[go: up one dir, main page]

WO2014107899A1 - 译码方法和装置 - Google Patents

译码方法和装置 Download PDF

Info

Publication number
WO2014107899A1
WO2014107899A1 PCT/CN2013/070414 CN2013070414W WO2014107899A1 WO 2014107899 A1 WO2014107899 A1 WO 2014107899A1 CN 2013070414 W CN2013070414 W CN 2013070414W WO 2014107899 A1 WO2014107899 A1 WO 2014107899A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
decoding
fec
differential
distribution
Prior art date
Application number
PCT/CN2013/070414
Other languages
English (en)
French (fr)
Inventor
吴湛击
肖治宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000060.7A priority Critical patent/CN103384975B/zh
Priority to PCT/CN2013/070414 priority patent/WO2014107899A1/zh
Priority to EP13871016.5A priority patent/EP2940913B1/en
Publication of WO2014107899A1 publication Critical patent/WO2014107899A1/zh
Priority to US14/799,381 priority patent/US9602238B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/106M-ary FSK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a decoding method and apparatus. Background technique
  • optical communication has been rapidly developed due to its available frequency bandwidth, as well as its advantages of light weight and electromagnetic interference.
  • the combination of multi-ary modulation technology and forward error correction coding is often used at the transmitting end to improve the transmission efficiency of the system and reduce the error rate of the system.
  • the signal is transmitted.
  • the carrier recovered by the receiving end may be in phase with the carrier of the received signal, or may be inverted at the same frequency.
  • the polarity of the demodulated data stream is opposite to the polarity of the transmitted data stream. , which can have a serious impact on system performance.
  • the transmitting end uses a differential encoding method to prevent the polarity of the data stream obtained by demodulation at the receiving end from being opposite to the polarity of the transmitted data stream, that is, the transmitting end transmits the information by the phase difference of the adjacent symbols, and the receiving end passes the information.
  • a differential decoding method is used for decoding.
  • Embodiments of the present invention provide a decoding method and apparatus to reduce a bit error rate generated by a decoding process.
  • a decoding method includes:
  • the first decoding signal is a signal that is fed back after the demodulated signal is subjected to the ''sub-M-ary differential decoding process, and is an integer greater than or equal to 0;
  • the performing, according to the first decoding a signal, performing M-ary differential decoding processing on the demodulated signal including:
  • a second possible implementation manner after performing the M-ary differential decoding processing on the demodulated signal according to the first decoding signal, also includes:
  • the performing, by the M-ary differential decoding processing, the second decoding signal is subjected to forward error correction FEC decoding processing, including :
  • the degree distribution of the low-density parity check LDPC code used by the FEC encoding corresponding to the second decoding signal is optimized, Obtaining an optimality distribution of the LDPC code, including:
  • the first degree distribution corresponding to the first signal to noise ratio that satisfies the set value is used as the optimal degree distribution of the LDPC code.
  • a fifth possible implementation manner before performing the forward error correction FEC decoding process on the second decoded signal obtained by using the M-ary differential decoding process, Also includes:
  • Performing forward error correction FEC decoding processing on the second decoded signal obtained by the M-ary differential decoding process includes:
  • a decoding apparatus includes:
  • An obtaining module configured to acquire a demodulated signal
  • a decoding module configured to acquire a first decoding signal, where the first decoding signal is a signal that is fed back after the demodulated signal is subjected to the first 'Mth differential decoding process, and is greater than or equal to 0.
  • the decoding module is further configured to perform an M-ary differential decoding process on the demodulated signal according to the first decoding signal to obtain a second decoding signal.
  • the decoding module is specifically configured to perform differential quadrature phase shift keying DQPSK differential coding or hexadecimal quadrature amplitude modulation according to the demodulated signal.
  • a signal obtained by performing M-ary differential decoding processing wherein the first decoding signal, the Afe) is the second decoding signal.
  • the apparatus further includes:
  • the FEC decoding module is configured to perform forward error correction FEC decoding processing on the second decoded signal obtained by the M-ary differential decoding process.
  • the FEC decoding module is specifically configured to use a low density parity check LDPC for FEC encoding corresponding to the second decoding signal.
  • Optimizing a degree distribution of the code obtaining an optimality distribution of the LDPC code; and constructing an LDPC code check matrix satisfying the optimality distribution according to the optimality distribution; and according to the LDPC code check matrix
  • the second decoded signal obtained after the M-ary differential decoding process is subjected to FEC decoding processing.
  • the FEC decoding module is specifically configured to determine an initial degree distribution at a set code rate on which the FEC decoding process is performed; The initial signal to noise ratio corresponding to the initial degree distribution; determining a plurality of first degree distributions corresponding to the set code rate, if the first degree corresponding to the set code rate in the initial signal to noise ratio If the two curves in the distributed outer information transfer graph do not intersect, the initial signal to noise ratio is updated to the first signal to noise ratio corresponding to the first degree distribution until the determined number of first degree distributions satisfies Value;
  • the first degree distribution corresponding to the first signal to noise ratio satisfying the set value is used as the optimum distribution of the LDPC code.
  • the device further includes:
  • a reverse interleaving module configured to perform a reverse interleaving process on the second decoded signal obtained by the M-ary differential decoding process to obtain a second decoded signal after the reverse interleaving
  • the FEC decoding module is specifically configured to perform FEC decoding processing on the second interleaved decoded signal
  • a forward interleaving module configured to perform forward interleaving processing on the first decoded signal.
  • a decoding apparatus includes:
  • An acquirer configured to acquire a demodulated signal
  • a decoder configured to acquire a first decoded signal, where the first decoded signal is a signal that is fed back after the demodulated signal is processed by the first 'Mth differential decoding process, and is greater than or equal to 0.
  • the decoder is further configured to perform M input on the demodulated signal according to the first decoding signal
  • the differential decoding process is performed to obtain a second decoded signal.
  • the decoder is specifically configured to perform DQPSK differential coding or hexadecimal quadrature amplitude modulation according to differential quadrature phase shift keying corresponding to the demodulated signal.
  • Root, ( ) £( /3 ⁇ 4)- ( ) to obtain the second decoded signal, wherein, the bit sequence is represented, and ⁇ represents the sequence of symbol information corresponding to the demodulated signal before demodulation, and the BCJR algorithm is used.
  • the apparatus further includes:
  • the FEC decoder is configured to perform forward error correction FEC decoding processing on the second decoded signal obtained by the M-ary differential decoding process.
  • the FEC decoder is specifically configured to use a low density parity check LDPC for FEC coding corresponding to the second decoding signal. Optimizing a degree distribution of the code, obtaining an optimality distribution of the LDPC code; and constructing an LDPC code check matrix satisfying the optimality distribution according to the optimality distribution; and according to the LDPC code check matrix
  • the second decoded signal obtained after the M-ary differential decoding process is subjected to FEC decoding processing.
  • the FEC decoder is specifically configured to determine an initial degree distribution at a set code rate on which the FEC decoding process is performed; The initial signal to noise ratio corresponding to the initial degree distribution; determining a plurality of first degree distributions corresponding to the set code rate, if the first degree corresponding to the set code rate in the initial signal to noise ratio If the two curves in the distributed outer information transfer graph do not intersect, the initial signal to noise ratio is updated to the first signal to noise ratio corresponding to the first degree distribution until the determined number of first degree distributions satisfies Value;
  • the first degree distribution corresponding to the first signal to noise ratio satisfying the set value is used as the optimum distribution of the LDPC code.
  • the device further includes: a reverse interleaver, configured to perform a reverse interleaving process on the second decoded signal obtained by the M-ary differential decoding process to obtain a second decoded signal after the reverse interleaving;
  • the FEC decoder is specifically configured to perform FEC decoding processing on the second interleaved decoded signal
  • a forward interleaver configured to perform forward interleaving processing on the first decoded signal.
  • the decoding method and device provided by the embodiment of the present invention acquires a demodulated signal and acquires a first decoding signal, and the first decoding signal is fed back after the demodulated signal is subjected to the second M-ary differential decoding process.
  • the signal is an integer greater than or equal to 0.
  • the demodulated signal is subjected to M-ary differential decoding processing to obtain a second decoded signal. Since the decoder adds the decoding processing result as the feedback signal, the implementation reduces the error diffusion caused by the decoding process, reduces the bit error rate of the system, and improves the accuracy of signal transmission.
  • FIG. 1 is a schematic diagram of the basic structure of an optical fiber communication system
  • FIG. 2 is a schematic structural diagram of a system of an optical fiber communication system according to the present invention.
  • FIG. 3 is a schematic structural diagram of another system of the optical fiber communication system of the present invention.
  • FIG. 4 is a schematic structural diagram of still another system of the optical fiber communication system of the present invention.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of a decoding method according to the present invention.
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a decoding method according to the present invention.
  • FIG. 7a is a state transition diagram of DQPSK differential coding of a decoding method according to the present invention.
  • 7b is a block diagram of a DQPSK differential coding method for decoding method of the present invention.
  • FIG. 9 is a schematic diagram of coding of a decoding method 16QAM according to the present invention.
  • FIG. 10 is a modulation constellation diagram of a decoding method 16QAM according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a decoding apparatus according to the present invention
  • 12 is a schematic structural diagram of Embodiment 2 of a decoding apparatus according to the present invention
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a decoding apparatus according to the present invention.
  • Embodiment 4 of a decoding apparatus is a schematic structural diagram of Embodiment 4 of a decoding apparatus according to the present invention.
  • Embodiment 15 is a schematic structural diagram of Embodiment 5 of a decoding apparatus according to the present invention.
  • FIG 16 is a block diagram showing the structure of the sixth embodiment of the decoding apparatus of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the system may include: a transmitter 1, a channel 2, and a receiver 3. wherein the transmitter 1 can process an input signal to adapt the signal.
  • channel 2 can transmit signals
  • receiver 3 can receive signals transmitted from the channel and process the received signals to ensure the accuracy of the received signals.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of the decoding method of the present invention, as shown in FIG.
  • the execution body of each step is the receiver 3.
  • the method of this embodiment includes:
  • the receiver can demodulate the received signal by using a demodulation method corresponding to the transmitter to obtain a demodulated signal.
  • the demodulated signal obtained after demodulation is represented by £ ( ), where the differential coded output bit at time k is represented.
  • S502 Acquire a first decoding signal, where the first decoding signal is a signal that is fed back after the demodulated signal undergoes a ''sub-M-ary differential decoding process.
  • the first decoding signal may be represented by a differential encoding input bit at time k, ' ⁇ is an integer greater than or equal to 0, and generally '' takes a positive integer less than or equal to N, and N is a preset number of iterations, E ; ) is the first decoded signal that is fed back after the M-ary decoding process of the demodulated signal. It can be understood that if the current decoding operation is the initial decoding operation, the first translation obtained is obtained.
  • the code signal E, ( Ci ) is 0, that is, the initial value of the first decoded signal E ; c obtained by the receiver before the receiver has decoded the demodulated signal; If the current decoding operation is a non-initial decoding operation, the acquired first decoding signal is a signal that is fed back after the previous decoding operation of the current decoding operation; that is, after the receiver performs decoding processing on the demodulated signal.
  • the receiver may use the result of the previous decoding process, that is, the first decoding signal as an input signal for performing the current decoding process.
  • the decoding process in S502 may be that the receiver performs a decoding process corresponding to the encoding process performed by the transmitter on the demodulated signal.
  • the decoding process performed by the receiver on the demodulated signal is M-ary differential decoding processing.
  • the first decoding signal is a signal obtained by M-ary differential decoding processing.
  • the transmitter performs FEC encoding processing on the signal to be transmitted, and then performs M-ary differential encoding processing
  • the receiver performs M-ary differential decoding processing on the demodulated signal first, and then performs FEC decoding processing, and the first decoded signal is a signal obtained by FEC decoding processing.
  • the transmitter performs FEC encoding processing on the signal to be transmitted, performs forward interleaving processing, and then performs M-ary differential encoding processing
  • the receiver performs M-in on the demodulated signal.
  • the differential decoding process is performed, and then the reverse interleaving process is performed, and then the FEC decoding process is performed, and the signal after the FEC decoding process is further subjected to forward interleaving processing, and the first decoded signal is the signal obtained by the forward interleaving process.
  • the first decoding signal that is fed back after the decoding process depends on which decoding processing corresponding to the transmitter is performed by the receiver.
  • the embodiment of the present invention is also applicable to the present invention. There are various transmitter coding processes and receiver decoding processing implementation scenarios, which are not described here.
  • S503 Perform M-ary differential decoding processing on the demodulated signal according to the first decoding signal to obtain a second decoded signal.
  • the receiver can decode the demodulated signal ( ⁇ ) and the first decoded signal acquired by S501 and S502 as an input signal to obtain a second decoded signal.
  • the second decoding signal may be represented by E,. ( Ci ), taking a positive integer less than or equal to N, where N is a predetermined number of iterations. It can be seen that the decoding process performed by the receiver can be understood as a process of iterating with the result of the previous decoding process and the currently input demodulated signal.
  • the output signal E 2 (c k , , is the second iterative decoding process; and so on, until N is equal to 2, and the second decoded signal of the output signal stops iterating.
  • FIG. 2 is the optical fiber communication of the present invention.
  • the transmitter performs FEC encoding processing on the signal to be transmitted, and performs M-ary differential encoding processing.
  • the receiver performs M-ary differential decoding processing on the demodulated signal first, and then performs FEC decoding processing and the like.
  • 3 is a schematic diagram of another system structure of the optical fiber communication system of the present invention; as shown in FIG. 3, E,.
  • ( Ci ) is an output signal of the decoder 31, that is, an input signal of the FEC decoder 33.
  • the output signal of the FEC decoder 33 that is, the output signal of the FEC decoder 33 and the modulated signal are used as the input signal of the decoder 31, and are decoded again, and the above steps are repeated until ⁇ 'is equal to N, ⁇ is greater than or equal to 2.
  • FIG. 4 is a schematic diagram of another system structure of the optical fiber communication system according to the present invention. As shown, E,.
  • ( Ci ) is the output signal of the decoder 31, that is, the input signal of the reverse interleaver 34, which is the output signal of the reverse interleaver 34, that is, the input signal of the FEC decoder 33.
  • £ n (c k ) The output signal of the FEC decoder 33, that is, the input signal of the forward interleaver 35, is the output signal of the forward interleaver 35, that is, the input signal of the decoder 31, which is about to be forward
  • the output signal of the interleaver 35 and the modulated signal are used as input signals of the decoder 31, and are decoded again, and the above steps are repeated until N is equal to or greater than 2.
  • N in each of the above systems depends on the signal quality requirements in the actual application. In general, the larger the value of N, that is, the more iterations, the better the quality of the final output signal.
  • the input signal of the decoder 31 The first decoded signal fed back after the decoding process is added, and after multiple iterations decoding, the bit error rate is reduced.
  • the demodulated signal and the first decoded signal are obtained, and the first decoded signal that is fed back after the M-ary decoding process is performed on the demodulated signal, and the demodulated signal is subjected to M-ary differential decoding processing.
  • a second decoded signal is obtained. Since the decoder adds the decoding processing result as the feedback signal, the implementation reduces the error diffusion caused by the decoding process, reduces the bit error rate of the system, and improves the accuracy of signal transmission.
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a decoding method according to the present invention.
  • this embodiment provides a whole process of transmitting a signal by a transmitter and receiving a signal by a receiver.
  • the transmitter may sequentially perform FEC encoding, forward interleaving processing, M-ary differential encoding, and modulation operations on the signal to be transmitted.
  • the receiver may sequentially demodulate the received signal, and perform M-differential difference.
  • the FEC encoding can be encoded by using multiple types of codes, for example: the transmitter can use low density parity check (The Low Density Parity Check, hereinafter referred to as: LDPC) code performs FEC encoding on the transmitted signal; correspondingly, the receiver uses the LDPC code to perform FEC decoding on the received signal.
  • the transmitter may use differential Quadrature Phase Shifter Keying (DQPSK) code to differentially encode the transmitted signal or hexadecimal differential quadrature amplitude modulation (Hexadecimal Differential Quadrature Amplitude Modulation). 16, hereinafter referred to as: D16QAM) differential encoding of the transmitted signal;
  • DQPSK differential Quadrature Phase Shifter Keying
  • D16QAM differential Quadrature Phase Shifter Keying
  • the BCJR algorithm performs M-ary differential decoding on the received signal.
  • S601 and S602 in this embodiment are steps of obtaining an LDPC code optimality distribution for using the FEC coding code and constructing an LDPC code check matrix.
  • S603 to S605 are steps performed by the transmitter, and S606 is a step of entering a channel transmission after the signal to be transmitted is processed by the transmitter, and S607 to S613 are steps performed by the receiver.
  • an initial degree distribution at a set code rate on which the FEC decoding process is performed may be determined; for example, determining an initial degree distribution at a set code rate R as (, p), where I is a row weight, and p is The column weight, that is, the number of each row 1 in the LDPC check matrix represented by the row weight, the column weight represents Is the number of each column 1 in the LDPC check matrix.
  • this step uses the Monte Carlo simulation method.
  • the initial signal to noise ratio corresponding to the initial degree distribution can then be determined.
  • the initial signal-to-noise ratio is recorded as (Signal to Noise Ratio, hereinafter referred to as SNR).
  • SNR Signal to Noise Ratio
  • the initial signal to noise ratio is The first signal to noise ratio corresponding to the first degree distribution is updated until the determined number of first degree distributions satisfies the set value.
  • the initial signal-to-noise ratio SNR if the two curves in the outer information transfer graph corresponding to the first degree distribution ⁇ ', ⁇ ') corresponding to the code rate R do not intersect, the initial signal-to-noise ratio SNR is updated to the first degree. The corresponding first signal to noise ratio is distributed until the determined number of first degree distributions ⁇ meets the set value.
  • the first degree distribution corresponding to the first signal to noise ratio satisfying the set value may be used as the optimum distribution of the LDPC code.
  • the optimality distribution is related to the specific decoding method performed. Therefore, the optimal distribution of LDPC codes obtained by different decoding methods is different.
  • S602 Construct an LDPC code check matrix that satisfies the optimality distribution according to the optimality distribution of the LDPC code.
  • S603 The LDPC code check matrix is used to perform FEC encoding processing on the source sequence with a code rate of R.
  • the LDPC code check matrix uses a FEC code of 5/6 for a source sequence with a source length of 15000, and the length of the encoded information sequence is 18000.
  • the source sequence with a source length of 3000 is subjected to FEC coding with a code rate of 3/4, and the length of the encoded information sequence is 4000.
  • S604 Perform forward interleaving processing on the information sequence after the FEC encoding process.
  • the forward interleaving process can use a random interleaving sequence to scramble the order of the information sequence after the FEC encoding process to optimize the information distribution.
  • S605 performing M-ary differential encoding on the information after the interleaving process; The signal after the code is modulated accordingly.
  • the M-ary differential encoding is DQPSK differential encoding or D16QAM differential encoding.
  • the M-ary differential coding is DQPSK differential coding, specifically, the phase difference between the carrier phase of the current bit and the carrier phase of the previous bit is used to transmit information, which is also called a quaternary difference.
  • FIG. 7a is a state transition diagram of DQPSK differential encoding of the decoding method of the present invention.
  • the DQPSK encoding process can be encoded by using the state transition diagram shown in FIG. 7a
  • FIG. 7b is a decoding method DQPSK differential of the present invention.
  • the coding block diagram, as shown in Figure 7b can be used to represent the differential encoding process of DQPSK:
  • FIG. 8 is a modulation constellation diagram of the decoding method QPSK of the present invention. As shown in FIG. 8, the modulation constellation is a Gray constellation.
  • the M-ary differential encoding is D16QAM differential encoding
  • FIG. 9 is a schematic diagram of encoding of the decoding method D16QAM according to the present invention; as shown in FIG. 9, for the input c ⁇ c ⁇ four bits, only The first two bits of the C W state transition diagram are quaternary differentially encoded using a quaternary differential coder, and the last two bits remain unchanged.
  • the same reference numerals as in FIG. 8 have the same meanings, and are not described herein again.
  • FIG. 10 is a modulation constellation diagram of the decoding method 16QAM of the present invention, as shown in FIG. 10, the 16QAM modulation mode modulation constellation
  • the picture shows a rotating constellation.
  • the first two bits specify the quadrant in which the signal is located
  • the last two bits specify the configuration of the signal vector in each quadrant, and exhibit a ⁇ /2 rotation characteristic, in order to reduce the bit error rate
  • the last two bits use Gray mapping in each quadrant.
  • S606 The modulated signal enters a channel for transmission. Due to the presence of noise in the channel, the signal will generate a certain bit error during the channel transmission.
  • the signal transmitted by the receiving channel is demodulated by a demodulation method corresponding to the modulation method to obtain a demodulated signal £ ( ).
  • S608 Acquire a first decoding signal, where the first decoding signal is a signal that is fed back after the demodulated signal is subjected to the ''sub-M-ary differential decoding process.
  • This step is similar to S502 in the embodiment shown in FIG. 5, and details are not described herein again.
  • S609 Perform M-ary differential decoding processing on the demodulated signal according to the first decoding signal to obtain a second decoding signal A fe).
  • the differential decoding process may be a decoding process performed by the receiver on the demodulated signal corresponding to the encoding process performed by the transmitter.
  • the receiver converts the state transition map according to the DQPSK differential coding corresponding to the demodulated signal, and uses Bar-Cork-
  • the first decoding signal is the second decoding signal, and the specific process will be described in detail later.
  • the receiver when the transmitter uses D16QAM differential coding, correspondingly, the receiver performs the M-differential translation by using the BCJR algorithm according to the 16QAM differential coding corresponding to the demodulated signal.
  • the signal obtained by performing the M-ary differential decoding process on the demodulated signal is the first decoded signal, and is the second decoded signal, and the specific process will be described in detail later.
  • the modulation signal is a first decoded signal that is fed back after the M-ary decoding process of the demodulated signal, and the first decoded signal is set at the first iteration Set to 0, the second decoded signal of the bit sequence output by the differential decoding module.
  • & represents the state of the state transition diagram at time k
  • & -1 represents the state of the state transition diagram at time k-1
  • represents the sequence of received codewords from time 0 to time k-1, indicating from time k+1 to The sequence of received codewords at time N.
  • a differential decoding algorithm based on forward, backward, and transition probabilities includes the following steps:
  • the first step Initialize ", ⁇ , initialize the forward probability of each state at time 0 and the backward probability of each state at time ,
  • Step 2 Calculate the transition probability The formula is as follows:
  • the third step According to and. (Calculating the forward probability ( , the formula is as follows:
  • a k (s) ⁇ (a k _ l (s) + r k (s , s))
  • Step 4 Calculate the backward probability ⁇ - ⁇ ') according to ⁇ and A).
  • the backward probability can be expressed by the E operation as: Step 5: Calculate the posterior probability and the value of the second decoded signal;
  • the posterior probability (ie likelihood ratio) is calculated as follows:
  • denotes the sequence of symbol information corresponding to the demodulated signal before demodulation.
  • the first decoding signal is a signal that is fed back by the receiver after the forward interleaving process, and the initial value of the first decoding signal is 0.
  • the difference from the prior art is that the first decoding signal in this step is
  • the modulated signal is subjected to M-ary differential decoding processing to obtain a second decoded signal, that is, after the receiver performs decoding processing on the demodulated signal, the receiver can perform the decoding process of the previous decoding process, that is, the first translation.
  • the code signal, and the modulated signal are used as input signals for performing the current decoding process.
  • the decoding process of the receiver can be viewed as an iterative decoding process.
  • S610 Perform a reverse interleaving process on the second decoding signal Ei (c k ) to obtain a second decoding signal 3 ⁇ 4 (Ci) after the reverse interleaving process.
  • the receiver reverse interleaving process is consistent with the interleaving sequence used by the transmitter forward interleaving process, and the second decoding signal is forward interleaved to optimize the information distribution.
  • the first output of the signal after the FEC decoding process is E 2 ' 1 for the second output (c k is the third output, and so on, the Nth output is
  • N is the preset number of iterations
  • the error rate of the signal +1)1 ( Ci ) is lower than the error rate of the signal E a ( Ci )
  • the signal output by the FEC decoding process is smaller than the error of the output signal of the second time. The rate is low.
  • S612 Perform a forward interleaving process on the signal to obtain a first decoded signal E, :( Ci ).
  • the receiver forward interleaving process is identical to the interleaving sequence used by the transmitter forward interleaving process for optimizing the signal E c to obtain the first decoded signal E; (c k .
  • S613 Perform a second M-ary differential decoding process on the demodulated signal according to the first decoding signal E; ( Ci ) to obtain a second decoded signal E,. ( Ci ).
  • the first output signal of the M-ary differential decoding is the second decoding signal (c k ),
  • the second output is the second decoding signal E 2 )
  • the third output is the second decoding signal.
  • the Nth output is the second decoding signal N is a preset number of iterations, and the error rate of E( i+1) ( Ci ) is lower than the signal E,.
  • ( Ci ) error rate i.e., M-ary differential decoder 1 + ⁇ times the signal output from the signal error rate than the secondary output.
  • the FEC decoder output signal can also be judged to know the quality of the output signal.
  • the demodulated signal is obtained; and the second decoded signal is obtained by decoding the demodulated signal according to the first decoded signal that is fed back after the M-ary decoding process on the demodulated signal. Since the decoder adds the decoding processing result as the feedback signal, the implementation reduces the error diffusion caused by the decoding process, reduces the bit error rate of the system, and improves the accuracy of signal transmission.
  • the simulation results show that, with the technical scheme of this embodiment, the DQPSK coding and decoding system effectively compensates the error rate of 2dB, and the D16QAM coding and decoding system effectively compensates the error rate of 2.3dB, and the differential iterative decoding system is adopted.
  • the optimization of the LDPC code in the FEC decoder makes the DQPSK differential iterative system performance approximate the performance of the regular LDPC code in the non-differential system; the performance of the D16QAM differential iterative system exceeds the performance of the regular LDPC code in the non-differential system, to a large extent The problem of error spread is solved, and the bit error rate of the system is reduced.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a decoding apparatus according to the present invention.
  • the structure of this embodiment includes: an obtaining module 1101 and a decoding module 1102, where the acquiring module 1101 is configured to acquire a demodulated signal;
  • the code module 1102 is configured to acquire a first decoding signal, where the first decoding signal is a signal that is fed back after the demodulated signal is subjected to the 'nth M-ary differential decoding process, and '′ is an integer greater than or equal to 0.
  • the decoding module 1102 is further configured to perform an M-ary differential decoding process on the demodulated signal according to the first decoding signal to obtain a second decoding signal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 5, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the decoding module 1102 is specifically configured to perform a state transition diagram according to differential quadrature phase shift keying DQPSK differential encoding or hexadecimal quadrature amplitude modulation D16QAM differential encoding corresponding to the demodulated signal, and use Bal-Ke Ke-Yelynek-Lavif BCJR algorithm for the demodulation
  • the signal is subjected to M-ary differential decoding processing; root E,.
  • ( Ci ) ( /f - E ⁇ ) to obtain the second decoded signal, wherein, the bit sequence is represented, and ⁇ indicates that the demodulated signal is demodulated a pre-corresponding symbol information sequence, ( / ) is a signal obtained by performing an M-ary differential decoding process on the demodulated signal by using a BCJR algorithm, wherein the first decoded signal is The second decoding signal.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a decoding apparatus according to the present invention.
  • FIG. 12 is based on the embodiment shown in FIG. 11. Further, further includes an FEC decoding module 1103, and the FEC decoding module 1103 is configured to The second decoded signal obtained after the M-ary differential decoding process performs forward error correction FEC decoding processing.
  • the FEC decoding module 1103 is specifically configured to optimize a degree distribution of the low density parity check LDPC code used by the FEC encoding corresponding to the second decoding signal, and obtain an optimality distribution of the LDPC code;
  • the goodness distribution constructs an LDPC code check matrix satisfying the optimal degree distribution; and performs FEC decoding processing on the second decoded signal obtained by the M-ary differential decoding process according to the LDPC code check matrix.
  • the FEC decoding module 1103 is specifically configured to determine an initial degree distribution at a set code rate on which the FEC decoding process is performed; determine an initial signal to noise ratio corresponding to the initial degree distribution; and sequentially determine a corresponding set code rate.
  • the first degree distribution if the two curves in the outer information transfer graph of the first degree distribution corresponding to the set code rate under the initial signal-to-noise ratio do not intersect, the initial signal-to-noise ratio is updated to the first corresponding to the first degree distribution.
  • a signal to noise ratio until the determined number of first degree distributions satisfies a set value; a first degree distribution corresponding to the first signal to noise ratio that satisfies the set value is used as an optimality distribution of the LDPC code.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a decoding apparatus according to the present invention. As shown in FIG. 13, FIG. 13 is based on the embodiment shown in FIG. 12, and further includes a reverse interleaving module 1104 and a forward interleaving module 1105.
  • the reverse interleaving module 1 104 is configured to perform reverse interleaving processing on the second decoded signal obtained after the M-ary differential decoding process to obtain a second decoded signal after the reverse interleaving;
  • the FEC decoding module 1 103 is specifically configured to perform FEC decoding processing on the second interleaved decoded signal;
  • the forward interleaving module 1105 is configured to perform forward interleaving processing on the first decoded signal.
  • Each device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG.
  • the implementation principle and technical effects are similar, and will not be described here.
  • FIG. 14 is a schematic structural diagram of Embodiment 4 of a decoding apparatus according to the present invention.
  • the apparatus of this embodiment includes an acquirer 1401 and a decoder 1402, wherein the acquirer 1401 is configured to acquire a demodulated signal;
  • the device 1402 is configured to acquire a first decoding signal, where the first decoding signal is a signal that is fed back after the demodulated signal is subjected to the ''th order M-ary differential decoding process, and is an integer greater than or equal to 0;
  • the 1402 is further configured to perform an M-ary differential decoding process on the demodulated signal according to the first decoding signal to obtain a second decoded signal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 5, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the decoder 1402 is specifically configured to perform a state transition diagram according to differential quadrature phase shift keying DQPSK differential encoding or hexadecimal quadrature amplitude modulation D16QAM differential encoding corresponding to the demodulated signal, and use Bal-Ke
  • FIG. 15 is a schematic structural diagram of Embodiment 5 of a decoding apparatus according to the present invention.
  • FIG. 15 is based on the embodiment shown in FIG. 14. Further, an FEC decoder 1403 is further included, and FEC decoding 1403 is used for M-ary.
  • the second decoded signal obtained after the differential decoding process performs forward error correction FEC decoding processing.
  • the FEC decoder 1403 is specifically configured to optimize a degree distribution of the low density parity check LDPC code used for the FEC encoding corresponding to the second decoding signal, and obtain an optimality distribution of the LDPC code;
  • the goodness distribution constructs an LDPC code check matrix satisfying the optimal degree distribution; and performs FEC decoding processing on the second decoded signal obtained by the M-ary differential decoding process according to the LDPC code check matrix.
  • the FEC decoder 1403 is specifically configured to determine an initial degree distribution at a set code rate on which the FEC decoding process is performed; determine an initial signal to noise ratio corresponding to the initial degree distribution; and sequentially determine a corresponding set code rate.
  • the first degree distribution if the two curves in the outer information transfer graph of the first degree distribution corresponding to the set code rate under the initial signal to noise ratio do not intersect, the initial signal to noise ratio is updated to the first The first signal to noise ratio corresponding to the degree distribution, until the determined number of first degree distributions satisfies the set value; the first degree distribution corresponding to the first signal to noise ratio satisfying the set value is used as the optimal degree distribution of the LDPC code .
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • Figure 16 is a schematic structural diagram of Embodiment 6 of the decoding apparatus of the present invention.
  • Figure 16 is based on the embodiment shown in Figure 15, further comprising a reverse interleaver 1404 and a forward interleaver 1405, wherein the reverse interleaving
  • the device 1404 is configured to perform reverse interleaving processing on the second decoded signal obtained by the M-ary differential decoding process to obtain a second decoded signal after the reverse interleaving
  • the FEC decoder 1403 is specifically configured to perform reverse interleaving.
  • the second decoded signal is subjected to FEC decoding processing
  • the forward interleaver 1405 is configured to perform forward interleaving processing on the first decoded signal.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明实施例提供一种译码方法和装置,包括获取解调信号,并获取第一译码信号,第一译码信号为对解调信号经过第i次M进制差分译码处理后所反馈的信号,为大于或等于0的整数;根据第一译码信号,对解调信号进行M进制差分译码处理,得到第二译码信号,通过对译码器增加输入反馈的第一译码信号,使输出信号误码率降低。

Description

译码方法和装置
技术领域 本发明实施例涉及通信技术, 尤其涉及一种译码方法和装置。 背景技术
近年来, 光通信凭借着其可用频带宽, 同时还具有重量轻、 不受电磁干 扰等优点得到了迅速的发展。
在高速率的光传输系统中, 在发送端经常釆用多进制调制技术与前向纠 错编码结合的方式来提高系统的传输效率及降低系统的误码率, 然而, 在接 收端对信号进行相干解调时, 接收端恢复的载波可能与接收信号的载波同频 同相, 也可能同频反相, 在同频反相时, 解调后的数据流极性与发送数据流 极性相反, 会对系统性能产生严重影响。
现有技术中, 发送端釆用差分编码方法来避免接收端解调后得到的数据 流极性与发送数据流极性相反,即发送端通过相邻符号的相位差来传递信息, 接收端通过差分译码的方法来译码。
然而, 现有技术在差分译码过程会引起误码扩散, 导致接收端前向纠错 模块输入误码率相对增加。 发明内容
本发明实施例提供一种译码方法和装置, 以降低译码过程产生的误码 率。
第一方面, 一种译码方法, 包括:
获取解调信号;
获取第一译码信号, 所述第一译码信号为所述解调信号经过第' '次 M 进制差分译码处理后所反馈的信号, 为大于或等于 0的整数;
根据所述第一译码信号, 对所述解调信号进行 M进制差分译码处理, 得到第二译码信号。
结合第一方面, 在第一种可能的实现方式中, 所述根据所述第一译码 信号, 对所述解调信号进行 M进制差分译码处理, 包括:
根据所述解调信号所对应的差分正交相移键控 DQPSK差分编码或者 16进制正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克- 耶利内克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理; 根 ( ) = £( / ) - ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, ( /^)为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 )为所述第一译码信号 , 所述 Afe)为所述第二译码信号。
结合第一方面或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述根据所述第一译码信号, 对所述解调信号进行 M 进制差分译码 处理之后, 还包括:
对所述 M 进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译码处理。
结合第二种能的实现方式, 在第三种可能的实现方式中, 所述对所述 M进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译码处理, 包括:
对所述第二译码信号对应的 FEC编码所釆用的低密度奇偶校验 LDPC 码的度分布进行优化, 获取所述 LDPC码的最优度分布;
根据所述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 根据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第 二译码信号进行 FEC译码处理。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所述对所 述第二译码信号对应的 FEC编码所釆用的低密度奇偶校验 LDPC码的度 分布进行优化, 获取所述 LDPC码的最优度分布, 包括:
确定进行所述 FEC译码处理所基于的设定码率下的初始度分布; 确定所述初始度分布对应的初始信噪比;
依次确定所述设定码率对应的多个第一度分布, 若所述初始信噪比下 所述设定码率对应的所述第一度分布的外信息转移图内的两条曲线不相 交, 则将所述初始信噪比更新为所述第一度分布对应的第一信噪比, 直至 所确定的第一度分布的数量满足设定值; 将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最 优度分布。
结合第二种可能的实现方式, 在第五种可能的实现方式中, 所述对所 述 M进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译码处 理之前, 还包括:
对所述 M 进制差分译码处理后得到的第二译码信号进行反向交织处 理, 得到反向交织后的第二译码信号;
所述对所述 M 进制差分译码处理后得到的第二译码信号进行前向纠 错 FEC译码处理包括:
对所述反向交织后的第二译码信号进行 FEC译码处理;
所述根据所述第一译码信号, 对所述解调信号进行 M 进制差分译码 处理, 得到第二译码信号之前, 还包括:
对所述第一译码信号进行正向交织处理。
第二方面, 一种译码装置, 包括:
获取模块, 用于获取解调信号;
译码模块, 用于获取第一译码信号, 所述第一译码信号为所述解调信 号经过第''次 M进制差分译码处理后所反馈的信号, 为大于或等于 0的整 数;
所述译码模块还用于根据所述第一译码信号,对所述解调信号进行 M 进制差分译码处理, 得到第二译码信号。
结合第二方面, 在第一种可能的实现方式中, 所述译码模块具体用于 根据所述解调信号所对应的差分正交相移键控 DQPSK 差分编码或者 16 进制正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克-耶 利内克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理; 根 ,( ) = £( / ) - ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, (Ci/¾)为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 为所述第一译码信号 , 所述 Afe)为所述第二译码信号。
结合第二方面或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述装置还包括: FEC译码模块, 用于对所述 M进制差分译码处理后得到的第二译码 信号进行前向纠错 FEC译码处理。
结合第二种可能的实现方式, 在第三种可能的实现方式中, 所述 FEC 译码模块具体用于对所述第二译码信号对应的 FEC 编码所釆用的低密度 奇偶校验 LDPC码的度分布进行优化, 获取所述 LDPC码的最优度分布; 并根据所述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 并 根据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第二译 码信号进行 FEC译码处理。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所述 FEC 译码模块具体用于确定进行所述 FEC 译码处理所基于的设定码率下的初 始度分布; 确定所述初始度分布对应的初始信噪比; 依次确定所述设定码 率对应的多个第一度分布, 若所述初始信噪比下所述设定码率对应的所述 第一度分布的外信息转移图内的两条曲线不相交, 则将所述初始信噪比更 新为所述第一度分布对应的第一信噪比, 直至所确定的第一度分布的数量 满足设定值;
将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最 优度分布。
结合第二种可能的实现方式, 在第五种可能的实现方式中, 所述装置 还包括:
反向交织模块, 用于对所述 M 进制差分译码处理后得到的第二译码 信号进行反向交织处理, 得到反向交织后的第二译码信号;
所述 FEC译码模块,具体用于对所述反向交织后的第二译码信号进行 FEC译码处理;
正向交织模块, 用于对所述第一译码信号进行正向交织处理。
第三方面, 一种译码装置, 包括:
获取器, 用于获取解调信号;
译码器, 用于获取第一译码信号, 所述第一译码信号为对所述解调信 号经过第''次 M进制差分译码处理后所反馈的信号, 为大于或等于 0的整 数;
所述译码器还用于根据所述第一译码信号,对所述解调信号进行 M进 制差分译码处理, 得到第二译码信号。
结合第三方面, 在第一种可能的实现方式中, 所述译码器具体用于根 据所述解调信号所对应的差分正交相移键控 DQPSK差分编码或者 16进制 正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克-耶利内 克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理;
根 ,( ) = £( /¾)- ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, 为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 )为所述第一译码信号 , 所述 ( )为所述第二译码信号。
结合第三方面或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述装置还包括:
FEC译码器, 用于对所述 M进制差分译码处理后得到的第二译码信 号进行前向纠错 FEC译码处理。
结合第二种可能的实现方式, 在第三种可能的实现方式中, 所述 FEC 译码器具体用于对所述第二译码信号对应的 FEC 编码所釆用的低密度奇 偶校验 LDPC码的度分布进行优化, 获取所述 LDPC码的最优度分布; 并 根据所述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 并根 据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第二译码 信号进行 FEC译码处理。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所述 FEC 译码器具体用于确定进行所述 FEC 译码处理所基于的设定码率下的初始 度分布; 确定所述初始度分布对应的初始信噪比; 依次确定所述设定码率 对应的多个第一度分布, 若所述初始信噪比下所述设定码率对应的所述第 一度分布的外信息转移图内的两条曲线不相交, 则将所述初始信噪比更新 为所述第一度分布对应的第一信噪比, 直至所确定的第一度分布的数量满 足设定值;
将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最 优度分布。
结合第二种可能的实现方式, 在第五种可能的实现方式中, 所述装置 还包括: 反向交织器, 用于对所述 M 进制差分译码处理后得到的第二译码信 号进行反向交织处理, 得到反向交织后的第二译码信号;
所述 FEC 译码器, 具体用于对所述反向交织后的第二译码信号进行 FEC译码处理;
正向交织器, 用于对所述第一译码信号进行正向交织处理。
本发明实施例提供的译码方法和装置, 通过获取解调信号, 并获取第 一译码信号, 第一译码信号为对解调信号经过第 次 M进制差分译码处理 后所反馈的信号, 为大于或等于 0 的整数; 根据第一译码信号, 对解调 信号进行 M 进制差分译码处理, 得到第二译码信号。 由于译码器增加了 译码处理结果作为反馈信号, 实现降低了译码过程产生的误码扩散, 降低 了系统的误码率, 提高了信号传输的准确率。 附图说明
实施例或现有技术描述中所需要使用的附图做一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为光纤通信系统的基本结构示意图;
图 2为本发明光纤通信系统的一种系统结构示意图;
图 3为本发明光纤通信系统的另一种系统结构示意图;
图 4为本发明光纤通信系统的又一种系统结构示意图;
图 5为本发明译码方法实施例一的流程示意图;
图 6为本发明译码方法实施例二的流程示意图;
图 7a为本发明译码方法 DQPSK差分编码的状态转移图;
图 7b为本发明译码方法 DQPSK差分编码框图;
图 8为本发明译码方法 QPSK的调制星座图;
图 9为本发明译码方法 16QAM的编码示意图;
图 10为本发明译码方法 16QAM的调制星座图;
图 11为本发明译码装置实施例一的结构示意图; 图 12为本发明译码装置实施例二的结构示意图;
图 13为本发明译码装置实施例三的结构示意图;
图 14为本发明译码装置实施例四的结构示意图;
图 15为本发明译码装置实施例五的结构示意图;
图 16是本发明译码装置实施例六的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为光纤通信系统的基本结构示意图, 如图 1所示, 该系统可以包 括: 发送机 1 , 信道 2和接收机 3 ; 其中, 发送机 1可以对输入信号进行 处理, 以使信号适于在信道 2中传输, 信道 2可以传输信号, 接收机 3可 以接收从信道传输来的信号, 对接收到的信号进行处理, 以确保接收信号 的准确度。
本发明译码方法实施例可以应用于图 1所示以及在图 1基础上扩展的 各类光纤系统中, 图 5为本发明译码方法实施例一的流程示意图, 如图 5 所示, 以下各步骤的执行主体为接收机 3 , 本实施例的方法包括:
S501 : 获取解调信号。
接收机可以釆用与发送机相对应的解调方式对接收到的信号进行解 调,得到解调信号。以下描述中用 £( )表示解调后获取的解调信号,其中, 表示 k时刻的差分编码输出比特。
S502: 获取第一译码信号, 第一译码信号为对解调信号经过第' '次 M 进制差分译码处理后所反馈的信号。
上述第一译码信号可以用 表示, 其中 表示 k时刻的差分编码输 入比特, '·为大于或等于 0的整数, 通常' '取小于等于 N的正整数, N为一预 设的迭代次数, E; )为对解调信号进行 M进制译码处理后反馈的第一译码 信号, 可以理解的是, 若当前译码操作为初次译码操作, 则获取的第一译 码信号 E, (Ci )为 0, 即接收机在尚未对解调信号进行译码处理之前, 接收机 获取到的第一译码信号 E; c 的初始值为 0。 若当前译码操作为非初次译码 操作, 则获取的第一译码信号为当前译码操作的前一次译码操作后反馈的 信号; 即在接收机对解调信号执行了译码处理之后, 接收机可以将前一次 执行译码处理得到的结果, 即第一译码信号作为执行当前译码处理的输入 信号。
其中, S502中的译码处理可以是接收机对解调信号进行与发送机所执 行的编码处理相对应的译码处理。
举例来说, 在一种实施场景下, 如果发送机对待发送信号仅进行了 M 进制差分编码处理,则对应的,接收机对解调信号进行的译码处理为 M进 制差分译码处理, 则第一译码信号即为 M进制差分译码处理得到的信号; 在另一种实施场景下,如果发送机对待发送信号先进行 FEC编码处理,再 进行 M进制差分编码处理, 则对应的, 接收机对解调信号先进行 M进制 差分译码处理, 再进行 FEC译码处理, 则第一译码信号即为 FEC译码处 理得到的信号。 在另一种实施场景下, 如果发送机对待发送信号先进行 FEC编码处理, 再进行正向交织处理, 然后进行 M进制差分编码处理, 则对应的, 接收机对解调信号先进行 M 进制差分译码处理, 再进行反向 交织处理, 然后进行 FEC译码处理, 将 FEC译码处理之后的信号再进行 正向交织处理, 则第一译码信号即为正向交织处理得到的信号。
综上所述, 译码处理后反馈的第一译码信号取决于接收机进行了哪些 与发送机对应的译码处理, 除上述描述的各种实施场景外, 本发明实施例 还适用于现有的各种发送机编码处理以及接收机相应的译码处理实施场 景, 在此不——赘述。
S503 : 根据第一译码信号, 对解调信号进行 M进制差分译码处理, 得到第二译码信号。
接收机可以将 S501 和 S502 获取的解调信号 ^^)和第一译码信号 )作为输入信号进行译码操作, 得到第二译码信号。 第二译码信号可 以用 E,. (Ci )表示, 取小于等于 N的正整数, N为一预设的迭代次数。 可以 看出, 接收机所执行的译码处理过程实际上可以理解为釆用前一次译码处 理结果和当前输入的解调信号进行迭代的过程。 第一次第一译码信号 为 0, 根据第一次输入信号 对£½)进行译码处理, 输出信号 E, (ck ) , 即为第一次迭代译码过程; 第二次输入信号 2'( )和" 4) , 输出信 号 E2 (ck、 , 即为第二次迭代译码过程; 依次类推, 直到 等于 N, N大于等 于 2, 输出信号第二译码信号 停止迭代。
在例如发送机对待发送信号仅进行 M 进制差分编码处理, 对应的, 接收机对解调信号进行的译码处理为 M进制差分译码处理等实施场景下, 图 2为本发明光纤通信系统的一种系统结构示意图;如图 2所示,则 与 E,. (Ci )相同, 即将译码器 31 的输出信号与调制信号作为译码器 31 的输 入信号, 进行再一次译码, 重复上述步骤, 直到' '等于 N, N大于等于 2。
在例如发送机对待发送信号先进行 FEC编码处理, 再进行 M进制差 分编码处理, 对应的, 接收机对解调信号先进行 M 进制差分译码处理, 再进行 FEC译码处理等实施场景下,图 3为本发明光纤通信系统的另一种 系统结构示意图; 如图 3所示, E,. (Ci )为译码器 31的输出信号, 也即 FEC 译码器 33的输入信号, 为 FEC译码器 33的输出信号, 即将 FEC译 码器 33的输出信号与调制信号作为译码器 31的输入信号, 进行再一次译 码, 重复上述步骤, 直到 ζ'等于 N, Ν大于等于 2。
在例如发送机对待发送信号先进行 FEC编码处理,再进行正向交织处 理, 然后进行 Μ 进制差分编码处理, 对应的, 接收机对解调信号先进行 Μ进制差分译码处理, 再进行反向交织处理, 然后进行 FEC译码处理, 将 FEC译码处理之后的信号再进行正向交织处理等实施场景下,图 4为本 发明光纤通信系统的又一种系统结构示意图; 如图 4所示, E,. (Ci )为译码 器 31 的输出信号, 也即反向交织器 34的输入信号, 为反向交织器 34的输出信号,也即 FEC译码器 33的输入信号, £n (ck) FEC译码器 33 的输出信号, 也即正向交织器 35的输入信号, )为正向交织器 35的 输出信号, 也即译码器 31的输入信号, 即将正向交织器 35的输出信号与 调制信号作为译码器 31 的输入信号, 进行再一次译码, 重复上述步骤, 直到 等于 N, N大于等于 2。
上述各系统中 N的取值根据实际应用中对信号质量的要求而定,一般 情况下, N值越大, 即迭代的次数越多, 最后输出的信号质量越好。
与现有技术相比, 在上述各光纤通信系统中, 译码器 31 的输入信号 增加了译码处理后反馈的第一译码信号, 经过多次迭代译码, 降低了误码 率。
本实施例, 通过获取解调信号和第一译码信号, 并且根据对解调信号 进行 M进制译码处理后反馈的第一译码信号, 对解调信号进行 M进制差 分译码处理得到第二译码信号。 由于译码器增加了译码处理结果作为反馈 信号, 实现降低了译码过程产生的误码扩散, 降低了系统的误码率, 提高 了信号传输的准确率。
图 6为本发明译码方法实施例二的流程示意图, 如图 6所示, 本实施 例提供了发送机发送信号和接收机接收信号的全过程。 本实施例中, 发送 机可以对待发送信号依次进行 FEC编码、 正向交织处理、 M进制差分编 码、 调制操作, 对应的, 接收机可以对接收到的信号依次进行解调、 M进 制差分译码、 反向交织处理、 FEC译码等操作, 该方法包括如下步骤: 本实施例中, FEC编码可以釆用多种类型的码进行编码, 例如: 发送 机可以釆用低密度奇偶校验 ( Low Density Parity Check,以下简称: LDPC ) 码对待发送信号进行 FEC编码; 相应的, 接收机要釆用 LDPC码对接收的 信号进行 FEC译码。 可选地,发送机可以釆用差分正交相移键控(Differential Quadrature Phase Shifter Keying, 以下简称: DQPSK )码对待发送信号进行差 分编码或 16进制差分正交幅度调制 (Hexadecimal Differential Quadrature Amplitude Modulation 16, 以下简称: D16QAM )对待发送信号进行差分编码;
BCJR算法对接收的信号进行 M进制差分译码。
需要说明的是,本实施例中的 S601和 S602是获得 FEC编译码釆用的 LDPC 码最优度分布和构建 LDPC码校验矩阵的步骤。 S603至 S605是发送机执行的步 骤, S606是待发送信号经过发送机处理后进入信道传输的步骤, S607至 S613 是接收机执行的步骤。
S601 : 根据执行的具体译码方式, 通过仿真计算获得 FEC译码器釆用的 LDPC码的最优度分布。
具体地,首先可以确定进行 FEC译码处理所基于的设定码率下的初始 度分布; 例如确定设定码率 R下的初始度分布为(,p) ,其中 I为行重, p为 列重, 也就是行重代表的 LDPC校验矩阵中每一行 1的个数, 列重代表的 是 LDPC校验矩阵中每一列 1的个数。
值得说明的是, 本步骤釆用的是蒙特卡洛仿真法。
然后可以确定初始度分布对应的初始信噪比。
初始信噪比记为 ( Signal to Noise Ratio, 以下简称: SNR ) , 可以设 置计数器初始值为 N=0,N表示第 Ν个的信噪比。
依次确定设定码率对应的多个第一度分布, 若初始信噪比下设定码率 对应的第一度分布的外信息转移图内的两条曲线不相交, 则将初始信噪比 更新为第一度分布对应的第一信噪比, 直至所确定的第一度分布的数量满 足设定值。
具体地, 可以依次确定设定码率 R对应的其他第一度分布( '), 每 确定一个第一度分布, 计数器 Ν的值加 1 , 即 Ν=Ν+1。 在初始信噪比 SNR 下, 设定码率 R对应的第一度分布 μ',Ρ')的外信息转移图内的两条曲线不 相交, 则将初始信噪比 SNR更新为第一度分布 对应的第一信噪比, 直至所确定的第一度分布的数量 Ν满足设定值。
可以将满足设定值的第一信噪比对应的第一度分布作为 LDPC码的最 优度分布。
最优度分布与执行的具体译码方式有关, 因此, 釆用不同的译码方式 所获得 LDPC码的最优度分布不同。
S602:根据 LDPC码的最优度分布构造满足最优度分布的 LDPC码校 验矩阵。
S603 : 釆用 LDPC码校验矩阵对信源序列进行码率为 R的 FEC编码 处理。
举例来说, 釆用 LDPC码校验矩阵对信源长度为 15000的信源序列进 行码率为 5/6的 FEC编码, 编码后信息序列长度为 18000。
釆用 LDPC码校验矩阵对信源长度为 3000的信源序列进行码率为 3/4 的 FEC编码, 编码后的信息序列长度为 4000。
S604: 对 FEC编码处理后的信息序列进行正向交织处理。
正向交织处理可以釆用一随机交织序列打乱 FEC 编码处理后的信息 序列的顺序, 实现信息分布的优化。
S605: 对交织处理后的信息进行 M进制差分编码; 对 M进制差分编 码后的信号进行相应地调制。
可选的, M进制差分编码为 DQPSK差分编码或 D16QAM差分编码。 作为一种可行的实施方式, M进制差分编码为 DQPSK差分编码, 具 体地, 利用当前比特的载波相位与前一比特的载波相位的相位差来传递信 息, 其又被称为四进制差分编码, 图 7a为本发明译码方法 DQPSK差分编 码的状态转移图, 如图 7a所示, DQPSK编码过程可釆用图 7a所示状态 转移图进行编码, 图 7b为本发明译码方法 DQPSK差分编码框图, 如图 7b所示, 可用如下公式表示 DQPSK的差分编码过程:
若 ø dk 2_x =0 , 则
Figure imgf000014_0001
e dk 2_x
若 d ®d = , 则 = ④ ― =。χ 。
其中, k表示时刻, 其取值范围为 0,1, 2 N, ^-1、 1表示 k-1时刻时 差分编码两路输入值, ^、 表示 k时刻时差分编码两路输入值, d、 1 表示 k- 1时刻时差分编码两路输出值, 、 表示 k时刻时差分编码两路输 出值, 在最开始编码时, 假设 1 = 0 , i = 0。 当釆用 DQPSK进行差分编码时, 相应地, 调制方式釆用 QPSK调制, 图 8为本发明译码方法 QPSK的调制星座图, 如图 8所示, 其调制星座图为 格雷星座图。
作为另一种可行的实施方式, M进制差分编码为 D16QAM差分编码, 图 9为本发明译码方法 D16QAM的编码示意图; 如图 9所示, 对于输入的 c^c^四个比特, 只对前两个比特 CW釆用状态转移图利用四进制差分编 码器进行四进制差分编码, 后两个比特 保持不变。 图 9中与图 8中相同 标号的含义相同, 在此不再赘述。
当釆用 D 16QAM进制差分编码时,相应地,调制方式釆用 16QAM调制 方式进行调制,图 10为本发明译码方法 16QAM的调制星座图,如图 10所示, 该 16QAM调制方式调制星座图为旋转星座图。 如图 10所示的调制星座图 中, 前两个比特规定信号所处象限, 后两个比特规定每个象限中信号矢量 的配置, 并呈现出 π/2旋转特性, 为了降低误码率, 后两个比特在每个象限 中釆用格雷映射。
S606: 调制后的信号进入信道进行传输。 由于信道中噪声的存在,信号在信道传输过程中,会产生一定的误码。
S607: 获取解调信号。
具体地, 接收信道传输的信号, 釆用与调制方式相对应的解调方式进 行解调, 得到解调信号 £( )。
S608: 获取第一译码信号, 第一译码信号为对解调信号经过第' '次 M 进制差分译码处理后所反馈的信号。
本步骤与图 5所示实施例中的 S502相似, 在此不再赘述。
S609: 根据第一译码信号, 对解调信号进行 M进制差分译码处理, 得到第二译码信号 A fe)。
差分译码处理可以是接收机对解调信号进行与发送机所执行的编码 处理相对应的译码处理。
举例来说, 在一种可行的实施方式下, 当发送机釆用 DQPSK差分编 码, 则对应的, 接收机根据解调信号所对应的 DQPSK差分编码的状态转 移图, 釆用巴尔 -科克 -耶利内克-拉维夫( Bahl-Cocke-Jelinek-Raviv, 以下 简称: BCJ ) 算法对解调信号进行 M 进制差分译码处理, 根 ( ) = ( /^)- ( )得到第二译码信号 ( ) ,其中, 表示比特序列, rN 表示解调信号在解调前对应的符号信息序列, 为釆用 BCJR算法对 解调信号进行 M进制差分译码处理后得到的信号, )为第一译码信号, 为第二译码信号, 具体过程在后面进行详述。
在另一种可行的实施方式下, 当发送机釆用 D16QAM差分编码, 则 对应的, 接收机根据解调信号对应的 16QAM差分编码的状 ^转移图, 釆 用 BCJR算法进行 M进制差分译码处理, 根据 ( ) = £( / }^)- ( )得到 第二译码信号 其中, _ 表示比特序列, ^表示解调信号在解调前 对应的符号信息序列, 为釆用 BCJR算法对解调信号进行 M进制 差分译码处理后得到的信号, )为第一译码信号, 为第二译码信 号, 具体过程在后面进行详述。
具体地, 上述步骤 S608 中的差分译码输入为 ( 和£(¾ 输出为 A fe) , 其中 表示 k时刻的差分编码输入比特, 表示 k时刻的差分编 码输出比特, 为解调处理后的解调信号, )为对解调信号进行 M 进制译码处理后反馈的第一译码信号, 该第一译码信号在第一次迭代时设 置为 0, 为差分译码模块输出的 比特序列的第二译码信号。
在 BCJR算法中需要用到以下几点度量:
前向概率 -^') = >(&-'=^ν'< ), 表示接收序列是 k- 1 时刻状态 是 ^的概率。
后向概率 AW = 0^I&= , 表示 k时刻状态是 s且之后接收序列是 的概率。
状态转移概率 ^»)=尸 (&uJ& = , 表示由给定状态 转移到 s 并且此时接收码字为 的状态转移概率。
其中 &表示 k时刻时状态转移图的状态, & -1表示 k-1时刻时状态转移 图的状态, <表示从 0时刻到 k-1时刻的接收码字序列, 表示从 k+1 时刻到 N时刻的接收码字序列。
基于前向、 后向、 转移概率的差分译码算法包括如下步骤:
第一步: 初始化"、 β ,对 0时刻各状态的前向概率和 Ν时刻各状态的 后向概率进行初始化,
"的初始化有两种方法:
Γ«ο(0)=0
( 1 ) 若初始状态为零, 则 ) ( =—,v#o (2) 若译码时各状态等概率, 则 — lg
^的初始化: »1^
第二步: 计算转移概率 公式如下所示:
Yk{s ,s) = P{ck)P(Yk ldk)
其中 Λ表示 k时刻从信道接收到的符号信息,解调信号 £½)与 的关 系如下式所示:
P(Y dk =l)
第三步: 根据 和《。( 计算前向概率 ( , 公式如下所示:
Figure imgf000016_0001
定义 E运算如下所示:
aEb = ln(e。 + = m&x(a,b) + ln(l + e—
则前向概率的计算公式又可表示为:
ak(s) = ^(ak_l(s) + rk(s ,s))
第四步: 根据 ^和 A )计算后向概率 Α-^'), 公式如下所示: A— ') =∑A ) ',
用 E运算又可把后向概率表示为: 第五步: 计算后验概率和第二译码信号的值;
后验概率 (即似然比值) 的计算公式如下:
Figure imgf000017_0001
P {ak_x (S) + rk(S ,S) + fik (s))― β {ak_x (s) + Yl(s ,s) + β, (s)) 编码比特的输出第二译码信号的值为:
Ei(ck) = L(ck/fN)-Ei'(ck)
其中 ^表示解调信号在解调前对应的符号信息序列。
第一译码信号为接收机经过正向交织处理后反馈的信号, 第一译码信 号的初始值为 0, 与现有技术不同的是, 本步骤中的根据第一译码信号, 对解调信号进行 M进制差分译码处理, 得到第二译码信号 也就是 在接收机对解调信号执行了译码处理之后, 接收机可以将前一次执行译码 处理得到的结果即第一译码信号, 与调制信号作为执行当前译码处理的输 入信号。 可以将接收机的译码过程看作一迭代译码过程。
S610: 对第二译码信号 Ei (ck)进行反向交织处理,得到反向交织处理后 的第二译码信号 ¾(Ci)
具体地, 接收机反向交织处理与发送机正向交织处理釆用的交织序列 一致, 对第二译码信号进行正向交织处理, 实现信息分布的优化。
S611: 根据 LDPC码校验矩阵对反向交织处理后的第二译码信号
Ea(Ci)进行 FEC译码处理, 得到信号
举例来说, FEC译码处理后第一次输出的信号为 第二次输出 的为 E2'1(ck 第三次输出的为 依次类推, 第 N次输出的为
N为预设的迭代次数,信号 +1)1(Ci)的误码率低于信号 Ea(Ci)的误码率, FEC 译码处理第 次输出的信号比第 次输出的信号误码率低。
S612: 对信号 进行正向交织处理, 得到第一译码信号 E,:(Ci)。 接收机正向交织处理与发送机正向交织处理釆用的交织序列一致, 用 于优化信号 E c , 得到第一译码信号 E;(ck
S613: 根据第一译码信号 E;(Ci), 对解调信号 ^进行再次 M进制差 分译码处理, 得到第二译码信号 E,. (Ci)。
举例来说, M进制差分译码第一次输出的信号为第二译码信号 (ck ) , 第二次输出的为第二译码信号 E2 ) , 第三次输出的为第二译码信号
E3 (ck ) , 依次类推, 第 N次输出的为第二译码信号 N为预设的迭代 次数, E(i+1) (Ci )的误码率低于信号 E,. (Ci )的误码率, 即 M进制差分译码器第 1 +\次输出的信号比第 次输出的信号误码率低。
重复 S608-S613 , 直到 等于 N, 输出 FEC译码处理后的信号。
可选的, 在? '等于 N之后, 还可以对 FEC译码器输出信号进行判决, 以获知输出信号的质量。
本实施例中, 通过获取解调信号; 并且根据对解调信号进行 M进制 译码处理后反馈的第一译码信号, 对解调信号进行译码处理得到第二译码 信号。 由于译码器增加了译码处理结果作为反馈信号, 实现降低了译码过 程产生的误码扩散, 降低了系统的误码率, 提高了信号传输的准确率。 通 过仿真结果显示, 釆用本实施例的技术方案, 釆用 DQPSK编译码系统有 效补偿了 2dB的误码率, D16QAM编译码系统有效补偿了 2.3dB的误码率, 通过对差分迭代译码系统中 FEC译码器 LDPC码的优化,使 DQPSK差分 迭代系统性能逼近规则 LDPC码在非差分系统下的性能; 使 D16QAM差 分迭代系统性能超过规则 LDPC码在非差分系统下的性能, 在很大程度上 解决了误码扩散问题, 降低了系统的误码率。
上述实施例是以图 4所示光纤通信系统为例的较佳实施方式, 对于图 2和图 3所示光纤通信系统的实现原理和技术效果类似, 此处不再赘述。
图 11为本发明译码装置实施例一的结构示意图, 如图 11所示, 本实施 例的结构包括: 获取模块 1101和译码模块 1102, 其中, 获取模块 1101用于 获取解调信号; 译码模块 1102用于获取第一译码信号, 第一译码信号为 所述解调信号经过第' '次 M进制差分译码处理后所反馈的信号,' '为大于或 等于 0的整数; 译码模块 1102还用于根据所述第一译码信号, 对所述解 调信号进行 M进制差分译码处理, 得到第二译码信号。
本实施例中的各装置, 可用于执行图 5所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
进一步地, 译码模块 1102具体用于根据所述解调信号所对应的差分正交 相移键控 DQPSK差分编码或者 16进制正交幅度调制 D16QAM差分编码 的状态转移图, 釆用巴尔 -科克 -耶利内克-拉维夫 BCJR 算法对所述解调 信号进行 M进制差分译码处理; 根 E,. (Ci ) = ( /f - E^ )得到所述第二 译码信号, 其中, 表示比特序列, ^表示所述解调信号在解调前对应的 符号信息序列, ( / )为釆用 BCJR算法对所述解调信号进行 M进制差 分译码处理后得到的信号, 所述 )为所述第一译码信号, 所述 )为 所述第二译码信号。
图 12为本发明译码装置实施例二的结构示意图, 图 12是在图 1 1所 示实施例的基础上, 进一步地, 还包括 FEC译码模块 1 103 , FEC译码模 块 1103用于对 M进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译码处理。
进一步地, FEC译码模块 1103具体用于对第二译码信号对应的 FEC 编码所釆用的低密度奇偶校验 LDPC码的度分布进行优化, 获取 LDPC码 的最优度分布; 并根据最优度分布构造满足最优度分布的 LDPC码校验矩 阵; 并根据 LDPC码校验矩阵对 M进制差分译码处理后得到的第二译码 信号进行 FEC译码处理。
进一步地, FEC译码模块 1103具体用于确定进行 FEC译码处理所基 于的设定码率下的初始度分布; 确定初始度分布对应的初始信噪比; 依次 确定设定码率对应的多个第一度分布, 若初始信噪比下设定码率对应的第 一度分布的外信息转移图内的两条曲线不相交, 则将初始信噪比更新为第 一度分布对应的第一信噪比, 直至所确定的第一度分布的数量满足设定 值; 将满足设定值的第一信噪比对应的第一度分布作为 LDPC码的最优度 分布。
本实施例中的各装置, 可用于执行图 6所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 13为本发明译码装置实施例三的结构示意图, 如图 13所示, 图 13 是在图 12所示实施例的基础上, 进一步地, 还包括反向交织模块 1104和 正向交织模块 1105 , 其中, 反向交织模块 1 104用于对 M进制差分译码处 理后得到的第二译码信号进行反向交织处理, 得到反向交织后的第二译码 信号; FEC译码模块 1 103具体用于对反向交织后的第二译码信号进行 FEC 译码处理; 正向交织模块 1105用于对第一译码信号进行正向交织处理。
本实施例中的各装置, 可用于执行图 6所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 14为本发明译码装置实施例四的结构示意图, 如图 14所示, 本实施 例的装置包括获取器 1401和译码器 1402, 其中, 获取器 1401用于获取解 调信号; 译码器 1402用于获取第一译码信号, 第一译码信号为对解调信 号经过第''次 M进制差分译码处理后所反馈的信号, 为大于或等于 0的整 数; 译码器 1402还用于根据第一译码信号, 对解调信号进行 M进制差分 译码处理, 得到第二译码信号。
本实施例中的各装置, 可用于执行图 5所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
进一步地, 译码器 1402具体用于根据所述解调信号所对应的差分正 交相移键控 DQPSK差分编码或者 16进制正交幅度调制 D16QAM差分编 码的状态转移图, 釆用巴尔 -科克 -耶利内克-拉维夫 BCJR 算法对所述解 调信号进行 M进制差分译码处理; 根 ,.(^) = £(^/ )- (^)得到所述第 二译码信号, 其中, 表示比特序列, ^表示所述解调信号在解调前对应 的符号信息序列, 为釆用 BCJR算法对所述解调信号进行 M进制 差分译码处理后得到的信号,所述 )为所述第一译码信号,所述 为 所述第二译码信号。
图 15为本发明译码装置实施例五的结构示意图, 图 15是在图 14所 示实施例的基础上, 进一步地, 还包括 FEC译码器 1403 , FEC译码 1403 用于对 M进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译 码处理。
进一步地, FEC译码器 1403具体用于对第二译码信号对应的 FEC编 码所釆用的低密度奇偶校验 LDPC码的度分布进行优化, 获取 LDPC码的 最优度分布;并根据最优度分布构造满足最优度分布的 LDPC码校验矩阵; 并根据 LDPC码校验矩阵对 M进制差分译码处理后得到的第二译码信号 进行 FEC译码处理。
进一步地, FEC译码器 1403具体用于确定进行 FEC译码处理所基于 的设定码率下的初始度分布; 确定初始度分布对应的初始信噪比; 依次确 定设定码率对应的多个第一度分布, 若初始信噪比下设定码率对应的第一 度分布的外信息转移图内的两条曲线不相交, 则将初始信噪比更新为第一 度分布对应的第一信噪比, 直至所确定的第一度分布的数量满足设定值; 将满足设定值的第一信噪比对应的第一度分布作为 LDPC码的最优度分 布。
本实施例中的各装置, 可用于执行图 6所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 16是本发明译码装置实施例六的结构示意图, 图 16是在图 15所 示实施例的基础上, 进一步地, 还包括反向交织器 1404 和正向交织器 1405 , 其中, 反向交织器 1404用于对 M进制差分译码处理后得到的第二 译码信号进行反向交织处理, 得到反向交织后的第二译码信号; FEC译码 器 1403具体用于对反向交织后的第二译码信号进行 FEC译码处理; 正向 交织器 1405用于对第一译码信号进行正向交织处理。
本实施例中的各装置, 可用于执行图 6所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种译码方法, 其特征在于, 包括:
获取解调信号;
获取第一译码信号, 所述第一译码信号为所述解调信号经过第 次 M 进制差分译码处理后所反馈的信号, 为大于或等于 0的整数;
根据所述第一译码信号, 对所述解调信号进行 M进制差分译码处理, 得到第二译码信号。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述根据所述第一译 码信号, 对所述解调信号进行 M进制差分译码处理, 包括:
根据所述解调信号所对应的差分正交相移键控 DQPSK差分编码或者
16进制正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克- 耶利内克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理; 根 ,( ) = £( /¾) - ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, ( /^)为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 )为所述第一译码信号 , 所述 Afe)为所述第二译码信号。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述第 一译码信号, 对所述解调信号进行 M进制差分译码处理之后, 还包括: 对所述 M 进制差分译码处理后得到的第二译码信号进行前向纠错 FEC译码处理。
4、 根据权利要求 3所述的方法, 其特征在于,
所述对所述 M 进制差分译码处理后得到的第二译码信号进行前向纠 错 FEC译码处理, 包括:
对所述第二译码信号对应的 FEC编码所釆用的低密度奇偶校验 LDPC 码的度分布进行优化, 获取所述 LDPC码的最优度分布;
根据所述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 根据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第 二译码信号进行 FEC译码处理。
5、 根据权利要求 4所述的方法, 其特征在于, 所述对所述第二译码 信号对应的 FEC编码所釆用的低密度奇偶校验 LDPC码的度分布进行优 化, 获取所述 LDPC码的最优度分布, 包括:
确定进行所述 FEC译码处理所基于的设定码率下的初始度分布; 确定所述初始度分布对应的初始信噪比;
依次确定所述设定码率对应的多个第一度分布, 若所述初始信噪比下 所述设定码率对应的所述第一度分布的外信息转移图内的两条曲线不相 交, 则将所述初始信噪比更新为所述第一度分布对应的第一信噪比, 直至 所确定的第一度分布的数量满足设定值;
将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最 优度分布。
6、 根据权利要求 3所述的方法, 其特征在于, 所述对所述 M进制差 分译码处理后得到的第二译码信号进行前向纠错 FEC译码处理之前,还包 括:
对所述 M 进制差分译码处理后得到的第二译码信号进行反向交织处 理, 得到反向交织后的第二译码信号;
所述对所述 M 进制差分译码处理后得到的第二译码信号进行前向纠 错 FEC译码处理包括:
对所述反向交织后的第二译码信号进行 FEC译码处理;
所述根据所述第一译码信号, 对所述解调信号进行 M 进制差分译码 处理, 得到第二译码信号之前, 还包括:
对所述第一译码信号进行正向交织处理。
7、 一种译码装置, 其特征在于, 包括:
获取模块, 用于获取解调信号;
译码模块, 用于获取第一译码信号, 所述第一译码信号为所述解调信 号经过第''次 M进制差分译码处理后所反馈的信号, 为大于或等于 0的整 数;
所述译码模块还用于根据所述第一译码信号,对所述解调信号进行 M 进制差分译码处理, 得到第二译码信号。
8、 根据权利要求 7 所述的装置, 其特征在于, 所述译码模块具体用 于根据所述解调信号所对应的差分正交相移键控 DQPSK差分编码或者 16 进制正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克-耶 利内克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理; 根 ,( ) = £( /^) - ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, ( / )为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 为所述第一译码信号, 所述 为所述第二译码信号。
9、 根据权利要求 7或 8所述的装置, 其特征在于, 还包括:
FEC译码模块, 用于对所述 M进制差分译码处理后得到的第二译码 信号进行前向纠错 FEC译码处理。
10、 根据权利要求 9所述的装置, 其特征在于, 所述 FEC译码模块具 体用于对所述第二译码信号对应的 FEC 编码所釆用的低密度奇偶校验
LDPC码的度分布进行优化, 获取所述 LDPC码的最优度分布; 并根据所 述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 并根据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第二译码信号进行 FEC译码处理。
11、 根据权利要求 10所述的装置, 其特征在于, 所述 FEC译码模块 具体用于确定进行所述 FEC译码处理所基于的设定码率下的初始度分布; 确定所述初始度分布对应的初始信噪比; 依次确定所述设定码率对应的多 个第一度分布, 若所述初始信噪比下所述设定码率对应的所述第一度分布 的外信息转移图内的两条曲线不相交, 则将所述初始信噪比更新为所述第 一度分布对应的第一信噪比, 直至所确定的第一度分布的数量满足设定 值;
将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最优度 分布。
12、 根据权利要求 9所述的装置, 其特征在于, 还包括:
反向交织模块, 用于对所述 M 进制差分译码处理后得到的第二译码 信号进行反向交织处理, 得到反向交织后的第二译码信号;
所述 FEC译码模块,具体用于对所述反向交织后的第二译码信号进行 FEC译码处理;
正向交织模块, 用于对所述第一译码信号进行正向交织处理。
13、 一种译码装置, 其特征在于, 包括: 获取器, 用于获取解调信号;
译码器, 用于获取第一译码信号, 所述第一译码信号为对所述解调信 号经过第''次 M进制差分译码处理后所反馈的信号, 为大于或等于 0的整 数;
所述译码器还用于根据所述第一译码信号,对所述解调信号进行 M进 制差分译码处理, 得到第二译码信号。
14、 根据权利要求 13 所述的装置, 其特征在于, 所述译码器具体用 于根据所述解调信号所对应的差分正交相移键控 DQPSK差分编码或者 16 进制正交幅度调制 D16QAM差分编码的状态转移图, 釆用巴尔-科克-耶 利内克-拉维夫 BCJR算法对所述解调信号进行 M进制差分译码处理; 根 ,( ) = £( /¾) - ( )得到所述第二译码信号, 其中, 表示比特 序列, ^表示所述解调信号在解调前对应的符号信息序列, ( /^)为釆 用 BCJR算法对所述解调信号进行 M进制差分译码处理后得到的信号,所 述 )为所述第一译码信号 , 所述 ( )为所述第二译码信号。
15、 根据权利要求 13或 14所述的装置, 其特征在于, 还包括:
FEC译码器, 用于对所述 M进制差分译码处理后得到的第二译码信 号进行前向纠错 FEC译码处理。
16、 根据权利要求 15所述的装置, 其特征在于, 所述 FEC译码器具 体用于对所述第二译码信号对应的 FEC 编码所釆用的低密度奇偶校验 LDPC码的度分布进行优化, 获取所述 LDPC码的最优度分布; 并根据所 述最优度分布构造满足所述最优度分布的 LDPC码校验矩阵; 并根据所述 LDPC码校验矩阵对所述 M进制差分译码处理后得到的第二译码信号进行 FEC译码处理。
17、 根据权利要求 16所述的装置, 其特征在于, 所述 FEC译码器具 体用于确定进行所述 FEC译码处理所基于的设定码率下的初始度分布;确 定所述初始度分布对应的初始信噪比; 依次确定所述设定码率对应的多个 第一度分布, 若所述初始信噪比下所述设定码率对应的所述第一度分布的 外信息转移图内的两条曲线不相交, 则将所述初始信噪比更新为所述第一 度分布对应的第一信噪比, 直至所确定的第一度分布的数量满足设定值; 将满足设定值的第一信噪比对应的第一度分布作为所述 LDPC码的最优度 分布。
18、 根据权利要求 15所述的装置, 其特征在于, 还包括:
反向交织器, 用于对所述 M 进制差分译码处理后得到的第二译码信 号进行反向交织处理, 得到反向交织后的第二译码信号;
所述 FEC 译码器, 具体用于对所述反向交织后的第二译码信号进行
FEC译码处理;
正向交织器, 用于对所述第一译码信号进行正向交织处理。
PCT/CN2013/070414 2013-01-14 2013-01-14 译码方法和装置 WO2014107899A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380000060.7A CN103384975B (zh) 2013-01-14 2013-01-14 译码方法和装置
PCT/CN2013/070414 WO2014107899A1 (zh) 2013-01-14 2013-01-14 译码方法和装置
EP13871016.5A EP2940913B1 (en) 2013-01-14 2013-01-14 Decoding method and device
US14/799,381 US9602238B2 (en) 2013-01-14 2015-07-14 Decoding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070414 WO2014107899A1 (zh) 2013-01-14 2013-01-14 译码方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/799,381 Continuation US9602238B2 (en) 2013-01-14 2015-07-14 Decoding method and apparatus

Publications (1)

Publication Number Publication Date
WO2014107899A1 true WO2014107899A1 (zh) 2014-07-17

Family

ID=49492146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070414 WO2014107899A1 (zh) 2013-01-14 2013-01-14 译码方法和装置

Country Status (4)

Country Link
US (1) US9602238B2 (zh)
EP (1) EP2940913B1 (zh)
CN (1) CN103384975B (zh)
WO (1) WO2014107899A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028868A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 信号传输方法及系统
US10715276B2 (en) 2018-05-26 2020-07-14 Ntwine, Llc Bandwidth constrained communication systems with optimized low-density parity-check codes
KR102706725B1 (ko) * 2018-07-03 2024-09-19 에스케이하이닉스 주식회사 메모리 컨트롤러 및 이의 동작 방법
WO2021181278A1 (en) 2020-03-10 2021-09-16 Ntwine, Llc Bandwidth constrained communication systems with frequency domain information processing
US11990922B2 (en) 2021-01-11 2024-05-21 Ntwine, Llc Bandwidth constrained communication systems with neural network based detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059748A2 (en) * 1999-05-28 2000-12-13 Lucent Technologies Inc. Soft selection combining method in a digital transmission system based on successive erasures of frequency band components
CN101026430A (zh) * 2006-02-20 2007-08-29 华为技术有限公司 一种去除干扰的方法及系统
CN101808057A (zh) * 2009-02-16 2010-08-18 华为技术有限公司 一种盲均衡的方法、装置和译码器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968021B1 (en) * 2001-09-24 2005-11-22 Rockwell Collins Synchronization method and apparatus for modems based on jointly iterative turbo demodulation and decoding
US7251768B2 (en) * 2002-04-22 2007-07-31 Regents Of The University Of Minnesota Wireless communication system having error-control coder and linear precoder
KR100666399B1 (ko) * 2004-12-10 2007-01-09 한국전자통신연구원 수신기 및 그 신호 처리 방법
KR101182461B1 (ko) * 2005-07-29 2012-09-12 삼성전자주식회사 와이브로 시스템에서 연접 버스트의 효율적인 복호 방법 및장치
CN100481827C (zh) 2005-12-14 2009-04-22 北京交通大学 Ofdm系统时频域混合差分调制方法
JP5354979B2 (ja) 2007-07-12 2013-11-27 パナソニック株式会社 低密度パリティ検査畳み込み符号(ldpc−cc)符号化器及びldpc−cc復号器
CN101841339B (zh) * 2009-03-17 2015-05-06 电信科学技术研究院 一种编码器、译码器及编码、译码方法
US8331510B2 (en) * 2009-04-06 2012-12-11 Telefonaktiebolaget L M Ericsson (Publ) Receiver and method for two-stage equalization with sequential search
US20110116515A1 (en) * 2009-11-16 2011-05-19 Nxp B.V. System and method for demodulating and decoding a differentially encoded coded orthogonal frequency division multiplexing modulation code using two-dimensional code blocks
US20140064412A1 (en) * 2012-08-30 2014-03-06 Texas Instruments Incorporated High Performance Turbo DPSK

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059748A2 (en) * 1999-05-28 2000-12-13 Lucent Technologies Inc. Soft selection combining method in a digital transmission system based on successive erasures of frequency band components
CN101026430A (zh) * 2006-02-20 2007-08-29 华为技术有限公司 一种去除干扰的方法及系统
CN101808057A (zh) * 2009-02-16 2010-08-18 华为技术有限公司 一种盲均衡的方法、装置和译码器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940913A4 *

Also Published As

Publication number Publication date
US20150318955A1 (en) 2015-11-05
CN103384975B (zh) 2016-06-08
EP2940913A4 (en) 2016-04-06
CN103384975A (zh) 2013-11-06
US9602238B2 (en) 2017-03-21
EP2940913B1 (en) 2017-05-17
EP2940913A1 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
CN109964426B (zh) 用于解析接收信号的信号接收器和方法、通信系统
US8291287B2 (en) Encoding and modulating method, and decoding method for wireless communication apparatus
CN103503319A (zh) 一种译码方法、译码装置和通信系统
WO2012122758A1 (zh) 一种数据传输方法、系统及控制站
CN111245571B (zh) 噪声聚合系统下与编码调制技术相结合的接收机设计方法
CN110311755B (zh) 一种利用线性分组码传输额外信息的方法
US9735921B2 (en) Ultra-high speed optical transport employing LDPC-coded modulation with non-uniform signaling
WO2014107899A1 (zh) 译码方法和装置
US11271685B2 (en) Method of hybrid automatic repeat request implementation for data transmission with multilevel coding
CN112332985A (zh) 一种基于LDPC-Polar联合编码的量子密钥分发数据协商方法和系统
CN107919944B (zh) 用于生成经优化的编码调制的方法和设备
CN102428667B (zh) 实施差分调制的调制方法和装置、对应的解调方法和装置
TWI433471B (zh) (n,k)方塊碼之軟輸入軟輸出解碼裝置
CN110233698B (zh) 极化码的编码及译码方法、发送设备、接收设备、介质
CN101237434A (zh) 一种格雷映射m-psk调制的软判决方法
US11522635B2 (en) Device and method for transmitting data by using multilevel coding, and communication system
US20220038117A1 (en) Device and method for transmitting data by using multilevel coding, and communication system
CN110535805B (zh) 一种基于星座旋转的额外信息传输方法
CN103746772B (zh) Ldpc编码调制系统的解调器输出软信息的优化方法
CN103346863B (zh) 一种算术域比特交织编码调制方法
Li et al. Spinal codes over BSC: Error probability analysis and the puncturing design
Saha et al. Bit-interleaved polar coded modulation with iterative decoding
CN114070463B (zh) 通过使用多层编码来发送数据的通信装置及通信系统
KR101935973B1 (ko) 고차원 apsk 변조 방식을 위한 연판정 검출 장치 및 방법
JPWO2021188513A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013871016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013871016

Country of ref document: EP