[go: up one dir, main page]

WO2014045415A1 - ハイブリッド車両用駆動装置 - Google Patents

ハイブリッド車両用駆動装置 Download PDF

Info

Publication number
WO2014045415A1
WO2014045415A1 PCT/JP2012/074288 JP2012074288W WO2014045415A1 WO 2014045415 A1 WO2014045415 A1 WO 2014045415A1 JP 2012074288 W JP2012074288 W JP 2012074288W WO 2014045415 A1 WO2014045415 A1 WO 2014045415A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
rotating machine
planetary gear
drive
gear mechanism
Prior art date
Application number
PCT/JP2012/074288
Other languages
English (en)
French (fr)
Inventor
弘一 奥田
真史 山本
恵太 今井
田端 淳
圭佑 大室
金田 俊樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/074288 priority Critical patent/WO2014045415A1/ja
Priority to CN201280075938.9A priority patent/CN104661846B/zh
Priority to US14/424,363 priority patent/US9539891B2/en
Priority to DE112012006927.7T priority patent/DE112012006927B4/de
Priority to JP2014536513A priority patent/JP5884916B2/ja
Publication of WO2014045415A1 publication Critical patent/WO2014045415A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to a hybrid vehicle drive device.
  • Patent Document 1 discloses a technology of a hybrid vehicle drive device that includes a speed change mechanism that changes the speed of an internal combustion engine and transmits the rotation to a power distribution mechanism.
  • a hybrid vehicle drive device that includes a speed change mechanism that changes the speed of an internal combustion engine and transmits the rotation to a power distribution mechanism.
  • an internal combustion engine, a first motor generator, a second motor generator, which are power sources, a speed change mechanism, a power split mechanism, and an output shaft are arranged on the same axis, and mainly FR (front engine). (Rear wheel drive) Applicable to vehicles.
  • FR front engine
  • a drive device having an arrangement configuration mainly applied to an FR vehicle is applied to an FF (front engine front wheel drive) vehicle or an RR (rear engine rear wheel drive) vehicle.
  • FF front engine front wheel drive
  • RR rear engine rear wheel drive
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid vehicle drive device that can improve mountability.
  • a hybrid vehicle drive device includes an engine, a first rotating machine, a second rotating machine, and a first differential mechanism that transmits rotation of the engine to a drive wheel side. And a switching device for shifting the first differential mechanism, wherein the first rotating machine is arranged coaxially with the engine, and the second rotating machine is arranged on an axis different from the axis of the engine.
  • the first differential mechanism is coaxially disposed between the engine and the first rotating machine, and the switching device is connected to the engine with respect to the first rotating machine. It is arranged on the opposite side.
  • the hybrid vehicle drive device includes a second differential mechanism that connects the first differential mechanism and the drive wheel, and the second differential mechanism is an output element of the first differential mechanism.
  • the differential mechanism is preferably arranged coaxially between the first differential mechanism and the first rotating machine.
  • the hybrid vehicle drive device includes a differential gear diffring gear disposed on a power transmission path from the second differential mechanism to the drive wheel on a shaft different from the engine, and the diff ring A gear is preferably disposed between the engine and the first rotating machine at an axial position.
  • the hybrid vehicle drive device includes a pair of drive shafts that transmit power from the differential device to the left and right drive wheels, respectively, and the pair of drive shafts from the differential device to the drive wheels. It is preferable that the length is equal to the left and right.
  • the first differential mechanism and the switching device of the transmission unit are disposed apart from each other, and only the first differential mechanism is disposed between the engine and the first rotating machine.
  • the radial length of the transmission unit can be reduced, and the mountability can be improved.
  • FIG. 1 is a cross-sectional view of a hybrid vehicle drive device according to an embodiment of the present invention.
  • FIG. 2 is a skeleton diagram of the hybrid vehicle drive device shown in FIG. 1.
  • FIG. 3 is an input / output relationship diagram of a vehicle to which the hybrid vehicle drive device according to the present embodiment is applied.
  • FIG. 4 is a diagram illustrating an operation engagement table of the hybrid vehicle drive device according to the embodiment.
  • FIG. 5 is a collinear diagram related to the single motor EV mode.
  • FIG. 6 is a collinear diagram related to the both-motor EV mode.
  • FIG. 7 is a collinear diagram related to the HV traveling mode in the low state.
  • FIG. 8 is a collinear diagram related to the HV driving mode in the high state.
  • FIGS. 1 is a cross-sectional view of a hybrid vehicle drive device according to an embodiment of the present invention
  • FIG. 2 is a skeleton diagram of the hybrid vehicle drive device of FIG. 1
  • FIG. 3 is related to the present embodiment. It is an input-output relationship figure of the vehicle to which the drive device for hybrid vehicles is applied.
  • the vehicle 100 is a hybrid vehicle having an engine 1, a first rotating machine MG1, and a second rotating machine MG2 as power sources.
  • Vehicle 100 may be a plug-in hybrid vehicle that can be charged by an external power source.
  • the vehicle 100 includes an engine 1, a first planetary gear mechanism 10, a second planetary gear mechanism 20, a first rotating machine MG1, a second rotating machine MG2, a clutch CL1, a brake BK1, an HV_ECU 50,
  • the MG_ECU 60 and the engine_ECU 70 are included.
  • the hybrid vehicle drive device 1-1 includes the first planetary gear mechanism 10, the second planetary gear mechanism 20, the clutch CL1, and the brake BK1.
  • the hybrid vehicle drive device 1-1 may further include control devices such as the ECUs 50, 60, and 70.
  • the hybrid vehicle drive device 1-1 can be applied to an FF (front engine front wheel drive) vehicle, an RR (rear engine rear wheel drive) vehicle, or the like.
  • the hybrid vehicle drive device 1-1 is mounted on the vehicle 100 such that the axial direction is the vehicle width direction, for example.
  • a transmission unit is configured including the first planetary gear mechanism 10, the clutch CL1 (first engagement element), and the brake BK1 (second engagement element). Yes.
  • a differential unit is configured including the second planetary gear mechanism 20.
  • a switching device for shifting the speed of the first planetary gear mechanism 10 is configured including the clutch CL1 and the brake BK1.
  • Engine 1 which is an engine converts the combustion energy of the fuel into a rotary motion of the output shaft and outputs it.
  • the output shaft of the engine 1 is connected to the input shaft 2.
  • the input shaft 2 is an input shaft of the power transmission device.
  • the power transmission device includes a first rotating machine MG1, a second rotating machine MG2, a clutch CL1, a brake BK1, a differential device 30 and the like.
  • the input shaft 2 is arranged coaxially with the output shaft of the engine 1 and on an extension line of the output shaft.
  • the input shaft 2 is connected to the first carrier 14 of the first planetary gear mechanism 10.
  • the first planetary gear mechanism 10 of the present embodiment is connected to the engine 1 and corresponds to a power transmission mechanism that transmits the rotation of the engine 1.
  • the first planetary gear mechanism 10 which is a differential mechanism is shown as an example of a power transmission mechanism.
  • the first planetary gear mechanism 10 is mounted on the vehicle 100 as a first differential mechanism.
  • the first planetary gear mechanism 10 is an input-side differential mechanism that is disposed closer to the engine 1 than the second planetary gear mechanism 20.
  • the first planetary gear mechanism 10 can change the rotation of the engine 1 and output it.
  • the first planetary gear mechanism 10 is a single pinion type and includes a first sun gear 11, a first pinion gear 12, a first ring gear 13, and a first carrier 14.
  • the first planetary gear mechanism 10 may be a double pinion type.
  • the first ring gear 13 is coaxial with the first sun gear 11 and is disposed on the radially outer side of the first sun gear 11.
  • the first pinion gear 12 is disposed between the first sun gear 11 and the first ring gear 13 and meshes with the first sun gear 11 and the first ring gear 13, respectively.
  • the first pinion gear 12 is rotatably supported by the first carrier 14.
  • the first carrier 14 is connected to the input shaft 2 and rotates integrally with the input shaft 2. Therefore, the first pinion gear 12 can rotate (revolve) together with the input shaft 2 around the central axis of the input shaft 2 and is supported by the first carrier 14 and rotated around the central axis of the first pinion gear 12 ( Rotation) is possible.
  • the clutch CL1 is a clutch device capable of connecting the first sun gear 11 and the first carrier 14.
  • the clutch CL1 can be, for example, a friction engagement type clutch, but is not limited thereto, and a known clutch device such as a meshing type clutch may be used as the clutch CL1.
  • the clutch CL1 is controlled by hydraulic pressure to engage or disengage.
  • the fully engaged clutch CL1 can connect the first sun gear 11 and the first carrier 14 and rotate the first sun gear 11 and the first carrier 14 together.
  • the fully engaged clutch CL ⁇ b> 1 regulates the differential of the first planetary gear mechanism 10.
  • the opened clutch CL1 disconnects the first sun gear 11 and the first carrier 14 and allows relative rotation between the first sun gear 11 and the first carrier 14. That is, the opened clutch CL1 allows the first planetary gear mechanism 10 to be differential.
  • the clutch CL1 can be controlled to a half-engaged state (slip-engaged state).
  • the brake BK1 is a brake device that can regulate the rotation of the first sun gear 11.
  • the brake BK1 has an engagement element connected to the first sun gear 11, and an engagement element connected to the vehicle body side, for example, a case of the power transmission device.
  • the brake BK1 may be a friction engagement type clutch device similar to the clutch CL1, but is not limited thereto, and a known clutch device such as a meshing type clutch may be used as the brake BK1.
  • the brake BK1 is engaged or released by being controlled by, for example, hydraulic pressure.
  • the fully engaged brake BK1 connects the first sun gear 11 and the vehicle body side and can regulate the rotation of the first sun gear 11.
  • the released brake BK1 separates the first sun gear 11 from the vehicle body side and allows the first sun gear 11 to rotate.
  • the brake BK1 can be controlled to a half-engaged state (slip-engaged state).
  • the second planetary gear mechanism 20 of the present embodiment corresponds to a differential mechanism that connects the first planetary gear mechanism 10 and the drive wheel 32.
  • the second planetary gear mechanism 20 is mounted on the vehicle 100 as a second differential mechanism.
  • the second planetary gear mechanism 20 is an output-side differential mechanism that is disposed closer to the drive wheel 32 than the first planetary gear mechanism 10.
  • the second planetary gear mechanism 20 is a single pinion type and includes a second sun gear 21, a second pinion gear 22, a second ring gear 23, and a second carrier 24.
  • the second planetary gear mechanism 20 is disposed coaxially with the first planetary gear mechanism 10 and faces the engine 1 with the first planetary gear mechanism 10 interposed therebetween.
  • the second ring gear 23 is coaxial with the second sun gear 21 and is disposed on the radially outer side of the second sun gear 21.
  • the second pinion gear 22 is disposed between the second sun gear 21 and the second ring gear 23 and meshes with the second sun gear 21 and the second ring gear 23, respectively.
  • the second pinion gear 22 is rotatably supported by the second carrier 24.
  • the second carrier 24 is connected to the first ring gear 13 and rotates integrally with the first ring gear 13.
  • the second pinion gear 22 can rotate (revolve) around the central axis of the input shaft 2 together with the second carrier 24, and is supported by the second carrier 24 to rotate (rotate) around the central axis of the second pinion gear 22. It is possible.
  • the first ring gear 13 is an output element of the first planetary gear mechanism 10, and can output the rotation input from the engine 1 to the first planetary gear mechanism 10 to the second carrier 24.
  • the second carrier 24 corresponds to the first rotating element connected to the output element of the first planetary gear mechanism 10.
  • the second sun gear 21 is connected to the rotary shaft 33 of the first rotary machine MG1.
  • the rotating shaft 33 of the first rotating machine MG1 is disposed coaxially with the input shaft 2 and rotates integrally with the second sun gear 21.
  • the second sun gear 21 corresponds to the second rotating element connected to the first rotating machine MG1.
  • a counter drive gear 25 is connected to the second ring gear 23.
  • the counter drive gear 25 is an output gear that rotates integrally with the second ring gear 23.
  • the second ring gear 23 corresponds to the third rotating element connected to the second rotating machine MG ⁇ b> 2 and the drive wheel 32.
  • the second ring gear 23 is an output element that can output the rotation input from the first rotating machine MG ⁇ b> 1 or the first planetary gear mechanism 10 to the drive wheels 32.
  • the counter drive gear 25 is supported by a case at both ends in the axial direction, and is configured to reduce shaft deflection relative to one-side support.
  • the counter drive gear 25 is meshed with the counter driven gear 26.
  • the counter driven gear 26 is connected to a drive pinion gear 28 via a counter shaft 27.
  • the counter driven gear 26 and the drive pinion gear 28 rotate integrally.
  • the counter driven gear 26 is engaged with a reduction gear 35.
  • the reduction gear 35 is connected to the rotation shaft 34 of the second rotary machine MG2. That is, the rotation of the second rotating machine MG2 is transmitted to the counter driven gear 26 via the reduction gear 35.
  • the reduction gear 35 has a smaller diameter than that of the counter driven gear 26, and reduces the rotation of the second rotary machine MG ⁇ b> 2 and transmits it to the counter driven gear 26.
  • the drive pinion gear 28 meshes with the diff ring gear 29 of the differential device 30.
  • the differential device 30 is connected to drive wheels 32 via left and right drive shafts 31.
  • the second ring gear 23 is connected to the drive wheel 32 via a counter drive gear 25, a counter driven gear 26, a drive pinion gear 28, a differential device 30 and a drive shaft 31.
  • the second rotating machine MG2 is connected to a power transmission path between the second ring gear 23 and the drive wheels 32, and can transmit power to the second ring gear 23 and the drive wheels 32, respectively. .
  • the pair of left and right drive shafts 31 for transmitting power to the left and right drive wheels 32 are of equal left and right lengths (so-called isometric drive shafts) so that torque steer can be prevented.
  • the position of the differential device 30, that is, the position of the differential output surface (the connection surface of the drive shaft 31) is set.
  • the differential output surface is indicated by the symbol B in FIG.
  • the pair of left and right drive shafts 31 being equal in length to the left and right means that the lengths from the differential device 30 to the left and right drive wheels 32 are equal, for example, more specifically, the differential device 30.
  • the lengths from the differential output surface B to the left and right drive wheels 32 are equal.
  • the first rotating machine MG1 and the second rotating machine MG2 each have a function as a motor (electric motor) and a function as a generator.
  • the first rotary machine MG1 and the second rotary machine MG2 are connected to a battery via an inverter.
  • the first rotating machine MG1 and the second rotating machine MG2 can convert the electric power supplied from the battery into mechanical power and output it, and are driven by the input power to convert the mechanical power into electric power. Can be converted.
  • the electric power generated by the rotating machines MG1 and MG2 can be stored in the battery.
  • an AC synchronous motor generator can be used as the first rotating machine MG1 and the second rotating machine MG2, for example.
  • the vehicle 100 includes an HV_ECU 50, an MG_ECU 60, and an engine_ECU 70.
  • Each ECU 50, 60, 70 is an electronic control unit having a computer.
  • the HV_ECU 50 has a function of integrally controlling the entire vehicle 100.
  • MG_ECU 60 and engine_ECU 70 are electrically connected to HV_ECU 50.
  • MG_ECU 60 can control the first rotary machine MG1 and the second rotary machine MG2. For example, the MG_ECU 60 adjusts the current value supplied to the first rotating machine MG1, controls the output torque of the first rotating machine MG1, and adjusts the current value supplied to the second rotating machine MG2. The output torque of the second rotary machine MG2 can be controlled.
  • Engine_ECU 70 can control engine 1.
  • the engine_ECU 70 can, for example, control the opening of the electronic throttle valve of the engine 1, perform ignition control of the engine 1 by outputting an ignition signal, and perform fuel injection control on the engine 1.
  • the engine_ECU 70 can control the output torque of the engine 1 by electronic throttle valve opening control, injection control, ignition control, and the like.
  • the HV_ECU 50 is connected to a vehicle speed sensor, an accelerator opening sensor, an MG1 rotational speed sensor, an MG2 rotational speed sensor, an output shaft rotational speed sensor, a battery (SOC) sensor, and the like. With these sensors, the HV_ECU 50 obtains the vehicle speed, the accelerator opening, the rotational speed of the first rotary machine MG1, the rotational speed of the second rotary machine MG2, the rotational speed of the output shaft of the power transmission device, the battery state SOC, and the like. Can do.
  • the HV_ECU 50 can calculate the required driving force, required power, required torque, and the like for the vehicle 100 based on the acquired information.
  • the HV_ECU 50 also describes the output torque of the first rotating machine MG1 (hereinafter also referred to as “MG1 torque”) and the output torque of the second rotating machine MG2 (hereinafter referred to as “MG2 torque”) based on the calculated request value.
  • MG1 torque the output torque of the second rotating machine MG2
  • engine torque the output torque of the engine 1
  • the HV_ECU 50 outputs the MG1 torque command value and the MG2 torque command value to the MG_ECU 60. Further, the HV_ECU 50 outputs an engine torque command value to the engine_ECU 70.
  • the HV_ECU 50 controls the clutch CL1 and the brake BK1 based on a travel mode described later.
  • the HV_ECU 50 outputs a command value (PbCL1) of the supply hydraulic pressure for the clutch CL1 and a command value (PbBK1) of the supply hydraulic pressure for the brake BK1.
  • a hydraulic control device (not shown) controls the hydraulic pressure supplied to the clutch CL1 and the brake BK1 according to the command values PbCL1, PbBK1.
  • the first rotating machine MG1 is arranged coaxially with the output shaft (input shaft 2) of the engine 1.
  • the second rotating machine MG2 is disposed on a rotating shaft 34 that is different from the output shaft of the engine 1. That is, the hybrid vehicle drive device 1-1 of the present embodiment is a multi-shaft type in which the input shaft 2 and the rotation shaft 34 of the second rotary machine MG2 are arranged on different axes.
  • the first planetary gear mechanism 10 is disposed between the engine 1 and the first rotating machine MG1 on the same axis as the rotational axis of the engine 1. Further, the brake BK1 and the clutch CL1 as switching devices of the first planetary gear mechanism 10 are disposed on the opposite side of the engine 1 with respect to the first rotating machine MG1.
  • the second planetary gear mechanism 20 is disposed between the first planetary gear mechanism 10 and the first rotating machine MG1. That is, in the hybrid vehicle drive device 1-1 of the present embodiment, the first planetary gear mechanism 10, the counter drive gear 25, and the second planet are arranged in order from the side closer to the engine 1 on the same axis as the output shaft of the engine 1.
  • a gear mechanism 20, a first rotary machine MG1, a brake BK1, and a clutch CL1 are arranged.
  • element a is disposed between element b and element c
  • element a is the element b and the element b at the position along the axial direction of the output shaft (input shaft 2) of the engine 1.
  • the first rotating machine MG1 is used for this expression, the first rotating machine MG1 is limited to the range of the rotor and the stator, and does not include the rotating shaft 33.
  • the first planetary gear mechanism 10 that functions as a transmission unit, the brake BK1, and the clutch CL1 are arranged apart from each other. Only the first planetary gear mechanism 10 is disposed between the engine 1 and the second planetary gear mechanism 20 (differential portion). The first planetary gear mechanism 10 is connected to the second planetary gear mechanism 20.
  • the input shaft 2 passes through the inner side of the rotating shaft 33 of the MG 1, extends further to the side opposite to the engine 1 than the brake BK 1 and the clutch CL 1, and is connected to the mechanical oil pump 3.
  • the mechanical oil pump 3 is disposed coaxially with the engine 1, the first planetary gear mechanism 10, the second planetary gear mechanism 20, and the first rotating electrical machine MG1, and includes the first planetary gear mechanism 10, the second planetary gear mechanism 20, and The engine 1 is opposed to the engine 1 with the first rotating electrical machine MG1 interposed therebetween.
  • the mechanical oil pump 3 is connected to the output shaft of the engine 1 through the input shaft 2 and is driven by the driving force of the engine 1.
  • the mechanical oil pump 3 is driven by the engine 1 as a drive source to supply operating oil to the switching device for the clutch CL1 and the brake BK1, and to lubricate the first planetary gear mechanism 10 and the second planetary gear mechanism 20. It is configured to supply oil.
  • the lubricating oil supplied to the first planetary gear mechanism 10 and the second planetary gear mechanism 20 a relatively low oil pressure is sufficient.
  • the lubricating oil passes from the mechanical oil pump 3 to the first planetary gear through the lubricating oil passage 4 formed in the clearance between the input shaft 2 and the rotating shaft 33 of the first rotating machine MG1. It is supplied to the mechanism 10 and the second planetary gear mechanism 20.
  • the operating oil supplied to the switching device requires a relatively high hydraulic pressure for engaging / disengaging operation of the clutch CL1 and the brake BK1.
  • the oil discharged from the oil pump 3 is controlled to a high pressure via a hydraulic control circuit (not shown), for example, and then supplied to the switching device through the supply oil passage 5 as shown in FIG.
  • a hydraulic control circuit not shown
  • the differential ring gear 29 has a positional relationship between the engine 1 and the first rotating machine MG1 along the axial direction of the output shaft of the engine 1.
  • a counter drive gear 25 that transmits power in conjunction with the output element (second ring gear 23) of the differential section is disposed between the diff ring gear 29 and the engine 1.
  • the end surface of the engine 1 on the drive device 1-1 side in other words, the end surface of the engine 1 facing the first planetary gear mechanism 10 is referred to as “engine alignment surface”.
  • the surface that passes through the midpoint between the opposing end surfaces of the left and right drive shafts 31 of the differential device 30 and is orthogonal to the axial direction of the output shaft of the engine 1 is defined as a “difference output surface”.
  • the positional relationship between the engine mating surface A and the differential output surface B is determined by the positional relationship AB of the conventional vehicle and the dimensions of the existing drive shaft 31.
  • the counter drive gear 25 is designed to be disposed between the diff ring gear 29 and the engine 1 along the axial direction of the output shaft of the engine 1.
  • the switching device (the clutch CL1 and the brake BK1) is disposed on the outer peripheral side of the first planetary gear mechanism 10.
  • the radial direction length of the speed change part is large, so that a space for arranging the counter drive gear 25 cannot be secured, and the counter The drive gear 25 cannot be disposed between the diff ring gear 29 and the engine 1.
  • the same problem occurs even if the switching device is arranged in parallel with the first planetary gear mechanism 10 in the axial direction.
  • the axial length may be increased in relation to the case radius. is there.
  • the positional relationship between the engine alignment surface A and the differential output surface B can be maintained without adding a new power transmission element or newly installing a drive shaft.
  • components such as a shaft and a gear of the conventional hybrid vehicle drive device which does not have a transmission part, can be diverted.
  • the drive shaft can also be used.
  • both the first planetary gear mechanism 10 and the switching device can reduce the radial length. For example, as shown in FIGS. 1 and 2, both the first planetary gear mechanism 10 of the transmission unit and the radial length of the switching device can be made smaller than the radial length of the first rotating machine MG1.
  • the brake BK ⁇ b> 1 is arranged on the outer peripheral side of the clutch CL ⁇ b> 1 in the switching device so that the further axial dimension can be shortened.
  • FIG. 4 is a view showing an operation engagement table of the hybrid vehicle drive device 1-1 according to the present embodiment.
  • the vehicle 100 can selectively execute hybrid (HV) traveling or EV traveling.
  • the HV traveling is a traveling mode in which the vehicle 100 travels using both or one of the engine 1 and the second rotary machine MG2 as a power source.
  • EV traveling is a traveling mode in which traveling is performed using at least one of the first rotating machine MG1 and the second rotating machine MG2 as a power source. In EV traveling, it is possible to travel with the engine 1 stopped.
  • the hybrid vehicle drive device 1-1 includes, as an EV travel mode, a single motor EV mode (single drive EV mode) that causes the vehicle 100 to travel using the second rotary machine MG2 as a single power source, Both motor EV modes (both drive EV modes) for running the vehicle 100 using the rotating machine MG1 and the second rotating machine MG2 as power sources are provided.
  • FIG. 5 is a collinear diagram related to the single motor EV mode.
  • reference numerals S1, C1, and R1 indicate the first sun gear 11, the first carrier 14, and the first ring gear 13, respectively.
  • Reference numerals S2, C2, and R2 indicate the second sun gear 21 and the second carrier 24, respectively.
  • the 2nd ring gear 23 is shown.
  • the clutch CL1 and the brake BK1 are released.
  • the brake BK1 is opened, the first sun gear 11 is allowed to rotate, and when the clutch CL1 is opened, the first planetary gear mechanism 10 can be differentially operated.
  • the HV_ECU 50 causes the second rotary machine MG2 to output a positive torque via the MG_ECU 60 to cause the vehicle 100 to generate a driving force in the forward direction.
  • the second ring gear 23 rotates forward in conjunction with the rotation of the drive wheel 32.
  • the normal rotation is the rotation direction of the second ring gear 23 when the vehicle 100 moves forward.
  • the HV_ECU 50 operates the first rotary machine MG1 as a generator to reduce drag loss.
  • the HV_ECU 50 generates a power by applying a slight torque to the first rotating machine MG1, and sets the rotation speed of the first rotating machine MG1 to zero. Thereby, the drag loss of the first rotary machine MG1 can be reduced. Further, even when the MG1 torque is set to 0, the MG1 torque may not be applied if the MG1 rotation speed can be maintained at 0 using the cogging torque. Alternatively, the MG1 rotation speed may be set to 0 by the d-axis lock of the first rotating machine MG1.
  • the first ring gear 13 rotates along with the second carrier 24 and rotates forward.
  • the neutral state of the first planetary gear mechanism 10 is a state in which no power is transmitted between the first ring gear 13 and the first carrier 14, that is, the engine 1 and the second planetary gear mechanism 20 are disconnected. In this state, power transmission is interrupted.
  • the first planetary gear mechanism 10 is connected to connect the engine 1 and the second planetary gear mechanism 20 when at least one of the clutch CL1 and the brake BK1 is engaged.
  • the battery When running in the single motor EV mode, the battery may be fully charged and regenerative energy may not be obtained. In this case, it is conceivable to use an engine brake together.
  • the clutch CL ⁇ b> 1 or the brake BK ⁇ b> 1 By engaging the clutch CL ⁇ b> 1 or the brake BK ⁇ b> 1, the engine 1 can be connected to the drive wheel 32 and the engine brake can be applied to the drive wheel 32.
  • the clutch CL1 or the brake BK1 when the clutch CL1 or the brake BK1 is engaged in the single motor EV mode, the engine 1 is brought into a rotating state, and the engine speed is increased by the first rotating machine MG1 to be in an engine braking state. be able to.
  • FIG. 6 is a collinear diagram related to the both-motor EV mode.
  • the clutch CL1 When the clutch CL1 is engaged, the differential of the first planetary gear mechanism 10 is restricted, and when the brake BK1 is engaged, the rotation of the first sun gear 11 is restricted. Accordingly, the rotation of all the rotating elements of the first planetary gear mechanism 10 is stopped. By restricting the rotation of the first ring gear 13 that is the output element, the second carrier 24 connected thereto is locked to zero rotation.
  • the HV_ECU 50 causes the first rotating machine MG1 and the second rotating machine MG2 to output driving driving torque, respectively. Since the rotation of the second carrier 24 is restricted, the second carrier 24 can take a reaction force against the torque of the first rotating machine MG ⁇ b> 1 and output the torque of the first rotating machine MG ⁇ b> 1 from the second ring gear 23.
  • the first rotating machine MG1 can output a positive torque from the second ring gear 23 by outputting a negative torque and rotating negatively when moving forward. On the other hand, at the time of reverse travel, the first rotary machine MG1 can output negative torque from the second ring gear 23 by outputting positive torque and rotating forward.
  • FIG. 7 is a collinear diagram related to the HV driving mode in the low state (hereinafter also referred to as “HV low mode”), and FIG. 8 is also referred to as the HV driving mode in the high state (hereinafter referred to as “HV high mode”).
  • HV low mode the HV driving mode in the low state
  • HV high mode the HV driving mode in the high state
  • the HV_ECU 50 engages the clutch CL1 and releases the brake BK1.
  • the clutch CL1 is engaged, the differential of the first planetary gear mechanism 10 is restricted, and the rotating elements 11, 13, and 14 rotate integrally. Accordingly, the rotation of the engine 1 is not accelerated or decelerated and is transmitted from the first ring gear 13 to the second carrier 24 at a constant speed.
  • the HV_ECU 50 releases the clutch CL1 and engages the brake BK1.
  • the engagement of the brake BK1 restricts the rotation of the first sun gear 11. Therefore, the first planetary gear mechanism 10 enters an overdrive (OD) state in which the rotation of the engine 1 input to the first carrier 14 is increased and output from the first ring gear 13.
  • the first planetary gear mechanism 10 can increase the rotation speed of the engine 1 and output it.
  • the gear ratio of the first planetary gear mechanism 10 during overdrive can be set to 0.7, for example.
  • the switching device including the clutch CL1 and the brake BK1 switches between a state in which the differential of the first planetary gear mechanism 10 is regulated and a state in which the differential of the first planetary gear mechanism 10 is allowed to switch.
  • the gear mechanism 10 is shifted.
  • the hybrid vehicle drive device 1-1 can be switched between the HV high mode and the HV low mode by the transmission unit including the first planetary gear mechanism 10, the clutch CL1, and the brake BK1, and improves the transmission efficiency of the vehicle 100. be able to.
  • a second planetary gear mechanism 20 as a differential unit is connected in series with the subsequent stage of the transmission unit. Since the first planetary gear mechanism 10 can be switched to overdrive, there is an advantage that the first rotating machine MG1 does not have to be greatly increased in torque.
  • the hybrid vehicle drive device 1-1 of the present embodiment includes an engine 1, a first rotary machine MG1, a second rotary machine MG2, and a first planetary gear mechanism 10 that transmits the rotation of the engine 1 to the drive wheel 32 side. And a clutch CL1 and a brake BK1 as a switching device for shifting the speed of the first planetary gear mechanism 10, the first rotating machine MG1 is disposed coaxially with the engine 1, and the second rotating machine MG2 is the engine 1. It is a multi-shaft type arranged on different axes.
  • the first planetary gear mechanism 10 is disposed coaxially between the engine 1 and the first rotating machine MG1, and the clutch CL1 and the brake BK1 are disposed on the opposite side of the engine 1 with respect to the first rotating machine MG1. .
  • the clutch CL1 and the brake BK1 are spaced apart from the first planetary gear mechanism 10 that is an element of the transmission unit, and the first of the elements of the transmission unit is disposed between the engine 1 and the first rotating machine MG1. Since only one planetary gear mechanism 10 is disposed, the radial length and the axial length of the transmission unit can be reduced, and the mountability can be improved. Therefore, even when there is a space restriction due to the side member, such as when the drive device is applied to an FF (front engine front wheel drive) vehicle or an RR (rear engine rear wheel drive) vehicle, it is advantageous in terms of mounting.
  • FF front engine front wheel drive
  • RR rear engine rear wheel drive
  • the hybrid vehicle drive device 1-1 of the present embodiment includes a second planetary gear mechanism 20 that connects the first planetary gear mechanism 10 and the drive wheels 32.
  • the second planetary gear mechanism 20 includes a second carrier 14 connected to the output element (first ring gear 13) of the first planetary gear mechanism 10, a second sun gear 21 connected to the first rotating machine MG1, A second rotary gear MG2 and a second ring gear 23 connected to the drive wheel 32.
  • the second planetary gear mechanism 20 is disposed coaxially between the first planetary gear mechanism 10 and the first rotating machine MG1.
  • the configuration in which the brake BK1 and the clutch CL1 as the switching device of the transmission unit are arranged in the order of the brake BK1 and the clutch CL1 from the engine 1 side is illustrated, but the switching device is based on the first rotating machine MG1. As long as it is arranged on the opposite side to the engine 1, the positions of the brake BK1 and the clutch CL1 may be interchanged.
  • clutch CL1 and brake BK1 are arranged in parallel in an axial direction, and switching is carried out. It is good also as a structure which further reduces the radial direction length of an apparatus.
  • Hybrid vehicle drive system 1 Engine (engine) 10 First planetary gear mechanism (first differential mechanism) 11 First sun gear 13 First ring gear 14 First carrier 20 Second planetary gear mechanism (second differential mechanism) 21 Second sun gear (second rotating element) 23 Second ring gear (third rotating element) 24 Second carrier (first rotating element) 29 diff ring gear 31 drive shaft 32 drive wheel 50 HV_ECU 60 MG_ECU 70 Engine_ECU 100 vehicle CL1 clutch (switching device) BK1 brake (switching device) MG1 first rotating machine MG2 second rotating machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

 ハイブリッド車両用駆動装置(1-1)は、エンジン(1)と、第一回転機(MG1)と、第二回転機(MG2)と、エンジン(1)の回転を駆動輪(32)側に伝達する第一遊星歯車機構(10)と、第一遊星歯車機構(10)を変速させる切替装置としてのクラッチ(CL1)及びブレーキ(BK1)と、を備え、第一回転機(MG1)がエンジン(1)と同軸上に配置され、第二回転機(MG2)がエンジン(1)の出力軸とは異なる軸上に配置される複軸式である。第一遊星歯車機構(10)が、エンジン(1)と第一回転機(MG1)との間に同軸上に配置され、クラッチ(CL1)及びブレーキ(BK1)が、第一回転機(MG1)を基準としてエンジン(1)と反対側に配置される。

Description

ハイブリッド車両用駆動装置
 本発明は、ハイブリッド車両用駆動装置に関する。
 従来、変速機構を備えたハイブリッド車両が公知である。例えば、特許文献1には、内燃機関の回転を変速して動力分配機構へ伝達する変速機構を備えたハイブリッド車両の駆動装置の技術が開示されている。この駆動装置では、動力源である内燃機関、第一モータジェネレータ、及び第二モータジェネレータと、変速機構と、動力分割機構と、出力軸とが同一軸線上に配列され、主にFR(前置きエンジン後輪駆動)車両に適用可能である。
特開2008-120234号公報
 上記特許文献1に記載されるように、主にFR車両に適用される配置構成をとる駆動装置を、FF(前置きエンジン前輪駆動)車両やRR(後置きエンジン後輪駆動)車両に適用する場合、例えばサイドメンバ等による空間制約があるため、搭載性を改善する余地があった。
 本発明は、上記に鑑みてなされたものであって、搭載性を向上できるハイブリッド車両用駆動装置を提供することを目的とする。
 上記課題を解決するために、本発明に係るハイブリッド車両用駆動装置は、機関と、第一回転機と、第二回転機と、前記機関の回転を駆動輪側に伝達する第一差動機構と、前記第一差動機構を変速させる切替装置と、を備え、前記第一回転機が前記機関と同軸上に配置され、前記第二回転機が前記機関の軸とは異なる軸上に配置される複軸式であり、前記第一差動機構が、前記機関と前記第一回転機との間に同軸上に配置され、前記切替装置が、前記第一回転機を基準として前記機関と反対側に配置されることを特徴とする。
 また、上記のハイブリッド車両用駆動装置は、前記第一差動機構と前記駆動輪とを接続する第二差動機構を備え、前記第二差動機構は、前記第一差動機構の出力要素に接続された第一回転要素と、前記第一回転機に接続された第二回転要素と、前記第二回転機および前記駆動輪に接続された第三回転要素とを有し、前記第二差動機構は、前記第一差動機構と前記第一回転機との間に同軸上に配置されることが好ましい。
 また、上記のハイブリッド車両用駆動装置は、前記機関と別軸上にて前記第二差動機構から前記駆動輪への動力伝達経路上に配置される差動装置のデフリングギアを備え、前記デフリングギアが、軸方向位置において、前記機関と前記第一回転機との間に配置されることが好ましい。
 また、上記のハイブリッド車両用駆動装置は、差動装置からの動力を左右の前記駆動輪へそれぞれ伝達する一対の駆動軸を備え、前記一対の駆動軸の前記差動装置から前記駆動輪までの長さが左右等長であることが好ましい。
 本発明に係るハイブリッド車両用駆動装置は、変速部の第一差動機構と切替装置とを離間して配置し、機関と第一回転機との間に第一差動機構のみを配置するため、変速部の径方向長さを低減でき、搭載性を向上できるという効果を奏する。
図1は、本発明の一実施形態に係るハイブリッド車両用駆動装置の断面図である。 図2は、図1に示すハイブリッド車両用駆動装置のスケルトン図である。 図3は、本実施形態に係るハイブリッド車両用駆動装置が適用される車両の入出力関係図である。 図4は、実施形態に係るハイブリッド車両用駆動装置の作動係合表を示す図である。 図5は、単独モータEVモードに係る共線図である。 図6は、両モータEVモードに係る共線図である。 図7は、ロー状態のHV走行モードに係る共線図である。 図8は、ハイ状態のHV走行モードに係る共線図である。
 以下に、本発明に係るハイブリッド車両用駆動装置の実施形態を図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 まず図1~3を参照して、本発明の一実施形態に係るハイブリッド車両用駆動装置の構成について説明する。図1は、本発明の一実施形態に係るハイブリッド車両用駆動装置の断面図であり、図2は、図1のハイブリッド車両用駆動装置のスケルトン図であり、図3は、本実施形態に係るハイブリッド車両用駆動装置が適用される車両の入出力関係図である。
 本実施形態に係る車両100は、動力源としてエンジン1、第一回転機MG1および第二回転機MG2を有するハイブリッド車両である。車両100は、外部電源により充電可能なプラグインハイブリッド車両であってもよい。図1~3に示すように、車両100は、エンジン1、第一遊星歯車機構10、第二遊星歯車機構20、第一回転機MG1、第二回転機MG2、クラッチCL1、ブレーキBK1、HV_ECU50、MG_ECU60およびエンジン_ECU70を含んで構成されている。
 また、本実施形態に係るハイブリッド車両用駆動装置1-1は、第一遊星歯車機構10、第二遊星歯車機構20、クラッチCL1およびブレーキBK1を含んで構成されている。ハイブリッド車両用駆動装置1-1は、更に、各ECU50,60,70等の制御装置を含んで構成されてもよい。ハイブリッド車両用駆動装置1-1は、FF(前置きエンジン前輪駆動)車両あるいはRR(後置きエンジン後輪駆動)車両等に適用可能である。ハイブリッド車両用駆動装置1-1は、例えば、軸方向が車幅方向となるように車両100に搭載される。
 本実施形態に係るハイブリッド車両用駆動装置1-1では、第一遊星歯車機構10、クラッチCL1(第一係合要素)およびブレーキBK1(第二係合要素)を含んで変速部が構成されている。また、第二遊星歯車機構20を含んで差動部が構成されている。また、クラッチCL1およびブレーキBK1を含んで第一遊星歯車機構10を変速させる切替装置が構成されている。
 機関であるエンジン1は、燃料の燃焼エネルギーを出力軸の回転運動に変換して出力する。エンジン1の出力軸は、入力軸2と接続されている。入力軸2は、動力伝達装置の入力軸である。動力伝達装置は、第一回転機MG1、第二回転機MG2、クラッチCL1、ブレーキBK1、差動装置30等を含んで構成されている。入力軸2は、エンジン1の出力軸と同軸上かつ出力軸の延長線上に配置されている。入力軸2は、第一遊星歯車機構10の第一キャリア14と接続されている。
 本実施形態の第一遊星歯車機構10は、エンジン1と接続され、エンジン1の回転を伝達する動力伝達機構に対応している。ここでは、動力伝達機構の一例として差動機構である第一遊星歯車機構10が示されている。第一遊星歯車機構10は、第一差動機構として車両100に搭載されている。第一遊星歯車機構10は、第二遊星歯車機構20よりもエンジン1側に配置された入力側差動機構である。第一遊星歯車機構10は、エンジン1の回転を変速して出力可能である。第一遊星歯車機構10は、シングルピニオン式であり、第一サンギア11、第一ピニオンギア12、第一リングギア13および第一キャリア14を有する。なお、第一遊星歯車機構10はダブルピニオン式でもよい。
 第一リングギア13は、第一サンギア11と同軸上であってかつ第一サンギア11の径方向外側に配置されている。第一ピニオンギア12は、第一サンギア11と第一リングギア13との間に配置されており、第一サンギア11および第一リングギア13とそれぞれ噛み合っている。第一ピニオンギア12は、第一キャリア14によって回転自在に支持されている。第一キャリア14は、入力軸2と連結されており、入力軸2と一体回転する。従って、第一ピニオンギア12は、入力軸2と共に入力軸2の中心軸線周りに回転(公転)可能であり、かつ第一キャリア14によって支持されて第一ピニオンギア12の中心軸線周りに回転(自転)可能である。
 クラッチCL1は、第一サンギア11と第一キャリア14とを連結可能なクラッチ装置である。クラッチCL1は、例えば、摩擦係合式のクラッチとすることができるが、これに限らず、噛合い式のクラッチ等の公知のクラッチ装置がクラッチCL1として用いられてもよい。クラッチCL1は、例えば、油圧によって制御されて係合あるいは開放する。完全係合状態のクラッチCL1は、第一サンギア11と第一キャリア14とを連結し、第一サンギア11と第一キャリア14とを一体回転させることができる。完全係合状態のクラッチCL1は、第一遊星歯車機構10の差動を規制する。一方、開放状態のクラッチCL1は、第一サンギア11と第一キャリア14とを切り離し、第一サンギア11と第一キャリア14との相対回転を許容する。つまり、開放状態のクラッチCL1は、第一遊星歯車機構10の差動を許容する。なお、クラッチCL1は、半係合状態(スリップ係合状態)に制御可能である。
 ブレーキBK1は、第一サンギア11の回転を規制することができるブレーキ装置である。ブレーキBK1は、第一サンギア11に接続された係合要素と、車体側、例えば動力伝達装置のケースと接続された係合要素とを有する。ブレーキBK1は、クラッチCL1と同様の摩擦係合式のクラッチ装置とすることができるが、これに限らず、噛合い式のクラッチ等の公知のクラッチ装置がブレーキBK1として用いられてもよい。ブレーキBK1は、例えば、油圧によって制御されて係合あるいは開放する。完全係合状態のブレーキBK1は、第一サンギア11と車体側とを連結し、第一サンギア11の回転を規制することができる。一方、開放状態のブレーキBK1は、第一サンギア11と車体側とを切り離し、第一サンギア11の回転を許容する。なお、ブレーキBK1は、半係合状態(スリップ係合状態)に制御可能である。
 本実施形態の第二遊星歯車機構20は、第一遊星歯車機構10と駆動輪32とを接続する差動機構に対応している。第二遊星歯車機構20は、第二差動機構として車両100に搭載されている。第二遊星歯車機構20は、第一遊星歯車機構10よりも駆動輪32側に配置された出力側差動機構である。第二遊星歯車機構20は、シングルピニオン式であり、第二サンギア21、第二ピニオンギア22、第二リングギア23および第二キャリア24を有する。第二遊星歯車機構20は、第一遊星歯車機構10と同軸上に配置され、第一遊星歯車機構10を挟んでエンジン1と互いに対向している。
 第二リングギア23は、第二サンギア21と同軸上であってかつ第二サンギア21の径方向外側に配置されている。第二ピニオンギア22は、第二サンギア21と第二リングギア23との間に配置されており、第二サンギア21および第二リングギア23とそれぞれ噛み合っている。第二ピニオンギア22は、第二キャリア24によって回転自在に支持されている。第二キャリア24は、第一リングギア13と接続されており、第一リングギア13と一体回転する。第二ピニオンギア22は、第二キャリア24と共に入力軸2の中心軸線周りに回転(公転)可能であり、かつ第二キャリア24によって支持されて第二ピニオンギア22の中心軸線周りに回転(自転)可能である。第一リングギア13は、第一遊星歯車機構10の出力要素であり、エンジン1から第一遊星歯車機構10に入力された回転を第二キャリア24に出力することができる。第二キャリア24は、第一遊星歯車機構10の出力要素に接続された第一回転要素に対応している。
 第二サンギア21には第一回転機MG1の回転軸33が接続されている。第一回転機MG1の回転軸33は、入力軸2と同軸上に配置されており、第二サンギア21と一体回転する。第二サンギア21は、第一回転機MG1に接続された第二回転要素に対応している。第二リングギア23には、カウンタドライブギア25が接続されている。カウンタドライブギア25は、第二リングギア23と一体回転する出力ギアである。第二リングギア23は、第二回転機MG2および駆動輪32に接続された第三回転要素に対応している。第二リングギア23は、第一回転機MG1あるいは第一遊星歯車機構10から入力された回転を駆動輪32に出力することができる出力要素である。また、カウンタドライブギア25は、図1,2には図示しないが、軸方向の両端がケースに支持されており、片側支持に対して軸の振れを低減できるよう構成されている。
 カウンタドライブギア25は、カウンタドリブンギア26と噛み合っている。カウンタドリブンギア26は、カウンタシャフト27を介してドライブピニオンギア28と接続されている。カウンタドリブンギア26とドライブピニオンギア28とは一体回転する。また、カウンタドリブンギア26には、リダクションギア35が噛み合っている。リダクションギア35は、第二回転機MG2の回転軸34に接続されている。つまり、第二回転機MG2の回転は、リダクションギア35を介してカウンタドリブンギア26に伝達される。リダクションギア35は、カウンタドリブンギア26よりも小径であり、第二回転機MG2の回転を減速してカウンタドリブンギア26に伝達する。
 ドライブピニオンギア28は、差動装置30のデフリングギア29と噛み合っている。差動装置30は、左右の駆動軸31を介して駆動輪32と接続されている。第二リングギア23は、カウンタドライブギア25、カウンタドリブンギア26、ドライブピニオンギア28、差動装置30および駆動軸31を介して駆動輪32と接続されている。また、第二回転機MG2は、第二リングギア23と駆動輪32との動力伝達経路に対して接続されており、第二リングギア23および駆動輪32に対してそれぞれ動力を伝達可能である。
 なお、本実施形態では、動力を左右の駆動輪32へ伝達するための左右一対の駆動軸31を左右等長のもの(いわゆる等長ドライブシャフト)として、トルクステアを防止できる構成となるように、差動装置30の位置、すなわちデフ出力面(駆動軸31の連結面)の位置が設定されている。デフ出力面は、図2に符号Bで示されている。なお、左右一対の駆動軸31が左右等長であることとは、例えば差動装置30から左右の駆動輪32までのそれぞれの長さが等しいことであり、より詳細には、差動装置30のデフ出力面Bから左右の駆動輪32までのそれぞれの長さが等しいことである。
 第一回転機MG1および第二回転機MG2は、それぞれモータ(電動機)としての機能と、発電機としての機能とを備えている。第一回転機MG1および第二回転機MG2は、インバータを介してバッテリと接続されている。第一回転機MG1および第二回転機MG2は、バッテリから供給される電力を機械的な動力に変換して出力することができると共に、入力される動力によって駆動されて機械的な動力を電力に変換することができる。回転機MG1,MG2によって発電された電力は、バッテリに蓄電可能である。第一回転機MG1および第二回転機MG2としては、例えば、交流同期型のモータジェネレータを用いることができる。
 図3に示すように、車両100は、HV_ECU50、MG_ECU60およびエンジン_ECU70を有する。各ECU50,60,70は、コンピュータを有する電子制御ユニットである。HV_ECU50は、車両100全体を統合制御する機能を有している。MG_ECU60およびエンジン_ECU70は、HV_ECU50と電気的に接続されている。
 MG_ECU60は、第一回転機MG1および第二回転機MG2を制御することができる。MG_ECU60は、例えば、第一回転機MG1に対して供給する電流値を調節し、第一回転機MG1の出力トルクを制御すること、および第二回転機MG2に対して供給する電流値を調節し、第二回転機MG2の出力トルクを制御することができる。
 エンジン_ECU70は、エンジン1を制御することができる。エンジン_ECU70は、例えば、エンジン1の電子スロットル弁の開度を制御すること、点火信号を出力してエンジン1の点火制御を行うこと、エンジン1に対する燃料の噴射制御等を行うことができる。エンジン_ECU70は、電子スロットル弁の開度制御、噴射制御、点火制御等によりエンジン1の出力トルクを制御することができる。
 HV_ECU50には、車速センサ、アクセル開度センサ、MG1回転数センサ、MG2回転数センサ、出力軸回転数センサ、バッテリ(SOC)センサ等が接続されている。これらのセンサにより、HV_ECU50は、車速、アクセル開度、第一回転機MG1の回転数、第二回転機MG2の回転数、動力伝達装置の出力軸の回転数、バッテリ状態SOC等を取得することができる。
 HV_ECU50は、取得する情報に基づいて、車両100に対する要求駆動力や要求パワー、要求トルク等を算出することができる。HV_ECU50は、算出した要求値に基づいて、第一回転機MG1の出力トルク(以下、「MG1トルク」とも記載する。)、第二回転機MG2の出力トルク(以下、「MG2トルク」とも記載する。)およびエンジン1の出力トルク(以下、「エンジントルク」とも記載する。)を決定する。HV_ECU50は、MG1トルクの指令値およびMG2トルクの指令値をMG_ECU60に対して出力する。また、HV_ECU50は、エンジントルクの指令値をエンジン_ECU70に対して出力する。
 HV_ECU50は、後述する走行モード等に基づいて、クラッチCL1およびブレーキBK1をそれぞれ制御する。HV_ECU50は、クラッチCL1に対する供給油圧の指令値(PbCL1)およびブレーキBK1に対する供給油圧の指令値(PbBK1)をそれぞれ出力する。図示しない油圧制御装置は、各指令値PbCL1,PbBK1に応じてクラッチCL1およびブレーキBK1に対する供給油圧を制御する。
 本実施形態の車両100では、図2に示すように、エンジン1の出力軸(入力軸2)と同軸上に、第一回転機MG1が配置されている。第二回転機MG2は、エンジン1の出力軸とは異なる回転軸34上に配置されている。つまり、本実施形態のハイブリッド車両用駆動装置1-1は、入力軸2と、第二回転機MG2の回転軸34とが異なる軸上に配置された複軸式とされている。
 本実施形態のハイブリッド車両用駆動装置1-1では、第一遊星歯車機構10は、エンジン1と第一回転機MG1との間に、エンジン1の回転軸と同一軸線上に配置されている。また、第一遊星歯車機構10の切替装置としてのブレーキBK1及びクラッチCL1は、第一回転機MG1を基準としてエンジン1と反対側に配置されている。第二遊星歯車機構20は、第一遊星歯車機構10と第一回転機MG1との間に配置される。すなわち、本実施形態のハイブリッド車両用駆動装置1-1では、エンジン1の出力軸と同一軸線上に、エンジン1から近い側から順に、第一遊星歯車機構10、カウンタドライブギア25、第二遊星歯車機構20、第一回転機MG1、ブレーキBK1、及びクラッチCL1が配置されている。
 なお、「要素aが要素bと要素cとの間に配置される」との表現は、エンジン1の出力軸(入力軸2)の軸線方向に沿った位置において、要素aが、要素b及び要素cのいずれとも重畳することなく両者の間に存在する状態をいう。また、第一回転機MG1をこの表現に用いる場合、第一回転機MG1とはロータとステータの範囲に限定するものであり、回転軸33は含まないものとする。
 つまり、本実施形態では、変速部として機能する第一遊星歯車機構10と、ブレーキBK1及びクラッチCL1とが離間して配置されている。エンジン1と第二遊星歯車機構20(差動部)との間には、第一遊星歯車機構10のみが配置されている。第一遊星歯車機構10は第二遊星歯車機構20と連接配置されている。
 入力軸2は、MG1の回転軸33の内側を通過して、ブレーキBK1及びクラッチCL1よりさらにエンジン1と反対側へ延在しており、機械式オイルポンプ3と接続されている。機械式オイルポンプ3は、エンジン1、第一遊星歯車機構10、第二遊星歯車機構20、第一回転電機MG1と同軸上に配置され、第一遊星歯車機構10、第二遊星歯車機構20及び第一回転電機MG1を挟んでエンジン1と互いに対向している。機械式オイルポンプ3は、入力軸2を介してエンジン1の出力軸と接続され、エンジン1の駆動力によって駆動する。
 機械式オイルポンプ3は、エンジン1を駆動源として駆動することで、クラッチCL1及びブレーキBK1の切替装置に作動用オイルを供給すると共に、第一遊星歯車機構10及び第二遊星歯車機構20に潤滑用オイルを供給するよう構成されている。
 第一遊星歯車機構10及び第二遊星歯車機構20に供給する潤滑用オイルは、比較的低い油圧で足りるものである。潤滑用オイルは、例えば図1に示すように、入力軸2や第一回転機MG1の回転軸33の隙間に形成される潤滑油路4を通って、機械式オイルポンプ3から第一遊星歯車機構10及び第二遊星歯車機構20に供給される。
 一方、切替装置へ供給する作動用オイルは、クラッチCL1及びブレーキBK1の係合/開放動作のために比較的高い油圧を要するものである。このため、オイルポンプ3から吐出されたオイルは、例えば図示しない油圧制御回路を経由して高圧に制御された上で、図1に示すように、供給油路5を通って切替装置に供給される。切替装置が第一遊星歯車機構10と一体的にエンジン1側に配置され、オイルポンプ3と離間して配置された場合には、高圧の作動用オイルを切替装置に供給するために、図1に示す供給油路5よりも長い供給油路が必要となる。もしくは、オイルポンプ3とは別のオイルポンプを切替装置と近接して配置し、このポンプへエンジン動力を伝達する駆動軸などを別途設ける必要が生じうる。これに対して、本実施形態では、切替装置が第一遊星歯車機構10と離間して機械式オイルポンプ3の近傍に配置されるため、切替装置への作動用オイル供給が容易であり、一台の機械式オイルポンプ3で第一遊星歯車機構10及び第二遊星歯車機構20への潤滑用オイル供給とクラッチCL1及びブレーキBK1への作動用オイル供給とを併用できるので、簡易な構成で好適にオイル供給を行なうことができる。
 また、本実施形態では、デフリングギア29が、エンジン1の出力軸の軸線方向に沿って、エンジン1と第一回転機MG1との間に配置される位置関係をとる。また、差動部の出力要素(第二リングギア23)と連動して動力伝達するカウンタドライブギア25が、デフリングギア29とエンジン1との間に配置されている。
 ここで、図2に符号Aで示すように、エンジン1の駆動装置1-1側の端面、言い換えると第一遊星歯車機構10と対向するエンジン1の端面を「エンジン合わせ面」とし、符号Bで示すように、差動装置30の左右の駆動軸31の対向する端面間の中間点を通り、エンジン1の出力軸の軸線方向と直交する面を「デフ出力面」とする。エンジン合わせ面Aとデフ出力面Bとの位置関係は、従来型車両のA-Bの位置関係や既存の駆動軸31の寸法によって決定される。変速部(第一遊星歯車機構10、クラッチCL1、ブレーキBK1)を持たない従来のハイブリッド車両においては、この位置関係を満たすように、エンジン1、第二遊星歯車機構20、第一回転機MG1、カウンタドライブギア25、デフリングギア29の位置関係が設計されていた。特に、カウンタドライブギア25が、エンジン1の出力軸の軸線方向に沿って、デフリングギア29とエンジン1との間に配置されるよう設計されていた。
 一般に、変速部(第一遊星歯車機構10、クラッチCL1、ブレーキBK1)を一体的に配置する場合には、第一遊星歯車機構10の外周側に切替装置(クラッチCL1及びブレーキBK1)が配置される。このため、エンジン1と第二遊星歯車機構20との間に変速部を追加すると、変速部の径方向長さが大きいため、カウンタドライブギア25を配置するスペースを確保することができず、カウンタドライブギア25をデフリングギア29とエンジン1との間に配置することができなくなる。もしくは、切替装置を第一遊星歯車機構10と軸方向に並列に配置しても同様の問題が発生する。この場合、エンジン合わせ面Aとデフ出力面Bとの位置関係を維持するには、カウンタドライブギア25以降に新たな動力伝達要素(軸、ギアなど)を追加するか、駆動軸31を左右共に新設する必要があった。
 また、変速部を一体的に配置し、第一遊星歯車機構10の外周側に切替装置(クラッチCL1及びブレーキBK1)を配置すると、ケースの半径との関係で軸方向長さが大きくなる場合がある。
 これに対して、本実施形態では、図1,2に示すように、変速部の要素のうち第一遊星歯車機構10のみをエンジン1と第二遊星歯車機構20との間に配置し、ブレーキBK1及びクラッチCL1はエンジン1と反対側に離間して配置する。これにより、エンジン1と第二遊星歯車機構20との間に変速部を追加配置しても、径方向長さもしくは軸方向長さを低減できるので、第一遊星歯車機構10の外周側に、カウンタドライブギア25を配置する空間を確保できる。このため、従来と同様にカウンタドライブギア25を、エンジン1の出力軸の軸線方向に沿って、デフリングギア29とエンジン1との間に配置することが可能となる。この結果、変速部を追加しても、新たな動力伝達要素を追加したり、駆動軸を新設することなく、エンジン合わせ面Aとデフ出力面Bとの位置関係を保持できる。これにより、変速部をもたない従来のハイブリッド車両用駆動装置の軸やギアなどの構成要素を流用可能である。また、駆動軸も流用可能である。
 また、従来の一体的な変速部では、第一遊星歯車機構10の外周側に切替装置(クラッチCL1及びブレーキBK1)を配置するので、変速部の径方向長さは、例えば同軸上のMG1の径方向長さより大きい場合があった。これに対して本実施形態では、切替装置を第一遊星歯車機構10と離間して配置することで、第一遊星歯車機構10も切替装置も、共に径方向長さを縮小できる。例えば図1,2に示すように、変速部の第一遊星歯車機構10と、切替装置の径方向長さを共に、第一回転機MG1の径方向長さより小さくできる。
 また、本実施形態では、図1,2に示すように、切替装置においてクラッチCL1の外周側にブレーキBK1を配置することで、更なる軸方向寸法を短縮できるよう構成されている。
 次に、図4~8を参照して、本実施形態に係るハイブリッド車両用駆動装置1-1の動作について説明する。
 図4は、本実施形態に係るハイブリッド車両用駆動装置1-1の作動係合表を示す図である。車両100では、ハイブリッド(HV)走行あるいはEV走行を選択的に実行可能である。HV走行とは、エンジン1及び第二回転機MG2の両者、もしくはどちらか一方を動力源として車両100を走行させる走行モードである。
 EV走行は、第一回転機MG1あるいは第二回転機MG2の少なくともいずれか一方を動力源として走行する走行モードである。EV走行では、エンジン1を停止して走行することが可能である。本実施形態に係るハイブリッド車両用駆動装置1-1は、EV走行モードとして、第二回転機MG2を単独の動力源として車両100を走行させる単独モータEVモード(単独駆動EVモード)と、第一回転機MG1および第二回転機MG2を動力源として車両100を走行させる両モータEVモード(両駆動EVモード)を有する。
 図4の係合表において、クラッチCL1の欄およびブレーキBK1の欄の丸印は、係合を示し、空欄は開放を示す。また、三角印は、クラッチCL1あるいはブレーキBK1のいずれかを係合し、他方を開放することを示す。単独モータEVモードは、例えば、クラッチCL1およびブレーキBK1を共に開放して実行される。図5は、単独モータEVモードに係る共線図である。共線図において、符号S1,C1,R1は、それぞれ第一サンギア11、第一キャリア14、第一リングギア13を示し、符号S2,C2,R2は、それぞれ第二サンギア21、第二キャリア24、第二リングギア23を示す。
 単独モータEVモードでは、クラッチCL1およびブレーキBK1が開放している。ブレーキBK1が開放していることで、第一サンギア11の回転が許容され、クラッチCL1が開放していることで、第一遊星歯車機構10は差動可能である。HV_ECU50は、MG_ECU60を介して第二回転機MG2に正トルクを出力させて車両100に前進方向の駆動力を発生させる。第二リングギア23は、駆動輪32の回転と連動して正回転する。ここで、正回転とは、車両100の前進時の第二リングギア23の回転方向とする。HV_ECU50は、第一回転機MG1をジェネレータとして作動させて引き摺り損失を低減させる。具体的には、HV_ECU50は、第一回転機MG1にわずかなトルクをかけて発電させ、第一回転機MG1の回転数を0回転とする。これにより、第一回転機MG1の引き摺り損失を低減することができる。また、MG1トルクを0としてもコギングトルクを利用してMG1回転数を0に維持できるときは、MG1トルクを加えないようにしてもよい。あるいは、第一回転機MG1のd軸ロックによってMG1回転数を0としてもよい。
 第一リングギア13は、第二キャリア24に連れ回り正回転する。第一遊星歯車機構10では、クラッチCL1およびブレーキBK1が開放されたニュートラルの状態であるため、エンジン1は連れ回されず、第一キャリア14は回転を停止する。よって回生量を大きく取ることが可能である。第一サンギア11は空転して負回転する。なお、第一遊星歯車機構10のニュートラル(中立)状態は、第一リングギア13と第一キャリア14との間で動力が伝達されない状態、すなわちエンジン1と第二遊星歯車機構20とが切り離され、動力の伝達が遮断された状態である。第一遊星歯車機構10は、クラッチCL1あるいはブレーキBK1の少なくともいずれか一方が係合していると、エンジン1と第二遊星歯車機構20とを接続する接続状態となる。
 単独モータEVモードでの走行時に、バッテリの充電状態がフルとなり、回生エネルギーが取れない場合が発生し得る。この場合、エンジンブレーキを併用することが考えられる。クラッチCL1あるいはブレーキBK1を係合することで、エンジン1を駆動輪32と接続し、エンジンブレーキを駆動輪32に作用させることができる。図4に三角印で示すように、単独モータEVモードでクラッチCL1あるいはブレーキBK1を係合すると、エンジン1を連れ回し状態とし、第一回転機MG1でエンジン回転数を上げてエンジンブレーキ状態とすることができる。
 両モータEVモードでは、HV_ECU50は、クラッチCL1およびブレーキBK1を係合する。図6は、両モータEVモードに係る共線図である。クラッチCL1が係合することで、第一遊星歯車機構10の差動は規制され、ブレーキBK1が係合することで、第一サンギア11の回転が規制される。従って、第一遊星歯車機構10の全回転要素の回転が停止する。出力要素である第一リングギア13の回転が規制されることで、これと接続された第二キャリア24が0回転にロックされる。
 HV_ECU50は、第一回転機MG1および第二回転機MG2にそれぞれ走行駆動用のトルクを出力させる。第二キャリア24は、回転が規制されていることで、第一回転機MG1のトルクに対して反力を取り、第一回転機MG1のトルクを第二リングギア23から出力させることができる。第一回転機MG1は、前進時に負トルクを出力して負回転することで、第二リングギア23から正のトルクを出力させることができる。一方、後進時には、第一回転機MG1は、正トルクを出力して正回転することで、第二リングギア23から負のトルクを出力させることができる。
 HV走行では、差動部としての第二遊星歯車機構20は作動状態を基本とし、変速部の第一遊星歯車機構10は、ロー/ハイの切り替えがなされる。図7は、ロー状態のHV走行モード(以下、「HVローモード」とも記載する。)に係る共線図、図8は、ハイ状態のHV走行モード(以下、「HVハイモード」とも記載する。)に係る共線図である。
 HVローモードでは、HV_ECU50は、クラッチCL1を係合し、ブレーキBK1を開放する。クラッチCL1が係合することにより、第一遊星歯車機構10は差動が規制され、各回転要素11,13,14が一体回転する。従って、エンジン1の回転は増速も減速もされず、等速で第一リングギア13から第二キャリア24に伝達される。
 一方、HVハイモードでは、HV_ECU50は、クラッチCL1を開放し、ブレーキBK1を係合する。ブレーキBK1が係合することにより、第一サンギア11の回転が規制される。よって、第一遊星歯車機構10は、第一キャリア14に入力されたエンジン1の回転が増速されて第一リングギア13から出力されるオーバドライブ(OD)状態となる。このように、第一遊星歯車機構10は、エンジン1の回転を増速して出力することができる。オーバドライブ時の第一遊星歯車機構10の変速比は、例えば、0.7とすることができる。
 このように、クラッチCL1およびブレーキBK1からなる切替装置は、第一遊星歯車機構10の差動を規制する状態と、第一遊星歯車機構10の差動を許容する状態とを切り替えて第一遊星歯車機構10を変速させる。ハイブリッド車両用駆動装置1-1は、第一遊星歯車機構10、クラッチCL1およびブレーキBK1を含む変速部によってHVハイモードとHVローモードとの切り替えが可能であり、車両100の伝達効率を向上させることができる。また、変速部の後段には、直列に差動部としての第二遊星歯車機構20が接続されている。第一遊星歯車機構10がオーバドライブに切り替え可能であるため、第一回転機MG1を大きく高トルク化しなくてもよいという利点がある。
 次に、本実施形態に係るハイブリッド車両用駆動装置1-1の効果について説明する。
 本実施形態のハイブリッド車両用駆動装置1-1は、エンジン1と、第一回転機MG1と、第二回転機MG2と、エンジン1の回転を駆動輪32側に伝達する第一遊星歯車機構10と、第一遊星歯車機構10を変速させる切替装置としてのクラッチCL1及びブレーキBK1と、を備え、第一回転機MG1がエンジン1と同軸上に配置され、第二回転機MG2がエンジン1とは異なる軸上に配置される複軸式である。第一遊星歯車機構10が、エンジン1と第一回転機MG1との間に同軸上に配置され、クラッチCL1及びブレーキBK1が、第一回転機MG1を基準としてエンジン1と反対側に配置される。
 この構成により、変速部の要素である第一遊星歯車機構10から、クラッチCL1及びブレーキBK1を離間して配置し、エンジン1と第一回転機MG1との間には変速部の要素のうち第一遊星歯車機構10のみを配置するため、変速部の径方向長さ、軸方向長さを低減でき、搭載性を向上できる。したがって、駆動装置をFF(前置きエンジン前輪駆動)車両やRR(後置きエンジン後輪駆動)車両に適用する場合など、サイドメンバ等による空間制約がある場合でも、搭載面で有利となる。
 また、本実施形態のハイブリッド車両用駆動装置1-1は、第一遊星歯車機構10と駆動輪32とを接続する第二遊星歯車機構20を備える。第二遊星歯車機構20は、第一遊星歯車機構10の出力要素(第一リングギア13)に接続された第二キャリア14と、第一回転機MG1に接続された第二サンギア21と、第二回転機MG2および駆動輪32に接続された第二リングギア23とを有する。第二遊星歯車機構20は、第一遊星歯車機構10と第一回転機MG1との間に同軸上に配置される。
 この構成により、第一遊星歯車機構10と第二遊星歯車機構20とを隣同士に配置することで、両者のための潤滑油路を集約できる。
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 上記実施形態では、変速部の切替装置としてのブレーキBK1及びクラッチCL1が、エンジン1側からブレーキBK1、クラッチCL1の順で配列される構成を例示したが、切替装置が第一回転機MG1を基準としてエンジン1と反対側に配置されていればよく、ブレーキBK1とクラッチCL1の位置を入れ替えてもよい。
 また、上記実施形態では、図1に示すように、切替装置においてクラッチCL1の外周側にブレーキBK1を配置する構成を例示したが、例えばクラッチCL1とブレーキBK1を軸方向に並列配置して、切替装置の径方向長さをさらに縮小する構成としてもよい。
 1-1 ハイブリッド車両用駆動装置
 1 エンジン(機関)
 10 第一遊星歯車機構(第一差動機構)
 11 第一サンギア
 13 第一リングギア
 14 第一キャリア
 20 第二遊星歯車機構(第二差動機構)
 21 第二サンギア(第二回転要素)
 23 第二リングギア(第三回転要素)
 24 第二キャリア(第一回転要素)
 29 デフリングギア
 31 駆動軸
 32 駆動輪
 50 HV_ECU
 60 MG_ECU
 70 エンジン_ECU
 100 車両
 CL1 クラッチ(切替装置)
 BK1 ブレーキ(切替装置)
 MG1 第一回転機
 MG2 第二回転機

Claims (4)

  1.  機関と、
     第一回転機と、
     第二回転機と、
     前記機関の回転を駆動輪側に伝達する第一差動機構と、
     前記第一差動機構を変速させる切替装置と、
    を備え、
     前記第一回転機が前記機関と同軸上に配置され、前記第二回転機が前記機関の軸とは異なる軸上に配置される複軸式であり、
     前記第一差動機構が、前記機関と前記第一回転機との間に同軸上に配置され、
     前記切替装置が、前記第一回転機を基準として前記機関と反対側に配置される
    ことを特徴とするハイブリッド車両用駆動装置。
  2.  前記第一差動機構と前記駆動輪とを接続する第二差動機構を備え、
     前記第二差動機構は、前記第一差動機構の出力要素に接続された第一回転要素と、前記第一回転機に接続された第二回転要素と、前記第二回転機および前記駆動輪に接続された第三回転要素とを有し、
     前記第二差動機構は、前記第一差動機構と前記第一回転機との間に同軸上に配置されることを特徴とする、請求項1に記載のハイブリッド車両用駆動装置。
  3.  前記機関と別軸上にて前記第二差動機構から前記駆動輪への動力伝達経路上に配置される差動装置のデフリングギアを備え、
     前記デフリングギアが、軸方向位置において、前記機関と前記第一回転機との間に配置されることを特徴とする、請求項1または2に記載のハイブリッド車両用駆動装置。
  4.  前記差動装置からの動力を左右の前記駆動輪へそれぞれ伝達する一対の駆動軸を備え、
     前記一対の駆動軸の前記差動装置から前記駆動輪までの長さが左右等長であることを特徴とする、請求項3に記載のハイブリッド車両用駆動装置。
PCT/JP2012/074288 2012-09-21 2012-09-21 ハイブリッド車両用駆動装置 WO2014045415A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/074288 WO2014045415A1 (ja) 2012-09-21 2012-09-21 ハイブリッド車両用駆動装置
CN201280075938.9A CN104661846B (zh) 2012-09-21 2012-09-21 混合动力车辆用驱动装置
US14/424,363 US9539891B2 (en) 2012-09-21 2012-09-21 Hybrid vehicle driving apparatus
DE112012006927.7T DE112012006927B4 (de) 2012-09-21 2012-09-21 Hybridfahrzeug-Antriebsvorrichtung
JP2014536513A JP5884916B2 (ja) 2012-09-21 2012-09-21 ハイブリッド車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074288 WO2014045415A1 (ja) 2012-09-21 2012-09-21 ハイブリッド車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2014045415A1 true WO2014045415A1 (ja) 2014-03-27

Family

ID=50340765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074288 WO2014045415A1 (ja) 2012-09-21 2012-09-21 ハイブリッド車両用駆動装置

Country Status (5)

Country Link
US (1) US9539891B2 (ja)
JP (1) JP5884916B2 (ja)
CN (1) CN104661846B (ja)
DE (1) DE112012006927B4 (ja)
WO (1) WO2014045415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884916B2 (ja) * 2012-09-21 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両用駆動装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3733B1 (ar) 2011-04-05 2021-01-31 Bayer Ip Gmbh استخدام 3,2-دايهيدروايميدازو[1, 2 -c]كوينازولينات مستبدلة
KR101956402B1 (ko) * 2014-12-12 2019-06-24 현대자동차주식회사 하이브리드 차량용 구동장치 및 그 제어방법
JP6256374B2 (ja) * 2015-02-18 2018-01-10 トヨタ自動車株式会社 ハイブリッド車両
JP5943127B1 (ja) * 2015-07-10 2016-06-29 トヨタ自動車株式会社 車両用駆動装置
EP3184338B1 (en) * 2015-12-25 2021-12-08 Toyota Jidosha Kabushiki Kaisha Drive system for hybrid vehicle
CN106114179A (zh) * 2016-08-25 2016-11-16 东风汽车公司 一种新型多模式混合动力传动系统
CN109318705B (zh) * 2018-12-11 2024-02-27 王延芸 一种行星式电驱动传动装置
WO2021185402A1 (de) * 2020-03-17 2021-09-23 Schaeffler Technologies AG & Co. KG Hybridgetriebe mit axial kurzbauender brems-kupplungs-kombination; sowie antriebsstrang

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203289A (ja) * 1999-01-14 2000-07-25 Kyowa Gokin Kk 自動車用駆動装置
JP2006316969A (ja) * 2005-05-16 2006-11-24 Mazda Motor Corp 自動変速機
JP2007315466A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp ワンウェイクラッチの支持構造
JP2011255742A (ja) * 2010-06-07 2011-12-22 Toyota Motor Corp ハイブリッド駆動装置の制御装置
JP2012030695A (ja) * 2010-07-30 2012-02-16 Denso Corp 車両用動力伝達装置
JP2012137115A (ja) * 2010-12-24 2012-07-19 Toyota Motor Corp 動力伝達装置
JP2012192886A (ja) * 2011-03-17 2012-10-11 Toyota Motor Corp ハイブリッド車両の制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823281A (en) * 1995-05-25 1998-10-20 Kabushikikaisha Equos Reseach Hybrid vehicle
JP4370637B2 (ja) * 1999-06-04 2009-11-25 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US7086977B2 (en) * 2001-05-03 2006-08-08 Ford Global Technologies, Llc Transmission arrangements for hybrid electric vehicles
US7694762B2 (en) * 2003-09-22 2010-04-13 Ford Global Technologies, Llc Hybrid vehicle powertrain with improved reverse drive performance
JP4038183B2 (ja) 2004-01-19 2008-01-23 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力伝達装置
JP4207920B2 (ja) 2005-04-18 2009-01-14 トヨタ自動車株式会社 車両用駆動装置
JP4821571B2 (ja) 2006-11-10 2011-11-24 トヨタ自動車株式会社 ハイブリッド駆動装置
US7678003B2 (en) * 2007-01-19 2010-03-16 Ford Global Technologies, Llc Hybrid vehicle transmission with a mechanical reverse function
JP4203527B1 (ja) * 2007-07-18 2009-01-07 アイシン・エィ・ダブリュ株式会社 ハイブリッド車両用駆動装置
CN101451596B (zh) * 2007-12-04 2012-01-11 艾晓林 双模式机电无级变速器
JP2012035757A (ja) 2010-08-06 2012-02-23 Toyota Motor Corp パーキング装置
US8740739B2 (en) * 2011-08-04 2014-06-03 Ford Global Technologies, Llc Reconfigurable powersplit powertrain for an electric vehicle
JP2013095386A (ja) 2011-11-04 2013-05-20 Fine Mec:Kk 自動車用駆動装置
JP2013082317A (ja) 2011-10-08 2013-05-09 Fine Mec:Kk 自動車用駆動装置
JP2013112318A (ja) 2011-12-01 2013-06-10 Fine Mec:Kk 自動車用駆動装置
US8467927B2 (en) * 2011-11-03 2013-06-18 Ford Global Technologies, Llc Method and system for speed control of a hybrid vehicle
CN104093617B (zh) 2012-02-01 2016-12-28 丰田自动车株式会社 混合动力车辆用驱动装置
WO2013190642A1 (ja) 2012-06-19 2013-12-27 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置及びハイブリッドシステム
US9539891B2 (en) * 2012-09-21 2017-01-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle driving apparatus
US8894526B2 (en) * 2012-12-03 2014-11-25 Ford Global Technologies, Llc Powertrain for a hybrid electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203289A (ja) * 1999-01-14 2000-07-25 Kyowa Gokin Kk 自動車用駆動装置
JP2006316969A (ja) * 2005-05-16 2006-11-24 Mazda Motor Corp 自動変速機
JP2007315466A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp ワンウェイクラッチの支持構造
JP2011255742A (ja) * 2010-06-07 2011-12-22 Toyota Motor Corp ハイブリッド駆動装置の制御装置
JP2012030695A (ja) * 2010-07-30 2012-02-16 Denso Corp 車両用動力伝達装置
JP2012137115A (ja) * 2010-12-24 2012-07-19 Toyota Motor Corp 動力伝達装置
JP2012192886A (ja) * 2011-03-17 2012-10-11 Toyota Motor Corp ハイブリッド車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884916B2 (ja) * 2012-09-21 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両用駆動装置

Also Published As

Publication number Publication date
JP5884916B2 (ja) 2016-03-15
JPWO2014045415A1 (ja) 2016-08-18
CN104661846B (zh) 2017-03-22
DE112012006927T5 (de) 2015-06-11
DE112012006927B4 (de) 2024-01-25
US9539891B2 (en) 2017-01-10
US20150251530A1 (en) 2015-09-10
CN104661846A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5884916B2 (ja) ハイブリッド車両用駆動装置
JP5892180B2 (ja) ハイブリッド車両用駆動装置
JP6287885B2 (ja) ハイブリッド車両
WO2013114595A1 (ja) ハイブリッド車両用駆動装置
JP6075376B2 (ja) ハイブリッド車両用駆動装置
JP6263889B2 (ja) ハイブリッド車両用駆動装置
JP5904214B2 (ja) ハイブリッド車両用駆動装置
WO2014083705A1 (ja) ハイブリッド車両用駆動装置
CN108621776B (zh) 混合动力车辆用驱动装置
KR101788477B1 (ko) 하이브리드 차량용 구동 시스템
JP2017178299A (ja) 動力伝達装置
JP2015024793A (ja) ハイブリッド車両用駆動装置
JP5794384B2 (ja) ハイブリッド車両用駆動装置
JP2013159212A (ja) 動力伝達装置
WO2013121527A1 (ja) ハイブリッド車両用駆動装置
JP6015489B2 (ja) ハイブリッド車両用駆動装置
JP2015020725A (ja) ハイブリッド車両用駆動装置
JP2016098909A (ja) 動力伝達装置
JP2015174559A (ja) ハイブリッド車両用駆動装置
JP6604279B2 (ja) 車両用駆動装置
JP6052092B2 (ja) ハイブリッド車両用駆動装置
JP6052093B2 (ja) ハイブリッド車両の動力伝達装置
WO2013145096A1 (ja) ハイブリッド車両の駆動制御装置
JP2013133020A (ja) 動力伝達装置および車両用駆動装置
JP2015024687A (ja) ハイブリッド車両の動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536513

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424363

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120069277

Country of ref document: DE

Ref document number: 112012006927

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885081

Country of ref document: EP

Kind code of ref document: A1