WO2014091972A1 - 熱交換器及びそれを用いたヒートポンプシステム - Google Patents
熱交換器及びそれを用いたヒートポンプシステム Download PDFInfo
- Publication number
- WO2014091972A1 WO2014091972A1 PCT/JP2013/082528 JP2013082528W WO2014091972A1 WO 2014091972 A1 WO2014091972 A1 WO 2014091972A1 JP 2013082528 W JP2013082528 W JP 2013082528W WO 2014091972 A1 WO2014091972 A1 WO 2014091972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- refrigerant
- flow path
- core portion
- main core
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 126
- 238000010257 thawing Methods 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 238000004781 supercooling Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 38
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 description 32
- 238000007791 dehumidification Methods 0.000 description 9
- 238000004378 air conditioning Methods 0.000 description 6
- 238000009423 ventilation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00921—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3227—Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0417—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05375—Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
- F28F9/262—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H2001/00961—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0084—Condensers
Definitions
- the present invention relates to a heat exchanger and a heat pump system using the heat exchanger, and has a function of both a condenser and an evaporator, and is used as an outdoor heat exchanger of an air conditioning heat pump system and a heat pump system using the heat exchanger About.
- a main core (condenser core) part that condenses the refrigerant by heat exchange with air
- a receiver tank into which the refrigerant flowing through the main core part flows
- a subcool system capacitor is disclosed that includes a subcool core section that liquefies the gas-liquid mixed refrigerant that has circulated through the tank by supercooling it by heat exchange with air (see, for example, Patent Document 1).
- the main core portion and the subcool core portion are composed of, for example, a plurality of tubes that communicate with each other between a pair of header tanks arranged in parallel with each other and fins arranged between adjacent tubes. Has been.
- a heat exchanger having a main core portion and a subcool core portion as in the prior art is used as an outdoor heat exchanger of a heat pump type air conditioner capable of both cooling and heating, it is used as a condenser during cooling operation.
- the heat exchanger when using the heat exchanger as an evaporator during heating operation, it is possible to vaporize the refrigerant by absorbing heat in the main core part, but because the refrigerant will circulate in both the main core part and the subcool core part, The pressure loss during the circulation of the refrigerant was large, and there was a possibility of causing a decrease in heating capacity.
- the refrigerant is circulated only in the main core portion by bypassing the subcool core portion during the heating operation.
- the heat absorption area from the refrigerant to the outside air in the subcool core portion becomes zero, in other words, the heat exchange area in the outdoor heat exchanger during heating is reduced, so there is still a problem in improving the heating capacity.
- the heat exchanger of the said prior art is used only as a condenser to the last, and the heat exchanger which has the function of both a condenser and an evaporator is not assumed.
- An object of the present invention is to provide a heat exchanger suitable for an outdoor heat exchanger of a heat pump system in which a refrigerant circuit is simplified, and a heat pump system that uses the heat exchanger and realizes an energy-efficient defrosting operation.
- a heat exchanger includes a main core part that performs heat exchange between air and a refrigerant, a receiver tank into which a refrigerant that flows through the main core part flows, and a liquid that flows through the receiver tank.
- a subcool core for supercooling the refrigerant by heat exchange with air, a first core for circulating the refrigerant in the order of the main core, the receiver tank, and the subcool core, a bypass of the receiver tank, the main core, A second flow path for circulating the refrigerant in order of the subcool core section; and a flow path switching means for switching between the first flow path and the second flow path.
- the flow direction of the refrigerant in the main core portion and the subcool core portion of the first flow path and the second flow path is the same.
- the main core portion and the subcool core portion are a pair of header tanks arranged apart in the vertical direction, and a plurality of tubes arranged to extend in the vertical direction between the header tanks and communicating the pair of header tanks. And fins provided on the tube.
- the main core portion and the subcool core portion are disposed adjacent to each other.
- the receiver tank includes one connecting member having a first communication hole communicating with the header tank and a second communication hole communicating with the first flow path.
- the heat pump system according to the present invention uses any one of the heat exchangers described above by switching to a condenser or an evaporator.
- the first flow path switching means is used.
- the refrigerant is circulated through the flow path and the heat exchanger is used as an evaporator, the refrigerant is circulated through the second flow path by the flow path switching means.
- the refrigerant is circulated through the second flow path by the flow path switching means.
- the heat exchanger is used as an outdoor heat exchanger of a vehicle air conditioner.
- the heat exchanger of the present invention switching to the second flow path, bypassing only the receiver tank in the heat exchanger, and circulating the refrigerant in the order of the main core part and the sub cool core part, the refrigerant in the sub cool core part Since the pressure loss accompanying the flow of the refrigerant can be effectively suppressed while securing the heat exchange area between the air and the air, the heat exchange efficiency of the heat exchanger can be greatly improved.
- the refrigerant flow direction in which the heat exchanger and the heat exchanger are incorporated is greatly simplified by making the refrigerant flow directions the same in the main core portion and the subcool core portion of the first flow path and the second flow path. can do.
- the main core portion and the subcool core portion are specifically a pair of header tanks spaced apart in the vertical direction, and a plurality of header tanks arranged to extend in the vertical direction between the header tanks and communicating with the pair of header tanks. And a fin provided on the tube.
- the main core portion and the subcool core portion are disposed adjacent to each other, thereby facilitating the manufacture of the heat exchanger, reducing the component cost, and simplifying the structure of the heat exchanger.
- the receiver tank includes one connecting member having a first communication hole that communicates with the header tank and a second communication hole that communicates with the first flow path. Since the tank and the first flow path can be communicated with the receiver tank, the manufacture of the heat exchanger can be further facilitated, the cost of parts can be further reduced, and the structure of the heat exchanger can be further simplified. it can.
- the heat pump system of the present invention specifically, when any of the heat exchangers described above is used as a condenser, the refrigerant is circulated through the first flow path by the flow path switching means, and heat exchange is performed.
- the vessel is used as an evaporator, the refrigerant is circulated through the second flow path by the flow path switching means.
- the receiver tank is bypassed in the heat exchanger by circulating the refrigerant through the second flow path by the flow path switching means when defrosting the main core part and the subcool core part, The heat energy loss of the refrigerant in the receiver tank is prevented, contributing to further improvement in the heat exchange efficiency of the heat exchanger.
- such a heat exchanger is preferably used as an outdoor heat exchanger of a vehicle air conditioner.
- FIG. 1 shows a schematic configuration of a heat pump system 2 for vehicle air conditioning in which an outdoor heat exchanger (heat exchanger) 1 is incorporated, and a HVAC (Heating Ventilation & Air Conditioning) unit 4 to which the heat pump system 2 is connected.
- HVAC Heating Ventilation & Air Conditioning
- the outdoor heat exchanger 1 includes a main core portion 6 that performs heat exchange between air and a refrigerant, a receiver tank 8 into which a refrigerant flowing through the main core portion 6 flows, and a receiver A subcool core section 10 is provided that supercools the liquid refrigerant flowing through the tank 8 by heat exchange with air.
- the main core portion 6 and the subcool core portion 10 are extended in the vertical direction between the pair of header tanks 12 and 12 arranged in parallel with each other and spaced apart in the vertical direction. It is composed of a plurality of tubes 14 arranged and communicating with both the upper and lower header tanks 12 and 12 and fins 16 arranged between the adjacent tubes 14.
- the main core portion 6 and the subcool core portion 10 are adjacent to each other.
- a heat exchange core with an integral structure is formed.
- the receiver tank 8 is disposed and fixed adjacent to the front end of the left end of the subcool core portion 10.
- the heat exchange core including the main core portion 6 and the subcool core portion 10 is a receiver tank. 8 constitutes an outdoor heat exchanger 1 having an integral structure.
- the HVAC unit 4 is mounted on the vehicle interior front side of the vehicle, and is fixed to the vehicle interior side of the dash panel DB that divides the engine room and the vehicle interior of the vehicle.
- the HVAC unit 4 includes a blower fan 28, an indoor evaporator 30, and an indoor condenser 32 in order from the air flow direction.
- a damper 34 that opens and closes the air inlet to the indoor condenser 32 is provided on the upstream side of the air flow in the indoor condenser 32, and the indoor condenser 32 is closed by closing the damper 34 as shown by a broken line in FIG.
- the air can be passed by bypassing.
- the heat pump system 2 has the same refrigerant flow direction in the main core section 6 and the subcool core section 10, and has a refrigerant circuit configuration that can be used by switching the outdoor heat exchanger 1 to a condenser or an evaporator.
- the exchanger 1 is used as an evaporator during the heating operation of the heat pump system 2, and is used as a condenser during the cooling operation.
- the heat pump system 2 includes a refrigerant circuit 36 in which the refrigerant circulates, and the heating operation flow path (second flow path) 36a of the refrigerant circuit 36 is in a refrigerant flow direction indicated by a broken line arrow in FIG.
- the refrigerant flow path is formed in such a manner that the outdoor heat exchanger 1, the first on-off valve 38, the accumulator 40, the compressor 42, the indoor condenser 32, and the first expansion valve 44 are sequentially circulated and returned to the outdoor heat exchanger 1. .
- the cooling operation flow path (first flow path) 36b in the refrigerant circuit 36 has an outdoor heat exchanger 1, a first check valve 46, and internal heat in the refrigerant flow direction indicated by the solid line arrow in FIG.
- the exchanger 48, the second expansion valve 50, the indoor evaporator 30, the second on-off valve 52, the internal heat exchanger 48, the accumulator 40, the compressor 42, and the indoor condenser 32 are sequentially circulated and returned to the outdoor heat exchanger 1.
- a refrigerant flow path is formed.
- the first check valve 46 is arranged to prevent the refrigerant from flowing backward from the dehumidification exclusive flow path 36h described later to the outdoor heat exchanger 1.
- the dehumidifying operation flow path 36c in the refrigerant circuit 36 has the outdoor heat exchanger 1, the first check valve 46, the internal heat exchanger 48, the second in the refrigerant flow direction indicated by the one-dot chain line arrow in FIG.
- the expansion valve 50, the indoor evaporator 30, the second on-off valve 52, the internal heat exchanger 48, the accumulator 40, the compressor 42, the indoor condenser 32, and the first expansion valve 44 are circulated in order to return to the outdoor heat exchanger 1.
- the same refrigerant flow path as the cooling operation time flow path 36b is formed.
- the dehumidifying operation flow path 36c is diverted in the diversion path 36e immediately after flowing out of the outdoor heat exchanger 1, and the first open / close valve 38, the accumulator 40, the compressor 42, the indoor condenser 32, and the first expansion valve 44 are divided.
- the same refrigerant flow path as the heating operation flow path 36a that sequentially flows and returns to the outdoor heat exchanger 1 is also formed.
- the dehumidifying operation flow path 36 c includes the outdoor heat exchanger 1, the first check valve 46, the internal heat exchanger 48, the second expansion valve 50, the indoor evaporator 30, the second on-off valve 52, and the internal heat exchanger 48.
- the accumulator 40, the compressor 42, and the indoor condenser 32 are circulated in this order, and then the dehumidification exclusive flow that finally flows to the accumulator 40 after being diverted in the diversion channel 36f and circulated through the third on-off valve 54 and then merging in the confluence channel 36g.
- a path 36h is formed.
- the defrosting operation flow path (second flow path) 36d in the refrigerant circuit 36 is a branch flow path immediately after flowing out of the outdoor heat exchanger 1 in the refrigerant flow direction indicated by a two-dot chain line arrow in FIG.
- the flow is divided at 36e and flows through the first on-off valve 38, the accumulator 40, and the compressor 42 in this order, and then is divided at the branch flow path 36i and flows through the fourth on-off valve 56 and the second check valve 58 in order.
- a high-temperature refrigerant gas supply path 36j returning to 1 is formed.
- the second check valve 58 is arranged to prevent the refrigerant from flowing backward to the fourth on-off valve 56 side during heating, cooling and dehumidifying operations.
- each flow path 36a, 36b, 36c at the time of heating, cooling, and dehumidifying operation flows from the accumulator 40 through the compressor 42, the indoor condenser 32, and the first expansion valve 44 in this order to the outdoor heat exchanger 1. Until it is shared.
- the flow paths 36b and 36c at the time of cooling and dehumidifying operation are connected to the internal heat exchanger 48, the second expansion valve 50, the indoor evaporator 30, the second on-off valve 52, and the internal heat exchanger 48 from the combined flow path 36g. They are shared in sequence until they reach the accumulator 40.
- the header tank 12 on the upper side of the subcool core section 10 of the outdoor heat exchanger 1 is provided with a refrigerant outlet port 60 from the outdoor heat exchanger 1, and the outlet port 60 is operated for heating, cooling, dehumidification and defrosting. Shared at times.
- the header tank 12 on the upper side of the main core unit 6 is provided with a refrigerant inlet port 62 to the outdoor heat exchanger 1, and the inlet port 62 is shared during heating, cooling, dehumidification and defrosting operations.
- the damper 34 and the first to fourth on-off valves 38, 52, 54, 56 are electrically connected to an ECU (electric control unit) (not shown) that comprehensively controls the vehicle.
- the ECU opens the damper 34 during heating operation using the heating operation flow path 36a or during dehumidification operation using the dehumidifying operation flow path 36c, so that air blown from the blower fan 28 is introduced into the indoor condenser 32. .
- the air blown from the blower fan 28 is introduced by bypassing the indoor condenser 32 by closing the damper 34. Then, the compressor 42 is operated and the first to fourth on-off valves 38, 52, 54, and 56 are appropriately controlled to be opened / closed to perform any one of the heating operation, the cooling operation, the dehumidifying operation, and the defrosting operation. Is called.
- the ECU opens the first on-off valve 38 and closes the second to fourth on-off valves 52, 54, and 56 during the heating operation.
- the first on-off valve 38 is closed, and the opening degree of the second on-off valve 52 is adjusted to appropriately adjust the evaporation pressure of the refrigerant gas vaporized in the indoor evaporator 30, and the third and third 4 The on-off valves 54 and 56 are closed.
- the first on-off valve 38 is opened and the opening degree of the second on-off valve 52 is adjusted so that the evaporation pressure of the refrigerant gas vaporized in the indoor evaporator 30 is appropriately adjusted.
- the fourth opening / closing valve 56 is closed by appropriately adjusting the opening degree of 54.
- the first and fourth on-off valves 38 and 56 are opened, and the second and third on-off valves 52 and 54 are closed to supply the high-temperature refrigerant gas to the outdoor heat exchanger 1.
- the refrigerant flowing into the main core portion 6 from the inlet port 62 during heating, cooling, dehumidification, and defrosting operations flows down or up in the same direction with a plurality of partition plates 64 partitioning the header tanks 12 as boundaries. As shown in FIG. 1 and FIG. 2 as a whole, it circulates from right to left while repeating the longitudinal flow of FIG.
- a refrigerant main core portion outlet port 66 is provided at the left end of the header tank 12 below the main core portion 6, and the main core portion outlet port 66 has channels 36 a, during heating, cooling, and defrosting operations,
- a first shared flow path (first flow path, second flow path) 68 shared as a part of 36b and 36c is connected.
- the header tank 12 below the subcool core section 10 is provided with a subcool core section inlet port 70 for refrigerant, and the subcool core section inlet port 70 is provided with one of the flow paths 36a and 36c during heating and dehumidifying operations.
- a second shared flow path (second flow path) 72 shared as a part is connected.
- a connecting member 74 composed of one member is provided at the lower end of the receiver tank 8.
- the connecting member 74 includes an inter-tank communication hole (first communication hole) 76 that allows the receiver tank 8 and the lower header tank 12 to communicate with each other, and a cooling-only flow used as a part of the cooling operation channel 36b.
- a cooling communication hole (second communication hole) 80 to which the passage (first flow path) 78 is connected is perforated.
- the first shared flow path 68, the second shared flow path 72, and the cooling dedicated flow path 78 are an inlet port 82a, a first outlet port 82b, and a three-way valve (flow path switching means) 82 electrically connected to the ECU. Each is connected to the second outlet port 82c.
- the flow path switching control by the three-way valve 82 will be described in detail.
- the refrigerant in the first shared flow path 68 is switched in a direction in which the three-way valve 82 opens the first outlet port 82b, whereby the inlet port 82a and the first outlet port 82b are communicated with each other. It flows into the subcool core part 10 from the subcool core part inlet port 70.
- the refrigerant that has flowed into the subcool core portion 10 further absorbs heat by exchanging heat with the surrounding air by ventilation through the subcool core portion 10 during the vertical flow of the upflow, and flows out from the outlet port 60 to the refrigerant circuit 36.
- the refrigerant during the heating operation bypasses the receiver tank 8 in the outdoor heat exchanger 1 and flows in the order of the main core portion 6 and the sub cool core portion 10.
- coolant flow in the outdoor heat exchanger 1 at the time of a dehumidification and defrost operation is the same as that at the time of heating operation.
- the refrigerant flowing into the main core portion 6 from the inlet port 62 repeats the downflow or the upflow as described above, and exchanges heat with the surrounding air by the ventilation of the main core portion 6.
- the whole flows from right to left while flowing out, and flows out from the main core portion outlet port 66 to the first shared flow path 68.
- the refrigerant in the first shared flow path 68 is switched in a direction in which the three-way valve 82 opens the second outlet port 82c, whereby the inlet port 82a and the second outlet port 82c are communicated with each other. It flows into the receiver tank 8 from the cooling communication hole 80 of the connecting member 74. The refrigerant flowing into the receiver tank 8 flows through the inter-tank communication hole 76, flows into the header tank 12 below the subcool core section 10, and flows into the subcool core section 10.
- the liquid refrigerant that has flowed into the subcool core section 10 exchanges heat with the surrounding air by ventilating the subcool core section 10 during the vertical flow of the upflow, and after being supercooled, flows out from the outlet port 60 to the refrigerant circuit 36.
- the refrigerant during the cooling operation flows in the outdoor heat exchanger 1 in the order of the main core portion 6, the receiver tank 8, and the subcool core portion 10.
- the receiver tank 8 is installed in the outdoor heat exchanger 1 during heating and dehumidifying operation using the outdoor heat exchanger 1 as an evaporator and during defrosting operation. Bypassing, the refrigerant flows in the order of the main core portion 6 and the subcool core portion 10. Moreover, at the time of the cooling operation which uses the outdoor heat exchanger 1 as a condenser, in the outdoor heat exchanger 1, a refrigerant
- circulates in order of the main core part 6, the receiver tank 8, and the subcool core part 10.
- the gas-liquid separation of the refrigerant by the receiver tank 8 is essentially unnecessary, and the refrigerant circulates through the subcool core section 10.
- the pressure loss of the refrigerant due to the fact that the loss when the refrigerant flows through the receiver tank 8 is the largest.
- only the receiver tank 8 is bypassed in the outdoor heat exchanger 1, and the refrigerant is circulated in the order of the main core portion 6 and the sub cool core portion 10 to thereby transfer the refrigerant from the refrigerant in the sub cool core portion 10 to the outside air. Since the pressure loss accompanying the flow of the refrigerant can be effectively suppressed while ensuring the heat absorption area, the heat exchange efficiency of the outdoor heat exchanger 1 during heating and dehumidifying operations can be greatly improved.
- the receiver tank 8 is generally formed of a material having a large heat capacity such as aluminum in order to efficiently liquefy the refrigerant. For example, when a high-temperature refrigerant gas flows through the receiver tank 8 having a low temperature during the defrosting operation, The thermal energy loss of the refrigerant in No. 8 becomes remarkable. However, in the case of the present embodiment, this can be avoided by bypassing the receiver tank 8 in the outdoor heat exchanger 1 during the defrosting operation, thereby reducing the heat energy loss during the defrosting and the outdoor heat. This contributes to further improvement in the heat exchange efficiency of the exchanger 1.
- the outdoor heat exchanger 1 By making the flow direction of the refrigerant in the main core portion 6 and the subcool core portion 10 of each of the flow paths 36a, 36b, 36c, 36d during heating, cooling, dehumidification, and defrosting operations the same, the outdoor heat exchanger 1 And the circuit structure of the refrigerant circuit 36 in which the outdoor heat exchanger 1 is incorporated can be greatly simplified.
- the main core unit 6 and the subcool core unit 10 When the flow direction of the refrigerant in the heat exchange core is reversed, the number of pipes and valves dedicated to each operation in the refrigerant circuit 36 inevitably increases, and the circuit configuration becomes complicated. Further, if the number of dedicated pipes increases, the total pipe length of the refrigerant circuit 36 becomes longer, so that the amount of refrigerant enclosed in the refrigerant circuit 36 increases, which causes a reduction in the heat exchange efficiency of the outdoor heat exchanger 1. In this case, these can be avoided.
- the circuit switching point in the refrigerant circuit 36 also increases, so that a low-pressure side circuit and a high-pressure side circuit of the refrigerant are likely to occur before and after the valve. For this reason, the valve cannot be opened / closed and switched until the differential pressure before and after the valve in the pipe is reduced to a differential pressure at which the valve can be operated, and there is a possibility that a time lag occurs in the switching control of the refrigerant circuit 36. In the case of the present embodiment, this can be avoided.
- the refrigerant inlet and outlet ports for the outdoor heat exchanger 1 are used both for the refrigerant inlet and for the refrigerant outlet. Therefore, it is necessary to adjust the diameter of the pipe connected to these inlet and outlet ports to the diameter of the large diameter side, and the diameter of the pipe constituting the refrigerant circuit 36 has to be increased as a whole. You can avoid this.
- the tubes 14 of the main core portion 6 and the subcool core portion 10 extend in the vertical direction, and the refrigerant is in the vertical flow direction, so that water droplets are unlikely to accumulate on the surface of the tube 14. Therefore, it is possible to suppress the occurrence of frosting and icing phenomenon in the tube 14, and it is possible to suppress a decrease in heat exchange efficiency between the air and the refrigerant in the main core portion 6 and the subcool core portion 10. Further, when the tube 14 is frosted, the heat pump system 2 is shifted to the defrosting operation, so that the water is melted by the heat of the high-temperature refrigerant, and water droplets generated on the surface of the tube 14 after the frost are formed along the tube 14 by gravity. It can be efficiently removed by hanging it down.
- the outdoor heat exchanger 1 even when the outdoor heat exchanger 1 is exposed to a low-temperature atmosphere after the defrosting operation is completed or a low-temperature refrigerant is circulated through the outdoor heat exchanger 1, water droplets generated on the surface of the tube 14 are generated. Since it is removed, icing on the tube 14 can be suppressed, and the heat exchange efficiency of the outdoor heat exchanger 1 can be effectively maintained.
- the outdoor heat exchanger 1 can be configured in a compact manner, and the outdoor heat exchanger 1 can be easily manufactured. Parts cost can be reduced and the structure of the outdoor heat exchanger 1 can be simplified.
- the receiver tank 8 includes the connecting member 74 having the inter-tank communication hole 76 and the cooling communication hole 80, the header tank 12 and the cooling dedicated flow path 78 can be communicated with the receiver tank 8 by one member. Further, the outdoor heat exchanger 1 can be further easily manufactured, the cost of parts can be further reduced, and the structure of the outdoor heat exchanger 1 can be further simplified.
- the present invention is not limited to the above embodiments, and various modifications are possible.
- the number of passes of the main core unit 6 and the sub cool core unit 10 may be changed as appropriate.
- the refrigerant flows in the order of the main core portion 6 and the sub cool core portion 10 by bypassing the receiver tank 8 in the outdoor heat exchanger 1.
- the configuration of the outdoor heat exchanger 1 is not limited to the above embodiment.
- the main core portion 6 and the sub cool core portion 10 are arranged along the left-right direction between the left and right header tanks arranged along the left-right direction, and communicate with both of the left and right header tanks.
- the outdoor heat exchanger 1 of the said Example is applicable also to the heat pump system 2 which does not perform dehumidification and a defrost operation, but only performs heating and a cooling operation.
- the said Example demonstrated the case where this invention was used for the outdoor heat exchanger 1 provided outside the HVAC unit 4 for vehicle air conditioning, it is applicable also to the heat exchanger and heat pump system of another use.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
しかし、前記熱交換器を暖房運転時に蒸発器として用いるときには、メインコア部における吸熱により冷媒の気化が可能であるが、メインコア部及びサブクールコア部の両方に冷媒を流通させることとなるため、冷媒流通時の圧損が大きく、暖房能力の低下を招くおそれがあった。
また、上記従来技術の熱交換器は、あくまでも凝縮器としてのみ使用され、凝縮器及び蒸発器の双方の機能を有する熱交換器を想定していない。従って、メインコア部及びサブクールコア部における冷媒の流れ方向やメインコア部及びサブクールコア部を除霜する運転については格別な配慮がなされておらず、熱交換器及びそれが組み込まれる冷媒回路の簡素化及びエネルギー効率の高い除霜運転の実現については依然として課題が残されていた。
好ましくは、メインコア部及びサブクールコア部は、上下方向に離間して配置された一対のヘッダタンクと、ヘッダタンク間において上下方向に延びるように配置され一対のヘッダタンクを連通する複数のチューブと、チューブに設けられたフィンとを有する。
好ましくは、レシーバタンクは、ヘッダタンクに連通される第1の連通孔と、第1の流路に連通される第2の連通孔とを有した1つの連結部材を具備する。
また、本発明のヒートポンプシステムは、前記した何れかの熱交換器を凝縮器又は蒸発器に切り換えて使用するものであり、熱交換器を凝縮器として使用するときには、流路切換手段により第1の流路に冷媒を流通させ、熱交換器を蒸発器として使用するときには、流路切換手段により第2の流路に冷媒を流通させる。
好ましくは、熱交換器は、車両用空調装置の室外熱交換器として用いられる。
また、メインコア部及びサブクールコア部は、具体的には上下方向に離間して配置された一対のヘッダタンクと、ヘッダタンク間において上下方向に延びるように配置され一対のヘッダタンクを連通する複数のチューブと、チューブに設けられたフィンとを有する構成である。これにより、チューブにおける着霜及び着氷現象の発生を抑制することができ、メインコア部及びサブクールコア部における空気と冷媒との熱交換効率の低下を抑えることができる。
また、レシーバタンクがヘッダタンクに連通される第1の連通孔と、第1の流路に連通される第2の連通孔とを有した1つの連結部材を具備することにより、1部材でヘッダタンク及び第1の流路をレシーバタンクに連通させることができるため、熱交換器の製作を更に容易にし、部品コストを更に低減することができ、熱交換器の構造を更に簡素化することができる。
また、メインコア部及びサブクールコア部を除霜するときに流路切換手段により第2の流路に冷媒を流通させることにより、熱交換器においてレシーバタンクがバイパスされるため、除霜運転時のレシーバタンクにおける冷媒の熱エネルギーロスが防止され、熱交換器の熱交換効率の更なる向上に寄与する。
図1は室外熱交換器 (熱交換器)1が組み込まれる車両空調用のヒートポンプシステム2、及びヒートポンプシステム2が接続されるHVAC(Heating Ventilation & Air Conditioning)ユニット4の概略構成を示し、図2は室外熱交換器1の構造を示す正面図を示す。
メインコア部6及びサブクールコア部10は、互いに平行を成した状態で上下方向に離間して配置された一対のヘッダタンク12,12と、当該ヘッダタンク12,12間において上下方向に延びるように配置されて該上下のヘッダタンク12,12の双方と連通する複数のチューブ14と、隣接するチューブ14間に配置されたフィン16とから構成され、メインコア部6及びサブクールコア部10は隣接して一体的な構造の熱交換コアを構成している。
HVACユニット4は、車両の車室内前方側に搭載され、車両のエンジンルームと車室内とを区画するダッシュパネルDBの車室内側に固定されている。HVACユニット4には、空気の流通方向から順に送風ファン28、室内蒸発器30、室内凝縮器32が内設されている。室内凝縮器32における空気流の上流側には、室内凝縮器32への空気入口を開閉するダンパ34が設けられ、図1中に破線で示すようにしてダンパ34を閉じることで室内凝縮器32をバイパスして空気を流すことができる。
詳しくは、ヒートポンプシステム2は、冷媒が循環する冷媒回路36を備え、冷媒回路36のうちの暖房運転時流路(第2の流路)36aは、図1中に破線矢印で示す冷媒流れ方向に、室外熱交換器1、第1開閉弁38、アキュムレータ40、圧縮機42、室内凝縮器32、第1膨張弁44を順に流通して室外熱交換器1に戻る冷媒流路を形成している。
更に、除湿運転時流路36cは、室外熱交換器1、第1逆止弁46、内部熱交換器48、第2膨張弁50、室内蒸発器30、第2開閉弁52、内部熱交換器48、アキュムレータ40、圧縮機42、室内凝縮器32を順に流通した後、分流路36fにおいて分流され第3開閉弁54を流通した後に合流路36gにおいて合流して最終的にアキュムレータ40に至る除湿専用流路36hを形成している。
このように、暖房、冷房及び除湿運転時の各流路36a,36b,36cは、アキュムレータ40から、圧縮機42、室内凝縮器32、第1膨張弁44を順に流通して室外熱交換器1に至るまでは共用されている。
また、室外熱交換器1のサブクールコア部10の上側のヘッダタンク12には、室外熱交換器1からの冷媒の出口ポート60が設けられ、出口ポート60は暖房、冷房、除湿及び除霜運転時において共用されている。
ダンパ34、及び第1~第4開閉弁38,52,54、56の各駆動部は、車両を総合的に制御する図示しないECU(電気制御ユニット)に電気的に接続されている。ECUは、暖房運転時流路36aを使用する暖房運転時又は除湿運転時流路36cを使用する除湿運転時にダンパ34を開くことで、送風ファン28から送風される空気が室内凝縮器32に導入される。
一方、冷房運転時には第1開閉弁38を閉弁し、第2開閉弁52の開度を調整することにより室内蒸発器30において気化された冷媒ガスの蒸発圧力を適宜調整し、第3及び第4開閉弁54,56を閉弁する。一方、除湿運転時には第1開閉弁38を開弁し、第2開閉弁52の開度を調整することにより室内蒸発器30において気化された冷媒ガスの蒸発圧力を適宜調整し、第3開閉弁54の開度を適宜調整し、第4開閉弁56を閉弁する。
そして、暖房、冷房、除湿及び除霜運転時に入口ポート62からメインコア部6に流入した冷媒は、各ヘッダタンク12を内部で仕切る複数の仕切り板64を境界として同一方向にダウンフロー又はアップフローの縦流れを繰り返し、メインコア部6に対する通風によって周囲の空気と熱交換を行いながら、全体として図1及び図2で見て右から左に流通する。
また、サブクールコア部10の下側のヘッダタンク12には、冷媒のサブクールコア部入口ポート70が設けられ、サブクールコア部入口ポート70には暖房及び除湿運転時の各流路36a,36cの一部として共用される第2共用流路(第2の流路)72が接続されている。
以下、三方弁82による流路切換制御について詳しく説明する。先ず、ヒートポンプシステム2の暖房運転時には、入口ポート62からメインコア部6に流入した冷媒は、各ヘッダタンク12の仕切り板64を境界としてダウンフロー又はアップフローの縦流れを繰り返し、メインコア部6に対する通風によって周囲の空気と熱交換を行いながら、図1に破線矢印で示すように全体として右から左に流通し、メインコア部出口ポート66から第1共用流路68に流出される。
具体的には、室外熱交換器1を蒸発器として使用する暖房及び除湿運転時と、室外熱交換器1を凝縮器として使用する冷房運転時とで、メインコア部6及びサブクールコア部10の熱交換コアにおける冷媒の流通方向を逆流れにした場合には、冷媒回路36中に各運転時専用の配管や弁の数が必然的に増大し、回路構成が複雑になる。また、専用配管が増えると、冷媒回路36の総配管長が長くなるため、冷媒回路36の冷媒封入量が増大し、室外熱交換器1の熱交換効率低下の要因となるが、本実施例の場合にはこれらを回避することができる。
また、チューブ14に着霜したときには、ヒートポンプシステム2を除霜運転に移行することにより、高温冷媒の熱により融霜され、融霜後にチューブ14の表面に発生する水滴を重力によりチューブ14に沿って下に垂らすことで効率的に除去可能である。
また、メインコア部6とサブクールコア部10とを隣接して一体的に構成することで、室外熱交換器1をコンパクトに構成することができるとともに、室外熱交換器1の製作を容易にし、部品コストを低減することができ、室外熱交換器1の構造を簡素化することができる。
例えば、メインコア部6及びサブクールコア部10のパス数を適宜変更しても良い。
また、室外熱交換器1を蒸発器として使用する暖房及び除湿運転時に、室外熱交換器1においてレシーバタンク8をバイパスして、メインコア部6、サブクールコア部10の順に冷媒が流通するのであれば、室外熱交換器1の構成は前記実施例に限定されない。
また、前記実施例では本発明を車両空調用のHVACユニット4外に設けた室外熱交換器1に用いる場合について説明したが、他の用途の熱交換器及びヒートポンプシステムにも適用可能である。但し、室外熱交換器1を車両用空調装置に用いることにより、前記したようなエネルギー効率の高い除霜運転が可能となるため好適である。
2 ヒートポンプシステム
6 メインコア部
8 レシーバタンク
10 サブクールコア部
12 ヘッダタンク
14 チューブ
16 フィン
36a 暖房運転時流路(第2の流路)
36b 冷房運転時流路(第1の流路)
36d 除霜運転時流路(第2の流路)
68 第1共用流路(第1の流路、第2の流路)
72 第2共用流路(第2の流路)
74 連結部材
76 タンク間連通孔(第1の連通孔)
78 冷房専用流路(第1の流路)
80 冷房用連通孔(第2の連通孔)
82 三方弁(流路切換手段)
Claims (8)
- 空気と冷媒との熱交換を行うメインコア部と、
前記メインコア部を流通した冷媒が流入されるレシーバタンクと、
前記レシーバタンクを流通した液冷媒を空気との熱交換により過冷却するサブクールコア部と、
前記メインコア部、前記レシーバタンク、前記サブクールコア部の順に冷媒を流通させる第1の流路と、
前記レシーバタンクをバイパスして、前記メインコア部、前記サブクールコア部の順に冷媒を流通させる第2の流路と、
前記第1の流路と前記第2の流路とを切り換える流路切換手段とを備えることを特徴とする熱交換器。 - 前記第1の流路及び前記第2の流路の前記メインコア部及び前記サブクールコア部における冷媒の流通方向は同一であることを特徴とする請求項1に記載の熱交換器。
- 前記メインコア部及び前記サブクールコア部は、
上下方向に離間して配置された一対のヘッダタンクと、
前記ヘッダタンク間において上下方向に延びるように配置され前記一対のヘッダタンクを連通する複数のチューブと、
前記チューブに設けられたフィンとを有することを特徴とする請求項2に記載の熱交換器。 - 前記メインコア部及び前記サブクールコア部は、互いに隣接して配置されることを特徴とする請求項3に記載の熱交換器。
- 前記レシーバタンクは、前記ヘッダタンクに連通される第1の連通孔と、前記第1の流路に連通される第2の連通孔とを有した1つの連結部材を具備することを特徴とする請求項4に記載の熱交換器。
- 請求項1乃至5の何れかに記載の前記熱交換器を凝縮器又は蒸発器に切り換えて使用するヒートポンプシステムであって、
前記熱交換器を前記凝縮器として使用するときには、前記流路切換手段により前記第1の流路に冷媒を流通させ、
前記熱交換器を前記蒸発器として使用するときには、前記流路切換手段により前記第2の流路に冷媒を流通させることを特徴とするヒートポンプシステム。 - 前記メインコア部及び前記サブクールコア部を除霜するときには、前記流路切換手段により前記第2の流路に冷媒を流通させることを特徴とする請求項6に記載のヒートポンプシステム。
- 前記熱交換器は、車両用空調装置の室外熱交換器として用いられることを特徴とする請求項7に記載のヒートポンプシステム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112013005932.0T DE112013005932B4 (de) | 2012-12-12 | 2013-12-04 | Wärmetauscher und Wärmepumpensystem. das denselben verwendet |
US14/652,010 US9927153B2 (en) | 2012-12-12 | 2013-12-04 | Heat exchanger and heat pump system using same |
CN201380064339.1A CN104837657B (zh) | 2012-12-12 | 2013-12-04 | 热交换器以及使用该热交换器的热泵系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012271309A JP6097065B2 (ja) | 2012-12-12 | 2012-12-12 | ヒートポンプシステム |
JP2012-271309 | 2012-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091972A1 true WO2014091972A1 (ja) | 2014-06-19 |
Family
ID=50934264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082528 WO2014091972A1 (ja) | 2012-12-12 | 2013-12-04 | 熱交換器及びそれを用いたヒートポンプシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9927153B2 (ja) |
JP (1) | JP6097065B2 (ja) |
CN (1) | CN104837657B (ja) |
DE (1) | DE112013005932B4 (ja) |
WO (1) | WO2014091972A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173544A1 (ja) * | 2017-03-24 | 2018-09-27 | サンデンホールディングス株式会社 | 空気調和装置 |
WO2021234952A1 (ja) * | 2020-05-22 | 2021-11-25 | 三菱電機株式会社 | 熱交換器及び該熱交換器を備えた空気調和機 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9745069B2 (en) * | 2013-01-21 | 2017-08-29 | Hamilton Sundstrand Corporation | Air-liquid heat exchanger assembly having a bypass valve |
US11079149B2 (en) * | 2015-06-09 | 2021-08-03 | Carrier Corporation | System and method of diluting a leaked refrigerant in an HVAC/R system |
JP6571405B2 (ja) * | 2015-06-19 | 2019-09-04 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
DE102015222267A1 (de) * | 2015-11-11 | 2017-05-11 | Mahle International Gmbh | Klimaanlage |
JP6623962B2 (ja) * | 2016-07-26 | 2019-12-25 | 株式会社デンソー | 冷凍サイクル装置 |
JP2018071829A (ja) * | 2016-10-25 | 2018-05-10 | 株式会社デンソー | ヒートポンプサイクル装置 |
DE102017204116B4 (de) | 2017-03-13 | 2022-06-15 | Audi Ag | Kälteanlage eines Fahrzeugs mit einem als Kältekreislauf für einen Kältebetrieb und als Wärmepumpenkreislauf für einen Heizbetrieb betreibbaren Kältemittelkreislauf |
KR20190005475A (ko) | 2017-07-06 | 2019-01-16 | 이동원 | 가변용량 냉매 저장수단을 구비한 고효율 히트 펌프 |
KR20190005471A (ko) | 2017-07-06 | 2019-01-16 | 이동원 | 가변용량 냉매 저장수단을 구비한 히트 펌프 |
JP7213628B2 (ja) * | 2018-06-29 | 2023-01-27 | サンデン株式会社 | 熱交換器、車両用空気調和装置 |
JP2020003171A (ja) * | 2018-06-29 | 2020-01-09 | サンデン・オートモーティブクライメイトシステム株式会社 | 熱交換器、車両用空気調和装置 |
JP2020003172A (ja) * | 2018-06-29 | 2020-01-09 | サンデン・オートモーティブクライメイトシステム株式会社 | 熱交換器、車両用空気調和装置 |
FR3092651B1 (fr) * | 2019-02-13 | 2021-04-30 | Valeo Systemes Thermiques | Dispositif de gestion thermique de véhicule automobile électrique ou hybride |
CN110254169A (zh) * | 2019-06-26 | 2019-09-20 | 曼德电子电器有限公司 | 用于车辆的空调系统和具有其的车辆 |
CN110823616B (zh) * | 2019-11-21 | 2021-04-27 | 青岛大学 | 一种桌面型自供水热交换器性能测试装置 |
KR20210130320A (ko) * | 2020-04-21 | 2021-11-01 | 현대자동차주식회사 | 차량용 공조 시스템 |
US20240011648A1 (en) * | 2022-07-08 | 2024-01-11 | Carrier Corporation | Microchannel heat exchanger for heat pump |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106763A (ja) * | 1996-06-26 | 1998-01-13 | Calsonic Corp | 冷暖房装置 |
JP2005114353A (ja) * | 2005-01-20 | 2005-04-28 | Denso Corp | 受液器一体型冷媒凝縮器 |
JP2011033289A (ja) * | 2009-08-04 | 2011-02-17 | Panasonic Corp | 冷凍サイクル装置 |
JP2012225638A (ja) * | 2011-04-04 | 2012-11-15 | Denso Corp | 熱交換器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1618485A (en) * | 1925-07-22 | 1927-02-22 | Fred A C Skinner | Radiator |
JPH0452706Y2 (ja) | 1985-11-22 | 1992-12-10 | ||
JP2875309B2 (ja) * | 1989-12-01 | 1999-03-31 | 株式会社日立製作所 | 空気調和装置とその装置に使用される熱交換器及び前記装置の制御方法 |
US5056327A (en) * | 1990-02-26 | 1991-10-15 | Heatcraft, Inc. | Hot gas defrost refrigeration system |
US5473906A (en) * | 1993-01-29 | 1995-12-12 | Nissan Motor Co., Ltd. | Air conditioner for vehicle |
JPH07332807A (ja) * | 1994-06-09 | 1995-12-22 | Nippondenso Co Ltd | 過冷却度制御弁および冷凍サイクル |
JP3644077B2 (ja) * | 1995-07-18 | 2005-04-27 | 株式会社デンソー | 冷凍サイクル |
JP4052706B2 (ja) * | 1998-01-22 | 2008-02-27 | 昭和電工株式会社 | サブクールシステムコンデンサ |
DE10350192A1 (de) * | 2002-10-30 | 2004-05-19 | Denso Corp., Kariya | Kühlkreissystem |
JP2009023564A (ja) * | 2007-07-20 | 2009-02-05 | Denso Corp | 車両用空調装置 |
JP4803199B2 (ja) * | 2008-03-27 | 2011-10-26 | 株式会社デンソー | 冷凍サイクル装置 |
JP2010006763A (ja) | 2008-06-27 | 2010-01-14 | Toyo Univ | ポルフィリン誘導体 |
US9610822B2 (en) * | 2011-05-26 | 2017-04-04 | Panasonic Intellectual Property Management Co., Ltd. | Air conditioning device for vehicle |
-
2012
- 2012-12-12 JP JP2012271309A patent/JP6097065B2/ja active Active
-
2013
- 2013-12-04 DE DE112013005932.0T patent/DE112013005932B4/de active Active
- 2013-12-04 WO PCT/JP2013/082528 patent/WO2014091972A1/ja active Application Filing
- 2013-12-04 US US14/652,010 patent/US9927153B2/en active Active
- 2013-12-04 CN CN201380064339.1A patent/CN104837657B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106763A (ja) * | 1996-06-26 | 1998-01-13 | Calsonic Corp | 冷暖房装置 |
JP2005114353A (ja) * | 2005-01-20 | 2005-04-28 | Denso Corp | 受液器一体型冷媒凝縮器 |
JP2011033289A (ja) * | 2009-08-04 | 2011-02-17 | Panasonic Corp | 冷凍サイクル装置 |
JP2012225638A (ja) * | 2011-04-04 | 2012-11-15 | Denso Corp | 熱交換器 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173544A1 (ja) * | 2017-03-24 | 2018-09-27 | サンデンホールディングス株式会社 | 空気調和装置 |
JP2018161948A (ja) * | 2017-03-24 | 2018-10-18 | サンデンホールディングス株式会社 | 空気調和装置 |
CN110475683A (zh) * | 2017-03-24 | 2019-11-19 | 三电控股株式会社 | 空气调节装置 |
CN110475683B (zh) * | 2017-03-24 | 2022-11-18 | 三电控股株式会社 | 空气调节装置 |
WO2021234952A1 (ja) * | 2020-05-22 | 2021-11-25 | 三菱電機株式会社 | 熱交換器及び該熱交換器を備えた空気調和機 |
GB2610087A (en) * | 2020-05-22 | 2023-02-22 | Mitsubishi Electric Corp | Heat exchanger and air conditioner provided with said heat exchanger |
GB2610087B (en) * | 2020-05-22 | 2024-06-05 | Mitsubishi Electric Corp | Heat exchanger and air-conditioning apparatus including the heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2014113975A (ja) | 2014-06-26 |
US20150323225A1 (en) | 2015-11-12 |
JP6097065B2 (ja) | 2017-03-15 |
DE112013005932T5 (de) | 2015-09-10 |
DE112013005932B4 (de) | 2017-07-06 |
CN104837657B (zh) | 2017-06-30 |
US9927153B2 (en) | 2018-03-27 |
CN104837657A (zh) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6097065B2 (ja) | ヒートポンプシステム | |
JP6073601B2 (ja) | ヒートポンプシステム | |
EP4151440A1 (en) | Heat management system | |
EP2990740B1 (en) | Air conditioning system | |
JP6216113B2 (ja) | 熱交換器及びそれを用いたヒートポンプシステム | |
JP6768073B2 (ja) | 空気調和装置 | |
EP3800076A1 (en) | Thermal management system | |
CN110831796B (zh) | 包括具有热交换器的制冷剂回路的用于车辆的制冷设备以及用于这种制冷设备的热交换器 | |
CN111231612B (zh) | 热管理系统 | |
JP2014156143A (ja) | 車両用空調装置 | |
EP3666565B1 (en) | Automotive air conditioning system | |
JP2014119168A (ja) | 熱交換器 | |
JP4422023B2 (ja) | 車両空調装置用熱交換器配置および暖房/冷房回路、そして空調装置の暖房/冷房回路を制御および/または調節するための方法 | |
JP2017040421A (ja) | 熱交換器及びヒートポンプシステム | |
JP2011189824A (ja) | 車両用空調システム | |
CN106949670B (zh) | 制冷系统及控制方法 | |
CN217574780U (zh) | 热管理系统 | |
KR20240160457A (ko) | 차량용 히트펌프 시스템 | |
JP2022011597A (ja) | 熱交換器およびこれを用いたヒートポンプ式冷凍サイクル | |
CN117168024A (zh) | 一种换向阀及一种空调器 | |
KR102058640B1 (ko) | 차량용 히트 펌프 시스템 | |
CN114889396A (zh) | 热管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13861926 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14652010 Country of ref document: US Ref document number: 112013005932 Country of ref document: DE Ref document number: 1120130059320 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13861926 Country of ref document: EP Kind code of ref document: A1 |