M (M>1) small sub-bands, each The small sub-band solves a frequency domain envelope, divides the frequency domain signal of the small sub-band by the frequency domain envelope of the small sub-band obtained, obtains the excitation signal of the small sub-band, and so on, and obtains the entire low-band signal. Excitation signal. The detailed adaptive normalization process can refer to the description of the prior art, and details are not described herein again.
可选地, 在该扩展实施例中, 步骤 104之前, 具体还可以包括如下: 解码 设备从比特流中解码获得带宽扩展频带的频域包络, 以便于步骤 104的执行。
或者可选地, 在步骤 104之前, 具体还可以包括如下: 解码设备从比特流中 解码获得信号类型; 根据信号类型获取带宽扩展频带的频域包络。 Optionally, in the extended embodiment, before step 104, the method may further include the following: The decoding device decodes the frequency domain envelope of the bandwidth extension band from the bitstream to facilitate execution of step 104. Or optionally, before step 104, the method may further include: decoding the device to obtain a signal type from the bitstream; and acquiring a frequency domain envelope of the bandwidth extension band according to the signal type.
例如当信号类型为非谐波信号时, 解码设备对接收的比特流进行解复用, 对解复用后的比特流进行解码得到带宽扩展频带的频域包络; 当信号类型为谐 波信号时, 解码设备对接收的比特流进行解复用, 对解复用后的比特流进行解 码得到带宽扩展频带的初始频域包络;将初始频域包络与相邻的 N个初始频域包 络加权计算得到的值作为带宽扩展频带的频域包络, 其中 N大于等于 1。 For example, when the signal type is a non-harmonic signal, the decoding device demultiplexes the received bit stream, and decodes the demultiplexed bit stream to obtain a frequency domain envelope of the bandwidth extension band; when the signal type is a harmonic signal The decoding device demultiplexes the received bit stream, and decodes the demultiplexed bit stream to obtain an initial frequency domain envelope of the bandwidth extension band; and the initial frequency domain envelope and the adjacent N initial frequency domains The value obtained by the envelope weighting is taken as the frequency domain envelope of the bandwidth extension band, where N is greater than or equal to 1.
采用上述实施例的带宽扩展频带信号的预测方法, 能够有效地保证前后帧 间预测的带宽扩展频带信号激励信号的连续性。 从而保证了恢复的带宽扩展频 带信号的听觉质量, 从而提升音频信号的听觉质量。 With the prediction method of the bandwidth extension band signal of the above embodiment, the continuity of the bandwidth extension band signal excitation signal predicted before and after the frame can be effectively ensured. This ensures that the recovered bandwidth extends the auditory quality of the band signal, thereby improving the auditory quality of the audio signal.
图 4为本发明另一实施例提供的带宽扩展频带信号的预测方法的流程图。 本 实施例的带宽扩展频带信号的预测方法在图 3所示实施例的基础上, 更详细介绍 本发明的技术方案。 本实施例的带宽扩展频带信号的预测方法, 具体可以包括 如下内容: FIG. 4 is a flowchart of a method for predicting a bandwidth extended frequency band signal according to another embodiment of the present invention. The method for predicting the bandwidth extension band signal of this embodiment is based on the embodiment shown in FIG. 3, and the technical solution of the present invention is described in more detail. The method for predicting the bandwidth extension band signal in this embodiment may specifically include the following content:
200、 解码设备接收编码设备发送的比特流, 解码得到频域信号; 该比特流中携带低频带信号的量化参数和带宽扩展频带信号的频域包络。 201、 解码设备根据低频带信号的量化参数获取低频带信号的激励信号; 200. The decoding device receives the bit stream sent by the encoding device, and decodes the frequency domain signal. The bit stream carries a quantization parameter of the low frequency band signal and a frequency domain envelope of the bandwidth extended frequency band signal. 201. The decoding device acquires an excitation signal of the low frequency band signal according to the quantization parameter of the low frequency band signal.
202、 解码设备根据低频带信号的量化参数确定频域信号有比特分配的最高 频点 flast 202. The decoding device determines, according to the quantization parameter of the low frequency band signal, a frequency domain signal having a bit allocation of a highest frequency point f last
本实施例中采用 flast— sfm表示频域信号有比特分配的最高频点。 In the present embodiment, f last — sfm is used to indicate that the frequency domain signal has the highest frequency point of bit allocation.
203、 解码设备判断 flast— sfm是否小于频域信号预设的带宽扩展频带的起始频 点 fbwe_start, 当 fiast— sfm 'J、于 fbwe_start时, 执行 204; 否则当 flast— sfm大于等于 fbwe_start时, 执行 205 ;
参考图 5a和图 5b中频带中各频点的示意图, 有比特分配的频域信号可以直接 解码得到, 而带宽扩展频带则需要根据解码的频域信号通过预测得到: 即选取频 域信号的预定频带范围内的激励信号预测带宽扩展频带的激励信号。 当 flast— sfm与 fbwe— start之间大小关系不同时, 扩展的起点频点和扩展信号的范围存在不同。 图示 阴影部分表示带宽扩展频带需要从低频带复制激励信号的频带范围, 图 5a中为预 设的带宽扩展频带的起始频点到带宽扩展频带的最高频点, 图 5b中为有比特分配 的最高频点到带宽扩展频带的最高频点。 图 5a的情况下, 复制的激励信号包括: n份所述频域信号预定频带范围内的激励信号; 图 5b的情况下, 复制的激励信号 包括:预定频带范围内从 fexc— start+开始到该预定频带范围的结束频点 fexc— end之间的 激励信号, 和 n份预定频带范围内的激励信号。 其中, n为大于 0的整数或者非整 数。 203. The decoding device determines whether f last — sfm is smaller than a starting frequency point fbwe_start of the bandwidth extension band preset by the frequency domain signal. When fiast_sfm 'J is at fbwe_start, performing 204; otherwise, when f last — sfm is greater than or equal to fbwe_start When performing 205; Referring to the schematic diagram of each frequency point in the frequency band in FIG. 5a and FIG. 5b, the frequency domain signal with bit allocation can be directly decoded, and the bandwidth extension frequency band needs to be predicted by the decoded frequency domain signal: that is, the predetermined frequency domain signal is selected. The excitation signal in the frequency band predicts the excitation signal of the bandwidth extension band. When the magnitude relationship between f last — sfm and fbwe — start is different, the extended starting point frequency and the range of the extended signal are different. The shaded portion of the figure indicates the bandwidth range in which the bandwidth extension band needs to be copied from the low frequency band. In Fig. 5a, the start frequency of the preset bandwidth extension band to the highest frequency point of the bandwidth extension band, and there is a bit in Fig. 5b. The highest frequency point assigned to the highest frequency point of the bandwidth extension band. In the case of Fig. 5a, the reproduced excitation signal comprises: n parts of the excitation signal in a predetermined frequency band of the frequency domain signal; in the case of Fig. 5b, the reproduced excitation signal comprises: starting from f exc — start + within a predetermined frequency band An excitation signal between the end frequency points f exc — end to the predetermined frequency band range, and n excitation signals in a predetermined frequency band range. Where n is an integer greater than 0 or a non-integer.
本实施例中采用 fbwe— start表示频域信号预设的带宽扩展频带的起始频点。其中 fbwe— start的选取与编码速率(即总比特数)有关, 编码速率越高, 可以选取预设的 带宽扩展频带的起始频点 fbwe— start越高。 例如对超宽带信号, 在编码速率为 24kbpS 时, 频域信号预设的带宽扩展频带的起始频点 fbwe— start =6.4kHz; 在编码速率为 32kbps时, 频域信号预设的带宽扩展频带的起始频点 fbwe— start =8kHz。 In this embodiment, f bwe — start is used to indicate a starting frequency point of a bandwidth extension band preset by the frequency domain signal. The selection of fbwe_start is related to the coding rate (that is, the total number of bits). The higher the coding rate, the higher the starting frequency point f bwe — start of the preset bandwidth extension band. For example, for an ultra-wideband signal, when the coding rate is 24 kbpS, the frequency band of the frequency band signal presets the frequency band of the initial frequency band f bwe — start =6.4 kHz; at a coding rate of 32 kbps, the frequency bandwidth of the frequency domain signal is preset. The starting frequency of the band f bwe — start = 8 kHz.
204、解码设备根据频域信号预定频带范围 fexc— start到 fexc— εηά 的激励信号和预 设的带宽扩展频带的起始频点 fbwe— start预测带宽扩展频带的激励信号; 执行 206; 本实施例中频域信号预定频带范围为低频带信号中从 fexc— start到 fexc— end的预定 频带范围; fexc— start为从低频带信号中频域信号预设的带宽扩展频带的起始频点, fexc—end为从低频带信号中频域信号预设的带宽扩展频带的结束频点, fexc— end大于 f 204, the frequency domain signal decoding apparatus according to the predetermined frequency range f exc - start to f exc - εηά preset excitation signal and bandwidth extension start frequency band f bwe - start prediction bandwidth expansion band excitation signal; performing 206; In this embodiment, the predetermined frequency band range of the frequency domain signal is a predetermined frequency band range from f exc — start to f exc — end in the low frequency band signal; f exc — start is the start of the bandwidth extension frequency band preset from the frequency domain signal in the low frequency band signal. The frequency point, f exc — end is the end frequency of the bandwidth extension band preset from the frequency domain signal in the low frequency band signal, and f exc — end is greater than f
Aexc_start ° A exc_start °
例如,解码设备可以拷贝 n份频域信号预定频带范围 fexc— start到 fexc— end内的激励
信号作为预设的带宽扩展频带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。P sfm之间的激励信号; n为大于 0的整数或者非整数, n等于预设的带宽扩展频 带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。p sfm之间的频点数量和频域信 号预定频带范围 fexc— start到 fexc— end内频点数量的比值。 For example, the decoding device can copy n frequency domain signals for a predetermined frequency band range f exc — start to f exc — end The signal is used as the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f t of the bandwidth extension band. The excitation signal between P sfm ; n is an integer or non-integer greater than 0, and n is equal to the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f t of the bandwidth extension band. The ratio of the number of frequency points between p sfm and the ratio of the frequency band of the predetermined frequency band f exc — start to f exc — end of the frequency domain signal.
例如具体实现时, 解码设备可以从预设的带宽扩展频带的起始频点 fbwe— start 开始,拷贝 n份的 fexc— star^Jfexc— end的频域信号预定频带范围内的激励信号作为预设 的带宽扩展频带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。P― Sfm之间的带宽 扩展频带信号, 本实施例中 n可以为正整数或者小数, n等于预设的带宽扩展频 带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。p sfm之间的频点数量和频域信 号预定频带范围 fexc— start到 fexc— end内频点数量的比值。 fexc— start到 fexc— end的频域信号预 定频带范围的选取是根据信号类型及编码速率有关的, 如在较低速率时, 对谐 波信号, 选取低频带信号中相对编码较好的较低频带信号, 对非谐波信号, 选 取低频带信号中相对编码较差的较高频带信号; 在较高速率时, 对谐波信号可 以选取低频带信号中的稍高的频带。 For example, in a specific implementation, the decoding device may copy the excitation signal in a predetermined frequency range of the frequency domain signal of the f-portion of f exc — star ^Jf exc — end from the starting frequency point f bwe — start of the preset bandwidth extension band. As the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f t of the bandwidth extension band. The bandwidth extension band signal between P and Sfm , in this embodiment, n may be a positive integer or a decimal, and n is equal to the starting frequency of the preset bandwidth extension band f bwe — start and the highest frequency point of the bandwidth extension band f t . The ratio of the number of frequency points between p sfm and the ratio of the frequency band of the predetermined frequency band f exc — start to f exc — end of the frequency domain signal. f exc — start to f exc — end The frequency band of the predetermined frequency band is selected according to the signal type and the coding rate. For example, at a lower rate, the relative frequency of the low frequency signal is better for the harmonic signal. For the lower frequency band signal, for the non-harmonic signal, the relatively high frequency band signal with poor relative coding in the low frequency band signal is selected; at the higher rate, the slightly higher frequency band of the low frequency band signal can be selected for the harmonic signal.
带宽扩展频带的最高频点是指要求输出信号的频带最高点或指定的某个频 点, 像宽带信号可以是 7kHz或者 8kHz , 超宽带信号可以是 14kHz或者 16kHz或其 他预设的具体频点。 The highest frequency point of the bandwidth extension band refers to the highest point of the band that requires the output signal or a specified frequency point. For example, the wideband signal can be 7 kHz or 8 kHz, and the ultra-wideband signal can be 14 kHz or 16 kHz or other preset specific frequency points. .
本实施例解码设备从预设的带宽扩展频带的起始频点 fbwe— start开始, 拷贝 n份 的 feXC— start到 feXC— end的频域信号预定频带范围内的激励信号作为预设的带宽扩展频 带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。p sfm之间的带宽扩展频带信 号, 具体可以采用如下方式实现: 解码设备从预设的带宽扩展频带的起始频点 fbwe— start开始, 依次拷贝 n份中的整数份数的 fexc— star^ fexc— end的频域信号预定频带范 围内的激励信号和 n份中的非整数份数的 fexc start到 fexc end的频域信号预定频带范
围内的激励信号作为预设的带宽扩展频带的起始频点 fbwe— start与带宽扩展频带的 最高频点 ft。p sfm之间的带宽扩展频带的激励信号; n份中的非整数份数小于 1份。 In this embodiment, the decoding device starts from the starting frequency point f bwe — start of the preset bandwidth extension frequency band, and copies the excitation signal of the predetermined frequency band of the frequency domain signal of the f-component f eXC — start to f eXC — end as a preset. The starting frequency of the bandwidth extension band f bwe — start and the highest frequency point f t of the bandwidth extension band. The bandwidth extension band signal between p sfm can be implemented as follows: The decoding device starts from the starting frequency point fbwe_start of the preset bandwidth extension band, and sequentially copies the integer number of f exc — star in n parts. ^ f exc — the frequency domain signal of the end of the frequency band signal in the predetermined frequency band and the non-integer part of the n part of the f exc start to the frequency domain signal of the f exc end The excitation signal in the circumference is used as the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f t of the bandwidth extension band. The excitation signal of the bandwidth extension band between p sfm ; the non-integer number of n parts is less than 1 part.
本实施例中,拷贝 n份中的整数份数的 fexc— star^fexc— end的频域信号预定频带范 围内的激励信号时, 可以顺次拷贝, 即每次拷贝一份的 fexc— start到 fexc— end的频域信 号预定频带范围内的激励信号, 直到拷贝 n份的 fexc— star^fexc— end的频域信号预定频 带范围内的激励信号。 或者也可以镜像拷贝 (或者成为对折拷贝) , 即拷贝整 数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号时, 依次进行正 向拷贝 (即从 fexc— start到 fexc— end)和反向拷贝 (即从 fexc— end到 fexc— start )的交错拷贝, 直 到完成 N份的拷贝。 In this embodiment, when the frequency domain signal of the f exc — star ^f exc — end in the integer part of the n copies is copied, the excitation signal in the predetermined frequency band may be sequentially copied, that is, each time a copy of the f exc is copied. – the excitation signal in the predetermined frequency band of the frequency domain signal of start to f exc — end until the excitation signal in the predetermined frequency band of the frequency domain signal of n parts of f exc — star ^f exc — end is copied. Or you can also mirror the copy (or become a copy of the fold), that is, copy the integer number of f exc — start to f exc — end of the frequency domain signal in the predetermined frequency band of the excitation signal, and then forward copy (ie from f exc —start to fexc— end) and an interleaved copy of the reverse copy (ie, from f exc — end to f exc — start ) until the N copies are completed.
或者解码设备可以从预设的从带宽扩展频带的最高频点 ft。p sfm开始, 拷贝 n 份的 feXC— start到 feXC— end的频域信号预定频带范围内的激励信号作为预设的带宽扩展 频带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。p sfm之间的高频带激励信 号。 具体可以采用如下方式实现: 解码设备从带宽扩展频带的最高频点 ft。p sfm开 始,依次拷贝 n份中的非整数份数的 fexc— star^fexc—∞(1的频带范围内的低频带激励信 号和 n份数中的整数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信 号作为预设的带宽扩展频带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。p— sfm 之间的带宽扩展频带的激励信号; n份中的非整数份数小于 1份。 Or the decoding device can extend the highest frequency point f t from the preset bandwidth extension band. Starting from p sfm , copying n parts of f eXC — start to f eXC — end of the frequency domain signal in the predetermined frequency band of the excitation signal as the starting frequency of the preset bandwidth extension band f bwe — start and the bandwidth extension band High frequency point f t . High band excitation signal between p sfm . Specifically, the method can be implemented as follows: The decoding device extends the highest frequency point f t of the bandwidth from the bandwidth. Starting from p sfm , sequentially copying a non-integer number of f exc — star ^f exc — ∞ ( the low-band excitation signal in the frequency band of 1 and the f exc — start in the integer number of n parts to n f exc — end of the frequency domain signal The excitation signal in the predetermined frequency band is used as the starting frequency of the preset bandwidth extension band f bwe — start and the highest frequency point of the bandwidth extension band f t . p — the bandwidth between sfm The excitation signal of the extended band; the non-integer number of n parts is less than 1 part.
具体地, 从带宽扩展频带的最高频点 ft。p sfm开始, 拷贝 n份中的非整数份数 的 feXC— start到 feXC— end的频域信号预定频带范围内的激励信号时属于整块拷贝, 例如 带宽扩展频带的最高频点为 14kHz , fexc— start到 fexc— enc^ 1.6kHz到 4kHz, 当取 0.5份 的 feXC— start到 feXC— end即 1.6kHz到 2.8kHz的低频带激励信号。 采用该步骤的方案可以 将 1.6kHz到 2.8kHz的低频带激励信号拷贝至( 14-1.2 ) kHz到 14kHz之间作为这段 带宽扩展频带的激励信号, 此时 1.6kHz对应拷贝至 ( 14-1.2 ) kHz上, 2.8kHz对
应拷贝至 14kHz上。 Specifically, the highest frequency point f t of the bandwidth band is extended from the bandwidth. Starting from p sfm , copying the non-integer number of f eXC — start to f eXC — end of the frequency domain signal in the predetermined frequency band of the n shares belongs to a whole block copy, for example, the highest frequency point of the bandwidth extension band is 14kHz, f exc - start to f exc - enc ^ 1.6kHz to 4kHz, when taking 0.5 parts f eXC - start to f eXC - end 1.6kHz to 2.8kHz i.e. low band excitation signal. Using the scheme of this step, the low-band excitation signal of 1.6 kHz to 2.8 kHz can be copied to between (14-1.2) kHz and 14 kHz as the excitation signal of the bandwidth extension band, and the 1.6 kHz corresponding copy is copied to (14-1.2). ) kHz, 2.8kHz pair Should be copied to 14kHz.
通过上述两种方式,无论从预设的带宽扩展频带的起始频点 fbwe— start开始,还 是从带宽扩展频带的最高频点 ft。p— sfm开始预测带宽扩展频带的起始频点 fbwe— start与 带宽扩展频带的最高频点 ftop― sfm之间的带宽扩展频带的激励信号, 最终预测得到 的预设的带宽扩展频带的起始频点 fbwe— start与带宽扩展频带的最高频点 ft。P sfm之间 的带宽扩展频带的激励信号的结果是一样的。 In the above two ways, whether from the starting frequency point f bwe — start of the preset bandwidth extension band or the highest frequency point f t of the bandwidth extension band. p- sfm start predicting bandwidth extension start frequency band fbwe- start point and the highest frequency bandwidth extension band f top - the excitation signal bandwidth extension band between sfm, the final prediction predetermined bandwidth extension band obtained The starting frequency point f bwe — start and the highest frequency point f t of the bandwidth extension band. The result of the excitation signal of the bandwidth extension band between P sfm is the same.
在上述方案实施过程中, 可以先计算获取预设的带宽扩展频带的起始频点 fbwe— start到频带信号的最高频点 ftop― sfm之间的频带宽度除以 fexc— start到 end之间的频 带宽度所得的商以及余数; 这里的商即为 n份中的整数份数, 余数 / ( fexc— end— fexc_start )即为 n份中的非整数份数。可以采用该方式先计算 N份中的整数份数和非 整数份数,然后采用上述方式预测预设的带宽扩展频带的起始频点 fbwe— start与带宽 扩展频带的最高频点 ft。p sfm之间的带宽扩展频带的激励信号。 In the implementation of the foregoing solution, the frequency bandwidth between the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f top ― sfm of the frequency band signal may be calculated by dividing f exc — start to The quotient and remainder of the bandwidth between the ends; the quotient here is the integer number of copies in n parts, and the remainder / ( f exc — end — f exc _ start ) is the non-integer number of n parts. In this manner, the integer number and the non-integer number in the N parts can be calculated first, and then the starting frequency point f bwe — start of the preset bandwidth extension band and the highest frequency point f t of the bandwidth extension band are predicted in the above manner. . The excitation signal of the bandwidth extension band between p sfm .
205、 解码设备根据 fexc— start到 fexc_end范围内的激励信号、 fbwe— start和 flast— sfm预测 带宽扩展频带的激励信号; 执行 206 ; 205. The decoding device predicts an excitation signal of a bandwidth extension band according to an excitation signal, fbwe_start, and frast_sfm in a range of f exc — start to f exc — end ;
例如,解码设备可以拷贝从频域信号预定频带范围的起始频点 fexc— start之上的 第 m个频点开始到频域信号预定频带范围的结束频点 fexc— end之间的激励信号,和 n 份频域信号预定频带范围内的激励信号作为频域信号有比特分配的最高频点 flast— sfm与带宽扩展频带的最高频点 ft。P sfm之间的激励信号; n为零、 大于 0的整数 或者非整数, m为有比特分配的最高频点 flast— sfm与预设的扩展频带的起始频点 fbwe— start之间的频点数量值。 For example, the decoding device may copy the excitation from the mth frequency point above the starting frequency point f exc — start of the predetermined frequency band of the frequency domain signal to the end frequency f exc — end of the predetermined frequency band of the frequency domain signal. The signal, and the excitation signal in the predetermined frequency band of the n frequency domain signals are used as the highest frequency point f last — sfm of the frequency domain signal and the highest frequency point f t of the bandwidth extension band. Excitation signal between P sfm ; n is zero, an integer greater than 0 or a non-integer, m is the highest frequency point with bit allocation f last — sfm and the starting frequency of the preset extended band f bwe — start The number of frequency points between.
例如解码设备可以从有比特分配的最高频点 ^—^开始,依次拷贝 (fexc— start+For example, the decoding device can start from the highest frequency point ^^^ with bit allocation, and sequentially copy (f exc — start +
( flast_sfm-fbwe_start ) )到 fexc— end的频域信号预定频带范围内的激励信号, 和 n份的 feXC— start到 feXC— end的激励频带范围内的激励信号作为有比特分配的最高频点 flast— sfm
与带宽扩展频带的最高频点 ftop― sfm之间的带宽扩展频带的激励信号, 其中 n为零、 大于 0的整数或者非整数 。 (Flast_sfm-fbwe_start)) to f exc - an excitation signal in the frequency-domain signal in a predetermined frequency range end of, and n parts f eXC - start to f eXC - excitation signals within the excitation band range end of as having bit allocation most High frequency point flast - sfm F top point of the highest frequency and bandwidth extension band - band excitation signal bandwidth expansion between the SFM, wherein n is zero, non-integer or integer greater than 0.
具体实现时, 解码设备可以从有比特分配的最高频点 flast— sfm开始, 依次拷贝 从 fexc— Start+ ( flast— sfm— fbwe— start ) )到 fexc— end频域信号预定频带范围内的激励信号、 ϋ 份中的整数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号、和 n份 中的非整数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号作为有 比特分配的最高频点 flast— sfm与带宽扩展频带的最高频点 ft。p sfm之间的带宽扩展频 带的激励信号; 其中 n份中的非整数份数小于 1份。 In a specific implementation, the decoding device may start from the highest frequency point f last — sfm with bit allocation, and sequentially copy the predetermined frequency band range from fexc — St art+ ( flast — sfm — fbwe — start ) to f exc — end frequency domain signal. The internal excitation signal, the integer number of parts in the fraction f exc — start to f exc — end of the frequency domain signal in the predetermined frequency band of the excitation signal, and n parts of the non-integer number of f exc — start to f The exc - end frequency domain signal has an excitation signal in a predetermined frequency band as the highest frequency point f last — sfm with bit allocation and the highest frequency point f t of the bandwidth extension band. The excitation signal of the bandwidth extension band between p sfm ; wherein the non-integer number of n parts is less than 1 part.
或者解码设备可以从带宽扩展频带的最高频点 ft。p sfm开始, 依次拷贝 n份的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号, 和从(fexc— start+ ( flast.sfm -fbwe.start ) )到 fexc—∞(1频域信号预定频带范围内的激励信号作为有比特分配的最 高频点 flast— sfm与带宽扩展频带的最高频点 ft。p― sfm之间的带宽扩展频带的激励信 号; 同理, 其中 n为零、 大于 0的整数或者非整数。 Or the decoding device can extend the highest frequency point f t of the bandwidth from the bandwidth. Starting from p sfm , sequentially copy n parts of f exc — start to f exc — end of the frequency domain signal in the predetermined frequency band of the excitation signal, and from (f exc — start + ( flast.sfm -fbwe.start ) ) to f Exc — ∞ ( 1 frequency domain signal excitation signal in the predetermined frequency band as the highest frequency point of the bit allocation f last — sfm and the highest frequency point of the bandwidth extension band f t . p ― sfm between the bandwidth extension band Excitation signal; for the same reason, where n is zero, an integer greater than 0, or a non-integer.
具体实现时, 解码设备可以从带宽扩展频带的最高频点 ft。p sfm开始, 依次拷 贝 n份中的非整数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号、 n份中的整数份数的 fexc— start到 fexc— end的频域信号预定频带范围内的激励信号、和从 fexc_start+ ( fiast— sfm— e— start ) )到 fexc— end频域信号预定频带范围内的激励信号作为 有比特分配的最高频点 flast—sfm与带宽扩展频带的最高频点之间的带宽扩展频带 的激励信号; 其中 n份中的非整数份数小于 1份。 In a specific implementation, the decoding device can extend the highest frequency point f t of the bandwidth from the bandwidth. Starting from p sfm , sequentially copying the non-integer number of f exc — start to f exc — end of the n-part frequency domain signal in the predetermined frequency band of the excitation signal, the integer number of n parts of f exc — start to f Exc — the frequency domain signal of the end frequency band of the excitation signal in the predetermined frequency band, and the excitation signal from the fexc_start+ ( fiast — sfm — e — start ) to the f exc — end frequency domain signal within the predetermined frequency band as the highest bit allocation The frequency point f last — the excitation signal of the bandwidth extension band between the sfm and the highest frequency point of the bandwidth extension band; wherein the non-integer number of n parts is less than 1 part.
当解码设备从带宽扩展频带的最高频点 ft。p sfm开始预测, 拷贝 n份中的非整 数份数的 fexc— star^'j fexc— end的频域信号预定频带范围内的激励信号也属于整块拷 贝, 频域信号预定频带范围内的低频点对应的激励信号在带宽扩展频带中位于 相应的低频点上, 而频域信号预定频带范围内的高频点对应的激励信号在带宽
扩展频带中位于相应的高频点上, 详细可以参考上述相关记载。 同理, n份中的 整数份数的 fexc— star^'J fexc— end的频域信号预定频带范围内的激励信号的拷贝也可以 为顺次拷贝或者镜像拷贝, 详细可以参考上述相关记载, 在此不再赘述。 When the decoding device extends the bandwidth from the bandwidth to the highest frequency point f t . p sfm begins to predict that the frequency domain of the non-integer number of f exc — star ^′jf exc — end in n copies is also a whole copy, and the frequency domain signal is within a predetermined frequency range. The excitation signal corresponding to the low frequency point is located at the corresponding low frequency point in the bandwidth extension frequency band, and the excitation signal corresponding to the high frequency point in the predetermined frequency band of the frequency domain signal is in the bandwidth The extended frequency band is located at the corresponding high frequency point. For details, refer to the above related description. Similarly, the frequency domain signal of the integer number of f exc — star ^′J f exc — end in n parts can also be a copy of the excitation signal in a predetermined frequency range, which can also be a sequential copy or a mirror copy. For details, refer to the above correlation. Record, no longer repeat here.
通过上述两种方式, 无论从有比特分配的最高频点 flast— sfm开始, 还是从带宽 扩展频带的最高频点 ft。p— sfm开始预测有比特分配的最高频点 flast— stm与带宽扩展频 带的最高频点之间的带宽扩展频带的激励信号, 最终预测得到的有比特分配的 最高频点 flast—sfm与带宽扩展频带的最高频点之间的带宽扩展频带激励信号的结 果是一样的。 By the above two methods, whether from the highest frequency point f last — sfm with bit allocation, or the highest frequency point f t of the bandwidth extension band. p — sfm starts to predict the excitation signal of the bandwidth extension band between the highest frequency point f last — stm of the bit allocation and the highest frequency point of the bandwidth extension band, and finally obtains the highest frequency point f last with bit allocation – The result of the bandwidth extension band excitation signal between sfm and the highest frequency point of the bandwidth extension band is the same.
且上述方案中, 当 (fexc— start+ ( flast— sfm— fbwe— start ) )到 fexc— end的带宽大于等于 有比特分配的最高频点 flast—sfm与带宽扩展频带的最高频点之间的带宽时, 仅需在And in the above scheme, when (f exc — start + ( flast — sfm — fbwe — start ) ) to f exc — end the bandwidth is greater than or equal to the highest frequency point of the bit allocation f last — sfm and the highest bandwidth extension band When the bandwidth between the frequencies is only needed
( fexc— start+ ( flast—sfm fbwe— start ) )到 fexc— end中, ( fexc— start+ ( flast—sfm fbwe— start ) ) ^T" 始, 获取带宽等于有比特分配的最高频点 flast— sfm与带宽扩展频带的最高频点的带 宽的低频带信号的激励信号作为有比特分配的最高频点 flast—sfm与带宽扩展频带 的最高频点之间的带宽扩展频带的激励信号。 ( fexc - start + ( flast - sfm fbwe - start ) ) to fexc - end, ( fexc - start + ( flast - sfm fbwe - start ) ) ^ T " , the acquisition bandwidth is equal to the highest frequency point with last bit allocation f last - a low band excitation signal bandwidth of the signal with the highest frequency of sfm point bandwidth extension bit allocation band has a maximum frequency point f last - excitation bandwidth expansion between the band and the highest frequency point sfm bandwidth extension band signal.
在上述方案实施过程中,可以先计算获取 (有比特分配的最高频点 flast— sfm到频 带信号的最高频点 ft。p— sfm之间的频带宽度一 (fexw+ ( flast.sfm- fbwe.start ) ) 的差 值)除以 fexc— start到 fexc— ^之间的频带宽度所得的商以及余数; 这里的商即为 n份中 的整数份数, ^^丈 / ( fe c end fexc— start )即为 n份中的非整数份数。 可以采用该方式 先计算 N份中的整数份数和非整数份数,然后采用上述方式预测有比特分配的最 高频点 flast— sfm与带宽扩展频带的最高频点 ftop— sfm之间的带宽扩展频带的激励信 号。 In the implementation of the above scheme, the acquisition (the highest frequency point f last — sfm with bit allocation to the highest frequency point f t of the frequency band signal can be calculated first. p — the frequency bandwidth between sfm and one (f ex w+ ( flast The difference between .sfm-fbwe.start)) is divided by the frequency quotient between f exc — start and f exc — ^; the quotient here is the integer number of n parts, ^^ / ( fe c end fexc— start ) is a non-integer number of parts in n parts. In this way, the integer number and the non-integer number in the N parts can be calculated first, and then the highest frequency point f last — sfm with bit allocation and the highest frequency point of the bandwidth extension band f top — sfm are predicted in the above manner. The excitation signal between the bandwidth extension bands.
例如在编码速率为 24kbpS时, 预设的带宽扩展频带的起始频点 fbwe— startFor example, when the coding rate is 24 kbpS, the starting frequency of the preset bandwidth extension band f bwe — start
=6.4kHz, ^。^为 !^ 。 带宽扩展频带的激励信号采用如下方式预测: 假定预
选择的低频带信号扩展范围为从 0~4kHz。 第 N帧有比特分配的最高频点 flast— sfm =6.4kHz, ^. ^For! ^. The excitation signal of the bandwidth extension band is predicted as follows: The selected low-band signal extends from 0 to 4 kHz. The Nth frame has the highest frequency point of bit allocation f last — sfm
=8kHz, 此时 flast— sfm> fbwe.start , 则先对选定的 0~4kHz的低频带信号激励信号做自 适应归一化处理(;具体地自适应归一化处理的过程详细可以参考上述实施例的 记载, 在此不再赘述) , 然后 8kHz以上的带宽扩展频带的激励信号从归一化的 低频带信号激励信号中进行预测, 而按照上述实施例的方式被选择的归一化低 频带信号激励信号被拷贝的顺序为: 先拷贝 (8kHz-6.4kHz )到 4kHz的频域信号 预定频带范围内的激励信号, 然后再拷贝 0.9份的 fexc— star^fexc— end ( 0~4kHz )的频 域信号预定频带范围内的激励信号, 即拷贝 0kHz到 3.6kHz的频域信号预定频带 范围内的激励信号, 作为有比特分配的最高频点 ( flast— sfm =8kHz )到带宽扩展频 带的最高频点 ft。p— sfm ( ft。p— sfm=14kHz )之间的带宽扩展频带的激励信号。 如果第 N+1帧有比特分配的最高频点 flast— sfm <=6.4kHz (预设的带宽扩展频带的起始频点 fbwe.start =6.4kHz ) , 选定的 0~4kHz的低频带信号激励信号做自适应归一化处理, 然后对 6.4kHz以上的带宽扩展频带的激励信号从归一化的低频带信号激励信号 中进行预测, 按照上述实施例的方式被选择的归一化低频带信号激励信号被拷 贝的顺序为: 先拷贝 1份的 fexc— start到 fexc— end ( 0~4kHz )的频域信号预定频带范围内 的激励信号, 再拷贝 0.9份的 fexc— start到 fexc— end ( 0~4kHz )的频域信号预定频带范围 内的激励信号, 作为预设的带宽扩展频带的起始频点( fbwe— start =6.4kHz )到带宽 扩展频带的最高频点 ft。p— sfm ( ftop_sfm=14kHz )之间的带宽扩展频带的激励信号。 =8kHz, at this time f last — sfm > fbwe.start , then adaptively normalize the selected low-band signal excitation signal of 0~4kHz (the specific adaptive normalization process can be detailed) Referring to the description of the above embodiment, no further details are provided herein, and then the excitation signal of the bandwidth extension band of 8 kHz or more is predicted from the normalized low-band signal excitation signal, and the normalized according to the manner of the above embodiment is selected. The sequence of the low-band signal excitation signal is copied: first copy the excitation signal in the predetermined frequency range of the frequency domain signal from 8 kHz to 6.4 kHz, and then copy 0.9 parts of f exc — star ^f exc — end ( 0~4kHz) The excitation signal in the predetermined frequency range of the frequency domain signal, that is, the excitation signal in the predetermined frequency range of the frequency domain signal of 0 kHz to 3.6 kHz, as the highest frequency point with bit allocation (f last — sfm = 8 kHz ) to the highest frequency point f t of the bandwidth extension band. p — sfm ( f t . p — sfm = 14 kHz ) The excitation signal of the bandwidth extension band. If the N+ 1th frame has the highest frequency point of the bit allocation f last — sfm <= 6.4 kHz (the starting frequency of the preset bandwidth extension band fbwe.start = 6.4 kHz), the selected low frequency of 0~4 kHz The signal excitation signal is subjected to adaptive normalization processing, and then the excitation signal of the bandwidth extension band of 6.4 kHz or more is predicted from the normalized low-band signal excitation signal, and the normalization is selected according to the manner of the above embodiment. The order in which the low-band signal excitation signal is copied is as follows: first copy the excitation signal of a predetermined frequency band of the frequency domain signal of f exc — start to f exc — end ( 0~4 kHz), and then copy 0.9 parts of f exc — Start to f exc — end ( 0~4 kHz ) of the frequency domain signal in the predetermined frequency band of the excitation signal, as the starting frequency of the preset bandwidth extension band ( f bwe — start =6.4kHz ) to the bandwidth extension band High frequency point f t . p — sfm ( f top _ sfm = 14 kHz ) The excitation signal of the bandwidth extension band.
带宽扩展频带的最高频点是根据频域信号的类别确定的, 例如当频域信号 的类别为超宽带信号时, 带宽扩展频带的最高频点 ft。p sfm为 14KHZ。 而编码设备 和解码设备在进行通信之前通常已经确定了要传输的频域信号的类别, 所以频 域信号的最高频点便可以认为是确定的。 The highest frequency point of the bandwidth extension band is determined according to the class of the frequency domain signal, for example, when the class of the frequency domain signal is an ultra wideband signal, the highest frequency point f t of the bandwidth extension band. p sfm is 14KHZ. The encoding device and the decoding device usually have determined the class of the frequency domain signal to be transmitted before communicating, so the highest frequency point of the frequency domain signal can be considered as determined.
206、 解码设备根据预测的带宽扩展频带的激励信号和带宽扩展频带的频域
包络预测带宽扩展频带信号。 206. The decoding device expands a frequency band of the excitation signal and the bandwidth extension frequency band according to the predicted bandwidth The envelope predicts the bandwidth extension band signal.
经过上述带宽扩展频带信号的激励信号的预测可以发现, 虽然第 N帧和第 N+1帧的带宽扩展频带信号带宽扩展开始预测的频带不同, 但在 8kHz以上相同 频带的激励信号, 都是从低频带信号相同频带的激励信号预测得到的, 因此可 以保证帧间的连续性。 紧接着再采用 206的步骤, 实现对带宽扩展频带信号的准 确预测。 Through the prediction of the excitation signal of the bandwidth extension band signal, it can be found that although the bandwidth extension of the bandwidth extension band signal of the Nth frame and the N+1th frame is different, the excitation signals of the same frequency band above 8 kHz are all from The excitation signals of the same frequency band of the low frequency band signal are predicted, so that continuity between frames can be ensured. The step 206 is then followed to achieve accurate prediction of the bandwidth extended band signal.
采用上述实施例的技术方案, 能够有效地保证前后帧间预测的带宽扩展频 带信号激励信号的连续性。 从而保证了恢复的带宽扩展频带信号的听觉质量, 从而提升音频信号的听觉质量。 With the technical solution of the above embodiment, it is possible to effectively ensure the continuity of the bandwidth-expanded band signal excitation signal before and after the inter-frame prediction. Thereby, the recovered bandwidth extends the auditory quality of the band signal, thereby improving the auditory quality of the audio signal.
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。 A person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed. The foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
图 6本发明一实施例提供的解码设备的结构示意图。 如图 6所示, 本实施例 的解码设备, 包括解码模块 30、 判断模块 31、 第一处理模块 32、 第二处理模块 33和预测模块 34。 FIG. 6 is a schematic structural diagram of a decoding device according to an embodiment of the present invention. As shown in FIG. 6, the decoding device of this embodiment includes a decoding module 30, a determining module 31, a first processing module 32, a second processing module 33, and a prediction module 34.
其中解码模块 30用于解复用接收到的比特流, 解码得到频域信号; 判断模 块 31与解码模块 30连接, 判断模块 31用于判断解码模块 30解码得到的频域信号 有比特分配的最高频点是否小于预设的带宽扩展频带的起始频点; 第一处理模 块 32与判断模块 31连接, 第一处理模块 32用于当判断模块 31确定有比特分配的 最高频点小于预设的带宽扩展频带的起始频点时, 根据频域信号预定频带范围 内的激励信号和预设的带宽扩展频带的起始频点预测带宽扩展频带的激励信 号; 第二处理模块 33也与判断模块 31连接, 第二处理模块 33用于当判断模块 31
确定当有比特分配的最高频点大于等于预设的带宽扩展频带的起始频点时, 根 据频域信号预定频带范围内的激励信号、 预设的带宽扩展频带的起始频点和有 比特分配的最高频点预测带宽扩展频带的激励信号; 预测模块 34与第一处理模 块 32或者第二处理模块 33连接, 当判断模块 31确定有比特分配的最高频点小于 预设的带宽扩展频带的起始频点时, 预测模块 34与第一处理模块 32连接。 当判 断模块 31确定当有比特分配的最高频点大于等于预设的带宽扩展频带的起始频 点时, 预测模块 14与第二处理模块 33连接。 预测模块 34用于根据第一处理模块The decoding module 30 is configured to demultiplex the received bit stream, and obtain a frequency domain signal. The determining module 31 is connected to the decoding module 30, and the determining module 31 is configured to determine that the frequency domain signal decoded by the decoding module 30 has the most bit allocation. Whether the high frequency point is smaller than the starting frequency point of the preset bandwidth extension frequency band; the first processing module 32 is connected to the determining module 31, and the first processing module 32 is configured to determine that the highest frequency point of the bit allocation is less than the pre-determination When the bandwidth of the bandwidth extension band is set, the excitation signal of the bandwidth extension band is predicted according to the excitation signal in the predetermined frequency band of the frequency domain signal and the initial frequency band of the preset bandwidth extension band; the second processing module 33 also The judging module 31 is connected, and the second processing module 33 is used to judge the module 31. Determining that when the highest frequency point of the bit allocation is greater than or equal to the starting frequency point of the preset bandwidth extension frequency band, the excitation frequency signal in the predetermined frequency band according to the frequency domain signal, the starting frequency point of the preset bandwidth extension frequency band, and The highest frequency point of the bit allocation predicts the excitation signal of the bandwidth extension band; the prediction module 34 is connected to the first processing module 32 or the second processing module 33, and when the determining module 31 determines that the highest frequency point of the bit allocation is less than the preset bandwidth The prediction module 34 is coupled to the first processing module 32 when the starting frequency of the frequency band is extended. When the judging module 31 determines that the highest frequency point of the bit allocation is greater than or equal to the starting frequency point of the preset bandwidth extension band, the prediction module 14 is connected to the second processing module 33. The prediction module 34 is configured to be based on the first processing module
32或者第二处理模块 33预测的带宽扩展频带的激励信号和带宽扩展频带的频域 包络预测带宽扩展频带信号。 32 or the second processing module 33 predicts the bandwidth extension band excitation signal and the bandwidth extension band frequency domain envelope prediction bandwidth extension band signal.
本实施例的解码设备, 通过采用上述模块实现带宽扩展频带信号的预测与 上述相关方法实施例的实现过程相同, 详细可以参考上述相关方法实施例的记 载, 在此不再赘述。 The decoding device of the present embodiment, the prediction of the bandwidth extension band signal by using the foregoing module is the same as the implementation process of the foregoing related method embodiment. For details, reference may be made to the description of the related method embodiment, and details are not described herein again.
本实施例的解码设备, 通过采用上述模块实现通过设定一个带宽扩展的起 始频点, 判断有解码出的频域信号的最高频点与起始频点的大小, 来做带宽扩 展频带的激励恢复, 使得扩展出来的激励信号帧间是连续的, 而且保持住了解 码出的激励信号的频点, 从而保证了恢复的带宽扩展频带信号的听觉质量, 提 升了输出的音频信号的听觉质量。 。 The decoding device of this embodiment implements the bandwidth extension band by determining the starting point of a bandwidth extension by using the above-mentioned module, and determining the size of the highest frequency point and the starting frequency point of the decoded frequency domain signal. The excitation recovery is such that the extended excitation signal frames are continuous, and the frequency of the decoded excitation signal is maintained, thereby ensuring the auditory quality of the recovered bandwidth extended frequency band signal, and improving the hearing of the output audio signal. quality. .
图 7为本发明另一实施例提供的解码设备的结构示意图。 如图 7所示, 本实 施例的解码设备在上述图 6所示实施例的基础上, 进一步更加详细地介绍本发明 的技术方案。 FIG. 7 is a schematic structural diagram of a decoding device according to another embodiment of the present invention. As shown in FIG. 7, the decoding apparatus of this embodiment further introduces the technical solution of the present invention in more detail on the basis of the above-described embodiment shown in FIG. 6.
如图 7所示, 第一处理模块 32具体用于拷贝 n份频域信号预定频带范围内的 激励信号作为预设的带宽扩展频带的起始频点与带宽扩展频带的最高频点之间 的激励信号; n为大于 0的整数或者非整数, n等于预设的带宽扩展频带的起始频
点与带宽扩展频带的最高频点之间的频点数量和频域信号预定频带范围内频点 数量的比值。 As shown in FIG. 7, the first processing module 32 is specifically configured to copy an excitation signal in a predetermined frequency band of n frequency domain signals as a starting frequency point of a preset bandwidth extension frequency band and a highest frequency point of a bandwidth extension frequency band. Excitation signal; n is an integer greater than 0 or a non-integer, n is equal to the starting frequency of the preset bandwidth extension band The ratio of the number of frequency points between the point and the highest frequency point of the bandwidth extension band and the number of frequency points in the predetermined frequency band of the frequency domain signal.
进一步可选地, 本实施例的解码设备中第一处理模块 32具体用于从预设的 带宽扩展频带的起始频点开始, 依次拷贝 n份中的整数份数的频域信号预定频带 范围内的激励信号和 n份中的非整数份数的频域信号预定频带范围内的激励信 号作为预设的带宽扩展频带的起始频点与带宽扩展频带的最高频点之间的激励 信号; n份中的非整数份数小于 1份; 或者第一处理模块 32具体用于从带宽扩展 频带的最高频点开始, 依次拷贝 n份中的非整数份数的频域信号预定频带范围内 的激励信号和 n份中的整数份数的频域信号预定频带范围内的激励信号作为预 设的带宽扩展频带的起始频点与带宽扩展频带的最高频点之间的激励信号; n份 中的非整数份数小于 1份。 Further, the first processing module 32 in the decoding device of the embodiment is specifically configured to sequentially copy a predetermined frequency range of the frequency domain signal of the integer number of copies in the n-part from the starting frequency of the preset bandwidth extension band. The excitation signal within the predetermined frequency band of the excitation signal and the non-integer number of frequency domain signals in n parts is used as an excitation signal between the initial frequency point of the preset bandwidth extension band and the highest frequency point of the bandwidth extension band The non-integer number of n parts is less than 1 part; or the first processing module 32 is specifically configured to sequentially copy a non-integer number of frequency domain signals in n parts from a highest frequency point of the bandwidth extension band to a predetermined frequency band range. The excitation signal in the predetermined frequency band of the excitation signal and the integer number of frequency domain signals in n parts is used as an excitation signal between a starting frequency point of the preset bandwidth extension band and a highest frequency point of the bandwidth extension band; The non-integer fraction in n parts is less than 1 part.
可选地, 本实施例的解码设备中第二处理模块 33具体用于拷贝从频域信号 预定频带范围的起始频点 fexc— start之上的第 m个频点开始到频域信号预定频带范 围的结束频点 fexc— end之间的激励信号, 和 n份频域信号预定频带范围内的激励信 号作为频域信号有比特分配的最高频点与带宽扩展频带的最高频点之间的激励 信号; n为零、 大于 0的整数或者非整数, m为有比特分配的最高频点与预设的 扩展频带的起始频点之间的频点数量值。 Optionally, the second processing module 33 in the decoding device of the embodiment is specifically configured to copy the frequency from the mth frequency point above the starting frequency point f exc — start of the predetermined frequency band of the frequency domain signal to the frequency domain signal. The excitation signal between the end frequency points f exc — end of the frequency band range, and the excitation signal in the predetermined frequency band range of the n frequency domain signals as the highest frequency point of the bit-domain distribution of the frequency domain signal and the highest frequency point of the bandwidth extension band The excitation signal between; n is an integer greater than 0 or a non-integer, and m is the number of frequency points between the highest frequency point with bit allocation and the starting frequency point of the preset extended frequency band.
进一步可选地, 本实施例的解码设备中第二处理模块 33具体用于从有比特 分配的最高频点开始, 依次拷贝从 fexc— start+ (有比特分配的最高频点一预设的带 宽扩展频带的起始频点) )到 。— end频域信号频带范围内的激励信号、 n份中的 整数份数的所述 fexc— start到 fexc— end的频域信号频带范围内的激励信号、和 n份中的非 整数份数的 fexc— start到 fexc— end的频域信号频带范围内的激励信号作为有比特分配的 最高频点与带宽扩展频带的最高频点之间的激励信号; n份中的非整数份数小于
1份; 或第二处理模 13具体用于从带宽扩展频带的最高频点开始, 依次拷贝 n份 中的非整数份数的 fexc— start到 fexc— end的频域信号频带范围内的激励信号、 n份中的整 数份数的 fexc— start到 fexc— end的频域信号频带范围内的激励信号、 和从 fexc— start+ (有比 特分配的最高频点一预设的带宽扩展频带的起始频点) )到 fexc— end频域信号频带 范围内的激励信号作为有比特分配的最高频点与带宽扩展频带的最高频点之间 的高频带激励信号; n份中的非整数份数小于 1份。 Further optionally, the second processing module 33 in the decoding device of the embodiment is specifically configured to start from the highest frequency point with bit allocation, and sequentially copy from f exc — start + (the highest frequency point with bit allocation is one pre- Set the starting frequency of the bandwidth extension band)). - the excitation signal in the frequency domain signal band end of the range, said integer number of copies of parts of n f exc - start to f exc - an excitation signal in the frequency domain signal of the frequency band end, and parts of non-integer parts of n Excitation signal in the frequency domain signal band of the number f exc — start to f exc — end as the excitation signal between the highest frequency point with bit allocation and the highest frequency point of the bandwidth extension band; Integer number is less than 1 part; or the second processing mode 13 is specifically used to sequentially copy the non-integer number of f exc — start to f exc — end in the frequency domain signal band range of n parts from the highest frequency point of the bandwidth extension band The excitation signal, the integer fraction of n parts of f exc — start to f exc — end of the excitation signal in the frequency domain signal band, and from f exc — start + (the highest frequency point with bit allocation The initial frequency of the bandwidth extension band)) to the excc - end frequency domain signal band of the excitation signal as the high frequency band between the highest frequency point with bit allocation and the highest frequency point of the bandwidth extension band Excitation signal; the number of non-integer parts in n parts is less than 1 part.
可选地, 本实施例的解码模块 30还用于在预测模块 34根据预测的带宽扩展 频带的激励信号和带宽扩展频带的频域包络预测带宽扩展频带信号之前, 从比 特流中解码获得带宽扩展频带的频域包络, 此时对应的预测模块 34还与解码模 块 30连接, 预测模块 34用于根据第一处理模块 32或者第二处理模块 33预测的带 宽扩展频带的激励信号和解码模块 30解码得到的带宽扩展频带的频域包络预测 带宽扩展频带信号。 Optionally, the decoding module 30 of this embodiment is further configured to: after the prediction module 34 predicts the bandwidth extension band signal according to the predicted bandwidth extension band excitation signal and the bandwidth extension band frequency band envelope, the bandwidth is decoded from the bit stream. The frequency domain envelope of the extended frequency band, the corresponding prediction module 34 is also connected to the decoding module 30, and the prediction module 34 is configured to use the bandwidth extension band excitation signal and the decoding module according to the first processing module 32 or the second processing module 33. The frequency domain envelope of the bandwidth extension band obtained by decoding 30 predicts the bandwidth extension band signal.
进一步可选地, 本实施例的解码设备中还包括获取模块 35。 Further, optionally, the decoding device of this embodiment further includes an obtaining module 35.
解码模块 30还用于在预测模块 34根据预测的带宽扩展频带的激励信号和带 宽扩展频带的频域包络预测带宽扩展频带信号之前, 从比特流中解码获得信号 类型; 获取模块 35与解码模块 30连接, 获取模块 35用于根据解码模块 30解码得 到的信号类型获取带宽扩展频带的频域包络。 此时对应的预测模块 34与获取模 块 35连接, 预测模块 34用于根据第一处理模块 32或者第二处理模块 33预测的带 宽扩展频带的激励信号和获取模块 35得到的带宽扩展频带的频域包络预测带宽 扩展频带信号。 The decoding module 30 is further configured to: after the prediction module 34 predicts the bandwidth extension band signal according to the predicted bandwidth extension band excitation band and the bandwidth extension band frequency band envelope, the signal type is obtained from the bit stream; the obtaining module 35 and the decoding module The 30 connection, obtaining module 35 is configured to obtain a frequency domain envelope of the bandwidth extension band according to the signal type decoded by the decoding module 30. At this time, the corresponding prediction module 34 is connected to the acquisition module 35, and the prediction module 34 is configured to use the excitation signal of the bandwidth extension band predicted by the first processing module 32 or the second processing module 33 and the frequency domain of the bandwidth extension band obtained by the acquisition module 35. The envelope predicts the bandwidth extension band signal.
进一步可选地, 其中获取模块 35具体用于当解码模块 30解码得到信号类型 为非谐波信号时, 对接收的比特流进行解复用, 解码得到带宽扩展频带的频域 包络; 或者获取模块 35具体用于当解码模块 30解码得到信号类型为谐波信号时,
对接收的比特流进行解复用, 解码得到带宽扩展频带的初始频域包络; 将初始 频域包络与相邻的 N个初始频域包络加权计算得到的值作为带宽扩展频带的频 域包络, 其中 N大于等于 1。 Further, optionally, the obtaining module 35 is specifically configured to: when the decoding module 30 decodes the signal type into a non-harmonic signal, demultiplex the received bit stream, and obtain a frequency domain envelope of the bandwidth extension band; or obtain The module 35 is specifically configured to: when the decoding module 30 decodes the signal type into a harmonic signal, The received bit stream is demultiplexed, and the initial frequency domain envelope of the bandwidth extension band is decoded. The value obtained by weighting the initial frequency domain envelope and the adjacent N initial frequency domain envelopes is used as the frequency of the bandwidth extension band. Domain envelope, where N is greater than or equal to 1.
上述实施例的解码设备是以包括上述所有可选技术方案为例介绍本发明, 实际应用中, 上述所有可选技术方案可以采用任意可以结合的方式任意组合形 成本发明的可选实施例, 在此不再赘述。 The decoding device of the foregoing embodiment is described by using all the optional technical solutions described above as an example. In an actual application, all the foregoing optional technical solutions may be combined in any combination to form an optional embodiment of the present invention. This will not be repeated here.
上述实施例的解码设备, 通过采用上述模块实现带宽扩展频带信号的预测 与上述相关方法实施例的实现过程相同, 详细可以参考上述相关方法实施例的 记载, 在此不再赘述。 The decoding device of the foregoing embodiment implements the prediction of the bandwidth extension band signal by using the foregoing module. The implementation process of the foregoing related method embodiment is the same as the description of the related method embodiment, and details are not described herein again.
上述实施例的编码设备, 通过采用上述模块实现通过设定一个带宽扩展的 起始频点, 判断有解码出的频域信号的最高频点与起始频点的大小, 来做带宽 扩展频带的激励恢复, 使得扩展出来的激励信号帧间是连续的, 而且保持住了 解码出的激励信号的频点, 从而保证了恢复的带宽扩展频带信号的听觉质量, 提升了输出的音频信号的听觉质量。 The encoding device of the above embodiment implements the bandwidth extension band by determining the starting point of a bandwidth extension by using the above-mentioned module, and determining the size of the highest frequency point and the starting frequency point of the decoded frequency domain signal. The excitation recovery is such that the extended excitation signal frames are continuous, and the frequency of the decoded excitation signal is maintained, thereby ensuring the auditory quality of the recovered bandwidth extended frequency band signal, and improving the hearing of the output audio signal. quality.
可以根据上述功能模块实现对图 2所示的解码设备的功能做以调整, 得到本 发明实施例的解码设备的实例图, 在此不再赘述。 The function of the decoding device shown in FIG. 2 can be adjusted according to the foregoing function module, and an example of the decoding device in the embodiment of the present invention is obtained, and details are not described herein again.
本发明实施例的解码设备可以结合现有如图 1所示的编码设备一起使用, 形 成一种带宽扩展频带信号的预测系统, 在此不再赘述。 The decoding device of the embodiment of the present invention can be used together with the existing encoding device shown in FIG. 1 to form a prediction system for a bandwidth extended frequency band signal, which is not described herein again.
图 8是根据本发明另一实施例的解码设备 80的框图。 图 8的解码设备 80可用 于实现上述方法实施例中各步骤及方法。 解码设备 80可应用于各种通信系统中 的基站或者终端。 图 8的实施例中, 解码设备 80包括接收电路 802、 解码处理器 803、处理单元 804,存储器 805和天线 801。处理单元 804控制解码设备 80的操作, 处理单元 804还可以称为 CPU ( Central Processing Unit, 中央处理单元) 。 存储
器 805可以包括只读存储器和随机存取存储器, 并向处理单元 804提供指令和数 据。 存储器 805的一部分还可以包括非易失行随机存取存储器 (NVRAM ) 。 具 体的应用中, 解码设备 80可以嵌入或者本身可以就是例如移动电话之类的无线 通信设备, 还可以包括容纳接收电路 801的载体, 以允许解码设备 80从远程位置 接收数据。 接收电路 801可以耦合到天线 801。 解码设备 80的各个组件通过总线 系统 806耦合在一起, 其中总线系统 806除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清楚说明起见, 在图 8中将各种总线都标为 总线系统 806。 解码设备 80还可以包括用于处理信号的处理单元 804, 此外还包 括解码处理器 803。 FIG. 8 is a block diagram of a decoding device 80 in accordance with another embodiment of the present invention. The decoding device 80 of FIG. 8 can be used to implement the steps and methods in the foregoing method embodiments. The decoding device 80 can be applied to a base station or a terminal in various communication systems. In the embodiment of FIG. 8, decoding device 80 includes a receiving circuit 802, a decoding processor 803, a processing unit 804, a memory 805, and an antenna 801. The processing unit 804 controls the operation of the decoding device 80, which may also be referred to as a CPU (Central Processing Unit). Storage The 805 can include read only memory and random access memory and provides instructions and data to the processing unit 804. A portion of the memory 805 may also include non-volatile line random access memory (NVRAM). In a particular application, decoding device 80 may embed or itself be a wireless communication device such as a mobile telephone, and may also include a carrier that houses receiving circuitry 801 to allow decoding device 80 to receive data from a remote location. Receive circuit 801 can be coupled to antenna 801. The various components of decoding device 80 are coupled together by a bus system 806, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 806 in FIG. The decoding device 80 may also include a processing unit 804 for processing signals, and further includes a decoding processor 803.
上述本发明实施例揭示的方法可以应用于解码处理器 803中, 或者由解码处 理器 803实现。 解码处理器 803可能是一种集成电路芯片, 具有信号的处理能力。 在实现过程中, 上述方法实施例的各步骤可以通过解码处理器 803中的硬件的集 成逻辑电路或者软件形式的指令完成。 这些指令可以通过处理单元 804以配合实 现及控制。 上述的解码处理器可以是通用处理器、 数字信号处理器(DSP )、 专 用集成电路(ASIC ) 、 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立的门或者晶体管逻辑器件、 分立的硬件组件。 可以实现或者执行本发明实 施例中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器, 或者 该处理器也可以是任何常规的处理器、 译码器等。 结合本发明实施例所公开的 方法的步骤可以直接通过体现为硬件的解码处理器执行完成, 或者用解码处理 器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域 成熟的存储介质中。 该存储介质位于存储器 805 , 解码处理器 803读取存储器 805 中的信息, 结合其硬件完成上述方法的步骤。
例如, 图 6或图 7的信号解码设备可以由解码处理器 803实现。 另外, 图 6中 的解码模块 30、 判断模块 31、 第一处理模块 32、 第二处理模块 33和预测模块 34 可以由处理单元 804实现, 也可以由解码处理器 803实现。 同理, 图 7中的各个模 块可以由处理单元 804实现, 也可以由解码处理器 803实现。 但上述例子仅仅是 具体地, 存储器 805存储使得处理器 804、 或解码处理器 803实现以下操作的 指令: 解复用接收到的比特流, 解码得到频域信号; 判断所述频域信号有比特 分配的最高频点是否小于预设的带宽扩展频带的起始频点; 当所述有比特分配 的最高频点小于所述预设的带宽扩展频带的起始频点时, 根据所述频域信号预 定频带范围内的激励信号和所述预设的带宽扩展频带的起始频点预测带宽扩展 频带的激励信号; 当所述有比特分配的最高频点大于等于所述预设的带宽扩展 频带的起始频点时, 根据所述频域信号预定频带范围内的激励信号、 所述预设 的带宽扩展频带的起始频点和所述有比特分配的最高频点预测所述带宽扩展频 带的激励信号; 根据预测的所述带宽扩展频带的激励信号和带宽扩展频带的频 域包络预测带宽扩展频带信号。 The method disclosed in the foregoing embodiment of the present invention may be applied to the decoding processor 803 or implemented by the decoding processor 803. Decoding processor 803 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method embodiment may be completed by decoding an integrated logic circuit of hardware in the processor 803 or an instruction in a form of software. These instructions can be implemented and controlled by processing unit 804. The above decoding processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, and a discrete Hardware components. The methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed. The general purpose processor may be a microprocessor, or the processor may be any conventional processor, decoder or the like. The steps of the method disclosed in connection with the embodiments of the present invention may be directly performed by a decoding processor embodied as hardware, or performed by a combination of hardware and software modules in the decoding processor. The software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like. The storage medium is located in the memory 805, and the decoding processor 803 reads the information in the memory 805 and combines the hardware to complete the steps of the above method. For example, the signal decoding device of FIG. 6 or FIG. 7 can be implemented by the decoding processor 803. In addition, the decoding module 30, the determining module 31, the first processing module 32, the second processing module 33, and the prediction module 34 in FIG. 6 may be implemented by the processing unit 804, or may be implemented by the decoding processor 803. Similarly, the various modules in FIG. 7 may be implemented by the processing unit 804 or by the decoding processor 803. However, the above example is merely specific. The memory 805 stores instructions for causing the processor 804, or the decoding processor 803 to: demultiplex the received bit stream, decode the obtained frequency domain signal; and determine that the frequency domain signal has bits. Whether the allocated highest frequency point is smaller than a starting frequency point of the preset bandwidth extension frequency band; when the highest frequency point having the bit allocation is smaller than the starting frequency point of the preset bandwidth extension frequency band, according to the An excitation signal in a predetermined frequency band of the frequency domain signal and an excitation signal of the initial frequency point of the predetermined bandwidth extension band to predict a bandwidth extension band; when the highest frequency point of the bit allocation is greater than or equal to the preset And an excitation signal in a predetermined frequency band, a starting frequency point of the preset bandwidth extension band, and the highest frequency point prediction station with the bit allocation according to the frequency band of the frequency band. An excitation signal of the bandwidth extension band; predicting the bandwidth extension band signal according to the predicted frequency band excitation signal of the bandwidth extension band and the frequency domain envelope of the bandwidth extension band.
以上所描述的装置实施例仅仅是示意性的, 其中作为分离部件说明的单元 可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以 不是物理单元, 即可以位于一个地方, 或者也可以分布到至少两个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目 的。 本领域普通技术人员在不付出创造性的劳动的情况下, 即可以理解并实施。 The device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. , or it can be distributed to at least two network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其
中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。
It should be noted that the above embodiments are only for explaining the technical solutions of the present invention, and are not intended to be limiting; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those skilled in the art that: Modifying the technical solutions described in the foregoing embodiments, or The technical features of the present invention are not limited to the spirit and scope of the technical solutions of the embodiments of the present invention.