WO2014035159A1 - White light-emitting quantum dot - Google Patents
White light-emitting quantum dot Download PDFInfo
- Publication number
- WO2014035159A1 WO2014035159A1 PCT/KR2013/007772 KR2013007772W WO2014035159A1 WO 2014035159 A1 WO2014035159 A1 WO 2014035159A1 KR 2013007772 W KR2013007772 W KR 2013007772W WO 2014035159 A1 WO2014035159 A1 WO 2014035159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- light emitting
- quantum dot
- white light
- emitting
- Prior art date
Links
- 0 *c(c1ccc2)cccc1c2-c1c(cccc2)c2c(-c2cc(-c3ccccc3)cc(-c3ccccc3)c2)c2c1cccc2 Chemical compound *c(c1ccc2)cccc1c2-c1c(cccc2)c2c(-c2cc(-c3ccccc3)cc(-c3ccccc3)c2)c2c1cccc2 0.000 description 12
- WUMAWFQDEUYJDX-UHFFFAOYSA-N C=[Br]C1=C2C=CC=CC2CC2C1=CC=CC2 Chemical compound C=[Br]C1=C2C=CC=CC2CC2C1=CC=CC2 WUMAWFQDEUYJDX-UHFFFAOYSA-N 0.000 description 1
- LUBXLGUQZVKOFP-UHFFFAOYSA-N c(cc1)ccc1-c1c(cccc2)c2cc2c1cccc2 Chemical compound c(cc1)ccc1-c1c(cccc2)c2cc2c1cccc2 LUBXLGUQZVKOFP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/002—Osmium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0046—Ruthenium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0086—Platinum compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0033—Blends of pigments; Mixtured crystals; Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0097—Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1051—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to a white light emitting quantum dot, and more particularly, to a white light emitting quantum dot capable of white light emission as one quantum dot alone and a method of manufacturing the same.
- Quantum Dot is a nano-scale semiconductor material that exhibits a quantum confinement effect.
- a quantum dot receives light from an excitation source and reaches an energy excited state, the corresponding energy bandgap is itself. To release energy.
- the electrical and optical characteristics can be adjusted so that the light emission wavelength can be adjusted only by controlling the size of the quantum dot, and because it can exhibit characteristics such as excellent color purity and high luminous efficiency, It can be applied to various devices such as photoelectric change devices.
- a quantum dot as a light emitting device that has been studied in the past has been disclosed for emitting only a wavelength of one color gamut, such as US Pat. No. 6,501,109 and WO2012 / 013272, but it was impossible to emit white light with only one quantum dot, and to realize white light.
- In order to provide a separate filter layer there is a difficulty in changing the wavelength of the light emitted, and thus many quantum dots have not been reported for quantum dots emitting white light by themselves, despite many necessities.
- the present invention is capable of providing white light by itself, and to provide a white light emitting quantum dot, a manufacturing method thereof and a light emitting device including the same that can exhibit excellent color purity, high stability and high luminous efficiency.
- the purpose is capable of providing white light by itself, and to provide a white light emitting quantum dot, a manufacturing method thereof and a light emitting device including the same that can exhibit excellent color purity, high stability and high luminous efficiency.
- a quantum dot comprising a structure of the core / shell and a ligand attached to the surface of the shell
- the ligand comprises a light emitting group
- the light emitting group of the core / shell structure and the ligand provides a white light emitting quantum dot characterized in that the light emits white light as a whole by emitting a color complementary to each other.
- the structure of the core / shell may emit light in the region of 400 to less than 500 nm or light in the region of 500 to 800 nm,
- the light emitting group When the structure of the core / shell emits light in the region of 400 to less than 500 nm, the light emitting group emits light in the region of 500 to 800 nm and the structure of the core / shell emits light in the region of 500 to 800 nm.
- the light emitting group may be a quantum dot that emits white light by emitting light in an area of 400 or more and less than 500 nm.
- the present invention provides a method for producing a white light emitting quantum dot comprising the step of adding a ligand containing a light emitting group to a solution in which the structure of the core / shell dispersed.
- the present invention provides a light emitting device comprising the white light emitting quantum dots as a light emitting material.
- the present invention provides a method of manufacturing a light emitting device comprising the step of forming a light emitting layer with the white light emitting quantum dots.
- the white light emitting quantum dots according to the present invention can emit white light by itself without providing a separate filter layer, the white light emitting quantum dots have a simple structure when applied to the light emitting device and have excellent color purity, high stability and high luminous efficiency compared to the conventional light emitting device. can do.
- FIG. 1 shows a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention.
- Figure 2 shows a schematic diagram of a white light emitting quantum dot according to another embodiment of the present invention.
- FIG. 3 is a schematic diagram of CdSe / ZnS synthesis used in a white light emitting quantum dot according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram showing the synthesis of white light emitting quantum dots according to an exemplary embodiment of the present invention.
- 5 is an FT-IR spectra of a white light emitting quantum dot according to an embodiment of the present invention.
- UV absorption and PL spectra of a white light emitting quantum dot according to an embodiment of the present invention.
- FIG. 7 is a graph illustrating device light emission efficiency of a white light emitting quantum dot according to an exemplary embodiment of the present invention.
- FIG. 8 illustrates an emission spectrum of a white light emitting quantum dot according to an embodiment of the present invention.
- the white light emitting quantum dot of the present invention is a quantum dot including a core / shell structure and a ligand attached to the surface of the shell, wherein the ligand includes a light emitting group, and the light emitting group of the core / shell structure and the ligand is complementary to each other.
- the light emission wavelength of the ligand containing the light emitting group and the structure of the core / shell having a complementary color relationship can be arbitrarily adjusted.
- the structure of the core / shell emits light in the region of 400 nm to less than 500 nm, or Can emit light in the range of 500 to 800 nm
- the light emitting group When the structure of the core / shell emits light in the region of 400 to less than 500 nm, the light emitting group emits light in the region of 500 to 800 nm and the structure of the core / shell emits light in the region of 500 to 800 nm. In this case, the light emitting group emits light in an area of 400 or more and less than 500 nm so that the quantum dots emit white light as a whole.
- the ligand includes a light emitting group and a linking group connecting the shell and the light emitting group, and may include a spacer between the linking group and the light emitting group, if necessary.
- Structural formula 1 shows a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention.
- A represents a light emitting group
- L represents a spacer
- X represents a linking group
- a core / shell structure may be a known core / shell structure.
- the core / shell structure described in Korean Patent Publication No. 2010-35466 may be used.
- the core / shell structure may comprise a) a first element selected from group 2, 12, 13 and 14 and a second element selected from group 16; b) a first element selected from group 13 and a second element selected from group 15; And c) Group 14 elements; one material selected from the group consisting of, or these forms a structure of the core / shell, for example, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe , SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS
- the average diameter of the structure of the core / shell can be arbitrarily adjusted in consideration of the complementary color relationship, it can be used 1-12 nm.
- the structure of the core / shell which emits light in the range of 500 to 800 nm or less has a diameter of 5-12 nm
- the structure of the core / shell which emits light in the region of 400 or more and less than 500 nm may have a diameter of 1-3 nm.
- the structure of the core / shell emits light in the region of 500 or more and 800 nm or less. It is good to use that.
- a light emitting group capable of emitting a color that is complementary to the light emitting color of the core / shell structure contained in the ligand and emits white light as a whole is applied.
- the light emitting group when the structure of the core / shell emits light in an area of 400 or more and less than 500 nm, the light emitting group emits light in an area of 500 or more and less than 800 nm and the structure of the core / shell is in an area of more than 500 and less than 800 nm.
- the light emitting group uses a group that emits light in a range of 400 to less than 500 nm.
- the light emitting group may be a known light emitting group, and for example, a fluorescent or phosphorescent light emitting group may be used. More specifically, the group for emitting light in the region of 400 or more and less than 500 nm may be one of the following FL1 to FL38, or PL1 to PL59, and the group for emitting the light in the region of 500 or more and less than 800 nm may be one of the following FL1 to FL38, Or PL1 to PL59.
- R1 to R16 are each independently hydrogen; heavy hydrogen; halogen; Amino group; Nitrile group; Nitro group; C 1 -C 40 alkyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2 -C 40 alkenyl group; C 1 ⁇ C 40 Alkoxy group; C 3 -C 40 cycloalkyl group; C 3 ⁇ C 40 Heterocycloalkyl group; C 6 -C 40 aryl group; C 3 ⁇ C 40 heteroaryl group; An aralkyl group of C 3 ⁇ C 40; C 3 -C 40 aryloxy group; C 3 -C 40 arylthio group or Si.
- R 1 to R 16 may combine with each
- the light emitting group is a group for emitting light in the region of 400 to less than 500 nm.
- the linking group in the white light emitting quantum dot of the present invention is not particularly limited as long as the linking group is attached to the shell and can be connected to the light emitting group or the spacer, for example, a thiol group, a carboxyl group, an amine group, or a phosphine group. And at least one group selected from the group consisting of phosphide groups can be used.
- the linking group is a thiol group.
- the white light emitting quantum dot of the present invention may further include a spacer between the light emitting group and the connecting group.
- the spacers may increase the number of light emitting groups that may be attached to the core / shell structure, and may facilitate dispersion of a ligand including a light emitting material into a solvent when preparing white light emitting quantum dots.
- the spacer may be substituted or unsubstituted saturated or unsaturated C 1 ⁇ C 30 alkyl group, C 3 ⁇ C 40 cycloalkyl group, Si 1 ⁇ Si 30 silane may be used, but is not limited thereto.
- the present invention includes all of the light emitting group, the spacer and the linking group, for example, may have a structure as follows.
- the H portion of -SH is a portion that bonds with the core / shell structure.
- Structures suitable for emitting light in the region of 400 to less than 500 nm are:
- the size of the whole white light-emitting quantum dot including the light emitting group in the ligand can be arbitrarily adjusted, preferably 5 to 30 nm, more preferably 10-20 nm.
- the light emission intensity of the core / shell structure and the light emitting group can be arbitrarily adjusted.
- the difference in the light emission intensity ratio of the core / shell structure and the light emitting group in the complementary color relationship is within 30%. Do. That is, when the emission intensity in the region of 400 to less than 500 nm is 1, the emission intensity of the region of 500 to 800 nm is preferably 0.7-1.3. When the intensity is 0.7 or less, the color purity is blue shifted.
- Red shifting may make it difficult to emit white light.
- the emission intensity in the region of 500 to 800 nm is 1, the emission intensity of the region of 400 to 500 nm is preferably 0.7-1.3.
- the intensity is 0.7 or less, the color purity is red shifted. As a result, the quantum dot may be difficult to emit white light.
- Structural formula 2 shows a schematic diagram of a white light emitting quantum dot according to a specific example of the present invention, and since the light emitting material emits light in an area of 400 to less than 500 nm, the core / shell structure emits light in an area of 500 to 800 nm or less.
- the core may use CdSe and the shell may use ZnS.
- the white light emitting quantum dots according to the present invention may be prepared by adding a ligand containing a light emitting group to a solution in which the structure of the core / shell is dispersed, followed by stirring.
- the preparation of the structure of the core / shell in the above can be used well known methods, of course, can be specifically followed the synthesis method described in FIG.
- the ligand may be prepared by binding a linking group to the light emitting group or by including a spacer between the light emitting group and the linking group through the procedures of Schemes 1 and 2 below.
- the stirring may be performed at room temperature to 100 °C for 0.1 to 100 hours.
- the present invention also provides a light emitting device (QLED) using the white light emitting quantum dots and a method of manufacturing the same.
- the light emitting device may be applied to other known technologies except for the light emitting layer formed by using the white light emitting quantum dots according to the present invention.
- the light emitting device may be configured such that a substrate-a cathode-a light emitting layer formed of a white light emitting quantum dot according to the present invention-an anode may be sequentially formed, and an electron transport layer is further formed between the cathode and the light emitting layer. It is also possible to further form a hole transport layer between the light emitting layer and the anode. In addition, if necessary, a hole suppression layer may be further included between the electron transport layer and the light emitting layer, and a buffer layer may be formed between each layer.
- a light emitting device (QLED) using a white light emitting quantum dot may be formed by a conventional manufacturing method, and the thickness of each organic film including the light emitting layer may be manufactured to be 30 to 100 nm.
- a buffer layer may be formed between each layer, and as a material of such a buffer layer, Materials may be used, for example copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylene vinylene, or Derivatives thereof may be used, but are not limited thereto.
- the material of the hole transport layer a material commonly used may be used.
- polytriphenylamine may be used, but is not limited thereto.
- the material of the electron transport layer a material commonly used may be used, for example, polyoxadiazole may be used, but is not limited thereto.
- a material commonly used as the material of the hole suppression layer may be used, for example, LiF, BaF 2 or MgF 2 may be used, but is not limited thereto.
- the light emitting device of the present invention may be manufactured according to the method described in FIG.
- the light emitting device according to the present invention manufactured as described above can emit white light by itself without having a separate filter layer, so that the light emitting layer is formed of white light emitting quantum dots, so that the structure is simple and high in stability, compared to the conventional light emitting device. It has excellent color purity and high luminous efficiency.
- Synthesis Example 3 was repeated in Synthesis Example 1, except that 1,5-dibrompentane was used instead of 1.10-dibromodeken in Synthesis Example 2, and Pale yellow DJ-A-2 was synthesized.
- Synthesis Example 1 the procedure of Synthesis Example 3 was repeated, except that 9- (4-bromopheneyl) -10-phenylanthracene was used instead of 9-bromo-10-phenyl anthracene in Synthesis Example 1, and white solid DJ-A-3 was used. Synthesized.
- Synthesis Example 1 the procedure of Synthesis Example 3 was repeated, except that 9-brom-10- (2-napthyl) anthracene was used instead of 9-bromo-10-phenyl anthracene in Synthesis Example 1, yellow solid DJ-A-5 was synthesized.
- the reaction temperature was maintained at 310 °C for 10 minutes and then cooled to room temperature.
- the resulting quantum dots were purified with 20 mL of chloroform and excess acetone (at least 3 times). Quantum dots were redispersed in chloroform or hexane at a concentration of 5.0 mg / mL.
- ZnO nanoparticles are used as the electron transport layer
- ZnO nanoparticle synthesis was used the following method. That is, 30 mL of zinc acetate dimethyl sulfoxide (DMSO, 0.5 M) was added, and tetramethylammonium hydride (TMAH, 0.55 M) mixture was stirred in ethanol for 1 hour. It was then centrifuged and washed with ethanol and excess acetone mixture. The synthesized ZnO nanoparticles were dispersed in ethanol at a concentration of 30 mg / mL and used as an electron transport layer material for the LED manufacturing apparatus.
- DMSO zinc acetate dimethyl sulfoxide
- TMAH tetramethylammonium hydride
- white light-emitting quantum dots were synthesized. That is, a CdSe / ZnS solution (0.2 ml, 5 mg / ml in hexane) was prepared using the quantum dots prepared in Synthesis Example 9, and a light emitting material (0.5 ml, 3 mM in hexane) prepared in Synthesis Example 3 was added thereto. Stirred at room temperature for 30 minutes. Methanol was added to the reaction flask to solidify and centrifuged to produce white light-emitting quantum dots. Ligand exchange results were confirmed by IR DATA, UV absorption and PL spectra.
- 5 is an FT-IR spectra of the prepared white light emitting quantum dots, (a) shows Synthesis Example 3 (DJ-A-1), and (b) shows Example 1 (DJ-A-1 + CdSe / ZnS). It is measured. 6 is UV absorption and PL spectra, (a) shows Synthesis Example 8 (QDs), (b) shows Synthesis Example 3 and (c) Example 1;
- QD-LED was fabricated on an indium tin oxide coated glass (ITO / glass) substrate (sheet resistance ⁇ 10 ⁇ / ⁇ ).
- ITO / glass indium tin oxide coated glass
- the ITO glass was washed with acetone and isopropyl alcohol using ultrasonic waves for 1 minute and plasma treated with argon / oxygen for 1 minute.
- poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS, Baytron P AI 4083) was diluted with isopropyl alcohol in a 9: 1 volume ratio and spin-coated at 4,000 rpm for 30 seconds.
- PEDOT PSS coated ITO glass was baked in a hot plate at 120 ° C. for 10 minutes in air.
- the coated substrate was spin-coated with polyvinylcarbazole (PVK, 0.01 g / mL of chlorobenzene) at 3,000 rpm for 30 seconds in a glove box filled with N 2 , followed by baking the substrate at 180 ° C. for 30 minutes, Used as a hole transport layer.
- PVK polyvinylcarbazole
- the white light emitting quantum dot solution prepared in Example 1 was spin coated for 1,500 rpm for 20 seconds.
- the ZnO nanoparticle (30 mg / mL) solution was spin coated at 1,500 rpm for 30 seconds, and the substrate was baked at 150 ° C. for 30 minutes. Finally, the multilayer thin film substrate was placed in a high vacuum deposition chamber (background pressure ⁇ 5 ⁇ 10 ⁇ 6 torr) and an aluminum cathode (100 nm thick) was deposited.
- Example 2 instead of the white light emitting quantum dots, Orange light emitting quantum dots of Synthesis Example 9 was used as the light emitting layer.
- Example 2 DJ-A-1 of Synthesis Example 3 was used as a light emitting layer instead of the white light emitting quantum dots.
- Example 2 The IVL characteristics and EL spectra of the electroluminescent (EL) devices of Example 2 and Comparative Examples 1 and 2 prepared above were confirmed.
- the maximum light emission intensity is 2,000 cd / m 2, and the light emission efficiency of each device is shown in Table 1 and Graph 7 below.
- (A) of FIG. 7 shows current density and luminance versus driving voltage, and (b) shows luminance power efficiency versus luminance.
- the white light emitting quantum dots according to the present invention can emit white light by itself without providing a separate filter layer, the white light emitting quantum dots have a simple structure when applied to the light emitting device and have excellent color purity, high stability and high luminous efficiency compared to the conventional light emitting device. can do.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present invention relates to a white light-emitting quantum dot. More particularly, the present invention relates to a quantum dot and to a method for manufacturing same, the quantum dot comprising a core/shell structure and a ligand attached to the surface of the shell. The ligand includes a light-emitting group. The core/shell structure and the light-emitting group of the ligand may emit light having complementary colors, thus emitting white light overall. The white light-emitting quantum dot according to the present invention may emit white light alone without using a separate filter layer. Therefore, the light-emitting device which adopts the white light-emitting quantum dot of the present invention may have a simple structure while achieving excellent color purity, high stability, and high light-emitting efficiency as compared to conventional light-emitting devices.
Description
본 발명은 백색 발광 양자점에 관한 것으로, 특히 하나의 양자점 단독으로서 백색 발광이 가능한 백색 발광 양자점 및 이의 제조방법에 관한 것이다.The present invention relates to a white light emitting quantum dot, and more particularly, to a white light emitting quantum dot capable of white light emission as one quantum dot alone and a method of manufacturing the same.
양자점(Quantum Dot)은 나노 크기의 반도체 물질로서 양자 제한(quantum confinement) 효과를 나타내는데, 이러한 양자점은 여기원(excitation source)으로부터 빛을 받아 에너지 여기 상태에 이르면, 자체적으로 해당하는 에너지 밴드갭(bandgap)에 따른 에너지를 방출하게 된다. 또한 양자점의 크기를 조절하여 해당 밴드 갭을 조절하면 전기적, 광학적 특성을 조절할 수 있으므로 양자점의 크기 조절만으로 발광 파장을 조절할 수 있고, 우수한 색순도 및 높은 발광 효율 등의 특성을 나타낼 수 있기 때문에 발광소자 또는 광전변화소자 등 다양한 소자에 응용할 수 있다.Quantum Dot is a nano-scale semiconductor material that exhibits a quantum confinement effect. When a quantum dot receives light from an excitation source and reaches an energy excited state, the corresponding energy bandgap is itself. To release energy. In addition, by adjusting the size of the quantum dot to adjust the band gap, the electrical and optical characteristics can be adjusted so that the light emission wavelength can be adjusted only by controlling the size of the quantum dot, and because it can exhibit characteristics such as excellent color purity and high luminous efficiency, It can be applied to various devices such as photoelectric change devices.
종래 연구된 발광소자로서의 양자점은 미국특허 제6501091호 및 WO2012/013272호와 같이 한 가지 색 영역대의 파장만을 발광하는 것에 대하여는 개시되었으나, 하나의 양자점 만으로 백색광을 발광하는 것이 불가능하였으며, 백색광을 구현하기 위해서는 별도의 필터층을 구비하여 발광되는 광의 파장을 바꿔줘야 하는 어려움이 있었으며, 지금까지 많은 필요성에도 불구하고 하나의 양자점 자체로 백색광을 발광하는 양자점에 대하여는 보고되지 않은 실정이다.A quantum dot as a light emitting device that has been studied in the past has been disclosed for emitting only a wavelength of one color gamut, such as US Pat. No. 6,501,109 and WO2012 / 013272, but it was impossible to emit white light with only one quantum dot, and to realize white light. In order to provide a separate filter layer, there is a difficulty in changing the wavelength of the light emitted, and thus many quantum dots have not been reported for quantum dots emitting white light by themselves, despite many necessities.
상기와 같은 문제점을 해결하기 위해, 본 발명은 자체만으로도 백색발광이 가능하며, 우수한 색순도, 고안정성 및 높은 발광효율을 나타낼 수 있는 백색 발광 양자점, 이의 제조방법 및 이를 포함하는 발광소자를 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention is capable of providing white light by itself, and to provide a white light emitting quantum dot, a manufacturing method thereof and a light emitting device including the same that can exhibit excellent color purity, high stability and high luminous efficiency. The purpose.
상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,
코어/쉘의 구조체와 쉘의 표면에 부착된 리간드를 포함하는 양자점으로서,A quantum dot comprising a structure of the core / shell and a ligand attached to the surface of the shell,
상기 리간드가 발광그룹을 포함하며,The ligand comprises a light emitting group,
상기 코어/쉘 구조체와 리간드의 발광그룹은 서로 보색관계인 색을 발광하여 전체적으로 백색광을 발광하는 것을 특징으로 하는 백색 발광 양자점을 제공한다.The light emitting group of the core / shell structure and the ligand provides a white light emitting quantum dot characterized in that the light emits white light as a whole by emitting a color complementary to each other.
바람직하게는 상기 코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하거나 또는 500 이상 800 이하 nm 영역대의 빛을 발광할 수 있으며,Preferably the structure of the core / shell may emit light in the region of 400 to less than 500 nm or light in the region of 500 to 800 nm,
코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하는 경우 발광그룹은 500 이상 800 이하 nm 영역대의 빛을 발광하며, 코어/쉘의 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 경우 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하여 전체적으로 백색광을 발광하는 양자점일 수 있다.When the structure of the core / shell emits light in the region of 400 to less than 500 nm, the light emitting group emits light in the region of 500 to 800 nm and the structure of the core / shell emits light in the region of 500 to 800 nm. In this case, the light emitting group may be a quantum dot that emits white light by emitting light in an area of 400 or more and less than 500 nm.
또한 본 발명은 코어/쉘의 구조체가 분산된 용액에 발광그룹을 함유한 리간드를 가한 후, 교반하는 단계를 포함하는 것을 특징으로 하는 백색 발광 양자점의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a white light emitting quantum dot comprising the step of adding a ligand containing a light emitting group to a solution in which the structure of the core / shell dispersed.
또한 본 발명은 발광소자에 있어서, 발광물질로 상기 백색 발광 양자점을 포함하는 것을 특징으로 하는 발광소자를 제공한다.In another aspect, the present invention provides a light emitting device comprising the white light emitting quantum dots as a light emitting material.
또한 본 발명은 발광소자의 제조방법에 있어서, 상기 백색 발광 양자점으로 발광층을 형성하는 단계를 포함하는 것을 특징으로 하는 발광소자의 제조방법을 제공한다.In another aspect, the present invention provides a method of manufacturing a light emitting device comprising the step of forming a light emitting layer with the white light emitting quantum dots.
본 발명에 따른 백색 발광 양자점은 별도의 필터층을 구비하지 않고도 자체만으로 백색광을 발광할 수 있기 때문에 발광소자에 적용시 구조가 단순하면서도 종래의 발광소자에 비하여 우수한 색순도, 고안정성 및 높은 발광효율을 가지게 할 수 있다.Since the white light emitting quantum dots according to the present invention can emit white light by itself without providing a separate filter layer, the white light emitting quantum dots have a simple structure when applied to the light emitting device and have excellent color purity, high stability and high luminous efficiency compared to the conventional light emitting device. can do.
도 1은 본 발명의 일실시예에 따른 백색 발광 양자점의 모식도를 나타낸 것이다.1 shows a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention.
도 2는 본 발명의 다른 일실시예에 따른 백색 발광 양자점의 모식도를 나타낸 것이다.Figure 2 shows a schematic diagram of a white light emitting quantum dot according to another embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 백색 발광 양자점에 사용된 CdSe/ZnS 합성 모식도이다.3 is a schematic diagram of CdSe / ZnS synthesis used in a white light emitting quantum dot according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 백색 발광 양자점의 합성 모식도이다.4 is a schematic diagram showing the synthesis of white light emitting quantum dots according to an exemplary embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 백색 발광 양자점의 FT-IR스펙트라이다.5 is an FT-IR spectra of a white light emitting quantum dot according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 백색 발광 양자점의 UV 흡수 및 PL 스펙트라이다.6 is UV absorption and PL spectra of a white light emitting quantum dot according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 백색 발광 양자점의 소자 발광 효율을 측정한 그래프이다.7 is a graph illustrating device light emission efficiency of a white light emitting quantum dot according to an exemplary embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 백색 발광 양자점의 발광 스펙트럼을 나타낸 것이다.8 illustrates an emission spectrum of a white light emitting quantum dot according to an embodiment of the present invention.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 백색 발광 양자점은 코어/쉘의 구조체와 쉘의 표면에 부착된 리간드를 포함하는 양자점으로서, 상기 리간드가 발광그룹을 포함하며, 상기 코어/쉘 구조체와 리간드의 발광그룹은 서로 보색관계인 색을 발광하여 전체적으로 백색광을 발광하는 것을 특징으로 하는 백색 발광 양자점이다. 즉 하나의 양자점에 보색관계에 있는 코어/쉘의 구조체와 발광그룹을 함유한 리간드를 포함함으로써 하나의 양자점이 전체적으로 백색광을 발광할 수 있는 백색 발광 양자점인 것을 특징으로 한다.The white light emitting quantum dot of the present invention is a quantum dot including a core / shell structure and a ligand attached to the surface of the shell, wherein the ligand includes a light emitting group, and the light emitting group of the core / shell structure and the ligand is complementary to each other. A white light emitting quantum dot characterized by emitting light as a whole to emit white light. That is, one quantum dot is a white light emitting quantum dot capable of emitting white light as a whole by including a ligand including a structure of a core / shell having a complementary color relationship and a light emitting group in one quantum dot.
본 발명에서 보색관계에 있는 코어/쉘의 구조체와 발광그룹을 함유한 리간드의 발광파장은 임의로 조정가능하며, 구체적인 일예로 상기 코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하거나 또는 500 이상 800 이하 nm 영역대의 빛을 발광할 수 있으며,In the present invention, the light emission wavelength of the ligand containing the light emitting group and the structure of the core / shell having a complementary color relationship can be arbitrarily adjusted. Specifically, the structure of the core / shell emits light in the region of 400 nm to less than 500 nm, or Can emit light in the range of 500 to 800 nm
코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하는 경우 발광그룹은 500 이상 800 이하 nm 영역대의 빛을 발광하며, 코어/쉘의 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 경우 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하여 양자점은 전체적으로 백색광을 발광 할 수 있다.When the structure of the core / shell emits light in the region of 400 to less than 500 nm, the light emitting group emits light in the region of 500 to 800 nm and the structure of the core / shell emits light in the region of 500 to 800 nm. In this case, the light emitting group emits light in an area of 400 or more and less than 500 nm so that the quantum dots emit white light as a whole.
상기 리간드는 발광그룹 및 쉘과 발광그룹을 연결하는 연결그룹을 포함하며, 필요에 따라 연결그룹과 발광그룹 사이에 스페이서를 포함할 수 있다.The ligand includes a light emitting group and a linking group connecting the shell and the light emitting group, and may include a spacer between the linking group and the light emitting group, if necessary.
하기 구조식 1은 본 발명의 일 실시예에 따른 백색 발광 양자점의 모식도를 나타낸 것이다. Structural formula 1 shows a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention.
[구조식 1][Formula 1]
상기 구조식 1에서, A는 발광그룹을 나타내며, L은 스페이서, X는 연결그룹을 나타낸다.In Structural Formula 1, A represents a light emitting group, L represents a spacer, and X represents a linking group.
본 발명의 백색 발광 양자점에서 코어/쉘 구조체는 공지의 코어/쉘 구조체를 사용할 수 있으며, 일예로 대한민국공개특허공보 제2010-35466호에 기재된 코어/쉘 구조체를 이용할 수도 있다. 보다 구체적으로 코어/쉘 구조체는 a) 2족, 12족, 13족 및 14족에서 선택된 제1 원소와 16족에서 선택된 제2 원소; b) 13족에서 선택된 제1 원소 및 15족에서 선택된 제2 원소; 및 c) 14족 원소;로 이루어진 군에서 선택된 하나의 물질, 혹은 이들이 코어/쉘의 구조체를 형성한 것을 예로 들 수 있으며, 이의 예로는 MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, BP, Si, Ge로 이루어지는 군으로부터 1종 이상 선택되는 것이며, 이들이 코어/쉘 형태의 구조체를 형성한 것을 사용할 수 있다.In the white light emitting quantum dot of the present invention, a core / shell structure may be a known core / shell structure. For example, the core / shell structure described in Korean Patent Publication No. 2010-35466 may be used. More specifically, the core / shell structure may comprise a) a first element selected from group 2, 12, 13 and 14 and a second element selected from group 16; b) a first element selected from group 13 and a second element selected from group 15; And c) Group 14 elements; one material selected from the group consisting of, or these forms a structure of the core / shell, for example, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe , SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al2O3, Al2S3, Al2E3, Al2Se3, Al2Se3 , Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaA , At least one selected from the group consisting of GaSb, InN, InP, InAs, InSb, BP, Si, and Ge, and those having a core / shell structure can be used.
상기 코어/쉘의 구조체의 평균 직경은 보색관계를 고려하여 임의로 조절가능하며, 1-12 nm인 것을 사용할 수 있다. 일예로 500 이상 800 이하 nm 영역대의 빛을 발광하는 코어/쉘의 구조체는 5-12 nm 의 직경, 400 이상 500 미만 nm 영역대의 빛을 발광하는 코어/쉘의 구조체는 1-3 nm 의 직경을 가지게 할 수 있으며, 바람직하기로 상기 코어/쉘의 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 것을 사용하는 것이 좋다.The average diameter of the structure of the core / shell can be arbitrarily adjusted in consideration of the complementary color relationship, it can be used 1-12 nm. For example, the structure of the core / shell which emits light in the range of 500 to 800 nm or less has a diameter of 5-12 nm, The structure of the core / shell which emits light in the region of 400 or more and less than 500 nm may have a diameter of 1-3 nm. Preferably, the structure of the core / shell emits light in the region of 500 or more and 800 nm or less. It is good to use that.
또한 본 발명의 백색 발광 양자점에서 리간드에 함유된 상기 코어/쉘의 구조체의 발광색과 보색관계인 색을 발광하여 양자점이 전체적으로 백색광을 발광할 수 있는 발광그룹이 적용된다. 일예로 상기 코어/쉘의 구조체가 400 이상 500 미만 nm 영역대의 빛을 발광하는 경우 발광그룹은 500 이상 800 이하 nm 영역대의 빛을 발광하며, 코어/쉘의 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 경우 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하는 그룹을 사용한다.In addition, in the white light emitting quantum dot of the present invention, a light emitting group capable of emitting a color that is complementary to the light emitting color of the core / shell structure contained in the ligand and emits white light as a whole is applied. For example, when the structure of the core / shell emits light in an area of 400 or more and less than 500 nm, the light emitting group emits light in an area of 500 or more and less than 800 nm and the structure of the core / shell is in an area of more than 500 and less than 800 nm. In the case of emitting light, the light emitting group uses a group that emits light in a range of 400 to less than 500 nm.
상기 발광그룹은 공지의 발광 그룹을 사용할 수 있으며, 예로서 형광 또는 인광 발광그룹을 사용할 수 있다. 보다 구체적으로 400 이상 500 미만 nm 영역대의 빛을 발광하는 그룹은 하기 FL1 내지 FL38, 또는 PL1 내지 PL59 들 중 하나일 수 있으며, 500 이상 800 이하 nm 영역대의 빛을 발광하는 그룹은 하기 FL1 내지 FL38, 또는 PL1 내지 PL59 들 중 하나일 수 있다. The light emitting group may be a known light emitting group, and for example, a fluorescent or phosphorescent light emitting group may be used. More specifically, the group for emitting light in the region of 400 or more and less than 500 nm may be one of the following FL1 to FL38, or PL1 to PL59, and the group for emitting the light in the region of 500 or more and less than 800 nm may be one of the following FL1 to FL38, Or PL1 to PL59.
하기 FL1 내지 FL38, 또는 PL1 내지 PL59에서 *는 연결부분이며, 여기서 연결부분은 괄호안의 치환위치 중 하나 이상에 연결될 수 있으며, R1 내지 R16은 각각 독립적으로 수소; 중수소; 할로겐; 아미노기; 니트릴기; 니트로기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C3~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C3~C40의 헤테로아릴기 ; C3~C40의 아르알킬기 ; C3~C40의 아릴옥시기 ; C3~C40의 아릴싸이오기 또는 Si이다. 임의적으로 R1 내지 R16에서 선택된 2개 이상은 서로 결합하여 고리를 형성할 수 있으며 S, N, O, Si가 포함될 수 있다.In the following FL1 to FL38, or PL1 to PL59, * is a linking moiety, wherein the linking moiety may be connected to one or more of the substitution positions in parentheses, and R1 to R16 are each independently hydrogen; heavy hydrogen; halogen; Amino group; Nitrile group; Nitro group; C 1 -C 40 alkyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2 -C 40 alkenyl group; C 1 ~ C 40 Alkoxy group; C 3 -C 40 cycloalkyl group; C 3 ~ C 40 Heterocycloalkyl group; C 6 -C 40 aryl group; C 3 ~ C 40 heteroaryl group; An aralkyl group of C 3 ~ C 40; C 3 -C 40 aryloxy group; C 3 -C 40 arylthio group or Si. Optionally two or more selected from R 1 to R 16 may combine with each other to form a ring, and may include S, N, O, and Si.
바람직하기로 상기 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하는 그룹인 것이 좋다.Preferably, the light emitting group is a group for emitting light in the region of 400 to less than 500 nm.
또한 본 발명의 백색 발광 양자점에서 상기 연결그룹은 쉘에 부착되면서 발광그룹 또는 스페이서에 연결될 수 있는 연결기이면 특별히 한정되지 않으며, 일예로 씨올(thiol)기, 카르복시기, 아민기, 포스핀(phospine)기, 및 포스파이드(phosphide)기로 이루어지는 군으로부터 1종 이상 선택되는 기를 사용할 수 있다. 바람직하기로 상기 연결기는 씨올기이다.In addition, the linking group in the white light emitting quantum dot of the present invention is not particularly limited as long as the linking group is attached to the shell and can be connected to the light emitting group or the spacer, for example, a thiol group, a carboxyl group, an amine group, or a phosphine group. And at least one group selected from the group consisting of phosphide groups can be used. Preferably the linking group is a thiol group.
또한 본 발명의 백색 발광 양자점에서는 상기 발광그룹과 연결그룹 사이에 스페이서를 더욱 포함할 수 있다. 상기 스페이서는 코어/쉘 구조체에 부착될 수 있는 발광그룹을 개수를 늘려주고, 백색 발광 양자점 제조시 발광물질을 포함한 리간드의 용매에 대한 분산을 용이하게 할 수 있다. 구체적으로 상기 스페이서는 치환되거나 치환되지 않은 포화 또는 불포화 C1~C30의 알킬기, C3~C40의 시클로알킬기, Si1~Si30의 실란이 사용될 수 있으나 이에 한정되는 것은 아니다.In addition, the white light emitting quantum dot of the present invention may further include a spacer between the light emitting group and the connecting group. The spacers may increase the number of light emitting groups that may be attached to the core / shell structure, and may facilitate dispersion of a ligand including a light emitting material into a solvent when preparing white light emitting quantum dots. Specifically, the spacer may be substituted or unsubstituted saturated or unsaturated C 1 ~ C 30 alkyl group, C 3 ~ C 40 cycloalkyl group, Si 1 ~ Si 30 silane may be used, but is not limited thereto.
바람직하기로 본 발명에서 발광그룹, 스페이서 및 연결그룹을 모두 포함하며, 일예로 하기와 같은 구조일 수 있다. 하기 구조들에서 -SH의 H 부분이 코어/쉘 구조체와 결합하는 부분이다.Preferably, the present invention includes all of the light emitting group, the spacer and the linking group, for example, may have a structure as follows. In the following structures, the H portion of -SH is a portion that bonds with the core / shell structure.
400 이상 500 미만 nm 영역대의 빛을 발광하기에 적합한 구조:Structures suitable for emitting light in the region of 400 to less than 500 nm:
500 이상 800 이하 nm 영역대의 빛을 발광하기에 적합한 구조:Structure suitable for emitting light in the region of 500 to 800 nm
본 발명에서 리간드에 발광그룹을 포함한 전체 백색 발광 양자점의 크기는 임의로 조절 가능하며, 바람직하기로는 5 내지 30 nm, 더욱 바람직하기로는 10-20 nm인 것이 좋다. 또한 본 발명에서 코어/쉘 구조체와 발광그룹의 발광세기는 임의로 조절가능하며 바람직하기로는 본 발명에서 보색관계에 있는 코어/쉘 구조체와 발광그룹의 발광강도비는 그 차이가 30% 이내인 것이 바람직하다. 즉, 400 이상 500 미만 nm 영역대의 발광강도가 1일 때 500 이상 800 이하 nm 영역대의 발광강도는 0.7-1.3이 바람직하며, 0.7 이하 일 경우는 색순도가 Blue shift하게 되며, 1.3 이상일 경우는 색순도가 Red shift하게 되어 전체적으로 양자점이 백색 발광이 어려워 질 수 있다. 또한 500 이상 800 이하 nm 영역대의 발광강도가 1일 때 400 이상 500 미만 nm 영역대의 발광강도는 0.7-1.3인 것이 좋으며, 0.7 이하 일 경우는 색순도가 Red shift하게 되며, 1.3 이상일 경우는 색순도가 Blue shift하게 되어 전체적으로 양자점이 백색 발광이 어려워 질 수 있다.In the present invention, the size of the whole white light-emitting quantum dot including the light emitting group in the ligand can be arbitrarily adjusted, preferably 5 to 30 nm, more preferably 10-20 nm. In addition, in the present invention, the light emission intensity of the core / shell structure and the light emitting group can be arbitrarily adjusted. Preferably, the difference in the light emission intensity ratio of the core / shell structure and the light emitting group in the complementary color relationship is within 30%. Do. That is, when the emission intensity in the region of 400 to less than 500 nm is 1, the emission intensity of the region of 500 to 800 nm is preferably 0.7-1.3. When the intensity is 0.7 or less, the color purity is blue shifted. Red shifting may make it difficult to emit white light. In addition, when the emission intensity in the region of 500 to 800 nm is 1, the emission intensity of the region of 400 to 500 nm is preferably 0.7-1.3. When the intensity is 0.7 or less, the color purity is red shifted. As a result, the quantum dot may be difficult to emit white light.
하기 구조식 2는 본 발명의 구체적인 일예에 따른 백색 발광 양자점의 모식도를 나타낸 것으로, 발광물질이 400 이상 500 미만 nm 영역대의 빛을 발광하므로, 코어/쉘 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 크기의 구조체로서 코어는 CdSe, 쉘은 ZnS를 사용할 수 있다. Structural formula 2 shows a schematic diagram of a white light emitting quantum dot according to a specific example of the present invention, and since the light emitting material emits light in an area of 400 to less than 500 nm, the core / shell structure emits light in an area of 500 to 800 nm or less. As the structure of the size, the core may use CdSe and the shell may use ZnS.
[구조식 2] [Formula 2]
본 발명에 따른 백색 발광 양자점은 코어/쉘의 구조체가 분산된 용액에 발광그룹을 함유한 리간드를 가한 후, 교반하는 단계를 포함하여 제조될 수 있다. 상기에서 코어/쉘의 구조체의 제조는 공지의 방법들이 사용될 수 있음은 물론이며, 구체적으로 도 1에 기재된 합성방법을 따를 수 있다.The white light emitting quantum dots according to the present invention may be prepared by adding a ligand containing a light emitting group to a solution in which the structure of the core / shell is dispersed, followed by stirring. The preparation of the structure of the core / shell in the above can be used well known methods, of course, can be specifically followed the synthesis method described in FIG.
또한 발광그룹을 포함하는 리간드의 제조는 발광그룹에 연결그룹을 결합시키거나 또는 하기 반응식 1 및 2의 과정을 거쳐 스페이서를 발광그룹과 연결그룹 사이에 포함시켜 리간드를 제조할 수 있다. In addition, the ligand may be prepared by binding a linking group to the light emitting group or by including a spacer between the light emitting group and the linking group through the procedures of Schemes 1 and 2 below.
[반응식 1] Scheme 1
[반응식 2] Scheme 2
또한 코어/쉘의 구조체에 발광그룹을 함유한 리간드를 부착하는 방법에서 상기 교반은 상온 내지 100 ℃의 온도에서 0.1 내지 100시간 동안 이루어 질 수 있다.In addition, in the method of attaching a ligand containing a light-emitting group to the structure of the core / shell, the stirring may be performed at room temperature to 100 ℃ for 0.1 to 100 hours.
또한 본 발명은 상기 백색 발광 양자점을 이용한 발광소자(QLED) 및 이의 제조방법을 제공한다. 본 발명에서 상기 발광소자는 본 발명에 따른 상기 백색 발광 양자점의 사용하여 형성한 발광층을 제외하고는 다른 공지 기술이 적용될 수 있음은 물론이다.The present invention also provides a light emitting device (QLED) using the white light emitting quantum dots and a method of manufacturing the same. In the present invention, the light emitting device may be applied to other known technologies except for the light emitting layer formed by using the white light emitting quantum dots according to the present invention.
일예로 발광소자는 일실시예에 따르면 기판 - 음극 - 본 발명에 따른 백색 발광 양자점으로 형성한 발광층 - 양극이 순차적으로 형성될 수 있도록 구성할 수 있으며, 상기 음극과 발광층 사이에 전자 수송층을 더욱 형성할 수 있고, 발광층과 양극 사이에 정공수송층을 더욱 형성할 수도 있다. 또한 필요에 따라 전자수송층과 발광층 사이에 정공억제층을 더욱 포함할 수도 있으며, 각 층들 사이에 버퍼층을 형성할 수도 있다.For example, the light emitting device may be configured such that a substrate-a cathode-a light emitting layer formed of a white light emitting quantum dot according to the present invention-an anode may be sequentially formed, and an electron transport layer is further formed between the cathode and the light emitting layer. It is also possible to further form a hole transport layer between the light emitting layer and the anode. In addition, if necessary, a hole suppression layer may be further included between the electron transport layer and the light emitting layer, and a buffer layer may be formed between each layer.
본 발명에서 백색 발광 양자점을 이용한 발광소자(QLED) 통상적인 제작방법에 의하여 형성가능하며, 상기 발광층을 포함한 각각의 유기막의 두께는 30 내지 100 nm인 것으로 제조할 수 있다.In the present invention, a light emitting device (QLED) using a white light emitting quantum dot may be formed by a conventional manufacturing method, and the thickness of each organic film including the light emitting layer may be manufactured to be 30 to 100 nm.
본 발명에 따라 백색 발광 양자점을 사용하여 발광층으로 사용하는 경우, 예를 들어 전자수송 상기 유기 전계 발광 소자에서는 각 층 사이에 버퍼층이 형성될 수 있는 바, 이와 같은 버퍼층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 예를 들어 구리 프탈로시아닌(copper phthalocyanine), 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole), 폴리페닐렌비닐렌(polyphenylene vinylene), 또는 이들의 유도체를 사용할 수 있으나, 이에 한정되지 않는다.In the case of using a white light emitting quantum dot according to the present invention as a light emitting layer, for example, in the organic electroluminescent device for electron transport, a buffer layer may be formed between each layer, and as a material of such a buffer layer, Materials may be used, for example copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylene vinylene, or Derivatives thereof may be used, but are not limited thereto.
상기 정공수송층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 예를 들어 폴리트리페닐아민(polytriphenylamine)을 사용할 수 있으나, 이에 한정되지 않는다.As the material of the hole transport layer, a material commonly used may be used. For example, polytriphenylamine may be used, but is not limited thereto.
상기 전자수송층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 예를 들어 폴리옥사디아졸(polyoxadiazole)을 사용할 수 있으나, 이에 한정되지 않는다.As the material of the electron transport layer, a material commonly used may be used, for example, polyoxadiazole may be used, but is not limited thereto.
상기 정공억제층의 소재로는 통상적으로 사용되는 물질을 사용할 수 있으며, 예를 들어 LiF, BaF2 또는 MgF2 등을 사용할 수 있으나, 이에 한정되지 않는다.A material commonly used as the material of the hole suppression layer may be used, for example, LiF, BaF 2 or MgF 2 may be used, but is not limited thereto.
보다 구체적으로 본 발명의 발광소자는 도 2에 기재된 방법에 따라 제조될 수도 있다. More specifically, the light emitting device of the present invention may be manufactured according to the method described in FIG.
상기와 같이 제조된 본 발명에 따른 발광소자는 별도의 필터층을 구비하지 않고도 자체만으로 백색광을 발광할 수 있기 백색 발광 양자점으로 발광층을 형성하기 때문에 구조가 단순하면서도 안정성이 높으며, 종래의 발광소자에 비하여 우수한 색순도, 및 높은 발광효율을 가지게 된다.The light emitting device according to the present invention manufactured as described above can emit white light by itself without having a separate filter layer, so that the light emitting layer is formed of white light emitting quantum dots, so that the structure is simple and high in stability, compared to the conventional light emitting device. It has excellent color purity and high luminous efficiency.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
[합성예 1] 9-브로모-10-페닐안트라센의 합성(발광물질의 합성)Synthesis Example 1 Synthesis of 9-bromo-10-phenylanthracene (synthesis of luminescent material)
아르곤 또는 질소분위기하에서, 250 ml 들이 플라스크에, 2-나프탈렌보론산 4.2 g, 9-브로모안트라센 6.8 g, 테트라키스(트라이페닐포스핀)팔라듐(0) 0.6 g, 톨루엔 50 ml 및 탄산나트륨 8.4 g을 물 50 ml에 용해한 시킨 것을 넣고, 환류하면서 24시간 가열 교반하였다. 반응 후, 실온까지 냉각시켜 석출한 결정을 여과 분리하였다. 이를 톨루엔으로 재결정화하여, 7.5 g의 결정을 수득하였다.In an argon or nitrogen atmosphere, in a 250 ml flask, 4.2 g of 2-naphthalene boronic acid, 6.8 g of 9-bromoanthracene, 0.6 g of tetrakis (triphenylphosphine) palladium (0), 50 ml of toluene and 8.4 g of sodium carbonate Was dissolved in 50 ml of water, and the mixture was heated and stirred for 24 hours while refluxing. After the reaction, the mixture was cooled to room temperature and the precipitated crystals were separated by filtration. It was recrystallized from toluene to give 7.5 g of crystals.
아르곤 또는 질소분위기하에서, 250 ml 들이 플라스크에, 상기 결정 7.5 g과 탈수처리한 DMF(다이메틸폼아마이드) 100 ml를 넣고, 80 ℃로 가열하고, 원료를 용해시킨 후, 50 ℃에서 N-브로모석신산이미드 4.8 g을 가하여, 2시간 교반했다. 반응 종료 후, 정제수 200 ml에 반응액을 주입하여 석출한 결정을 여과 분리하였다. 이를 톨루엔으로 재결정화하여, 6.8g의 결정을 수득하였다.In an argon or nitrogen atmosphere, in a 250 ml flask, 7.5 g of the crystal and 100 ml of dehydrated DMF (dimethylformamide) were placed, heated to 80 ° C., the raw material was dissolved, and then N-brominated at 50 ° C. 4.8 g of succinimide was added and stirred for 2 hours. After the reaction was completed, the reaction solution was poured into 200 ml of purified water, and the precipitated crystals were separated by filtration. It was recrystallized from toluene to give 6.8 g of crystals.
[합성예 2]Synthesis Example 2
9-(10-브로모데실)-10-페닐안트라센 (스페이서 합성)9- (10-bromodesyl) -10-phenylanthracene (spacer synthesis)
9-브로모-10-페닐안트라센 8 g를 anhydrous diethyl ether 300 ml에 녹였다. 여기서 0 ℃에서 n-BuLi(2 M) 18 ml를 천천히 넣었다. 0 ℃에서 1시간 유지 후 1.10-다이브로모데켄 21.6 ml를 넣었다. 30 분 후 2시간 환류 교반하였다. 반응이 더 이상 진행되지 않으면 상온으로 냉각 후 증류수 80 ml를 넣었다. 유기층을 모으고 물층을 에틸에테르 40 ml로 3회 추출하였다. 무수황산마그네슘으로 수분제거 후 hexane을 이동상으로 컬럼분리 하여 연두색 오일상 9-(10-브로모데실)-10-페닐안트라센 5.7 g (50%)을 얻었다.8 g of 9-bromo-10-phenylanthracene was dissolved in 300 ml of anhydrous diethyl ether. 18 ml of n- BuLi (2M) was slowly added thereto at 0 ° C. After holding for 1 hour at 0 ° C., 21.6 ml of 1.10-Dibromodekene was added. After 30 minutes, the mixture was stirred at reflux for 2 hours. If the reaction did not proceed anymore, after cooling to room temperature, 80 ml of distilled water was added. The organic layer was collected and the water layer was extracted three times with 40 ml of ethyl ether. After water removal with anhydrous magnesium sulfate, hexane was separated by mobile phase to give 5.7 g (50%) of light green oily 9- (10-bromodesyl) -10-phenylanthracene.
1H NMR (CDCl3, 400 MHz): 8.32 (2H, d), 7.63 (2H, d), 7.59(9H, m), 3.92 (2H, t), 3.65 (2H, t), 1.70-1.68 (2H, m), 1.64-1.60 (4H, m), 1.52(10H, m) 1 H NMR (CDCl 3 , 400 MHz): 8.32 (2H, d), 7.63 (2H, d), 7.59 (9H, m), 3.92 (2H, t), 3.65 (2H, t), 1.70-1.68 ( 2H, m), 1.64-1.60 (4H, m), 1.52 (10H, m)
[합성예 3] 화합물 DJ-A-1 합성Synthesis Example 3 Synthesis of Compound DJ-A-1
9-(10-브로모데실)-10-페닐안트라센 4 g(1eq)와 싸이오우레아 1.3 g(2eq)를 무수에탄올 50 ml에 녹이고 4시간 환류 교반하였다. 여기에 6 M의 수산화나트륨 50 ml를 넣고 2시간 환류 교반하였다. 반응이 더 이상 진행되지 않으면 에탄올 제거 후 에틸 아세테이트 30 ml로 3 회 추출하였다. 브라인 용액으로 씻어준 후 무수황산마그네슘으로 수분제거 후 CHCl3을 이동상으로 컬럼분리하여 연두색 오일상 10-(10-phenylanthrace-9-yl)decane-1-thiol 1.4 g (39%)를 얻었다.4 g (1 eq) of 9- (10-bromodesyl) -10-phenylanthracene and 1.3 g (2 eq) of thiourea were dissolved in 50 ml of anhydrous ethanol and stirred under reflux for 4 hours. 50 ml of 6 M sodium hydroxide was added thereto, and the mixture was stirred under reflux for 2 hours. If the reaction did not proceed any more, ethanol was removed and extracted three times with 30 ml of ethyl acetate. After washing with brine solution, water was removed with anhydrous magnesium sulfate, and CHCl 3 was separated by mobile phase to give 1.4 g (39%) of light green oily 10- (10-phenylanthrace-9-yl) decane-1-thiol.
1H-NMR (CDCl3,Varian400MHz): δ 1.26-1.38 (6H, m), 1.43-1.46 (4H, m), 1.62-1.66 (2H, m), 1.85-1.90 (4H, m), 3.42 (2H, t, J=6.8Hz),3.64-3.69(2H,m),7.31-7.35(2H,m),7.40-7.42(2H,m),7.48-7.59(5H,m),7.66(2H,d,J=8.8Hz),8.33(2H,d,J=9.2Hz). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.26-1.38 (6H, m), 1.43-1.46 (4H, m), 1.62-1.66 (2H, m), 1.85-1.90 (4H, m), 3.42 ( 2H, t, J = 6.8 Hz), 3.64-3.69 (2H, m), 7.31-7.35 (2H, m), 7.40-7.42 (2H, m), 7.48-7.59 (5H, m), 7.06 (2H, d, J = 8.8 Hz), 8.33 (2H, d, J = 9.2 Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.72%,Rt=2.48min;MSCalcd.:426.24;MSFound426.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.72%, Rt = 2.48min; MSCalcd.: 426.24; MSFound426.2 [ M].
[합성예 4] 화합물 DJ-A-2 합성 Synthesis Example 4 Synthesis of Compound DJ-A-2
상기 합성예 1에서 합성예 3] 과정을 반복하였으며, 단 합성예 2에서 1.10-다이브로모데켄 대신 1,5-dibrompentane을 사용하였고, Pale yellow DJ-A-2를 합성하였다. Synthesis Example 3 was repeated in Synthesis Example 1, except that 1,5-dibrompentane was used instead of 1.10-dibromodeken in Synthesis Example 2, and Pale yellow DJ-A-2 was synthesized.
1H-NMR (CDCl3,Varian400MHz): δ 1.45 (1H, t, J=7.6Hz),1.74-1.81(4H,m),1.87-1.92(2H,m),2.60(2H,q,J=7.6Hz),3.66-3.70(2H,m),7.32-7.35(2H,m),7.40-7.42(2H,m),7.48-7.54(3H,m),7.55-7.59(2H,m),7.66(2H,d,J=8.4Hz),8.31(2H,d,J=8.8Hz). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.45 (1H, t, J = 7.6 Hz), 1.74-1.81 (4H, m), 1.87-1.92 (2H, m), 2.60 (2H, q, J = 7.6 Hz), 3.66-3.70 (2H, m), 7.32-7.35 (2H, m), 7.40-7.42 (2H, m), 7.48-7.54 (3H, m), 7.55-7.59 (2H, m), 7.06 (2H, d, J = 8.4 Hz), 8.31 (2H, d, J = 8.8 Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 10% [water+0.01% HFBA+1.0% IPA] and 90% [CH3CN+0.01%HFBA+1.0%IPA]to5%[water+0.01%HFBA+1.0%IPA]and95%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.52%,Rt=2.61min;MSCalcd.:356.16;MSFound356.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 10% [water + 0.01% HFBA + 1.0% IPA] and 90% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to5% [water + 0.01% HFBA + 1.0% IPA] and 95% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.52%, Rt = 2.61min; MSCalcd.: 356.16; MSFound356.2 [ M].
상기 합성예 3 및 4의 전체 반응모식도는 다음과 같다.The overall reaction schematic of Synthesis Examples 3 and 4 is as follows.
[합성예 5] 화합물 DJ-A-3 합성Synthesis Example 5 Synthesis of Compound DJ-A-3
상기 합성예 1에서 합성예 3의 과정을 반복하였으며, 단 합성예 1에서 9-bromo-10-phenyl anthracene 대신 9-(4-bromopheneyl)-10-phenylanthracene 사용하였고, 하얀색 고체 DJ-A-3를 합성하였다.In Synthesis Example 1, the procedure of Synthesis Example 3 was repeated, except that 9- (4-bromopheneyl) -10-phenylanthracene was used instead of 9-bromo-10-phenyl anthracene in Synthesis Example 1, and white solid DJ-A-3 was used. Synthesized.
1H-NMR (CDCl3,Varian400MHz): δ 1.32-1.45 (12H, m), 1.60-1.63 (2H, m), 1.75-1.78 (2H, m), 2.52 (2H, q, J=7.6Hz),2.75-2.79(2H,m),7.30-7.32(4H,m),7.35-7.41(4H,m),7.46-7.48(2H,m),7.53-7.61(3H,m),7.66-7.73(4H,m). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.32-1.45 (12H, m), 1.60-1.63 (2H, m), 1.75-1.78 (2H, m), 2.52 (2H, q, J = 7.6 Hz) 2.75-2.79 (2H, m), 7.30-7.32 (4H, m), 7.75-7.41 (4H, m), 7.46-7.48 (2H, m), 7.53-7.61 (3H, m), 7.6-7.73 ( 4H, m).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in10min).Purityis99.62%,Rt=3.94min;MSCalcd.:502.27;MSFound502.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in10min) .Purityis99.62%, Rt = 3.94min; MSCalcd.: 502.27; MSFound502.2 [M] .
[합성예 6] 화합물 DJ-A-4 합성Synthesis Example 6 Synthesis of Compound DJ-A-4
상기 합성예 5에서 1.10-다이브로모데켄 대신 1,5-dibrompentane을 사용하였고, Pale yellow 고체 DJ-A-4를 합성하였다.1,5-dibrompentane was used instead of 1.10-dibromodeken in Synthesis Example 5, and Pale yellow solid DJ-A-4 was synthesized.
1H-NMR (CDCl3,Varian400MHz): δ 1.39 (1H, t, J=7.6Hz),1.54-1.60(2H,m),1.73-1.82(2H,m),2.61(2H,q,J=7.6Hz),2.79-2.82(2H,m),7.31-7.33(4H,m),7.39-7.40(4H,m),7.47-7.49(2H,m),7.54-7.60(3H,m),7.67-7.73(4H,m). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.39 (1H, t, J = 7.6 Hz), 1.54-1.60 (2H, m), 1.73-1.82 (2H, m), 2.61 (2H, q, J = 7.6 Hz), 2.79-2.82 (2H, m), 7.31-7.33 (4H, m), 7.39-7.40 (4H, m), 7.47-7.49 (2H, m), 7.54-7.60 (3H, m), 7.07 -7.73 (4H, m).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 5% [water+0.01% HFBA+1.0% IPA] and 95% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.58%,Rt=2.85min;MSCalcd.:432.19;MSFound432.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 5% [water + 0.01% HFBA + 1.0% IPA] and 95% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.58%, Rt = 2.85min; MSCalcd.: 432.19; MSFound432.2 [ M].
상기 합성예 5 및 6의 전체 반응모식도는 다음과 같다.The overall reaction schematics of Synthesis Examples 5 and 6 are as follows.
[합성예 7] 화합물 DJ-A-5 합성Synthesis Example 7 Synthesis of Compound DJ-A-5
상기 합성예 1에서 합성예 3의 과정을 반복하였으며, 단 합성예 1에서 9-bromo-10-phenyl anthracene 대신 9-borom-10-(2-napthyl)anthracene 사용하였고, 노란색 고체 DJ-A-5를 합성하였다.In Synthesis Example 1, the procedure of Synthesis Example 3 was repeated, except that 9-brom-10- (2-napthyl) anthracene was used instead of 9-bromo-10-phenyl anthracene in Synthesis Example 1, yellow solid DJ-A-5 Was synthesized.
1H-NMR (CDCl3,Varian400MHz): δ 1.32-1.42 (12H, m), 1.59-1.65 (2H, m), 1.75-1.81 (2H, m), 2.54 (2H, q, J=7.6Hz),2.79(2H,t,J=7.6Hz),7.28-7.35(4H,m),7.39-7.43(4H,m),7.57-7.62(3H,m),7.69-7.76(4H,m),7.90-7.93(1H,m),7.98(1H,s),8.01-8.04(1H,m),8.07(1H,d,J=8.4Hz). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.32-1.42 (12H, m), 1.59-1.65 (2H, m), 1.75-1.81 (2H, m), 2.54 (2H, q, J = 7.6 Hz) , 2.79 (2H, t, J = 7.6 Hz), 7.28-7.35 (4H, m), 7.39-7.43 (4H, m), 7.57-7.62 (3H, m), 7.69-7.76 (4H, m), 7.90 -7.93 (1H, m), 7.98 (1H, s), 8.01-8.04 (1H, m), 8.07 (1H, d, J = 8.4 Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in10min).Purityis99.84%,Rt=4.95min;MSCalcd.:552.29;MSFound552.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in10min) .Purityis99.84%, Rt = 4.95min; MSCalcd.: 552.29; MSFound552.2 [M] .
합성예 7의 전체 반응모식도는 다음과 같다.The overall reaction schematic of Synthesis Example 7 is as follows.
[합성예 8] 화합물 DJ-A-6 합성 Synthesis Example 8 Synthesis of Compound DJ-A-6
상기 합성예 7의 과정을 반복하였으며, 단 합성예 2에서 1.10-다이브로모데켄 대신 1,5-dibrompentane을 사용하였고, 노란색 고체 DJ-A-6를 합성하였다. The procedure of Synthesis Example 7 was repeated, except that 1,5-dibrompentane was used instead of 1.10-dibromodeken in Synthesis Example 2, and yellow solid DJ-A-6 was synthesized.
1H-NMR (CDCl3,Varian400MHz): δ 1.39 (1H, t, J=7.2Hz),1.62-1.54(2H,m),1.85-1.71(4H,m),2.61(2H,q,J=7.2Hz),2.83-2.79(2H,m),7.36-7.28(4H,m),7.42(4H,s),7.63-7.59(3H,m),7.76-7.70(4H,m),7.93-7.91(1H,m),7.98(1H,s),8.04-8.02(1H,m),8.07(1H,d,J=8.4Hz). 1 H-NMR (CDCl 3 , Varian 400 MHz): δ 1.39 (1H, t, J = 7.2 Hz), 1.62-1.54 (2H, m), 1.85-1.71 (4H, m), 2.61 (2H, q, J = 7.2 Hz), 2.83-2.79 (2H, m), 7.36-7.28 (4H, m), 7.42 (4H, s), 7.63-7.59 (3H, m), 7.76-7.70 (4H, m), 7.93-7.91 (1H, m), 7.98 (1H, s), 8.04-8.02 (1H, m), 8.07 (1H, d, J = 8.4 Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.76%,Rt=2.23min;MSCalcd.:482.21;MSFound482.2[M].LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH 3 CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.76%, Rt = 2.23min; MSCalcd.: 482.21; MSFound482.2 [ M].
합성예 8의 전체 반응모식도는 다음과 같다.The overall reaction schematic of Synthesis Example 8 is as follows.
[합성예 9] CdSe/ZnS 합성Synthesis Example 9 CdSe / ZnS Synthesis
도 3의 모식도에 게제된 방법으로 제조하였다. 보다 구체적으로, 카드뮴 산화물의 0.4 mmol CDO (99.99 %), 아연 아세테이트 4 mmol (99.9 %, 분말)과 올레산 (OA)의 5.58 mL를 100 mL의 3 구 플라스크에 넣고 질소분위기 하에서 150 ℃로 30분 동안 가열하였다. 다음 1 octadecene (ODE) 20 mL를 넣고 온도를 310 ℃로 증가 하였다. trioctylphosphine 3 mL(TOP), 셀레늄 1 mmol (SE), 황 (S) 2.3 mmol을 빠르게 플라스크에 주입 하였다. 반응 온도를 10분 동안 310 ℃로 유지한 후 상온으로 냉각하였다. 생성된 양자점을 클로로포름 20 mL와 과량의 아세톤으로 정제하였다(3 회 이상). 양자점을 5.0 ㎎/mL의 농도로 클로로포름 또는 헥산에 redispersed 하였다.It manufactured by the method shown in the schematic diagram of FIG. More specifically, 0.4 mmol CDO (99.99%) of cadmium oxide, 4 mmol (99.9%, powder) of zinc acetate and 5.58 mL of oleic acid (OA) were placed in a 100 mL three-necked flask at 150 ° C. for 30 minutes under nitrogen atmosphere. Heated during. Then put 1 mL of 1 octadecene (ODE) and increase the temperature to 310 ℃. 3 mL (TOP) of trioctylphosphine, 1 mmol of selenium (SE), and 2.3 mmol of sulfur (S) were rapidly injected into the flask. The reaction temperature was maintained at 310 ℃ for 10 minutes and then cooled to room temperature. The resulting quantum dots were purified with 20 mL of chloroform and excess acetone (at least 3 times). Quantum dots were redispersed in chloroform or hexane at a concentration of 5.0 mg / mL.
[합성예 10] ZnO nanoparticles 합성Synthesis Example 10 Synthesis of ZnO nanoparticles
ZnO 나노입자는 전자수송층으로 사용되며, ZnO 나노입자합성은 다음의 방법을 사용하였다. 즉 Zinc acetate를 dimethyl sulfoxide(DMSO, 0.5 M) 30 mL 넣고, 에탄올에 테트라메틸암모늄하이드(TMAH, 0.55 M) 혼합물을 1 시간 동안 교반하였다. 이후 원심분리하여 에탄올과 과도한 아세톤 혼합물로 세척하였다. 합성된 ZnO 나노입자는 30 ㎎/mL의 농도로 에탄올에 분산 및 LED 제조 장치에 대한 전자수송층 재료로 사용하였다.ZnO nanoparticles are used as the electron transport layer, ZnO nanoparticle synthesis was used the following method. That is, 30 mL of zinc acetate dimethyl sulfoxide (DMSO, 0.5 M) was added, and tetramethylammonium hydride (TMAH, 0.55 M) mixture was stirred in ethanol for 1 hour. It was then centrifuged and washed with ethanol and excess acetone mixture. The synthesized ZnO nanoparticles were dispersed in ethanol at a concentration of 30 mg / mL and used as an electron transport layer material for the LED manufacturing apparatus.
[실시예 1] 백색 발광 양자점 합성(Ligand Exchange)Example 1 White Light Emitting Quantum Dot Synthesis (Ligand Exchange)
도 4와 같은 방법으로 백색 발광 양자점을 합성하였다. 즉 상기 합성예 9에서 제조한 양자점으로 CdSe/ZnS 용액(0.2 ml, 5 mg/ml in hexane)을 제조하고, 상기 합성예 3에서 제조한 발광물질(0.5 ml, 3 mM in hexane)을 첨가하고 30분간 상온에서 교반하였다. 반응플라스크에 methanol을 가하여 고체화 시킨 후에 원심분리하여 백색 발광 양자점을 제조하였다. Ligand exchange 결과는 IR DATA로 확인하였고, UV 흡수 및 PL 스펙트라를 확인하였다. 도 5는 상기 제조된 백색 발광 양자점의 FT-IR스펙트라이며, (a)는 합성예 3(DJ-A-1)를 (b)는 실시예 1(DJ-A-1 + CdSe/ZnS)을 측정한 것이다. 또한 도 6은 UV 흡수 및 PL 스펙트라이며, (a)는 합성예 8(QDs), (b)는 합성예 3 및 (c)는 실시예 1을 측정한 것이다.In the same manner as in FIG. 4, white light-emitting quantum dots were synthesized. That is, a CdSe / ZnS solution (0.2 ml, 5 mg / ml in hexane) was prepared using the quantum dots prepared in Synthesis Example 9, and a light emitting material (0.5 ml, 3 mM in hexane) prepared in Synthesis Example 3 was added thereto. Stirred at room temperature for 30 minutes. Methanol was added to the reaction flask to solidify and centrifuged to produce white light-emitting quantum dots. Ligand exchange results were confirmed by IR DATA, UV absorption and PL spectra. 5 is an FT-IR spectra of the prepared white light emitting quantum dots, (a) shows Synthesis Example 3 (DJ-A-1), and (b) shows Example 1 (DJ-A-1 + CdSe / ZnS). It is measured. 6 is UV absorption and PL spectra, (a) shows Synthesis Example 8 (QDs), (b) shows Synthesis Example 3 and (c) Example 1;
[실시예2] QD-LED 소자 제작Example 2 Fabrication of QD-LED Device
QD-LED는 인듐주석산화물이 코팅된 유리(ITO/유리) 기판(sheet resistance <10Ω/□)에 제작하였다. ITO 유리는 1 분간 초음파를 사용하여 아세톤과 이소프로필 알코올로 세척하였고, 아르곤/산소 1분간 플라즈마 처리하였다. 또한 poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS, Baytron P AI 4083) 9:1 부피비로 이소프로필 알코올로 희석 한 후, 30초간 4,000 rpm으로 스핀 코팅했다. PEDOT:PSS 코팅된 ITO 유리를 대기 중에 10 분 동안 120 ℃로 핫 플레이트로 베이킹 해 주었다. QD-LED was fabricated on an indium tin oxide coated glass (ITO / glass) substrate (sheet resistance <10Ω / □). The ITO glass was washed with acetone and isopropyl alcohol using ultrasonic waves for 1 minute and plasma treated with argon / oxygen for 1 minute. Furthermore, poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS, Baytron P AI 4083) was diluted with isopropyl alcohol in a 9: 1 volume ratio and spin-coated at 4,000 rpm for 30 seconds. PEDOT: PSS coated ITO glass was baked in a hot plate at 120 ° C. for 10 minutes in air.
코팅된 기판을 N2로 채워진 글로브 박스에서 폴리비닐카바졸(PVK, 클로로벤젠의 0.01 g/mL)을 30초 동안 3,000 rpm으로 스핀코팅 한 후, 30 분 동안 180 ℃ 에서 기판을 베이킹 처리하여, 홀 수송층으로 사용하였다. 발광층으로는 상기 실시예 1에서 제조한 백색 발광 양자점 용액을 20초 동안 1,500 rpm 스핀 코팅하였다. The coated substrate was spin-coated with polyvinylcarbazole (PVK, 0.01 g / mL of chlorobenzene) at 3,000 rpm for 30 seconds in a glove box filled with N 2 , followed by baking the substrate at 180 ° C. for 30 minutes, Used as a hole transport layer. As a light emitting layer, the white light emitting quantum dot solution prepared in Example 1 was spin coated for 1,500 rpm for 20 seconds.
다음, ZnO 나노입자(30 ㎎/mL) 용액을 30초 동안 1,500 rpm으로 스핀코팅하고, 기판은 150 ℃에서 30 분간 베이킹하였다. 마지막으로, 이러한 다층 박막기판을 고진공 증착 챔버(배경압력 ~ 5 × 10-6torr)에 넣고 알루미늄 cathode(100 nm의 두께)를 증착하였다.Next, the ZnO nanoparticle (30 mg / mL) solution was spin coated at 1,500 rpm for 30 seconds, and the substrate was baked at 150 ° C. for 30 minutes. Finally, the multilayer thin film substrate was placed in a high vacuum deposition chamber (background pressure ˜5 × 10 −6 torr) and an aluminum cathode (100 nm thick) was deposited.
[비교예 1] Orange QD-LED 소자 제작[Comparative Example 1] Fabrication of Orange QD-LED Device
실시예 2에서 백색 발광 양자점 대신 상기 합성예 9의 Orange 발광 양자점을 발광층으로 사용하였다.In Example 2, instead of the white light emitting quantum dots, Orange light emitting quantum dots of Synthesis Example 9 was used as the light emitting layer.
[비교예 2] Blue OLED 소자 제작[Comparative Example 2] Blue OLED Device Fabrication
실시예 2에서 백색 발광 양자점 대신 상기 합성예 3의 DJ-A-1을 발광층으로 사용하였다.In Example 2, DJ-A-1 of Synthesis Example 3 was used as a light emitting layer instead of the white light emitting quantum dots.
상기 제조된 실시예 2와 비교예 1 및 2의 전계발광(EL)소자의 IVL 특성과 EL 스펙트럼을 확인하였다. 최대발광세기 2,000 cd/m2 이며, 각각 소자의 발광효율은 하기 표 1 및 그래프 7에 나타냈다. 도 7의 (a)는 Current density and luminance versus driving voltage를 나타낸 것이고, (b)는 luminance power efficiency versus luminance를 나타낸 것이다.The IVL characteristics and EL spectra of the electroluminescent (EL) devices of Example 2 and Comparative Examples 1 and 2 prepared above were confirmed. The maximum light emission intensity is 2,000 cd / m 2, and the light emission efficiency of each device is shown in Table 1 and Graph 7 below. (A) of FIG. 7 shows current density and luminance versus driving voltage, and (b) shows luminance power efficiency versus luminance.
표 1
Table 1
Color of LED | VT(V) | λmax(nm) | FWHM(nm) | Lmax(cd/m2) | ηA(cd/A) |
실시예2 | 4.2 | 470, 595 | 40 | 2015 | 0.19 |
비교예1 | 4.9 | 590 | 39.2 | 1790 | 1.27 |
비교예2 | 4.4 | 460 | 27.8 | 1502 | 0.29 |
Color of LED | V T (V) | λ max (nm) | FWHM (nm) | L max (cd / m 2 ) | η A (cd / A) |
Example 2 | 4.2 | 470, 595 | 40 | 2015 | 0.19 |
Comparative Example 1 | 4.9 | 590 | 39.2 | 1790 | 1.27 |
Comparative Example 2 | 4.4 | 460 | 27.8 | 1502 | 0.29 |
또한 상기 실시예 2 및 비교예 1 및 2에서 제조한 소자의 정규화 된 전계발광스펙트럼을 측정하였다. 그 결과는 도 8에 표시하였다. 도 8에서 (b)는 비교예 1의 광원, (c)는 비교예 2의 광원, (d) 실시예 2의 광원으로 사용한 LED의 Electroluminecence(EL) spectra이며, 반치폭(FWHM)은 각각 Blue, Orange와 white가 27.8 nm, 39.2nm, (42.2nm, 39.3nm)이었다. In addition, the normalized electroluminescence spectra of the devices prepared in Example 2 and Comparative Examples 1 and 2 were measured. The results are shown in FIG. In Figure 8 (b) is a light source of Comparative Example 1, (c) is a light source of Comparative Example 2, (d) is an Electroluminecence (EL) spectra of the LED used as the light source of Example 2, the full width at half maximum (FWHM), respectively, Orange and white were 27.8 nm, 39.2 nm, and (42.2 nm, 39.3 nm).
본 발명에 따른 백색 발광 양자점은 별도의 필터층을 구비하지 않고도 자체만으로 백색광을 발광할 수 있기 때문에 발광소자에 적용시 구조가 단순하면서도 종래의 발광소자에 비하여 우수한 색순도, 고안정성 및 높은 발광효율을 가지게 할 수 있다.Since the white light emitting quantum dots according to the present invention can emit white light by itself without providing a separate filter layer, the white light emitting quantum dots have a simple structure when applied to the light emitting device and have excellent color purity, high stability and high luminous efficiency compared to the conventional light emitting device. can do.
Claims (17)
- 코어/쉘의 구조체와 쉘의 표면에 부착된 리간드를 포함하는 양자점으로서,A quantum dot comprising a structure of the core / shell and a ligand attached to the surface of the shell,상기 리간드가 발광그룹을 포함하며,The ligand comprises a light emitting group,상기 코어/쉘 구조체와 리간드의 발광그룹은 서로 보색관계인 색을 발광하여 전체적으로 백색광을 발광하는 것을 특징으로 하는 백색 발광 양자점코어/쉘의 구조체와 쉘의 표면에 부착된 리간드를 포함하는 양자점.The luminescent group of the core / shell structure and the ligand is a quantum dot comprising a structure of the white light emitting quantum dot core / shell and a ligand attached to the surface of the shell, characterized in that the light emitting a color complementary to each other to emit white light as a whole.
- 제1항에 있어서,The method of claim 1,상기 코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하거나 또는 500 이상 800 이하 nm 영역대의 빛을 발광하며,The core / shell structure emits light in a range of 400 to 500 nm or less, or emits light in a range of 500 to 800 nm or less,코어/쉘의 구조체는 400 이상 500 미만 nm 영역대의 빛을 발광하는 경우 발광그룹은 500 이상 800 이하 nm 영역대의 빛을 발광하며, 코어/쉘의 구조체는 500 이상 800 이하 nm 영역대의 빛을 발광하는 경우 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하여 전체적으로 백색광을 발광하는 양자점.When the structure of the core / shell emits light in the region of 400 to less than 500 nm, the light emitting group emits light in the region of 500 to 800 nm and the structure of the core / shell emits light in the region of 500 to 800 nm. In this case, the light emitting group emits white light by emitting light in the region of 400 or more and less than 500 nm.
- 제1항에 있어서,The method of claim 1,상기 리간드는 발광그룹 및 쉘과 발광그룹을 연결하는 연결그룹을 포함하는 것을 특징으로 하는 백색광을 발광하는 양자점.The ligand is a quantum dot for emitting white light, characterized in that it comprises a light emitting group and a linking group connecting the light emitting group with the shell.
- 제3항에 있어서,The method of claim 3,상기 리간드는 상기 연결그룹과 발광그룹 사이에 스페이서를 더욱 포함하는 것을 특징으로 하는 백색광을 발광하는 양자점.The ligand is a quantum dot for emitting white light, characterized in that further comprising a spacer between the linking group and the light emitting group.
- 제1항에 있어서,The method of claim 1,상기 발광그룹은 하기 그룹들로 이루어지는 군으로부터 1종 이상 선택되는 것을 특징으로 하는 백색광을 발광하는 양자점:The light emitting group is a quantum dot for emitting white light, characterized in that at least one selected from the group consisting of:상기 FL1 내지 FL38, 또는 PL1 내지 PL59에서 *는 연결부분이며, 여기서 연결부분은 괄호안의 치환위치 중 하나 이상에 연결될 수 있으며, R1 내지 R16은 각각 독립적으로 수소; 중수소; 할로겐; 아미노기; 니트릴기; 니트로기; 중수소, 할로겐, 아미노기, 니트릴기, 니트로기로 치환되거나 치환되지 않은 C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C3~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C3~C40의 헤테로아릴기 ; C3~C40의 아르알킬기 ; C3~C40의 아릴옥시기 ; C3~C40의 아릴싸이오기 또는 Si이다. 임의적으로 R1 내지 R16에서 선택된 2개 이상은 서로 결합하여 고리를 형성할 수 있으며 S, N, O, Si가 포함될 수 있다.In FL1 to FL38, or PL1 to PL59, * is a linking moiety, wherein the linking moiety may be connected to one or more of the substitution positions in parentheses, and R1 to R16 are each independently hydrogen; heavy hydrogen; halogen; Amino group; Nitrile group; Nitro group; C 1 -C 40 alkyl group which is unsubstituted or substituted with deuterium, halogen, amino group, nitrile group, nitro group; C 2 -C 40 alkenyl group; C 1 ~ C 40 Alkoxy group; C 3 -C 40 cycloalkyl group; C 3 ~ C 40 Heterocycloalkyl group; C 6 -C 40 aryl group; C 3 ~ C 40 heteroaryl group; An aralkyl group of C 3 ~ C 40; C 3 -C 40 aryloxy group; C 3 -C 40 arylthio group or Si. Optionally, two or more selected from R1 to R16 may combine with each other to form a ring and may include S, N, O, and Si.
- 제1항에 있어서,The method of claim 1,상기 발광그룹은 400 이상 500 미만 nm 영역대의 빛을 발광하는 것을 특징으로 하는 백색광을 발광하는 양자점.The light emitting group is a quantum dot for emitting white light, characterized in that for emitting light in the region of 400 to less than 500 nm.
- 제1항에 있어서,The method of claim 1,상기 발광그룹은 500 이상 800 이하 nm 영역대의 빛을 발광하는 것을 특징으로 하는 백색광을 발광하는 양자점.The light emitting group is a quantum dot for emitting white light, characterized in that for emitting light of 500 to 800 nm region.
- 제2항에 있어서,The method of claim 2,상기 연결그룹은 씨올(thiol)기, 카르복시기, 아민기, 포스핀(phospine)기, 및 포스파이드(phosphide)기로 이루어지는 군으로부터 1종 이상 선택되는 것을 특징으로 하는 백색광을 발광하는 양자점.The linking group is a quantum dot emitting white light, characterized in that at least one selected from the group consisting of a thiol group, a carboxy group, an amine group, a phosphine group, and a phosphide group.
- 제4항에 있어서,The method of claim 4, wherein상기 스페이서는 치환되거나 치환되지 않은 포화 또는 불포화 C1~C30의 알킬기, C3~C40의 시클로알킬기, Si1~Si30의 실란인 것을 특징으로 하는 백색광을 발광하는 양자점.The spacer is a quantum dot that emits white light, characterized in that the substituted or unsubstituted saturated or unsaturated C 1 ~ C 30 alkyl group, C 3 ~ C 40 cycloalkyl group, Si 1 ~ Si 30 silane.
- 제4항에 있어서,The method of claim 4, wherein상기 리간드는 하기 구조들로 표현되는 것들 중 하나인 것을 특징으로 하는 백색광을 발광하는 양자점:A quantum dot emitting white light, characterized in that the ligand is one of those represented by the following structures:상기 구조들에서 -SH의 H 부분이 코어/쉘 구조체와 결합하는 부분이다.In the above structures, the H portion of -SH is a portion that bonds with the core / shell structure.
- 제4항에 있어서,The method of claim 4, wherein상기 리간드는 하기 구조들로 표현되는 것들 중 하나인 것을 특징으로 하는 백색광을 발광하는 양자점:A quantum dot emitting white light, characterized in that the ligand is one of those represented by the following structures:상기 구조들에서 -SH의 H 부분이 코어/쉘 구조체와 결합하는 부분이다.In the above structures, the H portion of -SH is a portion that bonds with the core / shell structure.
- 제1항에 있어서,The method of claim 1,상기 양자점의 입경은 5 내지 30 nm인 것을 특징으로 하는 백색광을 발광하는 양자점.Particle diameter of the quantum dot is a quantum dot emitting white light, characterized in that 5 to 30 nm.
- 제1항에 있어서,The method of claim 1,상기 코어/쉘 구조체의 발광강도가 1일 때 보색관계에 있는 리간드의 발광그룹의 발광강도는 0.7-1.3인 것을 특징으로 하는 백색광을 발광하는 양자점.And a luminous intensity of the luminous group of the ligand in complementary relation when the luminous intensity of the core / shell structure is 1 is 0.7-1.3.
- 코어/쉘의 구조체가 분산된 용액에 발광그룹을 함유한 리간드를 가한 후, 교반하는 단계를 포함하는 것을 특징으로 하는 제1항 기재의 백색 발광 양자점의 제조방법.A method for producing a white light-emitting quantum dot according to claim 1, comprising adding a ligand containing a light-emitting group to a solution in which the structure of the core / shell is dispersed, and then stirring.
- 제14항에 있어서,The method of claim 14,상기 교반은 상온 내지 100 ℃의 온도에서 0.1 내지 100시간 동안 이루어지는 것을 특징으로 하는 백색 발광 양자점의 제조방법.The stirring is a method of producing a white light emitting quantum dot, characterized in that made for 0.1 to 100 hours at a temperature of room temperature to 100 ℃.
- 발광소자에 있어서, In the light emitting device,발광물질로 제1항 기재의 백색 발광 양자점을 포함하는 것을 특징으로 하는 발광소자.A light emitting device comprising a white light emitting quantum dot of claim 1 as a light emitting material.
- 발광소자의 제조방법에 있어서, In the manufacturing method of the light emitting device,제1항 기재의 백색 발광 양자점으로 발광층을 형성하는 단계를 포함하는 것을 특징으로 하는 발광소자의 제조방법.A method of manufacturing a light emitting device comprising the step of forming a light emitting layer from the white light emitting quantum dots of claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380045599.4A CN104603231A (en) | 2012-08-29 | 2013-08-29 | White light-emitting quantum dot |
JP2015529678A JP6396297B2 (en) | 2012-08-29 | 2013-08-29 | White light emitting quantum dots |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0095010 | 2012-08-29 | ||
KR20120095010 | 2012-08-29 | ||
KR1020130102868A KR102243668B1 (en) | 2012-08-29 | 2013-08-29 | White Color Light Emitting Quantum Dot |
KR10-2013-0102868 | 2013-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014035159A1 true WO2014035159A1 (en) | 2014-03-06 |
Family
ID=50183892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/007772 WO2014035159A1 (en) | 2012-08-29 | 2013-08-29 | White light-emitting quantum dot |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014035159A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9312500B2 (en) | 2012-08-31 | 2016-04-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
CN106164214A (en) * | 2014-02-24 | 2016-11-23 | 中央科学研究中心 | There is the luminous hybrid nano-material that aggregation inducing type is launched |
CN106957650A (en) * | 2017-03-22 | 2017-07-18 | 深圳市华星光电技术有限公司 | A kind of preparation method for modifying quantum dot and modification quantum dot film |
US9902687B2 (en) | 2014-09-19 | 2018-02-27 | Idemitsu Kosan Co., Ltd. | Compound |
US9947879B2 (en) | 2013-03-15 | 2018-04-17 | Idemitsu Kosan Co., Ltd. | Anthracene derivative and organic electroluminescence element using same |
CN111933673A (en) * | 2020-08-17 | 2020-11-13 | 京东方科技集团股份有限公司 | Display panel, manufacturing method thereof and display device |
-
2013
- 2013-08-29 WO PCT/KR2013/007772 patent/WO2014035159A1/en active Application Filing
Non-Patent Citations (5)
Title |
---|
AHN, JIN H. ET AL.: "White organic light-emitting devices incorporating nanoparticles of II VI semiconductors.", NANOTECHNOLOGY., vol. 18, no. 335202, 2007, pages 1 - 5 * |
KRZYSZTOF, DANEL ET AL.: "Blue-emitting anthracenes with end-capping diarylamines.", CHEMISTRY OF MATERIALS., vol. 14, 2002, pages 3860 - 3865 * |
PARK, JONG HYEOK ET AL.: "White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer.", NANOTECHNOLOGY., vol. 15, 2004, pages 1217 - 1220 * |
PARK, SANGHYUK ET AL.: "A White-light-emitting molecule: frustrated energy transfer between constituent emitting centers.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 14043 - 14049 * |
ROGACH, ANDREY L. ET AL.: "Light-emitting diodes with semiconductor nanocrystals.", ANGEWANDTE CHEMIE INTERNATIONAL EDITION., vol. 47, 2008, pages 6538 - 6549 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9312500B2 (en) | 2012-08-31 | 2016-04-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US9947879B2 (en) | 2013-03-15 | 2018-04-17 | Idemitsu Kosan Co., Ltd. | Anthracene derivative and organic electroluminescence element using same |
CN106164214A (en) * | 2014-02-24 | 2016-11-23 | 中央科学研究中心 | There is the luminous hybrid nano-material that aggregation inducing type is launched |
US10519365B2 (en) | 2014-02-24 | 2019-12-31 | Centre National De La Recherche Scientifique | Luminescent hybrid nanomaterials with aggregation induced emission |
CN106164214B (en) * | 2014-02-24 | 2020-03-06 | 中央科学研究中心 | Luminescent hybrid nanomaterials with aggregation-induced emission |
US9902687B2 (en) | 2014-09-19 | 2018-02-27 | Idemitsu Kosan Co., Ltd. | Compound |
US10118889B2 (en) | 2014-09-19 | 2018-11-06 | Idemitsu Kosan Co., Ltd. | Compound |
US10435350B2 (en) | 2014-09-19 | 2019-10-08 | Idemitsu Kosan Co., Ltd. | Organic electroluminecence device |
CN106957650A (en) * | 2017-03-22 | 2017-07-18 | 深圳市华星光电技术有限公司 | A kind of preparation method for modifying quantum dot and modification quantum dot film |
CN111933673A (en) * | 2020-08-17 | 2020-11-13 | 京东方科技集团股份有限公司 | Display panel, manufacturing method thereof and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014035159A1 (en) | White light-emitting quantum dot | |
WO2020045924A1 (en) | Novel compound and organic light emitting diode using same | |
WO2013009079A1 (en) | Triphenylene-based compound and organic electroluminescent diode using same | |
WO2012173370A2 (en) | Novel compounds and organic electronic device using same | |
WO2011115378A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2011010843A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2010114266A2 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2011010842A2 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2011139125A2 (en) | Phenanthrocarbazole compound, and organic electroluminescent device using same | |
WO2013055132A2 (en) | Compound for organic electrical device, organic electrical device using same, and electronic device thereof | |
WO2010126234A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2013109030A1 (en) | Organic electroluminescent device comprising the organic electroluminescent compounds | |
WO2010131855A2 (en) | Compound containing a 5-membered heterocycle and organic light-emitting diode using same, and terminal for same | |
WO2010005266A2 (en) | A new anthracene derivative and an organic electronic device using the same | |
WO2018174682A1 (en) | Heterocyclic compound and organic light emitting element comprising same | |
WO2011010839A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2011108901A9 (en) | Spiro-carbazole compound comprising a spiro skeleton, and an organic electronic element using the same and a terminal thereof | |
JP2016505661A (en) | Luminescent quantum dot | |
WO2010114262A2 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
WO2010005268A2 (en) | A new anthracene derivative and an organic electronic device using the same | |
KR102243668B1 (en) | White Color Light Emitting Quantum Dot | |
WO2014084612A1 (en) | Novel compound and organic electronic element using same | |
WO2010058946A2 (en) | Novel chrysene derivatives and organic electrical device using the same | |
WO2017150930A1 (en) | Novel compound and organic light-emitting device including same | |
WO2019143031A1 (en) | Compound for organic electric element, organic electric element using same, and electronic apparatus employing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832538 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529678 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832538 Country of ref document: EP Kind code of ref document: A1 |