WO2014113846A1 - Herbicide tolerant barley - Google Patents
Herbicide tolerant barley Download PDFInfo
- Publication number
- WO2014113846A1 WO2014113846A1 PCT/AU2014/000060 AU2014000060W WO2014113846A1 WO 2014113846 A1 WO2014113846 A1 WO 2014113846A1 AU 2014000060 W AU2014000060 W AU 2014000060W WO 2014113846 A1 WO2014113846 A1 WO 2014113846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- barley
- plant
- seq
- hybrid
- anyone
- Prior art date
Links
- 239000004009 herbicide Substances 0.000 title claims abstract description 152
- 235000007340 Hordeum vulgare Nutrition 0.000 title claims abstract description 113
- 230000002363 herbicidal effect Effects 0.000 title claims abstract description 70
- 240000005979 Hordeum vulgare Species 0.000 title 1
- 241000209219 Hordeum Species 0.000 claims abstract description 192
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 43
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 claims abstract description 31
- 108010018763 Biotin carboxylase Proteins 0.000 claims abstract description 31
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 claims abstract description 27
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 24
- 241000196324 Embryophyta Species 0.000 claims description 68
- 102000040430 polynucleotide Human genes 0.000 claims description 20
- 108091033319 polynucleotide Proteins 0.000 claims description 20
- 239000002157 polynucleotide Substances 0.000 claims description 20
- 102000007132 Carboxyl and Carbamoyl Transferases Human genes 0.000 claims description 16
- 108010072957 Carboxyl and Carbamoyl Transferases Proteins 0.000 claims description 16
- 230000005764 inhibitory process Effects 0.000 claims description 16
- YUVKUEAFAVKILW-UHFFFAOYSA-N 2-(4-{[5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=CC=C(C(F)(F)F)C=N1 YUVKUEAFAVKILW-UHFFFAOYSA-N 0.000 claims description 10
- 150000001413 amino acids Chemical class 0.000 claims description 10
- GOCUAJYOYBLQRH-UHFFFAOYSA-N 2-(4-{[3-chloro-5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=NC=C(C(F)(F)F)C=C1Cl GOCUAJYOYBLQRH-UHFFFAOYSA-N 0.000 claims description 9
- 230000002411 adverse Effects 0.000 claims description 9
- 102000004357 Transferases Human genes 0.000 claims description 6
- 108090000992 Transferases Proteins 0.000 claims description 6
- 239000005600 Propaquizafop Substances 0.000 claims description 5
- 229920001184 polypeptide Polymers 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- FROBCXTULYFHEJ-OAHLLOKOSA-N propaquizafop Chemical compound C1=CC(O[C@H](C)C(=O)OCCON=C(C)C)=CC=C1OC1=CN=C(C=C(Cl)C=C2)C2=N1 FROBCXTULYFHEJ-OAHLLOKOSA-N 0.000 claims description 5
- 238000006467 substitution reaction Methods 0.000 claims description 5
- 238000011109 contamination Methods 0.000 claims description 4
- 238000003306 harvesting Methods 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 241000630329 Scomberesox saurus saurus Species 0.000 claims description 3
- 241000143957 Vanessa atalanta Species 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- NHDHVHZZCFYRSB-UHFFFAOYSA-N pyriproxyfen Chemical compound C=1C=CC=NC=1OC(C)COC(C=C1)=CC=C1OC1=CC=CC=C1 NHDHVHZZCFYRSB-UHFFFAOYSA-N 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- ZOGDSYNXUXQGHF-XIEYBQDHSA-N Butroxydim Chemical compound CCCC(=O)C1=C(C)C=C(C)C(C2CC(=O)C(\C(CC)=N\OCC)=C(O)C2)=C1C ZOGDSYNXUXQGHF-XIEYBQDHSA-N 0.000 claims 1
- 206010041235 Snoring Diseases 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000011282 treatment Methods 0.000 description 22
- 235000013339 cereals Nutrition 0.000 description 17
- ABOOPXYCKNFDNJ-UHFFFAOYSA-N 2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=CN=C(C=C(Cl)C=C2)C2=N1 ABOOPXYCKNFDNJ-UHFFFAOYSA-N 0.000 description 11
- 230000000007 visual effect Effects 0.000 description 10
- 230000009467 reduction Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 241001299819 Hordeum vulgare subsp. spontaneum Species 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- NUPJIGQFXCQJBK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid Chemical compound OC(=O)C1=CC(COC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 NUPJIGQFXCQJBK-UHFFFAOYSA-N 0.000 description 4
- ZOGDSYNXUXQGHF-UHFFFAOYSA-N 5-(3-butanoyl-2,4,6-trimethylphenyl)-2-[(Z)-N-ethoxy-C-ethylcarbonimidoyl]-3-hydroxycyclohex-2-en-1-one Chemical compound C(C)ON=C(CC)/C=1C(CC(CC1O)C1=C(C(=C(C=C1C)C)C(CCC)=O)C)=O ZOGDSYNXUXQGHF-UHFFFAOYSA-N 0.000 description 4
- 239000005566 Imazamox Substances 0.000 description 4
- CSPPKDPQLUUTND-NBVRZTHBSA-N Sethoxydim Chemical compound CCO\N=C(/CCC)C1=C(O)CC(CC(C)SCC)CC1=O CSPPKDPQLUUTND-NBVRZTHBSA-N 0.000 description 4
- -1 acetyl- Chemical group 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- VAIZTNZGPYBOGF-UHFFFAOYSA-N butyl 2-(4-{[5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoate Chemical compound C1=CC(OC(C)C(=O)OCCCC)=CC=C1OC1=CC=C(C(F)(F)F)C=N1 VAIZTNZGPYBOGF-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- IOYNQIMAUDJVEI-ZFNPBRLTSA-N 2-[N-[(E)-3-chloroprop-2-enoxy]-C-ethylcarbonimidoyl]-3-hydroxy-5-(oxan-4-yl)cyclohex-2-en-1-one Chemical compound C1C(=O)C(C(=NOC\C=C\Cl)CC)=C(O)CC1C1CCOCC1 IOYNQIMAUDJVEI-ZFNPBRLTSA-N 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- 208000019300 CLIPPERS Diseases 0.000 description 3
- 241001148683 Zostera marina Species 0.000 description 3
- 208000021930 chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids Diseases 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 238000012252 genetic analysis Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- CLQMBPJKHLGMQK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)nicotinic acid Chemical compound N1C(=O)C(C(C)C)(C)N=C1C1=NC=CC=C1C(O)=O CLQMBPJKHLGMQK-UHFFFAOYSA-N 0.000 description 2
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 2
- 108010000700 Acetolactate synthase Proteins 0.000 description 2
- 241001621841 Alopecurus myosuroides Species 0.000 description 2
- 241000209202 Bromus secalinus Species 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000005497 Clethodim Substances 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 101100449439 Drosophila melanogaster grass gene Proteins 0.000 description 2
- 241000027294 Fusi Species 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 229940100389 Sulfonylurea Drugs 0.000 description 2
- 239000005624 Tralkoxydim Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- SILSDTWXNBZOGF-JWGBMQLESA-N clethodim Chemical compound CCSC(C)CC1CC(O)=C(C(CC)=NOC\C=C\Cl)C(=O)C1 SILSDTWXNBZOGF-JWGBMQLESA-N 0.000 description 2
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical class O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000009331 sowing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- DQFPEYARZIQXRM-LTGZKZEYSA-N tralkoxydim Chemical compound C1C(=O)C(C(/CC)=N/OCC)=C(O)CC1C1=C(C)C=C(C)C=C1C DQFPEYARZIQXRM-LTGZKZEYSA-N 0.000 description 2
- MBFHUWCOCCICOK-UHFFFAOYSA-N 4-iodo-2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoic acid Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=C(I)C=2)C(O)=O)=N1 MBFHUWCOCCICOK-UHFFFAOYSA-N 0.000 description 1
- 241001193547 Bromus diandrus var. rigidus Species 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 241001426542 Glaucus Species 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 241000391399 Hordeum murinum subsp. glaucum Species 0.000 description 1
- 239000005568 Iodosulfuron Substances 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- XWOBNBRUDDUEEY-UWVGGRQHSA-N Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 XWOBNBRUDDUEEY-UWVGGRQHSA-N 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 239000005597 Pinoxaden Substances 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- OSUHJPCHFDQAIT-UHFFFAOYSA-N ethyl 2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoate Chemical compound C1=CC(OC(C)C(=O)OCC)=CC=C1OC1=CN=C(C=C(Cl)C=C2)C2=N1 OSUHJPCHFDQAIT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 150000002333 glycines Chemical class 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- MGOHCFMYLBAPRN-UHFFFAOYSA-N pinoxaden Chemical group CCC1=CC(C)=CC(CC)=C1C(C1=O)=C(OC(=O)C(C)(C)C)N2N1CCOCC2 MGOHCFMYLBAPRN-UHFFFAOYSA-N 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 206010037833 rales Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y604/00—Ligases forming carbon-carbon bonds (6.4)
- C12Y604/01—Ligases forming carbon-carbon bonds (6.4.1)
- C12Y604/01002—Acetyl-CoA carboxylase (6.4.1.2)
Definitions
- the present invention provides for compositions and methods for producing commercial barley plants thai are resistant to herbicides, in particular, the present invention provides for barley plants, plant tissue and plant seed that contain acetyl-CoA carboxylase (ACC) genes and proteins that confer resistance to inhibition by herbicides that normally inhibit the activity of the ACC protein.
- ACC acetyl-CoA carboxylase
- Barley (Hordeum vuigere) is a major cereal grain and is a member of the grass family. Barley is used in malt production, brewing and for the production oi cereal foods for human and animal consumption and is generally ranked in the top five cereal crops globally in terms of quantity produced and area under cultivation.
- herbicides with greater potency, broad weed spectrum effectiveness and rapid soil degradation.
- broad spectrum herbicides are those compounds that inhibit the activity of the acetyl-CoA carboxylase (ACC) enzyme in a plant. These are known as 'Group A ! or 'G o p T herbicides and include compounds within the following classes; aryloxyphenoxyproplonates (FOP); cyciohexanediortes (DIM); and phenyipyrazoiins.
- FGP and DIM herbicides are generally the first line of choice for removing grass weeds in broadleaf (dicot) crops, most of them cannot be used selectively in cereals including barley. Therefore, grass weeds are sprayed with non-selective herbicides such as g!yphosate before seeding barley but grass weeds that emerge later in the crop cannot be controlled selectively at present.
- the present invention overcomes some or all of the shortcomings of the prior art.
- the present invention provides for barley plants and barley hybrids and methods for producing barley hybrids that are resistant to herbicides, in particular the present invention provides for bariey plants and hybrids, plant tissue and plant seed that contain acety!-CoA carboxylase (ACC) genes and proteins that confer resistance to Inhibition by herbicides that normally inhibit the activity of the AGC protein.
- ACC acety!-CoA carboxylase
- Cultivated commercial bariey is susceptible to many ACC inhibiting herbicides that target monocot or grassy weed species. However, as described herein a barley genotype was developed that exhibits tolerance to ACC inhibiting herbicides. Genetic analysis has Identified genetic differences within germplasm that results in a ACC herbicide resistant phenoiype.
- the present invention provides for one or more barley plants whose germplasm comprises a mutation that renders the plani tolerant to ACC herbicides.
- the invention relates to the offspring ⁇ e.g., Fl, F2, F3, etc.) of a cross of said plant wherein the germplasm of said offspring has the same mutation as the parent plant. Therefore, embodiments of the present invention provide for barley hybrids whose germplasm contains a mutation, such that the phenoiype of the plants is ACC herbicide resistant.
- said offspring ⁇ e.g., Fl. F2, F3, etc.) are the result of a cross between elite bariey lines, at least one of which contains a germplasm comprising a mutation that renders the plant tolerant to ACC herbicides.
- the Invention is a barley plant, wherein said barley plant confers resistance to inhibition by one or more acety!-CcA carboxylase inhibiting herbicides at levels that would normally inhibit the growth of a barley plant.
- the barley plant is a commercial cultivar.
- the acetyl-CoA carboxylase inhibiting herbicide is selected from the group consisting of; an aryloxyphenoxypropionate herbicide; and a cyciohexanedione herbicide.
- the aryloxyphenoxypropionate herbicide is selected from the group consisting of; clodinafop-propargyi; diciofop-methyl; quiza!ofop-p-ethy!; fenoxyprop-p- ethyl; haloxyfop; fluazifop; and propaquizafop.
- the cyciohexanedione herbicide is selected from the group consisting of; c!eihod!m; tralkoxydim; sethoxydim; tepra!oxydim; and butroxydim.
- the barley plant comprises an acetyl-CoA carboxylase gene, wherein said gene corresponds to the amino acid substitution selected from the group consisting of: iie ( j 33 Leu; iie Vai; and !ie i 93S Leu and He zosaVai.
- the !soieucine at position 1933 has beers substituted with a Leucine at the same position.
- the barley plant comprises an acetyi-GoA carboxylase gene further comprising a polynucleotide that corresponds to a carboxyl transferase domain; and wherein the carboxyl transferase domain comprises anyone of the amino acids or polypeptides selected from the group consisting of;
- the barley plant comprises an acety!-CcA carboxylase gene further comprising 3 polynucleotide that corresponds to a carboxyl transferase domain; and wherein the polynucleotide that corresponds to a carboxyl transferase domain comprises anyone of the nucleic acids and polynucleotides selected from the group consisting of;
- the polynucleotide is introduced into the germpiasm of the barley plant by hybridisation.
- the polynLideotsde Is introduced into the germpiasm of the bartey plant by introgression. Methods for these techniques are widely available in the art. See also Principles of Plant Breeding, 2nd ed By R. W. Allard. John Wiley & Sons, Mew York. 1999.
- the polynucleotide is introduced into the germpiasm of the barley plant by recombinant DMA engineering techniques. Methods for these techniques are widely available in the art. See also in Vitro Plant Breeding S. Thirugrtanakumar, K. Manivannan, M, Prakash, R. Narasimman and Y. Anitha. Vasiine, Agrobios, 2009 in another preferred embodiment, the barley plant is not genetically modified.
- the invention in a second aspect, is a seed of a barley plant as described herein.
- the Invention is a germpiasm of a barley plant as described herein.
- the invention is a method of producing a barley hybrid with increased resistance to inhibition by one or more aceiyi-CoA carboxylase inhibiting herbicides at levels that would normally inhibit the growth of a arley plant, said method comprising; selecting a first barley plant;
- hybrid offspring selecting a hybrid from said hybrid offspring with increased resistance to inhibition by one or more acetyl-CoA carboxylase inhibiting herbicides thereby to produce the hybrid:
- the second barley plant is a barley plant as described herein.
- the invention is a method of producing a barley hybrid with increased resistance to inhibition by one or more acetyl-GoA carboxylase inhibiting herbicides at levels that would normally inhibit the growth of a barley plant, said method comprising; selecting a first barley piant;
- CoA carboxylase Inhibiting herbicides thereby to produce the barley hybrid and wherein the foreign polynucleotide is selected from polynucleotides that correspond to a carboxy! transferase domain of a second barley plant:
- the second barley plant is a barley plant as described herein; and wherein the foreign polynucleotide is selected from the group consisting of;
- the first barley plant is selected from the group consisting of AC Metcalfe, Bass, Baudin, Bu!oke, CDC Cope!and, CDC Reserve, Commander, Fairview, Fathom, Flagship, Fleet, Gairdner, Henley, Hindmarsh, Keel, Navigator, Oxford, Propino, Scope, Craig, Skipper, SouthemStar, Quench, Vlamingh, V Admiral, Riverside, WI4593 and Wimmera.
- the second barley plant is selected from the group consisting of; BOZO; and HT017.
- the Invention is a barley hybrid produced by the methods herein described.
- the hybrid comprises an acetyi-CoA carboxylase gene, wherein said gene corresponds to the amino acid substitution selected from the group consisting of: ile ⁇ ssLeu; !ieaei & Va!; and ile !83S Leu and liejooaVai.
- the hybrid comprises a acetyl-GoA carboxylase gene, further comprising a polynucleotide that corresponds to a carboxyi transferase domain; and
- carboxyl transferase domain comprises anyone of the amino acids or polypeptides selected from the group consisting of;
- the hybrid comprises an acetyi-CoA carboxylase gene further comprising a polynucleotide that corresponds to a carboxyi transferase domain;
- polynucleotide that corresponds to a carboxyl transferase domain comprises nucleic acids selected from the group consisting of;
- the barley hybrid is a commercial cu!iivar. That is, it is adapted for us in the commercial production of barley.
- the Invention is a seed of a bariey hybrid as herein described.
- the invention is germp!asm of s barley hybrid as herein described.
- the invention is a method of producing bariey, the method comprising;
- barley plant has increased resistance to inhibition by one or more acety!-CoA carboxylase inhibiting herbicides at levels that would normally inhibit the growth of a bariey plant.
- the invention is a method of producing barley, the method comprising;
- hybrid has increased resistance to Inhibition by one or more acetyi-CoA carboxylase inhibiting herbicides at Ievels that would normally inhibit the growth of a barley hybrid.
- the methods of the ninth and tenth aspects of the invention improve weed control compared to weed control normally observed for producing bariey.
- the methods of the ninth and tenth aspeds of the invention decrease contamination with weed species compared to contamination normally observed for producing barley.
- the Invention provides a method of controlling weeds in the vicinity of a bariey plant as described herein, comprising:
- the invention provides a method of controlling weeds in the vicinity of a bariey hybrid as described herein, comprising:
- the acetyl- CoA carboxylase inhibiting herbicide is selected from the group consisting of; an aryloxyphenoxypropionate herbicide and a cyciohexanedione herbicide.
- the aryioxyphertoxypropionate herbicide is selected from the group consisting of; e!odinafop- propargy!; dic!ofop-methyl; fenoxyprop-p-ethy!; quizalofop-p-sthyl; haloxyfop; fluazifop; and propaquizafop.
- the cyciohexanedione herbicide is selected from the group consisting of; ctethodim; sethoxydim; tepraloxydim; tepraloxydim; tralkoxydim; and butroxydim.
- the phenylpyrazo!in herbicide is pinoxaden
- the one or more acetyi-CoA carboxylase inhibiting herbicides is applied at a rate selected from the group consisting of: between 5m!/ha and l OOOml/ha; between l Omi/ha and 50Qml/ha; between 50m! 'ha and 400ml/ha; between 10Gmi/ha and 400m!/ha; between 200rni/ha and 400mi/ha.
- the invention is a barley plant or barley hybrid as described herein, wherein said barley plant or said bariey hybrid confers resistance to inhibition by one or more acetyl-GoA carboxylase inhibiting herbicides at levels that would normally inhibit the growth of a bariey plant, wherein said levels are selected from the group consisting of the following herbicide application rates: between 5mi/h3 and 1000mi/ha; between 10ml/ha
- the carboxyi transferase domain of the barley plant or hybrid as described herein does nol have 100% sequence homology to the following amino acid sequence : ,s 3 cCys Gki A.sn Leu His G!y Ser es .
- the barley plant or barley hybrid as described herein is sensitive to acetolactate synthase enzyme inhibitor herbicides.
- the barley plant is sensitive to acetolactate synthase enzyme inhibitors herbicides selected from the group consisting of: Imidazolines and sulfonylureas.
- FIG. 2 This figure presents theticians! data of the effects of four ACCase- inhibiting FOP herbicides on the grain yield of BOZO and cuitivar Fleet as discussed in Example 2.
- BOZO is shown to the left of each photo and cuitivar Fleet is shown in the right of each photo.
- Herbicide was applied perpendicular to sowing direction (left to right).
- B - 19 th of August 2011 23 DAA
- O - 11 !!l of November 2011 108 DAA
- Figure 3 This figure presents the graphical representation of the effects of three ACGase- inhibiting DIM herbicides on the grain yield of barley mutant BOZO and cuitivar Fleet as discussed in Example 2. Treatments with the same letter above the bar are not statistically significant based on the least significant difference at P ⁇ Q.05.
- Figure 4 This figure presents HT017 three weeks after treatment with Fusi!ade in comparison to sensitive genotypes.
- the invention described herein may include one or more ranges of values (e.g. size, concentration etc).
- a range of values will be understood to include ali values within the range, including the values defining the range, and values adjacent to the range that lead to the same or substantially the same outcome as the values immediately adjacent to that value which defines the boundary to the range.
- the term "barley plant” refers to the species Hordeum vulgars in its total genetic variation and its many varieties aiid to related species within the Hordeum genus. For example, the term includes the following varieties: AC Metcalfe, Bass, Baudlrt, Buioke, CDC Copeland. CDC Reserve, Commander, Fairview. Fathom, Flagship, Fleet, Gairdner, Henley, 5 Hindmars , Keel, Navigator, Oxford, Propirto, Scope, Sebastian, Skipper, SouihernStar, Quench, Vlamingh, VT Admiral, Riverside, WI4593 and Wimmera.
- the term includes tolerance to herbicides and reduced sensitivity.
- the herbicide does not kill the herbicide resistant barley.
- the herbicide only kiiis a small percentage of herbicide resistant barley plants in a crop selected from a group of percentage ranges consisting of: less than 1 % of the barley crop; less than 2%; less than 5%; less than 10%; less than 20%; less than
- the herbicide does not reduce the growth rate of the herbicide resistant barley, in one embodiment, the herbicide reduces the growth rate of the herbicide resistant barley by a percentage range selected from the group consisting of. less than a 1% reduction in growth rate; less than 2%. !ess than 5%; less than 10%; less than 20%; less than 30%; less than 40%; and less than 50%.
- the herbicide does not reduce the yield rate of the herbicide resistant barley, in one embodiment, the herbicide only reduces the yield rate of the herbicide resistant barley crop by a percentage range selected from the group consisting of: less than 1 % of the herbicide resistant barley crop: less than 2%; less than 5%; less than 0%; less than 20%; less than 30%: less than 40%; and less than 50%.
- acetyS-GoA carboxylase inhibiting herbicides are those herbicides that inhibit acetyi-GoA carboxylase (ACC) enzyme in a plant. These are known as 'Group A' or 'Group 1 * herbicides and include compounds within the following classes; ary!oxyphenoxypropionates (FOP); cyclohexanediones (DIM); and phenylpyrazoiins.
- carboxyl transferase domain refers to the domain on a polypeptide or protein 30 which carries out the reaction of transcarboxyiation from biotin to an acceptor molecule.
- the invention further provides a seed of the non-naiurally occurring barley plant which has increased resistance to herbicides.
- the increased herbicide resistance developed by the present inventors results from changes to the physiolog and/or biochemistry of the p!ant and thus interferes with the norma! action of the herbicide. This may involve altered absorption and/or translocation of ihe herbicide or altered ability of metabolic enzymes to bind the herbicide.
- the invention extends to the altered elements in the plant that confer herbicide resistance including altered gene(s) and/or proteln(s) including enzymes, which, genes and proteins are altered compared to their counterparts in herbicide sensitive barley plants.
- said altered genes and/or proteins are in isolated or substantially purified form.
- the inventors developed a barley variety, named 'BOZO', whose phenotype is a reduced sensitivity to ACC herbicides. Genetic analysis has identified genetic differences within the germp!asm of BOZO (compared barley plants that are ordinarily sensitive to ACC herbicides) that results in an ACC herbicide resistant phenotype. The genotype of BOZO was compared to three different barley varieties.
- Genomic DMA was extracted from a single cotyledon of 6-day old seedlings and used as the template for polymerase chain reactions (PCR).
- Three sets of PGR primers were designed based on the published sequence of aceiyi-CoA carboxylase rnRNA from black grass ASopecurus myosuroides (GenBank: AJ310787) to amplify approximately 7.5 kb of carboxyi-transferase (CT) domain encompassing the regions known to be involved in sensitivity to ACCase herbicides (De ' lye C and Michel S 2005 "Universal" primers for
- SNP single nucleotide polymorphism
- the aim of the trial was to investigate tolerance of BOZO to four AGCase-inhibiting FOP herbicides, three AGCase-inhibiting DIM herbicides and one ALS-inhibiting imidazolinone herbicide under field conditions.
- herbicide treatments were applied on the 26* of July at 49 days after sowing when barley was at mid ti!ering (approximately Z22-Z25). Herbicide treatments were applied with a spray boom delivering 100L'ha spray volume with surfactants used according to herbicide labels. Various herbicide treatments used in this study are shown in Table 1. Measurements recorded induded crop establishment, normalised difference vegetation index (NDV!), crop canopy height at maturity, grain yield, grain size and visual observations of crop damage from the treatments.
- NDV! normalised difference vegetation index
- BOZO mutant barley showed reduction in yield at 1 ⁇ 2x and 1x rate but there was 28% reduction at the 2x rale of ha!oxyfop.
- the differences in herbicide tolerance between Fleet and BOZO were also apparent for fiuazifop and propaquizafop ( Figure 1).
- BOZO Pot Experiment 1 (201 Q): Quizalofop at 0, 0.25, 0.5, 1.0, and 2.0 x recommended label rate (30g/ha) across SOZO mutant barley, Flagship barley cultivar and barley grass ⁇ Hordeum giaucum). Visual observations were taken.
- BOZO Po .. tperjment 2 (201 . 0): The objective was to confirm tolerance to quizalofop in BOZO mutant barley and investigate tolerance to other herbicides. Herbicides included
- Herbicides included quizalofop, haloxyfop (ACCase-inhibiting FOP), c!ethodim, tepraloxydim, butrox dim (ACCase- inhiblting DIM), iodosulfuron, mesosu!furon ⁇ ALS-inhibiting sulfonylureas), imazamox /imazapyr (ALS-inhibiting imidazoiinones), and glyphosate ⁇ membrane disrupters glycines). Rates applied were 0, 0.25, 0.5, 1.0 £ 2.0 x recommended label rates and both BOZO mutant barley and FLEET barley CLiltivar were screened. Visual observations and plant biomass measurements were made.
- BOZO Pot Expsrimerst 4 (2011 ): The objective was to Investigate herbicide tolerance of BOZO mutant barley to quizalofop, haloxyfop, fluazifop, propaquizafop (ACCass- inhibiting FOP), and sethoxydim (ACCase-inhibiting DIM) herbicides. Rates applied were 0, 0.25, 0.5, 10 & 2.0 x field rates and both BOZO mutant barley and Fleet barley cultlvar were screened. Visual observations and plant biomass measurements were made.
- BOZQ field experiment AC-D8 (2811 ): The objective was to investigate herbicide tolerances of BOZO mutant barley and barley grass ⁇ Hordeum glaucum) control. This field site at Roseworthy SA had low fertility and treatments included quizalofop, haloxyfop, fluazifop, (ACCase-inhibiting FOP), clethodim, tepraioxydim, buiroxydim (ACCase- inhiblting DIM) herbicides at 0, 0.5, 1.0, and 2.0 x recommended label rates. Visual assessment of crop damage, barley grass control, NDV!, crap canopy height at maturity, grain yield, and grain size was measured.
- BOZO field K sgrimaot AC-S2 (2811 ): reported above. The objective was to investigate herbicide tolerance of BOZO mutant barley in a low rainfall environment and brome grass (Bromus rigidus) control. This field site had low fertility and herbicide treatments included
- BOZQ._fiejd exp rim nt BUCKLEBOO ,12011 The objective was to investigate herbicide tolerance of BOZO mutant barley in a low rainfaii environment as well as barley grass (Hordeu glaucu n) control. Herbicide treatments were applied at 1 & 2 x recommended label rates and included quizalofop (ACCase-inhibiting FOP), c!eihoalm (ACCase-inhibiting DiM), and imazamox /imazapyr (ALS-inhibiting imidazo!inones). Crop damage was assessed based on visual symptoms and panicle density was used to determine barley grass control.
- the inventors developed a barley variety, named 'HT017', whose phenotype is a reduced sensitivity to ACC herbicides.
- Seed of the variety Flagship was mutagenised with 30mM ethyl methanesuifanaie (EMS) and the 0 and generations were grown and multiplied as unse!ected bulk populations.
- the M 2 generation was sown at the Chariick Experimental Farm (Stratschyn, South Australia) on 20 t!> Ma 2009 at a density of 140 plants rrf ⁇
- the area sown was 2,5 hectares equating to approximately 40 million individual plants.
- the herbicide Fusilade (fluazifop) was applied a; a rate of SOOg / ha at the early tillering stage of plant development.
- At stem elongation surviving barley plants were transplanted to pots, grown through to maturity and grain was harvested from individual plants. Seed from the surviving plants was sown in pots in 6 ay 2010 and treated with SOQg / ha Fusilade at the 3 leaf stage of development.
- Assessment of survival was conducted three weeks after spraying and -99% of plants were found to be sensitive to the herbicide but the line HT017 was confirmed as tolerant to fluazifop.
- Figure 4 presents HT017 three weeks after treatment with fluazifop in comparison to sensitive genotypes.
- SNP single rtuc!eotide polymorphism
- HT017 to Fusilade was verified in a pot experiment.
- HT017 and the intolerant control barley HT066 were sown on 23 rci June 2010 with three replicates per treatment.
- Two treatments comprising SOOg/ha Fusilidate and 750g/ha Fusilade were applied on 23 :d July 2010 and one treatment remained unsprayed.
- the trial was assessed on 18 ai August 2010 and all HT066 plants were destroyed at both application rates. Ail HT017 plants survived at both application rates.
- the mutant barley HT017 was tested for tolerance against a range of Group A herbicides. Three replicate pots were sown for each herbicide treatment of the tolerant line HT017 and also the control barley HT086. Seed was sown 17 ! August 2010 and plants were
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014210372A AU2014210372B2 (en) | 2013-01-25 | 2014-01-24 | Herbicide tolerant barley |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013900274 | 2013-01-25 | ||
AU2013900274A AU2013900274A0 (en) | 2013-01-25 | Herbicide Tolerant Barley |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014113846A1 true WO2014113846A1 (en) | 2014-07-31 |
Family
ID=51226761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2014/000060 WO2014113846A1 (en) | 2013-01-25 | 2014-01-24 | Herbicide tolerant barley |
Country Status (3)
Country | Link |
---|---|
AR (1) | AR094594A1 (en) |
AU (1) | AU2014210372B2 (en) |
WO (1) | WO2014113846A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012106321A1 (en) * | 2011-02-01 | 2012-08-09 | Colorado Wheat Research Foundation, Inc. | Acetyl co-enzyme a carboxylase herbicide resistant plants |
US20120284853A1 (en) * | 2009-09-01 | 2012-11-08 | Basf Agrochemical Products, B.V. | Herbicide-tolerant plants |
-
2014
- 2014-01-24 WO PCT/AU2014/000060 patent/WO2014113846A1/en active Application Filing
- 2014-01-24 AU AU2014210372A patent/AU2014210372B2/en active Active
- 2014-01-27 AR ARP140100243A patent/AR094594A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120284853A1 (en) * | 2009-09-01 | 2012-11-08 | Basf Agrochemical Products, B.V. | Herbicide-tolerant plants |
WO2012106321A1 (en) * | 2011-02-01 | 2012-08-09 | Colorado Wheat Research Foundation, Inc. | Acetyl co-enzyme a carboxylase herbicide resistant plants |
Non-Patent Citations (1)
Title |
---|
MATTHEWS, N. ET AL.: "Mechanisms of resistance to acetyl-coenzyme A carboxylase- inhibiting herbicides in a Hordeum leporinum population'.", PEST MANAGEMENT SCIENCE, vol. 56, 2000, pages 441 - 447 * |
Also Published As
Publication number | Publication date |
---|---|
AU2014210372B2 (en) | 2018-03-01 |
AU2014210372A1 (en) | 2015-09-03 |
AR094594A1 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210403934A1 (en) | Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof | |
US12134774B2 (en) | Corn plant event MON87460 and compositions and methods for detection thereof | |
EP2503871B1 (en) | Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof | |
KR101899619B1 (en) | Methods of weed control involving aad-1 plants, and re-plant and/or pre-emergence herbicide applications | |
US20210352863A1 (en) | Method for controlling weed beets and other weeds | |
AU2017217445A1 (en) | Herbicide safener combinations for acetyl co-enzyme a carboxylase herbicide resistant plants | |
KR102576009B1 (en) | Methods and compositions for the combination of mutations associated with herbicide resistance/tolerance in rice | |
WO2023126317A1 (en) | Hppd inhibitor herbicide tolerant plant | |
WO2014113846A1 (en) | Herbicide tolerant barley | |
US20220039390A1 (en) | Use of glyphosate herbicide for controlling unwanted vegetation in beta vulgaris growing areas | |
Lewis | Novel Herbicide Resistance Trait Investigation and QTL Mapping in Wheat | |
EA049693B1 (en) | APPLICATION OF GLYPHOSATE HERBICIDE TO CONTROL UNWANTED VEGETATION IN BETA VULGARIS CULTIVATION SITES | |
EA049944B1 (en) | METHOD OF CONTROLLING BEET WEEDS AND OTHER WEEDS | |
Initiative | Target-site EPSPS Pro-106 mutations: sufficient to endow glyphosate resistance in polyploid Echinochloa colona? | |
White | Characterization of acetolactate synthase resistance in common sunflower (Helianthus annuus) | |
HK1193320B (en) | Methods of weed control involving aad-1 plants, and re-plant and/or pre-emergence herbicide applications | |
HK1193320A (en) | Methods of weed control involving aad-1 plants, and re-plant and/or pre-emergence herbicide applications | |
NZ615200B2 (en) | Methods of weed control involving aad-1 plants, and re-plant and/or pre-emergence herbicide applications | |
HK1173041B (en) | Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14742747 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014210372 Country of ref document: AU Date of ref document: 20140124 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14742747 Country of ref document: EP Kind code of ref document: A1 |