WO2014069527A1 - Hybrid vehicle regenerative brake control device - Google Patents
Hybrid vehicle regenerative brake control device Download PDFInfo
- Publication number
- WO2014069527A1 WO2014069527A1 PCT/JP2013/079420 JP2013079420W WO2014069527A1 WO 2014069527 A1 WO2014069527 A1 WO 2014069527A1 JP 2013079420 W JP2013079420 W JP 2013079420W WO 2014069527 A1 WO2014069527 A1 WO 2014069527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- clutch
- regenerative braking
- regeneration
- hybrid vehicle
- Prior art date
Links
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 132
- 239000000446 fuel Substances 0.000 claims description 72
- 238000011084 recovery Methods 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims 1
- 230000008929 regeneration Effects 0.000 abstract description 152
- 238000011069 regeneration method Methods 0.000 abstract description 152
- 230000005540 biological transmission Effects 0.000 abstract description 75
- 239000007858 starting material Substances 0.000 abstract description 47
- 230000004224 protection Effects 0.000 abstract description 19
- 230000000994 depressogenic effect Effects 0.000 abstract description 8
- 230000007704 transition Effects 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000000881 depressing effect Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/543—Transmission for changing ratio the transmission being a continuously variable transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0061—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/101—Infinitely variable gearings
- B60W10/107—Infinitely variable gearings with endless flexible members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4808—Electric machine connected or connectable to gearbox output shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/36—Temperature of vehicle components or parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/425—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention is equipped with an engine and an electric motor as a power source, and regenerative braking of a hybrid vehicle capable of selecting an electric travel mode (EV mode) using only the electric motor and a hybrid travel mode (HEV mode) using the electric motor and engine.
- EV mode electric travel mode
- HEV mode hybrid travel mode
- the present invention relates to a control device.
- a vehicle as described in Patent Document 1 is conventionally known.
- This hybrid vehicle is of a type in which an engine, which is one power source, is detachably connected to a wheel by a clutch, and an electric motor, which is the other power source, is always coupled to the wheel.
- Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode only by an electric motor by stopping the engine and releasing the clutch, and by starting the engine and engaging the clutch.
- Hybrid running (HEV running) in HEV mode with an electric motor and engine is possible.
- the engine (and transmission if a transmission is present) is disconnected from the wheel, and the engine (transmission) is disconnected during EV travel. It is not accompanied (pulled), and energy loss can be avoided and energy efficiency can be increased.
- the vehicle when the accelerator pedal is released during HEV traveling and the vehicle shifts to coasting (inertia) traveling, or when the vehicle is braked by depressing the brake pedal thereafter, the vehicle is regenerated by an electric motor.
- the energy efficiency is also improved by converting the kinetic energy into electric power and storing it in the battery.
- the engine should be stopped so that unnecessary operation is not performed. Therefore, the fuel to the engine that was being executed during the coasting (inertia) traveling In order to stop injection (fuel cut) even when the clutch is released, it is customary to prohibit the restart of fuel injection (fuel recovery) to the engine and stop the engine when the clutch is released.
- Patent Document 1 does not make any technical proposals regarding the clutch release timing for switching from HEV regeneration to EV regeneration, In order to increase the energy regeneration efficiency using conventional means, it is appropriate to immediately release the clutch at the start of regenerative braking, disconnect the engine from the wheels, and switch from HEV regeneration to EV regeneration.
- An object of the present invention is to propose a regenerative braking control device for a hybrid vehicle configured to be performed.
- the regenerative braking control device for a hybrid vehicle is configured as follows.
- the engine is detachably drive-coupled to the wheels via a clutch, and by releasing the clutch, electric traveling only by the electric motor is possible, and by hybridizing the electric motor and the engine by engaging the clutch It is a possible hybrid vehicle.
- the present invention is characterized by a configuration in which the following clutch release permission means is provided for such a hybrid vehicle.
- the clutch release permission means permits the release of the clutch after a predetermined period from the start of the regenerative braking when performing regenerative braking by the electric motor in the hybrid travel state.
- the regenerative braking control device for a hybrid vehicle when performing regenerative braking in a hybrid running state, permits the release of the clutch after a predetermined period from the start of the regenerative braking.
- the clutch is not immediately released (engine disengagement) at the start of regenerative braking, and the engine restarts even during driving by a driver with a high accelerator change frequency or in an operating environment where the accelerator change frequency increases.
- it is possible to solve the above-mentioned problem related to the durability of the starter motor, in which the starter motor reaches the endurance start number earlier.
- the regenerative braking control device for a hybrid vehicle can balance the requirements related to the protection of the starter motor and the requirements related to the energy regenerative efficiency in a highly balanced manner, either of which is greatly sacrificed. Can be solved.
- FIG. 1 is a schematic system diagram showing an overall control system related to a drive system of a hybrid vehicle including a regenerative braking control device according to a first embodiment of the present invention.
- 1 shows another type of hybrid vehicle to which the regenerative braking control device of the present invention can be applied, wherein (a) is a schematic system diagram showing an overall control system related to the drive system of the hybrid vehicle, and (b) is the hybrid vehicle.
- FIG. 6 is an engagement logic diagram of a shift friction element of a sub-transmission built in a V-belt type continuously variable transmission in the drive system of FIG. 3 is a flowchart showing a regenerative braking control program executed by the hybrid controller in FIG.
- FIG. 4 is a characteristic diagram showing a relationship between a clutch release delay time from the start of HEV regeneration used in the regenerative braking control of FIG. 3, engine start frequency, and regenerative energy.
- 4 is an operation time chart of a regenerative braking control program according to the first embodiment shown in FIG.
- FIG. 4 is a flowchart similar to FIG. 3, showing a regenerative braking control program of a regenerative braking control device according to a second embodiment of the present invention.
- 7 is an operation time chart of the regenerative braking control program according to the second embodiment shown in FIG.
- FIG. 6 is a flowchart similar to FIG. 3, showing a regenerative braking control program of a regenerative braking control device according to a third embodiment of the present invention.
- FIG. 9 is an operation time chart of the regenerative braking control program according to the third embodiment shown in FIG.
- FIG. 1 is a schematic system diagram showing an overall control system related to a drive system of a hybrid vehicle including a regenerative braking control device according to a first embodiment of the present invention.
- the hybrid vehicle is mounted with the engine 1 and the electric motor 2 as power sources, and the engine 1 is started by the starter motor 3.
- the engine 1 is drive-coupled to the driving wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separable, and the V-belt type continuously variable transmission 4 is as outlined below.
- the V-belt type continuously variable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components.
- the primary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C
- the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
- the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then sequentially passes through the V belt 8, the secondary pulley 7, the clutch CL and the final gear set 9 to drive wheels 5 To be used for running the hybrid vehicle.
- the pulley V groove width of the secondary pulley 7 is increased while the pulley V groove width of the primary pulley 6 is reduced, so that the V-belt 8 wraps around the primary pulley 6 with a larger arc diameter.
- the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt continuously variable transmission 4 performs an upshift to a high pulley ratio.
- the V belt 8 is wound around the primary pulley 6 and the arc diameter of the secondary pulley 6 is reduced at the same time.
- the winding arc diameter with 7 is increased, and the V-belt type continuously variable transmission 4 performs a downshift to a low pulley ratio.
- the electric motor 2 is always coupled to the drive wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12.
- the inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2 and adjusts the power supplied to the electric motor 2 to control the driving force and the rotational direction of the electric motor 2.
- the electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to act as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
- the brake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked.
- the caliper 15 is connected to a master cylinder 18 that responds to the depressing force of the brake pedal 16 that the driver depresses and outputs a brake hydraulic pressure corresponding to the brake pedal depressing force under the boost of the negative pressure type brake booster 17.
- the caliper 15 is operated to brake the brake disc 14.
- the hybrid vehicle In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving force command according to the driver's request by driving the wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19.
- Hybrid vehicle travel mode selection, engine 1 output control, electric motor 2 rotational direction control and output control, continuously variable transmission 4 shift control and clutch CL engagement / release control, and battery 12 charge / discharge Control is performed by the hybrid controller 21 via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25, respectively.
- the hybrid controller 21 includes an accelerator opening sensor 27 that detects a signal from a brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. The signal from is input.
- the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
- the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21.
- the motor controller 23 performs rotation direction control and output control of the electric motor 2 via the inverter 13 in response to a command from the hybrid controller 21.
- the transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium.
- the clutch CL is engaged and released.
- the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
- the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the driving wheel 5 are detachably connected to each other, so that the continuously variable transmission 4 has a dedicated clutch CL.
- the continuously variable transmission 4 includes the auxiliary transmission 31 between the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5.
- the friction element (clutch, brake, etc.) that controls the speed change of the transmission 31 can be used to detachably connect the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5. .
- the sub-transmission 31 in FIG. 2 (a) includes composite sun gears 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and a carrier 31c that rotatably supports the pinions 31pin and 31pout. It consists of a Ravigneaux type planetary gear set consisting of Of the composite sun gears 31s-1 and 31s-2, the sun gear 31s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31s-2 is arranged coaxially with respect to the secondary pulley 7, but freely rotates. To get.
- the inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
- the outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
- the carrier 31c and the ring gear 31r can be appropriately connected by the high clutch H / C, the ring gear 31r can be appropriately fixed by the reverse brake R / B, and the sun gear 31s-2 can be appropriately fixed by the low brake L / B. .
- the sub-transmission 31 fastens the high clutch H / C, reverse brake R / B, and low brake L / B, which are shift friction elements, in a combination indicated by a circle in FIG.
- the first forward speed, the second speed, and the reverse gear position can be selected by releasing as shown by x in (b).
- the sub-transmission 31 is in a neutral state where no power is transmitted
- the auxiliary transmission 31 enters the first forward speed selection (deceleration) state
- the auxiliary transmission 31 enters the second forward speed selection (direct connection) state
- the reverse brake R / B is engaged, the auxiliary transmission 31 is in the reverse selection (reverse) state.
- the continuously variable transmission 4 shown in FIG. 2 releases the variable speed friction elements H / C, R / B, L / B and makes the sub-transmission 31 neutral.
- the (secondary pulley 7) and the drive wheel 5 can be disconnected. Therefore, in the continuously variable transmission 4 of FIG. 2, the shift friction elements H / C, R / B, L / B of the sub-transmission 31 correspond to the clutch CL in FIG. 1, and the clutch CL is additionally provided as in FIG. Therefore, the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 are detachably coupled.
- the continuously variable transmission 4 in FIG. 2 uses oil from an oil pump O / P driven by the engine as a working medium, and the transmission controller 24 includes a line pressure solenoid 35, a lockup solenoid 36, a primary pulley pressure solenoid 37, and a low brake. Control is performed as follows through the pressure solenoid 38, the high clutch pressure & reverse brake pressure solenoid 39, and the switch valve 41.
- a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G are input to the transmission controller 24.
- the line pressure solenoid 35 regulates the oil from the oil pump O / P to the line pressure P L corresponding to the vehicle required driving force, and this line pressure P L is always the secondary pulley 7
- the secondary pulley 7 clamps the V-belt 8 with a thrust according to the line pressure P L.
- the lockup solenoid 36 responds to a lockup command from the transmission controller 24 and directs the torque converter T / C directly between the input / output elements by appropriately directing the line pressure P L to the torque converter T / C. Set the lockup state.
- the primary pulley pressure solenoid 37 adjusts the line pressure P L to the primary pulley pressure in response to the CVT gear ratio command from the transmission controller 24, and supplies the pressure to the primary pulley 6, thereby supplying the V groove of the primary pulley 6.
- the CVT gear ratio command from the transmission controller 24 is controlled by controlling the width and the V groove width of the secondary pulley 7 to which the line pressure P L is supplied so that the CVT gear ratio matches the command from the transmission controller 24.
- the low brake pressure solenoid 38 is engaged by supplying the line pressure P L to the low brake L / B as the low brake pressure when the transmission controller 24 issues the first speed selection command for the sub-transmission 31. To achieve the first speed selection command.
- High clutch pressure & reverse brake pressure solenoid 39 switches line pressure P L as high clutch pressure & reverse brake pressure when transmission controller 24 issues second speed selection command or reverse selection command for sub-transmission 31 Supply to valve 41.
- the switch valve 41 uses the line pressure P L from the solenoid 39 as the high clutch pressure to the high clutch H / C, and by engaging this, the second speed selection command of the auxiliary transmission 31 is established.
- the line pressure P L from the solenoid 39 directs the reverse brake R / B as the reverse brake pressure, to achieve a backward selection command of auxiliary transmission 31 by engaging it.
- the clutch is immediately released at the start of HEV regeneration, and the engine 1 and the continuously variable transmission 4 are disconnected from the drive wheel 5 and the engine 1 is stopped. If you are driving by a driver who is willing to release the accelerator pedal 19 or depressing it frequently, or if you are using the vehicle in a driving environment where you are primarily forced to do so, you must use the engine. This is disadvantageous from the viewpoint of protection of the starter motor, since the number of restarts of the starter motor 3 for engine start reaches the endurance start number early.
- the drive system shown in FIG. 1 is provided so that the demand for improving the energy regeneration efficiency and the protection demand for the starter motor 3 which are in a trade-off relationship as described above can be balanced at a high level.
- Regenerative braking control of hybrid vehicles is performed as follows.
- the hybrid controller 21 of FIG. 1 starts the regenerative braking control program of FIG. 3 during HEV traveling.
- the control program of FIG. 3 shows that when the permit condition for regenerative braking by the electric motor 2 is satisfied, for example, the temperature of the electric motor 2 is in a temperature range that is safe even if power generation is performed, and the temperature of the battery 12 Needless to say, the operation is performed when the temperature is within a possible temperature range and the battery 12 is in a storage state where the remaining charge capacity remains.
- step S11 it is checked whether or not the coasting (inertia) traveling is performed from the accelerator opening APO, and in step S12, the brake switch 26 is turned on (the brake pedal 16 is depressed). Check whether it is in the braking state). This embodiment is based on the assumption that when the accelerator pedal 19 is released and the brake pedal 16 is depressed, regenerative braking is performed. If it is determined in step S11 that the accelerator pedal 19 is not released or it is determined in step S12 that the brake switch 26 is not ON (non-braking state), the control is terminated as it is and the control program of FIG. 3 is exited.
- step S11 When it is determined in step S11 that the accelerator pedal 19 is released and the brake switch 26 is determined to be ON (braking state) in step S12, the control proceeds to step S13 because the regenerative braking conditions are met, Regenerative braking (HEV regeneration) is performed so that a predetermined deceleration according to the driving state is obtained under HEV traveling.
- HEV regeneration Regenerative braking
- step S14 it is determined whether or not the brake switch ON (braking) determination in step S12 has continued for a predetermined time ⁇ Ts or more, that is, whether or not the brake switch ON time ⁇ T (HEV regeneration time) is a predetermined time ⁇ Ts or more. A check is made to determine whether or not a predetermined period has elapsed since the start of regenerative braking.
- FIG. 4 shows the regenerative energy (fuel consumption) obtained for each clutch release delay time ⁇ T from the start of HEV regeneration to the start of EV regeneration by releasing the clutch CL, and the engine restart frequency described above (starter motor 3 start-up frequency).
- the data shown in FIG. 4 can be obtained in advance by experiments and the like.
- the target of regenerative energy (fuel consumption) can be achieved, and the starter motor 3 is started less than the protection establishment limit start number, and the starter motor 3 protections can also be established.
- the target of regenerative energy (fuel consumption) cannot be achieved, or the starter motor 3 start count is more than the protection start limit start count and the starter motor 3 cannot be protected.
- the clutch release delay time ⁇ T from the start of HEV regeneration to the start of EV regeneration due to the release of the clutch CL is longer than the time in the GOOD region of FIG. 4, that is, ⁇ T1, and less than ⁇ T2. There must be. Therefore, in this embodiment, the time ⁇ T1 in FIG. 4 is used as the predetermined time ⁇ Ts related to the brake switch ON time ⁇ T (HEV regeneration time).
- step S14 While it is determined in step S14 that the brake switch ON time ⁇ T (HEV regeneration time) is less than the predetermined time ⁇ Ts, the control is returned to step S13, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
- step S14 When it is determined in step S14 that the brake switch ON time ⁇ T (HEV regeneration time) is equal to or longer than the predetermined time ⁇ Ts, the control proceeds to step S15 to permit the release of the clutch CL. Therefore, step S14 and step S15 correspond to clutch release permission means in the present invention.
- step S16 resumption of fuel supply (fuel recovery) to the engine 1 that has been fuel cut as described above is prohibited and fuel cut is continued. Therefore, step S16 corresponds to the fuel recovery prohibiting means in the present invention.
- step S17 drag deceleration Gd of engine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP. Then, in step S18, the clutch CL is released under the condition that the HEV ⁇ EV mode switching condition is satisfied, and the engine 1 is stopped in combination with the prohibition of fuel recovery (continuation of fuel cut) in step S16, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
- step S13 if the regenerative braking in step S13 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling in which the engine 1 and the continuously variable transmission 4 are dragged via the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4. Therefore, in step S19, the drag deceleration Gd of the engine 1 and continuously variable transmission 4 obtained in step S17 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
- HEV regeneration is started because the regenerative braking conditions in this embodiment are met (step S13).
- the electric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling, so that power is generated as apparent from the generated power after the instant t2 in FIG.
- the vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
- the regenerative braking force is added by the drag deceleration Gd of the engine 1 and the continuously variable transmission 4 during the HEV regeneration obtained in step S17.
- the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
- the current EV running is maintained after switching to EV regeneration as in HEV regeneration.
- Regenerative braking that provides a predetermined deceleration according to the operating state can be performed.
- the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It is possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and as a result, the starter motor 3 has an endurance start count that reaches the endurance start count early. Therefore, the starter motor 3 can be protected.
- the starter motor 3 In order to command the permission at the prescribed timing as early as necessary for protection, the clutch CL release timing (HEV regeneration ⁇ EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of the starter motor 3 from the start of HEV regeneration. The degradation in efficiency is negligible and can almost be ignored. Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of the starter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
- step S16 when the release of the clutch CL (switching from HEV regeneration to EV regeneration) is permitted, the fuel cut to the engine 1 performed in response to the release of the accelerator pedal is continued. Because the fuel recovery is prohibited (step S16) The engine 1 is stopped when the clutch is released, and in addition to avoiding a control collision, the fuel efficiency of the engine 1 can be expected.
- FIG. 6 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a second embodiment of the present invention. Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description. Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release the accelerator pedal 19, even if the braking operation by depressing the brake pedal 16 is not performed.
- regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release the accelerator pedal 19, even if the braking operation by depressing the brake pedal 16 is not performed.
- step S21 in FIG. 6 started during HEV traveling, it is checked whether or not the coasting (inertia) traveling in which the accelerator pedal 19 is released from the accelerator opening APO. Since this embodiment is based on the premise that regenerative braking is performed only by releasing the accelerator pedal 19 as described above, when it is determined in step S21 that the accelerator pedal 19 is not in the released state, the control is ended as it is. Exit from 6 control program.
- step S21 When it is determined in step S21 that the coasting (inertia) traveling is performed with the accelerator pedal 19 released, the control proceeds to step S22 because the regenerative braking conditions are met, and the current driving condition is determined based on the current HEV traveling. Regenerative braking (HEV regeneration) is performed to obtain a predetermined deceleration.
- HEV regeneration Regenerative braking
- step S23 it is checked whether or not the brake switch 26 is ON (braking state in which the brake pedal 16 is depressed). If the brake switch 26 is not ON (braking state), the control is returned to step S22. Continue HEV regeneration.
- step S23 If it is determined in step S23 that the brake switch 26 is ON (braking state), whether or not the brake switch ON (braking) determination in step S23 has continued for a predetermined time ⁇ Ts in step S24, that is, during HEV regeneration. It is checked whether or not the brake switch ON time ⁇ T has become equal to or longer than the predetermined time ⁇ Ts, and it is determined whether or not a predetermined period has elapsed since the start of regenerative braking. Note that the predetermined time ⁇ Ts is determined in the same manner as described above with reference to FIG. This is the delay time from the moment the brake switch is turned on (HEV regeneration ⁇ EV regeneration switching timing).
- step S24 While it is determined in step S24 that the brake switch ON time ⁇ T during HEV regeneration is less than the predetermined time ⁇ Ts, the control returns to step S22, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
- step S24 When it is determined in step S24 that the brake switch ON time ⁇ T during HEV regeneration is equal to or longer than the predetermined time ⁇ Ts, the control proceeds to step S25 to permit the release of the clutch CL. Therefore, step S24 and step S25 correspond to clutch release permission means in the present invention.
- step S26 fuel supply restart (fuel recovery) to the engine 1 that has been fuel cut as described above is prohibited and fuel cut is continued. Therefore, step S26 corresponds to the fuel recovery prohibiting means in the present invention.
- step S27 drag deceleration Gd of engine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP. Then, in step S28, the clutch CL is released under the condition that the HEV ⁇ EV mode switching condition is satisfied, and the engine 1 is stopped in combination with prohibition of fuel recovery (continuation of fuel cut) in step S26, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
- step S22 if the regenerative braking in step S22 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling that drags the engine 1 and the continuously variable transmission 4 through the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4. Therefore, in step S29, the drag deceleration amount Gd of the engine 1 and continuously variable transmission 4 obtained in step S27 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
- HEV regeneration is started at the accelerator pedal release instant t1 (step S22).
- the electric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling so that the power is generated clearly from the generated power after the instant t1 in FIG.
- the vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
- the regenerative braking force due to HEV regeneration is increased, and the generated power increases stepwise as at the instant t2 in FIG.
- the HEV regeneration described above is continued until the instant t3 (step S24) when the brake switch ON time ⁇ T from the instant t2 reaches the predetermined time ⁇ Ts. While the brake switch ON time ⁇ T (HEV regeneration time) from the instant t2 reaches the predetermined time ⁇ Ts, from the instant t3 (step S24) to the instant t4, the clutch CL that has been engaged is released and the engine 1 is released.
- the regenerative braking force is added by the drag deceleration Gd of the engine 1 and the continuously variable transmission 4 during HEV regeneration obtained in step S27.
- the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
- by adding the regenerative braking force during EV regeneration by the drag deceleration Gd of engine 1 and continuously variable transmission 4 even after switching to EV regeneration, as in HEV regeneration, And regenerative braking in which a predetermined deceleration according to the driving state is obtained.
- the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It was possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and related to the durability of the starter motor 3 such that the starter motor 3 has reached the endurance start number of times early. Problems can be avoided and the starter motor 3 can be protected.
- the regenerative braking control device for a hybrid vehicle can satisfy both the requirements related to protection of the starter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
- FIG. 8 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a third embodiment of the present invention. Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description. Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release the accelerator pedal 19, even if the braking operation by depressing the brake pedal 16 is not performed.
- step S31 in FIG. 8 started during HEV traveling, it is checked whether or not coasting (inertia) traveling in which the accelerator pedal 19 is released from the accelerator opening APO. Since this embodiment is based on the premise that regenerative braking is performed only by releasing the accelerator pedal 19, as described above, when it is determined in step S31 that the accelerator pedal 19 is not in the released state, the control is ended as it is. Exit from 8 control programs.
- step S31 When it is determined in step S31 that the coasting (inertia) travel is performed with the accelerator pedal 19 released, the control proceeds to step S32 because the regenerative braking conditions are met, and the current driving condition based on the current HEV traveling is determined. Regenerative braking (HEV regeneration) is performed to obtain a predetermined deceleration.
- HEV regeneration Regenerative braking
- step S33 it is checked whether or not the continuation time of the accelerator pedal release, which is the regenerative braking condition, that is, the accelerator pedal release determination time ⁇ T (HEV regeneration time) in step S31 is equal to or longer than the predetermined time ⁇ Ts. It is determined whether or not a predetermined period has elapsed since the start of. Note that the predetermined time ⁇ Ts is determined in the same manner as described above with reference to FIG. 4, and the clutch CL release timing (which can satisfy both the demand for improving the energy regeneration efficiency and the protection demand for the starter motor, which are in the trade-off relationship described above) This is the delay time from the accelerator pedal release start instant (HEV regeneration start instant) of (HEV regeneration ⁇ EV regeneration switching timing).
- step S33 While it is determined in step S33 that the accelerator pedal release determination time ⁇ T (HEV regeneration time) is less than the predetermined time ⁇ Ts, the control is returned to step S32, and the predetermined deceleration according to the driving state is maintained with the current HEV running. Continue HEV regeneration so that it can be obtained.
- step S33 When it is determined in step S33 that the accelerator pedal release determination time ⁇ T (HEV regeneration time) is equal to or greater than the predetermined time ⁇ Ts, the control proceeds to step S34 to permit the release of the clutch CL. Therefore, step S33 and step S34 correspond to clutch release permission means in the present invention.
- step S35 fuel supply restart (fuel recovery) to the engine 1 that has been fuel cut as described above is prohibited and fuel cut is continued. Therefore, step S35 corresponds to the fuel recovery prohibiting means in the present invention.
- step S36 drag deceleration Gd of engine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP. Then, in step S37, the clutch CL is released under the condition that the HEV ⁇ EV mode switching condition is satisfied, and thereby, the engine 1 is stopped together with the fuel recovery prohibition (continuation of fuel cut) in step S35, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
- step S32 if the regenerative braking in step S32 is continued even after switching to the EV regenerative operation, the regenerative braking here assumes HEV traveling that drags the engine 1 and the continuously variable transmission 4 through the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4. Therefore, in step S38, the drag deceleration Gd of the engine 1 and the continuously variable transmission 4 obtained in step S36 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
- HEV regeneration is started at the accelerator pedal release instant t1 (step S32).
- the electric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling, so that power is generated as apparent from the generated power after the instant t1 in FIG.
- the vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
- the regenerative braking force is added by the drag deceleration Gd of the engine 1 and the continuously variable transmission 4 during the HEV regeneration obtained in step S36.
- the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t3 in FIG.
- by adding the regenerative braking force during EV regeneration by the drag deceleration Gd of engine 1 and continuously variable transmission 4 even after switching to EV regeneration, as in HEV regeneration, And regenerative braking in which a predetermined deceleration according to the driving state is obtained.
- the release time ⁇ T of the accelerator pedal 19, that is, the duration ⁇ T of HEV regeneration (step S31 and step S32) corresponding to the release of the accelerator pedal 19 is equal to or longer than the predetermined time ⁇ Ts.
- the release time ⁇ T of the accelerator pedal 19 that is, the duration ⁇ T of HEV regeneration (step S31 and step S32) corresponding to the release of the accelerator pedal 19 is equal to or longer than the predetermined time ⁇ Ts.
- Step S34 Release of the clutch CL (switching from HEV regeneration to EV regeneration with engine 1 stop) is later than when HEV regeneration starts (when accelerator pedal 19 is released) and is necessary to protect the starter motor It is permitted at a predetermined timing as early as possible.
- the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It was possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and related to the durability of the starter motor 3 such that the starter motor 3 has reached the endurance start number of times early. Problems can be avoided and the starter motor 3 can be protected.
- the regenerative braking control device for a hybrid vehicle can satisfy both the requirements related to protection of the starter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
- a normal alternator generator
- a motor / generator so that power running is possible.
- the motor / generator may be configured to achieve the purpose by powering.
- the engine 1 may be cranked by powering of the motor / generator instead of the starter motor 3 when starting the engine.
- the idea of the present invention can be applied to such a vehicle, and in this case, the same operation and effect as described above can be achieved.
- step S12 in FIG. 3 and step S23 in FIG. 6 the determination is made by turning on the brake switch 26.
- the determination during braking is not limited to this.
- the brake pedal stroke amount or the brake fluid pressure sensor detection value which is a physical amount that changes according to the operation, may be determined to be braking when the brake determination value is reached.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
When an accelerator pedal is released (S11) and a brake pedal is depressed (S12), hybrid travel regeneration (S13) is started. When a time (ΔT) of the hybrid travel regeneration (with the brake pedal being depressed) reaches a predetermined time (ΔTs) at which both regeneration efficiency and starter motor protection are achieved, the clutch is disengaged so as to transition to electric travel regeneration (S15, S16, S18), while a dragging deceleration component (Gd) of an engine and a continuously variable transmission is added to regenerative braking force.
Description
本発明は、エンジンおよび電動モータを動力源として搭載され、電動モータのみによる電気走行モード(EVモード)と、電動モータおよびエンジンによるハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両の回生制動制御装置に関するものである。
The present invention is equipped with an engine and an electric motor as a power source, and regenerative braking of a hybrid vehicle capable of selecting an electric travel mode (EV mode) using only the electric motor and a hybrid travel mode (HEV mode) using the electric motor and engine. The present invention relates to a control device.
このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。
このハイブリッド車両は、一方の動力源であるエンジンをクラッチにより切り離し可能にして車輪に駆動結合し、他方の動力源である電動モータを当該車輪に常時結合した型式のものである。 As such a hybrid vehicle, a vehicle as described inPatent Document 1, for example, is conventionally known.
This hybrid vehicle is of a type in which an engine, which is one power source, is detachably connected to a wheel by a clutch, and an electric motor, which is the other power source, is always coupled to the wheel.
このハイブリッド車両は、一方の動力源であるエンジンをクラッチにより切り離し可能にして車輪に駆動結合し、他方の動力源である電動モータを当該車輪に常時結合した型式のものである。 As such a hybrid vehicle, a vehicle as described in
This hybrid vehicle is of a type in which an engine, which is one power source, is detachably connected to a wheel by a clutch, and an electric motor, which is the other power source, is always coupled to the wheel.
かかるハイブリッド車両は、エンジンを停止すると共に上記のクラッチを解放することで電動モータのみによるEVモードでの電気走行(EV走行)が可能であり、またエンジンを始動させて当該クラッチを締結することで電動モータおよびエンジンによるHEVモードでのハイブリッド走行(HEV走行)が可能である。
Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode only by an electric motor by stopping the engine and releasing the clutch, and by starting the engine and engaging the clutch. Hybrid running (HEV running) in HEV mode with an electric motor and engine is possible.
なお、EV走行中にクラッチを上記のごとく解放することで、エンジンが(変速機が存在している場合は変速機も)車輪から切り離されることとなり、当該エンジン(変速機)をEV走行中に連れ回す(引き摺る)ことがなく、その分のエネルギー損失を回避し得てエネルギー効率を高めることができる。
By releasing the clutch as described above during EV travel, the engine (and transmission if a transmission is present) is disconnected from the wheel, and the engine (transmission) is disconnected during EV travel. It is not accompanied (pulled), and energy loss can be avoided and energy efficiency can be increased.
上記ハイブリッド車両にあっては更に、HEV走行中にアクセルペダルを釈放してコースティング(惰性)走行へ移行した場合や、その後ブレーキペダルを踏み込んで車両を制動する場合、電動モータによる回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリに蓄電しておくことでもエネルギー効率の向上を図る。
In the hybrid vehicle described above, when the accelerator pedal is released during HEV traveling and the vehicle shifts to coasting (inertia) traveling, or when the vehicle is braked by depressing the brake pedal thereafter, the vehicle is regenerated by an electric motor. The energy efficiency is also improved by converting the kinetic energy into electric power and storing it in the battery.
ところで上記の回生制動時(HEV回生時)も、できるだけ早期に(回生制動の開始と同時に)クラッチの解放によりエンジン(変速機)を車輪から切り離してEV回生状態となし、これによりエンジン(変速機)の連れ回しをなくすことで、その分だけエネルギー回生量を稼げるようにするのがエネルギー効率を高めるために肝要である。
By the way, during regenerative braking (HEV regeneration), the engine (transmission) is separated from the wheels by releasing the clutch as soon as possible (simultaneously with the start of regenerative braking). In order to increase energy efficiency, it is important to make it possible to earn the amount of energy regeneration by eliminating the rotation of).
一方で、上記クラッチの解放時は燃費の観点からエンジンを無用な運転が行われないよう停止させておくべきであり、そのため、上記コースティング(惰性)走行中に実行されていたエンジンへの燃料噴射の中止(フューエルカット)がクラッチ解放時も継続されるよう、エンジンへの燃料噴射の再開(フューエルリカバー)を禁止して、クラッチ解放時にエンジンを運転停止させるのが常套である。
On the other hand, at the time of releasing the clutch, from the viewpoint of fuel consumption, the engine should be stopped so that unnecessary operation is not performed. Therefore, the fuel to the engine that was being executed during the coasting (inertia) traveling In order to stop injection (fuel cut) even when the clutch is released, it is customary to prohibit the restart of fuel injection (fuel recovery) to the engine and stop the engine when the clutch is released.
しかし、かようにエンジンを運転停止させた場合は、アクセルペダルを踏み込む再加速時に駆動力不足からエンジンをスタータモータにより再始動させると共に、クラッチを締結させてEVモードからHEVモードへ切り替える必要が生ずる。
However, when the engine is stopped in this way, it is necessary to restart the engine with the starter motor due to insufficient driving force at the time of reacceleration when the accelerator pedal is depressed, and to switch from the EV mode to the HEV mode by engaging the clutch. .
従ってエネルギー回生効率を高めるために、回生制動の開始時に直ちにクラッチを解放してエンジンを車輪から切り離すと共にエンジンを停止させるよう構成すると、
アクセルペダルを頻繁に釈放したり、再踏み込みする癖のある運転者が運転している場合や、主としてそのような運転を余儀なくされる走行環境下で車両を使用する場合は、必然的にエンジンの再始動が頻繁に行われることとなり、エンジン始動用スタータモータの起動回数が早期に耐久起動回数に達し、スタータモータ保護の観点から大いに不利である。 Therefore, in order to increase the energy regeneration efficiency, if the clutch is released immediately at the start of regenerative braking to disconnect the engine from the wheel and stop the engine,
If you are driving by a driver who is willing to release or re-press the accelerator pedal, or if you are using the vehicle in a driving environment where you are primarily forced to do so, you must Since the restart is frequently performed, the number of start times of the starter motor for starting the engine reaches the number of start times of durability at an early stage, which is very disadvantageous from the viewpoint of protecting the starter motor.
アクセルペダルを頻繁に釈放したり、再踏み込みする癖のある運転者が運転している場合や、主としてそのような運転を余儀なくされる走行環境下で車両を使用する場合は、必然的にエンジンの再始動が頻繁に行われることとなり、エンジン始動用スタータモータの起動回数が早期に耐久起動回数に達し、スタータモータ保護の観点から大いに不利である。 Therefore, in order to increase the energy regeneration efficiency, if the clutch is released immediately at the start of regenerative braking to disconnect the engine from the wheel and stop the engine,
If you are driving by a driver who is willing to release or re-press the accelerator pedal, or if you are using the vehicle in a driving environment where you are primarily forced to do so, you must Since the restart is frequently performed, the number of start times of the starter motor for starting the engine reaches the number of start times of durability at an early stage, which is very disadvantageous from the viewpoint of protecting the starter motor.
特許文献1所載のハイブリッド車両は、HEV回生→EV回生切り替えのためのクラッチ解放タイミングについて何らの技術提案も行っておらず、
常套手段を用いて、エネルギー回生効率を高めるべく、回生制動の開始時に直ちにクラッチを解放してエンジンを車輪から切り離し、HEV回生→EV回生切り替えするものであると考えるのが妥当である。 The hybrid vehicle described inPatent Document 1 does not make any technical proposals regarding the clutch release timing for switching from HEV regeneration to EV regeneration,
In order to increase the energy regeneration efficiency using conventional means, it is appropriate to immediately release the clutch at the start of regenerative braking, disconnect the engine from the wheels, and switch from HEV regeneration to EV regeneration.
常套手段を用いて、エネルギー回生効率を高めるべく、回生制動の開始時に直ちにクラッチを解放してエンジンを車輪から切り離し、HEV回生→EV回生切り替えするものであると考えるのが妥当である。 The hybrid vehicle described in
In order to increase the energy regeneration efficiency using conventional means, it is appropriate to immediately release the clutch at the start of regenerative braking, disconnect the engine from the wheels, and switch from HEV regeneration to EV regeneration.
しかし従来通り、エネルギー回生効率を最優先に、回生制動の開始時に直ちにクラッチを解放してエンジンを車輪から切り離すのでは、上記したごとく、
アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる走行環境下において、エンジン再始動が頻発することとなり、スタータモータの起動回数が早期に耐久起動回数に達してしまい、スタータモータの耐久性に関する問題を生ずる。 However, as usual, if the engine is disconnected from the wheel by releasing the clutch immediately at the start of regenerative braking with the highest priority on energy regeneration efficiency,
The engine restarts frequently during driving by a driver with a high accelerator change frequency or in a driving environment where the accelerator change frequency is high, and the starter motor start count reaches the endurance start count at an early stage. Cause problems with durability.
アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる走行環境下において、エンジン再始動が頻発することとなり、スタータモータの起動回数が早期に耐久起動回数に達してしまい、スタータモータの耐久性に関する問題を生ずる。 However, as usual, if the engine is disconnected from the wheel by releasing the clutch immediately at the start of regenerative braking with the highest priority on energy regeneration efficiency,
The engine restarts frequently during driving by a driver with a high accelerator change frequency or in a driving environment where the accelerator change frequency is high, and the starter motor start count reaches the endurance start count at an early stage. Cause problems with durability.
かといって、スタータモータの保護(耐久性向上)を優先させ、回生制動の開始時から大きく遅れてクラッチを解放するのでは、エンジン(変速機)を連れ回すHEV回生の期間が長くなって、エンジン(変速機)の連れ回しエネルギー分だけエネルギー回生効率が悪化するという問題を生ずる。
However, giving priority to the protection of the starter motor (improvement of durability) and releasing the clutch after a significant delay from the start of regenerative braking will increase the HEV regeneration period that rotates the engine (transmission). There arises a problem that the energy regeneration efficiency is deteriorated by the amount of rotation energy of the (transmission).
本発明は、上記したエネルギー回生効率の向上要求およびスタータモータの保護要求がトレードオフの関係にあるとの観点から、これら両者の要求が高次元のバランス下に両立するタイミングで上記クラッチの解放を行わせるよう構成したハイブリッド車両の回生制動制御装置を提案することを目的とする。
In the present invention, from the viewpoint that the demand for improving the energy regeneration efficiency and the protection demand for the starter motor are in a trade-off relationship, the release of the clutch is performed at a timing when both demands are compatible under a high-dimensional balance. An object of the present invention is to propose a regenerative braking control device for a hybrid vehicle configured to be performed.
この目的のため、本発明によるハイブリッド車両の回生制動制御装置は、これを以下のごとくに構成する。
先ず本発明の前提となるハイブリッド車両を説明するに、これは、
エンジンがクラッチを介して車輪に切り離し可能に駆動結合され、該クラッチを解放することで電動モータのみによる電気走行が可能であるほか、前記クラッチを締結することで前記電動モータおよびエンジンによるハイブリッド走行が可能なハイブリッド車両である。 For this purpose, the regenerative braking control device for a hybrid vehicle according to the present invention is configured as follows.
First, to explain the hybrid vehicle which is the premise of the present invention,
The engine is detachably drive-coupled to the wheels via a clutch, and by releasing the clutch, electric traveling only by the electric motor is possible, and by hybridizing the electric motor and the engine by engaging the clutch It is a possible hybrid vehicle.
先ず本発明の前提となるハイブリッド車両を説明するに、これは、
エンジンがクラッチを介して車輪に切り離し可能に駆動結合され、該クラッチを解放することで電動モータのみによる電気走行が可能であるほか、前記クラッチを締結することで前記電動モータおよびエンジンによるハイブリッド走行が可能なハイブリッド車両である。 For this purpose, the regenerative braking control device for a hybrid vehicle according to the present invention is configured as follows.
First, to explain the hybrid vehicle which is the premise of the present invention,
The engine is detachably drive-coupled to the wheels via a clutch, and by releasing the clutch, electric traveling only by the electric motor is possible, and by hybridizing the electric motor and the engine by engaging the clutch It is a possible hybrid vehicle.
本発明は、かかるハイブリッド車両に対し以下のようなクラッチ解放許可手段を設けた構成に特徴づけられる。
このクラッチ解放許可手段は、上記ハイブリッド走行状態で上記電動モータによる回生制動を行うとき、該回生制動の開始時から所定期間経過後に上記クラッチの解放を許可するものである。 The present invention is characterized by a configuration in which the following clutch release permission means is provided for such a hybrid vehicle.
The clutch release permission means permits the release of the clutch after a predetermined period from the start of the regenerative braking when performing regenerative braking by the electric motor in the hybrid travel state.
このクラッチ解放許可手段は、上記ハイブリッド走行状態で上記電動モータによる回生制動を行うとき、該回生制動の開始時から所定期間経過後に上記クラッチの解放を許可するものである。 The present invention is characterized by a configuration in which the following clutch release permission means is provided for such a hybrid vehicle.
The clutch release permission means permits the release of the clutch after a predetermined period from the start of the regenerative braking when performing regenerative braking by the electric motor in the hybrid travel state.
本発明によるハイブリッド車両の回生制動制御装置は、ハイブリッド走行状態で回生制動を行うとき、該回生制動の開始時から所定期間経過後に上記クラッチの解放を許可するため、
回生制動の開始時に直ちにクラッチの解放(エンジンの切り離し)が行われることがなく、アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる運転環境下であっても、エンジン再始動が頻発するのを防止することができ、結果として、スタータモータの起動回数が早期に耐久起動回数に達するという、スタータモータの耐久性に関した前記の問題を解消することができる。 The regenerative braking control device for a hybrid vehicle according to the present invention, when performing regenerative braking in a hybrid running state, permits the release of the clutch after a predetermined period from the start of the regenerative braking.
The clutch is not immediately released (engine disengagement) at the start of regenerative braking, and the engine restarts even during driving by a driver with a high accelerator change frequency or in an operating environment where the accelerator change frequency increases. As a result, it is possible to solve the above-mentioned problem related to the durability of the starter motor, in which the starter motor reaches the endurance start number earlier.
回生制動の開始時に直ちにクラッチの解放(エンジンの切り離し)が行われることがなく、アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる運転環境下であっても、エンジン再始動が頻発するのを防止することができ、結果として、スタータモータの起動回数が早期に耐久起動回数に達するという、スタータモータの耐久性に関した前記の問題を解消することができる。 The regenerative braking control device for a hybrid vehicle according to the present invention, when performing regenerative braking in a hybrid running state, permits the release of the clutch after a predetermined period from the start of the regenerative braking.
The clutch is not immediately released (engine disengagement) at the start of regenerative braking, and the engine restarts even during driving by a driver with a high accelerator change frequency or in an operating environment where the accelerator change frequency increases. As a result, it is possible to solve the above-mentioned problem related to the durability of the starter motor, in which the starter motor reaches the endurance start number earlier.
また、上記期間経過後は上記クラッチの解放を許可するため、クラッチの解放が許可されるまでの間におけるエネルギー回生効率の悪化は限られたものとなる。
従って本発明によるハイブリッド車両の回生制動制御装置は、スタータモータの保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を解消することができる。 Further, since the release of the clutch is permitted after the period has elapsed, the deterioration of the energy regeneration efficiency until the release of the clutch is permitted is limited.
Therefore, the regenerative braking control device for a hybrid vehicle according to the present invention can balance the requirements related to the protection of the starter motor and the requirements related to the energy regenerative efficiency in a highly balanced manner, either of which is greatly sacrificed. Can be solved.
従って本発明によるハイブリッド車両の回生制動制御装置は、スタータモータの保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を解消することができる。 Further, since the release of the clutch is permitted after the period has elapsed, the deterioration of the energy regeneration efficiency until the release of the clutch is permitted is limited.
Therefore, the regenerative braking control device for a hybrid vehicle according to the present invention can balance the requirements related to the protection of the starter motor and the requirements related to the energy regenerative efficiency in a highly balanced manner, either of which is greatly sacrificed. Can be solved.
1 エンジン(動力源)
2 電動モータ(動力源)
3 スタータモータ
4 Vベルト式無段変速機
5 駆動車輪
6 プライマリプーリ
7 セカンダリプーリ
8 Vベルト
CVT 無段変速機構
T/C トルクコンバータ
CL クラッチ
9,11 ファイナルギヤ組
12 バッテリ
13 インバータ
14 ブレーキディスク
15 キャリパ
16 ブレーキペダル
17 負圧式ブレーキブースタ
18 マスターシリンダ
19 アクセルペダル
21 ハイブリッドコントローラ
22 エンジンコントローラ
23 モータコントローラ
24 変速機コントローラ
25 バッテリコントローラ
26 ブレーキスイッチ
27 アクセル開度センサ
O/P オイルポンプ
31 副変速機
H/C ハイクラッチ
R/B リバースブレーキ
L/B ローブレーキ
32 車速センサ
33 車両加速度センサ
35 ライン圧ソレノイド
36 ロックアップソレノイド
37 プライマリプーリ圧ソレノイド
38 ローブレーキ圧ソレノイド
39 ハイクラッチ圧&リバースブレーキ圧ソレノイド
41 スイッチバルブ 1 Engine (power source)
2 Electric motor (power source)
3 Starter motor 4 V belt type continuouslyvariable transmission 5 Drive wheel 6 Primary pulley 7 Secondary pulley 8 V belt CVT Continuously variable transmission mechanism T / C Torque converter CL Clutch 9,11 Final gear set 12 Battery 13 Inverter 14 Brake disk 15 Caliper 16 Brake pedal 17 Negative pressure brake booster 18 Master cylinder 19 Accelerator pedal 21 Hybrid controller 22 Engine controller 23 Motor controller 24 Transmission controller 25 Battery controller 26 Brake switch 27 Accelerator opening sensor O / P Oil pump 31 Sub-transmission H / C High clutch R / B Reverse brake L / B Low brake 32 Vehicle speed sensor 33 Vehicle acceleration sensor 35 Line pressure solenoid 36 Lockup solenoid 37 Primary pulley pressure solenoid 38 Low brake pressure solenoid 39 High clutch And reverse brake pressure solenoid 41 switch valve
2 電動モータ(動力源)
3 スタータモータ
4 Vベルト式無段変速機
5 駆動車輪
6 プライマリプーリ
7 セカンダリプーリ
8 Vベルト
CVT 無段変速機構
T/C トルクコンバータ
CL クラッチ
9,11 ファイナルギヤ組
12 バッテリ
13 インバータ
14 ブレーキディスク
15 キャリパ
16 ブレーキペダル
17 負圧式ブレーキブースタ
18 マスターシリンダ
19 アクセルペダル
21 ハイブリッドコントローラ
22 エンジンコントローラ
23 モータコントローラ
24 変速機コントローラ
25 バッテリコントローラ
26 ブレーキスイッチ
27 アクセル開度センサ
O/P オイルポンプ
31 副変速機
H/C ハイクラッチ
R/B リバースブレーキ
L/B ローブレーキ
32 車速センサ
33 車両加速度センサ
35 ライン圧ソレノイド
36 ロックアップソレノイド
37 プライマリプーリ圧ソレノイド
38 ローブレーキ圧ソレノイド
39 ハイクラッチ圧&リバースブレーキ圧ソレノイド
41 スイッチバルブ 1 Engine (power source)
2 Electric motor (power source)
3 Starter motor 4 V belt type continuously
以下、この発明の実施例を添付の図面に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<構成>
図1は、本発明の第1実施例になる回生制動制御装置を具えたハイブリッド車両の駆動系に係わる全体制御システムを示す概略システム図である。 <Configuration>
FIG. 1 is a schematic system diagram showing an overall control system related to a drive system of a hybrid vehicle including a regenerative braking control device according to a first embodiment of the present invention.
図1は、本発明の第1実施例になる回生制動制御装置を具えたハイブリッド車両の駆動系に係わる全体制御システムを示す概略システム図である。 <Configuration>
FIG. 1 is a schematic system diagram showing an overall control system related to a drive system of a hybrid vehicle including a regenerative braking control device according to a first embodiment of the present invention.
ハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。
エンジン1は、Vベルト式無段変速機4を介して駆動車輪5に適宜切り離し可能に駆動結合し、Vベルト式無段変速機4は、概略を以下に説明するようなものとする。 The hybrid vehicle is mounted with theengine 1 and the electric motor 2 as power sources, and the engine 1 is started by the starter motor 3.
Theengine 1 is drive-coupled to the driving wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separable, and the V-belt type continuously variable transmission 4 is as outlined below.
エンジン1は、Vベルト式無段変速機4を介して駆動車輪5に適宜切り離し可能に駆動結合し、Vベルト式無段変速機4は、概略を以下に説明するようなものとする。 The hybrid vehicle is mounted with the
The
Vベルト式無段変速機4は、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8とからなる無段変速機構CVTを主たる構成要素とする。
プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動車輪5に結合する。 The V-belt type continuouslyvariable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components.
Theprimary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C, and the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動車輪5に結合する。 The V-belt type continuously
The
かくしてクラッチCLの締結状態で、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達して、ハイブリッド車両の走行に供される。
Thus, with the clutch CL engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then sequentially passes through the V belt 8, the secondary pulley 7, the clutch CL and the final gear set 9 to drive wheels 5 To be used for running the hybrid vehicle.
かかるエンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を大きくされると同時にセカンダリプーリ7との巻き掛け円弧径を小さくされ、Vベルト式無段変速機4はハイ側プーリ比へのアップシフトを行う。
逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を小さくされると同時にセカンダリプーリ7との巻き掛け円弧径を大きくされ、Vベルト式無段変速機4はロー側プーリ比へのダウンシフトを行う。 During the transmission of the engine power, the pulley V groove width of thesecondary pulley 7 is increased while the pulley V groove width of the primary pulley 6 is reduced, so that the V-belt 8 wraps around the primary pulley 6 with a larger arc diameter. At the same time, the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt continuously variable transmission 4 performs an upshift to a high pulley ratio.
Conversely, by increasing the pulley V groove width of theprimary pulley 6 and decreasing the pulley V groove width of the secondary pulley 7, the V belt 8 is wound around the primary pulley 6 and the arc diameter of the secondary pulley 6 is reduced at the same time. The winding arc diameter with 7 is increased, and the V-belt type continuously variable transmission 4 performs a downshift to a low pulley ratio.
逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を小さくされると同時にセカンダリプーリ7との巻き掛け円弧径を大きくされ、Vベルト式無段変速機4はロー側プーリ比へのダウンシフトを行う。 During the transmission of the engine power, the pulley V groove width of the
Conversely, by increasing the pulley V groove width of the
電動モータ2はファイナルギヤ組11を介して駆動車輪5に常時結合し、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動する。
インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に電動モータ2への供給電力を加減して、電動モータ2を駆動力制御および回転方向制御する。 Theelectric motor 2 is always coupled to the drive wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12.
Theinverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2 and adjusts the power supplied to the electric motor 2 to control the driving force and the rotational direction of the electric motor 2.
インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に電動モータ2への供給電力を加減して、電動モータ2を駆動力制御および回転方向制御する。 The
The
なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、後で詳述する回生制動の用にも供する。
この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけてこれを発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。 Theelectric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later.
During this regenerative braking, theinverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to act as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけてこれを発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。 The
During this regenerative braking, the
図1につき上記した駆動系を具えるハイブリッド車両は、クラッチCLを解放してエンジン1を停止させた状態で、電動モータ2を駆動すると、電動モータ2の動力のみがファイナルギヤ組11を経て駆動車輪5に達し、ハイブリッド車両は電動モータ2のみによる電気走行(EV走行)を行うことができる。
この間、クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の電力消費を抑制することができる。 In a hybrid vehicle having the drive system described above with reference to FIG. 1, when theelectric motor 2 is driven with the clutch CL released and the engine 1 stopped, only the power of the electric motor 2 is driven through the final gear set 11. The vehicle reaches the wheel 5 and the hybrid vehicle can perform electric traveling (EV traveling) using only the electric motor 2.
During this time, by disengaging the clutch CL, it is possible to suppress power consumption during EV traveling without causing the stoppedengine 1 to rotate.
この間、クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の電力消費を抑制することができる。 In a hybrid vehicle having the drive system described above with reference to FIG. 1, when the
During this time, by disengaging the clutch CL, it is possible to suppress power consumption during EV traveling without causing the stopped
上記のEV走行状態においてエンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達し、車両はエンジン1および電動モータ2によるハイブリッド走行(HEV走行)を行うことができる。
When the engine 1 is started by the starter motor 3 and the clutch CL is engaged in the EV running state, the power from the engine 1 is converted to the torque converter T / C, the primary pulley 6, the V belt 8, the secondary pulley 7, the clutch CL, The final gear set 9 is sequentially passed to reach the drive wheel 5, and the vehicle can perform hybrid travel (HEV travel) using the engine 1 and the electric motor 2.
ハイブリッド車両を上記の走行状態から停車させたり、この停車状態に保つに際しては、駆動車輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。
キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスターシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。 When the hybrid vehicle is stopped from the above running state or kept in this stopped state, thebrake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked.
Thecaliper 15 is connected to a master cylinder 18 that responds to the depressing force of the brake pedal 16 that the driver depresses and outputs a brake hydraulic pressure corresponding to the brake pedal depressing force under the boost of the negative pressure type brake booster 17. The caliper 15 is operated to brake the brake disc 14.
キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスターシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。 When the hybrid vehicle is stopped from the above running state or kept in this stopped state, the
The
ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで車輪5を駆動され、運転者の要求に応じた駆動力をもって走行される。
In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving force command according to the driver's request by driving the wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19. The
ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、無段変速機4の変速制御およびクラッチCLの締結、解放制御と、バッテリ12の充放電制御はそれぞれ、ハイブリッドコントローラ21が、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介して行う。
Hybrid vehicle travel mode selection, engine 1 output control, electric motor 2 rotational direction control and output control, continuously variable transmission 4 shift control and clutch CL engagement / release control, and battery 12 charge / discharge Control is performed by the hybrid controller 21 via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25, respectively.
そのためハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ27からの信号とを入力する。
ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。 Therefore, the hybrid controller 21 includes anaccelerator opening sensor 27 that detects a signal from a brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. The signal from is input.
The hybrid controller 21 further exchanges internal information with theengine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。 Therefore, the hybrid controller 21 includes an
The hybrid controller 21 further exchanges internal information with the
エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、
モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。 Theengine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21.
Themotor controller 23 performs rotation direction control and output control of the electric motor 2 via the inverter 13 in response to a command from the hybrid controller 21.
モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。 The
The
変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動されるオイルポンプO/Pからのオイルを媒体として、無段変速機4(Vベルト式無段変速機構CVT)の変速制御およびクラッチCLの締結、解放制御を行う。
バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。 Thetransmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium. In addition, the clutch CL is engaged and released.
Thebattery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。 The
The
なお図1では、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合するため、無段変速機4に専用のクラッチCLを設けたが、
図2(a)に例示するごとく無段変速機4が、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間に副変速機31を内蔵している場合は、副変速機31の変速を司る摩擦要素(クラッチや、ブレーキなど)を流用して、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合することができる。
この場合、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合する専用のクラッチを追設する必要がなくてコスト上有利である。 In FIG. 1, the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and thedriving wheel 5 are detachably connected to each other, so that the continuously variable transmission 4 has a dedicated clutch CL.
As illustrated in FIG. 2 (a), when the continuouslyvariable transmission 4 includes the auxiliary transmission 31 between the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5, The friction element (clutch, brake, etc.) that controls the speed change of the transmission 31 can be used to detachably connect the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5. .
In this case, there is no need to additionally install a dedicated clutch for detachably connecting the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and thedrive wheel 5, which is advantageous in terms of cost.
図2(a)に例示するごとく無段変速機4が、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間に副変速機31を内蔵している場合は、副変速機31の変速を司る摩擦要素(クラッチや、ブレーキなど)を流用して、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合することができる。
この場合、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合する専用のクラッチを追設する必要がなくてコスト上有利である。 In FIG. 1, the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the
As illustrated in FIG. 2 (a), when the continuously
In this case, there is no need to additionally install a dedicated clutch for detachably connecting the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the
図2(a)の副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。 The sub-transmission 31 in FIG. 2 (a) includes composite sun gears 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and acarrier 31c that rotatably supports the pinions 31pin and 31pout. It consists of a Ravigneaux type planetary gear set consisting of
Of the composite sun gears 31s-1 and 31s-2, thesun gear 31s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31s-2 is arranged coaxially with respect to the secondary pulley 7, but freely rotates. To get.
複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。 The sub-transmission 31 in FIG. 2 (a) includes composite sun gears 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and a
Of the composite sun gears 31s-1 and 31s-2, the
サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。 The inner pinion 31pin is engaged with thesun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
The outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that thecarrier 31c acts as an output rotating member.
アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。 The inner pinion 31pin is engaged with the
The outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the
キャリア31cとリングギヤ31rとをハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をローブレーキL/Bにより適宜固定可能となす。
The carrier 31c and the ring gear 31r can be appropriately connected by the high clutch H / C, the ring gear 31r can be appropriately fixed by the reverse brake R / B, and the sun gear 31s-2 can be appropriately fixed by the low brake L / B. .
副変速機31は、変速摩擦要素であるハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。
The sub-transmission 31 fastens the high clutch H / C, reverse brake R / B, and low brake L / B, which are shift friction elements, in a combination indicated by a circle in FIG. The first forward speed, the second speed, and the reverse gear position can be selected by releasing as shown by x in (b).
ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、
この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、
ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、
リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。 When the high clutch H / C, reverse brake R / B, and low brake L / B are all released, thesub-transmission 31 is in a neutral state where no power is transmitted,
When the low brake L / B is engaged in this state, theauxiliary transmission 31 enters the first forward speed selection (deceleration) state,
When the high clutch H / C is engaged, theauxiliary transmission 31 enters the second forward speed selection (direct connection) state,
When the reverse brake R / B is engaged, theauxiliary transmission 31 is in the reverse selection (reverse) state.
この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、
ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、
リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。 When the high clutch H / C, reverse brake R / B, and low brake L / B are all released, the
When the low brake L / B is engaged in this state, the
When the high clutch H / C is engaged, the
When the reverse brake R / B is engaged, the
図2の無段変速機4は、全ての変速摩擦要素H/C, R/B, L/Bを解放して副変速機31を中立状態にすることで、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離すことができる。
従って図2の無段変速機4は、副変速機31の変速摩擦要素H/C, R/B, L/Bが図1におけるクラッチCLに相当し、図1におけるようにクラッチCLを追設することなく、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合している。 The continuouslyvariable transmission 4 shown in FIG. 2 releases the variable speed friction elements H / C, R / B, L / B and makes the sub-transmission 31 neutral. The (secondary pulley 7) and the drive wheel 5 can be disconnected.
Therefore, in the continuouslyvariable transmission 4 of FIG. 2, the shift friction elements H / C, R / B, L / B of the sub-transmission 31 correspond to the clutch CL in FIG. 1, and the clutch CL is additionally provided as in FIG. Therefore, the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 are detachably coupled.
従って図2の無段変速機4は、副変速機31の変速摩擦要素H/C, R/B, L/Bが図1におけるクラッチCLに相当し、図1におけるようにクラッチCLを追設することなく、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合している。 The continuously
Therefore, in the continuously
図2の無段変速機4は、エンジン駆動されるオイルポンプO/Pからのオイルを作動媒体とし、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介して、以下のように制御する。
The continuously variable transmission 4 in FIG. 2 uses oil from an oil pump O / P driven by the engine as a working medium, and the transmission controller 24 includes a line pressure solenoid 35, a lockup solenoid 36, a primary pulley pressure solenoid 37, and a low brake. Control is performed as follows through the pressure solenoid 38, the high clutch pressure & reverse brake pressure solenoid 39, and the switch valve 41.
なお変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
In addition to the signal described above with reference to FIG. 1, a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G are input to the transmission controller 24.
ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧し、このライン圧PLを常時セカンダリプーリ7へセカンダリプーリ圧として供給することにより、セカンダリプーリ7がライン圧PLに応じた推力でVベルト8を挟圧するようになす。
In response to a command from the transmission controller 24, the line pressure solenoid 35 regulates the oil from the oil pump O / P to the line pressure P L corresponding to the vehicle required driving force, and this line pressure P L is always the secondary pulley 7 By supplying the secondary pulley pressure to the secondary pulley 7, the secondary pulley 7 clamps the V-belt 8 with a thrust according to the line pressure P L.
ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに向かわせることで、トルクコンバータT/Cを適宜入出力要素間が直結されたロックアップ状態にする。
The lockup solenoid 36 responds to a lockup command from the transmission controller 24 and directs the torque converter T / C directly between the input / output elements by appropriately directing the line pressure P L to the torque converter T / C. Set the lockup state.
プライマリプーリ圧ソレノイド37は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、ライン圧PLを供給されているセカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。
The primary pulley pressure solenoid 37 adjusts the line pressure P L to the primary pulley pressure in response to the CVT gear ratio command from the transmission controller 24, and supplies the pressure to the primary pulley 6, thereby supplying the V groove of the primary pulley 6. The CVT gear ratio command from the transmission controller 24 is controlled by controlling the width and the V groove width of the secondary pulley 7 to which the line pressure P L is supplied so that the CVT gear ratio matches the command from the transmission controller 24. To realize.
ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
The low brake pressure solenoid 38 is engaged by supplying the line pressure P L to the low brake L / B as the low brake pressure when the transmission controller 24 issues the first speed selection command for the sub-transmission 31. To achieve the first speed selection command.
ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。 High clutch pressure & reversebrake pressure solenoid 39 switches line pressure P L as high clutch pressure & reverse brake pressure when transmission controller 24 issues second speed selection command or reverse selection command for sub-transmission 31 Supply to valve 41.
At the time of the second speed selection command, theswitch valve 41 uses the line pressure P L from the solenoid 39 as the high clutch pressure to the high clutch H / C, and by engaging this, the second speed selection command of the auxiliary transmission 31 is established. To realize.
During retraction selectioncommand switch valve 41, the line pressure P L from the solenoid 39 directs the reverse brake R / B as the reverse brake pressure, to achieve a backward selection command of auxiliary transmission 31 by engaging it.
第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。 High clutch pressure & reverse
At the time of the second speed selection command, the
During retraction selection
<回生制動制御>
上記ハイブリッド車両の回生制動制御を、車両駆動系が図1に示すようなものである場合につき以下に説明する。
HEV走行中にアクセルペダル19を釈放してコースティング(惰性)走行へ移行した場合や、その後ブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る。 <Regenerative braking control>
The regenerative braking control of the hybrid vehicle will be described below when the vehicle drive system is as shown in FIG.
When theaccelerator pedal 19 is released during HEV driving and the vehicle shifts to coasting (inertia) driving, or when the vehicle is braked by stepping on the brake pedal 16, the kinetic energy of the vehicle is converted into electric power by regenerative braking by the electric motor 2. By converting and storing this in the battery 12, energy efficiency is improved.
上記ハイブリッド車両の回生制動制御を、車両駆動系が図1に示すようなものである場合につき以下に説明する。
HEV走行中にアクセルペダル19を釈放してコースティング(惰性)走行へ移行した場合や、その後ブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る。 <Regenerative braking control>
The regenerative braking control of the hybrid vehicle will be described below when the vehicle drive system is as shown in FIG.
When the
ところでHEV走行のままの回生制動(HEV回生)は、クラッチCLが締結状態であるため、エンジン1の逆駆動力(エンジンブレーキ)分および無段変速機4のフリクション分だけ回生制動エネルギーの低下を招くこととなり、エネルギー回生効率が悪い。
そのため、HEV走行中に回生制動が開始されたら、当該HEV回生の開始と同時にクラッチCLの解放によりエンジン1および無段変速機4を駆動車輪5から切り離してEV走行へと移行することでEV回生状態となし、これによりエンジン1および無段変速機4の連れ回しをなくすことで、その分だけエネルギー回生量を稼げるようにするのが、エネルギー効率を高めるために肝要である。 By the way, in the regenerative braking (HEV regeneration) with HEV running, the clutch CL is in the engaged state, so the regenerative braking energy is reduced by the reverse drive force (engine brake) of theengine 1 and the friction of the continuously variable transmission 4. The energy regeneration efficiency is poor.
Therefore, if regenerative braking is started during HEV traveling, EV regeneration is achieved by separatingengine 1 and continuously variable transmission 4 from drive wheels 5 by releasing clutch CL simultaneously with the start of HEV regeneration and shifting to EV traveling. In order to increase the energy efficiency, it is important to increase the amount of energy regeneration by eliminating the rotation of the engine 1 and the continuously variable transmission 4.
そのため、HEV走行中に回生制動が開始されたら、当該HEV回生の開始と同時にクラッチCLの解放によりエンジン1および無段変速機4を駆動車輪5から切り離してEV走行へと移行することでEV回生状態となし、これによりエンジン1および無段変速機4の連れ回しをなくすことで、その分だけエネルギー回生量を稼げるようにするのが、エネルギー効率を高めるために肝要である。 By the way, in the regenerative braking (HEV regeneration) with HEV running, the clutch CL is in the engaged state, so the regenerative braking energy is reduced by the reverse drive force (engine brake) of the
Therefore, if regenerative braking is started during HEV traveling, EV regeneration is achieved by separating
一方、上記のようにクラッチCLを解放している時は燃費の観点からエンジン1を無用な運転が行われないよう停止させておくため、上記のコースティング(惰性)走行中に実行されていたエンジン1への燃料噴射の中止(フューエルカット)がクラッチCLの上記解放時も継続されるよう、エンジン1への燃料噴射の再開(フューエルリカバー)を禁止して、クラッチCL解放時にエンジン1を停止させる。
On the other hand, when the clutch CL is released as described above, the engine 1 is stopped during coasting (inertia) in order to stop the engine 1 from performing unnecessary driving from the viewpoint of fuel efficiency. In order to stop the fuel injection to the engine 1 (fuel cut) even when the clutch CL is released, the restart of the fuel injection to the engine 1 (fuel recovery) is prohibited and the engine 1 is stopped when the clutch CL is released. Let
しかし、かようにエンジン1を停止させた場合は、アクセルペダル19を踏み込む再加速時に要求駆動力を電動モータ2のみにより賄い得ず、駆動力不足状態になることから、エンジン1をスタータモータ3により再始動させると共に、クラッチCLを締結させてEV走行からHEV走行へ切り替えることになる。
However, when the engine 1 is stopped in this way, the required driving force cannot be covered only by the electric motor 2 at the time of reacceleration when the accelerator pedal 19 is depressed, and the engine 1 becomes the starter motor 3 The engine is restarted and the clutch CL is engaged to switch from EV traveling to HEV traveling.
従って、エネルギー回生効率を高めるためHEV回生の開始時に直ちにクラッチを解放してエンジン1および無段変速機4を駆動車輪5から切り離すと共にエンジン1を停止させるよう構成すると、
アクセルペダル19を頻繁に釈放したり、再踏み込みする癖のある運転者が運転している場合や、主としてそのような運転を余儀なくされる走行環境下で車両を使用する場合は、必然的にエンジン1の再始動が頻繁に行われることとなり、エンジン始動用スタータモータ3の起動回数が早期に耐久起動回数に達し、スタータモータ保護の観点から不利である。 Therefore, in order to increase the energy regeneration efficiency, the clutch is immediately released at the start of HEV regeneration, and theengine 1 and the continuously variable transmission 4 are disconnected from the drive wheel 5 and the engine 1 is stopped.
If you are driving by a driver who is willing to release theaccelerator pedal 19 or depressing it frequently, or if you are using the vehicle in a driving environment where you are primarily forced to do so, you must use the engine. This is disadvantageous from the viewpoint of protection of the starter motor, since the number of restarts of the starter motor 3 for engine start reaches the endurance start number early.
アクセルペダル19を頻繁に釈放したり、再踏み込みする癖のある運転者が運転している場合や、主としてそのような運転を余儀なくされる走行環境下で車両を使用する場合は、必然的にエンジン1の再始動が頻繁に行われることとなり、エンジン始動用スタータモータ3の起動回数が早期に耐久起動回数に達し、スタータモータ保護の観点から不利である。 Therefore, in order to increase the energy regeneration efficiency, the clutch is immediately released at the start of HEV regeneration, and the
If you are driving by a driver who is willing to release the
かといって、スタータモータ5の保護(耐久性向上)を優先させ、HEV回生制動の開始時から大きく遅れてクラッチCLを解放するのでは、エンジン1および無段変速機4を連れ回すHEV回生の期間が長くなって、エンジン1および無段変速機4の連れ回しエネルギー分だけエネルギー回生効率が悪化するという問題を生ずる。
However, if the priority is given to protection of the starter motor 5 (improvement of durability) and the clutch CL is released largely after the start of HEV regenerative braking, the HEV regeneration period in which the engine 1 and the continuously variable transmission 4 are rotated together. As a result, the problem arises that the energy regeneration efficiency deteriorates by the amount of entrained energy of the engine 1 and the continuously variable transmission 4.
そこで本実施例においては、上記したごとくトレードオフの関係にある、エネルギー回生効率の向上要求およびスタータモータ3の保護要求を高次元でバランスさせつつ両立させ得るよう、図1に示す駆動系を持ったハイブリッド車両の回生制動制御を以下のごとくに行う。
Therefore, in this embodiment, the drive system shown in FIG. 1 is provided so that the demand for improving the energy regeneration efficiency and the protection demand for the starter motor 3 which are in a trade-off relationship as described above can be balanced at a high level. Regenerative braking control of hybrid vehicles is performed as follows.
このために図1のハイブリッドコントローラ21は、HEV走行中に図3の回生制動制御プログラムを開始する。
また図3の制御プログラムは、電動モータ2による回生制動の許可条件が満足されるとき、例えば電動モータ2の温度が発電を行っても大丈夫な温度域であり、且つ、バッテリ12の温度が充電可能な温度域であり、且つ、バッテリ12が充電余力を残している蓄電状態であるときに実行するのは言うまでもない。 For this purpose, the hybrid controller 21 of FIG. 1 starts the regenerative braking control program of FIG. 3 during HEV traveling.
In addition, the control program of FIG. 3 shows that when the permit condition for regenerative braking by theelectric motor 2 is satisfied, for example, the temperature of the electric motor 2 is in a temperature range that is safe even if power generation is performed, and the temperature of the battery 12 Needless to say, the operation is performed when the temperature is within a possible temperature range and the battery 12 is in a storage state where the remaining charge capacity remains.
また図3の制御プログラムは、電動モータ2による回生制動の許可条件が満足されるとき、例えば電動モータ2の温度が発電を行っても大丈夫な温度域であり、且つ、バッテリ12の温度が充電可能な温度域であり、且つ、バッテリ12が充電余力を残している蓄電状態であるときに実行するのは言うまでもない。 For this purpose, the hybrid controller 21 of FIG. 1 starts the regenerative braking control program of FIG. 3 during HEV traveling.
In addition, the control program of FIG. 3 shows that when the permit condition for regenerative braking by the
ステップS11においては、アクセル開度APOからアクセルペダル19が釈放されているコースティング(惰性)走行か否かをチェックし、ステップS12においては、ブレーキスイッチ26がON(ブレーキペダル16が踏み込まれている制動状態)か否かをチェックする。
本実施例は、アクセルペダル19を釈放し、且つブレーキペダル16を踏み込んだときに回生制動を行うものを前提としており、従って、
ステップS11でアクセルペダル19が釈放状態でないと判定したり、ステップS12でブレーキスイッチ26がONでない(非制動状態)と判定する時は、制御をそのまま終了して図3の制御プログラムから抜ける。 In step S11, it is checked whether or not the coasting (inertia) traveling is performed from the accelerator opening APO, and in step S12, thebrake switch 26 is turned on (the brake pedal 16 is depressed). Check whether it is in the braking state).
This embodiment is based on the assumption that when theaccelerator pedal 19 is released and the brake pedal 16 is depressed, regenerative braking is performed.
If it is determined in step S11 that theaccelerator pedal 19 is not released or it is determined in step S12 that the brake switch 26 is not ON (non-braking state), the control is terminated as it is and the control program of FIG. 3 is exited.
本実施例は、アクセルペダル19を釈放し、且つブレーキペダル16を踏み込んだときに回生制動を行うものを前提としており、従って、
ステップS11でアクセルペダル19が釈放状態でないと判定したり、ステップS12でブレーキスイッチ26がONでない(非制動状態)と判定する時は、制御をそのまま終了して図3の制御プログラムから抜ける。 In step S11, it is checked whether or not the coasting (inertia) traveling is performed from the accelerator opening APO, and in step S12, the
This embodiment is based on the assumption that when the
If it is determined in step S11 that the
ちなみに、アクセルペダル19が釈放されているコースティング(惰性)走行中はエンジン1への燃料供給を中断(フューエルカット)して、燃費の向上を図るのは通常通りである。
Incidentally, during coasting where the accelerator pedal 19 is released, fuel supply to the engine 1 is interrupted (fuel cut) to improve fuel efficiency as usual.
ステップS11でアクセルペダル19が釈放状態であると判定し、且つステップS12でブレーキスイッチ26がON(制動状態)と判定する時、回生制動条件が揃ったことで制御をステップS13に進め、現在のHEV走行のもと運転状態に応じた所定減速度が得られるよう回生制動(HEV回生)を行う。
When it is determined in step S11 that the accelerator pedal 19 is released and the brake switch 26 is determined to be ON (braking state) in step S12, the control proceeds to step S13 because the regenerative braking conditions are met, Regenerative braking (HEV regeneration) is performed so that a predetermined deceleration according to the driving state is obtained under HEV traveling.
次のステップS14においては、ステップS12でのブレーキスイッチON(制動)判定が所定時間ΔTs以上継続したか否かを、つまりブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs以上か否かをチェックし、回生制動の開始時から所定期間経過後であるか否かを判定する。
In the next step S14, it is determined whether or not the brake switch ON (braking) determination in step S12 has continued for a predetermined time ΔTs or more, that is, whether or not the brake switch ON time ΔT (HEV regeneration time) is a predetermined time ΔTs or more. A check is made to determine whether or not a predetermined period has elapsed since the start of regenerative braking.
ここで、上記したブレーキスイッチON時間ΔT(HEV回生時間)に係わる所定時間ΔTsについて説明する。
図4は、HEV回生開始時からクラッチCLの解放によるEV回生開始時までのクラッチ解放遅延時間ΔTごとに得られる回生エネルギー(燃費)と、前記したエンジン再始動頻度(スタータモータ3の起動回数)との組み合わせを、回生エネルギー(燃費)の目標達成域およびスタータモータ3の耐久起動回数(スタータモータ保護成立域の限界起動回数)と共に例示するものである。 Here, the predetermined time ΔTs related to the brake switch ON time ΔT (HEV regeneration time) will be described.
FIG. 4 shows the regenerative energy (fuel consumption) obtained for each clutch release delay time ΔT from the start of HEV regeneration to the start of EV regeneration by releasing the clutch CL, and the engine restart frequency described above (starter motor 3 start-up frequency). Are shown together with the target achievement range of the regenerative energy (fuel consumption) and the number of start-ups of the starter motor 3 (the limit number of start-ups in the starter motor protection establishment range).
図4は、HEV回生開始時からクラッチCLの解放によるEV回生開始時までのクラッチ解放遅延時間ΔTごとに得られる回生エネルギー(燃費)と、前記したエンジン再始動頻度(スタータモータ3の起動回数)との組み合わせを、回生エネルギー(燃費)の目標達成域およびスタータモータ3の耐久起動回数(スタータモータ保護成立域の限界起動回数)と共に例示するものである。 Here, the predetermined time ΔTs related to the brake switch ON time ΔT (HEV regeneration time) will be described.
FIG. 4 shows the regenerative energy (fuel consumption) obtained for each clutch release delay time ΔT from the start of HEV regeneration to the start of EV regeneration by releasing the clutch CL, and the engine restart frequency described above (
図4のデータは、実験などにより予め求めることができ、GOOD領域においては回生エネルギー(燃費)の目標を達成し得ると共に、スタータモータ3の起動回数が保護成立限界起動回数未満であってスタータモータ3の保護も成立させ得る。
しかしそれ以外のNG領域は、回生エネルギー(燃費)の目標を達成し得ないか、或いはスタータモータ3の起動回数が保護成立限界起動回数以上であってスタータモータ3の保護を成立させ得ないため、前記したごとくトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させることができない。 The data shown in FIG. 4 can be obtained in advance by experiments and the like. In the GOOD region, the target of regenerative energy (fuel consumption) can be achieved, and thestarter motor 3 is started less than the protection establishment limit start number, and the starter motor 3 protections can also be established.
However, in other NG areas, the target of regenerative energy (fuel consumption) cannot be achieved, or thestarter motor 3 start count is more than the protection start limit start count and the starter motor 3 cannot be protected. As described above, it is impossible to satisfy both the demand for improving the energy regeneration efficiency and the protection demand for the starter motor, which are in a trade-off relationship.
しかしそれ以外のNG領域は、回生エネルギー(燃費)の目標を達成し得ないか、或いはスタータモータ3の起動回数が保護成立限界起動回数以上であってスタータモータ3の保護を成立させ得ないため、前記したごとくトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させることができない。 The data shown in FIG. 4 can be obtained in advance by experiments and the like. In the GOOD region, the target of regenerative energy (fuel consumption) can be achieved, and the
However, in other NG areas, the target of regenerative energy (fuel consumption) cannot be achieved, or the
この両立を実現するためには、HEV回生開始時からクラッチCLの解放によるEV回生開始時までのクラッチ解放遅延時間ΔTが図4のGOOD領域内における時間、つまりΔT1以上であって、ΔT2未満である必要がある。
そこで本実施例では、上記したブレーキスイッチON時間ΔT(HEV回生時間)に係わる所定時間ΔTsとして、図4における時間ΔT1を用いる。 In order to achieve this compatibility, the clutch release delay time ΔT from the start of HEV regeneration to the start of EV regeneration due to the release of the clutch CL is longer than the time in the GOOD region of FIG. 4, that is, ΔT1, and less than ΔT2. There must be.
Therefore, in this embodiment, the time ΔT1 in FIG. 4 is used as the predetermined time ΔTs related to the brake switch ON time ΔT (HEV regeneration time).
そこで本実施例では、上記したブレーキスイッチON時間ΔT(HEV回生時間)に係わる所定時間ΔTsとして、図4における時間ΔT1を用いる。 In order to achieve this compatibility, the clutch release delay time ΔT from the start of HEV regeneration to the start of EV regeneration due to the release of the clutch CL is longer than the time in the GOOD region of FIG. 4, that is, ΔT1, and less than ΔT2. There must be.
Therefore, in this embodiment, the time ΔT1 in FIG. 4 is used as the predetermined time ΔTs related to the brake switch ON time ΔT (HEV regeneration time).
ステップS14でブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs未満であると判定する間は、制御をステップS13に戻して現在のHEV走行のまま、運転状態に応じた所定減速度が得られるようHEV回生を継続する。
ステップS14でブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs以上になったと判定する時、制御をステップS15に進めてクラッチCLの解放を許可する。
従ってステップS14およびステップS15は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S14 that the brake switch ON time ΔT (HEV regeneration time) is less than the predetermined time ΔTs, the control is returned to step S13, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
When it is determined in step S14 that the brake switch ON time ΔT (HEV regeneration time) is equal to or longer than the predetermined time ΔTs, the control proceeds to step S15 to permit the release of the clutch CL.
Therefore, step S14 and step S15 correspond to clutch release permission means in the present invention.
ステップS14でブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs以上になったと判定する時、制御をステップS15に進めてクラッチCLの解放を許可する。
従ってステップS14およびステップS15は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S14 that the brake switch ON time ΔT (HEV regeneration time) is less than the predetermined time ΔTs, the control is returned to step S13, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
When it is determined in step S14 that the brake switch ON time ΔT (HEV regeneration time) is equal to or longer than the predetermined time ΔTs, the control proceeds to step S15 to permit the release of the clutch CL.
Therefore, step S14 and step S15 correspond to clutch release permission means in the present invention.
次のステップS16においては、前記したごとくフューエルカットされているエンジン1への燃料供給再開(フューエルリカバー)を禁止してフューエルカットを継続させる。
従ってステップS16は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S16, resumption of fuel supply (fuel recovery) to theengine 1 that has been fuel cut as described above is prohibited and fuel cut is continued.
Therefore, step S16 corresponds to the fuel recovery prohibiting means in the present invention.
従ってステップS16は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S16, resumption of fuel supply (fuel recovery) to the
Therefore, step S16 corresponds to the fuel recovery prohibiting means in the present invention.
ステップS17においては、締結状態のクラッチCLを介したエンジン1および無段変速機4の引き摺り減速度Gdを、CVTプーリ比、エンジン回転数Neおよび車速VSPから演算する。
そしてステップS18で、HEV→EVモード切り替え条件の成立下にクラッチCLを解放し、これにより、ステップS16でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S17, drag deceleration Gd ofengine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP.
Then, in step S18, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and theengine 1 is stopped in combination with the prohibition of fuel recovery (continuation of fuel cut) in step S16, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
そしてステップS18で、HEV→EVモード切り替え条件の成立下にクラッチCLを解放し、これにより、ステップS16でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S17, drag deceleration Gd of
Then, in step S18, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and the
ところで、当該EV回生への切り替え後もステップS13の回生制動を継続したのでは、ここでの回生制動が、締結状態のクラッチCLを介しエンジン1および無段変速機4を引き摺るHEV走行を前提とした回生制動であるため、エンジン1および無段変速機4の引き摺り減速度分だけ車両減速度が要求に対して不足する。
そのためステップS19において、ステップS17で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S13 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling in which theengine 1 and the continuously variable transmission 4 are dragged via the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4.
Therefore, in step S19, the drag deceleration Gd of theengine 1 and continuously variable transmission 4 obtained in step S17 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
そのためステップS19において、ステップS17で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S13 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling in which the
Therefore, in step S19, the drag deceleration Gd of the
図3の回生制動を、図5のタイムチャートに基づき以下に詳述する。
クラッチCLを締結したHEV走行中、図5の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS11)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図5に示すごとく0にする。 The regenerative braking in FIG. 3 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,release accelerator pedal 19 at instant t1 in FIG. 5 and shift to coasting (inertia) running with accelerator opening APO = 0 (step S11), supply fuel to engine 1 Stop (fuel cut) and set the fuel injection amount to 0 as shown in FIG.
クラッチCLを締結したHEV走行中、図5の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS11)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図5に示すごとく0にする。 The regenerative braking in FIG. 3 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,
瞬時t2に、ブレーキスイッチ26=ONで示すごとくブレーキペダル16を踏み込んで制動を行うと(ステップS12)、本実施例における回生制動条件が揃ったことでHEV回生が開始される(ステップS13)。
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図5の瞬時t2以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 When braking is performed by depressing thebrake pedal 16 as indicated by the brake switch 26 = ON at the instant t2 (step S12), HEV regeneration is started because the regenerative braking conditions in this embodiment are met (step S13).
By this HEV regeneration, theelectric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling, so that power is generated as apparent from the generated power after the instant t2 in FIG. The vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図5の瞬時t2以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 When braking is performed by depressing the
By this HEV regeneration, the
瞬時t2からのブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t3(ステップS14)までの間は、上記のHEV回生を継続する。
瞬時t2からのブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t3(ステップS14)より瞬時t4に至るまでの間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS16でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)により、エンジン回転数Ne=0で示すごとく停止させる(ステップS16およびステップS18)。
これによりHEV走行からEV走行へと切り替わり、瞬時t4からEV回生が行われることとなる。 The HEV regeneration described above is continued until the instant t3 (step S14) when the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs.
From the instant t3 (step S14) when the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs to the instant t4, the clutch CL that has been engaged so far is released and theengine 1 Is stopped as indicated by the engine speed Ne = 0 by the fuel cut (fuel injection amount = 0) continued by prohibiting the fuel recovery in step S16 (step S16 and step S18).
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t4.
瞬時t2からのブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t3(ステップS14)より瞬時t4に至るまでの間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS16でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)により、エンジン回転数Ne=0で示すごとく停止させる(ステップS16およびステップS18)。
これによりHEV走行からEV走行へと切り替わり、瞬時t4からEV回生が行われることとなる。 The HEV regeneration described above is continued until the instant t3 (step S14) when the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs.
From the instant t3 (step S14) when the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs to the instant t4, the clutch CL that has been engaged so far is released and the
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t4.
このEV回生では、ステップS17で求めたHEV回生中におけるエンジン1および無段変速機4の引き摺り減速度Gd分だけ回生制動力を上乗せする。
その結果、EV回生による発電電力は図5の瞬時t4以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生での回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of theengine 1 and the continuously variable transmission 4 during the HEV regeneration obtained in step S17.
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
In this way, by adding the regenerative braking force in EV regeneration by the drag deceleration Gd ofengine 1 and continuously variable transmission 4, the current EV running is maintained after switching to EV regeneration as in HEV regeneration. Regenerative braking that provides a predetermined deceleration according to the operating state can be performed.
その結果、EV回生による発電電力は図5の瞬時t4以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生での回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of the
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
In this way, by adding the regenerative braking force in EV regeneration by the drag deceleration Gd of
<効果>
上記した第1実施例の回生制動制御によれば、ブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs以上になった時(ステップS14)、つまりHEV回生が所定時間ΔTs以上継続したとき以降をもって、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS15)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(ブレーキスイッチ26のON時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the regenerative braking control of the first embodiment described above, when the brake switch ON time ΔT (HEV regenerative time) becomes equal to or longer than the predetermined time ΔTs (step S14), that is, after HEV regeneration continues for the predetermined time ΔTs. Therefore, it is determined that a predetermined period has elapsed since the start of regenerative braking, and the release of the clutch CL (switching from HEV regeneration to EV regeneration with theengine 1 stopped) is permitted (step S15).
Release of the clutch CL (switching from HEV regeneration to EV regeneration withengine 1 stop) is after the start of HEV regeneration (when the brake switch 26 is ON) and is necessary to protect the starter motor It is permitted at a predetermined timing as early as possible.
上記した第1実施例の回生制動制御によれば、ブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTs以上になった時(ステップS14)、つまりHEV回生が所定時間ΔTs以上継続したとき以降をもって、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS15)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(ブレーキスイッチ26のON時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the regenerative braking control of the first embodiment described above, when the brake switch ON time ΔT (HEV regenerative time) becomes equal to or longer than the predetermined time ΔTs (step S14), that is, after HEV regeneration continues for the predetermined time ΔTs. Therefore, it is determined that a predetermined period has elapsed since the start of regenerative braking, and the release of the clutch CL (switching from HEV regeneration to EV regeneration with the
Release of the clutch CL (switching from HEV regeneration to EV regeneration with
このためHEV回生の開始時に直ちにクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が行われることがなく、アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる運転環境下であっても、エンジン再始動が頻発するのを防止することができ、結果として、スタータモータ3の起動回数が早期に耐久起動回数に達するという、スタータモータ3の耐久性に関した問題を回避し得て、スタータモータ3の保護を図ることができる。
For this reason, the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It is possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and as a result, the starter motor 3 has an endurance start count that reaches the endurance start count early. Therefore, the starter motor 3 can be protected.
また、HEV回生の開始時(ブレーキスイッチ26のON時)よりも後にクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するといっても、スタータモータ3の保護に必要なできるだけ早い所定タイミングに当該許可を指令するため、
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かであって殆ど無視することができる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when thebrake switch 26 is ON) (switching from HEV regeneration to EV regeneration with the engine 1 stopped), the starter motor 3 In order to command the permission at the prescribed timing as early as necessary for protection,
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of thestarter motor 3 from the start of HEV regeneration. The degradation in efficiency is negligible and can almost be ignored.
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of thestarter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かであって殆ど無視することができる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when the
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of the
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of the
しかも本実施例においては、上記したクラッチCLの解放(HEV回生からEV回生への切り替え)が許可された時、アクセルペダルの釈放に呼応して行われているエンジン1へのフューエルカットが継続されるようフューエルリカバーを禁止したため(ステップS16)、
クラッチ解放時にエンジン1が停止されることとなり、制御の衝突を回避し得るのに加えて、エンジン1の燃費効果をも期することができる。 In addition, in this embodiment, when the release of the clutch CL (switching from HEV regeneration to EV regeneration) is permitted, the fuel cut to theengine 1 performed in response to the release of the accelerator pedal is continued. Because the fuel recovery is prohibited (step S16)
Theengine 1 is stopped when the clutch is released, and in addition to avoiding a control collision, the fuel efficiency of the engine 1 can be expected.
クラッチ解放時にエンジン1が停止されることとなり、制御の衝突を回避し得るのに加えて、エンジン1の燃費効果をも期することができる。 In addition, in this embodiment, when the release of the clutch CL (switching from HEV regeneration to EV regeneration) is permitted, the fuel cut to the
The
<構成>
図6は、本発明の第2実施例になるハイブリッド車両の回生制動制御装置を示す、図3と同様な回生制動制御プログラムである。
本実施例も、第1実施例と同様、図1または図2(a)に示す駆動系を持ったハイブリッド車両の回生制動制御に係わるが、駆動系が図1のようなものである場合につき説明を展開する。
しかして本実施例は、アクセルペダル19を釈放するコースティング(惰性)走行へ移行したら直ちに、ブレーキペダル16の踏み込みによる制動操作が行われなくても、回生制動を行うものとする。 <Configuration>
FIG. 6 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a second embodiment of the present invention.
Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description.
Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release theaccelerator pedal 19, even if the braking operation by depressing the brake pedal 16 is not performed.
図6は、本発明の第2実施例になるハイブリッド車両の回生制動制御装置を示す、図3と同様な回生制動制御プログラムである。
本実施例も、第1実施例と同様、図1または図2(a)に示す駆動系を持ったハイブリッド車両の回生制動制御に係わるが、駆動系が図1のようなものである場合につき説明を展開する。
しかして本実施例は、アクセルペダル19を釈放するコースティング(惰性)走行へ移行したら直ちに、ブレーキペダル16の踏み込みによる制動操作が行われなくても、回生制動を行うものとする。 <Configuration>
FIG. 6 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a second embodiment of the present invention.
Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description.
Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release the
HEV走行中に開始される図6のステップS21においては、アクセル開度APOからアクセルペダル19が釈放されているコースティング(惰性)走行か否かをチェックする。
本実施例は上記の通り、アクセルペダル19を釈放しただけで回生制動を行うものを前提としていることから、ステップS21でアクセルペダル19が釈放状態でないと判定する時、制御をそのまま終了して図6の制御プログラムから抜ける。 In step S21 in FIG. 6 started during HEV traveling, it is checked whether or not the coasting (inertia) traveling in which theaccelerator pedal 19 is released from the accelerator opening APO.
Since this embodiment is based on the premise that regenerative braking is performed only by releasing theaccelerator pedal 19 as described above, when it is determined in step S21 that the accelerator pedal 19 is not in the released state, the control is ended as it is. Exit from 6 control program.
本実施例は上記の通り、アクセルペダル19を釈放しただけで回生制動を行うものを前提としていることから、ステップS21でアクセルペダル19が釈放状態でないと判定する時、制御をそのまま終了して図6の制御プログラムから抜ける。 In step S21 in FIG. 6 started during HEV traveling, it is checked whether or not the coasting (inertia) traveling in which the
Since this embodiment is based on the premise that regenerative braking is performed only by releasing the
ちなみに、アクセルペダル19が釈放されているコースティング(惰性)走行中はエンジン1への燃料供給を中断(フューエルカット)して、燃費の向上を図るのは通常通りである。
Incidentally, during coasting where the accelerator pedal 19 is released, fuel supply to the engine 1 is interrupted (fuel cut) to improve fuel efficiency as usual.
ステップS21でアクセルペダル19が釈放されているコースティング(惰性)走行と判定する時は、回生制動条件が揃ったことで制御をステップS22に進め、現在のHEV走行のもと運転状態に応じた所定減速度が得られるよう回生制動(HEV回生)を行う。
When it is determined in step S21 that the coasting (inertia) traveling is performed with the accelerator pedal 19 released, the control proceeds to step S22 because the regenerative braking conditions are met, and the current driving condition is determined based on the current HEV traveling. Regenerative braking (HEV regeneration) is performed to obtain a predetermined deceleration.
次のステップS23においては、ブレーキスイッチ26がON(ブレーキペダル16が踏み込まれている制動状態)か否かをチェックし、ブレーキスイッチ26がON(制動状態)でなければ、制御をステップS22に戻してHEV回生を継続する。
In the next step S23, it is checked whether or not the brake switch 26 is ON (braking state in which the brake pedal 16 is depressed). If the brake switch 26 is not ON (braking state), the control is returned to step S22. Continue HEV regeneration.
ステップS23でブレーキスイッチ26がON(制動状態)であると判定する場合、ステップS24において、ステップS23でのブレーキスイッチON(制動)判定が所定時間ΔTs以上継続したか否かを、つまりHEV回生中にブレーキスイッチON時間ΔTが所定時間ΔTs以上になったか否かをチェックし、回生制動の開始時から所定期間経過後であるか否かを判定する。
なお所定時間ΔTsは、図4につき前述したと同様にして決定するもので、前記したトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させ得るクラッチCLの解放タイミング(HEV回生→EV回生切り替えタイミング)の、ブレーキスイッチON瞬時からの遅延時間である。 If it is determined in step S23 that thebrake switch 26 is ON (braking state), whether or not the brake switch ON (braking) determination in step S23 has continued for a predetermined time ΔTs in step S24, that is, during HEV regeneration. It is checked whether or not the brake switch ON time ΔT has become equal to or longer than the predetermined time ΔTs, and it is determined whether or not a predetermined period has elapsed since the start of regenerative braking.
Note that the predetermined time ΔTs is determined in the same manner as described above with reference to FIG. This is the delay time from the moment the brake switch is turned on (HEV regeneration → EV regeneration switching timing).
なお所定時間ΔTsは、図4につき前述したと同様にして決定するもので、前記したトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させ得るクラッチCLの解放タイミング(HEV回生→EV回生切り替えタイミング)の、ブレーキスイッチON瞬時からの遅延時間である。 If it is determined in step S23 that the
Note that the predetermined time ΔTs is determined in the same manner as described above with reference to FIG. This is the delay time from the moment the brake switch is turned on (HEV regeneration → EV regeneration switching timing).
ステップS24でHEV回生中のブレーキスイッチON時間ΔTが所定時間ΔTs未満であると判定する間は、制御をステップS22に戻して現在のHEV走行のまま、運転状態に応じた所定減速度が得られるようHEV回生を継続する。
ステップS24でHEV回生中のブレーキスイッチON時間ΔTが所定時間ΔTs以上になったと判定する時、制御をステップS25に進めてクラッチCLの解放を許可する。
従ってステップS24およびステップS25は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S24 that the brake switch ON time ΔT during HEV regeneration is less than the predetermined time ΔTs, the control returns to step S22, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
When it is determined in step S24 that the brake switch ON time ΔT during HEV regeneration is equal to or longer than the predetermined time ΔTs, the control proceeds to step S25 to permit the release of the clutch CL.
Therefore, step S24 and step S25 correspond to clutch release permission means in the present invention.
ステップS24でHEV回生中のブレーキスイッチON時間ΔTが所定時間ΔTs以上になったと判定する時、制御をステップS25に進めてクラッチCLの解放を許可する。
従ってステップS24およびステップS25は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S24 that the brake switch ON time ΔT during HEV regeneration is less than the predetermined time ΔTs, the control returns to step S22, and the predetermined deceleration according to the driving state is obtained with the current HEV running. Continue HEV regeneration.
When it is determined in step S24 that the brake switch ON time ΔT during HEV regeneration is equal to or longer than the predetermined time ΔTs, the control proceeds to step S25 to permit the release of the clutch CL.
Therefore, step S24 and step S25 correspond to clutch release permission means in the present invention.
次のステップS26においては、前記したごとくフューエルカットされているエンジン1への燃料供給再開(フューエルリカバー)を禁止してフューエルカットを継続させる。
従ってステップS26は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S26, fuel supply restart (fuel recovery) to theengine 1 that has been fuel cut as described above is prohibited and fuel cut is continued.
Therefore, step S26 corresponds to the fuel recovery prohibiting means in the present invention.
従ってステップS26は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S26, fuel supply restart (fuel recovery) to the
Therefore, step S26 corresponds to the fuel recovery prohibiting means in the present invention.
ステップS27においては、締結状態のクラッチCLを介したエンジン1および無段変速機4の引き摺り減速度Gdを、CVTプーリ比、エンジン回転数Neおよび車速VSPから演算する。
そしてステップS28において、HEV→EVモード切り替え条件の成立下でクラッチCLを解放し、これにより、ステップS26でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S27, drag deceleration Gd ofengine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP.
Then, in step S28, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and theengine 1 is stopped in combination with prohibition of fuel recovery (continuation of fuel cut) in step S26, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
そしてステップS28において、HEV→EVモード切り替え条件の成立下でクラッチCLを解放し、これにより、ステップS26でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S27, drag deceleration Gd of
Then, in step S28, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and the
ところで、当該EV回生への切り替え後もステップS22の回生制動を継続したのでは、ここでの回生制動が、締結状態のクラッチCLを介しエンジン1および無段変速機4を引き摺るHEV走行を前提とした回生制動であるため、エンジン1および無段変速機4の引き摺り減速度分だけ車両減速度が要求に対して不足する。
そのためステップS29において、ステップS27で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S22 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling that drags theengine 1 and the continuously variable transmission 4 through the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4.
Therefore, in step S29, the drag deceleration amount Gd of theengine 1 and continuously variable transmission 4 obtained in step S27 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
そのためステップS29において、ステップS27で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S22 is continued even after switching to the EV regenerative operation, the regenerative braking here is premised on HEV traveling that drags the
Therefore, in step S29, the drag deceleration amount Gd of the
図6の回生制動を、図7のタイムチャートに基づき以下に詳述する。
クラッチCLを締結したHEV走行中、図7の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS21)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図7に示すごとく0にする。 The regenerative braking in FIG. 6 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,release accelerator pedal 19 at instant t1 in FIG. 7 and shift to coasting (inertia) running with accelerator opening APO = 0 (step S21), supply of fuel to engine 1 Stop (fuel cut) and set the fuel injection amount to 0 as shown in FIG.
クラッチCLを締結したHEV走行中、図7の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS21)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図7に示すごとく0にする。 The regenerative braking in FIG. 6 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,
本実施例ではアクセルペダル19の釈放のみを回生制動条件とするため、アクセルペダル釈放瞬時t1にHEV回生が開始される(ステップS22)。
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図7の瞬時t1以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 In this embodiment, since only the release of theaccelerator pedal 19 is used as a regenerative braking condition, HEV regeneration is started at the accelerator pedal release instant t1 (step S22).
With this HEV regeneration, theelectric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling so that the power is generated clearly from the generated power after the instant t1 in FIG. The vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図7の瞬時t1以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 In this embodiment, since only the release of the
With this HEV regeneration, the
瞬時t2に、ブレーキスイッチ26=ONにより示すごとくブレーキペダル16を踏み込んで制動を行うと(ステップS23)、この制動操作による要求減速度を回生制動とブレーキユニットによる摩擦制動との協調により実現すべく、HEV回生による回生制動力が増大され、図7の瞬時t2におけるように発電電力がステップ状に増大する。
When braking is performed by depressing the brake pedal 16 as indicated by the brake switch 26 = ON at the instant t2 (step S23), the required deceleration by this braking operation should be realized by cooperation between regenerative braking and friction braking by the brake unit. The regenerative braking force due to HEV regeneration is increased, and the generated power increases stepwise as at the instant t2 in FIG.
瞬時t2からのブレーキスイッチON時間ΔTが所定時間ΔTsに達する瞬時t3(ステップS24)までの間は、上記のHEV回生を継続する。
瞬時t2からのブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t3(ステップS24)より瞬時t4に至る間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS26でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)で、エンジン回転数Ne=0により示すごとく停止させる(ステップS26およびステップS28)。
これによりHEV走行からEV走行へと切り替わり、瞬時t4からEV回生が行われることとなる。 The HEV regeneration described above is continued until the instant t3 (step S24) when the brake switch ON time ΔT from the instant t2 reaches the predetermined time ΔTs.
While the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs, from the instant t3 (step S24) to the instant t4, the clutch CL that has been engaged is released and theengine 1 is released. In the fuel cut (fuel injection amount = 0) continued by prohibiting the fuel recovery in step S26, the engine is stopped as indicated by the engine speed Ne = 0 (step S26 and step S28).
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t4.
瞬時t2からのブレーキスイッチON時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t3(ステップS24)より瞬時t4に至る間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS26でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)で、エンジン回転数Ne=0により示すごとく停止させる(ステップS26およびステップS28)。
これによりHEV走行からEV走行へと切り替わり、瞬時t4からEV回生が行われることとなる。 The HEV regeneration described above is continued until the instant t3 (step S24) when the brake switch ON time ΔT from the instant t2 reaches the predetermined time ΔTs.
While the brake switch ON time ΔT (HEV regeneration time) from the instant t2 reaches the predetermined time ΔTs, from the instant t3 (step S24) to the instant t4, the clutch CL that has been engaged is released and the
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t4.
このEV回生では、ステップS27で求めたHEV回生中におけるエンジン1および無段変速機4の引き摺り減速度Gd分だけ回生制動力を上乗せする。
その結果、EV回生による発電電力は図7の瞬時t4以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生で回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of theengine 1 and the continuously variable transmission 4 during HEV regeneration obtained in step S27.
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
In this way, by adding the regenerative braking force during EV regeneration by the drag deceleration Gd ofengine 1 and continuously variable transmission 4, even after switching to EV regeneration, as in HEV regeneration, And regenerative braking in which a predetermined deceleration according to the driving state is obtained.
その結果、EV回生による発電電力は図7の瞬時t4以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生で回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of the
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t4 in FIG.
In this way, by adding the regenerative braking force during EV regeneration by the drag deceleration Gd of
<効果>
上記した第2実施例の回生制動制御によれば、アクセルペダル19の釈放に呼応したHEV回生中(ステップS21およびステップS22)、ブレーキスイッチON時間ΔTが所定時間ΔTs以上になった時(ステップS24)をもってし、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS25)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(アクセルペダル19の釈放時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the above-described regenerative braking control of the second embodiment, during HEV regeneration in response to the release of the accelerator pedal 19 (steps S21 and S22), when the brake switch ON time ΔT becomes equal to or longer than the predetermined time ΔTs (step S24). ), It is determined that a predetermined period has elapsed since the start of regenerative braking, and the release of the clutch CL (switching from HEV regeneration to EV regeneration with theengine 1 stopped) is permitted (step S25).
Release of the clutch CL (switching from HEV regeneration to EV regeneration withengine 1 stop) is later than when HEV regeneration starts (when accelerator pedal 19 is released) and is necessary to protect the starter motor It is permitted at a predetermined timing as early as possible.
上記した第2実施例の回生制動制御によれば、アクセルペダル19の釈放に呼応したHEV回生中(ステップS21およびステップS22)、ブレーキスイッチON時間ΔTが所定時間ΔTs以上になった時(ステップS24)をもってし、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS25)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(アクセルペダル19の釈放時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the above-described regenerative braking control of the second embodiment, during HEV regeneration in response to the release of the accelerator pedal 19 (steps S21 and S22), when the brake switch ON time ΔT becomes equal to or longer than the predetermined time ΔTs (step S24). ), It is determined that a predetermined period has elapsed since the start of regenerative braking, and the release of the clutch CL (switching from HEV regeneration to EV regeneration with the
Release of the clutch CL (switching from HEV regeneration to EV regeneration with
このためHEV回生の開始時に直ちにクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が行われることがなく、アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる運転環境下であっても、エンジン再始動が頻発するのを防止することができ、スタータモータ3の起動回数が早期に耐久起動回数に達するという、スタータモータ3の耐久性に関した問題を回避し得て、スタータモータ3の保護を図ることができる。
For this reason, the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It was possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and related to the durability of the starter motor 3 such that the starter motor 3 has reached the endurance start number of times early. Problems can be avoided and the starter motor 3 can be protected.
また、HEV回生の開始時(アクセルペダル19の釈放時)よりも後にクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するといっても、スタータモータ3の保護に必要なできるだけ早い所定タイミングに当該許可を指令するため、
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かで無視できる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when theaccelerator pedal 19 is released) (switching from HEV regeneration to EV regeneration with the engine 1 stopped), In order to command the permission at the prescribed timing as early as necessary for protection,
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of thestarter motor 3 from the start of HEV regeneration. The efficiency degradation is negligible and can be ignored.
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of thestarter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かで無視できる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when the
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of the
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of the
<構成>
図8は、本発明の第3実施例になるハイブリッド車両の回生制動制御装置を示す、図3と同様な回生制動制御プログラムである。
本実施例も、第1実施例と同様、図1または図2(a)に示す駆動系を持ったハイブリッド車両の回生制動制御に係わるが、駆動系が図1のようなものである場合につき説明を展開する。
しかして本実施例は、アクセルペダル19を釈放するコースティング(惰性)走行へ移行したら直ちに、ブレーキペダル16の踏み込みによる制動操作が行われなくても、回生制動を行うものとする。 <Configuration>
FIG. 8 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a third embodiment of the present invention.
Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description.
Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release theaccelerator pedal 19, even if the braking operation by depressing the brake pedal 16 is not performed.
図8は、本発明の第3実施例になるハイブリッド車両の回生制動制御装置を示す、図3と同様な回生制動制御プログラムである。
本実施例も、第1実施例と同様、図1または図2(a)に示す駆動系を持ったハイブリッド車両の回生制動制御に係わるが、駆動系が図1のようなものである場合につき説明を展開する。
しかして本実施例は、アクセルペダル19を釈放するコースティング(惰性)走行へ移行したら直ちに、ブレーキペダル16の踏み込みによる制動操作が行われなくても、回生制動を行うものとする。 <Configuration>
FIG. 8 is a regenerative braking control program similar to FIG. 3, showing a regenerative braking control device for a hybrid vehicle according to a third embodiment of the present invention.
Like the first embodiment, this embodiment also relates to the regenerative braking control of the hybrid vehicle having the drive system shown in FIG. 1 or FIG. 2 (a), but the case where the drive system is as shown in FIG. Expand the description.
Accordingly, in this embodiment, regenerative braking is performed immediately after the shift to coasting (inertia) traveling to release the
HEV走行中に開始される図8のステップS31においては、アクセル開度APOからアクセルペダル19が釈放されているコースティング(惰性)走行か否かをチェックする。
本実施例は上記の通り、アクセルペダル19を釈放しただけで回生制動を行うものを前提としていることから、ステップS31でアクセルペダル19が釈放状態でないと判定する時、制御をそのまま終了して図8の制御プログラムから抜ける。 In step S31 in FIG. 8 started during HEV traveling, it is checked whether or not coasting (inertia) traveling in which theaccelerator pedal 19 is released from the accelerator opening APO.
Since this embodiment is based on the premise that regenerative braking is performed only by releasing theaccelerator pedal 19, as described above, when it is determined in step S31 that the accelerator pedal 19 is not in the released state, the control is ended as it is. Exit from 8 control programs.
本実施例は上記の通り、アクセルペダル19を釈放しただけで回生制動を行うものを前提としていることから、ステップS31でアクセルペダル19が釈放状態でないと判定する時、制御をそのまま終了して図8の制御プログラムから抜ける。 In step S31 in FIG. 8 started during HEV traveling, it is checked whether or not coasting (inertia) traveling in which the
Since this embodiment is based on the premise that regenerative braking is performed only by releasing the
ちなみに、アクセルペダル19が釈放されているコースティング(惰性)走行中はエンジン1への燃料供給を中断(フューエルカット)して、燃費の向上を図るのは通常通りである。
Incidentally, during coasting where the accelerator pedal 19 is released, fuel supply to the engine 1 is interrupted (fuel cut) to improve fuel efficiency as usual.
ステップS31でアクセルペダル19が釈放されているコースティング(惰性)走行と判定する時は、回生制動条件が揃ったことで制御をステップS32に進め、現在のHEV走行のもと運転状態に応じた所定減速度が得られるよう回生制動(HEV回生)を行う。
When it is determined in step S31 that the coasting (inertia) travel is performed with the accelerator pedal 19 released, the control proceeds to step S32 because the regenerative braking conditions are met, and the current driving condition based on the current HEV traveling is determined. Regenerative braking (HEV regeneration) is performed to obtain a predetermined deceleration.
次のステップS33においては、回生制動条件であるアクセルペダル釈放の継続時間、つまりステップS31によるアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTs以上であるか否かをチェックし、回生制動の開始時から所定期間経過後であるか否かを判定する。
なお所定時間ΔTsは、図4につき前述したと同様にして決定するもので、前記したトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させ得るクラッチCLの解放タイミング(HEV回生→EV回生切り替えタイミング)の、アクセルペダル釈放開始瞬時(HEV回生開始瞬時)からの遅延時間である。 In the next step S33, it is checked whether or not the continuation time of the accelerator pedal release, which is the regenerative braking condition, that is, the accelerator pedal release determination time ΔT (HEV regeneration time) in step S31 is equal to or longer than the predetermined time ΔTs. It is determined whether or not a predetermined period has elapsed since the start of.
Note that the predetermined time ΔTs is determined in the same manner as described above with reference to FIG. 4, and the clutch CL release timing (which can satisfy both the demand for improving the energy regeneration efficiency and the protection demand for the starter motor, which are in the trade-off relationship described above) This is the delay time from the accelerator pedal release start instant (HEV regeneration start instant) of (HEV regeneration → EV regeneration switching timing).
なお所定時間ΔTsは、図4につき前述したと同様にして決定するもので、前記したトレードオフの関係にあるエネルギー回生効率の向上要求およびスタータモータの保護要求を両立させ得るクラッチCLの解放タイミング(HEV回生→EV回生切り替えタイミング)の、アクセルペダル釈放開始瞬時(HEV回生開始瞬時)からの遅延時間である。 In the next step S33, it is checked whether or not the continuation time of the accelerator pedal release, which is the regenerative braking condition, that is, the accelerator pedal release determination time ΔT (HEV regeneration time) in step S31 is equal to or longer than the predetermined time ΔTs. It is determined whether or not a predetermined period has elapsed since the start of.
Note that the predetermined time ΔTs is determined in the same manner as described above with reference to FIG. 4, and the clutch CL release timing (which can satisfy both the demand for improving the energy regeneration efficiency and the protection demand for the starter motor, which are in the trade-off relationship described above) This is the delay time from the accelerator pedal release start instant (HEV regeneration start instant) of (HEV regeneration → EV regeneration switching timing).
ステップS33でアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTs未満であると判定する間は、制御をステップS32に戻して現在のHEV走行のまま、運転状態に応じた所定減速度が得られるようHEV回生を継続する。
ステップS33でアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTs以上になったと判定する時、制御をステップS34に進めてクラッチCLの解放を許可する。
従ってステップS33およびステップS34は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S33 that the accelerator pedal release determination time ΔT (HEV regeneration time) is less than the predetermined time ΔTs, the control is returned to step S32, and the predetermined deceleration according to the driving state is maintained with the current HEV running. Continue HEV regeneration so that it can be obtained.
When it is determined in step S33 that the accelerator pedal release determination time ΔT (HEV regeneration time) is equal to or greater than the predetermined time ΔTs, the control proceeds to step S34 to permit the release of the clutch CL.
Therefore, step S33 and step S34 correspond to clutch release permission means in the present invention.
ステップS33でアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTs以上になったと判定する時、制御をステップS34に進めてクラッチCLの解放を許可する。
従ってステップS33およびステップS34は、本発明におけるクラッチ解放許可手段に相当する。 While it is determined in step S33 that the accelerator pedal release determination time ΔT (HEV regeneration time) is less than the predetermined time ΔTs, the control is returned to step S32, and the predetermined deceleration according to the driving state is maintained with the current HEV running. Continue HEV regeneration so that it can be obtained.
When it is determined in step S33 that the accelerator pedal release determination time ΔT (HEV regeneration time) is equal to or greater than the predetermined time ΔTs, the control proceeds to step S34 to permit the release of the clutch CL.
Therefore, step S33 and step S34 correspond to clutch release permission means in the present invention.
次のステップS35においては、前記したごとくフューエルカットされているエンジン1への燃料供給再開(フューエルリカバー)を禁止してフューエルカットを継続させる。
従ってステップS35は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S35, fuel supply restart (fuel recovery) to theengine 1 that has been fuel cut as described above is prohibited and fuel cut is continued.
Therefore, step S35 corresponds to the fuel recovery prohibiting means in the present invention.
従ってステップS35は、本発明におけるフューエルリカバー禁止手段に相当する。 In the next step S35, fuel supply restart (fuel recovery) to the
Therefore, step S35 corresponds to the fuel recovery prohibiting means in the present invention.
ステップS36においては、締結状態のクラッチCLを介したエンジン1および無段変速機4の引き摺り減速度Gdを、CVTプーリ比、エンジン回転数Neおよび車速VSPから演算する。
そしてステップS37で、HEV→EVモード切り替え条件の成立下でクラッチCLを解放し、これにより、ステップS35でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S36, drag deceleration Gd ofengine 1 and continuously variable transmission 4 via clutch CL in the engaged state is calculated from CVT pulley ratio, engine speed Ne, and vehicle speed VSP.
Then, in step S37, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and thereby, theengine 1 is stopped together with the fuel recovery prohibition (continuation of fuel cut) in step S35, thereby shifting to EV driving. Switch from HEV regeneration to EV regeneration.
そしてステップS37で、HEV→EVモード切り替え条件の成立下でクラッチCLを解放し、これにより、ステップS35でのフューエルリカバー禁止(フューエルカット継続)と相まってエンジン1を停止させることでEV走行へ移行し、HEV回生からEV回生へと切り替える。 In step S36, drag deceleration Gd of
Then, in step S37, the clutch CL is released under the condition that the HEV → EV mode switching condition is satisfied, and thereby, the
ところで、当該EV回生への切り替え後もステップS32の回生制動を継続したのでは、ここでの回生制動が、締結状態のクラッチCLを介しエンジン1および無段変速機4を引き摺るHEV走行を前提とした回生制動であるため、エンジン1および無段変速機4の引き摺り減速度分だけ車両減速度が要求に対して不足する。
そのためステップS38において、ステップS36で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S32 is continued even after switching to the EV regenerative operation, the regenerative braking here assumes HEV traveling that drags theengine 1 and the continuously variable transmission 4 through the clutch CL in the engaged state. Due to the regenerative braking, the vehicle deceleration is insufficient with respect to the request by the drag deceleration of the engine 1 and the continuously variable transmission 4.
Therefore, in step S38, the drag deceleration Gd of theengine 1 and the continuously variable transmission 4 obtained in step S36 is added to the regenerative braking force, and EV regeneration is performed so that the added regenerative braking force is obtained. Even after switching to regeneration, a predetermined deceleration according to the driving state is obtained under the current EV driving.
そのためステップS38において、ステップS36で求めたエンジン1および無段変速機4の引き摺り減速度分Gdを回生制動力に上乗せし、当該上乗せした回生制動力が得られるようなEV回生を行って、EV回生への切り替え後も、現在のEV走行のもと運転状態に応じた所定減速度が得られるようにする。 By the way, if the regenerative braking in step S32 is continued even after switching to the EV regenerative operation, the regenerative braking here assumes HEV traveling that drags the
Therefore, in step S38, the drag deceleration Gd of the
図8の回生制動を、図9のタイムチャートに基づき以下に詳述する。
クラッチCLを締結したHEV走行中、図9の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS31)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図9に示すごとく0にする。 The regenerative braking in FIG. 8 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,release accelerator pedal 19 at instant t1 in FIG. 9 and shift to coasting (inertia) running with accelerator opening APO = 0 (step S31), supply of fuel to engine 1 Stop (fuel cut) and set the fuel injection amount to 0 as shown in FIG.
クラッチCLを締結したHEV走行中、図9の瞬時t1にアクセルペダル19を釈放してアクセル開度APO=0のコースティング(惰性)走行に移行すると(ステップS31)、エンジン1への燃料供給を中断(フューエルカット)して燃料噴射量を図9に示すごとく0にする。 The regenerative braking in FIG. 8 will be described in detail below based on the time chart in FIG.
During HEV running with clutch CL engaged,
本実施例ではアクセルペダル19の釈放のみを回生制動条件とするため、アクセルペダル釈放瞬時t1にHEV回生が開始される(ステップS32)。
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図9の瞬時t1以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 In this embodiment, only the release of theaccelerator pedal 19 is used as a regenerative braking condition, so HEV regeneration is started at the accelerator pedal release instant t1 (step S32).
With this HEV regeneration, theelectric motor 2 performs regenerative braking so as to obtain a predetermined deceleration according to the driving state during HEV traveling, so that power is generated as apparent from the generated power after the instant t1 in FIG. The vehicle speed VSP is gradually decreased and at the same time the battery charge state SOC is increased.
このHEV回生により電動モータ2は、HEV走行中の運転状態に応じた所定減速度が得られるよう回生制動を行うことで、図9の瞬時t1以降における発電電力から明らかなように発電を行うようになり、車速VSPを徐々に低下させると同時にバッテリ蓄電状態SOCを上昇させる。 In this embodiment, only the release of the
With this HEV regeneration, the
瞬時t1からのアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t2(ステップS33)までの間は、上記のHEV回生を継続する。
瞬時t1からのアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t2(ステップS33)より瞬時t3に至る間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS35でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)で、エンジン回転数Ne=0により示すごとく停止させる(ステップS35およびステップS37)。
これによりHEV走行からEV走行へと切り替わり、瞬時t3からEV回生が行われることとなる。 The HEV regeneration is continued until the instant t2 (step S33) when the accelerator pedal release determination time ΔT (HEV regeneration time) from the instant t1 reaches the predetermined time ΔTs.
From the instant t2 when the accelerator pedal release determination time ΔT (HEV regeneration time) from the instant t1 reaches the predetermined time ΔTs until the instant t3 from the instant t2 (step S33), the clutch CL that has been engaged until now is released and theengine 1 is released. Then, the fuel cut (fuel injection amount = 0) continued by prohibiting the fuel recovery in step S35, and the engine is stopped as indicated by the engine speed Ne = 0 (step S35 and step S37).
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t3.
瞬時t1からのアクセルペダル釈放判定時間ΔT(HEV回生時間)が所定時間ΔTsに達する瞬時t2(ステップS33)より瞬時t3に至る間に、いままで締結状態だったクラッチCLを解放してエンジン1を、ステップS35でのフューエルリカバー禁止により継続されるフューエルカット(燃料噴射量=0)で、エンジン回転数Ne=0により示すごとく停止させる(ステップS35およびステップS37)。
これによりHEV走行からEV走行へと切り替わり、瞬時t3からEV回生が行われることとなる。 The HEV regeneration is continued until the instant t2 (step S33) when the accelerator pedal release determination time ΔT (HEV regeneration time) from the instant t1 reaches the predetermined time ΔTs.
From the instant t2 when the accelerator pedal release determination time ΔT (HEV regeneration time) from the instant t1 reaches the predetermined time ΔTs until the instant t3 from the instant t2 (step S33), the clutch CL that has been engaged until now is released and the
This switches from HEV traveling to EV traveling, and EV regeneration is performed from instant t3.
このEV回生では、ステップS36で求めたHEV回生中におけるエンジン1および無段変速機4の引き摺り減速度Gd分だけ回生制動力を上乗せする。
その結果、EV回生による発電電力は図9の瞬時t3以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生で回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of theengine 1 and the continuously variable transmission 4 during the HEV regeneration obtained in step S36.
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t3 in FIG.
In this way, by adding the regenerative braking force during EV regeneration by the drag deceleration Gd ofengine 1 and continuously variable transmission 4, even after switching to EV regeneration, as in HEV regeneration, And regenerative braking in which a predetermined deceleration according to the driving state is obtained.
その結果、EV回生による発電電力は図9の瞬時t3以降に見られるごとく、引き摺り減速度Gd分だけ増大される。
かようにEV回生で回生制動力を、エンジン1および無段変速機4の引き摺り減速度Gd分だけ上乗せすることにより、EV回生への切り替え後もHEV回生中と同様、現在のEV走行のもと運転状態に応じた所定減速度が得られる回生制動となし得る。 In this EV regeneration, the regenerative braking force is added by the drag deceleration Gd of the
As a result, the power generated by the EV regeneration is increased by the drag deceleration Gd as seen after the instant t3 in FIG.
In this way, by adding the regenerative braking force during EV regeneration by the drag deceleration Gd of
<効果>
上記した第3実施例の回生制動制御によれば、アクセルペダル19の釈放時間ΔT、つまりアクセルペダル19の釈放に呼応したHEV回生(ステップS31およびステップS32)の継続時間ΔTが所定時間ΔTs以上になった時(ステップS33)をもって、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS34)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(アクセルペダル19の釈放時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the regenerative braking control of the third embodiment described above, the release time ΔT of theaccelerator pedal 19, that is, the duration ΔT of HEV regeneration (step S31 and step S32) corresponding to the release of the accelerator pedal 19 is equal to or longer than the predetermined time ΔTs. In order to permit the release of the clutch CL (switching from HEV regeneration to EV regeneration with the stop of the engine 1) by determining that the predetermined period has elapsed since the start of regenerative braking (step S33). (Step S34),
Release of the clutch CL (switching from HEV regeneration to EV regeneration withengine 1 stop) is later than when HEV regeneration starts (when accelerator pedal 19 is released) and is necessary to protect the starter motor It is permitted at a predetermined timing as early as possible.
上記した第3実施例の回生制動制御によれば、アクセルペダル19の釈放時間ΔT、つまりアクセルペダル19の釈放に呼応したHEV回生(ステップS31およびステップS32)の継続時間ΔTが所定時間ΔTs以上になった時(ステップS33)をもって、回生制動の開始時から所定期間経過後であると判定し、クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するため(ステップS34)、
当該クラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が、HEV回生の開始時(アクセルペダル19の釈放時)よりも後であって、スタータモータの保護に必要なできるだけ早い所定タイミングで許可されることとなる。 <Effect>
According to the regenerative braking control of the third embodiment described above, the release time ΔT of the
Release of the clutch CL (switching from HEV regeneration to EV regeneration with
このためHEV回生の開始時に直ちにクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)が行われることがなく、アクセル変化頻度の高い運転者による運転中や、アクセル変化頻度が高くなる運転環境下であっても、エンジン再始動が頻発するのを防止することができ、スタータモータ3の起動回数が早期に耐久起動回数に達するという、スタータモータ3の耐久性に関した問題を回避し得て、スタータモータ3の保護を図ることができる。
For this reason, the clutch CL is not released immediately after starting HEV regeneration (switching from HEV regeneration to EV regeneration with the engine 1 stopped), and the driver is changing the accelerator while the accelerator is changing frequently. It was possible to prevent frequent engine restarts even in an operating environment where the frequency is high, and related to the durability of the starter motor 3 such that the starter motor 3 has reached the endurance start number of times early. Problems can be avoided and the starter motor 3 can be protected.
また、HEV回生の開始時(アクセルペダル19の釈放時)よりも後にクラッチCLの解放(HEV回生から、エンジン1の停止を伴うEV回生への切り替え)を許可するといっても、スタータモータ3の保護に必要なできるだけ早い所定タイミングに当該許可を指令するため、
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かで無視できる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when theaccelerator pedal 19 is released) (switching from HEV regeneration to EV regeneration with the engine 1 stopped), In order to command the permission at the prescribed timing as early as necessary for protection,
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of thestarter motor 3 from the start of HEV regeneration. The efficiency degradation is negligible and can be ignored.
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of thestarter motor 3 and the requirements related to energy regenerative efficiency in a highly balanced manner, and one of them is greatly sacrificed. Does not cause the problem of becoming.
上記クラッチCLの解放(HEV回生→EV回生切り替え)タイミングはHEV回生の開始時から、スタータモータ3の耐久性に関する問題解決のために必要な最小限の時間だけ遅いのみであり、これによるエネルギー回生効率の悪化は僅かで無視できる。
従って本実施例によるハイブリッド車両の回生制動制御装置は、スタータモータ3の保護に関した要求と、エネルギー回生効率に関した要求とを、高次元でバランスさせつつ両立させることができ、いずれかが大きく犠牲になるという問題を生ずることがない。 Even if the release of the clutch CL is permitted after the start of HEV regeneration (when the
The clutch CL release timing (HEV regeneration → EV regeneration switching) is only delayed by the minimum time necessary to solve the problem related to the durability of the
Therefore, the regenerative braking control device for a hybrid vehicle according to the present embodiment can satisfy both the requirements related to protection of the
<構成>
なお上記各実施例においては何れも、エンジン始動に際しエンジン1をスタータモータ3によりクランキングさせる場合につき説明したが、これに代えて以下のようにエンジン1をクランキングさせるようにした場合も、本発明の前記着想を適用して同様な作用、効果を得ることができる。 <Configuration>
In each of the above embodiments, the case where theengine 1 is cranked by the starter motor 3 at the time of starting the engine has been described. However, instead of this, the case where the engine 1 is cranked as follows is also described. By applying the idea of the invention, similar actions and effects can be obtained.
なお上記各実施例においては何れも、エンジン始動に際しエンジン1をスタータモータ3によりクランキングさせる場合につき説明したが、これに代えて以下のようにエンジン1をクランキングさせるようにした場合も、本発明の前記着想を適用して同様な作用、効果を得ることができる。 <Configuration>
In each of the above embodiments, the case where the
つまり、昨今のハイブリッド車両やアイドルストップ車両にあっては、エンジンクランクシャフトに駆動結合して実装される通常のオルタネータ(発電機)を、力行も可能となるようモータ/ジェネレータに置き換え、アイドルストップ後にエンジンを再始動するときや、エンジン運転中に必要に応じて該エンジンをトルクアシストするとき、モータ/ジェネレータを力行させて目的を達するよう構成することがある。
In other words, in modern hybrid vehicles and idle stop vehicles, a normal alternator (generator) that is mounted by being coupled to the engine crankshaft is replaced with a motor / generator so that power running is possible. When the engine is restarted or when the engine is torque-assisted as necessary while the engine is running, the motor / generator may be configured to achieve the purpose by powering.
このようなハイブリッド車両の場合、エンジン始動に際しエンジン1をスタータモータ3による代わりに、上記モータ/ジェネレータの力行によりクランキングさせるようにしてもよい。
本発明の前記着想は、このような車両にも適用可能であり、この場合も前記したと同様な作用、効果が奏し得られる。 In the case of such a hybrid vehicle, theengine 1 may be cranked by powering of the motor / generator instead of the starter motor 3 when starting the engine.
The idea of the present invention can be applied to such a vehicle, and in this case, the same operation and effect as described above can be achieved.
本発明の前記着想は、このような車両にも適用可能であり、この場合も前記したと同様な作用、効果が奏し得られる。 In the case of such a hybrid vehicle, the
The idea of the present invention can be applied to such a vehicle, and in this case, the same operation and effect as described above can be achieved.
また、図3のステップS12および図6のステップS23において制動中を判定するに際し、ブレーキスイッチ26のONをもって当該判定を行うこととしたが、制動中の判定はこれに限られるものではなく、ブレーキ操作に応じて変化する物理量である例えばブレーキペダルストローク量や、ブレーキ液圧のセンサ検出値が制動判定値に達した時をもって制動中と判定してもよい。
In step S12 in FIG. 3 and step S23 in FIG. 6, the determination is made by turning on the brake switch 26. However, the determination during braking is not limited to this. For example, the brake pedal stroke amount or the brake fluid pressure sensor detection value, which is a physical amount that changes according to the operation, may be determined to be braking when the brake determination value is reached.
Claims (6)
- エンジンがクラッチを介して車輪に切り離し可能に駆動結合され、該クラッチを解放することで電動モータのみによる電気走行が可能であるほか、前記クラッチを締結することで前記電動モータおよびエンジンによるハイブリッド走行が可能なハイブリッド車両において、
前記ハイブリッド走行状態で前記電動モータによる回生制動を行うとき、該回生制動の開始時から所定期間経過後に前記クラッチの解放を許可するクラッチ解放許可手段を設けたことを特徴とするハイブリッド車両の回生制動制御装置。 The engine is detachably drive-coupled to the wheels via a clutch, and by releasing the clutch, electric traveling only by the electric motor is possible, and by hybridizing the electric motor and the engine by engaging the clutch In a possible hybrid vehicle,
When performing regenerative braking by the electric motor in the hybrid traveling state, there is provided clutch release permission means for permitting release of the clutch after a predetermined period has elapsed since the start of the regenerative braking. Control device. - 請求項1に記載された、ハイブリッド車両の回生制動制御装置において、
前記クラッチ解放許可手段は、前記回生制動の開始時から所定時間が経過したとき以降もって前記所定期間経過後として前記クラッチの解放を許可するものであることを特徴とするハイブリッド車両の回生制動制御装置。 In the regenerative braking control device for a hybrid vehicle according to claim 1,
The releasable braking control device for a hybrid vehicle, wherein the clutch disengagement permitting means permits disengagement of the clutch after a lapse of the predetermined period after a lapse of a predetermined time from the start of the regenerative braking. . - 請求項2に記載された、ハイブリッド車両の回生制動制御装置において、
前記クラッチ解放許可手段は、車両を制動するブレーキ操作の開始から所定時間が経過したとき以降をもって前記所定期間経過後として前記クラッチの解放を許可するものであることを特徴とするハイブリッド車両の回生制動制御装置。 In the regenerative braking control device for a hybrid vehicle according to claim 2,
The clutch release permission means permits the release of the clutch after a predetermined time has elapsed after a predetermined time has elapsed from the start of a brake operation for braking the vehicle. Control device. - 請求項2に記載された、ハイブリッド車両の回生制動制御装置において、
前記クラッチ解放許可手段は、前記動力源の出力指令を0未満にするアクセル釈放操作から所定時間が経過したとき以降をもって前記所定期間経過後として前記クラッチの解放を許可するものであることを特徴とするハイブリッド車両の回生制動制御装置。 In the regenerative braking control device for a hybrid vehicle according to claim 2,
The clutch release permission means permits release of the clutch after a predetermined time has elapsed after a predetermined time has elapsed since the accelerator release operation for setting the output command of the power source to less than 0. A regenerative braking control device for a hybrid vehicle. - 請求項1~4のいずれか1項に記載された、ハイブリッド車両の回生制動制御装置において、
前記エンジンを始動するエンジン始動用モータを具え、
前記所定期間は、前記エンジン始動用モータの起動回数が該エンジン始動用モータの耐久起動回数未満となるような時間であることを特徴とするハイブリッド車両の回生制動制御装置。 In the regenerative braking control device for a hybrid vehicle according to any one of claims 1 to 4,
An engine starting motor for starting the engine;
The regenerative braking control device for a hybrid vehicle, wherein the predetermined period is a time such that the number of times of starting the engine starting motor is less than the number of durable starting times of the engine starting motor. - 前記ハイブリッド走行状態での回生制動中フューエルカットによりエンジンへの燃料供給を中断し、エンジン回転数の低下時にフューエルリカバーによりエンジンへの燃料供給を再開するものである、請求項1~5のいずれか1項に記載された、ハイブリッド車両の回生制動制御装置において、
前記クラッチ解放許可手段によるクラッチの解放許可を受けて前記フューエルリカバーを禁止することにより前記フューエルカットを継続させ、前記クラッチの解放時にエンジンが停止されるようになすフューエルリカバー禁止手段を設けたことを特徴とするハイブリッド車両の回生制動制御装置。 6. The fuel supply to the engine is interrupted by a fuel cut during regenerative braking in the hybrid running state, and the fuel supply to the engine is restarted by a fuel recovery when the engine speed decreases. In the regenerative braking control device for a hybrid vehicle described in item 1,
A fuel recovery prohibiting means is provided for continuing the fuel cut by prohibiting the fuel recovery upon receiving the clutch release permission by the clutch release permission means, and stopping the engine when the clutch is released. A regenerative braking control device for a hybrid vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-241455 | 2012-11-01 | ||
JP2012241455 | 2012-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069527A1 true WO2014069527A1 (en) | 2014-05-08 |
Family
ID=50627427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079420 WO2014069527A1 (en) | 2012-11-01 | 2013-10-30 | Hybrid vehicle regenerative brake control device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014069527A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016130054A (en) * | 2015-01-13 | 2016-07-21 | 株式会社デンソー | Electronic control unit |
US11142172B2 (en) | 2019-05-06 | 2021-10-12 | GM Global Technology Operations LLC | Vehicle braking type indication systems and methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009234566A (en) * | 2008-03-03 | 2009-10-15 | Nissan Motor Co Ltd | Clutch controller and clutch control method of hybrid vehicle |
JP2012144195A (en) * | 2011-01-13 | 2012-08-02 | Hino Motors Ltd | Regeneration control device, hybrid automobile, regeneration control method, and program |
JP5001475B1 (en) * | 2011-01-13 | 2012-08-15 | 日野自動車株式会社 | Regenerative control device, hybrid vehicle, regenerative control method, and program |
-
2013
- 2013-10-30 WO PCT/JP2013/079420 patent/WO2014069527A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009234566A (en) * | 2008-03-03 | 2009-10-15 | Nissan Motor Co Ltd | Clutch controller and clutch control method of hybrid vehicle |
JP2012144195A (en) * | 2011-01-13 | 2012-08-02 | Hino Motors Ltd | Regeneration control device, hybrid automobile, regeneration control method, and program |
JP5001475B1 (en) * | 2011-01-13 | 2012-08-15 | 日野自動車株式会社 | Regenerative control device, hybrid vehicle, regenerative control method, and program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016130054A (en) * | 2015-01-13 | 2016-07-21 | 株式会社デンソー | Electronic control unit |
US11142172B2 (en) | 2019-05-06 | 2021-10-12 | GM Global Technology Operations LLC | Vehicle braking type indication systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5936703B2 (en) | Hybrid vehicle mode switching control device | |
JP5992537B2 (en) | Hybrid vehicle mode switching control device | |
JP5835500B2 (en) | Control device for hybrid vehicle | |
JP4529940B2 (en) | Hybrid vehicle transmission state switching control device | |
CN105050844B (en) | Motor vehicle driven by mixed power | |
JP6052775B2 (en) | Control device for hybrid vehicle | |
JP2007261498A (en) | Transmission status switching controller for hybrid car | |
WO2013146175A1 (en) | Shift controller for electric drive deceleration in hybrid vehicle | |
JP6569095B2 (en) | Control device for hybrid vehicle | |
JP6340605B2 (en) | Control device for hybrid vehicle | |
WO2014065302A1 (en) | Mode switching controller for hybrid vehicle | |
JP6113478B2 (en) | Control device for hybrid vehicle | |
JP2014113902A (en) | Mode switching control system of hybrid vehicle | |
JP6303783B2 (en) | Control device for hybrid vehicle | |
WO2014069527A1 (en) | Hybrid vehicle regenerative brake control device | |
JP6330190B2 (en) | Control device for hybrid vehicle | |
WO2014091838A1 (en) | Hybrid-vehicle control device | |
WO2014087819A1 (en) | Mode switching control device of hybrid vehicle | |
WO2014087857A1 (en) | Hybrid vehicle mode switch control device | |
WO2014073435A1 (en) | Hybrid vehicle control device | |
JP2013241100A (en) | Control device of hybrid vehicle | |
JP6364630B2 (en) | Shift control device for hybrid vehicle | |
JP2014094595A (en) | Control unit of hybrid vehicle | |
JP2014091438A (en) | Shift control system of hybrid vehicle | |
JP2012121568A (en) | Engine start control device of hybrid vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13850666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13850666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |