[go: up one dir, main page]

WO2014068711A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2014068711A1
WO2014068711A1 PCT/JP2012/078206 JP2012078206W WO2014068711A1 WO 2014068711 A1 WO2014068711 A1 WO 2014068711A1 JP 2012078206 W JP2012078206 W JP 2012078206W WO 2014068711 A1 WO2014068711 A1 WO 2014068711A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
vehicle body
angle
inclination angle
Prior art date
Application number
PCT/JP2012/078206
Other languages
English (en)
French (fr)
Inventor
貴大 古平
小城 隆博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/439,797 priority Critical patent/US9533681B2/en
Priority to DE112012007083.6T priority patent/DE112012007083B4/de
Priority to JP2014544127A priority patent/JP5846401B2/ja
Priority to PCT/JP2012/078206 priority patent/WO2014068711A1/ja
Priority to CN201280076819.5A priority patent/CN104768780B/zh
Publication of WO2014068711A1 publication Critical patent/WO2014068711A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/135Stabiliser bar and/or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0516Angular position of a suspension element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0521Roll rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/42Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/40Steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll

Definitions

  • the present invention relates to a vehicle travel control device, and more particularly to a vehicle travel control device that causes a vehicle to travel along a travel path by steering a steering wheel.
  • a travel control device for a vehicle such as an automobile, by calculating a target rudder angle of a steered wheel for causing the vehicle to travel along a travel path, and controlling the rudder angle of the steered wheel to a target rudder angle by a rudder angle varying device
  • a traveling control device that performs trajectory control is already known.
  • an example of this type of travel control device is described in International Publication No. WO2010 / 073400.
  • the steering wheel is not dependent on the steering operation of the driver.
  • the rudder angle is controlled to the target rudder angle by the rudder angle control device.
  • the control amount of the trajectory control becomes 0, the steering angle of the front wheels also becomes 0, and the vehicle has a gravity component in the inclination direction of the travel path. Is urged and moved downward by the inclination. Then, the traveling control device steers the front wheels again in the upward upward direction so that the trajectory of the vehicle returns to the target trajectory. Therefore, the vehicle meanders due to repeated increase / decrease in the steering angle of the front wheels, and it is inevitable that the occupant feels a sense of incongruity, which also becomes more noticeable as the inclination angle of the traveling road increases. .
  • the cause of the uncomfortable feeling as described above is the inclination of the vehicle body, it is conceivable to reduce the uncomfortable feeling by reducing the inclination angle of the vehicle body when the vehicle travels on a laterally inclined road.
  • the lateral inclination angle of the running road such as a cant on the road surface is not so large, and therefore the force acting on the vehicle body in the lateral direction is smaller than that when the vehicle turns sharply. Therefore, even if an anti-roll moment that reduces the roll of the vehicle body based on the lateral acceleration of the vehicle is generated by a conventional general roll control device, the tilt angle of the vehicle body cannot be effectively reduced. Such a sense of incongruity cannot be effectively reduced.
  • the present invention has been made in view of the above-described problems when a vehicle equipped with a conventional traveling control device travels on a laterally inclined road.
  • the main problem of the present invention is that the vehicle is caused by the trajectory control that is executed in a situation where the vehicle travels on the lateral slope without making it difficult to determine whether the trajectory control is being executed. It is to reduce the uncomfortable feeling that the passengers learn.
  • the main problem described above is that in a vehicle travel control device that performs trajectory control that causes a vehicle to travel along a travel path by steering a steered wheel, the lateral inclination angle of the vehicle body is determined.
  • a roll control device for controlling and a tilt angle estimating device for determining a lateral inclination of the road, and when performing trajectory control in a situation where the vehicle travels on a laterally inclined road This is achieved by a vehicle travel control device that controls a lateral tilt angle of a vehicle body by a roll control device so that a tilt angle in a direction is larger than 0 and smaller than a lateral tilt angle of a travel path.
  • the lateral inclination angle of the vehicle body is larger than 0 by the roll control device, and the lateral direction of the traveling path is increased. It is controlled to a value smaller than the inclination angle. Therefore, since the lateral force acting on the vehicle body is smaller than when the roll control device does not reduce the lateral inclination angle of the vehicle body, it is between the situation where the trajectory control is not performed and the situation where the trajectory control is performed. The difference between the steering angle of the steered wheel and the rotation angle of the steering wheel becomes small.
  • the lateral inclination angle of the vehicle body is controlled to be larger than 0 and smaller than the lateral inclination angle of the traveling road. Therefore, compared with the case where the control amount of the roll control device is small and the lateral inclination angle of the vehicle body is larger than the lateral inclination angle of the travel path, it is possible to reliably reduce the uncomfortable feeling that the vehicle occupant learns. . On the contrary, compared with the case where the control amount of the roll control device is excessive and the lateral inclination angle of the vehicle body is controlled to 0, the driver can control the rotation angle of the steering wheel when the trajectory control starts or ends. It is possible to reliably determine whether or not the trajectory control is being executed based on the change.
  • the travel control device starts the control of the lateral inclination angle of the vehicle body by the roll control device at the same time when the trajectory control is started in a situation where the vehicle travels on the travel road inclined in the lateral direction.
  • the control amount of the lateral inclination angle of the vehicle body may be gradually increased.
  • the control of the lateral inclination angle of the vehicle body by the roll control device is caused by a change in the rotation angle of the steering wheel or the meandering of the vehicle, compared to the case where the control of the lateral inclination angle of the vehicle body is started later than the trajectory control.
  • the travel control device controls the lateral inclination angle of the vehicle body by the roll control device when the trajectory control is terminated in a situation where the vehicle travels on the travel road inclined in the lateral direction.
  • the end may be started simultaneously, and the control amount of the lateral inclination angle of the vehicle body may be gradually decreased.
  • the occupant can effectively recognize that the trajectory control is finished as compared with the case where the control of the lateral inclination angle of the vehicle body by the roll control device is finished later than the trajectory control. be able to.
  • the travel control device when starting the trajectory control in a situation where the vehicle travels on a laterally inclined travel road, prior to the start of the trajectory control, The control of the tilt angle in the direction may be started, and the control amount of the tilt angle in the lateral direction of the vehicle body may be gradually increased.
  • the occupant can surely recognize early that the trajectory control is started compared to the case where the control of the lateral inclination angle of the vehicle body by the roll control device is started simultaneously with the trajectory control. Can do.
  • it is possible to effectively reduce the uncomfortable feeling felt by the vehicle occupant due to the change in the rotation angle of the steering wheel or the meandering of the vehicle.
  • the travel control device when ending the trajectory control in a situation where the vehicle travels on a laterally inclined traveling road, prior to the end of the trajectory control, The end of the control of the tilt angle in the direction may be started, and the control amount of the tilt angle in the lateral direction of the vehicle body may be gradually decreased.
  • the occupant can recognize early and surely that the trajectory control is completed, as compared with the case where the control of the lateral inclination angle of the vehicle body by the roll control device is terminated simultaneously with the trajectory control. Can do. In addition, it is possible to effectively reduce the uncomfortable feeling that is felt by the vehicle occupant due to the change in the rotation angle of the steering wheel.
  • the inclination determination device estimates the lateral inclination angle of the traveling road, and the traveling control apparatus determines the target inclination of the vehicle body that is greater than 0 and smaller than the lateral inclination angle of the traveling road.
  • the angle may be calculated, and the lateral inclination angle of the vehicle body may be controlled so that the lateral inclination angle of the vehicle body becomes the target inclination angle.
  • the vehicle body target tilt angle is calculated, and the vehicle body lateral tilt angle is reliably set to 0 as compared with the case where the vehicle body lateral tilt angle is not controlled to be the target tilt angle.
  • the angle can be controlled to be smaller than the inclination angle in the lateral direction of the travel path.
  • the inclination determination device estimates the lateral inclination angle of the vehicle body relative to the absolute space as an absolute inclination angle, and estimates the lateral inclination angle of the vehicle body relative to the traveling road as a relative inclination angle.
  • the lateral inclination angle of the traveling road may be estimated based on the difference between the absolute inclination angle and the relative inclination angle.
  • the lateral inclination angle of the traveling road can be reliably and accurately estimated, and therefore the lateral inclination angle of the vehicle body can be accurately controlled to a required angle.
  • the roll control device controls the inclination angle in the lateral direction of the vehicle body by generating an anti-roll moment based on the lateral force acting on the vehicle body.
  • the anti-roll moment against the lateral force acting on the vehicle body is smaller than when the vehicle does not travel on a traveling road inclined in the lateral direction.
  • the lateral inclination angle of the vehicle body may be controlled such that the lateral inclination angle of the vehicle body is larger than 0 and smaller than the lateral inclination angle of the traveling road.
  • the trajectory control when the trajectory control is performed in a situation where the vehicle travels on a laterally inclined traveling road while avoiding an excessive roll control amount of the vehicle body when the vehicle is turning.
  • the lateral inclination angle of the vehicle body can be reliably controlled to a required angle.
  • the travel control device is configured such that the lateral inclination angle of the vehicle body is 0.2 times or more the lateral inclination angle of the traveling road and 0.8 times the lateral inclination angle of the traveling road.
  • the lateral inclination angle of the vehicle body may be controlled so as to be as follows.
  • the lateral inclination angle of the vehicle body is controlled to an angle that is not less than 0.2 times the lateral inclination angle of the traveling road and not more than 0.8 times the lateral inclination angle of the traveling road. . Therefore, the rotation of the steering wheel when the trajectory control is started or ended as compared with the case where the lateral inclination angle of the vehicle body is controlled to an angle less than 0.2 times the lateral inclination angle of the traveling road. It is possible to reliably determine whether or not the trajectory control is being executed by changing the angle.
  • the uncomfortable feeling that the vehicle occupant learns can be reliably and effectively performed. Can be reduced.
  • the lateral inclination angle of the vehicle body may be controlled to be 0.3 times or more the lateral inclination angle of the traveling road.
  • the lateral inclination angle of the vehicle body may be controlled to be not more than 0.7 times the lateral inclination angle of the traveling road.
  • the travel control device calculates a target rudder angle of the steered wheels for causing the vehicle to travel along the target locus, and controls the steered angle of the steered wheels to the target rudder angle.
  • the trajectory control may be performed, and the target rudder angle of the steered wheels may be corrected so as to reduce the influence of roll steer accompanying the control of the lateral inclination angle of the vehicle body.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle travel control device according to the present invention applied to a vehicle equipped with a rear wheel steering device and an active stabilizer device. It is a flowchart which shows the traveling control routine in 1st embodiment of this invention achieved by the traveling control part of an electronic controller so that locus control may be performed in relation to roll angle control.
  • 3 is a flowchart showing a trajectory control routine executed in step 500 of the flowchart shown in FIG. 2.
  • FIG. 4 is a flowchart showing a target steering angle calculation routine for front wheels and rear wheels executed in step 550 of the flowchart shown in FIG. 3.
  • FIG. 4 is a flowchart showing a target steering angle correction amount calculation routine for front wheels and rear wheels, which is executed in step 650 of the flowchart shown in FIG. 3. It is a flowchart which shows the assist torque control routine in 1st thru
  • 6 is a map for calculating a target rotation angle ⁇ lkam of a steering wheel based on a change rate Rpred of a curvature R of a target locus.
  • 6 is a map for calculating a correction amount ⁇ lkaf of a front wheel target rudder angle for eliminating the influence of roll steer of the front wheel based on the relative inclination angle ⁇ re of the vehicle body.
  • 7 is a map for calculating a correction amount ⁇ lkar of a target rudder angle of the rear wheel for eliminating the influence of the roll steer of the rear wheel based on the relative inclination angle ⁇ re of the vehicle body.
  • 7 is a map for calculating a basic target assist torque Tbase for reducing the steering burden based on the steering torque MT and the vehicle speed V.
  • 7 is a map for calculating an inertia correction assist torque T1 for compensating for inertia of the steering system and the electric power steering device based on the second-order differential value ⁇ lkafdd of the final target rudder angle ⁇ lkaf of the front wheels.
  • 7 is a map for calculating a viscosity correction assist torque T2 for compensating the viscosity of the steering system and the electric power steering device based on the differential value ⁇ lkafd of the final target steering angle ⁇ lkaf of the front wheels.
  • 7 is a map for calculating a friction correction assist torque T3 for compensating for friction of the steering system and the electric power steering device based on a differential value ⁇ lkafd of the final target steering angle ⁇ lkaf of the front wheels.
  • It is a map for calculating a correction assist torque T4 based on the steering angle control of the front wheels based on the target steering angle ⁇ lkafa of the front wheels after response correction.
  • FIG. 7 is a map for calculating a corrected assist torque T5 based on the steering angle control of the rear wheel based on the target steering angle ⁇ lkara of the rear wheel after response correction. It is explanatory drawing which shows the inclination of the vehicle body, the rotation position of a steering wheel, and the rudder angle of a front wheel when a vehicle goes straight on a laterally inclined road when the trajectory control and the roll angle control are not performed.
  • FIG. 6 is an explanatory diagram showing the tilt of the vehicle body, the rotational position of the steering wheel, and the steering angle of the front wheels when the vehicle goes straight on the lateral slope when the trajectory control is performed and the roll angle control is not performed.
  • FIG. 6 is an explanatory diagram showing the tilt of the vehicle body, the rotational position of the steering wheel, and the steering angle of the front wheels when the vehicle goes straight on a lateral slope when excessive roll angle control is performed so that the roll angle of the vehicle body becomes zero. is there.
  • It is a flowchart which shows the traveling control routine in 2nd embodiment of the traveling control apparatus of the vehicle by this invention comprised as a modification of 1st embodiment.
  • FIG. 25 is a flowchart showing a trajectory control routine executed in step 500 of the flowchart shown in FIG. 24.
  • FIG. 12 is a flowchart showing a vehicle body roll angle control routine in a third embodiment of a vehicle travel control apparatus according to the present invention. It is a map for calculating the target anti-roll moments Mtgf and Mtgr on the front wheel side and the rear wheel side based on the lateral acceleration Gy of the vehicle. It is a figure which shows the state which the vehicle body of the vehicle which has an active stabilizer apparatus rolled.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle travel control device according to the present invention applied to a vehicle equipped with a rear wheel steering device and an active stabilizer device.
  • a travel control device 10 is mounted on a vehicle 12 and includes a steering angle varying device 14 and an electronic control device 16 for controlling the steering angle varying device 14.
  • 18FL and 18FR indicate the left and right front wheels of the vehicle 12, respectively, and 18RL and 18RR indicate the left and right rear wheels, respectively.
  • the left and right front wheels 18FL and 18FR which are the steering wheels, are driven via a rack bar 24 and tie rods 26L and 26R by a rack and pinion type electric power steering device 22 driven in response to an operation of the steering wheel 20 by a driver. Steered.
  • the steering wheel 20 that is a steering input means is drivingly connected to the pinion shaft 34 of the power steering device 22 via the upper steering shaft 28, the steering angle varying device 14, the lower steering shaft 30, and the universal joint 32.
  • the steering angle varying device 14 is connected to the lower end of the upper steering shaft 28 on the housing 14A side, and is connected to the upper end of the lower steering shaft 30 via a speed reduction mechanism not shown in the drawing on the rotor 14B side.
  • a motor 36 for driving auxiliary steering is included.
  • the steering angle varying device 14 rotationally drives the lower steering shaft 30 relative to the upper steering shaft 28 to drive auxiliary steering of the left and right front wheels 18FL and 18FR relative to the steering wheel 20. Therefore, the rudder angle varying device 14 functions as a steering gear ratio varying device (VGRS) that increases or decreases the steering gear ratio (the reciprocal of the steering transmission ratio), and does not depend on the driver's steering operation, and steers the left and right front wheels. It also functions as a front wheel rudder angle varying device that changes the angle. As will be described in detail later, the steering angle varying device 14 is controlled by a steering angle control unit of the electronic control device 16.
  • VGRS steering gear ratio varying device
  • the left and right rear wheels 18RL and 18RR are steered via tie rods 46L and 46R by the electric power steering device 44 of the rear wheel steering device 42 independently of the steering of the left and right front wheels 18FL and 18FR. Therefore, the rear wheel steering device 42 functions as a rear wheel steering angle varying device that changes the steering angle of the left and right rear wheels without depending on the steering operation of the driver, and the steering angle control of the electronic control device 16 as described later. Controlled by the unit.
  • the illustrated rear wheel steering device 42 is an electric auxiliary steering device having a well-known configuration, and includes an electric motor 48A and, for example, a screw-type motion conversion mechanism 48C that converts the rotation of the electric motor 48A into a reciprocating motion of the relay rod 48B.
  • the relay rod 48B constitutes a steering mechanism for driving the left and right rear wheels 18RL and 18RR by reciprocating movement of the relay rod 48B in cooperation with the tie rods 46L and 46R and a knuckle arm (not shown). .
  • the conversion mechanism 48C converts the rotation of the electric motor 48A into the reciprocating motion of the relay rod 48B, but the force transmitted from the left and right rear wheels 18RL and 18RR to the relay rod 48B is received from the road surface. Is not transmitted to the motor 48A, and therefore, the motor 48A is not rotated by the force transmitted to the relay rod 48B.
  • the electric power steering device 22 is a rack coaxial type electric power steering device, and converts the electric motor 50 and the rotational torque of the electric motor 50 into a force in the reciprocating direction of the rack bar 24.
  • the electric power steering device 22 is controlled by an electric power steering device (EPS) control unit of the electronic control device 16.
  • EPS electric power steering device
  • the electric power steering device 22 functions as a steering assist force generator that reduces the steering burden on the driver by generating an auxiliary steering force that drives the rack bar 24 relative to the housing 54.
  • the steering angle variable device 14 can change the steering angle of the left and right front wheels and change the rotation angle of the steering wheel 20 irrespective of the driver's steering operation in cooperation with the auxiliary steering assist force generation device.
  • the rear wheel steering device 42 may have any configuration as long as the steering angle of the left and right rear wheels can be changed regardless of the driver's steering operation.
  • the steering assist force generation device may be of any configuration as long as it can generate the auxiliary steering force.
  • the steering input device is the steering wheel 20, and the operation position is a rotation angle.
  • the steering input device may be a joystick type steering lever, and the operation position in that case may be a reciprocating operation position.
  • a front active stabilizer device 56 is provided between the left and right front wheels 18FL and 18FR, and a rear active stabilizer device 58 is provided between the left and right rear wheels 18RL and 18RR.
  • the active stabilizer devices 56 and 58 respectively apply an anti-roll moment to the vehicle (vehicle body) as necessary, thereby variably controlling the roll rigidity of the vehicle on the front wheel side and the rear wheel side, and increasing / decreasing the roll angle of the vehicle body. Functions as a roll angle variable device.
  • the front active stabilizer device 56 has a pair of torsion bar portions 56TL and 56TR extending in the lateral direction of the vehicle, and a pair of arm portions 56AL and 56AR integrally connected to the outer ends of these torsion bar portions, respectively. is doing.
  • the torsion bar portions 56TL and 56TR extend in alignment with each other along a common axis, and rotate around their own axis via a bracket not shown in the figure to a vehicle body not shown in the figure. Supported as possible.
  • the arm portions 56AL and 56AR extend in the vehicle front-rear direction so as to intersect the torsion bar portions 56TL and 56TR, respectively.
  • the outer ends of the arm portions 56AL and 56AR are connected to suspension members 19FL and 19FR such as suspension arms of the left and right front wheels 18FL and 18FR via rubber bush devices not shown in the drawing.
  • the active stabilizer device 56 has an actuator 56F between the torsion bar portions 56TL and 56TR, and the actuator 56R incorporates an electric motor.
  • the actuator 56F is controlled by the active stabilizer control unit of the electronic control unit 16, and rotates relative to the torsion bar portions 56TL and 56TR as necessary, so that the anti-static force applied to the vehicle body at the position of the left and right front wheels. Increase or decrease the roll moment.
  • the active stabilizer device 58 includes a pair of torsion bar portions 58TL and 58TR extending in the lateral direction of the vehicle and a pair of arm portions 58AL and 58AR integrally connected to the outer ends of these torsion bar portions, respectively.
  • the torsion bar portions 58TL and 58TR extend in alignment with each other along a common axis, and rotate about their own axis through a bracket not shown in the figure to the vehicle body not shown in the figure. Supported as possible.
  • the arm portions 58AL and 58AR extend in the vehicle longitudinal direction so as to intersect the torsion bar portions 58TL and 58TR, respectively.
  • the outer ends of the arm portions 58AL and 58AR are connected to suspension members 19RL and 19RR such as suspension arms of the left and right rear wheels 18RL and 18RR via rubber bush devices not shown in the drawing.
  • the active stabilizer device 58 has an actuator 58R between the torsion bar portions 58TL and 58TR, and the actuator 58R incorporates an electric motor.
  • the actuator 58R is controlled by the active stabilizer controller of the electronic control unit 16, and is applied to the vehicle body at the positions of the left and right rear wheels by relatively rotating the torsion bar portions 58TL and 58TR as necessary. Increase or decrease the anti-roll moment.
  • any structure known in the art can be used as long as the roll angle of the vehicle can be variably controlled. It may be.
  • the upper steering shaft 28 is provided with a steering angle sensor 60 that detects the rotation angle of the upper steering shaft as the steering angle ⁇ .
  • the pinion shaft 34 is provided with a steering torque sensor 62 that detects the steering torque MT.
  • the steering angle varying device 14 is provided with a rotation angle sensor 64 that detects the relative rotation angle ⁇ re, that is, the relative rotation angle of the lower steering shaft 30 with respect to the upper steering shaft 28.
  • the signal indicating the steering angle ⁇ , the signal indicating the steering torque MT, and the signal indicating the relative rotation angle ⁇ re are a signal indicating the vehicle speed V detected by the vehicle speed sensor 66 and a steering angle control unit and an EPS control unit of the electronic control unit 16. Is input.
  • the rotation angle of the lower steering shaft 30 may be detected, and the relative rotation angle ⁇ re may be obtained as a difference between the steering angle ⁇ and the rotation angle of the lower steering shaft 30.
  • the vehicle 12 is selected to perform a trajectory control (also referred to as “LKA control”) that is operated by a CCD camera 68 that captures the front of the vehicle and a vehicle occupant and travels along the travel path.
  • the selection switch 70 is provided.
  • a signal indicating image information in front of the vehicle and a signal indicating the position of the selection switch 70 taken by the CCD camera 68 are input to the travel control unit of the electronic control device 16. Note that image information in front of the vehicle and information on the travel path may be acquired by means other than the CCD camera.
  • a signal indicating the roll rate ⁇ r and a signal indicating the suspension stroke Hi are also input to the travel control unit of the electronic control unit 16.
  • the actuator 56F of the front active stabilizer device 56 is provided with a rotary encoder 76F for detecting the rotation angle ⁇ f of the actuator.
  • the actuator 58R of the rear active stabilizer device 58 is provided with a rotary encoder 78R that detects the rotation angle ⁇ r of the actuator. Signals indicating the rotation angles ⁇ f and ⁇ r are also input to the travel control unit of the electronic control device 16.
  • Each control unit of the electronic control device 16 may include a microcomputer having a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other via a bidirectional common bus. Further, the steering angle sensor 60, the steering torque sensor 62, the rotation angle sensor 64, and the roll rate sensor 72 are respectively set to the steering angle ⁇ , the steering torque MT, and the relative rotation angle when the steering or turning in the left turn direction of the vehicle is positive. ⁇ re and roll rate ⁇ r are detected.
  • the electronic control device 16 performs trajectory control by controlling the steering angle varying device 14 and the rear wheel steering device 42 according to the flowchart shown in FIG. Drive along.
  • the electronic control device 16 controls the electric power steering device 22 based on the steering torque MT and the like, thereby reducing the steering burden on the driver, and the steering angle varying device 14 tracks the steering angle of the left and right front wheels. Assist in controlling to the rudder angle required for control.
  • the electronic control unit 16 estimates the lateral inclination angle of the traveling road based on the roll angle of the vehicle body and the stroke of each wheel, and whether or not the road vehicle is traveling on the lateral inclination road based on the estimation result. Determine whether. And when the electronic control unit 16 performs the trajectory control in a situation where the vehicle is traveling on a laterally inclined road, the roll angle of the vehicle body is larger than 0 and smaller than the inclined angle of the traveling road.
  • the roll angle of the vehicle body is controlled by controlling the active stabilizer devices 56 and 58.
  • the electronic control unit 16 simultaneously starts the roll angle control of the vehicle body when starting the trajectory control in a situation where the vehicle is traveling on the lateral slope.
  • the electronic control device 16 also ends the roll angle control of the vehicle body at the same time when the trajectory control is ended in a situation where the vehicle is traveling on the lateral slope.
  • the ratio of roll moments supported by the front and rear wheel suspensions may be considered to be equal to the distribution ratio of roll stiffness. Therefore, when the distribution ratio of the roll rigidity of the front wheels is Rsd, the following equation (2) is established.
  • roll rigidity Ksrf and Ksrr due to the suspension of the front wheels and the rear wheels are expressed by the following equations (11) and (12), respectively.
  • the force generated when the torsion bar portions of the active stabilizer devices 56 and 58 are twisted by an external force is not taken into consideration.
  • the roll angle of the vehicle body does not include the inclination of the vehicle body due to the elastic deformation of the wheel tires.
  • Kssf and Kssr be the spring constants of the active stabilizer devices 56 and 58 as seen from the difference in height between the tips of the left and right arm portions in the vertical direction.
  • the arm ratios of the active stabilizer devices 56 and 58 are Rsaf and Rsar, respectively.
  • the radial constants of the tires for the front and rear wheels are Kwf and Kwr, respectively, and the wheel rates for the spring force of the suspension springs for the front and rear wheels are Kspf and Kspr, respectively.
  • the wheel rates Kf and Kr for one front wheel and rear wheel including elastic deformation of the torsion bar portion, tire, and suspension spring of the active stabilizer device are expressed by the following equations (13) and (14), respectively.
  • the wheel rates Kf and Kr for the front and rear wheels represented by the above formulas (13) and (14) are uniquely determined by the specifications of the vehicle. Accordingly, the roll stiffness Ksrf and Ksrr due to the suspension of the front wheels and the rear wheels represented by the above formulas (11) and (12) are also uniquely determined by the specifications of the vehicle, and thus the roll stiffness Ksrf and Ksrr are respectively obtained in advance as constants. I can keep it.
  • step 100 a signal indicating the steering angle ⁇ detected by the steering angle sensor 60 is read, and in step 150, it is determined whether or not the trajectory control is being executed. Done. When an affirmative determination is made, control proceeds to step 250, and when a negative determination is made, control proceeds to step 200.
  • step 200 it is determined whether or not the start condition of the trajectory control is satisfied. When a negative determination is made, the control returns to step 100, and when an affirmative determination is made, the control proceeds to step 300.
  • a1 The selection switch 70 is switched from on to off.
  • a2 Normal trajectory control is performed from a situation in which normal trajectory control cannot be performed, such as a situation in which information ahead of the vehicle can be acquired from a situation in which information ahead of the vehicle cannot be acquired by the CCD camera 68. It became a situation that can be executed.
  • step 250 it is determined whether or not the end condition of the trajectory control is satisfied. When an affirmative determination is made, control proceeds to step 800, and when a negative determination is made, control proceeds to step 300.
  • b1 The selection switch 70 was switched from on to off.
  • b2 The normal trajectory control cannot be executed because the information ahead of the vehicle, such as the white line on the road, cannot be acquired by the CCD camera 68.
  • step 300 the vehicle travels by determining whether or not the absolute value of the lateral inclination angle ⁇ road of the travel road calculated according to the flowchart shown in FIG. 8 is equal to or greater than a reference value (positive constant). A determination is made as to whether the road is a laterally inclined road. When an affirmative determination is made, control proceeds to step 450, and when a negative determination is made, control proceeds to step 350.
  • step 350 it is determined whether or not roll angle control is being executed by controlling the front active stabilizer device 56 and the rear active stabilizer device 58 by the active stabilizer control unit of the electronic control device 16.
  • control proceeds to step 500, and when an affirmative determination is made, control proceeds to step 400.
  • step 400 a roll angle control end command is output from the travel control unit of the electronic control unit 16 to the active stabilizer control unit, whereby the roll angle control by the active stabilizer control unit is ended.
  • step 450 the travel control unit of the electronic control unit 16 outputs a roll angle control execution command to the active stabilizer control unit, whereby the roll angle control by the active stabilizer control unit is executed.
  • step 500 the trajectory control is executed according to the flowcharts shown in FIGS. 3 to 5, as will be described in detail later, and thereby the steering angles of the front and rear wheels are controlled so that the vehicle travels along the travel path.
  • step 800 it is determined whether or not the roll angle control end command in step 850, which will be described later, has not been output yet and the roll angle control is continuing.
  • step 900 the control proceeds to step 900, and when an affirmative determination is made, the control proceeds to step 850.
  • Step 850 a roll angle control end command is output from the travel control unit of the electronic control unit 16 to the active stabilizer control unit, whereby the roll angle control by the active stabilizer control unit is ended.
  • step 900 the trajectory control executed in accordance with the flowcharts shown in FIGS. 3 to 5 is terminated.
  • control amounts of the trajectory control and the roll angle control are gradually increased at the start of these controls so that the running state of the vehicle does not change suddenly. It is gradually reduced at the end.
  • step 550 the front wheel target rudder angle ⁇ lkaf and the rear wheel target rudder angle ⁇ lkar for causing the vehicle to travel along the travel path are determined according to the flowchart shown in FIG. Calculated.
  • step 600 it is determined whether or not roll angle control is being performed by controlling the front active stabilizer device 56 and the rear active stabilizer device 58 by the active stabilizer control unit of the electronic control device 16. If an affirmative determination is made, the control proceeds to step 650. If a negative determination is made, in step 610, the correction amount ⁇ lkaf of the front wheel target rudder angle and the rear wheel target for eliminating the influence of roll steer are determined. The steering angle correction amount ⁇ lkar is set to 0, and then control proceeds to step 700.
  • step 650 according to the flowchart shown in FIG. 5, a front wheel target rudder angle correction amount ⁇ lkaf and a rear wheel target rudder angle correction amount ⁇ lkar for calculating the influence of roll steer are calculated. Control continues to step 700.
  • step 700 the correction amounts ⁇ lkaf and ⁇ lkar are added to the target steering angle ⁇ lkaf of the front wheels and the target steering angle ⁇ lkar of the rear wheels, respectively, so that the effects of roll steer are corrected to be eliminated.
  • the target steering angles ⁇ lkaf and ⁇ lkar of the wheels are calculated.
  • step 710 the turning angle variable device 14 and the rear wheel steering device 42 are controlled so that the steering angles of the front wheels and the rear wheels become the corrected target steering angles ⁇ lkaf and ⁇ lkar, respectively. Trajectory control is executed so as to travel along the road.
  • the determination of the target locus of the vehicle may be performed based on information from a navigation device not shown in the figure, or based on a combination of analysis of image information and information from the navigation device. Also good.
  • the curvature R of the target trajectory is a parameter necessary for performing trajectory control for causing the vehicle to travel along the target trajectory.
  • the calculation procedure does not form the gist of the present invention.
  • the parameter may be calculated in an arbitrary manner.
  • the target lateral acceleration Gyt of the vehicle necessary to drive the vehicle along the target locus is calculated based on the parameters of the locus control.
  • the target lateral acceleration Gyt may be calculated by a function of the trajectory control parameter, and a map showing the relationship between the trajectory control parameter and the target lateral acceleration Gyt is set, and based on the trajectory control parameter.
  • the target lateral acceleration Gyt may be calculated from the map.
  • step 565 based on the target lateral acceleration Gyt of the vehicle, the target rudder angle ⁇ lkaf of the front wheels for trajectory control is calculated from the map shown in FIG.
  • step 570 based on the target lateral acceleration Gyt of the vehicle, the rear wheel target rudder angle ⁇ lkar for trajectory control is calculated from the map shown in FIG.
  • step 575 the change rate Rpred of the curvature of the traveling road ahead of the preset distance L0 is obtained, and the front wheel target for trajectory control is determined from the map shown in FIG. 11 based on the change rate Rpred.
  • a correction amount ⁇ lkafm of the steering angle ⁇ lkaf is calculated.
  • the distance L0 may be a positive constant, but may be variably set according to the vehicle speed V so as to increase as the vehicle speed V increases.
  • step 580 the correction amount ⁇ lkafm is added to the target rudder angle ⁇ lkaf of the front wheels, so that the trajectory control is executed without delaying the change in the curvature of the traveling road, and the target rudder angle ⁇ lkaf of the front wheels is corrected. Is calculated.
  • step 655 of the front and rear wheel target rudder angle calculation routine shown in FIG. 5 the travel path calculated in step 1450 of the vehicle body roll angle control routine shown in FIG. The inclination angle ⁇ road is read.
  • step 660 the target inclination angle ⁇ btg_pa of the vehicle body after the phase advance filter processing calculated in step 1550 of the roll angle control routine of the vehicle body shown in FIG. 8 is read.
  • step 665 the inclination angle of the vehicle body with respect to the traveling road, that is, the difference ⁇ road ⁇ btg_pa between the inclination angle ⁇ road of the traveling road and the target inclination angle ⁇ btg_pa of the vehicle body is calculated as the relative inclination angle ⁇ re of the vehicle body.
  • step 670 based on the relative inclination angle ⁇ re of the vehicle body, a correction amount ⁇ lkaf of the front wheel target rudder angle for eliminating the influence of roll steer on the front wheel is calculated from the map shown in FIG.
  • step 675 the correction amount ⁇ lkar of the target rudder angle of the rear wheel is calculated based on the relative inclination angle ⁇ re of the vehicle body to eliminate the influence of the roll steer of the rear wheel from the map shown in FIG.
  • step 1000 a signal indicating the steering torque MT is read, and in step 1050, the steering burden is reduced from the map shown in FIG. 14 based on the steering torque MT and the vehicle speed V.
  • a basic target assist torque Tbase is calculated.
  • step 1100 a corrected assist torque ⁇ T for appropriately executing assist torque control is calculated according to the flowchart shown in FIG.
  • step 1200 the sum of the basic target assist torque Tbase and the correction assist torque ⁇ T is calculated as the final target assist torque Ttg.
  • step 1250 the electric power steering device 22 is controlled based on the final target assist torque Ttg, so that the assist torque generated by the electric power steering device 22 becomes the final target assist torque Ttg. Is done.
  • step 1055 of the correction assist torque calculation routine shown in FIG. 7 the front wheel final target rudder angle ⁇ lkaf, that is, the differential value of the corrected front wheel target rudder angle ⁇ lkaf calculated in step 380 above. ⁇ lkafd and second-order differential value ⁇ lkafdd are calculated.
  • step 1060 based on the second-order differential value ⁇ lkafdd of the final target steering angle ⁇ lkaf of the front wheels, the inertia correction assist for compensating the inertia of the steering system and the electric power steering device 22 from the map shown in FIG. Torque T1 is calculated.
  • step 1065 the viscosity correction assist torque for compensating the viscosity of the steering system and the electric power steering device 22 from the map shown in FIG. 16 based on the differential value ⁇ lkafd of the final target steering angle ⁇ lkaf of the front wheels. T2 is calculated.
  • step 1070 the friction correction assist torque for compensating the friction of the steering system and the electric power steering device 22 from the map shown in FIG. 17 based on the differential value ⁇ lkafd of the final target steering angle ⁇ lkaf of the front wheels. T3 is calculated.
  • step 1075 the final target rudder angle ⁇ lkaf of the front wheels is processed by, for example, a second-order lag second-order filter, thereby changing the target rudder angle ⁇ lkafa of the front wheels after the response correction, that is, the change of the rudder angle of the front wheels
  • the target rudder angle of the front wheel corrected for the response of the steering torque to is calculated.
  • a corrected assist torque T4 based on the steering angle control of the front wheels is calculated from the map shown in FIG. 18 based on the target steering angle ⁇ lkafa of the front wheels after the response correction.
  • the correction assist torque T4 is assist torque for assisting in controlling the steering angle of the front wheels to the target steering angle ⁇ lkafa for the purpose of trajectory control.
  • step 1085 the target rudder angle ⁇ lkar of the rear wheel is processed by, for example, a second-order delayed first-order filter, so that the target rudder angle ⁇ lkara of the rear wheel after response correction, that is, the rudder angle of the rear wheel is determined.
  • the rear wheel target rudder angle corrected for the response of the steering torque to the change is calculated.
  • the corrected assist torque T5 based on the steering angle control of the rear wheels is calculated from the map shown in FIG. 19 based on the target steering angle ⁇ lkara of the rear wheels after the response correction.
  • the correction assist torque T5 is a correction assist torque for compensating for the fluctuation of the steering torque caused by controlling the steering angle of the rear wheel to the target steering angle ⁇ lkara.
  • step 1095 the sum of the correction assist torques T1 to T5 calculated in steps 1060 to 1070, 1080, and 1090, respectively, is calculated as the correction assist torque ⁇ T.
  • step 1300 a signal indicating the roll rate ⁇ r is read.
  • step 1350 whether or not the roll angle control of the vehicle body is necessary is determined by determining whether or not an execution command of the roll angle control of the vehicle body is output from the traveling control unit of the electronic control unit 16. A determination is made. When a negative determination is made, control returns to step 1300, and when an affirmative determination is made, control proceeds to step 1400.
  • step 1400 the integrated value ⁇ rint of the roll rate ⁇ r of the vehicle from the time when the vehicle starts to run to the present is calculated, and the vehicle body is calculated as the sum of the integrated value ⁇ rint and the initial value ⁇ 0 of the roll angle of the vehicle body.
  • the absolute roll angle ⁇ ab is calculated.
  • the initial value ⁇ 0 of the roll angle of the vehicle body is the roll angle of the vehicle body when the vehicle starts to travel
  • the absolute roll angle ⁇ ab is the current roll angle of the vehicle body in the absolute space.
  • step 1450 the roll angle ⁇ ref of the vehicle body with respect to the travel path on the front wheel side based on the strokes HFL and HFR at the positions of the left and right front wheels is calculated. Further, the roll angle ⁇ rer of the vehicle body with respect to the travel path on the rear wheel side based on the strokes HRL and HRR at the positions of the left and right rear wheels is calculated. Then, the relative roll angle ⁇ re of the vehicle body, that is, the roll angle of the vehicle body with respect to the travel path is calculated as an average value of the roll angles ⁇ ref and ⁇ rer.
  • step 1500 the difference ⁇ ab ⁇ re between the absolute roll angle ⁇ ab of the vehicle body and the relative roll angle ⁇ re of the vehicle body is calculated as the inclination angle ⁇ road of the traveling road in the absolute space.
  • the roll angle and the inclination angle of the traveling road are positive values when it is lowered to the right.
  • the product of the coefficient K greater than 0 and less than 1 and the road inclination angle ⁇ road is the vehicle body target inclination angle ⁇ btg, that is, the vehicle body target inclination in the lateral direction in the absolute space. Calculated as a corner.
  • the coefficient K is preferably 0.2 or more and 0.8 or less, particularly preferably the lower limit is 0.3 or more, and the upper limit is preferably 0.7 or less.
  • the coefficient K may be constant, but may be variably set according to the vehicle speed V, for example, so that the coefficient K decreases as the vehicle speed V increases.
  • Step 1600 the target inclination angle ⁇ btg of the vehicle body is processed by the phase advance filter, so that the target inclination angle ⁇ btg_pa of the vehicle body after the phase advance filter processing is calculated.
  • step 1650 the difference ⁇ road ⁇ btg_pa between the inclination angle ⁇ road of the traveling road and the target inclination angle ⁇ btg_pa of the vehicle body is calculated as the target roll angle ⁇ brtg of the vehicle body.
  • step 1700 based on the target roll angle ⁇ brtg of the vehicle body, the front wheels for setting the vehicle body inclination angle to the target inclination angle according to the following expressions (17) and (18) corresponding to the above expressions 9 and 10, respectively.
  • the target anti-roll moments Mtgf and Mtgr on the side and rear wheel side are calculated.
  • step 1900 based on the target anti-roll moments Mtgf and Mtgr, the front wheel side and rear wheel side actuators according to the following formulas (19) and (20) corresponding to the above formulas (15) and (16), respectively.
  • the target actuator torques Ttgf and Ttgr of 58F and 58 are calculated.
  • the target rotational angles ⁇ tgf and ⁇ tgr of the actuators 58F and 58R are calculated so that the output torques of the front and rear side actuators 58F and 58R become the target actuator torques Ttgf and Ttgr.
  • the target rotation angle may be calculated from, for example, a map that is not shown in the drawing, or may be calculated according to a formula obtained in advance.
  • step 2000 the actuators 58F and 58R are controlled so that the rotation angles of the actuators 58F and 58R become the target rotation angles ⁇ tgf and ⁇ tgr, respectively, and thereby the vehicle body inclination angle is controlled to the target inclination angle ⁇ btg.
  • the active stabilizer devices 56 and 58 and the active stabilizer control unit of the electronic control device 16 that controls them according to the flowchart shown in FIG. 8 are examples of the “roll control device”. Further, the travel control unit of the electronic control unit 16 calculates and determines various tilt angles according to the roll rate sensor 72, the stroke sensor 74i, and the flowcharts shown in FIGS. This is an example of a “determination device”. Further, the steering angle variable device 14, the rear wheel steering device 42, and the travel control unit of the electronic control device 16 that controls them according to the flowcharts shown in FIGS. 3 to 5 are examples of the “travel control device”. The travel control device cooperates with the electric power steering device 22 controlled by the electric power steering device control unit of the roll control device, the inclination determination device, and the electronic control device 16 to target the vehicle by steering the wheels. Trajectory control for running along the trajectory is performed.
  • trajectory control and roll angle control of the travel control device of the first embodiment will be described for various travel situations of the vehicle.
  • step 150 When the traveling road is not a lateral slope, an affirmative determination is made in step 150, and a negative in step 250 In step 300 and 350, a negative determination is made, step 450 is not executed, and step 500 is executed, so that only trajectory control is performed and roll angle control is not performed. .
  • step 150 When the traveling road is a laterally inclined road An affirmative determination is made at step 150, and a negative determination is made at step 250. Then, an affirmative determination is made at step 300, and step 450 and 500 are executed, so both trajectory control and roll angle control are performed.
  • step 150 When the selection switch 70 is switched from OFF to ON, or when normal trajectory control is disabled from being executable (C-1>).
  • step 150 When the traveling road is not a lateral slope, in step 150 Although a negative determination is made, an affirmative determination is made in step 200. Then, a negative determination is made in steps 300 and 350, respectively, step 450 is not executed, and step 500 is executed, so the trajectory control. Only the roll angle control is started, and the roll angle control is not started, whereby the control state changes from (A> to (B-1>).
  • step 800 When the selection switch 70 is switched from ON to OFF, or when normal trajectory control becomes executable from non-executable (D-1)
  • steps 150 and 250 are performed.
  • step 800 a negative determination is made, but a negative determination is made in step 800, and step 900 is executed, so that only the trajectory control is completed and the roll angle control is not executed.
  • the control status changes from (B-1> to (A>).
  • 110 indicates the horizontal direction of the absolute space
  • 112 indicates the vertical direction of the vehicle 12.
  • the upper part is a view of the vehicle as viewed from the rear
  • the interruption is a view of the steering wheel along its rotational axis
  • the lower part is a view of the vehicle as viewed from above. is there.
  • the component along the road surface of the gravity traveling path acting on the vehicle body 12B acts on the lower side of the traveling path, and thereby the vehicle is urged to the lower side of the traveling path. Therefore, in order for the vehicle to travel straight, the front wheels 18FR and 18FL must be steered upward on the traveling road so that a lateral force that opposes the component along the road surface of the traveling road is generated. Therefore, the steering wheel 20 is steered upward in the traveling path. In addition, a steering torque is required to maintain the steering wheel 20 being steered upward in the travel path.
  • the front wheels 18FR and 18FL are steered to the upper side of the traveling road by automatic steering based on trajectory control so that a lateral force that opposes the component along the road surface of the traveling road is generated. Since the vehicle travels straight, the steering wheel 20 is in a straight travel position, and no steering torque is substantially required.
  • the vehicle trajectory becomes a straight target trajectory
  • the control amount of trajectory control becomes 0, and the steering angle of the front wheels is reduced.
  • the vehicle is urged to the lower side of the traveling path and the traveling locus deviates from the target locus, so that the steering angle of the front wheel to the upper side of the traveling route is increased by the automatic steering of the locus control. Therefore, the vehicle tends to run meandering.
  • the steering range of the front wheels 18FR and 18FL by the trajectory control is limited, the steering angle of the front wheels by the trajectory control is insufficient when the traveling road 114 has a large inclination angle and the gravity component along the road surface of the traveling road is large.
  • the vehicle may not be able to go straight along the target trajectory.
  • the lateral component of gravity acting on the vehicle body 12B and the component along the road surface of the gravity traveling path are smaller than those in the cases (I) and (II), so that the front wheels 18FR and 18FL are automatically controlled for trajectory control.
  • the angle steered to the upper side of the travel path by steering is also small.
  • the front wheels 18FR, 18FL are steered by automatic steering with trajectory control, and the vehicle goes straight. Therefore, the steering wheel 20 is in the straight traveling position, and the steering torque is substantially unnecessary.
  • the angle at which the vehicle occupant inclines to the lower side of the traveling path with respect to the vertical direction is also the same as that in the above (I) and (II) Smaller than the case.
  • the traveling state of the vehicle is the same as that when the vehicle travels straight on the horizontal road, except that the wheels 18FR and 18RR on the lower side of the traveling path are rebounded and the wheels 18FL and 18RL on the upper side of the traveling path are bound. It is. That is, the steering angles of the front wheels 18FR, 18FL are 0, the steering wheel 20 is in the straight traveling position, and no steering torque is required. Further, the angle at which the vehicle occupant tilts with respect to the vertical direction is also zero.
  • the control amount is 0 even when trajectory control is performed. Therefore, when the tilt angle of the vehicle body is controlled to 0 by the roll angle control, as long as the steering wheel 20 is in the straight traveling position, the traveling state of the vehicle does not vary depending on whether or not the trajectory control is performed.
  • the inclination angle of the vehicle body, the rotation angle of the steering wheel 20, and the inclination angle of the occupant with respect to the vertical direction of the absolute space are respectively smaller than in the case (I), but not as small as in the case (III).
  • the traveling state of the vehicle becomes the state of (III) above. It is controlled as follows. Therefore, as is clear from the comparison between the case (I) and the case (III), the driver reliably recognizes that the trajectory control is being executed from the difference in the rotational position of the steering wheel 20. be able to. Further, as is clear from the comparison between the case (I) and the case (III), the vehicle is inclined in the lateral direction because the rotation angle of the steering wheel 20 and the inclination angle of the occupant with respect to the vertical direction of the absolute space are small. The uncomfortable feeling that the occupant learns when traveling on the road can be reduced.
  • the vehicle body tilt angle is not controlled to zero, so that the trajectory control is caused by the fact that lateral force does not act on the vehicle body as in the case of (IV) above. It can be effectively avoided that it becomes impossible to determine whether or not is executed.
  • the roll angle control is also started at the same time. Therefore, the running status of the vehicle does not change from the status (I) to the status (II), but changes from the status (I) to the status (III). Therefore, since the rotation angle of the steering wheel 20 and the speed of change thereof can be reduced, the occupant is caused by the rotation of the steering wheel when the trajectory control is started in a situation where the vehicle travels on the lateral slope. It is possible to reduce a sense of incongruity.
  • the lateral force acting on the vehicle body due to the inclination of the vehicle body can be reduced. Therefore, even when the trajectory control is started in a situation where the vehicle travels on a lateral slope, the trajectory of the vehicle becomes the target trajectory, the amount of trajectory control is reduced, and the steering angle of the wheels is reduced. Further, the movement of the vehicle to the lower side of the inclination due to the lateral force can be reduced. Therefore, the control amount of the trajectory control is increased or decreased, and accordingly, the possibility of the vehicle meandering due to the increase or decrease of the steering angle of the wheel can be reliably reduced.
  • the roll angle control is also terminated at the same time. Therefore, the traveling state of the vehicle does not change from the situation (II) to the situation where only the roll angle control is performed, but changes from the situation (III) to the situation (I). Therefore, since the angle at which the steering wheel 20 has to be rotated to steer the front wheels to the upper side of the traveling road is large, it is effective for the occupant that the trajectory control is finished in a situation where the vehicle travels on a laterally inclined road. Can be recognized.
  • each said effect is roll angle control in the case where roll angle control is general roll control based on the lateral acceleration of the vehicle of said (V), ie, the condition where a vehicle drive
  • FIG. 24 is a flowchart showing a travel control routine in the second embodiment of the vehicle travel control apparatus according to the present invention configured as a modification of the first embodiment. Note that control according to the flowchart shown in FIG. 24 is also started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals. Further, in FIG. 24, the same step number as the step number shown in FIG. 2 is assigned to the same step as the step shown in FIG.
  • the trajectory control and the roll angle control of the vehicle body are not started at the same time.
  • Control is started with a delay relative to the roll angle control.
  • the roll angle control is started prior to the trajectory control.
  • the trajectory control and the roll angle control of the vehicle body are not ended at the same time, and the trajectory control is delayed with respect to the roll angle control. Then it is finished.
  • the roll angle control is terminated prior to the trajectory control.
  • step 550 is started after the start delay time set in advance by the edge processing in step 540 has elapsed, and each step after step 550 is the case of the above-described first embodiment. Is executed in the same way as
  • step 910 is executed instead of step 900 of the first embodiment, and in step 910, the trajectory control is ended in the same manner as step 900 after a preset delay time at the end. .
  • steps other than steps 500 and 910 of the travel control routine, the assist torque control routine, and the roll angle control routine of the vehicle body are also executed in the same manner as in the first embodiment described above.
  • the second embodiment it is possible to obtain the same operational effects as in the case of the first embodiment described above. That is, when the trajectory control is performed in a situation where the vehicle travels on a lateral slope, the driver can surely recognize that the trajectory control is being performed, and the trajectory control is being performed. And the uncomfortable feeling that the occupant learns at the start or end of trajectory control.
  • the roll angle control when the trajectory control is started in a situation where the vehicle travels on a lateral slope, the roll angle control can be started prior to the trajectory control.
  • the control amount of the roll angle control increases, the inclination angle of the vehicle body decreases and the lateral force acting on the vehicle body decreases, so the driver recognizes that the trajectory control starts and gradually rotates the steering wheel. Reduce the angle. In this process, the trajectory control is started. Therefore, the trajectory control reduces the rotation angle until the steering wheel rotation angle is returned to 0, and thus the steering wheel rotation speed is low. Good.
  • the occupant can surely recognize early that the trajectory control starts.
  • the trajectory control is started in a situation where the vehicle travels on a laterally inclined road, it is possible to reduce a sense of discomfort that the occupant learns due to a change in the rotation angle of the steering wheel 20 or the meandering of the vehicle.
  • the end of the roll angle control can be started prior to the trajectory control.
  • Decreasing the control amount of the roll angle control increases the tilt angle of the vehicle body and increases the lateral force acting on the vehicle body, so that the driver recognizes that the trajectory control is finished and gradually rotates the steering wheel. Increase the angle.
  • the trajectory control is terminated, and as the trajectory control is terminated, the rotation angle required to rotate the steering wheel to the rotational position for causing the vehicle to travel along the desired path is reduced. Therefore, the rotational speed of the steering wheel may be low.
  • the occupant can surely recognize early that the trajectory control is finished. Further, it is possible to reduce a sense of discomfort that the occupant learns when the trajectory control is terminated in a situation where the vehicle travels on a laterally inclined road.
  • the lateral inclination angles of the vehicle body and the travel path are obtained, and the target roll angle of the vehicle body is calculated based on them, and the roll angle of the vehicle body is calculated as the target roll angle. It is controlled to become. Therefore, compared with the case of the third embodiment described later in which the roll angle of the vehicle body is controlled based on the lateral force acting on the vehicle body, the vehicle is moved in the laterally inclined road regardless of the variation in the total weight of the vehicle. When traveling on the vehicle, the inclination angle of the vehicle body can be accurately controlled to a desired angle.
  • FIG. 26 is a flowchart showing a vehicle body roll angle control routine in the third embodiment of the vehicle travel control apparatus of the present invention. Note that the control according to the flowchart shown in FIG. 26 is also started by closing an ignition switch not shown in the figure, and is repeatedly executed every predetermined time. In FIG. 26, the same step number as the step number shown in FIG. 8 is attached to the same step as the step shown in FIG.
  • the roll angle control of the vehicle body is performed based on the lateral acceleration Gy of the vehicle detected by a lateral acceleration sensor not shown in FIG.
  • the roll of the vehicle body to the outside of the turn is reduced as in the case of general roll angle control based on the lateral acceleration of the vehicle.
  • the roll angle control gain with respect to the lateral acceleration of the vehicle is set higher than when turning, so that the roll angle of the vehicle body is greater than 0 and is greater than the inclination angle of the traveling road. Controlled to be smaller.
  • step 1350 by determining whether or not an execution command for the roll angle control of the vehicle body is output from the travel control unit of the electronic control unit 16, It is determined whether or not roll angle control of the vehicle body is required when traveling on a laterally inclined road. When a negative determination is made, control proceeds to step 1800, and when an affirmative determination is made, control proceeds to step 1850.
  • step 1800 based on the lateral acceleration Gy of the vehicle, the front wheel side and the rear wheel side for reducing the roll of the vehicle body at the time of turning from the map shown by the thick solid line and the thin solid line in FIG. 27, respectively.
  • Target anti-roll moments Mtgf and Mtgr are calculated.
  • the estimated lateral acceleration Gyh of the vehicle is calculated based on the steering angle ⁇ of the front wheel and the vehicle speed V based on the steering angle ⁇ and the relative rotation angle ⁇ re, and is estimated.
  • the target anti-roll moment may be calculated based on the lateral acceleration Gyh.
  • step 1850 based on the lateral acceleration Gy of the vehicle, the front wheel side and the rear wheel side when the vehicle travels on the lateral slope from the map indicated by the thick broken line and the thin broken line in FIG. 27, respectively.
  • Target anti-roll moments Mtgf and Mtgr are calculated.
  • the map is set so that the target anti-roll moments Mtgf and Mtgr are calculated so that the inclination angle of the vehicle body is 0.2 to 0.8 times the inclination angle ⁇ road of the traveling road.
  • the lower limit is preferably an angle of 0.3 times or more
  • the upper limit is preferably an angle of 0.7 times or less.
  • the map indicated by the thick broken line and the thin broken line may be constant regardless of the vehicle speed V, but is variable according to the vehicle speed V so that the higher the vehicle speed V, the greater the slope of the map. It may be set.
  • step 1800 or 1850 control proceeds to step 1900, and steps 1900 to 2000 are executed in the same manner as in the first embodiment described above. Further, the steps of the travel control routine and the assist torque control routine are executed in the same manner as in the first embodiment or the second embodiment described above.
  • the change in the posture of the vehicle body at the time of turning is reduced as compared with the cases of the first and second embodiments, and the same as in the case of the first and second embodiments.
  • the effect of this can be obtained. That is, when the trajectory control is performed in a situation where the vehicle travels on a lateral slope, the occupant can effectively recognize that the trajectory control is being executed and the start and end of the trajectory control. Further, it is possible to reduce a sense of discomfort that the occupant learns during the execution of the trajectory control or at the start or end of the trajectory control.
  • the roll control based on the lateral acceleration of the vehicle is performed with the gain at the turn before the start condition of the roll angle control is satisfied. Done. Therefore, when the lateral inclination angle of the traveling road is the same, the roll angle of the vehicle body when the roll angle control is started is smaller than in the first and second embodiments. Therefore, the change amount of the roll angle of the vehicle body due to the execution of the roll angle control is smaller than that in the first and second embodiments, thereby reducing the rotation angle of the steering wheel 20 and the change speed thereof. Can also reduce the uncomfortable feeling that the occupant learns.
  • the third embodiment when the vehicle travels on a lateral slope, roll control based on the lateral acceleration of the vehicle is performed with the gain during turning even if the end condition of the roll angle control is satisfied. Done. Therefore, in the case where the lateral inclination angle of the traveling road is the same, the roll angle of the vehicle body when the roll angle control at the time of traveling on the lateral inclined road is finished is larger than that in the first and second embodiments. small. Therefore, the amount of change in the roll angle of the vehicle body due to the end of the roll angle control when traveling on a laterally inclined road is smaller than in the first and second embodiments, thus reducing the rotation angle of the steering wheel and its change speed. This also makes it possible to reduce the uncomfortable feeling felt by the occupant.
  • Ttgr, and target rotation angles ⁇ tgff, ⁇ tgr, etc. need not be calculated. Therefore, the calculation load of the electronic control device 16 can be reduced and the vehicle traveling control can be simply executed as compared with the first and second embodiments that require calculation of these values.
  • the change amount of the roll angle of the vehicle body at the start and end of the roll angle control is smaller than in the first and second embodiments. Therefore, when the travel control routine is executed in the same manner as in the second embodiment described above, the delay time at the start and end of the trajectory control for the roll angle control can be shortened.
  • the target rudder angle of a front wheel and a rear wheel is correct
  • trajectory control when trajectory control is performed in a situation where the vehicle travels on a laterally inclined road, the trajectory control is executed, the trajectory control is started, The passenger can be surely recognized the end.
  • the rotation angle and speed of the steering wheel during the execution of the trajectory control or at the start or end of the trajectory control, and by suppressing the meandering of the vehicle at the start or end of the trajectory control It is possible to reduce the uncomfortable feeling that the occupant learns.
  • the absolute roll angle of the vehicle body is calculated as the sum of the integral value ⁇ rint of the roll rate ⁇ r of the vehicle and the initial value ⁇ 0 of the roll angle of the vehicle from the time when the vehicle starts to travel to the present. ⁇ ab is calculated.
  • the absolute roll angle ⁇ ab of the vehicle body may be detected by a detection device such as a gyro-type tilt angle sensor.
  • the absolute roll angle ⁇ ab of the vehicle body may be estimated as a difference Gy ⁇ V between the lateral acceleration Gy of the vehicle and the product of the vehicle yaw rate ⁇ and the vehicle speed V.
  • the estimated lateral acceleration Gyh of the vehicle may be calculated from the vehicle model based on the steering angle ⁇ and the vehicle speed V, and may be estimated as a difference Gy ⁇ Gyh between the lateral acceleration Gy of the vehicle and the estimated lateral acceleration Gyh.
  • the roll control device controls the roll angle of the vehicle body by generating an anti-roll moment by the active stabilizers 56 and 58.
  • the roll control device may be, for example, an active suspension or an air suspension with a vehicle height adjustment function as long as it can control the lateral inclination angle of the vehicle body.
  • the curvature R (reciprocal of the radius) of the target trajectory, the lateral deviation Y of the vehicle with respect to the target trajectory, and the yaw angle deviation ⁇ are calculated, and based on these, the front and rear wheels are calculated.
  • the target rudder angle of the wheels is calculated, and control is performed so that the rudder angles of the front and rear wheels become the target rudder angle.
  • the trajectory control is not limited as long as the vehicle can be driven along the road by steering the steered wheels.
  • an arbitrary procedure such as lane departure prevention for controlling the steering angle of the steered wheels so that the vehicle does not deviate from the lane. May be achieved.
  • the steering angles of the front wheels and the rear wheels are controlled, but the control of the steering angles of the rear wheels may not be performed.
  • the steering angle of the front wheels is controlled by the lower steering shaft 30 being driven to rotate relative to the upper steering shaft 28 by the steering angle varying device 14.
  • the rudder angle of the front wheels may be controlled by a rudder angle varying device having an arbitrary configuration such as a steer-by-wire type steering device.
  • the trajectory control is started with a delay with respect to the roll angle control, and the trajectory control is terminated with a delay with respect to the roll angle control.
  • the trajectory control is started at the same time as the roll angle control, but the increase in the control amount at the start of the trajectory control is suppressed, so that the trajectory control is started substantially delayed from the roll angle control. It may be modified.
  • the end of the trajectory control and the roll angle control is started at the same time, but the trajectory control is substantially delayed and ended with respect to the roll angle control by suppressing the decrease in the control amount at the end of the trajectory control. It may be modified so that it can be swallowed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 操舵輪を操舵することにより車両を走行路に沿って走行させる軌跡制御を行う車両の走行制御装置10であって、車体の横方向の傾斜角を制御するロール制御装置(アクティブスタビライザ56、58等)と、走行路の横方向の傾斜を判定する傾斜角推定装置(ロールレートセンサ72、ストロークセンサ74i等)と有する。車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を行うときには(S150、250、300、500)、車体の横方向の傾斜角が0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう、ロール制御装置により車体の横方向の傾斜角を制御する(S450)。

Description

車両の走行制御装置
 本発明は、車両の走行制御装置に係り、更に詳細には操舵輪を操舵することにより車両を走行路に沿って走行させる車両の走行制御装置に係る。
 自動車等の車両の走行制御装置として、車両を走行路に沿って走行させるための操舵輪の目標舵角を演算し、舵角可変装置によって操舵輪の舵角を目標舵角に制御することにより軌跡制御を行う走行制御装置が既に知られている。例えば、この種の走行制御装置の一例が、国際公開第WO2010/073400号公報に記載されており、この種の走行制御装置に於いては、運転者の操舵操作に依存せずに操舵輪の舵角が舵角制御装置によって目標舵角に制御される。
〔発明が解決しようとする課題〕
 一般に、車両が車両に対し横方向に傾斜した走行路を走行する場合には、車体に作用する重力の成分であって走行路の傾斜に平行な成分により、車体が走行路の傾斜角以上にロールせしめられると共に、車両が傾斜の下側方向へ付勢される。そのため、車両が横方向傾斜路にて直進する場合には、運転者は車両が傾斜の下側方向へ移動しないよう前輪が傾斜の上側方向へ転舵されるよう操舵し保舵する。
 かかる状況に於いて、走行制御装置により軌跡制御が開始されると、舵角可変装置により前輪の舵角はそのまま維持されるが、車両は直進状態にあるので、運転者はステアリングホイールを直進位置へ戻す。よって、車両は直進状態を維持しているにも拘らず、ステアリングホイールを直進位置へ戻すよう回転しなければならないため、乗員が違和感を覚えることが避けられず、この違和感は走行路の傾斜角が大きいほど顕著になる。
 また、走行制御装置により軌跡制御が実行され、車両の軌跡が目標軌跡になると、軌跡制御の制御量が0になって前輪の舵角も0になり、車両は走行路の傾斜方向の重力成分により傾斜の下側方向へ付勢され移動せしめられる。そして、走行制御装置は、車両の軌跡が目標軌跡に戻るよう、前輪を再度傾斜の上側方向へ転舵する。そのため、前輪の舵角の増減が繰り返されることに起因して車両が蛇行し、このことによっても乗員が違和感を覚えることが避けられず、この違和感も走行路の傾斜角が大きいほど顕著になる。
 また、上述の如き違和感の発生要因は車体の傾斜であるので、車両が横方向傾斜路を走行する際の車体の傾斜角を低減することによって違和感を低減せんとすることが考えられる。
 しかし、路面のカントの如き走行路の横方向の傾斜の角度はそれほど大きくはなく、従って、車体にその横方向に作用する力は車両が急激に旋回する場合に比して小さい。よって、従来の一般的なロール制御装置により車両の横加速度に基づいて車体のロールを低減するアンチロールモーメントを発生させても、車体の傾斜角を効果的に低減することができず、従って、上述の如き違和感を効果的に低減することができない。
 また、違和感が確実に低減されるよう、高いアンチロールモーメントが発生されると、旋回時のロール制御量が過大になり過ぎて、旋回時の車両の姿勢が不自然になる。また、高いアンチロールモーメントが発生され、車体の傾斜角が実質的に0になると、車体にその横方向に作用する力も0になるため、軌跡制御が実行されていても前輪の舵角は0になる。そのため、軌跡制御が実行されていてもいなくても前輪の舵角やステアリングホイールの回転角度は同じになるので、運転者はステアリングホイールの回転角度の変化によって軌跡制御が実行されているか否かを判断することができなくなる。
 本発明は、従来の走行制御装置が搭載された車両が横方向傾斜路を走行する場合に於ける上述の如き問題に鑑みてなされたものである。そして、本発明の主要な課題は、軌跡制御が実行されているか否かの判断を困難にすることなく、車両が横方向傾斜路を走行する状況にて実行される軌跡制御に起因して車両の乗員が覚える違和感を低減することである。
〔課題を解決するための手段及び発明の効果〕
 上述の主要な課題は、本発明によれば、操舵輪を操舵することにより車両を走行路に沿って走行させる軌跡制御を行う車両の走行制御装置に於いて、車体の横方向の傾斜角を制御するロール制御装置と、走行路の横方向の傾斜を判定する傾斜角推定装置とを有し、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を行うときには、車体の横方向の傾斜角が0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう、ロール制御装置により車体の横方向の傾斜角を制御することを特徴とする車両の走行制御装置によって達成される。
 上記の構成によれば、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御が行われるときには、車体の横方向の傾斜角はロール制御装置により0よりも大きく走行路の横方向の傾斜角よりも小さい値に制御される。よって、ロール制御装置により車体の横方向の傾斜角が低減されない場合に比して、車体に作用する横力が小さくなるので、軌跡制御が行われない状況と軌跡制御が行われる状況との間に於ける操舵輪の舵角及びステアリングホイールの回転角の差が小さくなる。
 従って、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御が開始されたり終了せしめられたりする際のステアリングホイールの回転角の変化量及び変化速度を小さくすることができ、これにより車両の乗員が覚える違和感を低減することができる。
 また、車体の横方向の傾斜角は0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう制御される。よって、ロール制御装置の制御量が小さく、車体の横方向の傾斜角が走行路の横方向の傾斜角よりも大きい場合に比して、確実に車両の乗員が覚える違和感を低減することができる。逆に、ロール制御装置の制御量が過大で、車体の横方向の傾斜角が0に制御される場合に比して、運転者は軌跡制御が開始又は終了する際のステアリングホイールの回転角度の変化によって軌跡制御が実行されているか否かを確実に判断することができる。
 上記の構成に於いて、走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を開始するときには、ロール制御装置による車体の横方向の傾斜角の制御も同時に開始し、車体の横方向の傾斜角の制御量を漸増させるようになっていてよい。
 上記の構成によれば、ロール制御装置による車体の横方向の傾斜角の制御が軌跡制御よりも遅れて開始される場合に比して、ステアリングホイールの回転角度の変化や車両の蛇行に起因して車両の乗員が覚える違和感を効果的に低減することができる。
 また、上記の構成に於いて、走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を終了させるときには、ロール制御装置による車体の横方向の傾斜角の制御の終了を同時に開始し、車体の横方向の傾斜角の制御量を漸減させるようになっていてよい。
 上記の構成によれば、ロール制御装置による車体の横方向の傾斜角の制御が軌跡制御よりも遅れて終了せしめられる場合に比して、軌跡制御が終了することを乗員に効果的に認識させることができる。
 また、上記の構成に於いて、走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を開始するときには、軌跡制御の開始に先立ってロール制御装置による車体の横方向の傾斜角の制御を開始し、車体の横方向の傾斜角の制御量を漸増させるようになっていてよい。
 上記の構成によれば、ロール制御装置による車体の横方向の傾斜角の制御が軌跡制御と同時に開始される場合に比して、軌跡制御が開始することを乗員に早期に確実に認識させることができる。また、ステアリングホイールの回転角度の変化や車両の蛇行に起因して車両の乗員が覚える違和感を効果的に低減することができる。
 また、上記の構成に於いて、走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を終了するときには、軌跡制御の終了に先立ってロール制御装置による車体の横方向の傾斜角の制御の終了を開始し、車体の横方向の傾斜角の制御量を漸減させるようになっていてよい。
 上記の構成によれば、ロール制御装置による車体の横方向の傾斜角の制御が軌跡制御と同時に終了せしめられる場合に比して、乗員は軌跡制御が終了することを早期に確実に認識することができる。また、ステアリングホイールの回転角度の変化に起因して車両の乗員が覚える違和感を効果的に低減することができる。
 また、上記の構成に於いて、傾斜判定装置は、走行路の横方向の傾斜角を推定し、走行制御装置は、0よりも大きく走行路の横方向の傾斜角よりも小さい車体の目標傾斜角を演算し、車体の横方向の傾斜角が目標傾斜角になるよう、車体の横方向の傾斜角を制御するようになっていてよい。
 上記の構成によれば、車体の目標傾斜角が演算され、車体の横方向の傾斜角が目標傾斜角になるよう制御されない場合に比して、車体の横方向の傾斜角を確実に0よりも大きく走行路の横方向の傾斜角よりも小さい角度に制御することができる。
 また、上記の構成に於いて、傾斜判定装置は、絶対空間に対する車体の横方向の傾斜角を絶対傾斜角として推定すると共に、走行路に対する車体の横方向の傾斜角を相対傾斜角として推定し、絶対傾斜角と相対傾斜角との差に基づいて走行路の横方向の傾斜角を推定するようになっていてよい。
 上記の構成によれば、走行路の横方向の傾斜角を確実に且つ正確に推定することができ、よって、車体の横方向の傾斜角を正確に所要の角度に制御することができる。
 また、上記の構成に於いて、ロール制御装置は、車体に作用する横力に基づいてアンチロールモーメントを発生することにより車体の横方向の傾斜角を制御し、走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御を行うときには、車両が横方向に傾斜した走行路を走行する状況ではないときに比して、車体に作用する横力に対するアンチロールモーメントの比を増大させることにより、車体の横方向の傾斜角が0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう、車体の横方向の傾斜角を制御するようになっていてよい。
 上記の構成によれば、車両の旋回時に於ける車体のロール制御量が過大になることを回避しつつ、車両が横方向に傾斜した走行路を走行する状況にて軌跡制御が行われる場合の車体の横方向の傾斜角を確実に所要の角度に制御することができる。
 また、上記の構成に於いて、走行制御装置は、車体の横方向の傾斜角が走行路の横方向の傾斜角の0.2倍以上で走行路の横方向の傾斜角の0.8倍以下になるよう、車体の横方向の傾斜角を制御するようになっていてよい。
 上記の構成によれば、車体の横方向の傾斜角は走行路の横方向の傾斜角の0.2倍以上で走行路の横方向の傾斜角の0.8倍以下の角度に制御される。従って、車体の横方向の傾斜角が走行路の横方向の傾斜角の0.2倍未満の角度に制御される場合に比して、軌跡制御が開始又は終了せしめられる際のステアリングホイールの回転角度の変化によって軌跡制御が実行されているか否かの判断を確実に行うことができる。また、車体の横方向の傾斜角が走行路の横方向の傾斜角の0.8倍よりも大きい角度に制御される場合に比して、車両の乗員が覚える違和感を確実に且つ効果的に低減することができる。
 本発明の一つの好ましい態様によれば、車体の横方向の傾斜角は走行路の横方向の傾斜角の0.3倍以上の角度に制御されるようになっていてよい。
 本発明の一つの好ましい態様によれば、車体の横方向の傾斜角は走行路の横方向の傾斜角の0.7倍以下の角度に制御されるようになっていてよい。
 本発明の他の一つの好ましい態様によれば、走行制御装置は、車両を目標軌跡に沿って走行させるための操舵輪の目標舵角を演算し、操舵輪の舵角を目標舵角に制御することにより軌跡制御を行うよう構成され、車体の横方向の傾斜角が制御されることに伴うロールステアの影響を低減するよう操舵輪の目標舵角を補正するようになっていてよい。
後輪操舵装置及びアクティブスタビライザ装置が搭載された車両に適用された本発明による車両の走行制御装置の第一の実施形態を示す概略構成図である。 ロール角制御との関連で軌跡制御が行われるよう電子制御装置の走行制御部により達成される本発明の第一の実施形態に於ける走行制御ルーチンを示すフローチャートである。 図2に示されたフローチャートのステップ500に於いて実行される軌跡制御ルーチンを示すフローチャートである。 図3に示されたフローチャートのステップ550に於いて実行される前輪及び後輪の目標舵角演算ルーチンを示すフローチャートである。 図3に示されたフローチャートのステップ650に於いて実行される前輪及び後輪の目標舵角補正量演算ルーチンを示すフローチャートである。 第一乃至第三の実施形態に於けるアシストトルク制御ルーチンを示すフローチャートである。 図6に示されたフローチャートのステップ1100に於いて実行される補正アシストトルク演算ルーチンを示すフローチャートである。 第一及び第二の実施形態に於ける車体のロール角制御ルーチンを示すフローチャートである。 車両の目標横加速度Gytに基づいて軌跡制御のための前輪の目標舵角θlkafを演算するためのマップである。 車両の目標横加速度Gytに基づいて軌跡制御のための後輪の目標舵角θlkarを演算するためのマップである。 目標軌跡の曲率Rの変化率Rpredに基づいてステアリングホイールの目標回転角度θlkamを演算するためのマップである。 車体の相対傾斜角αreに基づいて前輪のロールステアの影響を排除するための前輪の目標舵角の補正量Δθlkafを演算するためのマップである。 車体の相対傾斜角αreに基づいて後輪のロールステアの影響を排除するための後輪の目標舵角の補正量Δθlkarを演算するためのマップである。 操舵トルクMT及び車速Vに基づいて操舵負担を軽減するための基本目標アシストトルクTbaseを演算するためのマップである。 前輪の最終目標舵角θlkafの二階微分値θlkafddに基づいてステアリング系及び電動式のパワーステアリング装置の慣性を補償するための慣性補正アシストトルクT1を演算するためのマップである。 前輪の最終目標舵角θlkafの微分値θlkafdに基づいてステアリング系及び電動式のパワーステアリング装置の粘性を補償するための粘性補正アシストトルクT2を演算するためのマップである。 前輪の最終目標舵角θlkafの微分値θlkafdに基づいてステアリング系及び電動式のパワーステアリング装置の摩擦を補償するための摩擦補正アシストトルクT3を演算するためのマップである。 応答補正後の前輪の目標舵角θlkafaに基づいて前輪の舵角制御に基づく補正アシストトルクT4を演算するためのマップである。 応答補正後の後輪の目標舵角θlkaraに基づいて後輪の舵角制御に基づく補正アシストルクT5を演算するためのマップである。 軌跡制御及びロール角制御が行われない場合について、車両が横方向傾斜路を直進する際の車体の傾斜、ステアリングホイールの回転位置、前輪の舵角を示す説明図である。 軌跡制御が行われロール角制御が行われない場合について、車両が横方向傾斜路を直進する際の車体の傾斜、ステアリングホイールの回転位置、前輪の舵角を示す説明図である。 軌跡制御及びロール角制御が行われる場合について、車両が横方向傾斜路を直進する際の車体の傾斜、ステアリングホイールの回転位置、前輪の舵角を示す説明図である。 車体のロール角が0になるよう過剰なロール角制御が行われる場合について、車両が横方向傾斜路を直進する際の車体の傾斜、ステアリングホイールの回転位置、前輪の舵角を示す説明図である。 第一の実施形態の修正例として構成された本発明による車両の走行制御装置の第二の実施形態に於ける走行制御ルーチンを示すフローチャートである。 図24に示されたフローチャートのステップ500に於いて実行される軌跡制御ルーチンを示すフローチャートである。 本発明による車両の走行制御装置の第三の実施形態に於ける車体のロール角制御ルーチンを示すフローチャートである。 車両の横加速度Gyに基づいて前輪側及び後輪側の目標アンチロールモーメントMtgf及びMtgrを演算するためのマップである。 アクティブスタビライザ装置を有する車両の車体がロールした状態を示す図である。
 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
[第一の実施形態]
 図1は後輪操舵装置及びアクティブスタビライザ装置が搭載された車両に適用された本発明による車両の走行制御装置の第一の実施形態を示す概略構成図である。
 図1に於いて、本発明による走行制御装置10は車両12に搭載され、舵角可変装置14及びこれを制御する電子制御装置16を含んでいる。また図1に於いて、18FL及び18FRはそれぞれ車両12の左右の前輪を示し、18RL及び18RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪18FL及び18FRは運転者によるステアリングホイール20の操作に応答して駆動されるラック・アンド・ピニオン型の電動式パワーステアリング装置22によりラックバー24及びタイロッド26L及び26Rを介して転舵される。
 操舵入力手段であるステアリングホイール20はアッパステアリングシャフト28、舵角可変装置14、ロアステアリングシャフト30、ユニバーサルジョイント32を介してパワーステアリング装置22のピニオンシャフト34に駆動接続されている。舵角可変装置14はハウジング14Aの側にてアッパステアリングシャフト28の下端に連結され、回転子14Bの側にて図には示されていない減速機構を介してロアステアリングシャフト30の上端に連結された補助転舵駆動用の電動機36を含んでいる。
 かくして舵角可変装置14はアッパステアリングシャフト28に対し相対的にロアステアリングシャフト30を回転駆動することにより、左右の前輪18FL及び18FRをステアリングホイール20に対し相対的に補助転舵駆動する。よって、舵角可変装置14はステアリングギヤ比(操舵伝達比の逆数)を増減変化させるステアリングギヤ比可変装置(VGRS)として機能し、また、運転者の操舵操作に依存せず左右の前輪の舵角を変化させる前輪用舵角可変装置としても機能する。後に詳細に説明する如く、舵角可変装置14は電子制御装置16の舵角制御部により制御される。
 左右の後輪18RL及び18RRは左右の前輪18FL及び18FRの操舵とは独立に、後輪操舵装置42の電動式のパワーステアリング装置44によりタイロッド46L及び46Rを介して操舵される。よって、後輪操舵装置42は、運転者の操舵操作に依存せず左右の後輪の舵角を変化させる後輪用舵角可変装置として機能し、後述の如く電子制御装置16の舵角制御部により制御される。
 図示の後輪操舵装置42は周知の構成の電動式補助ステアリング装置であり、電動機48Aと、電動機48Aの回転をリレーロッド48Bの往復運動に変換する例えばねじ式の運動変換機構48Cとを有する。リレーロッド48Bはタイロッド46L、46R及び図には示されていないナックルアームと共働してリレーロッド48Bの往復運動により左右の後輪18RL及び18RRを転舵駆動する転舵機構を構成している。
 図には詳細に示されていないが、変換機構48Cは電動機48Aの回転をリレーロッド48Bの往復運動に変換するが、左右の後輪18RL及び18RRが路面より受けリレーロッド48Bに伝達された力を電動機48Aへ伝達せず、従ってリレーロッド48Bに伝達された力によって電動機48Aが回転駆動されることがないよう構成されている。
 図示の実施形態に於いては、電動式パワーステアリング装置22はラック同軸型の電動式パワーステアリング装置であり、電動機50と、電動機50の回転トルクをラックバー24の往復動方向の力に変換する例えばボールねじ式の変換機構52とを有する。電動式パワーステアリング装置22は電子制御装置16の電動式パワーステアリング装置(EPS)制御部によって制御される。電動式パワーステアリング装置22はハウジング54に対し相対的にラックバー24を駆動する補助操舵力を発生することにより、運転者の操舵負担を軽減する操舵アシスト力発生装置として機能する。
 尚、舵角可変装置14は補助操舵アシスト力発生装置と共働して運転者の操舵操作によらず左右前輪の舵角を変化させると共に、ステアリングホイール20の回転角度を変化させることができる限り、任意の構成のものであってよい。同様に、後輪操舵装置42も運転者の操舵操作によらず左右後輪の舵角を変化させることができる限り、任意の構成のものであってよい。更に、操舵アシスト力発生装置も補助操舵力を発生することができる限り任意の構成のものであってよい。また操舵入力装置はステアリングホイール20であり、その操作位置は回転角度であるが、操舵入力装置はジョイスティック型の操舵レバーであってもよく、その場合の操作位置は往復操作位置であってよい。
 左右の前輪18FL及び18FRの間にはフロントアクティブスタビライザ装置56が設けられ、左右の後輪18RL及び18RRの間にはリヤアクティブスタビライザ装置58が設けられている。アクティブスタビライザ装置56及び58は、それぞれ必要に応じてアンチロールモーメントを車両(車体)に付与し、これにより前輪側及び後輪側の車両のロール剛性を可変制御すると共に、車体のロール角を増減するロール角可変装置として機能する。
 フロントアクティブスタビライザ装置56は、車両の横方向に延在する一対のトーションバー部分56TL及び56TRと、それぞれこれらのトーションバー部分の外端に一体に接続された一対のアーム部56AL及び56ARとを有している。トーションバー部分56TL及び56TRは、共通の軸線に沿って互いに整合して延在し、それぞれ図には示されていないブラケットを介して図には示されていない車体に自らの軸線の周りに回転可能に支持されている。アーム部56AL及び56ARはそれぞれトーションバー部分56TL及び56TRに対し交差するよう車両前後方向に延在している。アーム部56AL及び56ARの外端はそれぞれ図には示されていないゴムブッシュ装置を介して左右前輪18FL及び18FRのサスペンションアームの如きサスペンション部材19FL及び19FRに連結されている。
 アクティブスタビライザ装置56はトーションバー部分56TL及び56TRの間にアクチュエータ56Fを有し、アクチュエータ56Rは電動機を内蔵している。アクチュエータ56Fは、電子制御装置16のアクティブスタビライザ制御部によって制御され、必要に応じてトーションバー部分56TL及び56TRを相対的に回転駆動することにより、左右前輪の位置に於いて車体に付与されるアンチロールモーメントを増減する。
 同様に、アクティブスタビライザ装置58は車両の横方向に延在する一対のトーションバー部分58TL及び58TRと、それぞれこれらのトーションバー部分の外端に一体に接続された一対のアーム部58AL及び58ARとを有している。トーションバー部分58TL及び58TRは、共通の軸線に沿って互いに整合して延在し、それぞれ図には示されていないブラケットを介して図には示されていない車体に自らの軸線の周りに回転可能に支持されている。アーム部58AL及び58ARはそれぞれトーションバー部分58TL及び58TRに対し交差するよう車両前後方向に延在している。アーム部58AL及び58ARの外端はそれぞれ図には示されていないゴムブッシュ装置を介して左右後輪18RL及び18RRのサスペンションアームの如きサスペンション部材19RL及び19RRに連結されている。
 アクティブスタビライザ装置58は、トーションバー部分58TL及び58TRの間にアクチュエータ58Rを有し、アクチュエータ58Rは電動機を内蔵している。アクチュエータ58Rは、電子制御装置16のアクティブスタビライザ制御部によって制御され、必要に応じてトーションバー部分58TL及び58TRを相対的に回転駆動することにより、左右後輪の位置に於いて車体に付与されるアンチロールモーメントを増減する。
 尚、アクティブスタビライザ装置56及び58の構造自体は本発明の要旨をなすものではないので、車両のロール角を可変制御し得るものである限り当技術分野に於いて公知の任意の構成のものであってよい。
 図示の実施形態に於いては、アッパステアリングシャフト28には、該アッパステアリングシャフトの回転角度を操舵角θとして検出する操舵角センサ60が設けられている。ピニオンシャフト34には、操舵トルクMTを検出する操舵トルクセンサ62が設けられている。舵角可変装置14には、その相対回転角度θre、即ちアッパステアリングシャフト28に対するロアステアリングシャフト30の相対回転角度を検出する回転角度センサ64が設けられている。
 操舵角θを示す信号、操舵トルクMTを示す信号、相対回転角度θreを示す信号は、車速センサ66により検出された車速Vを示す信号と共に、電子制御装置16の舵角制御部及びEPS制御部へ入力される。尚、ロアステアリングシャフト30の回転角度が検出され、相対回転角度θreは、操舵角θとロアステアリングシャフト30の回転角度との差として求められてもよい。
 また、車両12には車両の前方を撮影するCCDカメラ68及び車両の乗員により操作され車両を走行路に沿って走行させる軌跡制御(「LKA制御」とも呼ばれる)を行うか否かを選択するための選択スイッチ70が設けられている。CCDカメラ68により撮影された車両の前方の画像情報を示す信号及び選択スイッチ70の位置を示す信号は電子制御装置16の走行制御部へ入力される。尚車両の前方の画像情報や走行路の情報はCCDカメラ以外の手段により取得されてもよい。
 また、車両12には車両のロールレートωrを検出するロールレートセンサ72と、それぞれ左前輪、右前輪、左後輪、右後輪の位置に於けるサスペンションストロークHi(i=FL,FR,RL,RR)を検出するストロークセンサ74iとが設けられている。ロールレートωrを示す信号及びサスペンションストロークHiを示す信号も電子制御装置16の走行制御部へ入力される。
 更に、フロントアクティブスタビライザ装置56のアクチュエータ56Fには、該アクチュエータの回転角度ψfを検出するロータリーエンコーダ76Fが設けられている。同様に、リヤアクティブスタビライザ装置58のアクチュエータ58Rには、該アクチュエータの回転角度ψrを検出するロータリーエンコーダ78Rが設けられている。回転角度ψf及びψrを示す信号も電子制御装置16の走行制御部へ入力される。
 電子制御装置16の各制御部は、それぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータを含むものであってよい。また操舵角センサ60、操舵トルクセンサ62、回転角度センサ64、ロールレートセンサ72は、それぞれ車両の左旋回方向への操舵又は転舵の場合を正として操舵角θ、操舵トルクMT、相対回転角度θre、ロールレートωrを検出する。
 後に詳細に説明する如く、電子制御装置16は、図2等に示されたフローチャートに従って舵角可変装置14及び後輪操舵装置42等を制御することにより軌跡制御を行い、これにより車両を走行路に沿って走行させる。
 また、電子制御装置16は、操舵トルクMT等に基づいて電動式パワーステアリング装置22を制御することにより、運転者の操舵負担を軽減すると共に、舵角可変装置14が左右前輪の舵角を軌跡制御に必要な舵角に制御することを補助する。
 また、電子制御装置16は、車体のロール角及び各車輪のストロークに基づいて走行路の横方向傾斜角を推定し、その推定結果に基づいて路車両が横方向傾斜路を走行しているか否かを判定する。そして、電子制御装置16は、車両が横方向傾斜路を走行している状況にて軌跡制御を行うときには、車体のロール角が0よりも大きく走行路の傾斜角よりも小さい値になるよう、アクティブスタビライザ装置56及び58の制御による車体のロール角制御を行う。
 特に、第一の実施形態に於いては、電子制御装置16は、車両が横方向傾斜路を走行している状況にて軌跡制御を開始するときには、車体のロール角制御を同時に開始する。また、電子制御装置16は、車両が横方向傾斜路を走行している状況にて軌跡制御を終了するときには、車体のロール角制御も同時に終了させる。
 次に、図28を参照して、車体12Bがその重心100に作用する横力Fyによりロールセンタ102の周りにロールする場合について、アクティブスタビライザ装置56及び58の目標アクチュエータトルクTstgf及びTstgrの演算要領を説明する。尚、車体の重量をW(質量と重力加速度との積)とし、車体の傾斜角をαbとすると、横力FyはWsinαbである。
 図28に示されている如く、車体12Bの重心100とロールセンタ102との距離をLbとし、アクティブスタビライザ装置56及び58のアンチロールモーメントをそれぞれMf及びMrとする。また、前輪及び後輪のサスペンションによるロール剛性をそれぞれKsrf及びKsrrとすると、ロールセンタ102の周りのモーメントの釣り合いから下記の式(1)が成立する。
  (Ksrf+Ksrr)αb=FyLb-(Mf+Mr) …(1)
 前後輪のサスペンションによりで支持されるロールモーメントの比はロール剛性の配分比と等しいと考えられてよい。よって、前輪のロール剛性の配分比をRsdとすると、下記の式(2)が成立する。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)及び(2)より、下記の式(3)及び(4)が成立する。
Figure JPOXMLDOC01-appb-M000002
 前輪及び後輪のトレッドをそれぞれTf及びTrとすると、前輪及び後輪のストロークHf及びHrはそれぞれ下記の式(5)及び(6)により表される。
Figure JPOXMLDOC01-appb-M000003
 前輪及び後輪の1輪分のホイールレートをそれぞれKf及びKrとすると、前輪及び後輪の各車輪のサスペンションが発生する上下力Fsf及びFsrはそれぞれ下記の式(7)及び(8)により表される。
Figure JPOXMLDOC01-appb-M000004
 よって、前輪及び後輪に於いて発生するアンチロールモーメントMf及びMrはそれぞれ下記の式(9)及び(10)により表される。
Figure JPOXMLDOC01-appb-M000005
 従って、前輪及び後輪のサスペンションによるロール剛性Ksrf及びKsrrはそれぞれ下記の式(11)及び(12)により表される。
Figure JPOXMLDOC01-appb-M000006
 以上に於いては、アクティブスタビライザ装置56及び58のトーションバー部分が外力によりねじられることにより発生する力が考慮されていない。また、車体のロール角には車輪のタイヤの弾性変形による車体の傾斜分が含まれていない。
 車体がロールすると、アクティブスタビライザ装置の左右のアーム部の先端は互いに逆方向へ上下動する。左右のアーム部の先端の上下方向の高さの差について見たアクティブスタビライザ装置56及び58のばね定数をそれぞれKssf及びKssrとする。また、アクティブスタビライザ装置56及び58のアーム比(アクチュエータのトルク発生アーム長さに対するアーム部の長さの比)をそれぞれRsaf及びRsarとする。
 前輪及び後輪のタイヤの径方向のばね定数をそれぞれKwf及びKwrとし、前輪及び後輪のサスペンションスプリングのばね力についてのホイールレートをそれぞれKspf及びKsprとする。アクティブスタビライザ装置のトーションバー部分、タイヤ、及びサスペンションスプリングの弾性変形を含む前輪及び後輪の1輪分のホイールレートKf及びKrはそれぞれ下記の式(13)及び(14)により表される。
Figure JPOXMLDOC01-appb-M000007
 また、アクティブスタビライザ装置56及び58のアーム長さをそれぞれLsf及びLsrとすると、アンチロールモーメントMf及びMrを発生するためにアクチュエータ56F及び58Rが発生すべきトルクTactf及びTactrはそれぞれ下記の式(15)及び(16)により表される。
Figure JPOXMLDOC01-appb-M000008
 尚、上記式(13)及び(14)により表される前輪及び後輪の1輪分のホイールレートKf及びKrは車両の諸元により一義的に定まる。よって、上記式(11)及び(12)により表される前輪及び後輪のサスペンションによるロール剛性Ksrf及びKsrrも車両の諸元により一義的に定まるので、ロール剛性Ksrf及びKsrrをそれぞれ定数として予め求めておくことができる。
<走行制御ルーチン>
 次に図2に示されたフローチャートを参照して、ロール角制御との関連で軌跡制御が行われるよう走行制御部により達成される本発明の第一の実施形態に於ける走行制御ルーチンの概要について説明する。尚、図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。このことは後述の図6及び図8に示されたフローチャートによる制御についても同様である。
 まず、ステップ100に於いては、操舵角センサ60により検出された操舵角θを示す信号等の読み込みが行われ、ステップ150に於いては、軌跡制御の実行中であるか否かの判別が行われる。そして肯定判別が行われたときには制御はステップ250へ進み、否定判別が行われたときには制御はステップ200へ進む。
 ステップ200に於いては、軌跡制御の開始条件が成立したか否かの判別が行われる。そして否定判別が行われたときには制御はステップ100へ戻り、肯定判別が行われたときには制御はステップ300へ進む。
 この場合、下記の何れかが判定されたときに軌跡制御の開始条件が成立したと判定されてよい。
a1:選択スイッチ70がオフよりオンに切り替えられた。
a2:CCDカメラ68により車両の前方の情報を取得することができない状況から車両の前方の情報を取得することができる状況になった等、正常な軌跡制御を実行できない状況から正常な軌跡制御を実行することができる状況になった。
 ステップ250に於いては、軌跡制御の終了条件が成立したか否かの判別が行われる。そして肯定判別が行われたときには制御はステップ800へ進み、否定判別が行われたときには制御はステップ300へ進む。
 この場合、下記の何れかが判定されたときに軌跡制御の終了条件が成立したと判定されてよい。
b1:選択スイッチ70がオンよりオフに切り替えられた。
b2:CCDカメラ68により走行路の白線の如き車両の前方の情報を取得することができない等、正常な軌跡制御を実行することができなくなった。
 ステップ300に於いては、例えば図8に示されたフローチャートに従って演算される走行路の横方向の傾斜角αroadの絶対値が基準値(正の定数)以上であるか否かの判別により、走行路が横方向傾斜路であるかの判別が行われる。そして肯定判別が行われたときには制御はステップ450へ進み、否定判別が行われたときには制御はステップ350へ進む。
 ステップ350に於いては、電子制御装置16のアクティブスタビライザ制御部によってフロントアクティブスタビライザ装置56及びリヤアクティブスタビライザ装置58が制御されることによりロール角制御が実行されているか否かの判別が行われる。そして否定判別が行われたときには制御はステップ500へ進み、肯定判別が行われたときには制御はステップ400へ進む。
 ステップ400に於いては、電子制御装置16の走行制御部よりアクティブスタビライザ制御部へロール角制御の終了指令が出力され、これによりアクティブスタビライザ制御部によるロール角制御が終了せしめられる。
 ステップ450に於いては、電子制御装置16の走行制御部よりアクティブスタビライザ制御部へロール角制御の実行指令が出力され、これによりアクティブスタビライザ制御部によるロール角制御が実行される。
 ステップ500に於いては、後に詳細に説明する如く図3乃至図5に示されたフローチャートに従って軌跡制御が実行され、これにより車両が走行路に沿って走行するよう前後輪の舵角が制御される。
 ステップ800に於いては、後述のステップ850のロール角制御の終了指令がまだ出力されておらず、ロール角制御が継続しているか否かの判別が行われる。そして否定判別が行われたときには制御はステップ900へ進み、肯定判別が行われたときには制御はステップ850へ進む。
 ステップ850に於いては、電子制御装置16の走行制御部よりアクティブスタビライザ制御部へロール角制御の終了指令が出力され、これによりアクティブスタビライザ制御部によるロール角制御が終了せしめられる。
 ステップ900に於いては、図3乃至図5に示されたフローチャートに従って実行される軌跡制御が終了せしめられる。
 尚、図2のフローチャートには示されていないが、軌跡制御及びロール角制御の制御量は、車両の走行状態が急激に変化しないよう、それらの制御の開始時には漸次増大され、それらの制御の終了時には漸次低減される。
<軌跡制御ルーチン>
 次に、図3乃至図5に示されたフローチャートを参照して、上記ステップ500に於いて実行される軌跡制御ルーチンについて説明する。
 まず、ステップ550に於いては、後に詳細に説明する如く図4に示されたフローチャートに従って、車両を走行路に沿って走行させるための前輪の目標舵角θlkaf及び後輪の目標舵角θlkarが演算される。
 ステップ600に於いては、電子制御装置16のアクティブスタビライザ制御部によってフロントアクティブスタビライザ装置56及びリヤアクティブスタビライザ装置58が制御されることによりロール角制御が実行されているか否かの判別が行われる。そして肯定判別が行われたときには制御はステップ650へ進み、否定判別が行われたときにはステップ610に於いてロールステアの影響を排除するための前輪の目標舵角の補正量Δθlkaf及び後輪の目標舵角の補正量Δθlkarがそれぞれ0に設定され、しかる後制御はステップ700へ進む。
 ステップ650に於いては、図5に示されたフローチャートに従ってロールステアの影響を排除するための前輪の目標舵角の補正量Δθlkaf及び後輪の目標舵角の補正量Δθlkarが演算され、しかる後制御はステップ700へ進む。
 ステップ700に於いては、前輪の目標舵角θlkaf及び後輪の目標舵角θlkarにそれぞれ補正量Δθlkaf及びΔθlkarが加算されることにより、ロールステアの影響が排除されるよう補正された前輪及び後輪の目標舵角θlkaf及びθlkarが演算される。
 ステップ710に於いては、前輪及び後輪の舵角がそれぞれ補正後の目標舵角θlkaf及びθlkarになるよう、転舵角可変装置14及び後輪操舵装置42が制御され、これにより車両が走行路に沿って走行するよう軌跡制御が実行される。
 図4に示された前輪及び後輪の目標舵角の演算ルーチンのステップ555に於いては、CCDカメラ68により撮影された車両の前方の画像情報の解析等により、走行路に沿う車両の目標軌跡が決定される。また、目標軌跡の曲率R(半径の逆数)、目標軌跡に対する車両の横方向の偏差Y及びヨー角の偏差φが演算される。
 尚、車両の目標軌跡の決定は、図には示されていないナビゲーション装置よりの情報に基づいて行われてもよく、画像情報の解析とナビゲーション装置よりの情報との組合せに基づいて行われてもよい。また、目標軌跡の曲率R等は、車両を目標軌跡に沿って走行させる軌跡制御を行うために必要なパラメータであるが、それらの演算要領は本発明の要旨をなすものではないので、これらのパラメータは任意の要領にて演算されてよい。
 ステップ560に於いては、上記軌跡制御のパラメータに基づいて車両を目標軌跡に沿って走行させるために必要な車両の目標横加速度Gytが演算される。尚、目標横加速度Gytは上記軌跡制御用パラメータの関数により演算されてよく、また、上記軌跡制御用パラメータと目標横加速度Gytとの関係を示すマップが設定され、上記軌跡制御用パラメータに基づいてマップより目標横加速度Gytが演算されてもよい。
 ステップ565に於いては、車両の目標横加速度Gytに基づいて図9に示されたマップより軌跡制御のための前輪の目標舵角θlkafが演算される。
 ステップ570に於いては、車両の目標横加速度Gytに基づいて図10に示されたマップより軌跡制御のための後輪の目標舵角θlkarが演算される。
 ステップ575に於いては、予め設定された距離L0前方の走行路の曲率の変化率Rpredが求められると共に、変化率Rpredに基づいて図11に示されたマップより軌跡制御のための前輪の目標舵角θlkafの修正量θlkafmが演算される。尚、距離L0は正の定数であってよいが、車速Vが高いほど大きくなるよう、車速Vに応じて可変設定されてもよい。
 ステップ580に於いては、前輪の目標舵角θlkafに修正量θlkafmが加算されることにより、走行路の曲率の変化に遅れることなく軌跡制御が実行されるよう修正された前輪の目標舵角θlkafが演算される。
 図5に示された前輪及び後輪の目標舵角の演算ルーチンのステップ655に於いては、後述の図8に示された車体のロール角制御ルーチンのステップ1450に於いて演算された走行路の傾斜角αroadの読み込みが行われる。
 ステップ660に於いては、図8に示された車体のロール角制御ルーチンのステップ1550に於いて演算された位相進みフィルタ処理後の車体の目標傾斜角αbtg_paの読み込みが行われる。
 ステップ665に於いては、走行路に対する車体の傾斜角、即ち、走行路の傾斜角αroadと車体の目標傾斜角αbtg_paとの差αroad-αbtg_paが車体の相対傾斜角αreとして演算される。
 ステップ670に於いては、車体の相対傾斜角αreに基づき図12に示されたマップより前輪のロールステアの影響を排除するための前輪の目標舵角の補正量Δθlkafが演算される。
 ステップ675に於いては、車体の相対傾斜角αreに基づき図13に示されたマップより後輪のロールステアの影響を排除するための後輪の目標舵角の補正量Δθlkarが演算される。
<アシストトルク制御ルーチン>
 次に、図6及び図7に示されたフローチャートを参照して、電子制御装置16のEPS制御部により達成されるアシストトルク制御ルーチンについて説明する。
 まず、ステップ1000に於いては、操舵トルクMTを示す信号等の読み込みが行われ、ステップ1050に於いては、操舵トルクMT及び車速Vに基づいて図14に示されたマップより操舵負担を軽減するための基本目標アシストトルクTbaseが演算される。
 ステップ1100に於いては、後に詳細に説明する如く図7に示されたフローチャートに従って、アシストトルクの制御を適正に実行するための補正アシストトルクΔTが演算される。
 ステップ1200に於いては、基本目標アシストトルクTbaseと補正アシストトルクΔTとの和が最終目標アシストトルクTtgとして演算される。
 ステップ1250に於いては、最終目標アシストトルクTtgに基づいて電動式パワーステアリング装置22が制御されることにより、電動式パワーステアリング装置22により発生されるアシストトルクが最終目標アシストトルクTtgになるよう制御される。
 図7に示された補正アシストトルク演算ルーチンのステップ1055に於いては、前輪の最終目標舵角θlkaf、即ち、上記ステップ380に於いて演算された修正後の前輪の目標舵角θlkafの微分値θlkafd及び二階微分値θlkafddが演算される。
 ステップ1060に於いては、前輪の最終目標舵角θlkafの二階微分値θlkafddに基づいて図15に示されたマップよりステアリング系及び電動式のパワーステアリング装置22の慣性を補償するための慣性補正アシストトルクT1が演算される。
 ステップ1065に於いては、前輪の最終目標舵角θlkafの微分値θlkafdに基づいて図16に示されたマップよりステアリング系及び電動式のパワーステアリング装置22の粘性を補償するための粘性補正アシストトルクT2が演算される。
 ステップ1070に於いては、前輪の最終目標舵角θlkafの微分値θlkafdに基づいて図17に示されたマップよりステアリング系及び電動式のパワーステアリング装置22の摩擦を補償するための摩擦補正アシストトルクT3が演算される。
 ステップ1075に於いては、前輪の最終目標舵角θlkafが例えば二次遅れ二次進みのフィルタにて処理されることにより、応答補正後の前輪の目標舵角θlkafa、即ち前輪の舵角の変化に対する操舵トルクの応答性について補正された前輪の目標舵角が演算される。
 ステップ1080に於いては、応答補正後の前輪の目標舵角θlkafaに基づいて図18に示されたマップより前輪の舵角制御に基づく補正アシストトルクT4が演算される。尚、補正アシストトルクT4は、軌跡制御の目的で前輪の舵角を目標舵角θlkafaに制御することを補助するためのアシストトルクである。
 ステップ1085に於いては、後輪の目標舵角θlkarが例えば二次遅れ一次進みのフィルタにて処理されることにより、応答補正後の後輪の目標舵角θlkara、即ち後輪の舵角の変化に対する操舵トルクの応答性について補正された後輪の目標舵角が演算される。
 ステップ1090に於いては、応答補正後の後輪の目標舵角θlkaraに基づいて図19に示されたマップより後輪の舵角制御に基づく補正アシストルクT5が演算される。尚、補正アシストルクT5は、後輪の舵角を目標舵角θlkaraに制御することによる操舵トルクの変動を補償するための補正アシストトルクである。
 ステップ1095に於いては、それぞれステップ1060乃至1070、1080、1090に於いて演算された補正アシストトルクT1~T5の和が補正アシストトルクΔTとして演算される。
<車体のロール角制御ルーチン>
 次に、図8に示されたフローチャートを参照して、アクティブスタビライザ56及び58を制御する電子制御装置16のアクティブスタビライザ制御部により達成される車体のロール角制御ルーチンについて説明する。
 まず、ステップ1300に於いては、ロールレートωrを示す信号等の読み込みが行われる。次のステップ1350に於いては、電子制御装置16の走行制御部より車体のロール角制御の実行指令が出力されているか否かの判別により、車体のロール角制御が必要であるか否かの判別が行われる。そして否定判別が行われたときには制御はステップ1300へ戻り、肯定判別が行われたときには制御はステップ1400へ進む。
 ステップ1400に於いては、車両が走行を開始した時点から現在までの車両のロールレートωrの積分値ωrintが演算されると共に、積分値ωrintと車体のロール角の初期値α0との和として車体の絶対ロール角αabが演算される。尚、車体のロール角の初期値α0は車両が走行を開始した時点の車体のロール角であり、絶対ロール角αabは絶対空間に於ける現在の車体のロール角である。
 ステップ1450に於いては、左右前輪の位置に於けるストロークHFL及びHFRに基づく前輪側の走行路に対する車体のロール角αrefが演算される。また、左右後輪の位置に於けるストロークHRL及びHRRに基づく後輪側の走行路に対する車体のロール角αrerが演算される。そして、ロール角αref及びαrerの平均値として車体の相対ロール角αre、即ち、走行路に対する車体のロール角が演算される。
 ステップ1500に於いては、車体の絶対ロール角αabと車体の相対ロール角αreとの差αab-αreが、絶対空間に於ける走行路の傾斜角αroadとして演算される。尚、ロール角及び走行路の傾斜角は右下がりの場合が正の値である。
 ステップ1550に於いては、0よりも大きく1よりも小さい係数Kと走行路の傾斜角αroadとの積が、車体の目標傾斜角αbtg、即ち、絶対空間に於ける車体の横方向の目標傾斜角として演算される。尚、係数Kは、0.2以上で0.8以下の値、特に下限値は0.3以上の値であることが好ましく、上限値は0.7以下の値であることが好ましい。また、係数Kは、一定であってよいが、例えば車速Vが高いほど小さい値になるよう、車速Vに応じて可変設定されてもよい。
 ステップ1600に於いては、車体の目標傾斜角αbtgが位相進みフィルタにて処理されることにより、位相進みフィルタ処理後の車体の目標傾斜角αbtg_paが演算される。
 ステップ1650に於いては、走行路の傾斜角αroadと車体の目標傾斜角αbtg_paとの差αroad-αbtg_paが、車体の目標ロール角αbrtgとして演算される。
 ステップ1700に於いては、車体の目標ロール角αbrtgに基づいて、それぞれ上記式9及び10に対応する下記の式(17)及び(18)に従って車体の傾斜角を目標傾斜角にするための前輪側及び後輪側の目標アンチロールモーメントMtgf及びMtgrが演算される。
Figure JPOXMLDOC01-appb-M000009
 ステップ1900に於いては、目標アンチロールモーメントMtgf及びMtgrに基づいて、それぞれ上記式(15)及び(16)に対応する下記の式(19)及び(20)に従って前輪側及び後輪側のアクチュエータ58F及び58の目標アクチュエータトルクTtgf及びTtgrが演算される。
Figure JPOXMLDOC01-appb-M000010
 ステップ1950に於いては、前輪側及び後輪側のアクチュエータ58F及び58Rの出力トルクを目標アクチュエータトルクTtgf及びTtgrにするためのアクチュエータ58F及び58Rの目標回転角ψtgf及びψtgrが演算される。尚、目標回転角は例えば図には示されていないマップより演算されてもよく、予め求められた式に従って演算されてもよい。
 ステップ2000に於いては、アクチュエータ58F及び58Rの回転角がそれぞれ目標回転角ψtgf及びψtgrになるようアクチュエータ58F及び58Rが制御され、これにより車体の傾斜角が目標傾斜角αbtgに制御される。
<請求の範囲の構成との関係>
 以上の説明より解る如く、アクティブスタビライザ装置56、58及びこれらを図8に示されたフローチャートに従って制御する電子制御装置16のアクティブスタビライザ制御部が「ロール制御装置」の例示である。また、ロールレートセンサ72、ストロークセンサ74i、及びこれらの検出値に基づいて図3及び図8に示されたフローチャートに従って種々の傾斜角を演算し判定する電子制御装置16の走行制御部が「傾斜判定装置」の例示である。また、舵角可変装置14、後輪操舵装置42、及びこれらを図3乃至図5に示されたフローチャートに従って制御する電子制御装置16の走行制御部が「走行制御装置」の例示である。走行制御装置は、ロール制御装置、傾斜判定装置、電子制御装置16の電動式パワーステアリング装置制御部によって制御される電動式パワーステアリング装置22と共働して、車輪を操舵することにより車両を目標軌跡に沿って走行させる軌跡制御を行う。
<第一の実施形態の作動>
 次に、車両の種々の走行状況について第一の実施形態の走行制御装置の軌跡制御及びロール角制御を説明する。
(A〉選択スイッチ70がオフ又は正常な軌跡制御が実行不可の場合
 ステップ150及び200に於いてそれぞれ否定判別が行われる。従って、軌跡制御は行われず、また走行路が横方向傾斜路であるか否かに関係なく、ロール角制御も行われない。
(B〉選択スイッチ70がオンで、正常な軌跡制御を実行可の場合
(B-1〉走行路が横方向傾斜路でない場合
 ステップ150に於いて肯定判別が行われ、ステップ250に於いて否定判別が行われる。そしてステップ300及び350に於いてそれぞれ否定判別が行われ、ステップ450は実行されず、ステップ500が実行される。従って、軌跡制御のみが行われ、ロール角制御は行われない。
(B-2〉走行路が横方向傾斜路である場合
 ステップ150に於いて肯定判別が行われ、ステップ250に於いて否定判別が行われる。そしてステップ300に於いて肯定判別が行われ、ステップ450及び500が実行される。従って軌跡制御及びロール角制御の両者が行われる。
(C〉選択スイッチ70がオフからオンに切り替えられた場合、又は正常な軌跡制御が実行不可から実行可になった場合
(C-1〉走行路が横方向傾斜路でない場合
 ステップ150に於いて否定判別が行われるが、ステップ200に於いて肯定判別が行われる。そしてステップ300及び350に於いてそれぞれ否定判別が行われ、ステップ450は実行されず、ステップ500が実行される。従って軌跡制御のみが開始され、ロール角制御は開始されない。これにより制御の状況が上記(A〉から上記(B-1〉へ変化する。
(C-2〉走行路が横方向傾斜路である場合
 この場合にもステップ150に於いて否定判別が行われると共に、ステップ200に於いて肯定判別が行われる。しかし、ステップ300に於いて肯定判別が行われ、ステップ450及び500が実行される。従って、軌跡制御及びロール角制御の両者が同時に開始され、制御の状況が上記(A〉から上記(B-2〉へ変化する。
(D〉選択スイッチ70がオンからオフに切り替えられた場合、又は正常な軌跡制御が実行可から実行不可になった場合
(D-1〉走行路が横方向傾斜路でない場合
 ステップ150及び250に於いてそれぞれ肯定判別が行われるが、ステップ800に於いて否定判別が行われ、ステップ900が実行される。従って、軌跡制御のみが終了せしめられ、ロール角制御は実行されない状況に維持される。これにより制御の状況が上記(B-1〉から上記(A〉へ変化する。
(D-2〉走行路が横方向傾斜路である場合
 ステップ150、250、800に於いてそれぞれ肯定判別が行われ、ステップ850及び900が実行される。従って、軌跡制御及びロール角制御の両者が同時に終了せしめられ、制御の状況が上記(B-2〉から上記(A〉へ変化する。
<軌跡制御及びロール角制御の有無の相違>
 次に、図20乃至図23を参照して、車両が横方向傾斜路を直進する場合に於ける車体の傾斜、ステアリングホイールの回転位置、前輪の舵角を、軌跡制御及びロール角制御の種々の状況について説明する。
 尚、図20乃至図23に於いて、110は絶対空間の水平方向を示し、112は車両12の上下方向を示している。また、図20乃至図23に於いて、上段は車両を後方より見た図であり、中断はステアリングホイールをその回転軸線に沿って見た図であり、下段は車両を上方より見た図である。
(I)軌跡制御及びロール角制御が行われない場合(図20)
 車両12の車体12Bに作用する重力の車両横方向の成分がロールモーメントを発生するので、車体12Bは走行路114に対し相対的に走行路の下方側へ傾斜する。よって、車体12Bの傾斜角は走行路114の傾斜角よりも大きくなり、走行路の下方側の車輪18FR、18RRはバウンドし、走行路の上方側の車輪18FL、18RLはリバウンドした状態になる。また、車両の乗員は車体12Bの傾斜角と実質的に同一の角度上下方向に対し走行路の下方側へ傾斜した状態になる。
 また、車体12Bに作用する重力の走行路の路面に沿う成分は走行路の下方側へ作用し、これにより車両は走行路の下方側へ付勢される。そのため車両が直進するためには、走行路の路面に沿う成分に対向する横力が発生するよう、前輪18FR、18FLは走行路の上方側へ転舵されなければならない。よって、ステアリングホイール20は走行路の上方側へ操舵操作される。また、ステアリングホイール20が走行路の上方側へ操舵操作された状態を維持するための保舵トルクが必要である。
(II)軌跡制御が行われロール角制御が行われない場合(図21)
 上記(I)の場合と同様に、車体12Bは走行路114に対し相対的に走行路の下方側へ傾斜し、車両の乗員は車体12Bの傾斜角と実質的に同一の角度上下方向に対し走行路の下方側へ傾斜した状態になる。
 また、走行路の路面に沿う成分に対向する横力が発生するよう、前輪18FR、18FLは軌跡制御による自動操舵により走行路の上方側へ転舵される。車両は直進するので、ステアリングホイール20は直進位置になり、保舵トルクは実質的に不要である。
 ただし、車両の軌跡が直進の目標軌跡になると、軌跡制御の制御量が0になり前輪の舵角が低減される。すると車両は走行路の下方側へ付勢されて走行軌跡が目標軌跡より逸脱してしまうので、軌跡制御の自動操舵により走行路の上側への前輪の舵角が増大される。従って、車両は蛇行走行になり易い。
 また、軌跡制御による前輪18FR、18FLの操舵範囲は制限されるので、走行路114の傾斜角が大きく、走行路の路面に沿う重力成分が大きい場合には、軌跡制御による前輪の操舵角が不足し、車両が目標軌跡に沿って直進できなくなる場合がある。
(III)軌跡制御及びロール角制御が行われる場合(図22)
 これは第一の実施形態の場合である。ロール角制御により車体12Bの傾斜角は走行路114の傾斜角と0(傾斜なし)との中間の値に制御される。よって、図20及び図21の場合とは反対に、走行路の下方側の車輪18FR、18RRがリバウンドし、走行路の上方側の車輪18FL、18RLがバウンドした状態になる。
 従って、車体12Bに作用する重力の車両横方向の成分及び重力の走行路の路面に沿う成分は上記(I)及び(II)の場合よりも小さくなるので、前輪18FR、18FLは軌跡制御の自動操舵により走行路の上方側へ転舵される角度も小さい。
 また、車両の軌跡が直進の目標軌跡になると、軌跡制御の制御量が0になり前輪の舵角が低減される。しかし、車両が走行路の下方側へ付勢される力は小さいので、上記(II)の場合に比して走行軌跡による前輪の舵角の修正量は小さく、車両は実質的に蛇行することなく直進走行する。
 また、上記(II)の場合と同様に、前輪18FR、18FLは軌跡制御の自動操舵により転舵され、車両は直進する。よって、ステアリングホイール20は直進位置になり、保舵トルクは実質的に不要である。
 また、車体12Bの傾斜角は上記(I)及び(II)の場合よりも小さいので、車両の乗員が上下方向に対し走行路の下方側へ傾斜する角度も上記(I)及び(II)の場合よりも小さい。
(IV)過剰なロール角制御が行われる場合(図23)
 過剰なロール角制御が行われることにより、走行路の傾斜角の大小に関係なく車体12Bの傾斜角が0に制御され、車体の姿勢が水平に制御される場合には、車体12Bに作用する重力の車両横方向の成分及び重力の走行路の路面に沿う成分は0になる。
 従って、走行路の下方側の車輪18FR、18RRはリバウンドし、走行路の上方側の車輪18FL、18RLはバウンドした状態になる点を除き、車両の走行状態は水平路を直進走行する場合と同一である。即ち、前輪18FR、18FLの舵角は0になり、ステアリングホイール20は直進位置になり、保舵トルクは不要である。また、車両の乗員が上下方向に対し傾斜する角度も0になる。
 尚、前輪の舵角は0であるので、軌跡制御が行われる場合にもその制御量は0である。よって、ロール角制御によって車体の傾斜角が0に制御される場合には、ステアリングホイール20が直進位置にある限り、軌跡制御が行われるか否かによって車両の走行状況が異なることはない。
(V)車両の横加速度に基づくロール制御が行われる場合
 車両の旋回時のロールを低減すべく、車両の横加速度の検出値又は推定値に基づいてアンチロールモーメントを制御するロール制御が既に知られている。しかし、車両が横方向傾斜路を走行する際に車体に作用する横力は、車両が急激に旋回する際に車体に作用する横力よりも小さい。よって、車両が横方向傾斜路を走行する際に車両の横加速度に基づく一般的なロール制御が行われても、車体の傾斜角はロール制御が行われない場合よりも小さくなるが、走行路の傾斜角よりも小さくならない。
 従って、車体の傾斜角、ステアリングホイール20の回転角度、絶対空間の上下方向に対する乗員の傾斜角は、それぞれ上記(I)の場合よりも小さくなるが、上記(III)の場合ほど小さくはならない。
 尚、上記(I)乃至(V)は車両が横方向傾斜路を直進する場合についてであるが、例えば車両が横方向傾斜路を旋回する場合にも、車体の傾斜角等の値は直進の場合と異なるが、各場合の間の車体の傾斜角等の関係は同一である。
<第一の実施形態の効果>
 以上の説明より解る如く、第一の実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が行われる場合には、車両の走行状況は上記(III)の状況になるよう制御される。従って、上記(I)の場合と上記(III)の場合との比較より明かである如く、ステアリングホイール20の回転位置の相違から、運転者は軌跡制御が実行されていることを確実に認識することができる。また、上記(I)の場合と上記(III)の場合との比較より明かである如く、ステアリングホイール20の回転角度及び絶対空間の上下方向に対する乗員の傾斜角が小さいので、車両が横方向傾斜路を走行する際に乗員が覚える違和感を低減することができる。
 また、第一の実施形態によれば、車体の傾斜角が0に制御されることはないので、上記(IV)の場合の如く、車体に横力が作用しなくなることに起因して軌跡制御が実行されているか否かを判別することができなくなることを効果的に回避することができる。
 また、第一の実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される場合には、ロール角制御も同時に開始される。よって、車両の走行状況は上記(I)の状況から上記(II)の状況へ変化するのではなく、上記(I)の状況から上記(III)の状況へ変化する。従って、ステアリングホイール20の回転角度及びその変化速度を低減することができるので、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される際にステアリングホイールの回転に起因して乗員が覚える違和感を低減することができる。
 また、第一の実施形態によれば、車体の傾斜角が低減されるので、車体の傾斜に起因して車体に作用する横力を低減することができる。よって、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される際に、車両の軌跡が目標軌跡になり、軌跡制御の制御量が低減され、車輪の舵角が低減されても、横力に起因する傾斜下側への車両の移動を低減することができる。従って、軌跡制御の制御量が増減され、これに伴って車輪の舵角が増減されることに起因する車両の蛇行の虞れを確実に低減することができる。
 また、第一の実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が終了せしめられる場合には、ロール角制御も同時に終了せしめられる。よって、車両の走行状況は上記(II)の状況からロール角制御のみが行われる状況へ変化するのではなく、上記(III)の状況から上記(I)の状況へ変化する。従って、前輪を走行路の上側へ転舵するためにステアリングホイール20を回転させなければならない角度が大きいので、車両が横方向傾斜路を走行する状況にて軌跡制御が終了することを乗員に効果的に認識させることができる。
 尚、上記各作用効果は、ロール角制御が上記(V)の車両の横加速度に基づく一般的なロール制御である場合、即ち、車両が横方向傾斜路を走行する状況に於けるロール角制御量が小さい場合よりも高い。
[第二の実施形態]
 図24は第一の実施形態の修正例として構成された本発明による車両の走行制御装置の第二の実施形態に於ける走行制御ルーチンを示すフローチャートである。尚、図24に示されたフローチャートによる制御も図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。また、図24に於いて図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。
 この第二の実施形態に於いては、車両が横方向傾斜路を走行する状況にて軌跡制御の開始条件が成立すると、軌跡制御及び車体のロール角制御が同時に開始されるのではなく、軌跡制御はロール角制御に対し遅延して開始される。換言すれば、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される場合には、ロール角制御が軌跡制御に先行して開始される。
 同様に、車両が横方向傾斜路を走行する状況にて軌跡制御の終了条件が成立すると、軌跡制御及び車体のロール角制御が同時に終了せしめられるのではなく、軌跡制御はロール角制御に対し遅延して終了せしめられる。換言すれば、車両が横方向傾斜路を走行する状況にて軌跡制御が終了せしめられる場合には、ロール角制御が軌跡制御に先行して終了せしめられる。
 具体的には、図24に示された走行制御ルーチンのステップ500に於いて行われる軌跡制御は、図25、図4、図5に示されたフローチャートに従って実行される。図25に示されている如く、ステップ540の地縁処理により予め設定された開始時の遅延時間が経過した後にステップ550が開始され、ステップ550以降の各ステップは上述の第一の実施形態の場合と同様に実行される。
 また、第一の実施形態のステップ900に代えてステップ910が実行され、ステップ910に於いては、予め設定された終了時の遅延時間が経過した後にステップ900と同様に軌跡制御が終了せしめられる。
 尚、走行制御ルーチンのステップ500及び910以外のステップ、アシストトルク制御ルーチン及び車体のロール角制御ルーチンの各ステップも上述の第一の実施形態の場合と同様に実行される。
 かくして、第二の実施形態によれば、上述の第一の実施形態の場合と同様の作用効果を得ることができる。即ち、車両が横方向傾斜路を走行する状況にて軌跡制御が行われる場合には、運転者は軌跡制御が実行されていることを確実に認識することができ、また、軌跡制御の実行中や軌跡制御の開始又は終了時に乗員が覚える違和感を低減することができる。
 特に、第二の実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される場合には、ロール角制御を軌跡制御に先行して開始させることができる。ロール角制御の制御量が増大することにより車体の傾斜角が減少し、車体に作用する横力が減少するので、運転者は軌跡制御が開始することを認識すると共に、徐々にステアリングホイールの回転角度を小さくする。そして、その過程に於いて軌跡制御が開始されるので、軌跡制御が実行されることによりステアリングホイールの回転角度が0に戻されるまでの回転角度が小さくなり、よってステアリングホイールの回転速度も低くてよい。
 従って、軌跡制御及び車体のロール角制御が同時に開始される第一の実施形態の場合に比して、乗員は軌跡制御が開始することを早期に確実に認識することができる。また、車両が横方向傾斜路を走行する状況にて軌跡制御が開始される場合にステアリングホイール20の回転角度の変化や車両の蛇行に起因して乗員が覚える違和感を低減することができる。
 また、第二の実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が終了せしめられる場合には、ロール角制御の終了を軌跡制御に先行して開始させることができる。ロール角制御の制御量が減少することにより車体の傾斜角が増大し、車体に作用する横力が増大するので、運転者は軌跡制御が終了することを認識すると共に、徐々にステアリングホイールの回転角度を大きくする。そして、その過程に於いて軌跡制御が終了せしめられるので、軌跡制御の終了に伴って車両を所望の進路に沿って走行させるための回転位置までステアリングホイールを回転させるに必要な回転角度が小さくなり、よってステアリングホイールの回転速度も低くてよい。
 従って、軌跡制御及び車体のロール角制御が同時に終了せしめられる第一の実施形態の場合に比して、乗員は軌跡制御が終了することを早期に確実に認識することができる。また、車両が横方向傾斜路を走行する状況にて軌跡制御が終了せしめられる場合に乗員が覚える違和感を低減することができる。
 尚、上述の第一及び第二の実施形態によれば、車体及び走行路の横方向傾斜角が求められ、それらに基づいて車体の目標ロール角が演算され、車体のロール角が目標ロール角になるよう制御される。従って、車体に作用する横力に基づいて車体のロール角が制御される後述の第三の実施形態の場合に比して、車両の総重量の変動等に関係なく、車両が横方向傾斜路を走行する場合に車体の傾斜角を正確に所望の角度に制御することができる。
[第三の実施形態]
 図26は本発明による車両の走行制御装置の第三の実施形態に於ける車体のロール角制御ルーチンを示すフローチャートである。尚、図26に示されたフローチャートによる制御も図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。また、図26に於いて、図8に示されたステップと同一のステップには図8に於いて付されたステップ番号と同一のステップ番号が付されている。
 この第三の実施形態に於いては、車体のロール角制御は図1には示されていない横加速度センサにより検出される車両の横加速度Gyに基づいて行われる。特に、車両が旋回する場合には、車両の横加速度に基づく一般的なロール角制御の場合と同様に車体の旋回外側へのロールが低減される。しかし車両が横方向傾斜路を走行する場合には、車両の横加速度に対するロール角制御のゲインが旋回時よりも高くされることにより、車体のロール角が0よりも大きく走行路の傾斜角よりも小さくなるよう制御される。
 具体的には、この第三の実施形態に於いても、ステップ1350に於いて、電子制御装置16の走行制御部より車体のロール角制御の実行指令が出力されているか否かの判別により、横方向傾斜路走行時の車体のロール角制御が必要であるか否かの判別が行われる。そして否定判別が行われたときには制御はステップ1800へ進み、肯定判別が行われたときには制御はステップ1850へ進む。
 ステップ1800に於いては、車両の横加速度Gyに基づいて図27に於いてそれぞれ太い実線及び細い実線にて示されたマップより旋回時の車体のロールを低減するための前輪側及び後輪側の目標アンチロールモーメントMtgf及びMtgrが演算される。尚、車両の横加速度Gyの大きさが小さい領域に於いては、操舵角θ及び相対回転角度θre に基づく前輪の舵角δ及び車速Vに基づいて車両の推定横加速度Gyhが演算され、推定横加速度Gyhに基づいて目標アンチロールモーメントが演算されてもよい。
 ステップ1850に於いては、車両の横加速度Gyに基づいて図27に於いてそれぞれ太い破線及び細い破線にて示されたマップより車両が横方向傾斜路を走行する際の前輪側及び後輪側の目標アンチロールモーメントMtgf及びMtgrが演算される。この場合、マップは、目標アンチロールモーメントMtgf及びMtgrが、車体の傾斜角を走行路の傾斜角αroadの0.2倍以上で0.8倍以下の角度に演算されるよう、設定されることが好ましい。特に下限値は0.3倍以上の角度であることが好ましく、上限値は0.7倍以下の角度であることが好ましい。
 図27に於いてそれぞれ太い破線及び細い破線にて示されたマップは、車速Vに関係なく一定であってよいが、車速Vが高いほどマップの傾斜が大きくなるよう、車速Vに応じて可変設定されてもよい。
 尚、ステップ1800又は1850が完了すると、制御はステップ1900へ進み、ステップ1900乃至2000が上述の第一の実施形態の場合と同様に実行される。また、走行制御ルーチン及びアシストトルク制御ルーチンの各ステップは上述の第一の実施形態又は第二の実施形態の場合と同様に実行される。
 この第三の実施形態によれば、上述の第一及び第二の実施形態の場合よりも旋回時の車体の姿勢変化を低減しつつ、上述の第一及び第二の実施形態の場合と同様の作用効果を得ることができる。即ち、車両が横方向傾斜路を走行する状況にて軌跡制御が行われる場合には、乗員は軌跡制御が実行されていることや軌跡制御の開始及び終了を効果的に認識することができる。また、軌跡制御の実行中や軌跡制御の開始又は終了時に乗員が覚える違和感を低減することができる。
 特に、第三の実施形態によれば、車両が横方向傾斜路を走行する場合には、ロール角制御の開始条件が成立する以前から旋回時のゲインにて車両の横加速度に基づくロール制御が行われる。よって、走行路の横方向の傾斜角が同一である場合についてみて、ロール角制御が開始される際の車体のロール角は第一及び第二の実施形態の場合よりも小さい。従って、ロール角制御が実行されることによる車体のロール角の変化量は第一及び第二の実施形態の場合よりも小さく、よってステアリングホイール20の回転角度及びその変化速度を低減し、このことによっても乗員が覚える違和感を低減することができる。
 また、第三の実施形態によれば、車両が横方向傾斜路を走行する場合には、ロール角制御の終了条件が成立しても旋回時のゲインにて車両の横加速度に基づくロール制御が行われる。よって、走行路の横方向の傾斜角が同一である場合についてみて、横方向傾斜路走行時のロール角制御が終了したときの車体のロール角は第一及び第二の実施形態の場合よりも小さい。従って、横方向傾斜路走行時のロール角制御の終了による車体のロール角の変化量は第一及び第二の実施形態の場合よりも小さく、よってステアリングホイールの回転角度及びその変化速度を低減し、このことによっても乗員が覚える違和感を低減することができる。
 また、第三の実施形態によれば、車体の傾斜角を0よりも大きく路面の傾斜角よりも小さい角度にするための車体の目標傾斜角αbtg、目標アンチロールモーメントMtgf、Mtgr、目標トルクTtgf、Ttgr、及び目標回転角ψtgff、ψtgr等を演算する必要がない。従って、これらの値の演算が必要な第一及び第二の実施形態の場合に比して電子制御装置16の演算負荷を低減し、車両の走行制御を単純に実行することができる。
 また、第三の実施形態によれば、上述の如くロール角制御の開始時及び終了時に於ける車体のロール角の変化量は第一及び第二の実施形態の場合よりも小さい。よって、走行制御ルーチンが上述の第二の実施形態の場合と同様に実行される場合には、ロール角制御に対する軌跡制御の開始時及び終了時の遅延時間を短くすることができる。
 尚、上述の各実施形態によれば、前輪及び後輪の目標舵角はロールステアに起因する舵角の変化について補正される。従って、走行路の横方向傾斜角が大きく、ロール角制御によるロールステアが大きくなる場合にも、前輪及び後輪の目標舵角を正確に演算し、これにより車両を正確に目標軌跡に沿って走行させることができる。
 以上の説明より解る如く、上述の各実施形態によれば、車両が横方向傾斜路を走行する状況にて軌跡制御が行われる場合に、軌跡制御が実行されていることや軌跡制御の開始及び終了を確実に乗員に認識させることができる。また、軌跡制御の実行中や軌跡制御の開始又は終了時に於けるステアリングホイールの回転角度及びその速度を低減することにより、また、軌跡制御の開始又は終了時に於ける車両の蛇行を抑制することにより、乗員が覚える違和感を低減することができる。
 以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
 例えば、上述の各実施形態に於いては、車両が走行を開始した時点から現在までの車両のロールレートωrの積分値ωrintと車体のロール角の初期値α0との和として車体の絶対ロール角αabが演算される。しかし、車体の絶対ロール角αabは例えばジャイロ式の傾斜角センサの如き検出装置により検出されてもよい。
 また、車体の絶対ロール角αabは、車両の横加速度Gyと、車両のヨーレートγと車速Vとの積との差Gy-γVとして推定されてもよい。また、操舵角θ及び車速Vに基づいて車両モデルより車両の推定横加速度Gyhが演算され、車両の横加速度Gyと推定横加速度Gyhとの差Gy-Gyhとして推定されてもよい。
 また、上述の各実施形態に於いては、ロール制御装置はアクティブスタビライザ56及び58によりアンチロールモーメントを発生することにより車体のロール角を制御するようになっている。しかし、ロール制御装置は車体の横方向の傾斜角を制御することができる限り、例えばアクティブサスペンションや車高調整機能付きのエアサスペンション等であってもよい。
 また、上述の各実施形態に於いては、目標軌跡の曲率R(半径の逆数)、目標軌跡に対する車両の横方向の偏差Y及びヨー角の偏差φが演算され、これらに基づいて前輪及び後輪の目標舵角が演算され、前輪及び後輪の舵角が目標舵角になるよう制御される。しかし、軌跡制御は操舵輪を操舵することにより車両を走行路に沿って走行させることができればよく、例えば車両が車線より逸脱しないよう操舵輪の舵角を制御する車線逸脱防止の如く任意の要領にて達成されてよい。
 また、上述の各実施形態に於いては、前輪及び後輪の舵角が制御されるようになっているが、後輪の舵角の制御は行われなくてもよい。また、前輪の舵角は、舵角可変装置14によってアッパステアリングシャフト28に対し相対的にロアステアリングシャフト30が回転駆動されることにより制御される。しかし、前輪の舵角は、例えばステアバイワイヤ式のステアリング装置の如く、任意の構成の舵角可変装置により制御されてよい。
 また、上述の第二の実施形態に於いては、軌跡制御はロール角制御に対し遅延して開始され、また、軌跡制御はロール角制御に対し遅延して終了せしめられるようになっている。しかし、軌跡制御がロール角制御と同時に開始されるが、軌跡制御開始時のその制御量の増大が抑制されることにより、実質的に軌跡制御がロール角制御に対し遅延して開始されるよう修正されてもよい。同様に、軌跡制御及びロール角制御の終了が同時に開始されるが、軌跡制御の終了時の制御量の減少が抑制されることにより、実質的に軌跡制御がロール角制御に対し遅延して終了せしめられるよう修正されてもよい。

Claims (9)

  1.  操舵輪を操舵することにより車両を走行路に沿って走行させる軌跡制御を行う車両の走行制御装置に於いて、車体の横方向の傾斜角を制御するロール制御装置と、走行路の横方向の傾斜を判定する傾斜角推定装置とを有し、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を行うときには、車体の横方向の傾斜角が0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう、前記ロール制御装置により車体の横方向の傾斜角を制御することを特徴とする車両の走行制御装置。
  2.  前記走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を開始するときには、前記ロール制御装置による車体の横方向の傾斜角の制御も同時に開始し、車体の横方向の傾斜角の制御量を漸増させることを特徴とする請求項1に記載の車両の走行制御装置。
  3.  前記走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を終了させるときには、前記ロール制御装置による車体の横方向の傾斜角の制御の終了を同時に開始し、車体の横方向の傾斜角の制御量を漸減させることを特徴とする請求項1又は2に記載の車両の走行制御装置。
  4.  前記走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を開始するときには、前記軌跡制御の開始に先立って前記ロール制御装置による車体の横方向の傾斜角の制御を開始し、車体の横方向の傾斜角の制御量を漸増させることを特徴とする請求項1に記載の車両の走行制御装置。
  5.  前記走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を終了させるときには、前記軌跡制御の終了に先立って前記ロール制御装置による車体の横方向の傾斜角の制御の終了を開始し、車体の横方向の傾斜角の制御量を漸減させることを特徴とする請求項1又は4に記載の車両の走行制御装置。
  6.  前記傾斜判定装置は、走行路の横方向の傾斜角を推定し、前記走行制御装置は、0よりも大きく走行路の横方向の傾斜角よりも小さい車体の目標傾斜角を演算し、車体の横方向の傾斜角が前記目標傾斜角になるよう、車体の横方向の傾斜角を制御することを特徴とする請求項1乃至5の何れか一つに記載の車両の走行制御装置。
  7.  前記傾斜判定装置は、絶対空間に対する車体の横方向の傾斜角を絶対傾斜角として推定すると共に、走行路に対する車体の横方向の傾斜角を相対傾斜角として推定し、前記絶対傾斜角と前記相対傾斜角との差に基づいて走行路の横方向の傾斜角を推定することを特徴とする請求項6に記載の車両の走行制御装置。
  8.  前記ロール制御装置は、車体に作用する横力に基づいてアンチロールモーメントを発生することにより車体の横方向の傾斜角を制御し、前記走行制御装置は、車両が横方向に傾斜した走行路を走行する状況にて前記軌跡制御を行うときには、車両が横方向に傾斜した走行路を走行する状況ではないときに比して、車体に作用する横力に対するアンチロールモーメントの比を増大させることにより、車体の横方向の傾斜角が0よりも大きく走行路の横方向の傾斜角よりも小さくなるよう、車体の横方向の傾斜角を制御することを特徴とする請求項1乃至5の何れか一つに記載の車両の走行制御装置。
  9.  前記走行制御装置は、車体の横方向の傾斜角が走行路の横方向の傾斜角の0.2倍以上で走行路の横方向の傾斜角の0.8倍以下になるよう、車体の横方向の傾斜角を制御することを特徴とする請求項1乃至8の何れか一つに記載の車両の走行制御装置。
PCT/JP2012/078206 2012-10-31 2012-10-31 車両の走行制御装置 WO2014068711A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/439,797 US9533681B2 (en) 2012-10-31 2012-10-31 Vehicle cruise control device
DE112012007083.6T DE112012007083B4 (de) 2012-10-31 2012-10-31 Fahrzeuggeschwindigkeitsregeleinrichtung
JP2014544127A JP5846401B2 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
PCT/JP2012/078206 WO2014068711A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
CN201280076819.5A CN104768780B (zh) 2012-10-31 2012-10-31 车辆的行驶控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078206 WO2014068711A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Publications (1)

Publication Number Publication Date
WO2014068711A1 true WO2014068711A1 (ja) 2014-05-08

Family

ID=50626679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078206 WO2014068711A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Country Status (5)

Country Link
US (1) US9533681B2 (ja)
JP (1) JP5846401B2 (ja)
CN (1) CN104768780B (ja)
DE (1) DE112012007083B4 (ja)
WO (1) WO2014068711A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131073A (ja) * 2018-01-31 2019-08-08 株式会社ジェイテクト 操舵制御装置
JP2019182292A (ja) * 2018-04-13 2019-10-24 三菱電機株式会社 車両用操舵制御量決定装置、車両用操舵制御量決定方法、車両用操舵制御装置、及び、車両用操舵制御方法
CN113112842A (zh) * 2020-01-13 2021-07-13 北京地平线机器人技术研发有限公司 车道行驶方向更新方法及装置、存储介质及电子设备
JP2024000335A (ja) * 2022-06-20 2024-01-05 トヨタ自動車株式会社 走行路逸脱防止装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012006679B4 (de) * 2012-07-09 2017-07-06 Toyota Jidosha Kabushiki Kaisha Fahrzeuglenksteuerungsvorrichtung
JP5955306B2 (ja) * 2013-12-09 2016-07-20 本田技研工業株式会社 移動車両
DE102014225929A1 (de) * 2014-12-15 2016-06-16 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Kraftfahrzeugs, Verfahren zum Wankausgleich eines Kraftfahrzeugs sowie Kraftfahrzeug
US10017215B2 (en) * 2015-04-08 2018-07-10 GM Global Technology Operations LLC Vehicle directional control via aerodynamic forces
KR102501199B1 (ko) * 2016-05-25 2023-02-16 에이치엘만도 주식회사 센서리스 능동 안정 주행 장치 및 방법
WO2019001678A1 (en) 2017-06-26 2019-01-03 Volvo Truck Corporation VEHICLE CONTROL SYSTEM
DE102018200442B3 (de) 2018-01-12 2019-04-18 Ford Global Technologies, Llc Kompensationsverfahren für ein Kraftfahrzeug und Kraftfahrzeug
JP6743072B2 (ja) * 2018-01-12 2020-08-19 本田技研工業株式会社 制御装置、制御装置の動作方法及びプログラム
CN117565967A (zh) * 2018-06-01 2024-02-20 捷豹路虎有限公司 用于控制车辆后轮转向的设备、系统和方法以及车辆
JP7260385B2 (ja) * 2019-04-24 2023-04-18 トヨタ自動車株式会社 車両走行制御装置
JP7259574B2 (ja) * 2019-06-17 2023-04-18 株式会社ジェイテクト 制御装置、および転舵装置
CN110316246A (zh) * 2019-07-18 2019-10-11 上海振华重工(集团)股份有限公司 一种跨运车电动伺服独立转向系统及其控制方法
US11654956B2 (en) * 2019-12-23 2023-05-23 Robert Bosch Gmbh Method and system for steering intervention by electronic power steering unit to prevent vehicle rollover or loss of control
CN113508350B (zh) * 2020-01-23 2024-06-07 百度时代网络技术(北京)有限公司 基于反馈的实时转向校准系统
GB2601355B (en) * 2020-11-27 2023-09-20 Jaguar Land Rover Ltd Slope compensation by moving a vehicle centre of gravity
US20220314965A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Systems and methods for stabilizing a vehicle on two wheels
DE102021203951A1 (de) 2021-04-21 2022-10-27 Psa Automobiles Sa Computerimplementiertes Verfahren zur Detektion eines Lenkradeingriffszustands, Computerprogrammprodukt, Fahrassistenzsystem sowie Kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332512U (ja) * 1989-08-01 1991-03-29
JPH04201612A (ja) * 1990-11-30 1992-07-22 Hitachi Ltd 車両運動制御システム
JPH05503055A (ja) * 1990-05-04 1993-05-27 アルフレッド・テヴェス・ゲーエムベーハー 自動車の複合制御システム
JP2002166717A (ja) * 2001-08-20 2002-06-11 Hitachi Ltd 車両運動制御システム
JP2007237917A (ja) * 2006-03-08 2007-09-20 Toyota Motor Corp スタビライザ制御装置
JP2008081047A (ja) * 2006-09-28 2008-04-10 Fuji Heavy Ind Ltd 車両の統合制御装置
WO2010073400A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 車両の走行支援装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19751839A1 (de) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer Kipptendenz eines Fahrzeuges
DE19918597C2 (de) * 1999-04-23 2001-03-08 Deutsch Zentr Luft & Raumfahrt Verfahren zur Reduktion der Kippgefahr von Straßenfahrzeugen
EP1065092A3 (en) * 1999-07-01 2005-03-30 Hitachi, Ltd. Apparatus for controlling braking and propulsion in a vehicle
JP3918686B2 (ja) * 2002-08-30 2007-05-23 株式会社日立製作所 自動車の走行制御装置及び制御方法
JP4029856B2 (ja) * 2004-03-26 2008-01-09 トヨタ自動車株式会社 車輌の挙動制御装置
DE102004035577A1 (de) * 2004-07-22 2006-02-16 Daimlerchrysler Ag Stabilisierungsvorrichtung und Verfahren zur Fahrstabilisierung eines Fahrzeugs durch Anwendung einer Spektralanalyse
US7561951B2 (en) * 2005-05-06 2009-07-14 Ford Global Technologies Llc Occupant control system integrated with vehicle dynamics controls
US7590481B2 (en) * 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
JP4923567B2 (ja) 2005-12-22 2012-04-25 トヨタ自動車株式会社 操舵装置
US7885750B2 (en) * 2006-08-30 2011-02-08 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
JP2008290595A (ja) 2007-05-25 2008-12-04 Advics:Kk 車輪―車体間距離制御装置
DE102009014747A1 (de) * 2009-03-25 2010-12-30 Audi Ag Verfahren zur Ansteuerung von den Wankwinkel eines Kraftfahrzeugs beeinflussenden Aktoren
WO2011052098A1 (ja) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 車両の走行制御装置
US20110276216A1 (en) * 2010-05-07 2011-11-10 Texas Instruments Incorporated Automotive cruise controls, circuits, systems and processes
DE102011010845B3 (de) * 2011-02-10 2012-06-28 Audi Ag Verfahren und Vorrichtung zum Beeinflussen des Kurvenfahrverhaltens eines Kraftwagens sowie Kraftwagen
US9266532B2 (en) * 2011-04-19 2016-02-23 Ute Marita Meissner Dynamic stability control using GNSS and INS
JP5803687B2 (ja) 2012-01-17 2015-11-04 トヨタ自動車株式会社 車両の走行制御装置
EP2885177B1 (en) * 2012-08-16 2019-10-09 Jaguar Land Rover Limited Improvements in vehicle speed control
GB201215963D0 (en) * 2012-09-06 2012-10-24 Jaguar Cars Vehicle control system and method
KR101500070B1 (ko) * 2013-04-15 2015-03-06 현대자동차주식회사 도로경사 추정 시스템
GB201316039D0 (en) * 2013-09-09 2013-10-23 Jaguar Land Rover Ltd Vehicle control system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332512U (ja) * 1989-08-01 1991-03-29
JPH05503055A (ja) * 1990-05-04 1993-05-27 アルフレッド・テヴェス・ゲーエムベーハー 自動車の複合制御システム
JPH04201612A (ja) * 1990-11-30 1992-07-22 Hitachi Ltd 車両運動制御システム
JP2002166717A (ja) * 2001-08-20 2002-06-11 Hitachi Ltd 車両運動制御システム
JP2007237917A (ja) * 2006-03-08 2007-09-20 Toyota Motor Corp スタビライザ制御装置
JP2008081047A (ja) * 2006-09-28 2008-04-10 Fuji Heavy Ind Ltd 車両の統合制御装置
WO2010073400A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 車両の走行支援装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131073A (ja) * 2018-01-31 2019-08-08 株式会社ジェイテクト 操舵制御装置
JP7035574B2 (ja) 2018-01-31 2022-03-15 株式会社ジェイテクト 操舵制御装置
JP2019182292A (ja) * 2018-04-13 2019-10-24 三菱電機株式会社 車両用操舵制御量決定装置、車両用操舵制御量決定方法、車両用操舵制御装置、及び、車両用操舵制御方法
CN113112842A (zh) * 2020-01-13 2021-07-13 北京地平线机器人技术研发有限公司 车道行驶方向更新方法及装置、存储介质及电子设备
JP2024000335A (ja) * 2022-06-20 2024-01-05 トヨタ自動車株式会社 走行路逸脱防止装置

Also Published As

Publication number Publication date
DE112012007083B4 (de) 2021-05-12
DE112012007083T5 (de) 2015-09-10
CN104768780B (zh) 2016-11-23
JPWO2014068711A1 (ja) 2016-09-08
US20150298691A1 (en) 2015-10-22
US9533681B2 (en) 2017-01-03
JP5846401B2 (ja) 2016-01-20
CN104768780A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5846401B2 (ja) 車両の走行制御装置
JP5907266B2 (ja) 車両用操舵制御装置
US20180264905A1 (en) Automatic tilting vehicle
JP4821454B2 (ja) 車両の走行制御装置
JP6123884B2 (ja) 車両の操舵制御装置
JP5140662B2 (ja) 後輪操舵車両
JP2007302053A (ja) 車両用操舵装置
JP4720998B2 (ja) 車輌の操舵制御装置
JP4775091B2 (ja) 車両の走行制御装置
JP4830569B2 (ja) 車両の走行制御装置
JP4775054B2 (ja) 車両の走行制御装置
JP4956477B2 (ja) 後輪トー角制御装置
JP4736882B2 (ja) 車両の操舵制御装置
JP5326019B2 (ja) 後輪トー角制御装置
JP2010215068A (ja) 車両の制御装置
JP5476909B2 (ja) 操舵装置
JP2016130035A (ja) 電動パワーステアリング装置
JP2009214774A (ja) 後輪転舵制御装置
JP5370681B2 (ja) 車両用キャンバ角制御装置
JP2013129262A (ja) 四輪操舵車両の操舵アシスト制御装置
JP2011178226A (ja) 車両用制御装置
JP2006062454A (ja) 車両用サスペンション装置
JP2011136616A (ja) 車両用キャンバ角制御装置
JP2011136633A (ja) 車両用制御装置
JP2011178242A (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439797

Country of ref document: US

Ref document number: 112012007083

Country of ref document: DE

Ref document number: 1120120070836

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887407

Country of ref document: EP

Kind code of ref document: A1