WO2014075978A1 - Process for the production of abiraterone-3-acetate involving an enol trliflation reaction in the presence of an alkoxy-pyridine compound - Google Patents
Process for the production of abiraterone-3-acetate involving an enol trliflation reaction in the presence of an alkoxy-pyridine compound Download PDFInfo
- Publication number
- WO2014075978A1 WO2014075978A1 PCT/EP2013/073210 EP2013073210W WO2014075978A1 WO 2014075978 A1 WO2014075978 A1 WO 2014075978A1 EP 2013073210 W EP2013073210 W EP 2013073210W WO 2014075978 A1 WO2014075978 A1 WO 2014075978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- acetate
- reaction
- abiraterone
- triflate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 title claims description 22
- 150000002085 enols Chemical class 0.000 title description 3
- 238000004519 manufacturing process Methods 0.000 title description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 claims abstract description 24
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 150000003222 pyridines Chemical class 0.000 claims abstract description 12
- NCMZQTLCXHGLOK-ZKHIMWLXSA-N prasterone acetate Chemical compound C([C@@H]12)C[C@]3(C)C(=O)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)C)C1 NCMZQTLCXHGLOK-ZKHIMWLXSA-N 0.000 claims abstract description 11
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 9
- 239000012442 inert solvent Substances 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims description 13
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 claims description 12
- 238000006069 Suzuki reaction reaction Methods 0.000 claims description 9
- IWTFOFMTUOBLHG-UHFFFAOYSA-N 2-methoxypyridine Chemical group COC1=CC=CC=N1 IWTFOFMTUOBLHG-UHFFFAOYSA-N 0.000 claims description 6
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 2
- 229910000085 borane Inorganic materials 0.000 claims description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 19
- 239000002585 base Substances 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 238000003379 elimination reaction Methods 0.000 description 7
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000008030 elimination Effects 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- GZOSMCIZMLWJML-VJLLXTKPSA-N abiraterone Chemical compound C([C@H]1[C@H]2[C@@H]([C@]3(CC[C@H](O)CC3=CC2)C)CC[C@@]11C)C=C1C1=CC=CN=C1 GZOSMCIZMLWJML-VJLLXTKPSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- OJKBCQOJVMAHDX-UHFFFAOYSA-N diethyl(pyridin-3-yl)borane Chemical compound CCB(CC)C1=CC=CN=C1 OJKBCQOJVMAHDX-UHFFFAOYSA-N 0.000 description 3
- -1 heterocyclic amine Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HVHZEKKZMFRULH-UHFFFAOYSA-N 2,6-ditert-butyl-4-methylpyridine Chemical compound CC1=CC(C(C)(C)C)=NC(C(C)(C)C)=C1 HVHZEKKZMFRULH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229960000853 abiraterone Drugs 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- MDHIWBNJNHUBJL-VMXHOPILSA-N (8s,9s,10r,13r,14s)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15-decahydro-1h-cyclopenta[a]phenanthrene Chemical compound C1CCC[C@]2(C)[C@H]3CC[C@](C)(C=CC4)[C@@H]4[C@@H]3CC=C21 MDHIWBNJNHUBJL-VMXHOPILSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 0 C[C@@]1(CC2)C(*c3cnccc3)=CC[C@@]1CC2(C1)[C@@]1(CC[C@](C1)OC(C)=O)C1=CC Chemical compound C[C@@]1(CC2)C(*c3cnccc3)=CC[C@@]1CC2(C1)[C@@]1(CC[C@](C1)OC(C)=O)C1=CC 0.000 description 1
- ASGPHHXVQLPMBA-HZJBPECKSA-N C[C@@]12C(I)=CC[C@H]1[C@@H](C1)CC=C(C[C@H](CC3)O)[C@@]13CCC2 Chemical compound C[C@@]12C(I)=CC[C@H]1[C@@H](C1)CC=C(C[C@H](CC3)O)[C@@]13CCC2 ASGPHHXVQLPMBA-HZJBPECKSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- KPCZJLGGXRGYIE-UHFFFAOYSA-N [C]1=CC=CN=C1 Chemical group [C]1=CC=CN=C1 KPCZJLGGXRGYIE-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical compound [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- YOIAWAIKYVEKMF-UHFFFAOYSA-N trifluoromethanesulfonic acid Chemical group OS(=O)(=O)C(F)(F)F.OS(=O)(=O)C(F)(F)F YOIAWAIKYVEKMF-UHFFFAOYSA-N 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 229940051084 zytiga Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J1/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
- C07J1/0003—Androstane derivatives
- C07J1/0011—Androstane derivatives substituted in position 17 by a keto group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J31/00—Normal steroids containing one or more sulfur atoms not belonging to a hetero ring
- C07J31/006—Normal steroids containing one or more sulfur atoms not belonging to a hetero ring not covered by C07J31/003
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J43/00—Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
- C07J43/003—Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
Definitions
- a leaving group L which is capable of being replaced by a 3-pyridyl group in a palladium(O) complex-catalysed cross-coupling reaction with a 3-pyridinyl (dialkyl/dialkoxy) - boron compound (a so-called Suzuki coupling reaction), and
- the palladium complex in the Suzuki coupling reaction is preferably a palladium(O) complex such as tetrakis(triphenylphosphine)palladium(0) or a complex reducible in situ to such palladium(0)phosphine species.
- the leaving groups L actually used in prior art documents were the iodo group and the trifluoromethanesulfonate (triflate) group.
- the first known route employing the iodo-leaving group has been described in WO 95/09178 and is shown in the Scheme below.
- the 3-acetate group can be introduced only after introducing the 17-(3-pyridyl)-group, thus the actual starting material is not the compound of formula (2) but dehydroepiandrosterone (DHEA) of formula (3).
- DHEA dehydroepiandrosterone
- the compound of formula (3) is converted to the corresponding iodo-compound of formula (4) in two steps; subsequently, after performing the Suzuki coupling reaction on compound (4), de- acetylated abiraterone of formula (1A) is obtained.
- said abiraterone (1A) is acetylated to the desired abiraterone- 3 -acetate.
- the second known route employing the triflate leaving group L is two steps shorter and thus more advantageous.
- diethyl(3-pyridyl)borane was added to compound (5) in THF containing a catalytic amount of bis(triphenylphosphine)palladium(II)chloride and sodium carbonate as a nucleophilic activator.
- the desired compound of formula (1) was obtained as a free base in 84% yield (recrystallized from hexane).
- WO 2006/021776 and WO 2006/021777 suggest an improvement in the original process.
- the inflating step is advantageously conducted in the presence of a base comprising a tertiary or heterocyclic amine having a pKa value of the conjugate acid at 25 °C within the range of 5.21 (e.g. pyridine) to 12 (e.g. diazabicycloundecene).
- a base comprising a tertiary or heterocyclic amine having a pKa value of the conjugate acid at 25 °C within the range of 5.21 (e.g. pyridine) to 12 (e.g. diazabicycloundecene).
- the base used had a relatively low pKa, it gave bad results also because of competing deacetylation reaction.
- the present invention relates to an improved process for making abiraterone-3-acetate of formula (1) starting from dehydroepiandrosterone-3-acetate of formula (2).
- the invention provides a process comprising converting dehydroepi- androsterone-3-acetate of formula (2)
- the triflate of formula (5) is converted into abiraterone-3-acetate of formula (1) under the conditions of a Suzuki coupling reaction, preferably by reaction with dialkyl(3-pyridyl)borane in an inert solvent in the presence of a catalytic amount of
- the present invention relates to a process for making abiraterone-3-acetate of formula (1) starting from dehydroepiandrosterone-3-acetate of formula (2).
- it relates to an improved process for making a key intermediate in said process, the compound 3P-acetoxy- androsta-5,16-dien-17-yl trifluoromethanesulfonate of formula (5).
- reaction mixture contained a relatively high amount of unreacted starting material as well.
- this starting material can be removed from the desired product in a later purification step, said improvement could still be considered to be advantageous over the original process.
- incomplete conversion of the relatively expensive starting material associated with accordingly lower total yield, still represents an economical disadvantage.
- the reaction of compound (2) with trifluoromethanesulfonic anhydride in the presence of these bases often exhibits an even higher conversion than obtained with bases of the prior art, without considerable formation of the elimination by-product.
- the present invention relates to the use of an alkoxy group-substituted pyridine for making abiraterone-3- acetate of formula (1) and, in particular, for making the triflate of formula (5).
- the "pKa of the conjugate acid” as used throughout this specification is the negative logarithm of the acid dissociation constant Ka and generally refers to the ability of an ionizable group to donate protons in aqueous media.
- the alkoxy group-substituted pyridine has a pKa value of the conjugate acid at 25°C of less than 5.20, preferably less than 4.40.
- the alkoxy group is a C1-C4 alkoxy group, in a preferred embodiment the alkoxy group-substituted pyridine is 3-methoxypyridine or 2- methoxypyridine.
- the known nitrogen bases having a pKa value of 5.21 and higher have the disadvantage that they are not effective enough for giving full conversion of the compound of formula (2) into the compound of formula (5). Up to one third of the starting material remains unreacted.
- pK a of 10.8 triethylamine
- the reaction product comprised 17% of unreacted starting material and 75% of the desired triflate.
- 2-methoxypyridine as an example of a base in accordance with the present invention, the reaction product comprised only 3.2% of starting material and 85.8% of the desired triflate. No elimination product was found in the latter reaction mixture.
- the present invention provides an improved process for making abiraterone-3-acetate of formula (1) comprising a triflating step by which dehydroepiandrosterone- 3 -acetate of formula (2) is converted into the triflate of formula (5), characterized in that the triflating step is conducted in an inert solvent in the presence of an alkoxy group-substituted pyridine, in particular a C1-C4 alkoxy group-substituted pyridine. More in particular, such substituted pyridine is 2-methoxypyridine having a pKa value of 3.28. In another embodiment, such substituted pyridine is 3-methoxypiridine having pKa value of 4.88.
- the starting material dehydroepiandrosterone- 3 -acetate of formula (2) is commercially available or can be produced by processes known in the art. It should be understood that the structure of formula (2) shown in this specification represents only one of possible tautomeric forms; the compound dehydroepiandrosterone-3-acetate may also exist as an enol. It is to be understood that the invention is not limited merely to the one tautomeric form shown.
- the inert solvent to be used in accordance with the present invention comprises, without limitation, an aliphatic acid ester, preferably having from 2 to 10 carbon atoms or a chlorinated aliphatic or aromatic hydrocarbon, preferably having from 1 to 8 carbon atoms.
- Suitable solvents include ethyl acetate, isopropyl acetate, dichloro methane, 1,2-dichloroethane, and mixtures thereof.
- the preferred triflating agent is trifluoromethanesulfonic (triflic) anhydride, which is commercially available. Preferably, it is used in a slight molar excess (5-20 molar %) with respect to the compound of formula (2).
- the pyridine base to be used in accordance with the present invention notably 2- methoxypyridine or 3-methoxypyridine, is preferably used in a molar equivalent amount or in a slight molar excess (up to 10 %) with respect to the compound of formula (2).
- the base is added with some delay, typically of 5-15 minutes, after mixing the compound of formula (2) with the inflating agent.
- the reaction typically proceeds at ambient temperature or at a temperature close to ambient (between 5 and 30°C).
- a suitable analytical technique for instance by HPLC.
- the reaction mixture is advantageously elaborated with the aim to remove undesired products, particularly the base used.
- the mixture is extracted with water, which may be optionally acidified, and residual water is removed by drying.
- the so-obtained solution of crude triflate (5) is used in the next step as such or, if desired or advantageous, the triflate product is isolated therefrom, e.g. by evaporation of volatiles. It is advantageous that the triflate (5) or a solution comprising it, is used in the next step without delay. Otherwise, it may be stored for a certain time in the dark and at a temperature well below 0°C.
- the triflate of formula (5) prepared by the above process is converted into crude abiraterone-3-acetate under the conditions of a Suzuki coupling reaction.
- the conditions of the Suzuki coupling reaction are well-known in the art and were disclosed in prior art documents cited above.
- diethyl(3-pyridyl)borane is added to the triflate compound (5) in a suitable inert solvent, e.g. in tetrahydrofuran, containing a catalytic amount of
- reaction proceeds by stirring the mixture at an elevated temperature (typically 60- 90°C) and typically is controlled by a suitable analytical technique, for instance by HPLC.
- an elevated temperature typically 60- 90°C
- suitable analytical technique for instance by HPLC.
- the reaction mixture is elaborated with the aim to isolate the crude abiraterone- 3 -acetate.
- the mixture is partitioned between ethyl acetate and water, the organic layer is separated and the solvent is evaporated.
- the obtained crude abiraterone-3-acetate still comprises some unreacted starting material (typically less than 10%) and traces of other impurities. It may be purified by converting it into an acid addition salt.
- the prior art suggests using methanesulfonic acid as the best acid for said purposes. This acid forms the mesylate salt of abiraterone-3-acetate in a good yield and purity.
- the acid addition salt is subsequently converted into abiraterone-3-acetate (1) as known in the art.
- the mixture was then allowed to cool to room temperature, was diluted with water (200 ml) and ethyl acetate (150 ml) and stirred for 5 minutes.
- the organic phase was separated and the aqueous phase was extracted once with ethyl acetate (150 ml).
- the combined organic layers were dried (sodium sulfate), filtered, and concentrated to a volume of 50 ml.
- the solution was diluted with methanol (150 ml) and concentrated again to a volume of 100 ml. The resulting light brown suspension was stirred over the weekend and then was filtered off.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Steroid Compounds (AREA)
Abstract
The present invention relates to a process for making abiraterone-3-acetate of formula (1) starting from dehydroepiandrosterone-3-acetate of formula (2) by converting it into the triflate of formula (5) in an inert solvent in the presence of an alkoxy group-substituted pyridine.
Description
PROCESS FOR THE PRODUCTION OF ABIRATERONE-3-ACETATE INVOLVING AN
ENOL
TRLIFLATION REACTION IN THE PRESENCE OF AN ALKOXY-PYRIDINE COMPOUND
Abiraterone- 3 -acetate (3P-acetoxy-17-(3-pyridyl)androsta-5,16-diene) of formula (1)
is a pharmaceutically active compound used for treatment of castration-resistant prostate cancer. It is sold under trade name Zytiga by Johnson and Johnson.
The compound was discovered in 1990 at the Institute of Cancer Research UK and is disclosed in WO 93/20097.
The basic process for making abiraterone-3-acetate disclosed in WO 93/20097 comprises
= replacing the enol-form of 17-oxo group in dehydroepiandrosterone-3-acetate of formula
(2)
by a leaving group L, which is capable of being replaced by a 3-pyridyl group in a palladium(O) complex-catalysed cross-coupling reaction with a 3-pyridinyl (dialkyl/dialkoxy) - boron compound (a so-called Suzuki coupling reaction), and
= carrying out said Suzuki coupling reaction.
The palladium complex in the Suzuki coupling reaction is preferably a palladium(O) complex such as tetrakis(triphenylphosphine)palladium(0) or a complex reducible in situ to such palladium(0)phosphine species.
The leaving groups L actually used in prior art documents were the iodo group and the trifluoromethanesulfonate (triflate) group.
The first known route employing the iodo-leaving group has been described in WO 95/09178 and is shown in the Scheme below. In an important aspect, the 3-acetate group can be introduced only after introducing the 17-(3-pyridyl)-group, thus the actual starting material is not the compound of formula (2) but dehydroepiandrosterone (DHEA) of formula (3). The compound of formula (3) is converted to the corresponding iodo-compound of formula (4) in two steps; subsequently, after performing the Suzuki coupling reaction on compound (4), de- acetylated abiraterone of formula (1A) is obtained. In the final step, said abiraterone (1A) is acetylated to the desired abiraterone- 3 -acetate.
The second known route employing the triflate leaving group L is two steps shorter and thus more advantageous.
The triflate intermediate compound of formula (5)
was prepared in WO 93/20097 by contacting DHEA-3-acetate of formula (2) with trifluoromethanesulfonic (triflic) anhydride in dichloromethane in the presence of a molar amount of 2,6 di-t-butyl-4-methylpyridine (having pKa of 4.41). The reaction gave, after chromatographic separation, the desired triflate of formula (5) in 58% yield, but also de- acetylated product of elimination of formula (6) in 10% yield.
In the second step, diethyl(3-pyridyl)borane was added to compound (5) in THF containing a catalytic amount of bis(triphenylphosphine)palladium(II)chloride and sodium carbonate as a nucleophilic activator. After extraction and chromatography, the desired compound of formula (1) was obtained as a free base in 84% yield (recrystallized from hexane).
As disclosed in WO 2006/021776, the elimination by-products of formula (6) and (IB) cannot be removed by recrystallization in either reaction step.
WO 2006/021776 and WO 2006/021777 suggest an improvement in the original process. In said improvement, the inflating step is advantageously conducted in the presence of a base comprising a tertiary or heterocyclic amine having a pKa value of the conjugate acid at 25 °C within the range of 5.21 (e.g. pyridine) to 12 (e.g. diazabicycloundecene). By using such base, the amount of the elimination by-product of formula (6) is minimized to an acceptable level. Furthermore, it was found that if the base used had a relatively low pKa, it gave bad results also because of competing deacetylation reaction. E.g. Ν,Ν-diethylaniline having a pKa of 5.20 (and, to a certain extent, also pyridine having a pKa of 5.21) gave the deacetylated product of formula (2A)
as the major product.
Apart from the undesired impurities of formula (6) and (2A), also some unreacted starting material (2) remains in the reaction mixture, both after the triflation reaction and after the Suzuki coupling reaction (in a ratio of approx. 1:3 with respect to the desired reaction product). This starting material may be removed from the reaction mixture by converting the product (1) into an acid addition salt, separating the salt in the solid state, recrystallizing the salt, and converting the salt into product (1). The mesylate salt of (1) was found as the most advantageous by WO'776. Such salt may be obtained from a solution of free base of (1) in a suitable solvent, e.g. in an ester or an ether solvent, preferably in methyl-t-butyl ether, by treatment with methanesulfonic acid.
While several processes of making abiraterone-3-acetate are known in prior art documents, an improvement in the matter is still desirable.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The present invention relates to an improved process for making abiraterone-3-acetate of formula (1) starting from dehydroepiandrosterone-3-acetate of formula (2).
In one aspect, the invention provides a process comprising converting dehydroepi- androsterone-3-acetate of formula (2)
into the triflate of formula (5)
in an inert solvent in the presence of an alkoxy group-substituted pyridine.
In another aspect, the triflate of formula (5) is converted into abiraterone-3-acetate of formula (1) under the conditions of a Suzuki coupling reaction, preferably by reaction with dialkyl(3-pyridyl)borane in an inert solvent in the presence of a catalytic amount of
bis(triphenylphosphine)palladium(II)chloride.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The present invention relates to a process for making abiraterone-3-acetate of formula (1) starting from dehydroepiandrosterone-3-acetate of formula (2). In particular, it relates to an improved process for making a key intermediate in said process, the compound 3P-acetoxy- androsta-5,16-dien-17-yl trifluoromethanesulfonate of formula (5).
It has been taught in prior art documents that the process for making the compound of formula (5) by reaction of dehydroepiandrosterone- 3 -acetate of formula (2) with a triflating agent, such as trifluoromethanesulfonic anhydride in the presence of the relatively strong base 2,6-di-t-butyl-4-methylpyridine is associated with the formation of a considerable amount of the by-product of formula (6), caused by an elimination reaction of the 3-acetoxy group. In a later improvement, the formation of the elimination by-product was suppressed by using relatively weak bases for said purpose, having a pKa value of the conjugate acid higher than 5.21.
However, the reaction mixture contained a relatively high amount of unreacted starting material as well. As this starting material can be removed from the desired product in a later purification step, said improvement could still be considered to be advantageous over the original process. However, incomplete conversion of the relatively expensive starting material, associated with accordingly lower total yield, still represents an economical disadvantage.
The present inventors surprisingly have found that certain organic bases, which should be considered as not-advantageous for making compound (5) because of their relatively high
basicity (having a pKa value lower than 5.20), can nevertheless be used in said process.
Furthermore, the reaction of compound (2) with trifluoromethanesulfonic anhydride in the presence of these bases often exhibits an even higher conversion than obtained with bases of the prior art, without considerable formation of the elimination by-product. In general, the present invention relates to the use of an alkoxy group-substituted pyridine for making abiraterone-3- acetate of formula (1) and, in particular, for making the triflate of formula (5).
The "pKa of the conjugate acid" as used throughout this specification is the negative logarithm of the acid dissociation constant Ka and generally refers to the ability of an ionizable group to donate protons in aqueous media. In the context of the present invention the alkoxy group-substituted pyridine has a pKa value of the conjugate acid at 25°C of less than 5.20, preferably less than 4.40.
In one embodiment of the present invention, the alkoxy group is a C1-C4 alkoxy group, in a preferred embodiment the alkoxy group-substituted pyridine is 3-methoxypyridine or 2- methoxypyridine.
As disclosed in the prior art and as reworked by the present inventors, the known nitrogen bases having a pKa value of 5.21 and higher have the disadvantage that they are not effective enough for giving full conversion of the compound of formula (2) into the compound of formula (5). Up to one third of the starting material remains unreacted. When repeating the known triflation reaction using triethylamine (pKa of 10.8), which was considered as the most preferred base in the prior art, it was found that the reaction product comprised 17% of unreacted starting material and 75% of the desired triflate. In contrast, using 2-methoxypyridine as an example of a base in accordance with the present invention, the reaction product comprised only 3.2% of
starting material and 85.8% of the desired triflate. No elimination product was found in the latter reaction mixture.
The present invention provides an improved process for making abiraterone-3-acetate of formula (1) comprising a triflating step by which dehydroepiandrosterone- 3 -acetate of formula (2) is converted into the triflate of formula (5), characterized in that the triflating step is conducted in an inert solvent in the presence of an alkoxy group-substituted pyridine, in particular a C1-C4 alkoxy group-substituted pyridine. More in particular, such substituted pyridine is 2-methoxypyridine having a pKa value of 3.28. In another embodiment, such substituted pyridine is 3-methoxypiridine having pKa value of 4.88.
The starting material dehydroepiandrosterone- 3 -acetate of formula (2) is commercially available or can be produced by processes known in the art. It should be understood that the structure of formula (2) shown in this specification represents only one of possible tautomeric forms; the compound dehydroepiandrosterone-3-acetate may also exist as an enol. It is to be understood that the invention is not limited merely to the one tautomeric form shown.
The inert solvent to be used in accordance with the present invention comprises, without limitation, an aliphatic acid ester, preferably having from 2 to 10 carbon atoms or a chlorinated aliphatic or aromatic hydrocarbon, preferably having from 1 to 8 carbon atoms. Suitable solvents include ethyl acetate, isopropyl acetate, dichloro methane, 1,2-dichloroethane, and mixtures thereof.
The preferred triflating agent is trifluoromethanesulfonic (triflic) anhydride, which is commercially available. Preferably, it is used in a slight molar excess (5-20 molar %) with respect to the compound of formula (2).
The pyridine base to be used in accordance with the present invention, notably 2- methoxypyridine or 3-methoxypyridine, is preferably used in a molar equivalent amount or in a slight molar excess (up to 10 %) with respect to the compound of formula (2). Preferably, the base is added with some delay, typically of 5-15 minutes, after mixing the compound of formula (2) with the inflating agent.
The reaction typically proceeds at ambient temperature or at a temperature close to ambient (between 5 and 30°C). Advantageously, the course of the reaction is monitored by a suitable analytical technique, for instance by HPLC.
After termination of the reaction, the reaction mixture is advantageously elaborated with the aim to remove undesired products, particularly the base used. Typically, the mixture is extracted with water, which may be optionally acidified, and residual water is removed by drying.
The so-obtained solution of crude triflate (5) is used in the next step as such or, if desired or advantageous, the triflate product is isolated therefrom, e.g. by evaporation of volatiles. It is advantageous that the triflate (5) or a solution comprising it, is used in the next step without delay. Otherwise, it may be stored for a certain time in the dark and at a temperature well below 0°C.
In a further step, the triflate of formula (5) prepared by the above process, is converted into crude abiraterone-3-acetate under the conditions of a Suzuki coupling reaction. The conditions of the Suzuki coupling reaction are well-known in the art and were disclosed in prior art documents cited above. Typically, diethyl(3-pyridyl)borane is added to the triflate compound (5) in a suitable inert solvent, e.g. in tetrahydrofuran, containing a catalytic amount of
bis(triphenylphosphine)palladium(II) dichloride and sodium carbonate as a nucleophilic
activator. The reaction proceeds by stirring the mixture at an elevated temperature (typically 60- 90°C) and typically is controlled by a suitable analytical technique, for instance by HPLC. After termination of the reaction, the reaction mixture is elaborated with the aim to isolate the crude abiraterone- 3 -acetate. Typically, the mixture is partitioned between ethyl acetate and water, the organic layer is separated and the solvent is evaporated.
The obtained crude abiraterone-3-acetate still comprises some unreacted starting material (typically less than 10%) and traces of other impurities. It may be purified by converting it into an acid addition salt. The prior art suggests using methanesulfonic acid as the best acid for said purposes. This acid forms the mesylate salt of abiraterone-3-acetate in a good yield and purity. The acid addition salt is subsequently converted into abiraterone-3-acetate (1) as known in the art.
The invention is further illustrated by the following examples.
EXAMPLES
Comparative Example A
In accordance with the prior art, a mixture of dehydroepiandrosterone- 3 -acetate (1.04 g, 3.15 mmol) and triflic anhydride (0.585 ml, 3.46 mmol) in dry dichloromethane (10 ml) was stirred under a nitrogen atmosphere. After 5 min, a solution of triethylamine (0.437 ml, 3.15 mmol) in dry dichloromethane (10 ml) was added over a period of 15 minutes. The reaction mixture was stirred at room temperature. The reaction was monitored with HPLC.
The reaction mixture (which was almost black), was quenched by addition of water (15 ml) and the layers were separated. The aqueous layer was extracted with dichloromethane (2x 20 ml) and the combined organic layers were washed with IN HCl (20 ml). The organic layer was dried
(sodium sulfate) and activated charcoal was added. The mixture was filtered over Celite and concentrated under reduced pressure to afford 1.24 g of the product (5) as a brown oil in a yield of 85%. HPLC: -17% starting material and 75% inflate.
Example 1
A mixture of dehydroepiandrosterone-3-acetate (15.56 g, 47.1 mmol) and triflic anhydride (9 ml, 53.3 mmol) in dichloromethane (120 ml) was stirred for 5 minutes at room temperature, giving a purple solution. To the mixture was added a solution of 2-methoxypyridine (5 ml, 47.6 mmol) in dichloromethane (120 ml) over a period of 30 minutes. The reaction temperature increased to 30°C and the color of the mixture turned from purple to dark purple. Stirring was continued at room temperature for 2 hr.
The reaction mixture was quenched with water (160 ml) and stirred for 10 minutes. The layers were separated and the organic layer was washed with 1 molar aqueous hydrochloric acid (2x 100 ml) and brine (100 ml). The brown organic layer was treated with sodium sulfate and activated charcoal and then was filtered over Celite. The resulting red/brown solution was concentrated to give compound (5) (20.18 g, 43.6 mmol, 93 % yield) as a red-brown oily residue. HPLC: -3.2% starting material and 85.8% triflate. The crude product was used in the next step.
Example 2
In a 500 ml three-necked flask compound (5) (20.18 g, 43.6 mmol) was dissolved with stirring in tetrahydrofuran (200 ml) to give a purple solution. To the resulting solution was added 3-(diethylboryl)pyridine (8.27 g, 56.2 mmol), mono(bis(triphenylphosphonio)palladium(IV))
dichloride (0.58 g, 0.826 mmol) and sodium carbonate (18.50 g, 175 mmol) as an aqueous solution (40 ml). The resulting red/brown solution was heated on an oil bath to 66°C for 90 min. TLC after 3.5hr showed complete conversion of the triflate. The mixture was then allowed to cool to room temperature, was diluted with water (200 ml) and ethyl acetate (150 ml) and stirred for 5 minutes. The organic phase was separated and the aqueous phase was extracted once with ethyl acetate (150 ml). The combined organic layers were dried (sodium sulfate), filtered, and concentrated to a volume of 50 ml. The solution was diluted with methanol (150 ml) and concentrated again to a volume of 100 ml. The resulting light brown suspension was stirred over the weekend and then was filtered off. The filtrate was concentrated to a brown oily residue to give 15.68 g of crude abiraterone- 3 -acetate (1), which was purified as known in the art via crystallization of an acid addition salt thereof, and conversion of the salt to give abiraterone-3- acetate as a beige solid with a purity of 98.52%.
Claims
1. A process comprising converting dehydroepiandrosterone-3-acetate of formula (2)
into the triflate of formula (5)
in an inert solvent in the presence of an alkoxy group-substituted pyridine.
The process according to claim 1, wherein the alkoxy group is a C1-C4 alkoxy group.
The process according to claim 1 or 2, wherein the substituted pyridine is 2-methoxypyridine.
The process according to claim 1 or 2, wherein the substituted pyridine is 3-methoxypyridine.
The process according to any one of claims 1-4, wherein the inert solvent comprises an aliphatic acid ester, preferably having from 2 to 10 carbon atoms or a chlorinated aliphatic or aromatic hydrocarbon, preferably having from 1 to 8 carbon atoms.
The process according to any one of claims 1-5, wherein the triflating agent used is trifluoromethanesulfonic anhydride.
The process according to any one of claims 1-6, wherein the triflate of formula (5) is converted into abiraterone-3-acetate of formula (1) under the conditions of a Suzuki coupling reaction, preferably by reaction with dialkyl(3-pyridyl)borane in an inert solvent in the presence of a catalytic amount of bis(triphenylphosphine)-palladium(II)chloride.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP2012072892 | 2012-11-16 | ||
EPPCT/EP2012/072892 | 2012-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014075978A1 true WO2014075978A1 (en) | 2014-05-22 |
Family
ID=49546419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/073210 WO2014075978A1 (en) | 2012-11-16 | 2013-11-07 | Process for the production of abiraterone-3-acetate involving an enol trliflation reaction in the presence of an alkoxy-pyridine compound |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014075978A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104109185A (en) * | 2014-08-06 | 2014-10-22 | 亿腾药业(泰州)有限公司 | Preparation method of abiraterone acetate |
CN110272465A (en) * | 2019-07-15 | 2019-09-24 | 成都贝诺科成生物科技有限公司 | Abiraterone derivative, preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020097A1 (en) | 1992-03-31 | 1993-10-14 | British Technology Group Ltd. | 17-substituted steroids useful in cancer treatment |
WO1995009178A1 (en) | 1993-09-30 | 1995-04-06 | British Technology Group Limited | Synthesis of 17-(3-pyridyl) steroids |
WO2006021777A1 (en) | 2004-08-24 | 2006-03-02 | Btg International Limited | Process fot the preparation of 17-0-vinyl- triflates as intermediates |
WO2006021776A1 (en) | 2004-08-24 | 2006-03-02 | Btg International Limited | Methanesulfonate salts of abiraterone-3-esters and recovery of salts of abirater one-3-esters from solution in methyl tert-butyl ether |
-
2013
- 2013-11-07 WO PCT/EP2013/073210 patent/WO2014075978A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020097A1 (en) | 1992-03-31 | 1993-10-14 | British Technology Group Ltd. | 17-substituted steroids useful in cancer treatment |
WO1995009178A1 (en) | 1993-09-30 | 1995-04-06 | British Technology Group Limited | Synthesis of 17-(3-pyridyl) steroids |
WO2006021777A1 (en) | 2004-08-24 | 2006-03-02 | Btg International Limited | Process fot the preparation of 17-0-vinyl- triflates as intermediates |
WO2006021776A1 (en) | 2004-08-24 | 2006-03-02 | Btg International Limited | Methanesulfonate salts of abiraterone-3-esters and recovery of salts of abirater one-3-esters from solution in methyl tert-butyl ether |
Non-Patent Citations (1)
Title |
---|
COLLOT ANNE-GAELLE ET AL: "Binding catalysis and inhibition by metal ions and protons in the enolization of phenylacetylpyrazine.", THE JOURNAL OF ORGANIC CHEMISTRY 1 MAY 2009, vol. 74, no. 9, 1 May 2009 (2009-05-01), pages 3356 - 3369, XP002718421, ISSN: 1520-6904 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104109185A (en) * | 2014-08-06 | 2014-10-22 | 亿腾药业(泰州)有限公司 | Preparation method of abiraterone acetate |
CN110272465A (en) * | 2019-07-15 | 2019-09-24 | 成都贝诺科成生物科技有限公司 | Abiraterone derivative, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2851330C (en) | Process for preparing 17-substituted steroids | |
KR101358661B1 (en) | Methanesulfonate salts of abiraterone-3-esters and recovery of salts of abiraterone-3-esters from solution in methyl tert-butyl ether | |
CA2863467C (en) | Process for the preparation of phenyl substituted 3-difluoromethyl-1-methyl-1h-pyrazole-4-carboxylic acid n-methoxy- [1-methyl-2-phenylethyl] amides | |
JP6481689B2 (en) | Method for producing phenolic compound | |
WO2014075978A1 (en) | Process for the production of abiraterone-3-acetate involving an enol trliflation reaction in the presence of an alkoxy-pyridine compound | |
JP7144873B2 (en) | Method for producing sugammadex sodium salt | |
EP2909224B1 (en) | An improved process for the preparation of fulvestrant | |
US9676815B2 (en) | Process for the preparation of abiraterone or abiraterone acetate | |
CN112047908B (en) | Preparation method of ferric chloride promoted 2, 3-dihydrofuran derivative | |
EP2917225A1 (en) | Process for making abiraterone-3-acetate | |
EP2917226A1 (en) | Process for making the 17-triflate intermediate of abiraterone-3-acetate | |
CN104513147B (en) | The preparation method of fluorenes ethanone derivatives | |
EP2215104B1 (en) | 11 -fluoro-3-acetoxyestra-3,5-diene-17-on and method for the production thereof | |
CN115057906B (en) | Method for synthesizing cholesterol by using dehydroepiandrosterone | |
JP5039271B2 (en) | 4- (Trialkylsilylethynyl) phenanthrene derivatives | |
JP3838883B2 (en) | Method for producing alicyclic ketone compound | |
CN109748807A (en) | A kind of synthetic method of polycyclic aromatic hydrocarbon derivatives based on phenanthrene and naphthalene | |
TW201418276A (en) | Process for preparing 17-substituted steroids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13786501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13786501 Country of ref document: EP Kind code of ref document: A1 |