WO2014077274A1 - 正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池 - Google Patents
正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池 Download PDFInfo
- Publication number
- WO2014077274A1 WO2014077274A1 PCT/JP2013/080667 JP2013080667W WO2014077274A1 WO 2014077274 A1 WO2014077274 A1 WO 2014077274A1 JP 2013080667 W JP2013080667 W JP 2013080667W WO 2014077274 A1 WO2014077274 A1 WO 2014077274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particle
- positive electrode
- active material
- particles
- lithium
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 98
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 319
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims abstract description 54
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 claims abstract description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- 239000002243 precursor Substances 0.000 claims description 83
- 229910052744 lithium Inorganic materials 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 39
- 229910001416 lithium ion Inorganic materials 0.000 claims description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 35
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 29
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 26
- 238000010304 firing Methods 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims description 18
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- 239000011572 manganese Substances 0.000 claims description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 15
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 6
- 239000003595 mist Substances 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 claims description 3
- 229940081735 acetylcellulose Drugs 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 37
- 239000000843 powder Substances 0.000 description 28
- 239000002994 raw material Substances 0.000 description 25
- 239000007921 spray Substances 0.000 description 24
- 238000009841 combustion method Methods 0.000 description 23
- 239000010419 fine particle Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- -1 lithium phosphate transition metal Chemical class 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 229910052723 transition metal Inorganic materials 0.000 description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 150000003624 transition metals Chemical class 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000001294 propane Substances 0.000 description 9
- 239000000470 constituent Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 238000001027 hydrothermal synthesis Methods 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- SMSVUYQRWYTTLI-UHFFFAOYSA-L 2-ethylhexanoate;iron(2+) Chemical compound [Fe+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O SMSVUYQRWYTTLI-UHFFFAOYSA-L 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- SBWRUMICILYTAT-UHFFFAOYSA-K lithium;cobalt(2+);phosphate Chemical compound [Li+].[Co+2].[O-]P([O-])([O-])=O SBWRUMICILYTAT-UHFFFAOYSA-K 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000010450 olivine Substances 0.000 description 4
- 229910052609 olivine Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical class O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001386 lithium phosphate Inorganic materials 0.000 description 3
- LRVBJNJRKRPPCI-UHFFFAOYSA-K lithium;nickel(2+);phosphate Chemical compound [Li+].[Ni+2].[O-]P([O-])([O-])=O LRVBJNJRKRPPCI-UHFFFAOYSA-K 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000005118 spray pyrolysis Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- MZGNSEAPZQGJRB-UHFFFAOYSA-N dimethyldithiocarbamic acid Chemical compound CN(C)C(S)=S MZGNSEAPZQGJRB-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 229960004488 linolenic acid Drugs 0.000 description 2
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- GGUBFICZYGKNTD-UHFFFAOYSA-N triethyl phosphonoacetate Chemical compound CCOC(=O)CP(=O)(OCC)OCC GGUBFICZYGKNTD-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- FHRAKXJVEOBCBQ-UHFFFAOYSA-L 2-ethylhexanoate;manganese(2+) Chemical compound [Mn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O FHRAKXJVEOBCBQ-UHFFFAOYSA-L 0.000 description 1
- RURZQVYCZPJWMN-UHFFFAOYSA-N 2-ethylhexanoic acid;nickel Chemical compound [Ni].CCCCC(CC)C(O)=O.CCCCC(CC)C(O)=O RURZQVYCZPJWMN-UHFFFAOYSA-N 0.000 description 1
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- VUZHZBFVQSUQDP-UHFFFAOYSA-N 4,4,5,5-tetrafluoro-1,3-dioxolan-2-one Chemical compound FC1(F)OC(=O)OC1(F)F VUZHZBFVQSUQDP-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910011570 LiFe 1-x Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910005580 NiCd Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZEEDCGIEVPGBCZ-UHFFFAOYSA-N [Li].[Mn].P(O)(O)(O)=O Chemical compound [Li].[Mn].P(O)(O)(O)=O ZEEDCGIEVPGBCZ-UHFFFAOYSA-N 0.000 description 1
- RTBHLGSMKCPLCQ-UHFFFAOYSA-N [Mn].OOO Chemical compound [Mn].OOO RTBHLGSMKCPLCQ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- GOKIPOOTKLLKDI-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O.CC(O)=O GOKIPOOTKLLKDI-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000000779 annular dark-field scanning transmission electron microscopy Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000005619 boric acid group Chemical group 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- QAEKNCDIHIGLFI-UHFFFAOYSA-L cobalt(2+);2-ethylhexanoate Chemical compound [Co+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QAEKNCDIHIGLFI-UHFFFAOYSA-L 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- PHGMGTWRSNXLDV-UHFFFAOYSA-N diethyl furan-2,5-dicarboxylate Chemical compound CCOC(=O)C1=CC=C(C(=O)OCC)O1 PHGMGTWRSNXLDV-UHFFFAOYSA-N 0.000 description 1
- REKWWOFUJAJBCL-UHFFFAOYSA-L dilithium;hydrogen phosphate Chemical compound [Li+].[Li+].OP([O-])([O-])=O REKWWOFUJAJBCL-UHFFFAOYSA-L 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- NIQAXIMIQJNOKY-UHFFFAOYSA-N ethyl 2,2,2-trifluoroethyl carbonate Chemical compound CCOC(=O)OCC(F)(F)F NIQAXIMIQJNOKY-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 1
- 229940116007 ferrous phosphate Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- JCDAAXRCMMPNBO-UHFFFAOYSA-N iron(3+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Ti+4].[Fe+3].[Fe+3] JCDAAXRCMMPNBO-UHFFFAOYSA-N 0.000 description 1
- 229910000155 iron(II) phosphate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- HPGPEWYJWRWDTP-UHFFFAOYSA-N lithium peroxide Chemical compound [Li+].[Li+].[O-][O-] HPGPEWYJWRWDTP-UHFFFAOYSA-N 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 1
- RGVLTEMOWXGQOS-UHFFFAOYSA-L manganese(2+);oxalate Chemical compound [Mn+2].[O-]C(=O)C([O-])=O RGVLTEMOWXGQOS-UHFFFAOYSA-L 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0072—Mixed oxides or hydroxides containing manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium transition metal phosphate based positive electrode active material and the like used in a non-aqueous electrolyte secondary battery.
- lithium cobalt oxide uses cobalt, which is a rare metal, it has large resource limitations, is expensive, and has problems with price stability.
- lithium cobaltate releases a large amount of oxygen when the temperature reaches 180 ° C. or higher, and therefore, an explosion may occur at the time of abnormal heat generation or a short circuit of the battery.
- lithium phosphate transition metal having an olivine structure such as lithium iron phosphate (LiFePO 4 ) or manganese lithium phosphate (LiMnPO 4 ), which is more excellent in thermal stability than lithium cobaltate, is resource aspect and cost.
- LiFePO 4 lithium iron phosphate
- LiMnPO 4 manganese lithium phosphate
- solid phase method As a method of synthesizing lithium iron phosphate, a method called solid phase method is known.
- the outline of the solid phase method is a method in which powders of a lithium source, an iron source and a phosphorus source are mixed and subjected to a baking treatment under an inert atmosphere. This method has a problem that the composition of the product does not become as intended if the calcination conditions are not properly selected, and control of the particle size is difficult.
- a hydrothermal synthesis method using hydrothermal synthesis in a liquid phase is also known.
- the hydrothermal synthesis is carried out in the presence of high temperature and pressure hot water. A much purer product is obtained at a much lower temperature than solid phase methods.
- the control of the particle size is performed depending on the preparation conditions such as the reaction temperature and time, the reproducibility of the control of the particle size is poor and the control of the particle size is difficult (see Patent Document 1).
- a fine mist is generated from a mixed solution of a carbon-containing compound, a lithium-containing compound, an iron-containing compound and a phosphorus-containing compound, and thermal decomposition is performed by heating while flowing the generated fine mist.
- a fine powder comprising a lithium iron phosphate precursor containing the above is formed, and the fine powder thus produced is heated and fired in an inert gas-hydrogen mixed gas atmosphere to produce a lithium iron phosphate powder containing carbon. It is a method of generating a body (see Patent Document 2).
- lithium iron phosphate remains at 3.4 V while the potential of lithium cobaltate is 3.9 V
- LiCoPO 4 and LiNiPO 4 (wherein Ni and Co are substituted by one or more of Ni, Co, Mn, Fe, Mg, Cu, Cr, V, Li, Nb, Ti and Zr other than the elements)
- Li 1-x FePO 4 (however, part of Fe is Co, Ni, Mn, Fe, Mg, Cu, Cr, V, Li, etc.) around the first positive electrode active material which may be
- a positive electrode for a secondary battery comprising a second positive electrode active material, which may be substituted with one or more of Nb, Ti and Zr, and x represents a number of 0 or more and less than 1).
- a core-shell type positive electrode active material particle is disclosed in which the core particle and the shell layer contain an olivine type phosphoric acid compound containing Fe and / or Mn and Li (see Patent Document 6).
- lithium manganese phosphate has a smaller electron conductivity and a smaller diffusion coefficient of lithium ions than lithium iron phosphate, and furthermore, it is difficult to sufficiently cover the surface with carbon, so lithium manganese phosphate is used.
- the used positive electrode active material has a problem that a sufficient discharge capacity can not be obtained.
- the surface of large lithium manganese phosphate particles is coated with lithium iron phosphate.
- the diffusion coefficient of lithium ion of lithium manganese phosphate is smaller than that of lithium iron phosphate, there is a problem that the lithium ion is not deintercalated to the center of large lithium manganese phosphate particles during charge and discharge.
- lithium iron phosphate (LiFe x Mn 1 -x PO 4 ) in which iron atoms in lithium iron phosphate crystals are replaced with manganese atoms in a solid phase method or a hydrothermal synthesis method is manufactured or
- a lithium transition metal phosphate having an olivine structure using iron and manganese has been obtained by simply mixing lithium iron phosphate and lithium manganese phosphate.
- these lithium transition metal phosphates are different from the structure in which lithium manganese phosphate particles are attached to the surface of lithium iron phosphate particles as in the present invention.
- the positive electrode active material described in Patent Document 5 is not intended to utilize lithium manganese phosphate, and the second positive electrode active material particles in the periphery of the first positive electrode active material are lithium iron phosphate. is there. Moreover, the positive electrode active material described in Patent Document 5 can also have a configuration that does not contain manganese.
- the positive electrode active material described in Patent Document 6, above containing metal phosphate that Me m P n O p as essential, the core particle and the shell layer in each embodiment is using the same material.
- the present invention has been made in view of the above-mentioned problems, and its object is to provide a positive electrode active material containing lithium manganese phosphate and having a large discharge capacity and energy density.
- the inventors of the present invention have an energy density by arranging lithium manganese phosphate having a small particle diameter and a low diffusion coefficient but high potential on the surface of lithium iron phosphate excellent in electron conductivity and diffusion coefficient of lithium ions. It has been found that an excellent positive electrode active material can be obtained. It has also been found that such a positive electrode active material can be obtained by mixing a precursor of lithium iron phosphate and a precursor of lithium manganese phosphate and then calcining the mixture.
- a second particle mainly containing lithium manganese phosphate smaller in particle diameter than the first particle is attached to at least a part of the surface of the first particle mainly containing lithium iron phosphate
- a positive electrode for a non-aqueous electrolyte secondary battery comprising a current collector and an active material layer containing the positive electrode active material described in (3) on at least one surface of the current collector.
- a lithium ion according to (4) including the positive electrode for a non-aqueous electrolyte secondary battery, a negative electrode capable of absorbing and desorbing lithium ions, and a separator disposed between the positive electrode and the negative electrode, A non-aqueous electrolyte secondary battery comprising the positive electrode, the negative electrode, and the separator in a conductive electrolyte.
- the third particle is manufactured by a method of supplying a solution containing lithium, iron and phosphorus into a flame together with a combustion supporting gas and a flammable gas as droplets in the form of mist
- the particles of the present invention are characterized in that they are produced by a method of supplying a solution containing lithium, manganese and phosphorus in the form of atomized droplets into a flame together with a combustion supporting gas and a flammable gas (6)
- the manufacturing method of the positive electrode active material as described.
- BRIEF DESCRIPTION OF THE DRAWINGS The schematic sectional drawing which shows the particle
- BRIEF DESCRIPTION OF THE DRAWINGS The schematic of the microparticles
- BRIEF DESCRIPTION OF THE DRAWINGS The schematic sectional drawing of the non-aqueous electrolyte secondary battery using the positive electrode active material which concerns on this Embodiment. (A) to (c) SEM photographs of particles before firing according to an example.
- FIG. 1 is a view showing a particle 1 according to the present embodiment.
- the particle 1 is a particle formed by attaching the second particle 5 to the surface of the first particle 3. Note that the entire surface of the first particle 3 may be covered by the plurality of second particles 5, or only a part of the surface of the first particle 3 is covered by the second particle 5. Also good.
- grains 1 gathered can be used as a positive electrode active material of a non-aqueous electrolyte secondary battery.
- the first particles 3 are particles mainly containing lithium iron phosphate (LiFePO 4 ).
- the first particles 3 preferably have a particle size of 100 nm to 10 ⁇ m. If the first particles 3 are smaller than 100 nm, the packing density of the powder when used as an electrode does not increase, and the energy density of the electrode is inferior. If the first particles 3 are larger than 10 ⁇ m, the power density as an electrode is inferior. Also, in order for the second particle to have a structure covering the surface of the first particle as in the present invention, the particle diameter of the second particle covering the surface of the first particle is the particle size of the first particle It needs to be smaller than the diameter.
- the average particle diameter of the first particles 3 is preferably 100 nm to 10 ⁇ m, and more preferably 200 nm to 2 ⁇ m.
- the second particles 5 are particles mainly containing lithium manganese phosphate (LiMnPO 4 ).
- the second particles 5 preferably have a particle size of 200 nm or less. If the size of the second particle 5 is too large, the lithium can not be deintercalated to the center of the particle, so the power density as an electrode is inferior.
- the particle diameter of the second particles is not a problem to be small for obtaining the effect of the present invention, and the lower limit of the particle diameter is not particularly defined. However, it is preferably 5 nm or more because it is often about 5 nm at the minimum in consideration of the limit from the process of precursor production and the convenience of the operation of mixing with the first particles.
- the average particle diameter of the second particles 5 is preferably 5 nm to 200 nm, and more preferably 10 nm to 100 nm.
- containing mainly means that the ratio of lithium iron phosphate contained in the first particles 3 is 80% by mass or more with respect to the first particles 3. Furthermore, the proportion of lithium iron phosphate is preferably 90% by mass or more. The same applies to the proportion of lithium manganese phosphate contained in the second particles 5.
- the ratio of lithium iron phosphate to lithium phosphate transition metal contained in the first particles 3 is preferably 80% by mass or more, and more preferably 90% by mass or more.
- the surface of particle 1 may be coated with carbon. That is, at least a part of the surface of either or both of the first particle 3 and the second particle 5 constituting the particle 1 may be coated with carbon.
- the electric conductivity of the particle 1 becomes high, a conductive path to lithium iron phosphate fine particles or lithium manganese phosphate fine particles is obtained, and when using the particle 1 as a positive electrode active material, high speed
- the electrode characteristics can be improved, for example, by
- the particles containing lithium manganese phosphate (LiMnPO 4 ) of the second particles 5 attached to the particles containing LiFePO 4 ) may not be attached to the entire surface of the first particles 3.
- fine particles containing lithium manganese phosphate which is hard to be carbon-coated on the surface are also easily carbon-coated.
- the particles including the first particles 3 come into direct contact with the electrolytic solution during charge and discharge, and the particles 1 become a positive electrode active material. The electrode characteristics when used are improved.
- a part of PO 4 can be replaced by another anion.
- the powder in which the particles 1 or a plurality of particles 1 are collected can be used as a positive electrode active material used for a positive electrode for a non-aqueous electrolyte secondary battery.
- the positive electrode active material according to the present embodiment adheres lithium manganese phosphate excellent in potential and energy density to the surface of lithium iron phosphate particles excellent in electron conductivity and lithium ion diffusion, phosphoric acid Manganese lithium can be sufficiently utilized for charge and discharge reactions.
- a conductive auxiliary such as carbon black is further added to the positive electrode active material, and polytetrafluoroethylene, polyvinylidene fluoride, Aluminum containing at least 95% by weight of aluminum containing a binder such as polyimide, a dispersant such as butadiene rubber, and a thickener such as carboxymethylcellulose and cellulose derivatives, and adding it to an aqueous solvent or an organic solvent to form a slurry
- the solution is applied on one side or both sides on a current collector such as an alloy foil and fired to evaporate the solvent to dryness.
- the adhesion between the current collector and the active material layer, and the current collecting property it was granulated and fired by a spray dry method using a positive electrode active material and a carbon source.
- the following particles can be used by being contained in the slurry.
- the agglomerated secondary particle mass becomes a large mass of about 0.5 to 20 ⁇ m, which improves the slurry coatability and further improves the characteristics and life of the battery electrode.
- the slurry used in the spray drying method may be either an aqueous solvent or a non-aqueous solvent.
- the surface roughness of the current collector surface of the active material layer is determined according to Japanese Industrial Standard (JIS B 0601-1994). It is desirable that the defined ten-point average roughness Rz be 0.5 ⁇ m or more.
- JIS B 0601-1994 Japanese Industrial Standard
- Rz the defined ten-point average roughness
- Non-aqueous electrolyte secondary battery In order to obtain a high-capacity secondary battery using the positive electrode of the present embodiment, various materials such as a negative electrode using a conventionally known negative electrode active material, an electrolytic solution, a separator, and a battery case are used without particular limitations. Can.
- the non-aqueous electrolyte secondary battery 31 shown in FIG. 3 can be exemplified.
- the positive electrode 33 and the negative electrode 35 are stacked and arranged in the order of separator-negative electrode-separator-positive electrode via the separator 37, and wound so that the positive electrode 33 is inside.
- the electrode plate group is constructed and inserted into the battery can 41.
- the positive electrode 33 is connected to the positive electrode terminal 47 via the positive electrode lead 43
- the negative electrode 35 is connected to the battery can 41 via the negative electrode lead 45, and chemical energy generated inside the non-aqueous electrolyte secondary battery 31 is used as electrical energy. To be able to take out.
- the battery can 41 is filled with the electrolyte 39 so as to cover the electrode plate group, and the upper end (opening) of the battery can 41 is composed of a circular cover plate and a positive electrode terminal 47 on the top thereof. It can manufacture by attaching the sealing body 49 which incorporated the through the annular insulation gasket.
- the secondary battery using the positive electrode according to the present embodiment has a high capacity and good electrode characteristics can be obtained, the non-aqueous solvent containing fluorine in the electrolytic solution using the non-aqueous solvent constituting the secondary battery When or is added, the capacity is unlikely to decrease even after repeated charging and discharging, and the life is extended.
- the electrolytic solution may contain fluorine or fluorine in order to suppress large expansion and contraction due to doping and de-doping of Li ions. It is desirable to use an electrolytic solution containing a non-aqueous solvent having as a substituent.
- the fluorine-containing solvent relaxes the volume expansion of the silicon-based film due to the alloying with Li ions at the time of charge, particularly at the first charge treatment, so that the capacity decrease due to charge and discharge can be suppressed.
- fluorine-containing nonaqueous solvent fluorinated ethylene carbonate, fluorinated linear carbonate, etc. can be used.
- Mono-tetrafluoro-ethylene carbonate (4-fluoro-1,3-dioxolan-2-one, FEC) for fluorinated ethylene carbonate, methyl 2,2,2-trifluoroethyl carbonate for fluorinated linear carbonate And ethyl 2,2,2-trifluoroethyl carbonate, etc., which may be used singly or in combination of two or more in combination with the electrolytic solution. Since the fluorine group easily bonds to silicon and is strong, it is believed that the film can be stabilized and contributed to the suppression of expansion even in the case of expansion due to charge alloying with Li ions.
- the particles according to the present embodiment can be obtained by mixing a third particle, which is a precursor of lithium iron phosphate, and a fourth particle, which is a precursor of lithium manganese phosphate, and then firing the mixture. .
- the third particle and the fourth particle are a precursor particle of lithium iron phosphate and a precursor particle of lithium manganese phosphate, which are synthesized by a spray combustion method such as a flame hydrolysis method or a thermal oxidation method. .
- FIG. 2 An example of a production apparatus for producing precursor particles by the spray combustion method is shown in FIG.
- the particle synthesis nozzle 13 is disposed in the container, and the flammable gas, the combustion supporting gas, and the raw material solution are supplied into the flame generated from the nozzle 13.
- an exhaust pipe 19 for exhausting the generated particulates and reaction products is provided, and the precursor particles 17 in the exhaust gas are recovered by the particulate collection filter 15.
- the constituent material is supplied into the flame together with the combustion supporting gas and the flammable gas by a method of supplying a raw material gas such as chloride or a method of supplying a raw material liquid or a raw material solution through a vaporizer.
- a method of supplying a raw material gas such as chloride or a method of supplying a raw material liquid or a raw material solution through a vaporizer.
- VAD Vapor-phase Axial Deposition
- the temperature of these flames varies depending on the mixing ratio of the flammable gas and the combustion supporting gas, and the addition ratio of the constituent materials, but is usually between 1000 and 3000 ° C., especially around 1500 to 2500 ° C.
- the temperature be about 1500 to 2000.degree. If the flame temperature is low, fine particles may come out of the flame before the reaction in the flame is completed. In addition, when the flame temperature is high, the crystallinity of the particles to be generated becomes too high, and a phase which is a stable phase but is not preferable as a positive electrode active material is easily generated in the subsequent firing step.
- the flame hydrolysis method is a method in which a constituent material is hydrolyzed in a flame.
- an oxyhydrogen flame is generally used as a flame.
- the target material is obtained by simultaneously supplying the constituent materials of the positive electrode active material and the flame raw materials (oxygen gas and hydrogen gas) to the base of the flame where hydrogen gas as combustible gas and oxygen gas as combustion supporting gas are supplied simultaneously. Synthesize.
- the flame hydrolysis method it is possible to obtain nanoscale ultrafine particles of an objective substance consisting mainly of an amorphous substance in an inert gas filled atmosphere.
- the thermal oxidation method is a method in which a constituent material is thermally oxidized in a flame.
- a hydrocarbon flame is generally used as the flame.
- the target material is synthesized while supplying the constituent raw material and the flame raw material (for example, propane gas and oxygen gas) simultaneously from the nozzle to the source of the flame to which hydrocarbon-based gas is supplied as combustible gas and air is supplied as combustion-supporting gas.
- hydrocarbon gas paraffin hydrocarbon gas such as methane, ethane, propane and butane, or olefin hydrocarbon gas such as ethylene, propylene and butylene can be used.
- the constituent materials for obtaining the precursor particles of the present embodiment are a lithium source, a transition metal source, and a phosphorus source.
- the raw material is solid, it is supplied as a powder, dispersed in a liquid, or dissolved in a solvent to form a solution, and is supplied to the flame through a vaporizer.
- the vapor pressure can be increased and vaporized and supplied by heating or depressurization and bubbling in front of the supply nozzle.
- lithium inorganic acid salts such as lithium chloride, lithium hydroxide, lithium carbonate, lithium acetate, lithium nitrate, lithium nitrate, lithium bromide, lithium phosphate, lithium sulfate, lithium oxalate, lithium acetate, lithium naphthenate and the like
- Lithium organic acid salts lithium alkoxides such as lithium ethoxide, organic lithium compounds such as ⁇ -diketonato compounds of lithium, lithium oxide, lithium peroxide and the like can be used.
- Naphthenic acid is a mixture of different carboxylic acids in which a plurality of acidic substances in petroleum are mainly mixed, and the main component is a carboxylic acid compound of cyclopentane and cyclohexane.
- ferric chloride iron oxalate, iron acetate, ferrous sulfate, iron nitrate, iron hydroxide, 2-ethylhexanoate Diiron, iron naphthenate and the like
- organic metal salts of iron such as stearic acid, dimethyldithiocarbamic acid, acetylacetonate, oleic acid, linoleic acid, linolenic acid, iron oxide, etc. are also used depending on the conditions.
- a transition metal source manganese chloride, manganese oxalate, manganese acetate, manganese sulfate, manganese nitrate, manganese oxyhydroxide, manganese 2-hydroxy-2-oxide, Manganese naphthenate, manganese hexoate and the like can be used. Furthermore, stearic acid, dimethyldithiocarbamic acid, acetylacetonate, organometallic salts of manganese such as oleic acid, linoleic acid and linolenic acid, manganese oxide and the like are also used depending on the conditions.
- phosphoric acid As a phosphorus source of the precursor, phosphoric acid, phosphoric acid such as orthophosphoric acid or metaphosphoric acid, pyrophosphoric acid, ammonium hydrogen phosphate such as ammonium hydrogen phosphate such as ammonium hydrogen phosphate or ammonium hydrogen phosphate, ammonium phosphate
- phosphoric acid such as orthophosphoric acid or metaphosphoric acid
- pyrophosphoric acid As a phosphorus source of the precursor, phosphoric acid, phosphoric acid such as orthophosphoric acid or metaphosphoric acid, pyrophosphoric acid, ammonium hydrogen phosphate such as ammonium hydrogen phosphate such as ammonium hydrogen phosphate or ammonium hydrogen phosphate, ammonium phosphate
- ammonium hydrogen phosphate such as ammonium hydrogen phosphate such as ammonium hydrogen phosphate or ammonium hydrogen phosphate
- Various phosphates such as sodium or pyrophosphates, and phosphates of introduced transition metals such as ferr
- a raw material of an oxide of transition metal and boric acid is added as an anion source.
- borates such as diboron, sodium metaborate, sodium tetraborate and borax can be used depending on the desired anion source and synthesis conditions.
- the generated precursor particles can be recovered from the exhaust with a filter. Also, it can be generated around the core rod as follows.
- a silica or silicon core rod (also called a seed rod) is installed in the reactor, and a lithium source, transition metal source, and phosphorus source are supplied together with the flame raw material in the oxyhydrogen flame and propane flame sprayed thereto.
- a lithium source, transition metal source, and phosphorus source are supplied together with the flame raw material in the oxyhydrogen flame and propane flame sprayed thereto.
- fine particles of mainly nano order form and adhere to the surface of the core rod.
- These generated fine particles are recovered and optionally filtered or sieved to remove impurities and coarse aggregates.
- the precursor particles thus obtained are composed of fine particles that are mainly amorphous and have an extremely small particle size of nanoscale.
- precursor particles that can be produced are amorphous, and the particle size is also small. Furthermore, in the spray combustion method, a large amount of synthesis can be performed in a short time as compared with the conventional hydrothermal synthesis method or the solid phase method, and homogeneous precursor particles can be obtained at low cost.
- the positive electrode active material can be obtained by mixing the third particles and the fourth particles as precursors, mixing with a reducing agent, and calcining.
- the precursor in this embodiment is a material capable of obtaining crystals of transition metal phosphate by firing.
- the precursor in the present embodiment has trivalent iron and manganese and is amorphous, but the valence of iron and manganese changes from trivalent to bivalent by mixing with a reducing agent and firing. Do.
- the composition of the particles containing lithium iron phosphate and lithium manganese phosphate constituting the precursor particles satisfy the stoichiometric composition, but if the composition is very small, the ideal stoichiometry due to the inclusion of impurities etc. Deviations from the theoretical composition are acceptable. It is preferable that the spatial distribution of the elements in the microparticles constituting the precursor particles is uniform. In particular, it is preferable that the spatial distribution of the transition metal and phosphorus in the fine particles be uniform.
- the precursor particles have a substantially spherical shape, and the average aspect ratio (long diameter / short diameter) of the particles is 1.5 or less, preferably 1.2 or less, and more preferably 1.1 or less.
- the particles are approximately spherical does not mean that the particle shape is geometrically strictly spherical or elliptical, and even if there are slight protrusions, the surface of the particle is a roughly smooth curved surface It should just be comprised.
- carbon is burned in the flame, and thus the obtained precursor particles do not contain carbon. Even if the carbon component is mixed, it is a very small amount, which is not a sufficient amount as a conductive aid at the time of using the positive electrode.
- the mixing ratio of the third particles to the fourth particles is preferably 60:40 to 90:10 by weight, and more preferably 70:30.
- the mixture of the amorphous compound and the oxide form contained in the precursor particles is converted to a compound of the crystal form of a lithium transition metal phosphate based on the olivine structure mainly by firing.
- a mixed crystal phase represented by LiFe 1-x Mn x PO 4 (0 ⁇ x ⁇ 1) may be included in the vicinity of the interface of the particles.
- the lattice strain at the bonding interface is relaxed compared to the case where the bonding interface of the third particle and the fourth particle directly constitutes the heterogeneous interface.
- the bonding strength at the bonding interface can be stabilized.
- the particle size of the third particles is preferably 100 nm to 10 ⁇ m, and the particle size of the fourth particles is preferably 200 nm or less. Also, the fourth particles have a smaller particle size than the third particles.
- the particle diameter of the fourth particle is not a problem to be small for obtaining the effect of the present invention, and the lower limit of the particle diameter is not particularly defined. However, due to the limit from the process of precursor production, the convenience of the operation of mixing with the first particle, etc., it is often at least about 5 nm at the minimum. In the precursor particles and the positive electrode active material, the particle diameter does not substantially change before and after the firing, and by firing the precursor, the particle diameter can be maintained without causing fusion or particle growth. is there.
- the average particle diameter of the third particles is preferably 100 nm to 10 ⁇ m, and more preferably 200 nm to 2 ⁇ m. Furthermore, in the powder in which a large number of fourth particles are collected, the average particle diameter of the fourth particles 5 is preferably 5 nm to 200 nm, and more preferably 10 nm to 100 nm.
- the carbon source in the atmosphere filled with an inert gas, can be prevented from burning at the time of firing and the positive electrode active material can be prevented from being oxidized.
- an inert gas nitrogen gas, argon gas, neon gas, helium gas, carbon dioxide gas, etc. can be used.
- Organic compounds that are conductive carbon sources such as polyalcohols such as polyvinyl alcohol, polymers such as polyvinyl pyrrolidone, carboxymethyl cellulose, acetyl cellulose, saccharides such as sucrose, saccharides such as carbon black, in order to increase the conductivity of the product after heat treatment
- the compound is added to the powder in which the third and fourth particles are mixed before heat treatment, and the mixture is calcined.
- polyvinyl alcohol is particularly preferable because it can reduce iron and manganese during firing.
- Coating with carbon or supporting treatment is carried out in the same firing step together with crystallization of precursor particles.
- the heat treatment conditions can be a combination of a temperature of 300 to 900 ° C. and a treatment time of 0.5 to 10 hours to obtain a fired product of desired crystallinity and particle size as appropriate. Excessive heat load due to heat treatment at high temperature or long time should be avoided as it can generate coarse single crystals, and should be under heating conditions such that the desired crystalline or microcrystalline lithium transition metal lithium compound can be obtained. And heat treatment conditions that can suppress the size of the crystallite as small as possible.
- the temperature of the heat treatment is preferably about 400 to 700.degree.
- the fourth particle does not have to be attached to the entire surface of the third particle, and the exposed portion is present on the surface of the third particle containing lithium iron phosphate which is easily carbon-coated.
- the particles of 4 are also well coated with carbon.
- the obtained positive electrode active material is often aggregated in the firing step, it can be made into fine particles again by being subjected to a grinding means such as a mortar or a ball mill.
- the positive electrode active material can be synthesized continuously and on a large scale.
- the positive electrode active material according to the present embodiment adheres lithium manganese phosphate excellent in electric potential and energy density to the surface of lithium iron phosphate particles excellent in electron conductivity and lithium ion diffusivity, Lithium manganese phosphate can be sufficiently utilized for charge and discharge reaction.
- the lithium metal transition metal phosphate based positive electrode active material according to the present embodiment can ensure the migration path of lithium ions, and efficiently use the active material constituting the particles. Can.
- the flame temperature was about 2000 ° C.
- the method for producing precursor particles by the spray combustion method is as follows. First, a predetermined amount of N 2 gas was supplied to make the inside of the reaction vessel an inert gas atmosphere. Under such conditions, a solution in which the lithium source, the iron source and the phosphoric acid source were respectively mixed was made into droplets of 20 ⁇ m through an atomizer and supplied to a flame together with propane gas and air. Precursor particles which are a mixture of lithium oxide, iron oxide, fine particles of phosphorus oxide and the like, fine particles of lithium iron phosphate compound and the like generated in a flame were collected by a fine particle collection filter. The obtained precursor particles are precursor particles a. The average particle size of the primary particles of the precursor particles a confirmed by the electron microscope was about 500 nm.
- Synthesis example 2 (spray combustion method) (Preparation of lithium manganese phosphate precursor particles by spray combustion method) Further, as in Synthesis Example 1, the precursor particles b are synthesized by supplying propane gas, air, and a raw material solution having a predetermined concentration described below into a flame of propane gas by a spray combustion method, and thermally oxidizing the raw material solution. Collected. The average particle diameter of the primary particles of the precursor particles b confirmed by the electron microscope was about 100 nm.
- the positive electrode active material B is a powder in which a large number of lithium iron phosphate particles are collected.
- the positive electrode active material C is a powder in which a large number of particles of lithium manganese phosphate are collected.
- a precursor particle d of lithium cobalt phosphate is obtained by the same spray combustion method as in Synthesis Example 1 except that cobalt (II) 2-ethylhexanoate is used instead of iron (II) 2-ethylhexanoate as the raw material solution.
- the average particle size of the primary particles of the precursor particles d confirmed by the electron microscope was about 500 nm.
- lithium iron phosphate precursor particles a ′ were obtained by the same spray fuel method as in Synthesis Example 2 except that manganese sulfate is used as the raw material solution and iron sulfate is used.
- the average particle size of the primary particles of the precursor particles a ′ confirmed by the electron microscope was about 100 nm.
- the polyvinyl alcohol After mixing precursor particle d of lithium cobalt phosphate and precursor particle a 'of lithium iron phosphate smaller in particle diameter at a weight ratio of 70:30, the polyvinyl alcohol will be 10 wt% of the powder The mixture was added to and mixed, and then fired and pulverized in the same manner as in the example to obtain a positive electrode active material D.
- the positive electrode active material D is a powder in which a large number of particles in which small lithium iron phosphate particles are attached to the periphery of lithium cobalt phosphate particles are collected.
- a precursor particle e of lithium nickel phosphate is obtained by the same spray combustion method as in Synthesis Example 1 except that nickel (II) 2-ethylhexanoate is used instead of iron (II) 2-ethylhexanoate as the raw material solution.
- the average particle size of the primary particles of the precursor particles e confirmed by the electron microscope was about 500 nm.
- After mixing precursor particle e of lithium nickel phosphate and precursor particle a 'of lithium iron phosphate smaller in particle diameter at a weight ratio of 70:30, make the polyvinyl alcohol 10 wt% of the powder The mixture was added to and mixed, and then fired and pulverized in the same manner as in the example to obtain a positive electrode active material E.
- the positive electrode active material E is a powder in which a large number of particles in which small particles of lithium iron phosphate adhere to the periphery of lithium lithium phosphate particles.
- a precursor particle f of lithium manganese phosphate is obtained by the same spray combustion method as in Synthesis Example 1 except that manganese (II) 2-ethylhexanoate is used instead of iron (II) 2-ethylhexanoate as the raw material solution.
- the average particle size of the primary particles of the precursor particles f confirmed by the electron microscope was about 500 nm.
- the positive electrode active material F is a powder in which a large number of particles in which small lithium iron phosphate particles are attached around the lithium manganese phosphate particles.
- the particles constituting the powder before firing were particles of about 50 to 200 nm, and some coarse particles of 500 nm or more existed.
- FIG.5 (a) is a HAADF-STEM image of the particle
- FIG.5 (b) is an EDS map of the manganese atom in the same observation location
- FIG.5 (c) is the same.
- 5 (c) is an EDS map of oxygen atom at the same observation point
- FIG. 5 (d) is an EDS map of phosphorus atom at the same observation point. is there.
- FIG. 5A it can be seen that minute particles exist around the approximately spherical particles having a particle diameter of about 500 nm. Furthermore, in FIG. 5 (b) to (e), although the large particles having a substantially spherical shape contain iron, oxygen and phosphorus, manganese is hardly detected from the large particles, and manganese is present from the fine particle part at the bottom of the observation field of view. was detected.
- FIGS. 6A to 6D are STEM images and EDS maps in fields of view different from those in FIG. Assemblage of small particles with a particle size of about 100 nm was observed, iron was not detected in this field of view, and manganese, phosphorus and oxygen were detected. In each particle, the elements are uniformly distributed.
- FIG.7 (a) is a HAADF-STEM image of the positive electrode active material of an Example
- FIG.7 (b) is an EDS map of the manganese atom in the same observation location
- FIG.7 (c) is the same.
- FIG. 7 (d) is an EDS map of iron atom at the observation site
- FIG. 7 (d) is an EDS map of oxygen atom at the same observation site
- FIG. 7 (e) is an EDS map of phosphorus atom at the same observation site .
- the positive electrode active material A of the example has a structure in which lithium manganese phosphate particles having a particle diameter of about 50 to 200 nm adhere to lithium iron phosphate particles having a particle diameter of about 1 ⁇ m.
- lithium manganese phosphate particles do not cover the entire surface of lithium iron phosphate particles, and a part of the surface of lithium iron phosphate particles is exposed.
- the positive electrode slurry was applied at a coating amount of 50 g / m 2 to a 15 ⁇ m thick aluminum foil current collector, and dried at 120 ° C. for 30 minutes. Thereafter, the resultant was rolled to a density of 2.0 g / cm 3 by a roll press, and punched into a disc shape of 2 cm 2 to obtain a positive electrode.
- a lithium secondary battery is prepared by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent in which the positive electrode and the negative electrode are mixed with metal lithium in the negative electrode and ethylene carbonate and diethyl carbonate in the electrolyte at a volume ratio of 1: 1. Made. Note that the dew point was set to ⁇ 50 ° C. or less for the preparation atmosphere. Each electrode was crimped to a battery can with a current collector. A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was formed using the positive electrode, the negative electrode, the electrolyte, and the separator.
- test evaluation of the electrode characteristics of the positive electrode active material was performed as follows using the coin-type lithium secondary battery described above. At a test temperature of 25 ° C. or 60 ° C., at a current rate of 0.1 C, charging is performed to a predetermined potential (vs. Li / Li + ) at which the charge curve becomes a plateau by CC-CV method. After dropping to 01C, charging was stopped. Thereafter, the battery was discharged to 2.5 V (same as above) by the CC method at a 0.1 C rate, and the initial charge and discharge capacity was measured. Moreover, charge and discharge were repeated, the discharge capacity after that was measured, and the capacity retention rate was measured.
- the initial charge / discharge curve of a lithium ion secondary battery using the positive electrode active material according to the example is shown in FIG. 8 (a).
- the charge went to 4.5V.
- (a-1) shows a charge curve
- (a-2) shows a discharge curve.
- the value of the horizontal axis at the right end of the discharge curve is the discharge capacity.
- the lithium ion secondary battery according to the example has an initial discharge capacity of about 120 mAh / g at 25 ° C. and an energy density of 438 Wh / kg.
- transition of the discharge capacity at the time of repeating charging / discharging in FIG.8 (b) is shown.
- the charge went to 4.5V.
- the lithium ion secondary battery using the positive electrode active material according to the example has a discharge capacity of 110 mAh / g, and the 100 cycle capacity retention rate is about 92%.
- the first time charge / discharge curve at 60 ° C. of a lithium ion secondary battery using the positive electrode active material A according to the example is shown in FIG.
- the charge went to 4.5V.
- (a-1) shows a charge curve
- (a-2) shows a discharge curve.
- the value of the horizontal axis at the right end of the discharge curve is the discharge capacity.
- the lithium ion secondary battery according to the example has an initial discharge capacity of about 140 mAh / g at 60 ° C. and an energy density of 520 Wh / kg.
- the initial charge / discharge curve at 25 ° C. of a lithium ion secondary battery using the positive electrode active material B according to Comparative Example 1 is shown in FIG. Also in this case, charging was performed up to 4.5V.
- FIG. 10 (a-1) shows a charge curve, and (a-2) shows a discharge curve.
- the initial discharge capacity of a lithium ion secondary battery using a positive electrode active material containing only lithium iron phosphate according to Comparative Example 1 is about 120 mAh / g at 25 ° C., which is substantially the same value as the Example, but the energy density is about It was 395 Wh / kg, which was a lower value than in the example.
- the first time charge / discharge curve at 25 ° C. of a lithium ion secondary battery using the positive electrode active material C according to Comparative Example 2 is shown in FIG. Also in this case, charging was performed up to 4.5V.
- FIG. 11 (a-1) shows a charge curve, and (a-2) shows a discharge curve.
- the initial discharge capacity of a lithium ion secondary battery using a positive electrode active material containing only lithium manganese phosphate according to Comparative Example 2 is about 30 mAh / g at 25 ° C., and the energy density is about 97 Wh / kg. Was significantly lower.
- the initial discharge capacity of the lithium ion secondary battery using the positive electrode active material D according to Comparative Example 3 was about 59 mAh / g at 25 ° C., and the energy density was about 217 Wh / kg, which were significantly lower than those of Examples. .
- charge was performed to 4.8V which the charge curve of lithium cobalt phosphate becomes a plateau.
- the initial discharge capacity of the lithium ion secondary battery using the positive electrode active material E according to Comparative Example 4 was about 48 mAh / g at 25 ° C., and the energy density was about 168 Wh / kg, which were significantly lower than those of Examples. .
- charging was performed up to 5.0 V at which the charge curve of lithium nickel phosphate became a plateau.
- the initial discharge capacity of the lithium ion secondary battery using the positive electrode active material F according to Comparative Example 5 was about 66 mAh / g at 25 ° C., and the energy density was about 235 Wh / kg, which were significantly lower than those of Examples. . Also in Comparative Example 4, charging was performed to 4.5 V.
- the positive electrode for a non-aqueous electrolyte secondary battery in which the positive electrode active material of the present invention is coated on a predetermined current collector is a charge and discharge including a lithium ion secondary battery using a non-aqueous electrolyte
- the spray combustion method which is a method for producing the precursor particles of the present invention, is excellent in mass productivity and can provide a product at low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1)リン酸鉄リチウムを主として含む第1の粒子の表面の少なくとも一部に、前記第1の粒子より粒径の小さい、リン酸マンガンリチウムを主として含む第2の粒子が付着していることを特徴とする正極活物質。
(2)前記第1の粒子の粒径が100nm~10μmであり、前記第2の粒子の粒径が200nm以下であることを特徴とする(1)に記載の正極活物質。
(3)前記第1の粒子および/または前記第2の粒子の表面の少なくとも一部が、炭素によって被覆されていることを特徴とする(1)に記載の正極活物質。
(4)集電体と、前記集電体の少なくとも片面に、(3)に記載の正極活物質を含む活物質層と、を有することを特徴とする非水電解質二次電池用正極。
(5)(4)に記載の非水電解質二次電池用正極と、リチウムイオンを吸蔵および放出可能な負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とする非水電解質二次電池。
(6)リン酸鉄リチウムの前駆体である第3の粒子と、前記第3の粒子より粒径の小さいリン酸マンガンリチウムの前駆体である第4の粒子を混合する工程と、さらに炭素源を混合する工程と、混合して得られた粒子を焼成する工程と、を含むことを特徴とする正極活物質の製造方法。
(7)前記第3の粒子と前記第4の粒子の混合比が、重量比で60:40~90:10であることを特徴とする(6)に記載の正極活物質の製造方法。
(8)前記第3の粒子の粒径が100nm~10μmであり、前記第4の粒子の粒径が200nm以下であることを特徴とする(6)に記載の正極活物質の製造方法。
(9)前記第3の粒子は、リチウム、鉄およびリンを含む溶液を、霧状の液滴にて、支燃性ガスと可燃性ガスとともに火炎中に供給する方法により製造され、前記第4の粒子は、リチウム、マンガンおよびリンを含む溶液を、霧状の液滴にて、支燃性ガスと可燃性ガスとともに火炎中に供給する方法により製造されることを特徴とする(6)に記載の正極活物質の製造方法。
(10)前記炭素源が、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、アセチルセルロース、ショ糖、カーボンブラックのいずれか一つ以上であることを特徴とする(6)に記載の正極活物質の製造方法。
以下図面に基づいて、本発明の実施の形態を詳細に説明する。
図1は、本実施の形態に係る粒子1を示す図である。粒子1は、第1の粒子3の表面に、第2の粒子5が付着してなる粒子である。なお、第1の粒子3の表面の全部が複数の第2の粒子5により覆われていても良いし、第1の粒子3の表面の一部のみが第2の粒子5により覆われていても良い。粒子1、または、複数の粒子1が集まった粉体は、非水電解質二次電池の正極活物質として用いることができる。
また、第1の粒子3に含まれるリン酸遷移金属リチウムに対するリン酸鉄リチウムの割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
粒子1、または、複数の粒子1が集まった粉体は、非水電解質二次電池用正極に使用される正極活物質として使用可能である。
正極活物質を用いて非水電解質二次電池用正極を形成するには、正極活物質に、必要に応じてさらにカーボンブラックなどの導電助剤を加えると共に、ポリテトラフルオロエチレンやポリフッ化ビニリデン、ポリイミドなどの結着剤、ブタジエンゴムなどの分散剤、カルボキシメチルセルロースほかセルロース誘導体などの増粘剤を加え、水系溶媒か有機溶媒中に加えてスラリーとしたものを、アルミニウムを95重量%以上含むアルミニウム合金箔などの集電体上に、片面ないしは両面に塗布し、焼成して溶媒を揮発乾固する。これにより、集電体上に正極活物質を含む活物質層を有する、非水電解質二次電池用正極が得られる。
本実施の形態の正極を用いた高容量な二次電池を得るには、従来公知の負極活物質を用いた負極や電解液、セパレータ、電池ケース等の各種材料を、特に制限なく使用することができる。
本実施の形態に係る粒子は、リン酸鉄リチウムの前駆体である第3の粒子と、リン酸マンガンリチウムの前駆体である第4の粒子とを、混合した上で焼成することにより得られる。
(前駆体粒子の作製)
噴霧燃焼法により前駆体粒子を製造する製造装置の例を図2に示す。図2に示す微粒子製造装置11の反応容器は、容器内に微粒子合成ノズル13が配置され、可燃性ガス、支燃性ガス、及び原料溶液がノズル13から生じる火炎中に供給される。他方に、生成微粒子や反応生成物を排気する排気管19を有し、排気中の前駆体粒子17を微粒子回収フィルタ15により回収する。
噴霧燃焼法は、塩化物などの原料気体を供給する方法や、気化器を通して原料液体または原料溶液を供給する方法により、支燃性ガスと可燃性ガスとともに構成原料を火炎中へ供給し、構成原料を反応させ、目的物質を得る方法である。噴霧燃焼法として、VAD(Vapor-phase Axial Deposition)法などが好適な例として挙げられる。これらの火炎の温度は、可燃性ガスと支燃性ガスの混合比や、さらに構成原料の添加割合によって変化するが、通常1000~3000℃の間にあり、特に1500~2500℃程度であることが好ましく、さらに1500~2000℃程度であることがより好ましい。火炎温度が低温であると、火炎中での反応が完了する前に、微粒子が火炎の外へ出てしまう可能性がある。また、火炎温度が高温であると、生成する微粒子の結晶性が高くなりすぎ、その後の焼成工程において、安定相であるが、正極活物質としては好ましくない相が生成しやすくなってしまう。
本実施の形態の前駆体粒子を得るための構成原料は、リチウム源、遷移金属源、リン源である。原料が固体の場合は、粉末のまま供給するか、液体に分散して、または溶媒に溶かして溶液とし、気化器を通じて、火炎に供給する。原料が液体の場合には、気化器を通じるほかに、供給ノズル前に加熱または減圧およびバブリングによって蒸気圧を高めて気化供給することもできる。特に、リチウム源、遷移金属源、リン源の混合溶液を、直径20μm以下の霧状の液滴にて供給することが好ましい。
前駆体としての第4の粒子を得る場合には、遷移金属源としては、塩化マンガン、シュウ酸マンガン、酢酸マンガン、硫酸マンガン、硝酸マンガン、オキシ水酸化マンガン、2-エチルヘキサン酸第二マンガン、ナフテン酸マンガン、ヘキソエートマンガン等を用いることができる。さらに、ステアリン酸、ジメチルジチオカルバミン酸、アセチルアセトネート、オレイン酸、リノール酸、リノレン酸などのマンガンの有機金属塩、酸化マンガンなども条件により使用される。
例えば、酸化チタン、亜チタン酸鉄や亜チタン酸マンガンなどの亜チタン酸金属塩、チタン酸亜鉛やチタン酸マグネシウム、チタン酸バリウムなどのチタン酸塩、酸化バナジウム、メタバナジン酸アンモニウム、酸化クロム、クロム酸塩や二クロム酸塩、酸化マンガン、過マンガン酸塩やマンガン酸塩、コバルト酸塩、酸化ジルコニウム、ジルコン酸塩、酸化モリブデン、モリブデン酸塩、酸化タングステン、タングステン酸塩、ホウ酸や三酸化二ホウ素、メタホウ酸ナトリウムや四ホウ酸ナトリウム、ホウ砂などの各種ホウ酸塩を、それぞれ所望のアニオン源と合成条件に応じて用いることができる。
本発明においては、前駆体としての第3の粒子と第4の粒子を混合して、還元剤と混ぜて焼成することで、正極活物質を得ることができる。本実施の形態における前駆体とは、焼成することで、リン酸遷移金属の結晶を得ることができる材料である。特に、本実施の形態における前駆体は、鉄やマンガンの価数が3価でありアモルファスであるが、還元剤と混ぜて焼成することで鉄やマンガンの価数が3価から2価に変化する。前駆体粒子を構成するリン酸鉄リチウムやリン酸マンガンリチウムを含む粒子の組成は、化学量論的組成を満足することが望ましいが、極く僅かであれば不純物の含有などによる理想の化学量論的組成からのずれは許容される。
前駆体粒子を構成する微粒子内の元素の空間分布が均一であることが好ましい。特に、微粒子内で遷移金属とリンの空間分布に偏りがないことが好ましい。また、前駆体粒子の形状が略球形であり、粒子の平均アスペクト比(長径/短径)が、1.5以下、好ましくは1.2以下、より好ましくは1.1以下である。
なお、粒子が略球形であるとは、粒子形状が幾何学的に厳密な球形や楕円球形であることまでは意味せず、わずかな突起部があっても粒子の表面がおおむね滑らかな曲面で構成されていればよい。
噴霧燃焼法による得られた、リン酸鉄リチウムの前駆体である第3の粒子と、リン酸マンガンリチウムの前駆体である第4の粒子とを、混合し、さらに炭素源と混合した後に、不活性ガス充填雰囲気下で焼成することにより、正極活物質が得られる。この際、第3の粒子と第4の粒子の混合比が、重量比で60:40~90:10であることが好ましく、70:30であることがより好ましい。前駆体粒子に含まれる非晶質な化合物や酸化物形態の混合物が、焼成により主にオリビン構造のリン酸遷移金属リチウム系の結晶形態の化合物に変化する。この際、焼成時に粒子同士の融着が起こり、粒子の界面近傍において、LiFe1-xMnxPO4(0<x<1)で表される混晶相を含んでいても良い。このように、粒子の接合界面に混晶相を形成することで、第3の粒子と第4の粒子の接合界面が直接異質界面を構成する場合に比べて、接合界面における格子歪みを緩和して接合界面における接合強度を安定化させることができる。
本実施の形態によれば、噴霧燃焼法を用いるため、正極活物質を、連続的かつ大規模に合成可能である。
(リン酸鉄リチウムの前駆体粒子の噴霧燃焼法による作製)
噴霧燃焼法により前駆体粒子を製造する製造装置を図2に示す。図2に示す装置の反応容器において、可燃性ガスとしてはプロパンガス(C3H8)を使用し、支燃性ガスとしては空気(Air)を使用し、原料溶液がノズル13から、火炎中に供給される。他方に、生成微粒子や反応生成物を排気する排気管を有し、排気中の前駆体粒子17を微粒子回収フィルタ15により回収する。ノズルに供給する原料の種類と供給条件は以下とした。また、原料溶液は、液滴の大きさが20μmとなるよう、二流体ノズルを用いて火炎中に供給した。火炎の温度は約2000℃であった。
プロパン(C3H8):1dm3/min、
空気:5dm3/min、
ナフテン酸リチウム(4M溶液):0.025dm3/min
C16H30FeO4(2-エチルヘキサン酸鉄(II))(1M溶液):0.1dm3/min
ホスホノ酢酸トリエチル(1M溶液):0.1dm3/min
(リン酸マンガンリチウムの前駆体粒子の噴霧燃焼法による作製)
また、合成例1と同様に、噴霧燃焼法にて、プロパンガスによる火炎中へ、プロパンガス、空気、及び下記の所定濃度の原料溶液を供給し、熱酸化させることにより前駆体粒子bを合成して収集した。電子顕微鏡で確認した前駆体粒子bの一次粒子の平均粒径は約100nmであった。
プロパン(C3H8):1dm3/min、
空気:5dm3/min、
LiCl(4M水溶液):0.025dm3/min、
MnSO4・5H2O(1M水溶液):0.1dm3/min、
ホスホノ酢酸トリエチル(1M溶液):0.1dm3/min、
リン酸鉄リチウムの前駆体粒子aとリン酸マンガンリチウムの前駆体粒子bとを、重量比70:30で混合した後、ポリビニルアルコールを粉体の10wt%になるように加えて混合した後、N2ガス雰囲気下で、250℃で4時間の仮焼成を行い、さらに650℃で8時間の本焼成を行った。仮焼成中にポリビニルアルコールの溶融と粉体中への含浸が起こり、本焼成中にポリビニルアルコールの炭化と遷移金属の還元が起き、リン酸遷移金属リチウムの生成と結晶化が起きる。得られた凝集体に粉砕処理を行い、正極活物質Aを得た。正極活物質Aは、大きなリン酸鉄リチウムの粒子の周囲に小さなリン酸マンガンリチウムの粒子が付着した粒子が、多数集まった粉体である。
リン酸鉄リチウムの前駆体粒子aのみを使用し、ポリビニルアルコールを前駆体粒子aに対して10wt%加えて混合した後、実施例と同様に焼成・粉砕を行い、正極活物質Bを得た。正極活物質Bは、リン酸鉄リチウムの粒子が多数集まった粉体である。
リン酸マンガンリチウムの前駆体粒子bのみを使用し、ポリビニルアルコールを前駆体粒子bに対して10wt%加えて混合した後、実施例と同様に焼成・粉砕を行い、正極活物質Cを得た。正極活物質Cは、リン酸マンガンリチウムの粒子が多数集まった粉体である。
原料溶液に2-エチルヘキサン酸鉄(II)に変えて2-エチルヘキサン酸コバルト(II)を用いる以外は合成例1と同様の噴霧燃焼法で、リン酸コバルトリチウムの前駆体粒子dを得た。電子顕微鏡で確認した前駆体粒子dの一次粒子の平均粒径は約500nmであった。
また、原料溶液に硫酸マンガンに変えて硫酸鉄を用いる以外は合成例2と同様の噴霧燃料法で、リン酸鉄リチウムの前駆体粒子a’を得た。電子顕微鏡で確認した前駆体粒子a’の一次粒子の平均粒径は約100nmであった。
リン酸コバルトリチウムの前駆体粒子dと、それより粒径の小さいリン酸鉄リチウムの前駆体粒子a’を、重量比70:30で混合した後、ポリビニルアルコールを粉体の10wt%になるように加えて混合した後、実施例と同様に焼成・粉砕を行い、正極活物質Dを得た。正極活物質Dは、リン酸コバルトリチウムの粒子の周囲に小さなリン酸鉄リチウムの粒子が付着した粒子が、多数集まった粉体である。
原料溶液に2-エチルヘキサン酸鉄(II)に変えて2-エチルヘキサン酸ニッケル(II)を用いる以外は合成例1と同様の噴霧燃焼法で、リン酸ニッケルリチウムの前駆体粒子eを得た。電子顕微鏡で確認した前駆体粒子eの一次粒子の平均粒径は約500nmであった。
リン酸ニッケルリチウムの前駆体粒子eと、それより粒径の小さいリン酸鉄リチウムの前駆体粒子a’を、重量比70:30で混合した後、ポリビニルアルコールを粉体の10wt%になるように加えて混合した後、実施例と同様に焼成・粉砕を行い、正極活物質Eを得た。正極活物質Eは、リン酸ニッケルリチウムの粒子の周囲に小さなリン酸鉄リチウムの粒子が付着した粒子が、多数集まった粉体である。
原料溶液に2-エチルヘキサン酸鉄(II)に変えて2-エチルヘキサン酸マンガン(II)を用いる以外は合成例1と同様の噴霧燃焼法で、リン酸マンガンリチウムの前駆体粒子fを得た。電子顕微鏡で確認した前駆体粒子fの一次粒子の平均粒径は約500nmであった。
リン酸マンガンリチウムの前駆体粒子fと、それより粒径の小さいリン酸鉄リチウムの前駆体粒子a’を、重量比70:30の割合で混合した後、ポリビニルアルコールを粉体の10wt%になるように加えて混合した後、実施例と同様に焼成・粉砕を行い、正極活物質Fを得た。正極活物質Fは、リン酸マンガンリチウムの粒子の周囲に小さなリン酸鉄リチウムの粒子が付着した粒子が、多数集まった粉体である。
(3-1)走査型電子顕微鏡(SEM)観察
前駆体粒子aと前駆体粒子bとを混合した実施例の粉体について、SEMにより観察を行った。SEM像観察結果を図4に示す。
前駆体粒子aと前駆体粒子bとを混合した粉体に含まれる実施例の粒子の形状観察と組成分析を、走査透過型電子顕微鏡を用いて、HAADF-STEM(High-Angle-Annular-Dark-Field-Scanning-Transmission-Electron-Microscopy:高角度散乱暗視野-走査透過型電子顕微鏡法)による粒子形状の観察と、EDS分析(Energy Dispersive Spectroscopy:エネルギー分散型X線分析)により行った。図5(a)は、実施例の焼成前の粒子のHAADF-STEM像であり、図5(b)は、同一の観察箇所におけるマンガン原子のEDSマップであり、図5(c)は、同一の観察箇所における鉄原子のEDSマップであり、図5(c)は、同一の観察箇所における酸素原子のEDSマップであり、図5(d)は、同一の観察箇所におけるリン原子のEDSマップである。
焼成後の実施例の正極活物質Aについて、同様に粒子形状の観察と組成分析を行った。図7(a)は、実施例の正極活物質のHAADF-STEM像であり、図7(b)は、同一の観察箇所におけるマンガン原子のEDSマップであり、図7(c)は、同一の観察箇所における鉄原子のEDSマップであり、図7(d)は、同一の観察箇所における酸素原子のEDSマップであり、図7(e)は、同一の観察箇所におけるリン原子のEDSマップである。
実施例及び比較例で得た正極活物質A~Fに対して、導電助剤(カーボンブラック)を10重量%となるように混合し、内部を窒素で置換したボールミルを用いて更に5時間混合した。混合粉末と結着剤であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、N-メチル-2-ピロリドン(NMP)を加えて十分混練し、正極スラリーを得た。
次に、前記のコイン型リチウム二次電池により、正極活物質の電極特性の試験評価を、次のように実施した。
試験温度25℃または60℃、0.1Cの電流レートにて、CC-CV法により、充電カーブがプラトーとなる所定の電位(対Li/Li+)まで充電を行い、その後電流レートが0.01Cまで低下した後に充電を停止した。その後、0.1Cレートにて、CC法により2.5V(前記に同じ)まで放電を行って、初期の充放電容量を測定した。また、充放電を繰り返して後の放電容量を測定し、容量維持率を測定した。
3………第1の粒子
5………第2の粒子
11………微粒子製造装置
13………微粒子合成ノズル
15………微粒子回収フィルタ
17………前駆体粒子
21………原料溶液
23………可燃性ガス
25………支燃性ガス
27………排気
31………非水電解質二次電池
33………正極
35………負極
37………セパレータ
39………電解質
41………電池缶
43………正極リード
45………負極リード
47………正極端子
49………封口体
Claims (10)
- リン酸鉄リチウムを主として含む第1の粒子の表面の少なくとも一部に、
前記第1の粒子より粒径の小さい、リン酸マンガンリチウムを主として含む第2の粒子が付着していることを特徴とする正極活物質。 - 前記第1の粒子の粒径が100nm~10μmであり、
前記第2の粒子の粒径が200nm以下であることを特徴とする請求項1に記載の正極活物質。 - 前記第1の粒子および/または前記第2の粒子の表面の少なくとも一部が、炭素によって被覆されていることを特徴とする請求項1に記載の正極活物質。
- 集電体と、
前記集電体の少なくとも片面に、請求項3に記載の正極活物質を含む活物質層と、
を有することを特徴とする非水電解質二次電池用正極。 - 請求項4に記載の非水電解質二次電池用正極と、
リチウムイオンを吸蔵および放出可能な負極と、
前記正極と前記負極との間に配置されたセパレータとを有し、
リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とする非水電解質二次電池。 - リン酸鉄リチウムの前駆体である第3の粒子と、前記第3の粒子より粒径の小さいリン酸マンガンリチウムの前駆体である第4の粒子を混合する工程と、
さらに炭素源を混合する工程と、
混合して得られた粒子を焼成する工程と、
を含むことを特徴とする正極活物質の製造方法。 - 前記第3の粒子と前記第4の粒子の混合比が、重量比で60:40~90:10であることを特徴とする請求項6に記載の正極活物質の製造方法。
- 前記第3の粒子の粒径が100nm~10μmであり、
前記第4の粒子の粒径が200nm以下であることを特徴とする請求項6に記載の正極活物質の製造方法。 - 前記第3の粒子は、リチウム、鉄およびリンを含む溶液を、霧状の液滴にて、支燃性ガスと可燃性ガスとともに火炎中に供給する方法により製造され、
前記第4の粒子は、リチウム、マンガンおよびリンを含む溶液を、霧状の液滴にて、支燃性ガスと可燃性ガスとともに火炎中に供給する方法により製造されることを特徴とする請求項6に記載の正極活物質の製造方法。 - 前記炭素源が、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、アセチルセルロース、ショ糖、カーボンブラックのいずれか一つ以上であることを特徴とする請求項6に記載の正極活物質の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157005638A KR101649082B1 (ko) | 2012-11-14 | 2013-11-13 | 정극활물질 및 그 제조방법, 그리고, 비수전해질 이차전지용 정극, 비수전해질 이차전지 |
CN201380059410.7A CN104781966B (zh) | 2012-11-14 | 2013-11-13 | 正极活性物质及其制造方法、以及非水电解质二次电池用正极、非水电解质二次电池 |
JP2014547001A JP5847329B2 (ja) | 2012-11-14 | 2013-11-13 | 正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-249987 | 2012-11-14 | ||
JP2012249987 | 2012-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077274A1 true WO2014077274A1 (ja) | 2014-05-22 |
Family
ID=50731185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080667 WO2014077274A1 (ja) | 2012-11-14 | 2013-11-13 | 正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5847329B2 (ja) |
KR (1) | KR101649082B1 (ja) |
CN (1) | CN104781966B (ja) |
TW (1) | TWI511361B (ja) |
WO (1) | WO2014077274A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016149297A (ja) * | 2015-02-13 | 2016-08-18 | 三井造船株式会社 | リチウム二次電池の正極活物質の製造方法 |
CN106158412A (zh) * | 2015-03-25 | 2016-11-23 | 江苏集盛星泰新能源科技有限公司 | 一种锂离子电容器及其制作方法 |
JP2019179596A (ja) * | 2018-03-30 | 2019-10-17 | 住友大阪セメント株式会社 | リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極材料造粒体、リチウムイオン二次電池用電極、リチウムイオン二次電池 |
CN112424116A (zh) * | 2018-07-10 | 2021-02-26 | 日本化学工业株式会社 | 磷酸钴锂的制造方法和磷酸钴锂碳复合体的制造方法 |
CN112436120A (zh) * | 2020-11-24 | 2021-03-02 | 上海华谊(集团)公司 | 磷酸锰铁锂复合物,其制造方法及锂离子电池正极 |
CN114203991A (zh) * | 2021-12-01 | 2022-03-18 | 远景动力技术(江苏)有限公司 | 正极材料添加剂、正极及锂离子电池 |
EP4037004A1 (en) * | 2021-01-29 | 2022-08-03 | Prime Planet Energy & Solutions, Inc. | Positive active material composite particles, positive electrode sheet, method for producing the positive active material composite particles, and method for producing the positive electrode sheet |
EP3893296A4 (en) * | 2018-12-05 | 2022-08-10 | Toray Industries, Inc. | POSITIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, ELECTRODE PASTE FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION SECONDARY BATTERY |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6326366B2 (ja) * | 2014-12-25 | 2018-05-16 | 信越化学工業株式会社 | リチウムリン系複合酸化物炭素複合体及びその製造方法並びに、電気化学デバイス及びリチウムイオン二次電池 |
CN111613786B (zh) * | 2020-05-29 | 2023-03-28 | 东莞东阳光科研发有限公司 | 一种复合材料及其制备方法 |
CN114204016B (zh) * | 2020-09-18 | 2023-01-06 | 比亚迪股份有限公司 | 正极材料、正极浆料、正极片及电池 |
CN114204015B (zh) * | 2020-09-18 | 2023-01-06 | 比亚迪股份有限公司 | 正极材料、正极浆料、正极片及电池 |
JP7476818B2 (ja) | 2021-02-16 | 2024-05-01 | 富士電機機器制御株式会社 | 半導体接触器、半導体接触器用状態監視装置及び半導体接触器の状態監視方法 |
CN113422049A (zh) * | 2021-06-25 | 2021-09-21 | 湖北亿纬动力有限公司 | 一种磷酸铁锂正极极片及其制备方法和应用 |
CN114094092B (zh) * | 2021-11-09 | 2023-09-08 | 远景动力技术(江苏)有限公司 | 正极活性材料、锂离子电池正极片与锂离子电池 |
KR20230098065A (ko) * | 2021-12-24 | 2023-07-03 | 주식회사 엘지에너지솔루션 | 양극 및 이를 이용하여 제조된 리튬 이차전지 |
CN115775878A (zh) * | 2022-12-29 | 2023-03-10 | 蜂巢能源科技股份有限公司 | 一种磷酸锰铁锂正极材料及其制备方法与用途 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006123572A1 (ja) * | 2005-05-17 | 2006-11-23 | Sony Corporation | 正極活物質およびその製造方法、並びに電池 |
JP2008311224A (ja) * | 2007-06-18 | 2008-12-25 | Advanced Lithium Eletrochemistry Co Ltd | 電気化学的酸化還元反応で用いる組成、電極、電気化学電池、および電気化学的酸化還元反応で用いる組成を準備する過程 |
JP2010533354A (ja) * | 2007-07-13 | 2010-10-21 | ダウ グローバル テクノロジーズ インコーポレイティド | 炭素がコーティングされたリン酸マンガンリチウムカソード材料 |
JP2011181375A (ja) * | 2010-03-02 | 2011-09-15 | Sumitomo Osaka Cement Co Ltd | 電極活物質及びリチウムイオン電池 |
JP2012018914A (ja) * | 2010-06-02 | 2012-01-26 | Semiconductor Energy Lab Co Ltd | 蓄電装置 |
WO2012042727A1 (ja) * | 2010-09-27 | 2012-04-05 | パナソニック株式会社 | リチウムイオン二次電池用正極活物質粒子、その正極活物質粒子を用いた正極およびリチウムイオン二次電池 |
WO2012105637A1 (ja) * | 2011-02-02 | 2012-08-09 | 古河電気工業株式会社 | 微粒子混合物、正極活物質材料、正極、2次電池及びこれらの製造方法 |
WO2013047510A1 (ja) * | 2011-09-29 | 2013-04-04 | 昭和電工株式会社 | リチウム二次電池用正極活物質及びその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5127179B2 (ja) * | 2006-07-31 | 2013-01-23 | 古河電池株式会社 | リチウム二次電池正極活物質の製造方法 |
JP5263807B2 (ja) | 2007-09-12 | 2013-08-14 | 国立大学法人福井大学 | 電極用リン酸鉄リチウム粉体の製造方法 |
US8460573B2 (en) | 2008-04-25 | 2013-06-11 | Sumitomo Osaka Cement Co., Ltd. | Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery |
JP5672432B2 (ja) | 2010-03-12 | 2015-02-18 | 株式会社エクォス・リサーチ | 二次電池用正極 |
-
2013
- 2013-11-13 KR KR1020157005638A patent/KR101649082B1/ko active Active
- 2013-11-13 CN CN201380059410.7A patent/CN104781966B/zh active Active
- 2013-11-13 WO PCT/JP2013/080667 patent/WO2014077274A1/ja active Application Filing
- 2013-11-13 JP JP2014547001A patent/JP5847329B2/ja not_active Expired - Fee Related
- 2013-11-14 TW TW102141446A patent/TWI511361B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006123572A1 (ja) * | 2005-05-17 | 2006-11-23 | Sony Corporation | 正極活物質およびその製造方法、並びに電池 |
JP2008311224A (ja) * | 2007-06-18 | 2008-12-25 | Advanced Lithium Eletrochemistry Co Ltd | 電気化学的酸化還元反応で用いる組成、電極、電気化学電池、および電気化学的酸化還元反応で用いる組成を準備する過程 |
JP2010533354A (ja) * | 2007-07-13 | 2010-10-21 | ダウ グローバル テクノロジーズ インコーポレイティド | 炭素がコーティングされたリン酸マンガンリチウムカソード材料 |
JP2011181375A (ja) * | 2010-03-02 | 2011-09-15 | Sumitomo Osaka Cement Co Ltd | 電極活物質及びリチウムイオン電池 |
JP2012018914A (ja) * | 2010-06-02 | 2012-01-26 | Semiconductor Energy Lab Co Ltd | 蓄電装置 |
WO2012042727A1 (ja) * | 2010-09-27 | 2012-04-05 | パナソニック株式会社 | リチウムイオン二次電池用正極活物質粒子、その正極活物質粒子を用いた正極およびリチウムイオン二次電池 |
WO2012105637A1 (ja) * | 2011-02-02 | 2012-08-09 | 古河電気工業株式会社 | 微粒子混合物、正極活物質材料、正極、2次電池及びこれらの製造方法 |
WO2013047510A1 (ja) * | 2011-09-29 | 2013-04-04 | 昭和電工株式会社 | リチウム二次電池用正極活物質及びその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016149297A (ja) * | 2015-02-13 | 2016-08-18 | 三井造船株式会社 | リチウム二次電池の正極活物質の製造方法 |
CN106158412A (zh) * | 2015-03-25 | 2016-11-23 | 江苏集盛星泰新能源科技有限公司 | 一种锂离子电容器及其制作方法 |
JP2019179596A (ja) * | 2018-03-30 | 2019-10-17 | 住友大阪セメント株式会社 | リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極材料造粒体、リチウムイオン二次電池用電極、リチウムイオン二次電池 |
CN112424116A (zh) * | 2018-07-10 | 2021-02-26 | 日本化学工业株式会社 | 磷酸钴锂的制造方法和磷酸钴锂碳复合体的制造方法 |
CN112424116B (zh) * | 2018-07-10 | 2023-08-04 | 日本化学工业株式会社 | 磷酸钴锂的制造方法和磷酸钴锂碳复合体的制造方法 |
EP3893296A4 (en) * | 2018-12-05 | 2022-08-10 | Toray Industries, Inc. | POSITIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, ELECTRODE PASTE FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION SECONDARY BATTERY |
CN112436120A (zh) * | 2020-11-24 | 2021-03-02 | 上海华谊(集团)公司 | 磷酸锰铁锂复合物,其制造方法及锂离子电池正极 |
EP4037004A1 (en) * | 2021-01-29 | 2022-08-03 | Prime Planet Energy & Solutions, Inc. | Positive active material composite particles, positive electrode sheet, method for producing the positive active material composite particles, and method for producing the positive electrode sheet |
CN114203991A (zh) * | 2021-12-01 | 2022-03-18 | 远景动力技术(江苏)有限公司 | 正极材料添加剂、正极及锂离子电池 |
CN114203991B (zh) * | 2021-12-01 | 2024-06-11 | 远景动力技术(江苏)有限公司 | 正极材料添加剂、正极及锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
KR20150042807A (ko) | 2015-04-21 |
KR101649082B1 (ko) | 2016-08-17 |
JPWO2014077274A1 (ja) | 2017-01-05 |
CN104781966A (zh) | 2015-07-15 |
CN104781966B (zh) | 2017-08-08 |
TWI511361B (zh) | 2015-12-01 |
TW201432990A (zh) | 2014-08-16 |
JP5847329B2 (ja) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5847329B2 (ja) | 正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池 | |
KR101462821B1 (ko) | 미립자 혼합물, 정극 활물질 재료, 정극, 2차전지 및 이들의 제조방법 | |
US9136535B2 (en) | Cathode active material, cathode, secondary battery and manufacturing methods for the same | |
JP5566723B2 (ja) | 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法 | |
JP5950823B2 (ja) | 正極活物質材料、非水電解質2次電池及び正極活物質材料の製造方法 | |
KR101699188B1 (ko) | 정극활물질, 비수전해질 이차전지용 정극, 비수전해질 이차전지 및 정극활물질의 제조방법 | |
JP5718111B2 (ja) | リチウム遷移金属シリケート系正極活物質材料及び非水電解質2次電池用正極の製造方法 | |
JP5877112B2 (ja) | 正極活物質及びその製造方法並びに負極及び非水電解質2次電池 | |
WO2015146423A1 (ja) | 正極活物質、二次電池用正極、二次電池、および正極活物質の製造方法 | |
JP6026457B2 (ja) | 正極活物質、二次電池用正極、二次電池及び正極活物質の製造方法 | |
JP2016197539A (ja) | リチウムイオン電池正極活物質およびその製造方法 | |
JP2013193927A (ja) | 微粒子混合物の製造方法、微粒子混合物、リチウムイオン二次電池正極活物質、リチウムイオン二次電池および微粒子混合物の製造方法に用いられる水溶液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13855723 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014547001 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157005638 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13855723 Country of ref document: EP Kind code of ref document: A1 |