WO2014036727A1 - 无线通信的方法和装置、网络节点 - Google Patents
无线通信的方法和装置、网络节点 Download PDFInfo
- Publication number
- WO2014036727A1 WO2014036727A1 PCT/CN2012/081148 CN2012081148W WO2014036727A1 WO 2014036727 A1 WO2014036727 A1 WO 2014036727A1 CN 2012081148 W CN2012081148 W CN 2012081148W WO 2014036727 A1 WO2014036727 A1 WO 2014036727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- candidate signal
- signal group
- physical layer
- parameter configuration
- layer parameter
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 80
- 230000005540 biological transmission Effects 0.000 claims description 34
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- 230000003044 adaptive effect Effects 0.000 abstract 1
- 230000011664 signaling Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000000969 carrier Substances 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
Definitions
- the present invention relates to the field of communication technologies, and in particular, to a method and apparatus for wireless communication, and a network node. Background technique
- the Long Term Evolution (LTE) system is an evolving system.
- TDD Time Division Duplex
- the network side notifies the user equipment of the subframe ratio through the system broadcast message.
- the sub-frame ratio change can be completed through the system message update process, and it takes at least 640 milliseconds (ms) to change.
- ms milliseconds
- a change in the sub-frame ratio usually results in a business interruption for a period of time.
- the subframe ratio in the actual system tends to change little, even after the network deployment is completed.
- each cell can dynamically change its subframe ratio according to the instantaneous service requirement of the user equipment it serves, wherein the subframe ratio can be changed once every hundreds of milliseconds or even as short as ten milliseconds.
- the ratio of the subframes used by the neighboring cells may be different, and the interference of uplink and downlink data transmission between adjacent cells may be caused.
- a cell changes the subframe ratio according to the instantaneous service requirement of the user equipment it serves, it may cause strong interference to the neighboring cells and affect the communication performance of the neighboring cells.
- the present invention proposes a method and apparatus for wireless communication, and a network node for solving the problem of how to determine physical layer parameter configuration to avoid interference.
- a method of wireless communication comprising: receiving at least one candidate signal from one or more neighboring nodes, the at least one candidate signal comprising at least one candidate signal group, the candidate signal group corresponding to A physical layer parameter configuration, where the physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency; determining, according to the at least one candidate signal group, a physical layer parameter configuration for wireless communication .
- the candidate signal group includes one candidate signal; or the candidate signal group includes N candidate signals, where N is a positive integer greater than 1, and the N The candidate signals correspond to different resource utilization rates.
- At least one candidate signal may be received from one or more neighboring nodes in a guard slot.
- the method before the receiving, by the one or more neighboring nodes, the at least one candidate signal, the method further includes: determining, according to a service requirement and/or a change of a transmission quality of the service channel,
- the physical layer parameter configuration needs to be changed.
- the business demand is related to the ratio of the upper and lower business and/or the size of the business.
- At least one candidate signal may be received periodically from one or more neighboring nodes.
- a physical layer parameter configuration for wireless communication may be determined based on a relationship between a received strength of the at least one candidate signal group and a received strength threshold.
- the reception strength of the at least one candidate signal group may be a sum, a maximum value, a minimum value, or an average value of reception strengths of candidate signals in the at least one candidate signal group, or in the at least one candidate signal group The received strength of the candidate signal corresponding to the resource utilization of the node.
- the receiving strength of the at least one candidate signal group when the receiving strength of the at least one candidate signal group is less than or equal to the second receiving strength threshold, determining, according to the service requirement, a physical layer parameter configuration of the line communication; or, when a received strength of the first candidate signal group in the at least one candidate signal group is greater than the second received intensity threshold and less than or equal to a third received intensity threshold, And when the received strength of the second candidate signal group in the at least one candidate signal group is less than the second received intensity threshold, wherein the second received strength threshold is less than the third received strength threshold Determining, according to a service requirement, a physical layer parameter configuration for wireless communication according to a candidate signal group whose reception strength is less than the second reception intensity threshold; or, when the reception strength of the at least one candidate signal group is greater than the And a second receiving strength threshold value, wherein the second receiving strength threshold value is smaller than the third receiving strength threshold value, and is determined according to the service requirement.
- the physical layer parameter configured for wireless communication is configured to receive the physical layer parameter configuration corresponding to the candidate signal group with the highest intensity, or according to the service requirement and according to the candidate signal whose received strength is greater than the third received intensity threshold The group determines the physical layer parameter configuration for wireless communication.
- the method of the embodiment of the present invention further includes: the physical layer parameter configuration for wireless communication determined to the central node.
- the method of the embodiment of the present invention further includes a candidate signal group configured by a parameter.
- the method of the embodiment of the present invention further includes: performing wireless communication using the physical layer parameter configuration for wireless communication.
- the candidate signal is in the form of a sequence, for example, one of the following sequences: a sequence used by the synchronization signal, a dolphoff-divide sequence, and based on a dolph.
- the candidate signal is distinguished by at least one of a time domain occupied by the sequence, a frequency domain occupied, and a code resource occupied.
- a correspondence between the candidate signal group and the physical layer parameter configuration is configured in the at least one neighboring node, or the candidate signal group and the The correspondence between the physical layer parameter configurations is notified by the central node to the at least one neighboring node.
- the candidate signal is configured at the at least one neighboring node, or the candidate signal is notified by the central node to the at least one adjacent node Point.
- the neighboring node is a base station or a user equipment.
- a method for wireless communication includes: a first node determining a candidate signal group according to a physical layer parameter configuration of the first node, and a correspondence between the physical layer parameter configuration and a candidate signal group The first node transmits at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the candidate signal group includes one candidate signal; or the candidate signal group includes N candidate signals, where N is a positive integer greater than 1, and the N The candidate signals correspond to different resource utilization rates.
- the first node may transmit, in the guard slot, the at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the first node periodically transmits at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the candidate signal comprises one of the following sequences: a sequence used by the synchronization signal, a radon-divide sequence, and a truncation based on the zardorf-division sequence, The sequence obtained by cyclically expanding or puncturing.
- the candidate signal is distinguished by at least one of a time domain occupied by the sequence, an occupied frequency domain, and an occupied code resource.
- the first node includes one of a base station and a user equipment; and the neighboring node includes one of a base station and a user equipment.
- an apparatus for wireless communication comprising: a receiving unit, configured to receive at least one candidate signal from one or more neighboring nodes, the at least one candidate signal comprising at least one candidate signal group,
- the candidate signal group corresponds to a physical layer parameter configuration, where the physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency; and the determining unit determines, according to the at least one candidate signal group, Physical layer parameter configuration for wireless communication.
- the receiving unit is configured to: receive at least one candidate signal from one or more neighboring nodes in a guard slot; or periodically from one or more neighbors The node receives at least one candidate signal.
- the determining unit is further configured to: before the receiving the at least one candidate signal from the one or more neighboring nodes, according to service requirements and/or service letters
- the change of the transmission quality of the channel determines that the physical layer parameter configuration needs to be changed, where the service requirement is related to the uplink and downlink service ratio and/or the traffic volume.
- the determining unit is configured to: determine a physical layer parameter configuration for wireless communication according to a relationship between a received strength of the at least one candidate signal group and a received strength threshold value.
- a received strength of the at least one candidate signal group is a sum, a maximum value, a minimum value, or an average value of received strengths of candidate signals in the at least one candidate signal group, or is in the at least one candidate signal group The received strength of the candidate signal corresponding to the resource utilization of the node.
- the determining unit is specifically configured to: when the received strength of the at least one candidate signal group is less than or equal to the first receiving strength threshold, determine according to the service requirement. Physical layer parameter configuration for wireless communication; or, when the received strength of the at least one candidate signal group is greater than the first received strength threshold, determining that physical layer parameters for wireless communication are configured as candidates with the highest received strength.
- the physical layer parameter configuration corresponding to the signal group, or the physical layer parameter configuration for wireless communication is determined according to the service requirement and according to the candidate signal group whose receiving strength is greater than the first receiving strength threshold.
- the determining unit is specifically configured to: when the received strength of the at least one candidate signal group is less than or equal to the second receiving strength threshold, determine according to the service requirement. Physical layer parameter configuration for wireless communication; or, when a received strength of the first candidate signal group in the at least one candidate signal group is greater than the second received intensity threshold and less than or equal to a third received intensity threshold And the receiving strength of the second candidate signal group in the at least one candidate signal group is less than the second receiving strength threshold, wherein the second receiving strength threshold is less than the third receiving strength threshold a value, a physical layer parameter configuration for wireless communication is determined according to a service requirement and a candidate signal group whose reception strength is less than the second reception strength threshold; or, when the reception strength of the at least one candidate signal group is greater than When the second received intensity threshold is less than or equal to the third received intensity threshold, wherein the second received intensity threshold is less than the a receiving strength threshold value, determining a physical layer parameter configuration for wireless communication according to a service requirement; or, when
- the apparatus for wireless communication further includes: a sending unit, configured to: report, to the central node, the determined physical layer parameter configuration for wireless communication; or to the one or more The neighboring nodes transmit candidate signal groups corresponding to the determined physical layer parameter configurations for wireless communication.
- the apparatus for wireless communication further includes a communication unit for: wirelessly communicating using the physical layer parameter configuration for wireless communication.
- the candidate signal group includes one candidate signal; or the candidate signal group includes N candidate signals, where N is a positive integer greater than 1, and the N The candidate signals correspond to different resource utilization rates.
- an apparatus for wireless communication includes: a determining module, determining a candidate signal group according to a physical layer parameter configuration of the first node, and a correspondence between the physical layer parameter configuration and a candidate signal group And a sending module, configured to send, to one or more neighboring nodes, at least one candidate signal included in the candidate signal group determined by the determining module.
- the candidate signal group includes one candidate signal; or the candidate signal group includes N candidate signals, where N is a positive integer greater than 1, and the N The candidate signals correspond to different resource utilization rates.
- the sending module is specifically configured to: in a protection slot, the first node sends the candidate signal group to one or more neighboring nodes. At least one candidate signal.
- the sending module is specifically configured to periodically send at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the candidate signal comprises one of the following sequences: a sequence used by the synchronization signal, a dolphoff-dividing sequence, and truncation based on a zardorf-division sequence, The sequence obtained by cyclically expanding or puncturing.
- the candidate signal is distinguished by at least one of a time domain occupied by the sequence, an occupied frequency domain, and an occupied code resource.
- the apparatus comprises one of a base station and a user equipment.
- a network node includes: a receiver, configured to receive at least one candidate signal from one or more neighboring nodes, the at least one candidate signal including at least one a candidate signal group, the candidate signal group corresponding to a physical layer parameter configuration, wherein the physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency; and a processor, configured to A candidate signal group that determines the physical layer parameter configuration for wireless communication.
- a network node includes: a processor, configured to determine a candidate signal group according to a physical layer parameter configuration of the first node, and a correspondence between the physical layer parameter configuration and a candidate signal group And a transmitter, configured to send, to one or more neighboring nodes, at least one candidate signal included in the processor-determined candidate signal group.
- the embodiments of the present invention can set an appropriate physical layer parameter configuration by listening to a specific signal before adaptively changing the physical layer parameter configuration in the wireless communication system, thereby avoiding interference to surrounding cells.
- FIG. 1 is a flow chart of a method of wireless communication in accordance with an embodiment of the present invention.
- FIG. 2 is a flow chart of a method of wireless communication in accordance with another embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of an apparatus for wireless communication according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of an apparatus for wireless communication according to another embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an apparatus for wireless communication according to another embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a network node according to an embodiment of the present invention.
- FIG. 7 is another schematic structural diagram of a network node according to an embodiment of the present invention. detailed description
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- Time Division Synchronization Code TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- WiMAX Worldwide Interoperability for Microwave Access
- the UE may also be referred to as a mobile terminal, a mobile station, or the like, and may communicate with the core network via a radio access network (e.g., RAN, Radio Access Network).
- a radio access network e.g., RAN, Radio Access Network
- the user equipment exchanges voice and/or data with the wireless access network.
- the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (Node B) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
- BTS Base Transceiver Station
- Node B base station
- eNB evolved base station
- e-NodeB evolutional Node B
- a method of wireless communication according to an embodiment of the present invention includes the following steps.
- Step 11 A network node receives at least one candidate signal from one or more neighboring nodes, the at least one candidate signal includes at least one candidate signal group, and the candidate signal group corresponds to a physical layer parameter configuration, where The physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency.
- the neighboring node may be a node capable of receiving a signal from the network node and/or transmitting a signal to the network node.
- the physical layer parameter includes at least one of a subframe ratio and a carrier frequency.
- the candidate signal group may correspond to a subframe ratio, or a carrier frequency, or a combination of a subframe ratio and a carrier frequency. It can be seen that there is a correspondence between the candidate signal group and the physical layer parameter configuration.
- a plurality of candidate signal groups may be configured corresponding to one physical layer parameter, or one candidate signal group may be configured corresponding to one physical layer parameter.
- the carrier frequency may be a center frequency and/or a frequency bandwidth used for wireless communication on one carrier, or may be one carrier The frequency range used for wireless communication.
- signals may be included for other purposes, such as a node sent to help neighboring nodes identify their identity. Information discovery signals, etc.
- the LTE TDD system supports a variety of different uplink and downlink subframe ratios, as shown in Table 1.
- D represents a downlink subframe
- S represents a special subframe
- U represents an uplink subframe.
- the network device may send the downlink data packet to the UE; in the uplink subframe time, the UE may send the uplink data packet to the network device.
- the network device may send a downlink data packet to the UE, but the UE cannot send an uplink data packet to the network device, and thus the special subframe is also generally treated as a downlink subframe.
- the 3.5GHz to 4.2GHz bandwidth can be divided into 35 20MHz LTE carriers.
- the carrier used for wireless communication can be selected among the 35 carriers, then 35 different candidate signal groups can be defined in the candidate signal, and each candidate signal group corresponds to a different 20 MHz LTE carrier.
- 35 different candidate signal groups can be defined in the candidate signal, and each candidate signal group corresponds to a different 20 MHz LTE carrier.
- a single-carrier LTE TDD system supports dynamic change according to service requirements among the 7-seed frame ratios shown in Table 1, seven different candidate signal groups can be defined in the candidate signals, and each candidate signal group is respectively Corresponds to a different sub-frame ratio.
- Another example is a multi-carrier LTE TDD system, which assumes that it occupies the 3.5 GHz to 3.7 GHz band and has 10 20 MHz carriers, and each carrier can support the 7-seed frame ratio shown in Table 1 according to service requirements.
- 70 different candidate signal groups can be defined in the candidate signal, and each candidate signal group corresponds to a combination of one subframe ratio and carrier frequency.
- one subframe is divided into three types: a downlink subframe, a special subframe, and an uplink subframe according to its use.
- a special subframe includes a downlink pilot slot (DwPTS, Downlink Pilot Time Slot), an uplink pilot slot (UpPTS, Uplink Pilot Time Slot), and a GP.
- the DwPTS is used by the base station to send downlink information to the UE, and the UpPTS is used.
- the UE sends an uplink sounding reference signal and a short random access signal to the base station, and the GP idles the information.
- the GP is located between the DwPTS and the UpPTS to avoid interference between uplink and downlink transmissions.
- the candidate signal may be transmitted on the resources of the DwPTS in the downlink subframe or the special subframe, or may be transmitted on the resources of the UpPTS in the uplink subframe or the special subframe.
- the base station is receiving the candidate signal.
- the downlink signal cannot be sent within the time, which affects the downlink throughput of the system.
- the candidate signal is transmitted on the UpPTS resource in the uplink subframe or the special subframe, when the node that needs to receive the candidate signal is the UE, because the receiving and transmitting cannot be simultaneously performed, the UE may be in the receiving candidate.
- the uplink signal cannot be sent during the signal time, which affects the system uplink throughput.
- the candidate signal is transmitted on the resources of the GP in the special subframe.
- the candidate signal may be transmitted and received between the base station and the base station, between the base station and the UE, and between the UE and the UE, there may be a period of idle time before and after the candidate signal, and then the candidate
- the transmission of the signal may use only part of the time and frequency resources of the GP, for example, only part of the bandwidth is transmitted on the OFDM's Orthogonal Frequency Division Multiplexing (OFDM) symbol.
- OFDM Orthogonal Frequency Division Multiplexing
- candidate signals are represented in the form of a sequence.
- the candidate signal can be designed as a specific sequence that is configured both at the transmitting end node and the receiving end node, for example, reference can be made to the synchronization signal in the LTE system or to some sequence design used in the design of the reference signal.
- the secondary synchronization signal can be used to distinguish 168 groups of cell identifiers, and the primary synchronization signal can be used to further distinguish three cell identifiers in a group of cell identifiers.
- the secondary synchronization signal design of the LTE system can be directly reused.
- the Zadoff-Chu sequence used by the LTE system uplink reference signal is a constant amplitude zero autocorrelation sequence. It has good correlation characteristics, especially the cross-correlation between different cyclic shifts of the same root sequence is zero, and is widely used in communication systems.
- the candidate signal uses a Zadoff-Chu sequence, or a sequence obtained by truncation, Cyclic Extension or Punchture based on the Zadoff-Chu sequence.
- Different candidate signals are distinguished by at least one of a time domain occupied by the sequence, a frequency domain occupied, and a code domain resource occupied.
- different candidate signals may be distinguished by different reception times, or different candidate signals may be distinguished by different reception bands, or different candidate signals may be distinguished by different code resources used at the time of reception.
- the candidate signal adopts some specific sequence, such as Zadoff-Chu sequence, different cyclic shifts of the same Zadoff-Chu root sequence, and different Zadoff-Chu root sequences can be regarded as different sequence code resources.
- the candidate signal group corresponds to a physical layer parameter configuration.
- each candidate signal group may be configured corresponding to one physical layer parameter, and different candidate signals may be distinguished by at least one of a time domain, a frequency domain, and a code domain resource occupied by the candidate signal group.
- the correspondence between the candidate signal group and the physical layer parameter configuration may be configured in the at least one neighboring node or notified to the at least one neighboring node by the central node.
- One way is to establish a correspondence between the candidate signal index and the physical layer parameter configuration index in the candidate signal group, and further acquire the time domain, frequency domain, and code domain resources occupied by the candidate signal by using the candidate signal index;
- the method is to directly establish a correspondence between a physical layer parameter configuration and a time domain, a frequency domain, and a code domain resource occupied by candidate signals in the candidate signal group.
- the correspondence between the candidate signal group and the physical layer parameter configuration is a predetermined correspondence according to the protocol, the corresponding relationship may be configured in the adjacent node in advance.
- a candidate signal cyclic shift value can be specified for each seed frame ratio and stored in the receiving end node and the transmitting end node of the candidate signal.
- the cyclic shift used when transmitting the candidate signal may be acquired according to the currently used subframe ratio, that is, the candidate signal using the corresponding cyclic shift is transmitted on the resource of the GP of the special subframe.
- the receiving end node receives the corresponding candidate signal on the GP resource of the special subframe according to the subframe ratio that may be used by itself, and selects an appropriate subframe ratio according to the receiving strength of the candidate signal.
- the central node may be the UE Serving base station or macro base station;
- the receiving end node or the transmitting end node of the selected signal includes the base station, and then the central node may be a macro base station, a base station controller or a core network device.
- a typical scenario considered by the embodiment of the present invention is a small cell used for hotspot coverage in the 3.5 GHz band, and then, outside the small cell, there is likely to be deployed in the lower frequency band for full coverage and no
- the roaming macro network (such as the LTE TDD network or even the 3G network in the 1.8 GHz band)
- the macro base station in the macro network can serve as a central node to assist in managing the small base station or the small base station UE and other nodes in the geographical range of the macro base station. , helping them better coordinate the use of candidate signals for wireless communication.
- the at least one candidate signal group belongs to one candidate signal set, and the candidate signal set may also be configured in at least one neighboring node, or notified by the central node to at least one neighboring node.
- a candidate signal group can be defined for each supported subframe ratio according to the supported subframe matching type.
- the receiving node always receives all candidate signals.
- the central node sends the configured candidate signal set and the carrier frequency and the subframe corresponding to each candidate signal group to the receiving end node and the transmitting end node according to the bandwidth and processing capability supported by the receiving end node and the transmitting end node. Matching.
- the reception of the candidate signals may be periodic, and accordingly, the transmission of the candidate signals may also be periodic.
- a node can send or receive candidate signals as needed.
- a node first determines whether it needs to change its physical layer parameter configuration, and the judgment may be based on a change in traffic demand and/or service channel transmission quality, for example, changing a subframe ratio or a service according to uplink and downlink traffic demand requirements.
- Significant deterioration in channel transmission quality results in the need to change the subframe ratio and/or carrier frequency and the like. That is, when a node determines that it needs to change its physical layer parameter configuration, it can receive the candidate signal to select a new physical layer parameter configuration according to the received at least one candidate signal.
- a node may also determine whether it needs to change its physical layer parameter configuration during the process of periodically receiving or transmitting a candidate signal. Specifically, in the receiving time or the sending time in each cycle, optionally, the receiving time and the sending time may be the same time, and a node may first determine whether the physical layer parameter configuration needs to be changed, and the determining basis may be The traffic demand and/or the quality of the traffic channel transmission has changed. When a node determines that it is not necessary to change its physical layer parameter configuration, the corresponding candidate signal may be transmitted according to the currently used physical layer parameter configuration at the transmission timing of the candidate signal period.
- the candidate signal may be received at the receiving moment of the next one or more candidate signal periods, and a new physical layer parameter configuration is selected according to the received candidate signal receiving strength. Thereafter, the corresponding candidate signal may be transmitted according to the new physical layer parameter configuration at the transmission timing of the period of the candidate signal.
- the reception or transmission of the candidate signal may not be performed.
- a plurality of neighboring nodes may be time synchronized and configured to transmit the same period for transmitting and receiving the candidate signals.
- a node whether it is to receive or transmit a candidate signal can also be configured by the central node, or a node having a candidate signal receiving or transmitting capability always activates the function.
- the central node configures whether a node performs reception or transmission of a candidate signal
- the node may first report to the central node whether it has the capability of receiving or transmitting the candidate signal.
- the network node can periodically receive at least one candidate signal from one or more neighboring nodes.
- the network node can periodically receive at least one candidate signal from one or more neighboring nodes.
- the service requirement is up and down
- the proportion of line business and/or the size of the business volume is related.
- the received at least one candidate signal may include one or more candidate signal groups, each candidate signal group may include one candidate signal; or each candidate signal group may also include N candidate signals, where N is greater than 1 A positive integer, and the N candidate signals respectively correspond to different resource utilization rates.
- the node's resource utilization is 0, 50%, and 100%, and the corresponding business load can be divided into three levels: 0, 1/2, and 1.
- the traffic load can be divided into corresponding levels according to different resource utilization rates.
- a candidate signal group includes N candidate signals and N is a positive integer greater than 1
- different candidate signals within the same candidate signal group may also pass at least one of the occupied time domain, frequency domain, and code domain resources. distinguish.
- the candidate signal group can also establish a corresponding relationship with the service load of the node at the same time.
- the traffic load is level 0
- H ⁇ supports the 7-seed frame ratio shown in Table 1, and then 14 candidate signal groups can be defined, each candidate signal group corresponding to one subframe ratio and one service load. A combination of levels.
- multiple candidate signals in one candidate signal group may correspond to the same physical layer parameter configuration, but respectively correspond to different traffic load conditions.
- a node needs to send a candidate signal
- a candidate signal corresponding to the physical layer parameter configuration and resource utilization used by the current wireless communication is transmitted to one or more neighboring nodes.
- Step 12 Determine a physical layer parameter configuration for wireless communication according to the at least one candidate signal.
- a physical layer parameter configuration for wireless communication is determined based on a relationship between a received strength of at least one candidate signal in the at least one candidate signal group and a received strength threshold.
- the reception strength may be the received power of the candidate signal or the quantized received power level.
- the correlation may be obtained according to the correlation between the received candidate signal and the locally stored candidate signal. The relationship between the value and the correlation value threshold determines the physical layer parameter configuration for wireless communication, or determines the physical layer parameter configuration for wireless communication based on the candidate signal having the largest correlation value.
- the node as the receiving end receives the candidate signal strength indicating the total number of neighboring nodes or nodes that may be subjected to wireless communication using the corresponding subframe ratio on the carrier of the corresponding frequency.
- the level of interference intensity When receiving at least one candidate signal from one or more neighboring nodes, there may be multiple neighboring nodes using the same physical layer parameter configuration for wireless communication, and when there is a corresponding relationship between the candidate signal and the resource utilization, It is assumed that the plurality of neighboring nodes also have the same resource utilization, and at this time, the plurality of neighboring nodes transmit the same candidate signal on the same time domain, frequency domain and code domain resources. Therefore, after the receiving node receives a candidate signal, the receiving strength of the candidate signal indicates the total interference level caused by the neighboring node configured by the corresponding physical layer parameter to the communication of the node.
- a specific example is given by taking the base station of the candidate signal and the node of the transmitting end as base stations.
- the receiving end and the transmitting end of the candidate signal are UEs, or both the base station and the UE are included.
- the principle of this example is also applicable.
- a base station wants to change the carrier frequency and/or the subframe ratio used by the base station to communicate with the served UE, it first receives the candidate signal transmitted by the surrounding base station, and acquires the carrier frequency used by the surrounding base station by using the received candidate signal. And/or subframe ratio, and the interference strength that may be caused by communication with the base station.
- the candidate signal set includes seven different candidate signal groups, and each candidate signal group corresponds to a different subframe ratio in Table 1, for example, when the base station A needs to change according to the service requirements of the UE it serves.
- the candidate signal can be received on the GP resource of the special subframe, and the base station that does not need to change the subframe ratio around the base station according to the subframe ratio used by itself can be sent on the GP resource of the special subframe.
- the used subframes are matched to the corresponding candidate signals.
- the base station A For base stations that use the same subframe ratio, they will send the same specific candidate signal on the GP resources of the special subframe, so after receiving a specific candidate signal, the base station A can obtain all the surrounding uses corresponding to the specific candidate signal.
- the interference caused by the base station matched by the base station to the base station.
- the candidate signals can be concentrated on one carrier for transmission.
- the candidate signals can be concentrated on one carrier for transmission.
- the 7 seed frame ratios are switched between the illustrated, then 70 candidate signals can be defined, each candidate signal is wirelessly communicated using a specific subframe ratio on a specific TDD carrier, and 70 candidate signals can be used. Both are concentrated on the 20 MHz TDD carrier of 3.50 GHz to 3.52 GHz for transmission.
- one or more threshold values for example, a threshold value of the receiving strength, may be set for the candidate signal group and / or the threshold value of the relevant value.
- the candidate signal group includes N candidate signals and N is a positive integer greater than 1, determining physical layer parameters used for wireless communication according to a relationship between a received strength of the candidate signal group and a received strength threshold.
- the configuration may be one of the following manners: determining, according to a relationship between a received strength of a candidate signal corresponding to a resource utilization rate of a node that receives the candidate signal and a received strength threshold value, according to the received at least one candidate signal group.
- Physical layer parameter configuration for wireless communication or determining, according to the received sum, maximum value, minimum value, or average value of the received strengths of the candidate signals in the at least one candidate signal group, and the received intensity threshold value Physical layer parameter configuration for wireless communication.
- the following describes the relationship between the received strength of the candidate signal and the received strength threshold as an example. It should be noted that the principle of the example is determined for any relationship according to the received candidate signal and the receiving threshold.
- the physical layer parameter configuration of the communication is applicable.
- a threshold X is set for the received strength of at least one candidate signal group.
- the reception strength of the at least one candidate signal group does not exceed the threshold value X, indicating that other base stations and/or UEs configured using physical layer parameters corresponding to the at least one candidate signal group do not have a receiving end node of the candidate signal Communication with little interference or interference; when the received strength of the at least one candidate signal group exceeds the threshold X, indicating other base stations and/or UEs configured using physical layer parameters corresponding to the at least one candidate signal group It interferes with the communication of the receiving node of the candidate signal.
- the received strength of the at least one candidate signal group does not exceed the threshold X, according to the service Need to choose a physical layer parameter configuration.
- a corresponding physical layer parameter configuration may be selected from the candidate signal groups whose reception strength exceeds the threshold value X according to service requirements, or the reception strength may be selected.
- the physical layer parameter configuration corresponding to the candidate signal group of X When there are multiple candidate signal groups whose received strength exceeds X, the interference can be further reduced by limiting the resources used by the wireless communication. For example, when the base station A receives the strength of two candidate signal groups exceeding X and corresponds to the subframe ratio 1 and the subframe ratio 2 in Table 1, respectively, it is considered that strong interference only occurs in subframes with different transmission directions.
- the subframe ratio 1 or the subframe ratio 2 can be used to communicate with the UE served by itself, and the subframe 3 and the subframe 8 are not scheduled (as shown in Table 1, the subframe ratio 1 and the subframe match) 2 is different only in the uplink and downlink configuration of subframe 3 and subframe 8), that is, the resources used for wireless communication are limited to subframe 0, subframe 1, subframe 2, subframe 4, subframe 5, subframe 6, Subframe 7 and subframe 9. Since in subframe 0, subframe 1, subframe 2, subframe 4, subframe 5, subframe 6, subframe 7, and subframe 9, base station A and surrounding use subframe ratio 1 or subframe ratio 2 The transmission direction of the base station or UE is always the same, and there is no strong interference caused by different transmission directions. When the candidate signal has a corresponding relationship with the resource utilization, if the resource utilization indicates that the traffic load is not full, the subframes with the same transmission direction and the same neighboring node can be preferentially used in the scheduling.
- two threshold values XI and X2 are set for the received intensity of at least one candidate signal group, and XI is less than X2.
- XI is less than X2.
- the received strength of the at least one candidate signal group exceeds the threshold XI but does not exceed the threshold X2, indicating that other base stations or UEs using the physical layer parameter configuration corresponding to the at least one candidate signal group are candidates
- the communication at the signal receiving end generates a certain degree of interference, but the interference is in an acceptable range
- the received strength of the at least one candidate signal group exceeds the threshold value X2, indicating that the physical layer parameter configuration corresponding to the at least one candidate signal group is used
- Other base stations or UEs may generate strong interference to the communication of the candidate signal receiving end, and need to communicate with the physical layer parameter configuration corresponding to the at least one candidate signal group to avoid uplink and downlink interference.
- a physical layer parameter configuration is selected according to service requirements.
- the reception strength of one of the at least one candidate signal group exceeds XI
- the reception strength of at least another group does not exceed XI
- the reception strength of all candidate signal groups does not exceed the threshold X2
- the reception is received according to the service demand.
- a physical layer parameter configuration is selected according to service requirements.
- a corresponding physical layer parameter configuration may be selected from the candidate signal groups whose reception strength exceeds the threshold value X2 according to service requirements, or the reception intensity is selected to be the largest and exceeds The physical layer parameter configuration corresponding to the candidate signal group of the threshold value X2.
- the interference can be further reduced by limiting the resources used by the wireless communication. For example, when the receiving strength of the two candidate signal groups received by the base station A exceeds X2 and corresponds to the subframe ratio 1 and the subframe ratio 2 in Table 1, respectively, it is considered that the strong interference command appears in the subframes with different transmission directions.
- the subframe ratio 1 or the subframe ratio 2 can be used to communicate with the UE served by itself, and the subframe 3 and the subframe 8 are not scheduled (for the same reason), that is, the resources used for the wireless communication are limited to the child.
- the transmission direction of the base station or UE is always the same, and there is no strong interference caused by different transmission directions.
- the candidate signal has a corresponding relationship with the resource utilization rate, if the resource utilization indicates that the traffic load is not full, the subframes with the same transmission direction and the same neighboring node may be preferentially used in the scheduling.
- the carrier with the appropriate bandwidth may be selected according to the traffic volume, and/or the appropriate subframe ratio may be selected according to the uplink and downlink traffic ratio.
- the appropriate subframe ratio is selected according to the proportion of uplink and downlink services, when the ratio of uplink and downlink services is a: b, the ratio of the spectral efficiency of the downlink transmission to the spectral efficiency of the uplink transmission can be determined.
- the subframe ratio in which the frame ratio is close is used for wireless communication. For example, the ratio of the uplink and downlink services is 4:1, and the spectral efficiency of the downlink transmission is twice the spectral efficiency of the uplink transmission.
- the physical layer parameter configuration can be reported to the central node. For example, if it is determined that the node configured by the physical layer parameter is a UE, the UE may report the physical layer parameter configuration to its serving base station or macro base station. If the node configured to determine the physical layer parameter is a base station, the base station sends the macro base station to the base station. The controller or core network device reports the physical layer parameter configuration. Alternatively, the network node may send a candidate signal corresponding to the physical layer parameter configuration to one or more neighboring nodes.
- the network node may periodically send candidate signals corresponding to the physical layer parameter configuration to one or more neighboring nodes, so as to timely configure its own physical layer parameters.
- the neighboring nodes are told in the form of candidate signals.
- the network node may determine a corresponding candidate signal group according to the physical layer parameter configuration of the network node, and when transmitting the candidate signal, the network node may send All or part of the candidate signals in the candidate signal group, for example, only one candidate signal corresponding to its own resource utilization in the candidate signal group is transmitted.
- the physical layer parameter configuration can also be used for wireless communication.
- the determined physical layer parameter configuration may be used to perform wireless communication with the UE it serves; or the base station reports the physical layer parameter configuration determined by itself to the central node (for example, the macro base station), and then the central node receives the received
- the physical layer parameter configuration of the multiple base stations is configured to determine a physical layer parameter configuration, and then the central node notifies the base station of the determined physical layer parameter configuration, so that the base station performs the physical layer parameter configuration determined by the central node and the base station.
- Wireless communication is configured to determine a physical layer parameter configuration, and then the central node notifies the base station of the determined physical layer parameter configuration, so that the base station performs the physical layer parameter configuration determined by the central node and the base station.
- the determined physical layer parameter configuration may be used to perform wireless communication with the serving base station; or the other UE may perform wireless terminal and terminal (D2D, Device to Device) communication; or the UE may configure the physical layer parameter determined by itself.
- Reporting to the central node for example, the serving base station, and then the central node determines a physical layer parameter configuration according to the received physical layer parameter configuration of the multiple UE reports, and then notifies the service of the determined physical layer parameter configuration to the service.
- the UE in order for the UE to perform wireless communication with the base station using the physical layer parameter configuration decided by the central node.
- the node uses the corresponding physical layer parameter configuration for wireless communication. For example, when a base station selects to use the subframe ratio 1 according to the reception strength of the candidate signal, the base station can perform wireless communication with the UE according to the division of the downlink subframe, the special subframe, and the uplink subframe in the subframe ratio 1.
- the embodiment of the present invention sets an appropriate physical layer parameter configuration by intercepting a specific signal before adaptively changing the physical layer parameter configuration in the wireless communication system, thereby avoiding interference to surrounding cells.
- a method of wireless communication according to another embodiment of the present invention includes the following steps:
- Step 21 The first node is configured according to physical layer parameters of the first node, and the physical The correspondence between the layer parameter configuration and the candidate signal group determines the candidate signal group.
- Step 22 The first node sends at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the candidate signal group may include one candidate signal; and may also include N candidate signals, where N is a positive integer greater than 1, and the N candidate signals respectively correspond to different resource utilization rates.
- the candidate signal includes one of the following sequences: a sequence used for the synchronization signal, a dolphoff-dividing sequence, and a sequence obtained by truncating, cyclically expanding, or puncturing based on the zardorf-division sequence.
- the candidate signal is distinguished by at least one of a time domain occupied by the sequence, a frequency domain occupied, and a code domain resource occupied.
- the first node may send at least one candidate signal included in the candidate signal group to one or more neighboring nodes in a guard slot.
- the first node may also periodically transmit at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the first node includes one of a base station and a user equipment
- the neighboring node includes one of a base station and a user equipment
- the embodiment of the present invention sets an appropriate physical layer parameter configuration by intercepting a specific signal before adaptively changing the physical layer parameter configuration in the wireless communication system, thereby avoiding interference to surrounding cells.
- FIG. 3 illustrates an apparatus for wireless communication in accordance with an embodiment of the present invention. The description of the method shown in Fig. 1 is repeated and will not be described again.
- the apparatus 30 for wireless communication includes a receiving unit 31 and a determining unit 32.
- the receiving unit 31 is configured to receive at least one candidate signal from one or more neighboring nodes, where the at least one candidate signal includes at least one candidate signal group, where the candidate signal group corresponds to a physical layer parameter configuration, where The physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency.
- the determining unit 32 is configured to determine a physical layer parameter configuration for wireless communication based on the at least one candidate signal group.
- the candidate signal group may include one candidate signal; N candidate signals may also be included, where N is a positive integer greater than 1, and the N candidate signals respectively correspond to different resource utilization rates.
- the candidate signal is in the form of a sequence
- the candidate signal may be a synchronous signal.
- the candidate signal can be further distinguished by at least one of a time domain occupied by the sequence, an occupied frequency domain, and an occupied code domain resource.
- the correspondence between the candidate signal group and the physical layer parameter configuration is configured in the at least one neighboring node, or the correspondence between the candidate signal group and the physical layer parameter configuration is notified by the central node to the Said at least one adjacent node.
- the candidate signal is configured at the at least one neighboring node, or the candidate signal is notified by the central node to the at least one neighboring node.
- the neighboring node may be a base station or a user equipment.
- the receiving unit 31 is specifically configured to receive at least one candidate signal from one or more neighboring nodes in the guard slot.
- the receiving unit 31 is specifically configured to periodically receive at least one candidate signal from one or more neighboring nodes.
- the determining unit 32 is further configured to: before the receiving the at least one candidate signal from the one or more neighboring nodes, determining, according to the service requirement and/or the change of the transmission quality of the traffic channel, determining that the physical layer parameter needs to be changed.
- the configuration, wherein the service requirement is related to an uplink and downlink service ratio and/or a traffic volume.
- the determining unit 32 is configured to determine a physical layer parameter configuration for wireless communication according to a relationship between a received strength of the at least one candidate signal group and a received strength threshold.
- the reception strength of the at least one candidate signal group may be a sum, a maximum value, a minimum value, or an average value of reception strengths of candidate signals in the at least one candidate signal group, or in the at least one candidate signal group The received strength of the candidate signal corresponding to the resource utilization of the receiving node.
- the determining unit 32 is configured to determine a physical layer parameter configuration for wireless communication according to a service requirement when a received strength of the at least one candidate signal group is less than or equal to a first received strength threshold; or When the received strength of the at least one candidate signal group is greater than the first received strength threshold, the physical layer parameter configured for the wireless communication is configured to be the physical layer parameter configuration corresponding to the candidate signal group with the highest receiving strength, or according to the service requirement.
- a physical layer parameter configuration for wireless communication is determined based on a candidate signal group having a received strength greater than the first received strength threshold.
- the determining unit 32 is configured to determine a physical layer parameter configuration for wireless communication according to a service requirement when a received strength of the at least one candidate signal group is less than or equal to a second receiving strength threshold; or The reception strength of the first candidate signal group in at least one candidate signal group is large And the second received intensity threshold is less than or equal to the third received intensity threshold, and the received strength of the second candidate signal group in the at least one candidate signal group is less than the second received intensity threshold And the second receiving strength threshold value is smaller than the third receiving strength threshold value, and is determined according to a service requirement and according to a candidate signal group whose receiving strength is smaller than the second receiving strength threshold value, for wireless communication.
- Physical layer parameter configuration or, when the received strength of the at least one candidate signal group is greater than the second receiving strength threshold, and both are less than or equal to a third receiving strength threshold, wherein the second receiving The strength threshold is less than the third reception strength threshold, and the physical layer parameter configuration for wireless communication is determined according to the service requirement; or, when the reception strength of at least one of the at least one candidate signal group is greater than Determining, by the third receiving strength threshold, a physical layer parameter configured for wireless communication as a physical layer corresponding to a candidate signal group having the highest receiving strength Configuration number, or based on business needs and said third set of candidate signal reception intensity threshold value is greater than the reception strength is determined according to a physical layer parameter of a wireless communication configuration.
- the apparatus 40 for wireless communication may further include a transmitting unit 33.
- the transmitting unit 33 is configured to report the determined physical layer parameter configuration for wireless communication to the central node; or send, to the one or more neighboring nodes, a candidate corresponding to the determined physical layer parameter configuration for wireless communication Signal group.
- the apparatus 40 for wireless communication may further include a communication unit 34.
- Communication unit 34 is operative to communicate wirelessly using the physical layer parameter configuration for wireless communication.
- an appropriate physical layer parameter configuration is set by listening to a specific signal, thereby avoiding interference to surrounding cells.
- the apparatus for wireless communication in the embodiment of the present invention may be a network node such as a base station or a UE.
- FIG. 5 illustrates an apparatus for wireless communication in accordance with an embodiment of the present invention. The description of the method shown in Fig. 2 is repeated and will not be described again.
- the apparatus 50 for wireless communication includes a determination module 51 and a transmission module 52.
- the determining module 51 may determine the candidate signal group according to the physical layer parameter configuration of the first node, and the corresponding relationship between the physical layer parameter configuration and the candidate signal group.
- the transmitting module 52 may transmit, to one or more neighboring nodes, at least one candidate signal included in the candidate signal group determined by the determining module.
- the candidate signal group includes one candidate signal; or the candidate signal group includes N candidate signals, where N is a positive integer greater than 1, and the N candidate signals respectively correspond to Same resource utilization.
- the sending module 52 is specifically configured to: in the protection slot, the first node sends the at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the sending module 52 is specifically configured to periodically send the at least one candidate signal included in the candidate signal group to one or more neighboring nodes.
- the candidate signal includes one of the following sequences: a sequence used by the synchronization signal, a rab-divide sequence, and a sequence obtained by truncating, cyclically expanding, or puncturing based on the zaffowski-dividing sequence.
- the candidate signal is distinguished by at least one of a time domain occupied by the sequence, a frequency domain occupied, and a occupied code resource.
- Apparatus 50 includes one of a base station and a user equipment.
- FIG. 6 is a schematic block diagram of user equipment 60 of the present invention.
- User equipment 60 includes a receiver 61 and a processor 62.
- the receiver 61 is configured to receive at least one candidate signal from one or more neighboring nodes, where the at least one candidate signal includes at least one candidate signal group, and the candidate signal group corresponds to one physical layer parameter.
- the configuration, wherein the physical layer parameter configuration includes at least one of a configuration of a subframe ratio and a configuration of a carrier frequency.
- the processor 62 is configured to determine a physical layer parameter configuration for wireless communication based on the at least one candidate signal group.
- FIG. 7 is a schematic block diagram of user equipment 70 of the present invention.
- User equipment 70 includes a processor 71 and a transmitter 72.
- the processor 71 is configured to determine a candidate signal group according to a physical layer parameter configuration of the first node, and a correspondence between the physical layer parameter configuration and a candidate signal group.
- the transmitter 72 is configured to transmit, to one or more neighboring nodes, at least one candidate signal included in the candidate signal group determined by the processor 71.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
- the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
- the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例涉及无线通信的方法和装置、网络节点。其中,所述无线通信的方法,包括:从一个或多个相邻节点接收至少一个候选信号,所述至少一个候选信号包括至少一个候选信号组,所述候选信号组对应一种物理层参数配置,其中所述物理层参数配置包括子帧配比的配置和载波频率的配置中的至少一个;根据所述至少一个候选信号组,确定用于无线通信的物理层参数配置。本发明实施例能够在无线通信系统中自适应地改变物理层参数配置之前,通过侦听特定的信号,来设置合适的物理层参数配置,从而避免对周围小区造成干扰。
Description
无线通信的方法和装置、 网络节点 技术领域
本发明涉及通信技术领域, 具体而言, 涉及无线通信的方法和装置、 网 络节点。 背景技术
长期演进(LTE, Long Term Evolution ) 系统是一个不断演进的系统。 在时分双工 ( TDD , Time Division Duplex ) LTE系统中, 网络侧通过系统广 播消息通知用户设备所使用的子帧配比。 通常, 子帧配比的改变要通过系统 消息更新过程才能完成, 至少需要 640毫秒(ms ) 变更一次。 但是, 子帧配 比的改变通常会造成一段时间内业务中断。 为了尽量减少对业务中断所造成 的影响, 实际系统中子帧配比往往很少发生改变, 甚至在网络部署完成后也 一直保持不变。
考虑到上下行业务的突发性, 在用户数较少时, 需要子帧配比能经常比 较快速地发生变化, 以更好地匹配当前的业务流量特性。 现有技术中, 每个 小区可以根据自己所服务的用户设备的瞬时业务需求来动态地改变其子帧 配比, 其中子帧配比可以数百毫秒、 甚至短到十毫秒就变化一次。
每个小区根据自己用户的瞬时业务需求来动态地改变子帧配比后, 可能 导致相邻小区使用的子帧配比不同, 并引起相邻小区之间的上下行数据传输 的干扰。 特别地, 当一个小区根据其服务的用户设备的瞬时业务需求改变子 帧配比之后, 可能会对周边小区造成强干扰, 影响周边小区的通信性能。
此外, 由于子帧配比的动态改变主要应用于小小区, 而这些小小区有可 能被部署在具有 4艮大带宽的高频频带上, 例如 3.5GHz~4.2GHz 的频带。 目 前, 一个 LTE TDD 载波所能支持的最大带宽为 20MHz , 也就是说, 在 3.5GHz~4.2GHz频带上会有多个载波可选择。如何选择合适的由子帧配比和 /或载波频率等组成的物理层参数配置是需要研究的问题。 发明内容
本发明提出了无线通信的方法和装置、 网络节点, 用于解决如何确定物 理层参数配置以避免干扰的问题。
根据本发明的第一方面, 一种无线通信的方法, 包括: 从一个或多个相 邻节点接收至少一个候选信号,所述至少一个候选信号包括至少一个候选信 号组, 所述候选信号组对应一种物理层参数配置, 其中所述物理层参数配置 包括子帧配比的配置和载波频率的配置中的至少一个; 根据所述至少一个候 选信号组, 确定用于无线通信的物理层参数配置。
在所述方法的一种优选的可执行方式中,所述候选信号组包括一个候选 信号; 或者所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整数, 且所述 N个候选信号分别对应不同的资源利用率。
在所述方法的另一种优选的可执行方式中, 可以在保护时隙中, 从一个 或多个相邻节点接收至少一个候选信号。
在所述方法的另一种优选的可执行方式中,在所述从一个或多个相邻节 点接收至少一个候选信号之前,还包括:根据业务需求和 /或业务信道传输质 量的变化, 确定需要改变所述物理层参数配置。 例如, 所述业务需求与上下 行业务比例和 /或业务量大小相关。
在所述方法的另一种优选的可执行方式中, 可以周期性地从一个或多个 相邻节点接收至少一个候选信号。
在所述方法的另一种优选的可执行方式中, 可以根据所述至少一个候选 信号组的接收强度与接收强度门限值的关系,确定用于无线通信的物理层参 数配置。 例如, 所述至少一个候选信号组的接收强度可以为所述至少一个候 选信号组中的候选信号的接收强度的和、 最大值、 最小值或者平均值, 或者 为所述至少一个候选信号组中与节点的资源利用率对应的候选信号的接收 强度。
在所述方法的另一种优选的可执行方式中, 当所述至少一个候选信号组 的接收强度均小于或等于第一接收强度门限值时,根据业务需求确定用于无 线通信的物理层参数配置; 或, 当所述至少一个候选信号组的接收强度大于 所述第一接收强度门限值时,确定用于无线通信的物理层参数配置为接收强 度最大的候选信号组对应的物理层参数配置, 或者根据业务需求并根据接收 强度大于所述第一接收强度门限值的候选信号组确定用于无线通信的物理 层参数配置。
在所述方法的另一种优选的可执行方式中, 当所述至少一个候选信号组 的接收强度均小于或等于第二接收强度门限值时,根据业务需求确定用于无
线通信的物理层参数配置; 或, 当所述至少一个候选信号组中的第一候选信 号组的接收强度大于所述第二接收强度门限值且小于或等于第三接收强度 门限值, 并且所述至少一个候选信号组中的第二候选信号组的接收强度小于 所述第二接收强度门限值时, 其中所述第二接收强度门限值小于所述第三接 收强度门限值,根据业务需求并根据接收强度小于所述第二接收强度门限值 的候选信号组确定用于无线通信的物理层参数配置; 或, 当所述至少一个候 选信号组的接收强度均大于所述第二接收强度门限值, 并且均小于或等于第 三接收强度门限值时,其中所述第二接收强度门限值小于所述第三接收强度 门限值, ^据业务需求确定用于无线通信的物理层参数配置; 或, 当所述至 少一个候选信号组中的至少有一组候选信号的接收强度大于所述第三接收 强度门限值时,确定用于无线通信的物理层参数配置为接收强度最大的候选 信号组对应的物理层参数配置, 或者根据业务需求并根据接收强度大于所述 第三接收强度门限值的候选信号组确定用于无线通信的物理层参数配置。
在所述方法的另一种优选的可执行方式中, 本发明实施例的方法还包 括: 向中心节点 告确定的所述用于无线通信的物理层参数配置。
在所述方法的另一种优选的可执行方式中, 本发明实施例的方法还包 层参数配置的候选信号组。
在所述方法的另一种优选的可执行方式中, 本发明实施例的方法还包 括: 使用所述用于无线通信的物理层参数配置进行无线通信。
在所述方法的另一种优选的可执行方式中, 候选信号是序列的形式, 例 如, 为以下序列中的一种: 同步信号所使用的序列、 扎道夫-除序列, 以及 基于扎道夫 -除序列进行截断、 循环扩展或打孔所得到的序列。 其中, 所述 候选信号通过所述序列所占用的时域、所占用的频域和所占用的码资源中的 至少一种进行区分。
在所述方法的另一种优选的可执行方式中, 所述候选信号组与所述物理 层参数配置的对应关系配置在所述至少一个相邻节点中, 或者所述候选信号 组与所述物理层参数配置的对应关系由中心节点通知给所述至少一个相邻 节点。
在所述方法的另一种优选的可执行方式中, 所述候选信号配置在所述至 少一个相邻节点, 或者所述候选信号由中心节点通知给所述至少一个相邻节
点。
以上, 相邻节点是基站或者用户设备。
根据本发明的另一方面, 一种无线通信的方法, 包括: 第一节点根据所 述第一节点的物理层参数配置, 以及所述物理层参数配置与候选信号组的对 应关系确定候选信号组; 所述第一节点向一个或多个相邻节点发送所述候选 信号组包括的至少一个候选信号。
在所述方法的另一种优选的可执行方式中, 所述候选信号组包括一个候 选信号; 或者所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整 数, 且所述 N个候选信号分别对应不同的资源利用率。
在所述方法的另一种优选的可执行方式中, 可以在保护时隙中, 所述第 一节点向一个或多个相邻节点发送所述候选信号组包括的至少一个候选信 号。
在所述方法的另一种优选的可执行方式中,所述第一节点周期性地向一 个或多个相邻节点发送所述候选信号组包括的至少一个候选信号。
在所述方法的另一种优选的可执行方式中, 所述候选信号包括以下序列 中的一种: 同步信号所使用的序列、 扎道夫-除序列, 以及基于扎道夫 -除序 列进行截断、 循环扩展或打孔所得到的序列。
在所述方法的另一种优选的可执行方式中, 所述候选信号通过所述序列 所占用的时域、 所占用的频域和所占用的码资源中的至少一种进行区分。
在所述方法的另一种优选的可执行方式中, 所述第一节点包括基站和用 户设备中的一个; 所述相邻节点包括基站和用户设备中的一个。
根据本发明的另一方面, 一种无线通信的装置, 包括: 接收单元, 用于 从一个或多个相邻节点接收至少一个候选信号, 所述至少一个候选信号包括 至少一个候选信号组, 所述候选信号组对应一种物理层参数配置, 其中所述 物理层参数配置包括子帧配比的配置和载波频率的配置中的至少一个; 确定 单元,根据所述至少一个候选信号组,确定用于无线通信的物理层参数配置。
在所述装置的一种优选的可执行方式中,接收单元用于:在保护时隙中, 从一个或多个相邻节点接收至少一个候选信号; 或者周期性地从一个或多个 相邻节点接收至少一个候选信号。
在所述装置的另一种优选的可执行方式中, 确定单元还用于: 在所述从 一个或多个相邻节点接收至少一个候选信号之前,根据业务需求和 /或业务信
道传输质量的变化, 确定需要改变所述物理层参数配置, 其中所述业务需求 与上下行业务比例和 /或业务量大小相关。
在所述装置的另一种优选的可执行方式中, 确定单元用于: 根据所述至 少一个候选信号组的接收强度与接收强度门限值的关系,确定用于无线通信 的物理层参数配置, 其中所述至少一个候选信号组的接收强度为所述至少一 个候选信号组中的候选信号的接收强度的和、 最大值、 最小值或者平均值, 或者为所述至少一个候选信号组中与节点的资源利用率对应的候选信号的 接收强度。
在所述装置的另一种优选的可执行方式中, 确定单元具体用于: 当所述 至少一个候选信号组的接收强度均小于或等于第一接收强度门限值时,根据 业务需求确定用于无线通信的物理层参数配置; 或, 当所述至少一个候选信 号组的接收强度大于所述第一接收强度门限值时,确定用于无线通信的物理 层参数配置为接收强度最大的候选信号组对应的物理层参数配置, 或者根据 业务需求并根据接收强度大于所述第一接收强度门限值的候选信号组确定 用于无线通信的物理层参数配置。
在所述装置的另一种优选的可执行方式中, 确定单元具体用于: 当所述 至少一个候选信号组的接收强度均小于或等于第二接收强度门限值时,根据 业务需求确定用于无线通信的物理层参数配置; 或, 当所述至少一个候选信 号组中的第一候选信号组的接收强度大于所述第二接收强度门限值且小于 或等于第三接收强度门限值, 并且所述至少一个候选信号组中的第二候选信 号组的接收强度小于所述第二接收强度门限值时,其中所述第二接收强度门 限值小于所述第三接收强度门限值,根据业务需求并根据接收强度小于所述 第二接收强度门限值的候选信号组确定用于无线通信的物理层参数配置; 或, 当所述至少一个候选信号组的接收强度均大于所述第二接收强度门限 值, 并且均小于或等于第三接收强度门限值时, 其中所述第二接收强度门限 值小于所述第三接收强度门限值,根据业务需求确定用于无线通信的物理层 参数配置; 或, 当所述至少一个候选信号组中的至少有一组候选信号的接收 强度大于所述第三接收强度门限值时,确定用于无线通信的物理层参数配置 为接收强度最大的候选信号组对应的物理层参数配置, 或者根据业务需求并 根据接收强度大于所述第三接收强度门限值的候选信号组确定用于无线通 信的物理层参数配置。
在所述装置的另一种优选的可执行方式中, 无线通信的装置还包括发送 单元, 用于: 向中心节点报告确定的用于无线通信的物理层参数配置; 或者 向所述一个或多个相邻节点发送对应于所述确定的用于无线通信的物理层 参数配置的候选信号组。
在所述装置的另一种优选的可执行方式中, 无线通信的装置还包括通信 单元, 用于: 使用所述用于无线通信的物理层参数配置进行无线通信。
在所述装置的另一种优选的可执行方式中,所述候选信号组包括一个候 选信号; 或者所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整 数, 且所述 N个候选信号分别对应不同的资源利用率。
根据本发明的另一方面, 一种无线通信的装置, 包括: 确定模块, 根据 所述第一节点的物理层参数配置, 以及所述物理层参数配置与候选信号组的 对应关系确定候选信号组; 发送模块, 向一个或多个相邻节点发送所述确定 模块确定的候选信号组包括的至少一个候选信号。
在所述装置的另一种优选的可执行方式中,所述候选信号组包括一个候 选信号; 或者所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整 数, 且所述 N个候选信号分别对应不同的资源利用率。
在所述装置的另一种优选的可执行方式中, 所述发送模块, 具体用于在 保护时隙中,所述第一节点向一个或多个相邻节点发送所述候选信号组包括 的至少一个候选信号。
在所述装置的另一种优选的可执行方式中, 所述发送模块, 具体用于周 期性地向一个或多个相邻节点发送所述候选信号组包括的至少一个候选信 号。
在所述装置的另一种优选的可执行方式中, 所述候选信号包括以下序列 中的一种: 同步信号所使用的序列、 扎道夫-除序列, 以及基于扎道夫 -除序 列进行截断、 循环扩展或打孔所得到的序列。
在所述装置的另一种优选的可执行方式中, 所述候选信号通过所述序列 所占用的时域、 所占用的频域和所占用的码资源中的至少一种进行区分。
在所述装置的另一种优选的可执行方式中,所述装置包括基站和用户设 备中的一个。
根据本发明的另一方面, 一种网络节点, 包括: 接收器, 用于从一个或 多个相邻节点接收至少一个候选信号, 所述至少一个候选信号包括至少一个
候选信号组, 所述候选信号组对应一种物理层参数配置, 其中所述物理层参 数配置包括子帧配比的配置和载波频率的配置中的至少一个; 处理器, 用于 根据所述至少一个候选信号组, 确定用于无线通信的物理层参数配置。
根据本发明的另一方面, 一种网络节点, 包括: 处理器, 用于根据所述 第一节点的物理层参数配置, 以及所述物理层参数配置与候选信号组的对应 关系确定候选信号组; 发送器, 用于向一个或多个相邻节点发送所述处理器 确定的候选信号组包括的至少一个候选信号。
本发明实施例能够在无线通信系统中自适应地改变物理层参数配置之 前, 通过侦听特定的信号, 来设置合适的物理层参数配置, 从而避免对周围 小区造成干扰。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的无线通信的方法的流程图。
图 2是根据本发明另一实施例的无线通信的方法的流程图。
图 3是根据本发明实施例的无线通信的装置的结构示意图。
图 4是根据本发明另一实施例的无线通信的装置的结构示意图。
图 5是根据本发明另一实施例的无线通信的装置的结构示意图。
图 6是根据本发明实施例的网络节点的结构示意图。
图 7是根据本发明实施例的网络节点的另一结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通讯系 统( GSM, Global System of Mobile communication ), 码分多址( CDMA,
Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS, General Packet Radio Service ), 长期演进(LTE, Long Term Evolution ), 时分同步码 分多址 ( TD-SCDMA , Time Division-Synchronous Code Division Multiple Access ) , 全球 波互联接入 ( WiMAX , Worldwide Interoperability for Microwave Access )等。
UE也可称之为移动终端 (Mobile Terminal ), 移动台 ( Mobile Station ) 等, 可以经无线接入网 (例如, RAN, Radio Access Network )与核心网进行 通信。 用户设备与无线接入网交换语音和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( Node B ) ,还可以是 LTE中的演进型基站( eNB 或 e-NodeB , evolutional Node B ), 本发明并不限定, 但为描述方便, 下述实 施例以 Node B为例进行说明。 另外, 一个基站可能支持 /管理一个或多个小 区 (cell ), UE需要和网络通信时, 它将选择一个小区发起网络接入。
以下将结合附图, 详细描述根据本发明实施例的无线通信的方法的流 程。 事实上, 本发明实施例所提供的自适应改变物理层参数配置的方法既可 以应用于基站, 也可以应用于 UE。 候选信号的发送端可以是基站或者 UE, 接收端也可以是基站或者 UE。 为描述方便, 以下将基站或者 UE统称为节 点 (Node )。 如图 1所示, 根据本发明实施例的无线通信的方法包括如下步 骤。
步骤 11 , 一个网络节点从其一个或多个相邻节点接收至少一个候选信 号, 所述至少一个候选信号包括至少一个候选信号组, 所述候选信号组对应 一种物理层参数配置,其中所述物理层参数配置包括子帧配比的配置和载波 频率的配置中的至少一个。 这里, 相邻节点可以是能够从该网络节点接收信 号和 /或向该网络节点发送信号的节点。
具体地, 上述物理层参数包含子帧配比、 载波频率中的至少一种。 上述 候选信号组可以对应一种子帧配比, 或者对应一种载波频率, 或者对应一种 子帧配比和载波频率的组合。 可以看到, 候选信号组和物理层参数配置之间 存在对应关系。 一方面, 可以是多个候选信号组对应一个物理层参数配置, 也可以一个候选信号组对应一个物理层参数配置。载波频率可以是在一个载 波上进行无线通信时所使用的中心频率和 /或频带宽度,也可以是在一个载波
上进行无线通信时所使用的频率范围。 需要注意的是, 在候选信号中, 除了 与物理层参数配置存在对应关系的候选信号组之外,还可以包含用于其它目 的的信号, 例如节点发送的用于帮助相邻节点识别其身份等信息的发现信号 等。
LTE TDD系统支持多种不同的上下行子帧配比,如表 1所示。其中 D表示 下行子帧、 S表示特殊子帧、 U表示上行子帧。 在下行子帧时刻, 网络设备可 以向 UE发送下行数据包; 在上行子帧时刻, UE可以向网络设备发送上行数 据包。 在特殊子帧时刻, 网络设备可以向 UE发送下行数据包, 但 UE不能向 网络设备发送上行数据包, 因而特殊子帧通常也被当作下行子帧处理。
表 1 LTE TDD系统支持的子帧配比
再以 3.5GHz~4.2GHz带宽为例, 可以被划分成 35个 20MHz的 LTE载 波。 当无线通信所使用的载波可以在这 35个载波中进行选择时, 那么可以 在候选信号中定义 35个不同的候选信号组, 每个候选信号组分别对应一个 不同的 20MHz的 LTE载波。 又如一个单载波 LTE TDD系统支持在表 1所 示的 7种子帧配比之中根据业务需求来动态改变,那么可以在候选信号中定 义 7组不同的候选信号组, 每个候选信号组分别对应一种不同的子帧配比。 又如一个多载波 LTE TDD系统, 假设其占用了 3.5GHz~3.7GHz频带, 具有 10个 20MHz的载波, 且每个载波都可以支持在表 1所示的 7种子帧配比之 中根据业务需求来动态改变, 那么可以在候选信号中定义 70个不同的候选 信号组, 每个候选信号组分别对应一种子帧配比和载波频率的组合。
通常, 为了不影响系统的上下行吞吐量, 可以考虑在保护时隙 (GP, Guard Period ) 中, 从一个或多个相邻节点接收至少一组候选信号。 同样地,
当一个节点需要发送候选信号时,也在保护时隙向一个或多个相邻节点发送 与当前无线通信使用的物理层参数配置对应的候选信号。 如前所述, 在 LTE TDD 系统中, 一个子帧根据其用途被分成下行子帧、 特殊子帧和上行子帧 三种类型。 一个特殊子帧包含下行导引时隙 (DwPTS, Downlink Pilot Time Slot )、 上行导引时隙 ( UpPTS , Uplink Pilot Time Slot )和 GP三部分, 其中 DwPTS用于基站向 UE发送下行信息, UpPTS用于 UE向基站发送上行探测 参考信号和短随机接入信号, GP空闲不传信息。 GP位于 DwPTS和 UpPTS 之间, 用于避免上下行传输之间的干扰。 候选信号可以在下行子帧或者特殊 子帧中的 DwPTS的资源上进行传输, 也可以在上行子帧或者特殊子帧中的 UpPTS 的资源上进行传输。 如果候选信号在下行子帧或者特殊子帧中的 DwPTS 的资源上进行传输, 当需要去接收候选信号的节点^^站时, 因为 不能同时进行接收和发送,会导致该基站在接收候选信号的时间内不能发送 下行信号, 影响系统下行吞吐量。 同样的, 如果候选信号在上行子帧或者特 殊子帧中的 UpPTS的资源上进行传输, 当需要去接收候选信号的节点是 UE 时, 因为不能同时进行接收和发送, 会导致该 UE在接收候选信号的时间内 不能发送上行信号, 影响系统上行吞吐量。 因此, 优选地, 在特殊子帧中的 GP 的资源上传输候选信号。 考虑到候选信号可能是在基站和基站之间、 基 站和 UE之间以及 UE和 UE之间彼此进行发送和接收, 因而在候选信号的 前面和后面可以各有一段空闲时间不传信号,那么候选信号的传输可以只使 用 GP的部分时间和频率资源, 例如只在 GP的部分正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing )符号上使用部分带宽进行发送。 当多个传输候选信号的 OFDM符号位于相同特殊子帧的 GP内时,相邻的两 个传输候选信号的 OFDM符号之间也可以有一段空闲时间不传信号, 例如 一个 OFDM符号长的空闲时间。
一般而言, 候选信号表示为序列的形式。 候选信号可以设计成在发送端 节点和接收端节点都配置的特定序列,例如可以参考 LTE系统中的同步信号 或者参考信号设计中所采用的一些序列设计。在 LTE系统中,辅同步信号可 以用于区分 168组小区标识, 主同步信号则可以用于进一步区分一组小区标 识内的 3个小区标识。 例如, 当候选信号需要区分不超过 168种不同的物理 层参数配置组合时,可以直接重用 LTE系统的辅同步信号设计。 LTE系统上 行参考信号使用的扎道夫-除(Zadoff-Chu )序列是一种恒幅零自相关序列,
具有良好的相关特性, 特别是相同根序列的不同循环移位之间的互相关为 零,在通信系统中被广泛使用。优选地,所述候选信号使用 Zadoff-Chu序列、 或者基于 Zadoff-Chu序列进行截断( Truncation )、循环扩展( Cyclic Extension ) 或者打孔(Puncture )所得到的序列。 不同候选信号之间通过序列占用的时 域、 所占用的频域和所占用的码域资源中的至少一种进行区分。 例如, 可以 通过不同的接收时间来区分不同的候选信号,或者通过不同的接收频带来区 分不同的候选信号, 或者通过接收时所使用的不同码资源来区分不同的候选 信号。 当候选信号采用一些特定的序列、 例如 Zadoff-Chu序列时, 同一个 Zadoff-Chu根序列的不同循环移位、以及不同 Zadoff-Chu根序列都可以看作 是不同的序列码资源。
如前所述, 在候选信号中, 候选信号组对应一种物理层参数配置。 可选 的, 可以每个候选信号组对应一种物理层参数配置, 不同的候选信号可以通 过其占用的时域、 频域和码域资源中的至少一种来区分。 候选信号组和物理 层参数配置之间的对应关系, 可以配置在所述至少一个相邻节点中, 或者是 由中心节点通知给所述至少一个相邻节点。一种方式是在候选信号组中的候 选信号索引和物理层参数配置索引之间建立一种对应关系,通过候选信号索 引来进一步获取候选信号占用的时域、 频域和码域资源; 另一种方式是直接 建立起物理层参数配置和候选信号组中的候选信号占用的时域、频域和码域 资源的对应关系。 当候选信号组和物理层参数配置之间的对应关系是可以根 据协议中预先规定好的对应关系时, 则对应关系可以提前配置在相邻节点 中。 以 7个候选信号组、 候选信号中的每个候选信号组包含 1个候选信号且分 别对应表 1中的一种子帧配比为例,假设候选信号采用 Zadoff-Chu序列或者基 于 Zadoff-Chu序列进行截断、 循环扩展或打孔得到的序列, 那么可以为每种 子帧配比规定好一个的候选信号循环移位值, 并存储在候选信号的接收端节 点和发送端节点。 在发送端节点, 可以根据当前使用的子帧配比来获取发送 候选信号时所使用的循环移位,即在特殊子帧的 GP的资源上发送使用相应循 环移位的候选信号。 接收端节点根据自己可能使用的子帧配比, 在特殊子帧 的 GP的资源上去接收对应的候选信号,并根据候选信号的接收强度来选择一 个合适的子帧配比。 当候选信号组和物理层参数配置之间的对应关系是在由 中心节点通知给至少一个相邻节点时,如果候选信号的接收端节点或者发送 端节点包含了 UE, 那么中心节点可以是 UE的服务基站或者宏基站; 如果候
选信号的接收端节点或者发送端节点包含了基站,那么中心节点可以是宏基 站、 基站控制器或者核心网设备。 如前所述, 本发明实施例考虑的一个典型 场景是 3.5GHz频段用于热点覆盖的小小区, 那么在小小区之外,很可能还会 有部署在较低频段的用于全覆盖和无缝漫游的宏网络(例如 1.8GHz频段的 LTE TDD网络甚至 3G网络), 此时宏网络中的宏基站可以作为一个中心节点 来协助管理宏基站地理范围内的小基站或者小基站的 UE等节点, 帮助它们 更好地协调使用候选信号进行无线通信。
此外, 所述至少一个候选信号组属于一个候选信号集合, 候选信号集合 也可以配置在至少一个相邻节点中,或者是由中心节点通知给至少一个相邻 节点。 例如, 可以根据支持的子帧配比种类, 为每种支持的子帧配比分别定 义一个候选信号组, 在接收候选信号时, 接收端节点总是去接收所有候选信 号。 又例如, 中心节点根据接收端节点和发送端节点所支持的频带宽度和处 理能力, 向接收端节点和发送端节点发送配置的候选信号集合、 以及与每个 候选信号组对应的载波频率和子帧配比。
候选信号的接收可以是周期性的, 相应地, 候选信号的发送也可以是周 期性的。 在每个周期, 一个节点可以根据需要去发送或者接收候选信号。 或 者, 一个节点首先判断是否需要改变其物理层参数配置, 判断的依据可以是 业务量需求和 /或业务信道传输质量发生了变化,例如根据上下行业务量需求 需要改变子帧配比、或者业务信道传输质量明显变差导致需要改变子帧配比 和 /或载波频率等。 即, 当一个节点判断需要改变其物理层参数配置时, 可以 去接收候选信号, 以便根据接收的至少一个候选信号选择出新的物理层参数 配置。 或者, 一个节点也可以在周期性地接收或发送候选信号的过程中判断 是否需要改变其物理层参数配置。 具体而言, 在每个周期中的接收时刻或发 送时刻, 可选的, 该接收时刻和发送时刻可以是同一时刻, 一个节点可以首 先判断是否需要改变其物理层参数配置, 判断的依据可以是业务量需求和 / 或业务信道传输质量发生了变化。 当一个节点判断不需要改变其物理层参数 配置时,可以在候选信号的周期的发送时刻根据当前使用的物理层参数配置 来发送相应的候选信号。 对于不需要改变其物理层参数配置的节点, 还可以 通过一个配置的更大的周期来周期性地接收候选信号, 以帮助其选择是否有 更为合适物理层参数配置用于进行无线通信,该更大的周期对于不同的节点 来说可以配置为相同的或不同的取值。
当一个节点判断需要改变其物理层参数配置时, 可以在接下来的一个或 多个候选信号的周期的接收时刻去接收候选信号,在根据接收的候选信号接 收强度选择出新的物理层参数配置后, 可以在候选信号的周期的发送时刻根 据新物理层参数配置来发送相应的候选信号。 此外, 当一个节点没有业务要 进行传输时, 可以不进行候选信号的接收或者发送。
在一个实施例中, 多个相邻节点可以进行时间同步, 并且为收发上述候 选信号配置相同的周期。
具体地, 对于一个节点, 其是否要进行候选信号的接收或发送还可以由 中心节点进行配置, 或者具有候选信号接收或发送能力的节点总是启动该功 能。 当由中心节点来配置一个节点是否进行候选信号的接收或者发送时, 节 点可以先向中心节点上报自己具有候选信号的接收或发送能力。
也就是说, 网络节点可以周期性地从一个或多个相邻节点接收至少一个 候选信号。或者,还可以根据业务需求和 /或业务信道传输质量的变化确定需 要改变所述物理层参数配置之后, 然后再从一个或多个相邻节点接收至少一 个候选信号, 其中所述业务需求与上下行业务比例和 /或业务量大小相关。
可以理解, 上述接收的至少一个候选信号可以包括一个或多个候选信号 组, 每个候选信号组可以包括一个候选信号; 或者每个候选信号组也可以包 括 N个候选信号, 其中 N为大于 1的正整数, 且该 N个候选信号分别对应 不同的资源利用率。 例如, 节点的资源利用率为 0、 50%和 100%, 相应地业 务负载可以划分成 0、 1/2和 1这三个等级。 类似地, 还可以根据不同的资源 利用率将业务负载划分为相应的等级。当一个候选信号组包括 N个候选信号 且 N为大于 1的正整数时,同一候选信号组内的不同候选信号也可以通过其 占用的时域、 频域和码域资源中的至少一种来区分。
由此 ,候选信号组除了与子帧配比和载波频率中的至少一种建立起对应 关系外, 还可以同时与节点的业务负载建立起对应关系。 如上所述, 对于业 务负载为等级 0的情况, 表示节点没有业务要进行传输, 可以不进行候选信 号的接收或者发送, 所以可以不定义对应的候选信号。 此时, 以一个单载波 TDD系统为例, H殳支持表 1所示的 7种子帧配比, 那么可以定义 14种候 选信号组, 每种候选信号组对应一种子帧配比和一个业务负载等级的组合。 也就是说,一个候选信号组中的多个候选信号可以对应相同的物理层参数配 置, 但分别对应不同的业务负载情况。 此时, 当一个节点需要发送候选信号
时,在保护时隙向一个或多个相邻节点发送与当前无线通信使用的物理层参 数配置和资源利用率对应的候选信号。
步骤 12,根据所述至少一个候选信号,确定用于无线通信的物理层参数 配置。
例如,根据所述至少一个候选信号组中的至少一个候选信号的接收强度 与接收强度门限值的关系, 确定用于无线通信的物理层参数配置。 在这里, 接收强度可以是候选信号的接收功率, 或者是量化后的接收功率等级。 除了 根据候选信号组的接收强度与接收强度门限值的关系确定用于无线通信的 物理层参数配置之外,还可以根据将接收到的候选信号与本地存储的候选信 号作相关后得到的相关值与相关值门限的关系,确定用于无线通信的物理层 参数配置, 或者根据相关值最大的候选信号确定用于无线通信的物理层参数 配置。
作为接收端的节点在接收候选信号后,所接收到的候选信号强度表示了 在对应频率的载波上使用对应子帧配比进行无线通信时, 可能会受到的来自 一个或多个相邻节点的总干扰强度级别。在接收来自一个或多个相邻节点的 至少一个候选信号时,可能有多个相邻节点使用了相同的物理层参数配置进 行无线通信, 当候选信号与资源利用率也存在对应关系时, 支设这多个相邻 节点还具有相同的资源利用率, 此时, 这多个相邻节点会在相同的时域、 频 域和码域资源上发送相同的候选信号。 因而, 接收节点在接收到一个候选信 号后, 该候选信号的接收强度即表示了使用对应物理层参数配置的相邻节点 对本节点通信造成的总干扰级别。
为方便起见, 下面以候选信号的接收端和发送端的节点都是基站为例给 出了一种具体示例, 对于候选信号的接收端和发送端的节点都是 UE、 或者 同时包含基站和 UE的情况, 该示例的原理也是适用的。 当一个基站想要改 变自己与所服务的 UE通信时所使用的载波频率和 /或子帧配比时, 先去接收 周围基站发送的候选信号,通过接收的候选信号获取周围基站使用的载波频 率和 /或子帧配比、以及对本基站通信可能造成的干扰强度。 以候选信号集合 包含 7个不同的候选信号组、每个候选信号组分别对应表 1中的一种不同子帧 配比的情况为例, 当基站 A根据自己所服务 UE的业务需求发现需要改变子帧 配比时,可以在特殊子帧的 GP资源上去接收候选信号,周围不需要改变子帧 配比的基站根据自己使用的子帧配比在特殊子帧的 GP资源上发送与自己使
用的子帧配比对应的候选信号。 对于使用相同子帧配比的基站, 它们会在特 殊子帧的 GP资源上发送相同的特定候选信号, 因而基站 A在接收一个特定候 选信号之后, 就能获得周围所有使用与该特定候选信号对应的子帧配比的基 站对本基站造成的干扰。
对于多载波系统, 为了筒单起见, 可以将候选信号都集中到一个载波上 进行传输, 例如假设在 3.5GHz~3.7GHz有 10个 20MHz的 TDD载波、 且每个载 波都可以支持在表 1所示的 7种子帧配比之间进行切换, 那么可以定义 70种候 选信号,每种候选信号对应在一个特定 TDD载波上使用一种特定子帧配比进 行无线通信, 并可以将 70种候选信号都集中到 3.50GHz~3.52GHz的那个 20MHz的 TDD载波上进行发送。
具体地,作为接收端的节点在根据接收的所述至少一组候选信号来选择 一种物理层参数配置时, 可以对候选信号组设置一个或者多个门限值、 例如 接收强度的门限值和 /或相关值的门限值。
可选地, 当候选信号组包括 N个候选信号且 N为大于 1的正整数时, 根据 所述候选信号组的接收强度与接收强度门限值的关系,确定用于无线通信的 物理层参数配置, 具体可以为以下方式之一: 根据接收的所述至少一个候选 信号组中与接收所述候选信号的节点的资源利用率对应的候选信号的接收 强度与接收强度门限值的关系,确定用于无线通信的物理层参数配置;或者, 根据接收的所述至少一个候选信号组中的候选信号的接收强度的和、 最大 值、 最小值或者平均值与接收强度门限值的关系, 确定用于无线通信的物理 层参数配置。
下面以候选信号的接收强度与接收强度门限值的关系为例来进行具体 描述, 需要说明的是, 该示例的原理对于任何根据接收的候选信号与接收门 限值的关系来确定用于无线通信的物理层参数配置都是适用的。
在一个示例中,对至少一个候选信号组的接收强度设置了一个门限值 X。 当所述至少一个候选信号组的接收强度不超过门限值 X时, 表示使用与该至 少一个候选信号组对应的物理层参数配置的其它基站和 /或 UE不会对候选信 号的接收端节点的通信产生干扰或者干扰很小; 当所述至少一个候选信号组 的接收强度超过了门限值 X时, 表示使用与该至少一个候选信号组对应的物 理层参数配置的其它基站和 /或 UE会对候选信号的接收端节点的通信产生干 扰。 当所述至少一个候选信号组的接收强度都不超过门限值 X时, 根据业务
需求来选择一种物理层参数配置。 当至少一个候选信号组的接收强度超过了 门限值 X时, 可以根据业务需求来从接收强度超过了门限值 X的候选信号组 中选择一种对应的物理层参数配置,或者选择接收强度最大且超过了门限值
X的候选信号组对应的物理层参数配置。 当有多个候选信号组的接收强度超 过了 X时, 可以通过限制无线通信所使用的资源来进一步减少干扰。 例如当 基站 A接收到有两个候选信号组的强度超过了 X且分别对应表 1中的子帧配 比 1和子帧配比 2, 考虑到强干扰只会出现在传输方向不同的子帧中, 那么可 以使用子帧配比 1或者子帧配比 2与自己所服务的 UE进行通信, 并且在子帧 3 和子帧 8不进行调度(如表 1所示, 子帧配比 1和子帧配比 2只在子帧 3和子帧 8 的上下行配置不同), 即将无线通信所使用的资源限制在子帧 0、 子帧 1、 子 帧 2、 子帧 4、 子帧 5、 子帧 6、 子帧 7和子帧 9上。 由于在子帧 0、 子帧 1、 子帧 2、 子帧 4、 子帧 5、 子帧 6、 子帧 7和子帧 9上, 基站 A和周围使用子帧配比 1 或者子帧配比 2的基站或者 UE的传输方向始终都是相同的, 不会出现不同传 输方向造成的强干扰。 当候选信号与资源利用率存在对应关系时, 如果资源 利用率表明业务负载不满载, 那么在调度中可以优先使用这些传输方向和相 邻节点相同的子帧。
在另一个示例中,对至少一个候选信号组的接收强度设置了两个门限值 XI和 X2, 且 XI小于 X2。 当至少一个候选信号组的接收强度不超过门限值 XI 时, 表示使用与该至少一个候选信号组对应的物理层参数配置的其它基 站或 UE不会对候选信号接收端的通信产生干扰或者干扰很小; 当所述至少 一个候选信号组的接收强度超过门限值 XI但不超过门限值 X2时, 表示使 用与该至少一个候选信号组对应的物理层参数配置的其它基站或 UE会对候 选信号接收端的通信产生一定程度干扰, 但干扰在可接受范围; 当所述至少 一个候选信号组的接收强度超过门限值 X2时, 表示使用与该至少一个候选 信号组对应的物理层参数配置的其它基站或 UE会对候选信号接收端的通信 产生强干扰, 需要使用与该至少一个候选信号组对应的物理层参数配置进行 通信以避免上下行干扰。 相应地, 当所述至少一个候选信号组的接收强度都 没有超过门限值 XI时, 根据业务需求来选择一种物理层参数配置。 当至少 一个候选信号组中一组的接收强度超过了 XI、 至少有另一组的接收强度不 超过 XI、且所有候选信号组的接收强度都没有超过门限值 X2时,根据业务 需求从接收强度不超过 XI 的候选信号组中选择一种对应的物理层参数配
置。 当所有候选信号组的接收强度都超过了 XI、 且都不超过 X2时, 根据业 务需求来选择一种物理层参数配置。 当至少一个候选信号组的接收强度超过 了 X2时, 可以根据业务需求来从接收强度超过了门限值 X2的候选信号组 中选择一种对应的物理层参数配置,或者选择接收强度最大且超过了门限值 X2 的候选信号组对应的物理层参数配置。 当有多个候选信号组的接收强度 超过了 X2时, 可以通过限制无线通信所使用的资源来进一步减少干扰。 例 如当基站 A接收到有两个候选信号组的接收强度超过了 X2且分别对应表 1 中的子帧配比 1和子帧配比 2, 考虑到强干扰指挥出现在传输方向不同的子 帧中, 那么可以使用子帧配比 1或者子帧配比 2与自己所服务的 UE进行通 信, 并且在子帧 3和子帧 8不进行调度(原因同上), 即将无线通信所使用 的资源限制在子帧 0、 子帧 1、 子帧 2、 子帧 4、 子帧 5、 子帧 6、 子帧 7和 子帧 9上。 由于在子帧 0、 子帧 1、 子帧 2、 子帧 4、 子帧 5、 子帧 6、 子帧 7 和子帧 9上, 基站 A和周围使用子帧配比 1或者子帧配比 2的基站或者 UE 的传输方向始终都是相同的, 不会出现不同传输方向造成的强干扰。 当候选 信号与资源利用率存在对应关系时, 如果资源利用率表明业务负载不满载, 那么在调度中可以优先使用这些传输方向和相邻节点相同的子帧。
如前所述,业务需求与上下行业务比例和 /或业务量大小相关。 当根据业 务需求来选择物理层参数配置时, 可以根据业务量大小来选择具有合适带宽 的载波, 和 /或根据上下行业务比例来选择合适的子帧配比。 以 LTE系统为 例, 当根据上下行业务比例来选择合适的子帧配比时, 节点在上下行业务比 例为 a: b时, 可以根据下行传输的谱效率和上行传输的谱效率之比 c, 确定 出最适合的子帧配比为上行子帧数: 下行子帧数 = ( axc ): b , 那么可以从表 1所示的 7种子帧配比中来选择与确定出的最适合子帧配比接近的子帧配比 用于无线通信。 例如上下行业务比例为 4:1 , 下行传输的谱效率是上行传输 的谱效率的 2倍, 那么确定出的最适合的子帧配比位上行子帧数: 下行子帧 数 =1:2, 据此可以从表 1中选择子帧配比 1或子帧配比 3用于无线通信。 在 确定用于无线通信的物理层参数配置之后, 可以向中心节点报告该物理层参 数配置。 例如, 若确定物理层参数配置的节点是 UE, 则该 UE可以向其服 务基站或者宏基站报告该物理层参数配置, 若确定物理层参数配置的节点是 基站, 则该基站向宏基站、 基站控制器或者核心网设备报告该物理层参数配 置。
或者, 网络节点可以向一个或多个相邻节点发送对应于该物理层参数配 置的候选信号。例如,网络节点在确定用于无线通信的物理层参数配置之后, 可以周期性地向一个或多个相邻节点发送对应于该物理层参数配置的候选 信号, 以便及时将自己的物理层参数配置通过候选信号的形式告诉相邻节 点。 当每个候选信号组包括 N个候选信号且 N为大于 1的正整数时, 网络 节点根据网络节点的物理层参数配置可以确定出对应的候选信号组,在发送 候选信号时, 网络节点可以发送该候选信号组中的全部或者部分候选信号, 例如只发送候选信号组中与自身资源利用率对应的那一个候选信号。
或者, 还可以使用该物理层参数配置进行无线通信。 对于基站而言, 可 以使用确定的物理层参数配置与其服务的 UE进行无线通信; 或者基站将自 己确定的物理层参数配置报告给中心节点 (例如宏基站), 再由该中心节点 根据接收到的多个基站报告的物理层参数配置决策出一种物理层参数配置, 再由中心节点将决策出的物理层参数配置通知给基站, 以便基站采用由中心 节点决策出的物理层参数配置与基站进行无线通信。 对于 UE而言, 可以使 用确定的物理层参数配置与服务基站进行无线通信; 或者与另一 UE进行无 线终端与终端 (D2D, Device to Device )通信; 或者 UE可以将自己确定的 物理层参数配置报告给中心节点 (例如服务基站), 再由该中心节点根据接 收到的多个 UE报告的物理层参数配置决策出一种物理层参数配置, 再将决 策出的物理层参数配置通知给其服务的 UE, 以便 UE采用由中心节点决策 出的物理层参数配置与基站进行无线通信。
例如, 在选择好物理层参数配置后, 节点使用相应的物理层参数配置进 行无线通信。 例如当一个基站根据候选信号的接收强度选择使用子帧配比 1 时, 那么基站可以根据子帧配比 1中下行子帧、 特殊子帧和上行子帧的划分 情况, 与 UE进行无线通信。
由此可见, 本发明实施例在无线通信系统中自适应地改变物理层参数配 置之前, 通过侦听特定的信号, 来设置合适的物理层参数配置, 从而避免对 周围小区造成干扰。
图 2示出了根据本发明另一实施例的无线通信的方法的流程图。 图 2所 示的方法与图 1所示的方法相对应的部分将不再赘述。本发明另一实施例的 无线通信的方法包括如下步骤:
步骤 21 , 第一节点根据所述第一节点的物理层参数配置, 以及所述物理
层参数配置与候选信号组的对应关系确定候选信号组。
步骤 22,所述第一节点向一个或多个相邻节点发送所述候选信号组包括 的至少一个候选信号。
其中, 候选信号组可以包括一个候选信号; 也可以包括 N个候选信号, 其中 N为大于 1的正整数, 且所述 N个候选信号分别对应不同的资源利用 率。
候选信号包括以下序列中的一种: 同步信号所使用的序列、 扎道夫-除 序列, 以及基于扎道夫 -除序列进行截断、 循环扩展或打孔所得到的序列。 所述候选信号通过所述序列所占用的时域、所占用的频域和所占用的码域资 源中的至少一种进行区分。
可选地, 所述第一节点可以在保护时隙中向一个或多个相邻节点发送所 述候选信号组包括的至少一个候选信号。
此外, 所述第一节点也可以周期性地向一个或多个相邻节点发送所述候 选信号组包括的至少一个候选信号。
这里, 所述第一节点包括基站和用户设备中的一个; 所述相邻节点包括 基站和用户设备中的一个。
由此可见, 本发明实施例在无线通信系统中自适应地改变物理层参数配 置之前, 通过侦听特定的信号, 来设置合适的物理层参数配置, 从而避免对 周围小区造成干扰。
图 3示出了根据本发明实施例的无线通信的装置。 与图 1所示的方法的 描述重复之处, 将不再赘述。
如图 3所示,无线通信的装置 30包括接收单元 31和确定单元 32。其中, 接收单元 31用于从一个或多个相邻节点接收至少一个候选信号, 所述至少 一个候选信号包括至少一个候选信号组, 所述候选信号组对应一种物理层参 数配置,其中所述物理层参数配置包括子帧配比的配置和载波频率的配置中 的至少一个。 确定单元 32用于根据所述至少一个候选信号组, 确定用于无 线通信的物理层参数配置。
可以理解,该候选信号组可以包括一个候选信号; 也可以包括 N个候选 信号, 其中 N为大于 1的正整数, 且所述 N个候选信号分别对应不同的资 源利用率。
一般而言, 候选信号采用序列的形式, 例如候选信号可以是同步信号所
使用的序列、 扎道夫-除序列、 或者基于扎道夫 -除序列进行截断、 循环扩展 或打孔所得到的序列, 等等。 于是, 候选信号可以进一步通过上述序列所占 用的时域、 所占用的频域和所占用的码域资源中的至少一种进行区分。
通常, 所述候选信号组与所述物理层参数配置的对应关系配置在所述至 少一个相邻节点中, 或者所述候选信号组与所述物理层参数配置的对应关系 由中心节点通知给所述至少一个相邻节点。
一般而言, 所述候选信号配置在所述至少一个相邻节点, 或者所述候选 信号由中心节点通知给所述至少一个相邻节点。 相邻节点可以是基站, 也可 以是用户设备。
可选地, 接收单元 31具体用于在保护时隙中, 从一个或多个相邻节点 接收至少一个候选信号。
可选地, 接收单元 31具体用于周期性地从一个或多个相邻节点接收至 少一个候选信号。
可选地, 确定单元 32还用于在所述从一个或多个相邻节点接收至少一 个候选信号之前,根根据业务需求和 /或业务信道传输质量的变化,确定需要 改变所述物理层参数配置,其中所述业务需求与上下行业务比例和 /或业务量 大小相关。
可选地, 确定单元 32用于根据所述至少一个候选信号组的接收强度与 接收强度门限值的关系, 确定用于无线通信的物理层参数配置。 这里, 所述 至少一个候选信号组的接收强度可以为所述至少一个候选信号组中的候选 信号的接收强度的和、 最大值、 最小值或者平均值, 或者为所述至少一个候 选信号组中与接收所述节点的资源利用率对应的候选信号的接收强度。
例如, 确定单元 32用于当所述至少一个候选信号组的接收强度均小于 或等于第一接收强度门限值时,根据业务需求确定用于无线通信的物理层参 数配置; 或, 当所述至少一个候选信号组的接收强度大于所述第一接收强度 门限值时,确定用于无线通信的物理层参数配置为接收强度最大的候选信号 组对应的物理层参数配置, 或者根据业务需求并根据接收强度大于所述第一 接收强度门限值的候选信号组确定用于无线通信的物理层参数配置。
例如, 确定单元 32用于当所述至少一个候选信号组的接收强度均小于 或等于第二接收强度门限值时,根据业务需求确定用于无线通信的物理层参 数配置; 或, 当所述至少一个候选信号组中的第一候选信号组的接收强度大
于所述第二接收强度门限值且小于或等于第三接收强度门限值, 并且所述至 少一个候选信号组中的第二候选信号组的接收强度小于所述第二接收强度 门限值时, 其中所述第二接收强度门限值小于所述第三接收强度门限值, 根 据业务需求并根据接收强度小于所述第二接收强度门限值的候选信号组确 定用于无线通信的物理层参数配置; 或, 当所述至少一个候选信号组的接收 强度均大于所述第二接收强度门限值, 并且均小于或等于第三接收强度门限 值时, 其中所述第二接收强度门限值小于所述第三接收强度门限值, 根据业 务需求确定用于无线通信的物理层参数配置; 或, 当所述至少一个候选信号 组中的至少有一组候选信号的接收强度大于所述第三接收强度门限值时,确 定用于无线通信的物理层参数配置为接收强度最大的候选信号组对应的物 理层参数配置,或者根据业务需求并根据接收强度大于所述第三接收强度门 限值的候选信号组确定用于无线通信的物理层参数配置。
此外, 如图 4所示, 除了接收单元 31和确定单元 32之外, 无线通信的 装置 40还可以包括发送单元 33。发送单元 33用于向中心节点报告确定的用 于无线通信的物理层参数配置; 或者向所述一个或多个相邻节点发送对应于 所述确定的用于无线通信的物理层参数配置的候选信号组。
或者, 如图 4所示, 无线通信的装置 40还可以包括通信单元 34。 通信 单元 34用于使用所述用于无线通信的物理层参数配置进行无线通信。
可见, 由此可见, 本发明实施例在无线通信系统中自适应地改变物理层 参数配置之前, 通过侦听特定的信号, 来设置合适的物理层参数配置, 从而 避免对周围小区造成干扰。
应理解,本发明实施例的无线通信的装置可以是基站或 UE等网络节点。 图 5示出了根据本发明实施例的无线通信的装置。 与图 2所示的方法的 描述重复之处, 将不再赘述。
如图 5所示,无线通信的装置 50包括确定模块 51和发送模块 52。其中, 确定模块 51可以根据所述第一节点的物理层参数配置, 以及所述物理层参 数配置与候选信号组的对应关系确定候选信号组。 发送模块 52可以向一个 或多个相邻节点发送所述确定模块确定的候选信号组包括的至少一个候选 信号。
其中, 所述候选信号组包括一个候选信号; 或者所述候选信号组包括 N 个候选信号, 其中 N为大于 1的正整数, 且所述 N个候选信号分别对应不
同的资源利用率。
可选地, 发送模块 52具体用于在保护时隙中, 所述第一节点向一个或 多个相邻节点发送所述候选信号组包括的至少一个候选信号。
可选地, 发送模块 52具体用于周期性地向一个或多个相邻节点发送所 述候选信号组包括的至少一个候选信号。
其中, 候选信号包括以下序列中的一种: 同步信号所使用的序列、 扎道 夫-除序列, 以及基于扎道夫 -除序列进行截断、 循环扩展或打孔所得到的序 歹l。 此外, 候选信号通过所述序列所占用的时域、 所占用的频域和所占用的 码资源中的至少一种进行区分。
装置 50包括基站和用户设备中的一个。
关于上述装置的其他功能, 请参见上述方法实施例。
图 6是本发明的用户设备 60的示意框图。 用户设备 60包括接收器 61 和处理器 62。 在本申请实施例中, 接收器 61用于从一个或多个相邻节点接 收至少一个候选信号, 所述至少一个候选信号包括至少一个候选信号组, 所 述候选信号组对应一种物理层参数配置, 其中所述物理层参数配置包括子帧 配比的配置和载波频率的配置中的至少一个。 处理器 62用于 ^据所述至少 一个候选信号组, 确定用于无线通信的物理层参数配置。
关于用户设备的其他功能, 请参见上述方法实施例。
图 7是本发明的用户设备 70的示意框图。 用户设备 70包括处理器 71 和发送器 72。 在本申请实施例中, 处理器 71用于根据所述第一节点的物理 层参数配置, 以及所述物理层参数配置与候选信号组的对应关系确定候选信 号组。发送器 72用于向一个或多个相邻节点发送所述处理器 71确定的候选 信号组包括的至少一个候选信号。
关于用户设备的其他功能, 请参见上述方法实施例。
应理解, 在本发明实施例中, 术语 "和 /或"仅仅是一种描述关联对象的 关联关系, 表示可以存在三种关系。 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一 般表示前后关联对象是一种 "或" 的关系。
应理解, 本发明的每个权利要求所叙述的方案也应看作是一个实施例, 并且是权利要求中的特征是可以结合的,如本发明中的判断步骤后的执行的 不同分支的步骤可以作为不同的实施例。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。
Claims
1、 一种无线通信的方法, 其特征在于, 包括:
从一个或多个相邻节点接收至少一个候选信号, 所述至少一个候选信号 包括至少一个候选信号组, 所述候选信号组对应一种物理层参数配置, 其中 所述物理层参数配置包括子帧配比的配置和载波频率的配置中的至少一个; 根据所述至少一个候选信号组, 确定用于无线通信的物理层参数配置。
2、 根据权利要求 1所述的方法, 其特征在于,
所述候选信号组包括一个候选信号; 或者
所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整数, 且所 述 N个候选信号分别对应不同的资源利用率。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述从一个或多个 相邻节点接收至少一个候选信号, 包括:
在保护时隙中, 从一个或多个相邻节点接收至少一个候选信号。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 在所述从 一个或多个相邻节点接收至少一个候选信号之前, 还包括:
根据业务需求和 /或业务信道传输质量的变化,确定需要改变所述物理层 参数配置。
5、 根据权利要求 4所述的方法, 其特征在于, 所述业务需求与上下行 业务比例和 /或业务量大小相关。
6、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述从一 个或多个相邻节点接收至少一个候选信号, 包括:
周期性地从一个或多个相邻节点接收至少一个候选信号。
7、 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述根据 所述至少一个候选信号组, 确定用于无线通信的物理层参数配置, 包括: 根据所述至少一个候选信号组的接收强度与接收强度门限值的关系,确 定用于无线通信的物理层参数配置。
8、 根据权利要求 7所述的方法, 其特征在于, 所述候选信号组的接收 强度为所述候选信号组中的候选信号的接收强度的和、 最大值、 最小值或者 平均值,或者为所述候选信号组中与接收所述候选信号的节点的资源利用率 对应的候选信号的接收强度。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述根据所述至少 一个候选信号组的接收强度与接收强度门限值的关系,确定用于无线通信的 物理层参数配置包括:
当所述至少一个候选信号组的接收强度均小于或等于第一接收强度门 限值时, 根据业务需求确定用于无线通信的物理层参数配置; 或,
当所述至少一个候选信号组的接收强度大于所述第一接收强度门限值 时,确定用于无线通信的物理层参数配置为接收强度最大的候选信号组对应 的物理层参数配置, 或者根据业务需求并根据接收强度大于所述第一接收强 度门限值的候选信号组确定用于无线通信的物理层参数配置。
10、 根据权利要求 7或 8所述的方法, 其特征在于, 所述根据所述至少 一组候选信号的接收强度与接收强度门限值的关系,确定用于无线通信的物 理层参数配置包括:
当所述至少一个候选信号组的接收强度均小于或等于第二接收强度门 限值时, 根据业务需求确定用于无线通信的物理层参数配置; 或,
当所述至少一个候选信号组中的第一候选信号组的接收强度大于所述 第二接收强度门限值且小于或等于第三接收强度门限值, 并且所述至少一个 候选信号组中的第二候选信号组的接收强度小于所述第二接收强度门限值 时, 其中所述第二接收强度门限值小于所述第三接收强度门限值, 根据业务 需求并根据接收强度小于所述第二接收强度门限值的候选信号组确定用于 无线通信的物理层参数配置; 或,
当所述至少一个候选信号组的接收强度均大于所述第二接收强度门限 值, 并且均小于或等于第三接收强度门限值时, 其中所述第二接收强度门限 值小于所述第三接收强度门限值,根据业务需求确定用于无线通信的物理层 参数配置; 或,
当所述至少一个候选信号组中的至少有一组候选信号的接收强度大于 所述第三接收强度门限值时,确定用于无线通信的物理层参数配置为接收强 度最大的候选信号组对应的物理层参数配置, 或者根据业务需求并根据接收 强度大于所述第三接收强度门限值的候选信号组确定用于无线通信的物理 层参数配置。
11、 根据权利要求 1至 10中任一项所述的方法, 其特征在于, 还包括: 向中心节点报告确定的所述用于无线通信的物理层参数配置。
12、 根据权利要求 1至 11中任一项所述的方法, 其特征在于, 还包括: 向所述一个或多个相邻节点发送对应于所述确定的用于无线通信的物 理层参数配置的候选信号组。
13、 根据权利要求 1至 12中任一项所述的方法, 其特征在于, 还包括: 使用所述用于无线通信的物理层参数配置进行无线通信。
14、 根据权利要求 1至 13中任一项所述的方法, 其特征在于, 所述候 选信号包括以下序列中的一种:
同步信号所使用的序列、 扎道夫-除序列, 以及基于扎道夫 -除序列进行 截断、 循环扩展或打孔所得到的序列。
15、 根据权利要求 14所述的方法, 其特征在于,
所述候选信号通过所述序列所占用的时域、所占用的频域和所占用的码 资源中的至少一种进行区分。
16、 根据权利要求 1至 15中任一项所述的方法, 其特征在于, 所述候选信号组与所述物理层参数配置的对应关系配置在所述至少一 个相邻节点中, 或者
所述候选信号组与所述物理层参数配置的对应关系由中心节点通知给 所述至少一个相邻节点。
17、 根据权利要求 1至 16中任一项所述的方法, 其特征在于, 所述至 少一个候选信号组属于一个候选信号集合;
所述候选信号集合配置在所述至少一个相邻节点, 或者
所述候选信号集合由中心节点通知给所述至少一个相邻节点。
18、 根据权利要求 1至 17中任一项所述的方法, 其特征在于, 所述相 邻节点是基站或者用户设备。
19、 一种无线通信的方法, 其特征在于, 包括:
第一节点根据所述第一节点的物理层参数配置, 以及所述物理层参数配 置与候选信号组的对应关系确定候选信号组;
所述第一节点向一个或多个相邻节点发送所述候选信号组包括的至少 一个候选信号。
20、 根据权利要求 19所述的方法, 其特征在于,
所述候选信号组包括一个候选信号; 或者
所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整数, 且所
述 N个候选信号分别对应不同的资源利用率。
21、 根据权利要求 19或 20所述的方法, 其特征在于, 所述第一节点向 一个或多个相邻节点发送所述候选信号组包括的至少一个候选信号, 包括: 在保护时隙中,所述第一节点向一个或多个相邻节点发送所述候选信号 组包括的至少一个候选信号。
22、 根据权利要求 19至 21中任一项所述的方法, 其特征在于, 所述第 一节点向一个或多个相邻节点发送所述候选信号组包括的至少一个候选信 号, 包括:
所述第一节点周期性地向一个或多个相邻节点发送所述候选信号组包 括的至少一个候选信号。
23、 根据权利要求 19至 22中任一项所述的方法, 其特征在于, 所述候 选信号包括以下序列中的一种:
同步信号所使用的序列、 扎道夫-除序列, 以及基于扎道夫 -除序列进行 截断、 循环扩展或打孔所得到的序列。
24、 根据权利要求 19至 23中任一项所述的方法, 其特征在于, 所述候选信号通过所述序列所占用的时域、所占用的频域和所占用的码 资源中的至少一种进行区分。
25、 根据权利要求 19至 24中任一项所述的方法, 其特征在于, 所述第一节点包括基站和用户设备中的一个;
所述相邻节点包括基站和用户设备中的一个。
26、 一种无线通信的装置, 其特征在于, 包括:
接收单元, 用于从一个或多个相邻节点接收至少一个候选信号, 所述至 少一个候选信号包括至少一个候选信号组, 所述候选信号组对应一种物理层 参数配置, 其中所述物理层参数配置包括子帧配比的配置和载波频率的配置 中的至少一个;
确定单元, 根据所述至少一个候选信号组, 确定用于无线通信的物理层 参数配置。
27、 根据权利要求 26所述的装置, 其特征在于, 所述接收单元具体用 于:
在保护时隙中, 从一个或多个相邻节点接收至少一个候选信号。
28、 根据权利要求 26或 27所述的装置, 其特征在于, 所述接收单元具
体用于:
周期性地从一个或多个相邻节点接收至少一个候选信号。
29、 根据权利要求 26至 28中任一项所述的装置, 其特征在于, 所述确 定单元还用于:
在所述从一个或多个相邻节点接收至少一个候选信号之前,根根据业务 需求和 /或业务信道传输质量的变化,确定需要改变所述物理层参数配置,其 中所述业务需求与上下行业务比例和 /或业务量大小相关。
30、 根据权利要求 26至 29中任一项所述的装置, 其特征在于, 所述确定单元具体用于:
根据所述至少一个候选信号组的接收强度与接收强度门限值的关系,确 定用于无线通信的物理层参数配置,其中所述至少一个候选信号组的接收强 度为所述至少一个候选信号组中的候选信号的接收强度的和、 最大值、 最小 值或者平均值,或者为所述候选信号组中与接收所述候选信号的节点的资源 利用率对应的候选信号的接收强度。
31、 根据权利要求 30所述的装置, 其特征在于, 所述确定单元具体用 于:
当所述至少一个候选信号组的接收强度均小于或等于第一接收强度门 限值时, 根据业务需求确定用于无线通信的物理层参数配置; 或,
当所述至少一个候选信号组的接收强度大于所述第一接收强度门限值 时,确定用于无线通信的物理层参数配置为接收强度最大的候选信号组对应 的物理层参数配置, 或者根据业务需求并根据接收强度大于所述第一接收强 度门限值的候选信号组确定用于无线通信的物理层参数配置。
32、 根据权利要求 30所述的装置, 其特征在于, 所述确定单元具体用 于:
当所述至少一个候选信号组的接收强度均小于或等于第二接收强度门 限值时, 根据业务需求确定用于无线通信的物理层参数配置; 或,
当所述至少一个候选信号组中的第一候选信号组的接收强度大于所述 第二接收强度门限值且小于或等于第三接收强度门限值, 并且所述至少一个 候选信号组中的第二候选信号组的接收强度小于所述第二接收强度门限值 时, 其中所述第二接收强度门限值小于所述第三接收强度门限值, 根据业务 需求并根据接收强度小于所述第二接收强度门限值的候选信号组确定用于
无线通信的物理层参数配置; 或,
当所述至少一个候选信号组的接收强度均大于所述第二接收强度门限 值, 并且均小于或等于第三接收强度门限值时, 其中所述第二接收强度门限 值小于所述第三接收强度门限值,根据业务需求确定用于无线通信的物理层 参数配置; 或,
当所述至少一个候选信号组中的至少有一组候选信号的接收强度大于 所述第三接收强度门限值时,确定用于无线通信的物理层参数配置为接收强 度最大的候选信号组对应的物理层参数配置,或者根据业务需求并根据接收 强度大于所述第三接收强度门限值的候选信号组确定用于无线通信的物理 层参数配置。
33、 根据权利要求 26至 32中任一项所述的装置, 其特征在于, 还包括 发送单元, 用于:
向中心节点 告确定的用于无线通信的物理层参数配置; 或者 向所述一个或多个相邻节点发送对应于所述确定的用于无线通信的物 理层参数配置的候选信号组。
34、 根据权利要求 26至 33中任一项所述的装置, 其特征在于, 还包括 通信单元, 用于:
使用所述用于无线通信的物理层参数配置进行无线通信。
35、 根据权利要求 26至 34中任一项所述的装置, 其特征在于, 所述候选信号组包括一个候选信号; 或者
所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整数, 且所 述 N个候选信号分别对应不同的资源利用率。
36、 一种无线通信的装置, 其特征在于, 包括:
确定模块, 根据所述第一节点的物理层参数配置, 以及所述物理层参数 配置与候选信号组的对应关系确定候选信号组;
发送模块, 向一个或多个相邻节点发送所述确定模块确定的候选信号组 包括的至少一个候选信号。
37、 根据权利要求 36所述的装置, 其特征在于,
所述候选信号组包括一个候选信号; 或者
所述候选信号组包括 N个候选信号, 其中 N为大于 1的正整数, 且所 述 N个候选信号分别对应不同的资源利用率。
38、 根据权利要求 36或 37所述的装置, 其特征在于,
所述发送模块, 具体用于在保护时隙中, 所述第一节点向一个或多个相 邻节点发送所述候选信号组包括的至少一个候选信号。
39、 根据权利要求 36至 38中任一项所述的装置, 其特征在于, 所述发送模块, 具体用于周期性地向一个或多个相邻节点发送所述候选 信号组包括的至少一个候选信号。
40、 根据权利要求 36至 39中任一项所述的装置, 其特征在于, 所述候 选信号包括以下序列中的一种:
同步信号所使用的序列、 扎道夫-除序列, 以及基于扎道夫 -除序列进行 截断、 循环扩展或打孔所得到的序列。
41、 根据权利要求 36至 40中任一项所述的装置, 其特征在于, 所述候选信号通过所述序列所占用的时域、所占用的频域和所占用的码 资源中的至少一种进行区分。
42、 根据权利要求 36至 41中任一项所述的装置, 其特征在于, 所述装置包括基站和用户设备中的一个。
43、 一种网络节点, 其特征在于, 包括:
接收器, 用于从一个或多个相邻节点接收至少一个候选信号, 所述至少 一个候选信号包括至少一个候选信号组, 所述候选信号组对应一种物理层参 数配置,其中所述物理层参数配置包括子帧配比的配置和载波频率的配置中 的至少一个;
处理器, 用于根据所述至少一个候选信号组, 确定用于无线通信的物理 层参数配置。
44、 一种网络节点, 其特征在于, 包括:
处理器, 用于根据所述第一节点的物理层参数配置, 以及所述物理层参 数配置与候选信号组的对应关系确定候选信号组;
发送器, 用于向一个或多个相邻节点发送所述处理器确定的候选信号组 包括的至少一个候选信号。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280006849.9A CN103875269B (zh) | 2012-09-07 | 2012-09-07 | 无线通信的方法和装置、网络节点 |
PCT/CN2012/081148 WO2014036727A1 (zh) | 2012-09-07 | 2012-09-07 | 无线通信的方法和装置、网络节点 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/081148 WO2014036727A1 (zh) | 2012-09-07 | 2012-09-07 | 无线通信的方法和装置、网络节点 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014036727A1 true WO2014036727A1 (zh) | 2014-03-13 |
Family
ID=50236468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/081148 WO2014036727A1 (zh) | 2012-09-07 | 2012-09-07 | 无线通信的方法和装置、网络节点 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103875269B (zh) |
WO (1) | WO2014036727A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017012676A1 (en) * | 2015-07-23 | 2017-01-26 | Huawei Technologies Co., Ltd. | Control node and method in a wireless communication network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1787678A (zh) * | 2004-12-06 | 2006-06-14 | 大唐移动通信设备有限公司 | 多载波时分双工通信系统的动态信道分配方法 |
CN102333315A (zh) * | 2010-07-12 | 2012-01-25 | 中国移动通信集团公司 | 一种频率资源分配方法、装置及系统 |
CN102378183A (zh) * | 2010-08-24 | 2012-03-14 | 华为技术有限公司 | 频谱资源的配置调整方法和装置及系统 |
CN102457967A (zh) * | 2010-10-28 | 2012-05-16 | 华为技术有限公司 | 数据传输方法和设备 |
-
2012
- 2012-09-07 WO PCT/CN2012/081148 patent/WO2014036727A1/zh active Application Filing
- 2012-09-07 CN CN201280006849.9A patent/CN103875269B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1787678A (zh) * | 2004-12-06 | 2006-06-14 | 大唐移动通信设备有限公司 | 多载波时分双工通信系统的动态信道分配方法 |
CN102333315A (zh) * | 2010-07-12 | 2012-01-25 | 中国移动通信集团公司 | 一种频率资源分配方法、装置及系统 |
CN102378183A (zh) * | 2010-08-24 | 2012-03-14 | 华为技术有限公司 | 频谱资源的配置调整方法和装置及系统 |
CN102457967A (zh) * | 2010-10-28 | 2012-05-16 | 华为技术有限公司 | 数据传输方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN103875269B (zh) | 2018-10-30 |
CN103875269A (zh) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI720577B (zh) | 無線通訊方法與無線通訊裝置 | |
US10652882B2 (en) | Data transmission method, wireless network device, and communications system | |
CN111418249B (zh) | 同步上行链路传输方法、装置和计算机可读介质 | |
EP2797355B1 (en) | Wireless communication method and apparatus | |
CN110121912A (zh) | Pdcch dmrs映射与coreset资源分配的设计 | |
US10149292B2 (en) | Systems and methods for efficient resource allocation in wireless communication networks | |
CN101998614B (zh) | 一种上行信号同步的方法及系统 | |
CN111096028B (zh) | 定时提前调整定时的决定方法、装置和计算机可读介质 | |
WO2018192015A1 (zh) | 时频资源传输方向的配置方法和装置 | |
CN104365130B (zh) | 接入点设计中的上行链路下行链路资源划分的方法和装置 | |
JP2009524303A (ja) | 広帯域tdd移動通信システムにおける物理層のランダムアクセスのための方法、装置、及び端末 | |
JP2022104956A (ja) | Nrにおけるprachおよびpusch分離のための異なる方法 | |
TWI640215B (zh) | 經由錨定載波的小區存取方法和裝置 | |
CN110463098B (zh) | 控制信息的编码和资源分配方法、用户设备及存储介质 | |
CN111867084A (zh) | 一种prach资源配置和指示配置的方法、装置及设备 | |
CN111684845A (zh) | 用于dmrs传送的ue复用 | |
TWI728794B (zh) | 無線通訊方法、無線通訊裝置及電腦可讀介質 | |
CN115552835A (zh) | 对侧链路资源池中的附加带宽的利用 | |
CN117792596A (zh) | 针对多次prach传输的rach资源配置 | |
CN103875269B (zh) | 无线通信的方法和装置、网络节点 | |
TWI845997B (zh) | 統一傳輸配置指示狀態的方法 | |
JP2019149591A (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
CN120090912A (zh) | 一种通信方法及装置 | |
CN115209539A (zh) | 盲检测方法及相关用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12884298 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12884298 Country of ref document: EP Kind code of ref document: A1 |