WO2014055711A2 - Flexible batteries - Google Patents
Flexible batteries Download PDFInfo
- Publication number
- WO2014055711A2 WO2014055711A2 PCT/US2013/063153 US2013063153W WO2014055711A2 WO 2014055711 A2 WO2014055711 A2 WO 2014055711A2 US 2013063153 W US2013063153 W US 2013063153W WO 2014055711 A2 WO2014055711 A2 WO 2014055711A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- cells
- batteries
- minutes
- graphene sheets
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 95
- 229910021389 graphene Inorganic materials 0.000 claims description 41
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 description 43
- 239000010439 graphite Substances 0.000 description 43
- 229910052799 carbon Inorganic materials 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- -1 alkaline Chemical compound 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 10
- 238000004299 exfoliation Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 8
- 229960000907 methylthioninium chloride Drugs 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000000138 intercalating agent Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000011111 cardboard Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- SZKTYYIADWRVSA-UHFFFAOYSA-N zinc manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Zn++] SZKTYYIADWRVSA-UHFFFAOYSA-N 0.000 description 2
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 description 1
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- ZRXYMHTYEQQBLN-UHFFFAOYSA-N [Br].[Zn] Chemical compound [Br].[Zn] ZRXYMHTYEQQBLN-UHFFFAOYSA-N 0.000 description 1
- BPKGOZPBGXJDEP-UHFFFAOYSA-N [C].[Zn] Chemical compound [C].[Zn] BPKGOZPBGXJDEP-UHFFFAOYSA-N 0.000 description 1
- QDDVNKWVBSLTMB-UHFFFAOYSA-N [Cu]=O.[Li] Chemical compound [Cu]=O.[Li] QDDVNKWVBSLTMB-UHFFFAOYSA-N 0.000 description 1
- GPVWCGHDIGTNCE-UHFFFAOYSA-N [Fe](=S)=S.[Li] Chemical compound [Fe](=S)=S.[Li] GPVWCGHDIGTNCE-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- UFNRFBFHJJPDNF-UHFFFAOYSA-N [Zn].[Ce] Chemical compound [Zn].[Ce] UFNRFBFHJJPDNF-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 235000021270 cold food Nutrition 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 235000021268 hot food Nutrition 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004704 methoxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical class [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Inorganic materials [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/136—Flexibility or foldability
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/503—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/521—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
- H01M50/522—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to flexible batteries.
- the batteries can be incorporated into apparel and other gear.
- a battery comprising at least two cells, wherein at least two cells are connected by flexible connectors, such that the battery can be bent
- an article of clothing comprising a battery, comprising at least two cells, wherein at least two cells are connected by flexible connectors, such that the battery can be bent.
- Figure 1 is a schematic view of a battery of the invention.
- Figure 2 is a schematic view of a battery of the invention where the cells form a two- dimensional array.
- Figure 3 is a schematic view of a battery of the invention comprising a bus bar.
- Figure 4 shows a flexible battery of the invention having a rigid backing material.
- Figure 5 shows a battery of the invention sealed in a protective pouch.
- Figure 6 shows a jacket having a battery of the invention attached to its sleeve.
- Figure 7 shows a belt containing a battery of the invention.
- Figure 8 shows a shirt having a hem containing a battery of the invention.
- Figure 9 shows a backpack into which is embedded a battery of the invention.
- Figure 10(a) shows a schematic view of a battery where the cells are arranged in a linear fashion.
- Figure 10(b) shows a schematic view of a battery where the cells are stacked relative to each other.
- Figure 11 (a) shows a battery pack strap attached to the strap of a bag.
- Figure 11 (b) shows a battery pack strap that has been unfastened from the strap of a bag.
- the batteries of the present invention comprise at least two electrochemical cells that are connected by electrical connectors.
- the batteries can be bent and be made to conform to surfaces, including flat, curved, uneven, and otherwise irregular surfaces.
- Figure 1 shows a battery 10 comprising cells 12 having anodes 14 and cathodes 16, wherein the cells are connected in series by flexible connectors 18.
- the battery has a negative terminal 17 and a positive terminal 19.
- the battery can comprise a linear arrangement of cells as in Figure 1 , or a two-dimensional array of cells as in Figure 2, where cells 22 having anodes 26 and cathodes 24 are connected by flexible connectors 28.
- the battery has a negative terminal 27 and a positive terminal 29.
- the batteries can comprise a three dimensional arrangement of cells, such as one wherein one- or two- dimensional arrays of cells are stacked while remaining connected by flexible
- the batteries can be connect in series and/or in parallel. In some cases, there will be 2 to about 500 cells, or about 2 to about 300 cells, or about 2 to about 100 cells, or about 2 to about 50 cells, or about 2 to about 25 cells, or about 2 to about 20 cells, or about 5 to about 300 cells, or about 5 to about 100 cells, or about 5 to about 50 cells, or about 5 to about 25 cells, or about 5 to about 10 cells, or about 10 to about 300 cells, or about 10 to about 100 cells, or about 10 to about 50 cells, or about 10 to about 20 cells, or about 20 to about 300 cells, or about 20 to about 100 cells, or about 20 to about 50 cells, or about 50 to about 300 cells, or about 50 tO about 100 cells in the battery.
- the connectors are sufficiently flexible to allow two adjoining cells to be bent at an angle of at least about 15°, or at least about 25°, or at least about 45°, or at least about 90°, or at least about 135°, or at least about 180° relative to each other.
- the batteries can be rechargeable or disposable. They can be wet cells, dry cells, etc.
- Examples of chemistries for disposable batteries include zinc-carbon, zinc chloride, alkaline, zinc-manganese dioxide, nickel oxyhydroxide, zinc- manganese dioxide/nickel oxyhydroxide, lithium, lithium-copper oxide, lithium-iron disulfide, lithium- managanese dioixde, mercury oxide, zinc-air, silver oxide, silver-zinc, etc.
- chemistries for rechargeable batteries include nickel-cadmium, alkaline, lead-acid, nickel-hydrogen, nickel-metal hydride, nickel-zinc, lithium iron phosphate, lithium titanate, lithium ion, lithium air, lithium ion polymer, lithium sulfur, sodium ion, potassium ion, thin film lithium, zinc-bromine, zinc-cerium, vanadium redox, sodium-sulfur, molten salt, silver oxide, etc.
- cells examples include pouch cells (cells without a hard outer housing), coin cells, printed cells, etc.
- the cells can have a thin, flat, rectangular form factor.
- the cells preferably do not have a rigid case, such as the metallic cases commonly used in typical batteries.
- the flexible connectors can be any suitable type of connector, including wires, metal strips or sheets, printed connectors, bus bars (including printed bus bars), etc.
- Printed connectors and bus boards can be made by printing a conductive material (such as ink) on a substrate (including paper, cardboard, etc.).
- Figure 3 shows a battery assembly 30, having cells 32, which have anodes 36 and cathodes 34 that are connected to a bus bar 38.
- a backing material can be applied to at least a portion of the surface of the cells to provide additional rigidity.
- FIG 4 shows a battery 40 having cells 42 that have a backing 44.
- Any suitable material can be used as backing materials, including plastics, paperboards, cardboards, metals, ceramics, foams, tapes, fabrics, non-woven materials, films, sheets, adhesives, meshes, etc.
- materials include aramids (such as Kevlar®, Nomex®, etc.), ultra-high-molecular-weight polyethylene (e.g. Dynema®,
- the cells can be arranged on a mesh (including adhesive meshes) and attached to the mesh (by adhesive, wiring, screwing, crimping, clamping, stapling, sewing, welding, soldering, etc.)-
- the mesh can be cut into desired sizes.
- the mesh may contain one or more wires or other electrical connectors may be on top of or intertwined with the mesh.
- the wires or other connectors can be connected (e.g. by clamping, crimping, welding, soldering, etc.) to the cells to serve as the electrical connectors between the cells.
- the mesh can be thermally conductive.
- Backing materials can be chosen to be to thermally dissipative/heating spreading, impact resistant or absorbent, liquid absorbent, chemical resistance (such as to protect the batteries and devices from the environment or to prevent leakage from the cells, etc.).
- the backing materials are thermally conductive. In some cases they can have a thermal conductivity of at least about 0.5 W/nvK, of at least about 0.7 W/nvK, of at least about 1 W/nvK, or at least about 3 W/nvK, or at least about 5 W/nvK, or at least about 10 W/nvK, or at least about 20 W/nvK, or at least about 30 W/nvK.
- the batteries can be folded into a compact unit for storage, transport or use.
- Figure 10(a) shows a battery 100 having cells 102, flexible connectors 104, and terminals 106. The battery is extended horizontally for use.
- Figure 10(b) shows battery 100 folded up as flexible connector 104 have curved, allowing cells 102 to stack on each other.
- the cells have a thickness of no more than about 15 mm, or no more than about 12 mm, or no more than about 10 mm, or no more than about 8 mm, or no more than about 6 mm, or no more than about 5 mm, or no more than about 4 mm, or no more than about 2 mm, or no more than about 1 mm, or no more than about 1 mm.
- the total surface to volume ratio of the cells is at least about 3.5:1 , or at least about 4:1 , or at least about 4.5:1 , or at least about 5:1 , or at least about 6:1 , or at least about 7:1 , or at least about 8:1 .
- the flexible structure of the battery can allow the use of several flat cells having high surface to volume ratios, which can allow for more efficient cooling and safer battery operation and can in some cases allow them to be used close to or in contact with a person's skin. This can also permit the formation of thin, broad batteries that allow for the distribution of weight over a greater area. This can be an advantage when carrying the batteries. Higher surface to volume ratios can be advantageous for lithium-air batteries.
- the batteries can have an energy density of about 0.1 W- h to about 1 kW-h, or about 0.1 W-h to about 250 W-h, or about 0.1 W-h to about 100 W- h, or about 1 W-h to about 250 W-h, or about 1 W-h to about 100 W-h, or about 5 W-h to about 250 W-h, or about 5 W-h to about 100 W-h.
- the batteries have an voltage of about 1 to about 20 V, or about 1 to about 15 V, or about 1 to about 10 V, or about 1 to about 5 V, or about 2 to about 20 V, or about 1 to about 42 V, or about 1 to about 24 V, or about 5 to about 15 V, or about 5 to about 20 V, or about 5 to about 24 V, or about 5 to about 42 V.
- the batteries may be sealed into a wrapper such as a pouch or casing.
- a wrapper such as a pouch or casing.
- Figure 5 shows a pouch 50 containing a battery 51 having cells
- the pouch or casing may be waterproof and the battery may be washable. It may be permanently sealed or openable.
- Examples of pouch or casing materials include plastics (such as vinyl polymers (e.g., polyvinyl chloride)), polyethylenes, ultra-high-molecular-weight polyethylenes (e.g. Dynema®, Spectra®, etc.), polypropylenes, polyesters,
- the batteries may be in an air- permeable wrappers in some cases, such as where lithium-air batteries are used.
- the batteries may be laminated into a wrapper or onto a backing material.
- films used to form the wrappers can have a thickness of no more than about 3 mils, or no more than about 2 mils, or no more than about 1 mil, or no more than about 0.8 mils.
- Suitable wrapper materials include, but are not limited to polyethylene, polypropylene, polyvinyl chloride), etc.
- the wrappers may have an adhesive or heat sealable layer that can be used to place the battery on a substrate (such as a piece of apparel or other gear) and allows it to adhere easily.
- the batteries can be wearable and used to power wearable equipment and devices.
- the batteries can be attached to or incorporated into other objects, such as apparel, bags, gear, etc.
- objects such as apparel, bags, gear, etc.
- Examples include straps, shirts, jackets, coats, vests, shirts, pants, shorts, hats, helmets, shoes, boots, belts, gloves and mittens, socks, underwear, sweat shirts and pants, athletic apparel and gear, hand bags, purses, backpacks, briefcases, messenger bags, computer bags, satchels, luggage, sports bags (golf bags, gym bags, etc.), tents, sleeping bags, sleeping pads and mattresses, hunting and sports equipment, ski apparel (such as ski jackets, pants, boots, etc.) chairs, cushions, upholstered objects, seats (such as car or vehicle seats), ballistic protection equipment (e.g.
- the batteries can be attached to the surface of the objects by any suitable method, such as by crimping, sewing, snaps, buttons, tape, adhesive, hook and loop fasteners (e.g.
- Velcro® zippers, etc. They can be pressed, hot pressed, or otherwise affixed using a thermal transfer adhesive.
- the batteries can be embedded into the object either permanently or removably. They can be placed in pockets, straps, slits, hems, seams, between layers of components of the objects, etc. They can be placed within the padding or straps of bags such as backpacks, computer bags, messenger bags, etc.
- the batteries can be in the form of a battery pack containing one or more batteries that can be worn as an arm, wrist, head, leg, ankle, etc. band, a belt, a bandolier, harnesses, etc.
- the gear (such as clothing) containing the batteries can be washed.
- Figure 6 shows a jacket 60 having a flexible battery of the invention 62 attached to its sleeve.
- the batteries can be embedded into other objects.
- Figure 7 shows a belt
- FIG. 70 into which a flexible battery 72 has been embedded.
- Figure 8 shows a shirt 80 having a hem 82 containing a flexible battery 84.
- Figure 9 shows a backpack 90 having a flexible battery 92 embedded into its back. The battery can be connected to a portable electronic device 94 to, for example, charge it.
- the batteries can be in the form of a battery pack strap that can be removable or permanently attached to a piece of equipment.
- Figure 11 (a) shows a bag 110 having a strap 112. Wrapped around strap 112 is battery pack strap 114, into which is inserted battery 116, which comprises cells 118, and which is connected to connector 120, which emerges from the battery pack strap to be connected to a device to charge or power.
- battery pack strap 114 Wrapped around strap 112 is battery pack strap 114, into which is inserted battery 116, which comprises cells 118, and which is connected to connector 120, which emerges from the battery pack strap to be connected to a device to charge or power.
- FIG 11 (b) shows an open battery pack strap 130 through which is run a bag strap 132.
- the strap contains battery 134, which comprises cells 136 and which is attached to connector 138 which emerges from the battery pack strap to be connected to a device to charge or power.
- the battery pack strap can be closed and secured shut by folding it over bag strap 132 and contacting hook and loop (e.g. Velcro®) fastener pieces
- Battery pack straps can also be used to power wireless charging devices, etc.
- any suitable piece of equipment or clothing such as bags, purses, messenger bags, suitcases, duffel bags, luggage, backpacks, camera and video equipment straps, harnesses, bandoliers, etc.
- They can be made of any suitable material, including cloth, fabric, non-woven materials, leather, nylon, polyester, etc.
- the strap may be fastened in place using any suitable method, such as by zippers, snaps, buttons, tape, adhesive, hook and loop fasteners (e.g. Velcro®), etc.
- the batteries can be used to power heaters, coolers, and other thermal management devices, including heaters in apparel, bags, and other gear.
- the thermal management devices can be built into the gear, or can be modular or otherwise attached to the gear.
- the thermal management devices can include, for example, heaters and coolers, medical devices, heating pads, heating patches, heaters and window defrosters for vehicles (such as cars, trucks, motorcycles, forklifts, airplanes, farm equipment), packaging, hot or cold food and beverage packaging, etc.
- vehicles such as cars, trucks, motorcycles, forklifts, airplanes, farm equipment
- packaging hot or cold food and beverage packaging, etc.
- the thermal management device may be used to heat or cool some portion of the body. Heating or cooling may be desired for a variety of purposes, such as medical treatment, therapy, rehabilitation, comfort, thermal conditioning, bio-feedback, etc.
- the thermal management device may be applied to any part of the body or combination of parts, such as joints, muscles, extremities, head, abdomen, skin, etc.
- thermal management devices examples include medical and health-related devices, portable heaters and coolers, heaters and coolers for food and beverages (such as coffee, carbonated drinks, alcoholic drinks, etc.), chemical curing devices, etc.
- medical devices include heating and cooling pads, bandages (such as ace bandages), splints, braces, casts, etc.
- the batteries can be used to power or charge electronic devices, such as personal electronic devices, including computers (such as laptop and tablet computers (such as iPads, Kindles, Nooks, etc.)), cellular telephones, games, GPS receivers, personal digital assistants, music players, game players, calculators, artificial "paper” and reading devices, radios, walkie-talkies, pagers, etc. They can be used to power cameras, flash lamps, video cameras, microphones, other recording equipment, etc.
- the batteries can be used to power sensor and health monitoring (such as blood pressure, heart rate, etc.) devices. They can be used to power wireless chargers. They can be used to power medical alert devices.
- They can be used to power power tools, emergency equipment, lights, flashlights, chemical detectors, lamps, scientific and forensic apparatus, night vision goggles, etc. They can be used to power equipment carried by military personnel, police, firefighters, first responders, photographers and camera crews, journalists, medical personnel, athletes, adventurers, etc.
- the batteries can be embedded in cases and covers for personal electronic devices, such as covers and cases for tablet computers (such as iPads).
- Rechargeable batteries can be recharged using external charging devices, other batteries, solar power, AC power, etc.
- the batteries can be connected to a device to power using any suitable means, such as a USB, mini-USB, cellular phone charging connectors, iPhone and iPad connectors, cables, plugs, etc.
- the batteries can be connected to a power inverter to provide AC voltage (e.g. 1 10/120 and 220/240 volts). Multiple power outlets or jacks can be present.
- Power connectors can be present in different places in the batteries. For example, if the battery is a long structure, connections can be available at different ends. Connectors can be integrated into the battery assembly and incorporated into a garment or other equipment or gear that contains the batteries.
- the batteries may comprise graphene sheets.
- Graphene sheets may be present in cell electrodes (anodes, cathodes), in inks used to print bus bars, in the flexible connectors, in coating for packaging and wrapping materials, etc.
- the graphene sheets are graphite sheets preferably having a surface area of from about 100 to about 2630 m 2 /g.
- the graphene sheets primarily, almost completely, or completely comprise fully exfoliated single sheets of graphite (these are approximately ⁇ 1 nm thick and are often referred to as "graphene"), while in other embodiments, at least a portion of the graphene sheets can comprise partially exfoliated graphite sheets, in which two or more sheets of graphite have not been exfoliated from each other.
- the graphene sheets can comprise mixtures of fully and partially exfoliated graphite sheets.
- Graphene sheets are distinct from carbon nanotubes.
- Graphene sheets can have a "platey" (e.g.
- the two longest dimensions of the graphene sheets can each be at least about 10 times greater, or at least about 50 times greater, or at least about 100 times greater, or at least about 1000 times greater, or at least about 5000 times greater, or at least about 10,000 times greater than the shortest dimension (i.e. thickness) of the sheets.
- Graphene sheets are distinct from expanded, exfoliated, vermicular, etc.
- the graphite which has a layered or stacked structure in which the layers are not separated from each other.
- the graphene sheets do not need to be entirely made up of carbon, but can have heteroatoms incorporated into the lattice or as part of functional groups attached to the lattice.
- the lattice need not be a perfect hexagonal lattice and may contain defects (including five- and seven-membered rings).
- Graphene sheets can be made using any suitable method.
- they can be obtained from graphite (including natural, Kish, and synthetic, annealed, pyrolytic, highly oriented pyrolytic, etc. graphites), graphite oxide, expandable graphite, expanded graphite, etc..
- They may be obtained by the physical exfoliation of graphite, by for example, peeling, grinding, milling, graphene sheets.
- They made be made by sonication of precursors such as graphite. They may be made by opening carbon nanotubes.
- They may be made from inorganic precursors, such as silicon carbide. They may be made by chemical vapor deposition (such as by reacting a methane and hydrogen on a metal surface).
- They may be made by epitaxial growth on substrates such as silicon carbide and metal substrates and by growth from metal-carbon melts. They made by made They may be may by the reduction of an alcohol, such ethanol, with a metal (such as an alkali metal like sodium) and the subsequent pyrolysis of the alkoxide product (such a method is reported in Nature Nanotechnology (2009), 4, 30- 33). They may be made from small molecule precursors such as carbon dioxide, alcohols (such as ethanol, methanol, etc.), alkoxides (such as ethoxides, methoxides, etc., including sodium, potassium, and other alkoxides).
- Graphene sheets may be made by the exfoliation of expandable graphite, followed by intercalation, and ultrasonication or other means of separating the intercalated sheets (see, for example, Nature Nanotechnology (2008), 3, 538-542). They may be made by the intercalation of graphite and the subsequent exfoliation of the product in suspension, thermally, etc. Exfoliation processes may be thermal, and include exfoliation by rapid heating, using microwaves, furnaces, hot baths, etc.
- Graphene sheets can be made from graphite oxide (also known as graphitic acid or graphene oxide). Graphite can be treated with oxidizing and/or intercalating agents and exfoliated. Graphite can also be treated with intercalating agents and
- Graphene sheets can be formed by ultrasonically exfoliating suspensions of graphite and/or graphite oxide in a liquid (which can contain surfactants and/or intercalants). Exfoliated graphite oxide dispersions or suspensions can be subsequently reduced to graphene sheets. Graphene sheets can also be formed by mechanical treatment (such as grinding or milling) to exfoliate graphite or graphite oxide (which would subsequently be reduced to graphene sheets).
- Graphene sheets may be made by the reduction of graphite oxide. Reduction of graphite oxide to graphene may be done by thermal reduction/annealing, chemical reduction, etc. and may be carried out on graphite oxide in a solid form, in a dispersion, etc.
- useful chemical reducing agents include, but are not limited to, hydrazines (such as hydrazine (in liquid or vapor forms, ⁇ , ⁇ -dimethylhydrazine, etc.), sodium borohydride, citric acid, hydroquinone, isocyanates (such as phenyl isocyanate), hydrogen, hydrogen plasma, etc..
- a dispersion or suspension of exfoliated graphite oxide in a carrier can be made using any suitable method (such as ultrasonication and/or mechanical grinding or milling) and reduced to graphene sheets.
- Reduction can be solvothermal reduction, in solvents such as water, ethanol, etc. This can for example be done in an autoclave at elevated temperatures (such as those above about 200 °C).
- Graphite oxide can be produced by any method known in the art, such as by a process that involves oxidation of graphite using one or more chemical oxidizing agents and, optionally, intercalating agents such as sulfuric acid.
- oxidizing agents include nitric acid, nitrates (such as sodium and potassium nitrates), perchlorates, potassium chlorate, sodium chlorate, chromic acid, potassium chromate, sodium chromate, potassium dichromate, sodium dichromate, hydrogen peroxide, sodium and potassium permanganates, phosphoric acid (H 3 P0 4 ), phosphorus pentoxide, bisulfites, etc.
- Preferred oxidants include KCI0 4 ; HN0 3 and KCI0 3 ; KMn0 4 and/or NaMn0 4 ;
- Preferred intercalation agents include sulfuric acid.
- Graphite can also be treated with intercalating agents and electrochemically oxidized. Examples of methods of making graphite oxide include those described by Staudenmaier (Ber. Stsch. Chem. Ges.
- graphene sheets are oxidize graphite to graphite oxide, which is then thermally exfoliated to form graphene sheets (also known as thermally exfoliated graphite oxide), as described in US 2007/0092432, the disclosure of which is hereby incorporated herein by reference.
- the thusly formed graphene sheets can display little or no signature corresponding to graphite or graphite oxide in their X-ray diffraction pattern.
- the thermal exfoliation can be carried out in a continuous, semi-continuous batch, etc. process.
- Heating can be done in a batch process or a continuous process and can be done under a variety of atmospheres, including inert and reducing atmospheres (such as nitrogen, argon, and/or hydrogen atmospheres). Heating times can range from under a few seconds or several hours or more, depending on the temperatures used and the characteristics desired in the final thermally exfoliated graphite oxide. Heating can be done in any appropriate vessel, such as a fused silica, mineral, metal, carbon (such as graphite), ceramic, etc. vessel. Heating can be done using a flash lamp or with microwaves. During heating, the graphite oxide can be contained in an essentially constant location in single batch reaction vessel, or can be transported through one or more vessels during the reaction in a continuous or batch mode. Heating can be done using any suitable means, including the use of furnaces and infrared heaters.
- atmospheres including inert and reducing atmospheres (such as nitrogen, argon, and/or hydrogen atmospheres). Heating times can range from under a few seconds or several hours or more, depending on
- temperatures at which the thermal exfoliation and/or reduction of graphite oxide can be carried out are at least about 150 °C, at least about 200 °C, at least about 300 °C, at least about 400 °C, at least about 450 °C, at least about 500 °C, at least about 600 °C, at least about 700 °C, at least about 750 °C, at least about 800 °C, at least about 850 °C, at least about 900 °C, at least about 950 °C, at least about 1000 °C, at least about 1 100 °C, at least about 1500 °C, at least about 2000 °C, and at least about 2500 °C.
- Preferred ranges include between about 750 about and 3000 °C, between about 850 and 2500 °C, between about 950 and about 2500 °C, between about 950 and about 1500 °C, between about 750 about and 3100 °C, between about 850 and 2500 °C, or between about 950 and about 2500 °C.
- the time of heating can range from less than a second to many minutes.
- the time of heating can be less than about 0.5 seconds, less than about 1 second, less than about 5 seconds, less than about 10 seconds, less than about 20 seconds, less than about 30 seconds, or less than about 1 min.
- the time of heating can be at least about 1 minute, at least about 2 minutes, at least about 5 minutes, at least about 15 minutes, at least about 30 minutes, at least about 45 minutes, at least about 60 minutes, at least about 90 minutes, at least about 120 minutes, at least about 150 minutes, at least about 240 minutes, from about 0.01 seconds to about 240 minutes, from about 0.5 seconds to about 240 minutes, from about 1 second to about 240 minutes, from about 1 minute to about 240 minutes, from about 0.01 seconds to about 60 minutes, from about 0.5 seconds to about 60 minutes, from about 1 second to about 60 minutes, from about 1 minute to about 60 minutes, from about 0.01 seconds to about 10 minutes, from about 0.5 seconds to about 10 minutes, from about 1 second to about 10 minutes, from about 1 minute to about 10 minutes, from about 0.01 seconds to about 1 minute, from about 0.5 seconds to about 1 minute, from about 1 second to about 1 minute, no more than about 600 minutes, no more than about 450 minutes, no more than about 300 minutes, no more than about 180 minutes, no more than about 120
- Examples of the rate of heating include at least about 120 °C/min, at least about 200 °C/min, at least about 300 °C/min, at least about 400 °C/min, at least about 600 °C/min, at least about 800 °C/min, at least about 1000 °C/min, at least about 1200 °C/min, at least about 1500 °C/min, at least about 1800 °C/min, and at least about 2000 °C/min.
- Graphene sheets can be annealed or reduced to graphene sheets having higher carbon to oxygen ratios by heating under reducing atmospheric conditions (e.g., in systems purged with inert gases or hydrogen).
- Reduction/annealing temperatures are preferably at least about 300 °C, or at least about 350 °C, or at least about 400 °C, or at least about 500 °C, or at least about 600 °C, or at least about 750 °C, or at least about 850 °C, or at least about 950 °C, or at least about 1000 °C.
- the temperature used can be, for example, between about 750 about and 3000 °C, or between about 850 and 2500 °C, or between about 950 and about 2500 °C.
- the time of heating can be for example, at least about 1 second, or at least about
- the heating time will be at least about 15 minutes, or about 30 minutes, or about 45 minutes, or about 60 minutes, or about 90 minutes, or about 120 minutes, or about 150 minutes.
- the temperature can vary within these ranges.
- the heating can be done under a variety of conditions, including in an inert atmosphere (such as argon or nitrogen) or a reducing atmosphere, such as hydrogen (including hydrogen diluted in an inert gas such as argon or nitrogen), or under vacuum.
- the heating can be done in any appropriate vessel, such as a fused silica or a mineral or ceramic vessel or a metal vessel.
- the materials being heated including any starting materials and any products or intermediates) can be contained in an essentially constant location in single batch reaction vessel, or can be transported through one or more vessels during the reaction in a continuous or batch reaction. Heating can be done using any suitable means, including the use of furnaces and infrared heaters.
- the graphene sheets preferably have a surface area of at least about 100 m 2 /g to, or of at least about 200 m 2 /g, or of at least about 300 m 2 /g, or of least about 350 m 2 /g, or of least about 400 m 2 /g, or of least about 500 m 2 /g, or of least about 600 m 2 /g., or of least about 700 m 2 /g, or of least about 800 m 2 /g, or of least about 900 m 2 /g, or of least about 700 m 2 /g.
- the surface area can be about 400 to about 1 100 m 2 /g.
- the theoretical maximum surface area can be calculated to be 2630 m 2 /g.
- the surface area includes all values and subvalues therebetween, especially including 400, 500, 600, 700, 800, 900, 1000, 1 100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, and 2630 m 2 /g.
- the graphene sheets can have number average aspect ratios of about 100 to about 100,000, or of about 100 to about 50,000, or of about 100 to about 25,000, or of about 100 to about 10,000 (where "aspect ratio” is defined as the ratio of the longest dimension of the sheet to the shortest).
- Surface area can be measured using either the nitrogen adsorption/BET method at 77 K or a methylene blue (MB) dye method in liquid solution.
- the difference between the amount of MB that was initially added and the amount present in solution as determined by UV-vis spectrophotometry is assumed to be the amount of MB that has been adsorbed onto the surface of the graphene sheets.
- the surface area of the graphene sheets are then calculated using a value of 2.54 m 2 of surface covered per one mg of MB adsorbed.
- the graphene sheets can have a bulk density of from about 0.01 to at least about 200 kg/m 3 .
- the bulk density includes all values and subvalues therebetween, especially including 0.05, 0.1 , 0.5, 1 , 5, 10, 15, 20, 25, 30, 35, 50, 75, 100, 125, 150, and 175 kg/m 3 .
- Graphene sheets can be used in a dry or powder form (with little or no solvent), as a blend/dispersion/etc. in one or more solvents.
- the graphene sheets can be functionalized with, for example, oxygen-containing functional groups (including, for example, hydroxyl, carboxyl, and epoxy groups) and typically have an overall carbon to oxygen molar ratio (C/O ratio), as determined by bulk elemental analysis, of at least about 1 :1 , or more preferably, at least about 3:2.
- oxygen-containing functional groups including, for example, hydroxyl, carboxyl, and epoxy groups
- C/O ratio carbon to oxygen molar ratio
- Examples of carbon to oxygen ratios include about 3:2 to about 85:15; about 3:2 to about 20:1 ; about 3:2 to about 30:1 ; about 3:2 to about 40:1 ; about 3:2 to about 60:1 ; about 3:2 to about 80:1 ; about 3:2 to about 100:1 ; about 3:2 to about 200:1 ; about 3:2 to about 500:1 ; about 3:2 to about 1000:1 ; about 3:2 to greater than 1000:1 ; about 10:1 to about 30:1 ; about 80:1 to about 100:1 ; about 20:1 to about 100:1 ; about 20:1 to about 500:1 ; about 20:1 to about 1000:1 ; about 50:1 to about 300:1 ; about 50:1 to about 500:1 ; and about 50:1 to about 1000:1 .
- the carbon to oxygen ratio is at least about 10:1 , or at least about 15:1 , or at least about 20:1 , or at least about 35:1 , or at least about 50:1 , or at least about 75:1 , or at least about 100:1 , or at least about 200:1 , or at least about 300:1 , or at least about 400:1 , or at least 500:1 , or at least about 750:1 , or at least about 1000:1 ; or at least about 1500:1 , or at least about 2000:1.
- the carbon to oxygen ratio also includes all values and subvalues between these ranges.
- the graphene sheets can contain atomic scale kinks. These kinks can be caused by the presence of lattice defects in, or by chemical functionalization of the two- dimensional hexagonal lattice structure of the graphite basal plane.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/433,335 US11289730B2 (en) | 2012-10-02 | 2013-10-02 | Flexible batteries |
PCT/US2013/063153 WO2014055711A2 (en) | 2012-10-02 | 2013-10-02 | Flexible batteries |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/709,139 | 2012-10-02 | ||
PCT/US2013/063153 WO2014055711A2 (en) | 2012-10-02 | 2013-10-02 | Flexible batteries |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2014055711A2 true WO2014055711A2 (en) | 2014-04-10 |
WO2014055711A3 WO2014055711A3 (en) | 2014-05-15 |
WO2014055711A9 WO2014055711A9 (en) | 2015-04-09 |
Family
ID=50435575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/063153 WO2014055711A2 (en) | 2012-10-02 | 2013-10-02 | Flexible batteries |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014055711A2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU731457C (en) * | 1996-11-01 | 2001-12-20 | Via, Inc. | Flexible wearable computer system |
US5779348A (en) * | 1997-02-18 | 1998-07-14 | Interlicchio; Joseph C. | Illuminated safety shoulder strap |
US20050193742A1 (en) * | 2004-02-10 | 2005-09-08 | Its Kool, Llc | Personal heat control devicee and method |
WO2008124167A1 (en) * | 2007-04-10 | 2008-10-16 | The Regents Of The University Of California | Charge storage devices containing carbon nanotube films as electrodes and charge collectors |
US8642873B2 (en) * | 2010-02-12 | 2014-02-04 | ThinkGeek, Inc. | Interactive electronic apparel incorporating a drum kit image |
US8879759B2 (en) * | 2010-06-14 | 2014-11-04 | J. A. Wells & Associates, L.L.C. | Wireless speaker footwear |
-
2013
- 2013-10-02 WO PCT/US2013/063153 patent/WO2014055711A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014055711A3 (en) | 2014-05-15 |
WO2014055711A9 (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11289730B2 (en) | Flexible batteries | |
US20240115020A1 (en) | Battery with flexible omnidirectional leads | |
US11876241B2 (en) | System for supplying power to a portable battery using at least one solar panel | |
US12355217B2 (en) | Portable battery pack | |
US12082364B2 (en) | System for supplying power to at least one power distribution and data hub using a portable battery pack | |
US10991992B2 (en) | System for supplying power to a portable battery using at least one solar panel | |
US12119623B2 (en) | Wearable and replaceable pouch or skin for holding a portable battery pack | |
US20160374411A1 (en) | Personal thermal management system | |
EP3546389B1 (en) | Portable battery pack comprising a battery enclosed by a wearable and replaceable pouch or skin | |
US20200243808A1 (en) | Band batteries for smart wearable devices | |
US11558935B2 (en) | Flexible heating device and methods of manufacture and use of same | |
US12249953B2 (en) | Foldable solar panel | |
WO2008023199A1 (en) | Conformable battery packs | |
US20050255349A1 (en) | Articles of clothing and personal gear with on-demand power supply for electrical devices | |
US20150241147A1 (en) | Graphene Based Thermal Management Devices | |
WO2015103563A1 (en) | Wearable electronic devices | |
US20200059196A1 (en) | Foldable solar panel | |
US10278482B1 (en) | Personal item carrying system | |
WO2014055711A9 (en) | Flexible batteries | |
CN203884730U (en) | Multifunctional garment | |
US20210337956A1 (en) | Backpack cover | |
WO2021016319A1 (en) | Stretchable and flexible lithium ion battery | |
CN210445748U (en) | Intelligent heating clothes | |
CN204797374U (en) | Multi -functional sleeping bag for police | |
Song et al. | High electrochemical performance bendable Li secondary batteries based on a three-dimensional metal foam-type current collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13844367 Country of ref document: EP Kind code of ref document: A2 |
|
WPC | Withdrawal of priority claims after completion of the technical preparations for international publication |
Ref document number: 61/709,139 Country of ref document: US Date of ref document: 20150210 Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14433335 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13844367 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |