WO2014100908A1 - Inter-cell current-modulating bar for electrolytic applications provided with electrical resistances between cathode-anode inter-cell connectors - Google Patents
Inter-cell current-modulating bar for electrolytic applications provided with electrical resistances between cathode-anode inter-cell connectors Download PDFInfo
- Publication number
- WO2014100908A1 WO2014100908A1 PCT/CL2013/000082 CL2013000082W WO2014100908A1 WO 2014100908 A1 WO2014100908 A1 WO 2014100908A1 CL 2013000082 W CL2013000082 W CL 2013000082W WO 2014100908 A1 WO2014100908 A1 WO 2014100908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intercell
- bar
- connectors
- electrolytic processes
- current modulating
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 9
- 230000002950 deficient Effects 0.000 description 5
- 238000005363 electrowinning Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/12—Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
Definitions
- the technology is oriented to the mining area, more specifically, corresponds to a current modulating intercell bar for electrolytic applications equipped with electrical resistances between cathode-anode intercell connectors.
- intercell bars in electrochemical processes such as electrorefining or metal electrowinning is an established industrial practice.
- the purpose of these bars is to interconnect and energize the electrodes that are located in each electrolytic cell (such as 66 anodes and 65 cathodes) and transfer the current from cell to cell, to configure a series circuit, usually up to 100 cells .
- the bars of the Waiker type or equipotentials are widely used in these electrolytic processes for more than 100 years (Patent US 687,800 of 901). This technology is based on the direct connection of all the cathodes of a cell (outgoing electrical currents) with all the anodes of the next cell (incoming electric currents) forming circuits of cells in series.
- Figure 1 shows an embodiment of Waiker bars, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (d) to the insulating base; and (e) to the intercell bar.
- Waiker or equipotential bars are their lack of capacity to limit the over current in the event of a metallurgical short circuit between a pair cathode anode. During this event, the bar provides a very high current to the short circuit which leads to permanent damage to electrical contacts and electrodes. In the meantime, the remaining electrodes lose that current which decreases the deposit of metal to be harvested. The measurements made in industrial plants indicate this anomaly as the main cause of the loss of production (or loss of current efficiency).
- Figure 2 shows the modeling of the Waiker connection with an electrical circuit superimposed on the physical diagram of the process, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (e) to the intercell bar, (f) to the contact resistance of the anode; (g) to the electrolyte resistance; (h) the reaction potential; e (i) to the contact resistance of the cathode.
- the technology corresponds to a current-modulating intercell bar for electrolytic processes, which is used between cells in electrowinning or electrorefining plants.
- the main feature of this innovation is the inclusion of electrical resistances in the range of micro-ohms, arranged between intercell connectors (cathode-anode). This allows an operation with small differences in electrical potential between the connectors along the extension of the bar.
- the preferred flow of current is through the high conductivity connectors between a cathode of a cell N with an anode of the next cell N + 1.
- the inclusion of resistors between the connectors of the bar completely modifies the electrical circuit of the prior art. As a result there is a limitation of the current to short circuits and a deviation of the current when an event of open circuits or defective contacts occurs.
- the intercell bar is composed of intercell connectors of high electrical conductivity, which connect to one or more cathodes with one or more anodes and can also connect electrodes to the left, right or zig-zag between consecutive serial cells.
- Said intercell connectors are mechanically joined to each other to fix their relative position and allow thermal diffusion; they are also electrically connected to each other by means of resistors. These electrical resistances allow to maintain a diversity of electrical potentials in the extension of the bar and offer alternative ways of circulation of current.
- the electrical resistances are built by adjusting the dimensions and selecting the mechanical connection materials with specific electrical resistivities. These materials can be equal or from a material of conductivity different from that used in the intercell connectors such as stainless steel.
- FIG. 5 An embodiment of this invention is presented in Figure 5, which comprises high conductivity connectors (I) for connecting electrodes of successive cells (anode (a) and cathode (b), respectively), positioned and secured to a base lower conductivity metal (j), where said base acts as an equalizer or thermal diffuser and as electrical resistance (n).
- metal or non-metallic bolts (m) can be used for fixing the connectors (I) to the metal base (j).
- the cathode-anode connectors (I) can be made of copper and the electrical resistances (n) are implemented using the metal base (j) that has lower electrical conductivity, as for example, it is made of 316 stainless steel.
- Figure 6 shows an exploded view of the current modulating bar shown in Figure 5, where (d) corresponds to the insulating base; (j) metallic base of lower conductivity; (k) insulating material; (I) intercell connectors; and (m) fixing bolts.
- an electrical insulating material (k) is used, which is located partially or totally between the connectors and the metal base, which must have a specific electrical resistivity> io 13 Ohm-m and a coefficient of thermal conduction greater than 0, 1 Kcal / mh ° C.
- the insulating material (k) used should preferably be of a thickness less than 1 millimeter.
- One possibility is to use teflon or other electrical insulating material that offers thermal conduction and tolerance to chemical attack.
- the resistances between the intercell connectors are calculated and adjusted to equalize the distribution of currents and cope with the diversity of industrial situations that must be faced. Precisely, thanks to the different conductivities of metals, degrees of freedom are incorporated into the conception and design stage. Now, it is possible to visualize the intercell bar as a potential calibrator with resistors between connectors in the range of the micro-ohms. From the thermal point of view the inclusion of a connection Metal between the connectors allows the diffusion of heat avoiding focused temperatures.
- the calculation of the resistances must consider the dimensional parameters of the electrodes and the cells, the specific electrical and thermal resistivities of the metallic materials that make up the intercell bar, the anode and cathode technology, the electrochemical parameters, the ventilation conditions and cooling, in addition to the levels of current densities in which it is going to operate.
- the resistors between the connectors closest to the ends must be graduated with less relative resistivity to solve the boundary conditions. With the available computational technology it is possible to adjust the modulating behavior of the BMC bar in a precise way.
- Figure 7 shows the equivalent electrical circuit of the BMC connection superimposed on the physical diagram of the process, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (f) to the contact resistance of the anode; (g) to the electrolyte resistance; (h) the reaction potential; (i) to the contact resistance of the cathode, (I) intercell connector; (j) metal base; (n) electrical resistance between connectors.
- BMC bars can be used autonomously to reduce energy consumption.
- technologies such as those based on titanium anodes - which require an investment in anodes four times higher - can benefit and be protected with BMC because of their ability to modulate the intensity and occurrence of short circuits. The synergy of these technologies would allow to aim for 30% of energy savings. By itself, this technology allows operating with electric currents at 10% above the nominal values which adds to a higher current efficiency. Operational aspects of BMC bars:
- ⁇ allows to increase the process current by 10% over the nominal value; ⁇ inhibits and limits short circuits;
- the number of operational electrodes can be adjusted by adding or removing connectors.
- a perspective view of the BMC connecting rod is presented in Figure 8 and an exploded view of the bar is presented in Figure 9, where (a) corresponds to the anode; (b) to the cathode (it was not, but it is necessary to indicate what corresponds (c), (d) the insulating base, (j) metallic base of lower conductivity, (k) insulating material with thickness less than 1 mm, (I) intercell connectors, and (m) fixation bolts
- random distributions were applied to the resistive parameters of the model: contact resistances (Re) and electrolyte resistances (Re) .
- the ranges of variation and probabilistic occurrence were adjusted to the measured at the Zald ⁇ var Mining Company's electrowinning facility
- the current level used was 660 A per cathode or 330 A / m 2 per side of the permanent cathode In this case, the internal micro-resistances between cathode-anode connectors
- the BMC bar were calibrated at 270 micro-ohm
- Table 1 presents a comparative table of the technologies analyzed for this embodiment with a central triangular bar.
- the hot point temperature in Walker occurred in the presence of a short circuit.
- the hot spot temperature was presented in the presence of defective contacts.
- the BMC bars did not produce high temperatures or hot spots above 83 ° C in the intercell bar. This lower maximum temperature preserves the useful life of the intercell bars and the electrode holders (hangers). This is because the hardness and integrity of the contact points between the electrode holder bars and the intercell connectors usually made of copper are maintained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
The invention relates to an inter-cell current-modulating bar for electrolytic processes, comprising electrical resistances in the micro-ohm range, located between high-conductivity cathode-anode inter-cell connectors.
Description
BARRA INTERCELDA MODULADORA DE CORRIENTES PARA APLICACIONES ELECTROLÍTICAS DOTADA DE RESISTENCIAS ELÉCTRICAS ENTRE CONECTORES INTERCELDA CÁTODO-ÁNODO. Sector Técnico INTERCELED CURRENT MODULATOR BAR FOR ELECTROLYTIC APPLICATIONS EQUIPPED WITH ELECTRICAL RESISTORS BETWEEN CONNECTORS INTERCELDA CÁTODO-ÁNODO. Technical Sector
La tecnología está orientada al área minera, más específicamente, corresponde a una barra intercelda moduladora de corrientes para aplicaciones electrolíticas dotadas de resistencias eléctricas entre conectores intercelda cátodo-ánodo. The technology is oriented to the mining area, more specifically, corresponds to a current modulating intercell bar for electrolytic applications equipped with electrical resistances between cathode-anode intercell connectors.
Técnica Anterior Previous Technique
La utilización de barras intercelda en procesos electroquímicos como electrorefinación o electroobtención de metales es una práctica industrial establecida. El propósito de estas barras es interconectar y energizar los electrodos que se encuentran ubicados en cada celda electrolítica (como por ejemplo 66 ánodos y 65 cátodos) y transferir la corriente de celda en celda, para configurar un circuito en serie, usualmente de hasta 100 celdas. Las barras del tipo Waiker o equipotenciales son ampliamente utilizadas en estos procesos electrolíticos desde hace más de 100 años (Patente US 687,800 de 901). Esta tecnología se basa en la conexión directa de todos los cátodos de una celda (corrientes eléctricas salientes) con todos los ánodos de la celda siguiente (corrientes eléctricas entrantes) formando circuitos de celdas en serie. Esto se presenta en la Figura 1 , que muestra una forma de realización de barras Waiker, donde (a) corresponde al ánodo; (b) al cátodo; (c) al electrolito; (d) a la base aislante; y (e) a la barra intercelda. The use of intercell bars in electrochemical processes such as electrorefining or metal electrowinning is an established industrial practice. The purpose of these bars is to interconnect and energize the electrodes that are located in each electrolytic cell (such as 66 anodes and 65 cathodes) and transfer the current from cell to cell, to configure a series circuit, usually up to 100 cells . The bars of the Waiker type or equipotentials are widely used in these electrolytic processes for more than 100 years (Patent US 687,800 of 901). This technology is based on the direct connection of all the cathodes of a cell (outgoing electrical currents) with all the anodes of the next cell (incoming electric currents) forming circuits of cells in series. This is presented in Figure 1, which shows an embodiment of Waiker bars, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (d) to the insulating base; and (e) to the intercell bar.
La mayor desventaja de las barras Waiker o equipotenciales es su falta de capacidad para limitar la sobre corriente frente al evento de cortocircuito metalúrgico entre un par ánodo cátodo. Durante este evento, la barra aporta una corriente muy elevada al cortocircuito lo que conlleva daños permanentes en contactos eléctricos y electrodos. En el intertanto, los restantes electrodos pierden esa corriente lo que disminuye el depósito de metal al ser cosechado. Las mediciones realizadas en plantas industriales indican a ésta anomalía como la principal causa de la pérdida de producción (o pérdida de eficiencia de corriente). La Figura 2 muestra la modelación de la conexión Waiker con un circuito eléctrico superpuesto al diagrama físico del proceso, donde (a) corresponde al ánodo; (b) al cátodo; (c) al electrolito; (e) a la barra intercelda, (f) a la resistencia de contacto del ánodo; (g) a la resistencia del electrolito; (h) al potencial de reacción; e (i) a la resistencia de contacto del cátodo. The main disadvantage of the Waiker or equipotential bars is their lack of capacity to limit the over current in the event of a metallurgical short circuit between a pair cathode anode. During this event, the bar provides a very high current to the short circuit which leads to permanent damage to electrical contacts and electrodes. In the meantime, the remaining electrodes lose that current which decreases the deposit of metal to be harvested. The measurements made in industrial plants indicate this anomaly as the main cause of the loss of production (or loss of current efficiency). Figure 2 shows the modeling of the Waiker connection with an electrical circuit superimposed on the physical diagram of the process, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (e) to the intercell bar, (f) to the contact resistance of the anode; (g) to the electrolyte resistance; (h) the reaction potential; e (i) to the contact resistance of the cathode.
Una tecnología más reciente de barras intercelda es del tipo multicircuital (Patente Chilena N° de registro 43168 - concedida en agosto del 2007 - y denominada: "Celdas electrolíticas de conexión eléctrica multicircuital" y la solicitud de patente CL472-2010, presentada el 11/05/2010 y denominada: "Barra intercelda para procesos electrolíticos formada con aisladores y
conectores ánodo cátodo, que presenta baja dispersión de corrientes, limita los cortocircuitos, mejora la calidad físico-química del producto y reduce el consumo específico de energía"). La Figura 3 muestra una posible realización de una barra con tecnología multicircuital. La Figura 4 muestra el circuito eléctrico equivalente de esta conexión, también denominada Optibar, superpuesto al diagrama físico del proceso, donde (a) corresponde al ánodo; (b) al cátodo; (c) al electrolito; (d) a la base aislante; (e) a los segmentos conductores; (f) a la resistencia de contacto del ánodo; (g) a la resistencia del electrolito; (h) al potencial de reacción; e (i) a la resistencia de contacto del cátodo. Con esta barra se resuelve el problema del cortocircuito, sin embargo, el consumo de energía se ve afectado en presencia de contactos defectuosos (entre electrodos y segmentos de la barra intercelda). Además, en el evento de circuito abierto se compromete el depósito de metal en cuatro caras de los cátodos. La pérdida de eficiencia empeora si se producen múltiples circuitos abiertos en una barra. Otra desventaja importante es la ausencia de difusión térmica entre los conectores intercelda. A more recent technology of inter-cell bars is of the multicircuit type (Chilean Patent Registration No. 43168 - granted in August 2007 - and named: "Electrolytic Cells for Multicircuit Electrical Connection" and patent application CL472-2010, filed on 11 / 05/2010 and named: "Intercell bar for electrolytic processes formed with insulators and anode cathode connectors, which presents low dispersion of currents, limits short circuits, improves the physical-chemical quality of the product and reduces the specific energy consumption. ") Figure 3 shows a possible embodiment of a bar with multicircuit technology. shows the electrical circuit equivalent of this connection, also called Optibar, superimposed on the physical diagram of the process, where (a) corresponds to the anode, (b) to the cathode, (c) to the electrolyte, (d) to the insulating base; ) to the conductive segments, (f) to the contact resistance of the anode, (g) to the resistance of the electrolyte, (h) to the reaction potential, e (i) to the contact resistance of the cathode. solves the problem of short circuit, however, energy consumption is affected in the presence of defective contacts (between electrodes and segments of the intercell bar.) Also, in the open circuit event the metal deposit is compromised on four faces of the cathodes. The efficiency loss worsens if multiple open circuits occur in a bar. Another important disadvantage is the absence of thermal diffusion between the intercell connectors.
Divulgación de la Invención Disclosure of the Invention
La tecnología corresponde a una barra intercelda moduladora de corrientes para procesos electrolíticos, que se utiliza entre celdas en plantas de electroobtención o electroref ¡nación. La particularidad principal de esta innovación es la inclusión de resistencias eléctricas en el rango de micro-ohms, dispuestas entre conectores intercelda (cátodo-ánodo). Esto permite una operación con pequeñas diferencias de potencial eléctrico entre los conectores a lo largo de la extensión de la barra. The technology corresponds to a current-modulating intercell bar for electrolytic processes, which is used between cells in electrowinning or electrorefining plants. The main feature of this innovation is the inclusion of electrical resistances in the range of micro-ohms, arranged between intercell connectors (cathode-anode). This allows an operation with small differences in electrical potential between the connectors along the extension of the bar.
Con esta invención se producen múltiples caminos para la circulación de corriente eléctrica. La circulación preferente de corriente es a través de los conectores de alta conductividad entre un cátodo de una celda N con un ánodo de la celda siguiente N+1. La inclusión de resistencias entre los conectores de la barra modifica completamente el circuito eléctrico del arte previo. Como resultado se produce una limitación de la corriente ante cortocircuitos y una desviación de la corriente cuando ocurre un evento de circuitos abiertos o contactos defectuosos. With this invention, multiple paths for the circulation of electrical current are produced. The preferred flow of current is through the high conductivity connectors between a cathode of a cell N with an anode of the next cell N + 1. The inclusion of resistors between the connectors of the bar completely modifies the electrical circuit of the prior art. As a result there is a limitation of the current to short circuits and a deviation of the current when an event of open circuits or defective contacts occurs.
La barra intercelda está compuesta de conectores intercelda de alta conductividad eléctrica, los que conectan a uno o más cátodos con uno o más ánodos y además pueden conectar electrodos hacia la izquierda, derecha o en forma zig-zag entre celdas en serie consecutivas. Dichos conectores intercelda se unen mecánicamente entre sí para fijar su posición relativa y permitir la difusión térmica; además se conectan eléctricamente entre sí mediante resistencias. Estas resistencias eléctricas permiten mantener una diversidad de potenciales eléctricos en la extensión de la barra y ofrecen vías alternativas de circulación de corriente. Las resistencias eléctricas se construyen ajustando las dimensiones y seleccionando los materiales de conexión mecánica con
resistividades eléctricas específicas. Estos materiales pueden ser ¡guales o de un material de conductividad diferente al utilizado en los conectores intercelda como acero inoxidable. Una forma de realización de esta invención se presenta en la Figura 5, la que comprende conectores de alta conductividad (I) para conectar electrodos de celdas sucesivas (ánodo (a) y cátodo (b), respectivamente), posicionados y asegurados a una base metálica de menor conductividad (j), donde dicha base actúa como ecualizador o difusor térmico y como resistencia eléctrica (n). En esta realización se pueden utilizar pernos metálicos o no metálicos (m) para la fijación de los conectores (I) a la base metálica (j). Los conectores (I) cátodo- ánodo se pueden elaborar de cobre y las resistencias eléctricas (n) se implementan utilizando la base metálica (j) que presenta menor conductividad eléctrica, como por ejemplo, se elabora de acero inoxidable 316. Para mayor detalle, en la Figura 6 se muestra un despiece de la barra moduladora de corrientes mostrada en la Figura 5, donde (d) corresponde a la base aislante; (j) base metálica de menor conductividad; (k) material aislante; (I) conectores intercelda; y (m) pernos de fijación. Para ajustar la resistencia eléctrica (n) se utiliza, opcionalmente, un material aislante eléctrico (k) que se ubica parcial o totalmente entre los conectores y la base metálica, el cual debe presentar una resistividad eléctrica específica > io13Ohm-m y un coeficiente de conducción térmica mayor a 0, 1 Kcal/mh°C. De esta manera la conexión eléctrica entre cada conector intercelda (I) y la base metálica (j) se produce mediante los pernos de fijación (m) que permiten el ajuste de las resistencias eléctricas (n). El material aislante (k) utilizado debe ser preferentemente de un espesor inferior a 1 milímetro. Una posibilidad es utilizar teflón u otro material aislante eléctrico que ofrezca conducción térmica y tolerancia al ataque químico. The intercell bar is composed of intercell connectors of high electrical conductivity, which connect to one or more cathodes with one or more anodes and can also connect electrodes to the left, right or zig-zag between consecutive serial cells. Said intercell connectors are mechanically joined to each other to fix their relative position and allow thermal diffusion; they are also electrically connected to each other by means of resistors. These electrical resistances allow to maintain a diversity of electrical potentials in the extension of the bar and offer alternative ways of circulation of current. The electrical resistances are built by adjusting the dimensions and selecting the mechanical connection materials with specific electrical resistivities. These materials can be equal or from a material of conductivity different from that used in the intercell connectors such as stainless steel. An embodiment of this invention is presented in Figure 5, which comprises high conductivity connectors (I) for connecting electrodes of successive cells (anode (a) and cathode (b), respectively), positioned and secured to a base lower conductivity metal (j), where said base acts as an equalizer or thermal diffuser and as electrical resistance (n). In this embodiment, metal or non-metallic bolts (m) can be used for fixing the connectors (I) to the metal base (j). The cathode-anode connectors (I) can be made of copper and the electrical resistances (n) are implemented using the metal base (j) that has lower electrical conductivity, as for example, it is made of 316 stainless steel. For more detail, Figure 6 shows an exploded view of the current modulating bar shown in Figure 5, where (d) corresponds to the insulating base; (j) metallic base of lower conductivity; (k) insulating material; (I) intercell connectors; and (m) fixing bolts. To adjust the electrical resistance (n), an electrical insulating material (k) is used, which is located partially or totally between the connectors and the metal base, which must have a specific electrical resistivity> io 13 Ohm-m and a coefficient of thermal conduction greater than 0, 1 Kcal / mh ° C. In this way the electrical connection between each intercell connector (I) and the metal base (j) is produced by the fixing bolts (m) that allow the adjustment of the electrical resistances (n). The insulating material (k) used should preferably be of a thickness less than 1 millimeter. One possibility is to use teflon or other electrical insulating material that offers thermal conduction and tolerance to chemical attack.
Por otra parte, con esta invención se puede ajustar la cantidad de electrodos en operación agregando o retirando conectores intercelda. En el caso de deterioro de un conector, éste puede reemplazarse sin detener el proceso desplazando lateralmente el par cátodo-ánodo con una palanca. Enseguida, se quita el perno para reemplazar el conector por uno nuevo. Esta operación puede realizarse en un tiempo inferior a dos minutos. En el caso de barras Walker y Optibar se requiere reemplazar toda la barra, lo que involucra afectar la producción de dos o más celdas por varias horas. Sólo por este concepto, el ahorro anual para una planta de 300 celdas supera los US$ 200,000 (considerando energía, producción y barras). On the other hand, with this invention it is possible to adjust the number of electrodes in operation by adding or removing intercell connectors. In the case of deterioration of a connector, it can be replaced without stopping the process by laterally moving the cathode-anode pair with a lever. Next, the bolt is removed to replace the connector with a new one. This operation can be carried out in less than two minutes. In the case of Walker and Optibar bars it is necessary to replace the entire bar, which involves affecting the production of two or more cells for several hours. Only for this concept, the annual savings for a 300-cell plant exceeds US $ 200,000 (considering energy, production and bars).
Las resistencias entre los conectores intercelda se calculan y ajustan para ecualizar la distribución de corrientes y sobrellevar la diversidad de situaciones industriales que se debe enfrentar. Precisamente, gracias a las diferentes conductividades de los metales se incorporan grados de libertad a la etapa de concepción y diseño. Ahora, es posible visualizar la barra intercelda como un calibrador de potenciales con resistencias entre conectores en el rango de los micro-ohms. Desde el punto de vista térmico la inclusión de una conexión
metálica entre los conectores permite la difusión de calor evitando sobre temperaturas focalizadas. The resistances between the intercell connectors are calculated and adjusted to equalize the distribution of currents and cope with the diversity of industrial situations that must be faced. Precisely, thanks to the different conductivities of metals, degrees of freedom are incorporated into the conception and design stage. Now, it is possible to visualize the intercell bar as a potential calibrator with resistors between connectors in the range of the micro-ohms. From the thermal point of view the inclusion of a connection Metal between the connectors allows the diffusion of heat avoiding focused temperatures.
El cálculo de las resistencias debe considerar los parámetros dimensionales de los electrodos y de las celdas, las resistividades eléctricas y térmicas específicas de los materiales metálicos que componen la barra intercelda, la tecnología de ánodos y cátodos, los parámetros electroquímicos, las condiciones de ventilación y enfriamiento, además de los niveles de densidades de corriente en los que se va a operar. Además, las resistencias entre los conectores de mayor proximidad a los extremos deben ser graduadas con menor resistividad relativa para resolver las condiciones de contorno. Con la tecnología computacional disponible es posible ajusfar en forma precisa el comportamiento modulador de la barra BMC. La Figura 7 muestra el circuito eléctrico equivalente de la conexión BMC superpuesto al diagrama físico del proceso, donde (a) corresponde al ánodo; (b) al cátodo; (c) al electrolito; (f) a la resistencia de contacto del ánodo; (g) a la resistencia del electrolito; (h) al potencial de reacción; (i) a la resistencia de contacto del cátodo, (I) conector intercelda; (j) base metálica; (n) resistencia eléctrica entre conectores. The calculation of the resistances must consider the dimensional parameters of the electrodes and the cells, the specific electrical and thermal resistivities of the metallic materials that make up the intercell bar, the anode and cathode technology, the electrochemical parameters, the ventilation conditions and cooling, in addition to the levels of current densities in which it is going to operate. In addition, the resistors between the connectors closest to the ends must be graduated with less relative resistivity to solve the boundary conditions. With the available computational technology it is possible to adjust the modulating behavior of the BMC bar in a precise way. Figure 7 shows the equivalent electrical circuit of the BMC connection superimposed on the physical diagram of the process, where (a) corresponds to the anode; (b) to the cathode; (c) to the electrolyte; (f) to the contact resistance of the anode; (g) to the electrolyte resistance; (h) the reaction potential; (i) to the contact resistance of the cathode, (I) intercell connector; (j) metal base; (n) electrical resistance between connectors.
Con la tecnología Walker, las corrientes por cátodo tienen diferencias de hasta 10% al empezar un ciclo de 100 horas, lo que empeora gradualmente a medida que transcurre el tiempo. En efecto, los cátodos de acero con más corriente cosechan cada vez más cobre, lo que aumenta el desequilibrio progresivamente. Esto sucede porque en términos relativos la distancia entre ánodo-cátodo disminuye más rápidamente que la de los restantes electrodos con menos corriente. Estos desequilibrios incrementan la ocurrencia de cortocircuitos y las pérdidas de eficiencia de corriente. La innovación BMC evita este comportamiento vicioso al crear canales de corriente manteniendo mejor el balance durante el ciclo. Con BMC disminuye notablemente la ocurrencia de cortocircuitos que se presentan utilizando tecnología Walker. Comparada con la tecnología multicircuital, la ventaja de esta innovación es su mejor inmunidad a contactos defectuosos y circuitos abiertos. Esto también aporta en la disminución de la ocurrencia de cortocircuitos y posibilita el aumento del ciclo en 6 o más horas. Prolongar el ciclo es ventajoso porque las últimas horas son muy eficientes por la menor resistencia de electrolito y porque se requieren menos maniobras de cosecha. Las barras BMC pueden ser utilizadas en forma autónoma para reducir el consumo de energía. Sin embargo, tecnologías como las basadas en ánodos de titanio -que requieren una inversión en ánodos cuatro veces más alta- pueden beneficiarse y protegerse con BMC por su capacidad para modular la intensidad y ocurrencia de cortocircuitos. La sinergia de estas tecnologías permitiría apuntar a un 30% de ahorro energético. Por si sola, esta tecnología permite operar con corrientes eléctricas a un 10% por sobre los valores nominales lo que se suma a una mayor eficiencia de corriente.
Aspectos operacionales de las barras BMC: With Walker technology, cathode currents have differences of up to 10% when starting a 100-hour cycle, which gradually worsens as time passes. In effect, the most current steel cathodes harvest more and more copper, which increases the imbalance progressively. This happens because in relative terms the distance between anode-cathode decreases more quickly than that of the remaining electrodes with less current. These imbalances increase the occurrence of short circuits and losses of current efficiency. The BMC innovation avoids this vicious behavior by creating current channels maintaining better balance during the cycle. With BMC, the occurrence of short circuits that occur using Walker technology decreases significantly. Compared to multicircuit technology, the advantage of this innovation is its better immunity to defective contacts and open circuits. This also contributes to the reduction of the occurrence of short circuits and makes it possible to increase the cycle in 6 or more hours. Prolonging the cycle is advantageous because the last hours are very efficient due to the lower resistance of electrolyte and because less harvesting maneuvers are required. BMC bars can be used autonomously to reduce energy consumption. However, technologies such as those based on titanium anodes - which require an investment in anodes four times higher - can benefit and be protected with BMC because of their ability to modulate the intensity and occurrence of short circuits. The synergy of these technologies would allow to aim for 30% of energy savings. By itself, this technology allows operating with electric currents at 10% above the nominal values which adds to a higher current efficiency. Operational aspects of BMC bars:
■ permite potenciales acotados entre conectores intercelda; ■ allows bounded potentials between intercell connectors;
■ permite incrementar la corriente del proceso en 10% sobre el valor nominal; ■ inhibe y limita los cortocircuitos; ■ allows to increase the process current by 10% over the nominal value; ■ inhibits and limits short circuits;
■ opera en condición normal de temperatura con contactos defectuosos; ■ operates in normal temperature condition with faulty contacts;
■ ofrece conectores reemplazables sin detener el proceso; y ■ offers replaceable connectors without stopping the process; Y
■ la cantidad de electrodos operacionales puede ajustarse agregando o removiendo conectores. ■ the number of operational electrodes can be adjusted by adding or removing connectors.
Ejemplo de aplicación Application example
Para verificar la eficacia de la barra de conexión BMC en procesos electroquímicos, se compara con las barras tipo Waiker y Optibar. Para la realización de esta experiencia se utilizó una barra triangular central y se simuló una planta de electroobtención de cobre de 7 celdas, donde cada una contenía 66 ánodos y 65 cátodos. Una vista en perspectiva de la barra de conexión BMC se presenta en la Figura 8 y una vista con el despiece de la barra se presenta en la Figura 9, donde (a) corresponde al ánodo; (b) al cátodo (no estaba, pero falta indicar a qué corresponde (c); (d) la base aislante; (j) base metálica de menor conductividad; (k) material aislante con espesor menor a 1 mm; (I) conectores intercelda; y (m) pernos de fijación. En los ensayos se aplicaron distribuciones aleatorias a los parámetros resistivos del modelo: resistencias de contacto (Re) y resistencias del electrolito (Re). Los rangos de variación y ocurrencia probabilística se ajustaron a los medidos en la planta de electroobtención de la Compañía Minera Zaldívar. El nivel de corriente utilizado fue de 660 A por cátodo ó 330 A/m2 por cara del cátodo permanente. En este caso, las micro-resistencias internas entre conectores cátodo-ánodo de la barra BMC fueron calibradas en 270 micro-ohm. To verify the efficiency of the BMC connection bar in electrochemical processes, it is compared with Waiker and Optibar type bars. For the realization of this experience, a central triangular bar was used and a 7-cell copper electro-winning plant was simulated, each containing 66 anodes and 65 cathodes. A perspective view of the BMC connecting rod is presented in Figure 8 and an exploded view of the bar is presented in Figure 9, where (a) corresponds to the anode; (b) to the cathode (it was not, but it is necessary to indicate what corresponds (c), (d) the insulating base, (j) metallic base of lower conductivity, (k) insulating material with thickness less than 1 mm, (I) intercell connectors, and (m) fixation bolts In the tests, random distributions were applied to the resistive parameters of the model: contact resistances (Re) and electrolyte resistances (Re) .The ranges of variation and probabilistic occurrence were adjusted to the measured at the Zaldívar Mining Company's electrowinning facility The current level used was 660 A per cathode or 330 A / m 2 per side of the permanent cathode In this case, the internal micro-resistances between cathode-anode connectors The BMC bar were calibrated at 270 micro-ohm.
Se evaluaron todos los escenarios industriales relevantes, es decir, operación normal, en cortocircuito y con contactos defectuosos y abiertos. La evaluación que se presenta está basada en el comportamiento térmico de Waiker, Optibar y BMC para estos escenarios. Para el análisis se utilizó el COMSOL Multiphysics, un software basado en elementos finitos de uso habitual. All the relevant industrial scenarios were evaluated, that is, normal operation, short circuit and with defective and open contacts. The evaluation presented is based on the thermal behavior of Waiker, Optibar and BMC for these scenarios. For the analysis, COMSOL Multiphysics, a software based on finite elements commonly used, was used.
La anomalía más grave en los procesos de electroobtención es el cortocircuito pues tiene efecto directo en la eficiencia de corriente. Con BMC se observó que el conector involucrado (dos contactos) presentaba una temperatura de +28°C con respecto a la media. Esto se contrasta favorablemente con Waiker que presentó ocho contactos con sobre temperaturas de hasta +54°C sobre la media. The most serious anomaly in the electro-winning processes is the short circuit, since it has a direct effect on the current efficiency. With BMC it was observed that the connector involved (two contacts) had a temperature of + 28 ° C with respect to the average. This contrasts favorably with Waiker who presented eight contacts with temperatures above + 54 ° C above average.
El comportamiento térmico de BMC con contacto defectuoso presentó temperaturas hasta +17°C sobre la media. Este resultado es muy superior al
exhibido por las barras Optibar que presentaron temperaturas de +55°C sobre la media. The thermal behavior of BMC with faulty contact presented temperatures up to + 17 ° C above average. This result is much higher than exhibited by the Optibar bars that presented temperatures of + 55 ° C above average.
En la Tabla 1 se presenta un cuadro comparativo de las tecnologías analizadas para esta realización con barra triangular central. La temperatura de punto caliente en Walker se produjo en presencia de cortocircuito. En el caso de Optibar la temperatura de punto caliente se presentó en presencia de contactos defectuosos. Con las barras BMC no se produjeron altas temperaturas o puntos calientes superiores a 83°C en la barra intercelda. Esta menor temperatura máxima preserva la vida útil de las barras intercelda y de las barras porta electrodo (hangers). Esto, por cuanto se mantiene la dureza e integridad de los puntos de contacto entre las barras porta electrodos y los conectores intercelda usualmente realizados en cobre. Table 1 presents a comparative table of the technologies analyzed for this embodiment with a central triangular bar. The hot point temperature in Walker occurred in the presence of a short circuit. In the case of Optibar, the hot spot temperature was presented in the presence of defective contacts. The BMC bars did not produce high temperatures or hot spots above 83 ° C in the intercell bar. This lower maximum temperature preserves the useful life of the intercell bars and the electrode holders (hangers). This is because the hardness and integrity of the contact points between the electrode holder bars and the intercell connectors usually made of copper are maintained.
Tabla 1. Cuadro comparativo Table 1. Comparative table
(*) El ahorro energético depende del nivel de corriente.
(*) The energy saving depends on the current level.
Claims
1. Una barra intercelda moduladora de corrientes para procesos electrolíticos CARACTERIZADA porque comprende resistencias eléctricas (n) en el rango de micro-ohm ubicadas entre conectores intercelda cátodo-ánodo (I) de alta conductividad a lo largo de la extensión de la barra. 1. A current modulating intercell bar for electrolytic processes CHARACTERIZED because it comprises electrical resistances (n) in the micro-ohm range located between cathode-anode intercell connectors (I) of high conductivity along the extension of the bar.
Una barra intercelda moduladora de corrientes para procesos electrolíticos CARACTERIZADA porque los conectores intercelda (I) son fijados a una base metálica continua o discontinua (j) A current modulating intercell bar for electrolytic processes CHARACTERIZED because the intercell connectors (I) are fixed to a continuous or discontinuous metal base (j)
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque los conectores intercelda (I) son fijados con pernos metálicos o no metálicos (m). A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the intercell connectors (I) are fixed with metallic or non-metallic bolts (m).
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 2 CARACTERIZADA porque los pernos metálicos de fijación (m) ubicados entre los conectores intercelda (I) y la base metálica (j) son de acero inoxidable. A current modulating intercell bar for electrolytic processes according to claims 1 and 2 CHARACTERIZED because the metal fixing bolts (m) located between the intercell connectors (I) and the metal base (j) are made of stainless steel.
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque los conectores intercelda (I) son conectados entre sí a través de resistencias eléctricas (n) construidas del mismo material o de un material de conductividad diferente como acero inoxidable. A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the intercell connectors (I) are connected to each other through electrical resistances (n) constructed of the same material or a different conductivity material such as stainless steel.
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 2 CARACTERIZADA porque la base metálica (j) actúa como ecualizador o difusor térmico. A current modulating intercell bar for electrolytic processes according to claims 1 and 2 CHARACTERIZED because the metal base (j) acts as an equalizer or thermal diffuser.
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 2 CARACTERIZADA porque para ajustar la resistencia eléctrica (n) se utiliza un material aislante eléctrico (k) con un espesor inferior a 1 mm, ubicado parcial o totalmente entre los conectores intercelda (I) y la base metálica (j). A current modulating intercell bar for electrolytic processes according to claims 1 and 2 CHARACTERIZED because to adjust the electrical resistance (n) an electrical insulating material (k) with a thickness of less than 1 mm is used, located partially or completely between the intercell connectors ( I) and the metal base (j).
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 7 CARACTERIZADA porque el material aislante eléctrico (k) tiene una resistividad eléctrica específica > io13Ohm m. A current modulating intercell bar for electrolytic processes according to claims 1 and 7 CHARACTERIZED because the electrical insulating material (k) has a specific electrical resistivity > io 13 Ohm m.
Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 7 CARACTERIZADA porque el material aislante eléctrico (k) debe presentar un coeficiente de conducción térmica mayor a 0,1 Kcal/mh°C.
A current modulating intercell bar for electrolytic processes according to claims 1 and 7 CHARACTERIZED because the electrical insulating material (k) must have a thermal conduction coefficient greater than 0.1 Kcal/mh°C.
10. Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque los conectores intercelda (I) se agregan o retiran para ajustar la cantidad de electrodos en operación. 10. A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the intercell connectors (I) are added or removed to adjust the number of electrodes in operation.
1 1. Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicaciones 1 y 2 CARACTERIZADA porque los conectores intercelda (I) apernados a la base metálica (j) son reemplazables en forma individual en caso de deterioro sin que se requiera detener el proceso. 1 1. A current modulating intercell bar for electrolytic processes according to claims 1 and 2 CHARACTERIZED because the intercell connectors (I) bolted to the metal base (j) are individually replaceable in case of deterioration without requiring the process to be stopped.
12. Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque las resistencias eléctricas (n) insertadas entre los conectores intercelda (I) de mayor proximidad a los extremos son graduadas con menor resistividad relativa. 12. A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the electrical resistances (n) inserted between the intercell connectors (I) closest to the ends are graduated with lower relative resistivity.
13. Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque los conectores intercelda (I) conectan uno o más cátodos (b) con uno o más ánodos (a). 13. A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the intercell connectors (I) connect one or more cathodes (b) with one or more anodes (a).
14. Una barra intercelda moduladora de corrientes para procesos electrolíticos según reivindicación 1 CARACTERIZADA porque los conectores intercelda (I) conectan electrodos hacia la izquierda, o hacia la derecha, o en forma zig-zag, entre celdas en serie consecutivas.
14. A current modulating intercell bar for electrolytic processes according to claim 1 CHARACTERIZED because the intercell connectors (I) connect electrodes to the left, or to the right, or in a zig-zag manner, between consecutive cells in series.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL3691-2012 | 2012-12-27 | ||
CL2012003691A CL2012003691A1 (en) | 2012-12-27 | 2012-12-27 | "intercell bar containing: electrical resistors (n) in the range of micro ohms located between intercell connectors cathodes - high conductivity anode along the extension of the bar" |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014100908A1 true WO2014100908A1 (en) | 2014-07-03 |
Family
ID=51019607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2013/000082 WO2014100908A1 (en) | 2012-12-27 | 2013-11-14 | Inter-cell current-modulating bar for electrolytic applications provided with electrical resistances between cathode-anode inter-cell connectors |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2012003691A1 (en) |
WO (1) | WO2014100908A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017088079A1 (en) * | 2015-11-25 | 2017-06-01 | Proter S.A. | Ews module device, part of the ewtech-led process, for electro-winning and/or electro-refining, interconnection process and operating process thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US687800A (en) * | 1900-03-28 | 1901-12-03 | Arthur L Walker | Plant for the electrodeposition of metals. |
-
2012
- 2012-12-27 CL CL2012003691A patent/CL2012003691A1/en unknown
-
2013
- 2013-11-14 WO PCT/CL2013/000082 patent/WO2014100908A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US687800A (en) * | 1900-03-28 | 1901-12-03 | Arthur L Walker | Plant for the electrodeposition of metals. |
Non-Patent Citations (3)
Title |
---|
WIECHMANN, E.P. ET AL.: "Improving Productivity and Energy Efficiency in Copper Electrowinning Plants", INDUSTRIAL APPLICATIONS CONFERENCE, INDUSTRIAL APPLICATIONS, vol. 46, no. 4, July 2010 (2010-07-01) - August 2010 (2010-08-01), pages 1264 - 1270 * |
WIECHMANN, E.P. ET AL.: "Introducing a Bypass-Backup Connection System for Current Mode Copper Electrowinning Intercell Bars", INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS, 7 October 2012 (2012-10-07) - 11 October 2012 (2012-10-11), pages 1 - 6 * |
WIECHMANN, VIDAL, G.A. ET AL.: "Current Source Connection of electrolityc cell electrodes: an improvement for Electrowinning and Electrorefinery", vol. 2, 3 October 2004 (2004-10-03) - 7 October 2004 (2004-10-07), pages 1096 - 1100 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017088079A1 (en) * | 2015-11-25 | 2017-06-01 | Proter S.A. | Ews module device, part of the ewtech-led process, for electro-winning and/or electro-refining, interconnection process and operating process thereof |
CN107208291A (en) * | 2015-11-25 | 2017-09-26 | 普罗特股份有限公司 | EWS module devices, a part for EWTECH LED techniques, its interconnection process and operating process for electrolytic deposition and/or electrorefining |
US10584423B2 (en) | 2015-11-25 | 2020-03-10 | Proter S.A. | EWS module device for electro-winning and/or electro-refining, interconnection process, and operating process thereof |
CN107208291B (en) * | 2015-11-25 | 2021-03-19 | 普罗特股份有限公司 | EWS module device for electrowinning or electrorefining and process for operating same |
Also Published As
Publication number | Publication date |
---|---|
CL2012003691A1 (en) | 2013-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2657057T3 (en) | Fixed system for continuous detection of current distribution in interconnected electrolytic cells | |
CN106034404B (en) | For the anode construction in electrolytic etching of metal extraction pond | |
AU2014247022B2 (en) | Electrolytic cell for metal electrowinning | |
JP7284240B2 (en) | Hall-Helloucel Cathode Current Collector/Connector | |
NO180240B (en) | Electrical appliance | |
WO2014100908A1 (en) | Inter-cell current-modulating bar for electrolytic applications provided with electrical resistances between cathode-anode inter-cell connectors | |
US3787311A (en) | Cathode for the winning of aluminum | |
AU2015367913B2 (en) | A modified electrolysis cell and a method for modifying same | |
KR100899317B1 (en) | Anodized plate heat exchanger | |
CN218561602U (en) | Graphite boat | |
JP4403463B2 (en) | Single / bipolar electrolyzer | |
WO2012114176A1 (en) | Cooled copper power-supply and/or inter-cell busbar used in electrolytic processes | |
ES2529565T3 (en) | Transfer and isolation unit for electrolysis | |
EP3426824B1 (en) | Electrode structure provided with resistors | |
WO2017064485A1 (en) | Anode for a metal electrowinning process | |
ES2952107B2 (en) | Electro-refining installation with interconnectable intercell bars | |
Wiechmann et al. | 3D FEM thermal and electrical analysis of copper electrowining intercell bars | |
US764813A (en) | Electric battery. | |
Wiechmann et al. | Equipotential bars with replaceable connectors for copper electrowinning | |
Wiechmann et al. | An intercell busbar topology to improve resilience to anomalies of copper electrorefining process | |
WO2020073143A1 (en) | System for injecting alternating current into electrolytic cells, in consecutive groups of electrodes | |
EA016404B1 (en) | Improvements relating to electrolysis cells connected in series and a method for operation of same | |
Sawa et al. | Numerical study on current and thermal distributions of electrical contacts by FEM | |
HK1226785A1 (en) | Anode structure for metal electrowinning cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13867185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13867185 Country of ref document: EP Kind code of ref document: A1 |