WO2014034584A1 - Organic electroluminescent element, illuminator, and display device - Google Patents
Organic electroluminescent element, illuminator, and display device Download PDFInfo
- Publication number
- WO2014034584A1 WO2014034584A1 PCT/JP2013/072664 JP2013072664W WO2014034584A1 WO 2014034584 A1 WO2014034584 A1 WO 2014034584A1 JP 2013072664 W JP2013072664 W JP 2013072664W WO 2014034584 A1 WO2014034584 A1 WO 2014034584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- organic
- carbon atoms
- atom
- Prior art date
Links
- 0 CC(c1cccc*1C)=O Chemical compound CC(c1cccc*1C)=O 0.000 description 8
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/10—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
Definitions
- the present invention relates to an organic electroluminescence element, an illuminating device, and a display device, and more particularly, to a compound that can be preferably used for an organic electroluminescence element.
- ELD electroluminescence display
- an inorganic electroluminescence element and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given.
- Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
- an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
- Organic EL elements that use phosphorescence emission can in principle achieve light emission efficiency about 4 times that of elements that use previous fluorescence emission. Research and development of electrodes and electrodes are conducted all over the world.
- the phosphorescence emission method is a method having a very high potential, but in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center, in particular, recombination inside the emission layer, How to stably emit light and how to improve the light emitting property of the phosphorescent material itself is an important technical issue from the viewpoint of the efficiency and life of the device.
- iridium complexes having ligands such as phenylpyrazole, imidazophenanthridine, and phenylimidazole are known. It is very difficult to satisfy all of light emission and high durability at the same time.
- a metal complex having imidazophenanthridine as a ligand is a light-emitting material having a short emission wavelength (see, for example, Patent Documents 2 and 3).
- a metal complex of phenylimidazole is a light emitting material having a relatively short emission wavelength (see, for example, Patent Documents 4, 5, 6, and 7).
- a wet method (also referred to as a wet process) has been attracting attention as a method for manufacturing organic EL elements.
- this wet method film formation can be performed at a lower temperature than film formation by a vacuum process, so that damage to the organic layer located in the lower layer can be reduced, and luminous efficiency and device lifetime are improved.
- the host material and the electron transport material of the organic EL element using blue phosphorescence are insufficient in solubility in a solvent and solution stability, and are difficult to manufacture by a wet method.
- the organic EL element manufactured using the said host material and electron transport material also has a problem that a drive voltage is high.
- the present invention has been made in view of the above-mentioned problems and circumstances, and the problem to be solved is organic electroluminescence that has a low driving voltage, high light emission efficiency, excellent durability, and excellent dark spot and light emission unevenness prevention effects. It is to provide an element. Moreover, it is providing the illuminating device and display apparatus with which it was comprised.
- the present inventor has found that the cause of the above-mentioned problem, etc., of the organometallic complex having phenylimidazole as a ligand, the effect of improving the luminous efficiency at the phenylimidazole moiety and the N-phenyl group of the imidazole ring Coordination represented by the general formula (1) or the general formula (2) as a result of intensive investigation of the chemical structure from the viewpoint of efficiently achieving the function of separating the carrier transfer effect from the bonded aryl group. It has been found that the above problems can be solved by an organic EL device containing a phosphorescent organic metal whose child is coordinated to a metal atom.
- An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein at least one of the organic layers is represented by the following general formula (1) or general formula (2):
- the organic electroluminescent element characterized by containing the phosphorescence-emitting organometallic complex in which the ligand represented by this coordinated to the metal atom.
- Ring B represents a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
- the ring E represents an aromatic hydrocarbon ring having 6 to 30 carbon atoms or an aromatic heterocyclic ring having 1 to 30 carbon atoms bonded to the ring D through G representing a carbon atom, a silicon atom, or a nitrogen atom.
- R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
- Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2.
- ne represents an integer of 1 to 20.
- Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
- the phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom is represented by the following general formula (3) or the general formula (4). 2.
- Ring B represents a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
- the ring E represents an aromatic hydrocarbon ring having 6 to 30 carbon atoms or an aromatic heterocyclic ring having 1 to 30 carbon atoms bonded to the ring D through G representing a carbon atom, a silicon atom, or a nitrogen atom.
- R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
- Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2.
- ne represents an integer of 1 to 20.
- Adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
- L represents one or more of monoanionic bidentate ligands coordinated to M.
- M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2.
- n is at least 1 and m + n is 2 or 3.
- the phosphorescent organometallic complex represented by the general formula (3) or (4) is a phosphorescent organometallic complex represented by the following general formula (5) or (6), The organic electroluminescent element according to item 2.
- the ring E is an aromatic hydrocarbon ring having 6 to 30 carbon atoms or carbon bonded to the ring D through G representing a carbon atom, a silicon atom or a nitrogen atom. Represents an aromatic heterocycle of formula 1 to 30.
- R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
- Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2.
- ne represents an integer of 1 to 20.
- Adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
- L represents one or more of monoanionic bidentate ligands coordinated to M.
- M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2.
- n is at least 1 and m + n is 2 or 3. ] 4). Any one of the adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex forms a condensed ring.
- the organic electroluminescence device according to any one of items 3 to 3.
- the organic electroluminescent element according to any one of items 1 to 5, which is contained.
- a display device comprising the organic electroluminescence element according to any one of items 1 to 8.
- An organic electroluminescence element according to any one of items 1 to 8 is provided.
- an organic electroluminescence device having a low driving voltage, high luminous efficiency, excellent durability, and excellent dark spot and emission unevenness prevention effect, and an illumination device and a display device equipped with the organic electroluminescent device. it can.
- the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
- the D ring portion bonded to the N-phenyl group of the imidazole ring of the ligand represented by the general formula (1) or the general formula (2) protrudes to the m-position or the o-position with respect to the imidazole ring. Therefore, the interaction between the light-emitting dopants by the D ring part and the E ring part is not excessively strong, and the phenylimidazole part has an effect of improving the light emission efficiency and is bonded to the N-phenyl group of the imidazole ring. It is considered that the function separation effect of carrier transfer is more strongly expressed in the ring portion and the E ring portion.
- Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of the display unit of the display device of FIG. Schematic diagram of the circuit of the display device of FIG. Schematic diagram of a passive matrix display device Schematic of lighting device Cross section of the lighting device
- the organic electroluminescence device of the present invention is an organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one layer of the organic layer has the general formula
- the ligand represented by (1) or general formula (2) contains a phosphorescent organometallic complex coordinated to a metal atom. This feature is a technical feature common to the inventions according to claims 1 to 10.
- a phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom from the viewpoint of manifesting the effect of the present invention.
- it is preferable that it is a phosphorescence-emitting organometallic complex represented by General formula (3) or General formula (4).
- the phosphorescent organometallic complex represented by the general formula (3) or (4) is preferably a phosphorescent organometallic complex represented by the general formula (5) or (6).
- any of adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex form a condensed ring. .
- the transition metal atom of group 8 to 10 in the periodic table with the atomic number of 40 or more is preferably iridium.
- the light emitting layer has a ring structure in which at least one of carbon atoms of a hydrocarbon ring constituting a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative or a condensed ring compound derivative thereof is substituted with a nitrogen atom. It is preferable to contain the derivative
- the organic layer containing the phosphorescent organometallic complex is a layer formed through a wet process because a homogeneous film is easily obtained and pinholes are hardly generated.
- the luminescent color is preferably white.
- the organic electroluminescence element of the present invention can be suitably provided in a display device and a lighting device.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- the organic layer refers to a layer containing an organic substance.
- Anode / light emitting layer / electron transport layer / cathode ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode // hole transport layer / anode buffer layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode Buffer layer / Hole transport layer / Light emitting layer / Electron
- an organic compound layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked.
- the plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
- the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a display device and a lighting device using these.
- the light emitting layer according to the present invention is a layer that emits light when excitons generated by recombination of electrons and holes injected from the cathode or the electron transport layer or the anode or the hole transport layer are deactivated.
- the portion to be formed may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
- the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferably adjusted in the range of 2 nm to 5 ⁇ m, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
- a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method,
- the film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like.
- the light emitting layer is a layer formed through a wet process. By forming the layer by a wet process, damage to the light emitting layer due to heat can be reduced as compared with the vacuum deposition method.
- the light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host compound, and at least one light emitting dopant is a ligand represented by the above general formula (1) or general formula (2).
- a phosphorescent organometallic complex coordinated to a metal atom and is preferably a phosphorescent organometallic complex represented by any one of formulas (3) to (6).
- the light-emitting layer according to the present invention may be used in combination with compounds described in the following patent publications.
- Fluorescent dopants also referred to as fluorescent compounds
- phosphorescent dopants also referred to as phosphorescent dopants, phosphorescent compounds, phosphorescent compounds, etc.
- the light-emitting dopant can be used as the light-emitting dopant.
- the present inventors have made phosphorescence emission in which a ligand represented by the general formula (1) or (2) is coordinated to a metal atom.
- the present inventors have found that by using a light-emitting organometallic complex as a phosphorescent dopant, high light emission luminance, low driving voltage, and longer light emission lifetime can be achieved at the same time.
- the organic electroluminescent element produced using the phosphorescence dopant of this invention is improved also at the point of temporal stability.
- metal complexes have improved material efficiency due to the effect of improving luminous efficiency at the phenylimidazole part of the ligand and the function separation effect of carrier movement being carried out by the aryl group bonded to the N-phenyl group of the imidazole ring.
- the interaction between the aryl groups bonded to the N-phenyl group becomes too strong, the decrease in light emission efficiency due to concentration quenching between the light emitting dopants cannot be overlooked, and the light emission lifetime The improvement was not enough.
- the effect of improving the light emission efficiency in the phenylimidazole part and the function separation effect of carrier movement in the D ring part and E ring part bonded to the N-phenyl group of the imidazole ring are more strongly expressed, and the robustness of the material is improved. Further improved.
- the shape of the light-emitting dopant molecules approaches a spherical shape, the dispersibility with respect to the host compound is improved, so that the carrier balance of the entire device can be optimized and the recombination of carriers at a more central portion of the light-emitting layer can be realized.
- the light emission lifetime is improved and the uniformity of the light emitting layer is improved so that the occurrence of light emission unevenness is suppressed.
- M is preferably a transition metal atom.
- organic electroluminescence element capable of controlling light emission, and a lighting device and a display device including the organic electroluminescence element can be provided.
- the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield is 25 ° C.
- the phosphorescence quantum yield is preferably 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
- phosphorescent dopants There are two types of emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
- a phosphorescent organometallic complex in which a ligand represented by the general formula (1) or the general formula (2) described below is coordinated to a metal atom is described. Used. It is preferable to use a phosphorescent organometallic complex represented by any one of General Formula (3) to General Formula (6).
- examples of the 5-membered or 6-membered aromatic heterocycle represented by the ring B include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine.
- Ring B is preferably a benzene ring.
- the ring E is an aromatic hydrocarbon ring having 6 to 30 carbon atoms bonded to the ring D through G representing a carbon atom, a silicon atom, or a nitrogen atom, or Represents an aromatic heterocycle having 1 to 30 carbon atoms.
- examples of the aromatic hydrocarbon ring having 6 to 30 carbon atoms represented by ring E include, for example, a benzene ring, naphthalene ring, phenanthrene ring, benzophenanthrene ring, chrysene ring, benzochrysene Ring, triphenylene ring, picene ring, naphthochrysene ring, phenanthrochrysene ring and the like.
- examples of the aromatic heterocycle having 1 to 30 carbon atoms represented by ring E include, for example, a furan ring, a thiophene ring, a pyrrole ring, a silole ring, a pyridine ring, a pyridazine ring, and a pyrimidine.
- Ring E is preferably a benzene ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring or fluorene ring.
- R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group Represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and a bromine atom.
- examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, and dodecyl.
- examples of the alkenyl group represented by R 1 and R 2 include a vinyl group and an allyl group.
- examples of the alkynyl group represented by R 1 and R 2 include an ethynyl group and a propargyl group.
- examples of the alkoxy group represented by R 1 and R 2 include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group. Can be mentioned.
- examples of the amino group represented by R 1 and R 2 include an amino group, an ethylamino group, a dimethylamino group, a butylamino group, a cyclopentylamino group, a 2-ethylhexylamino group, and a dodecylamino group.
- examples of the silyl group represented by R 1 and R 2 include a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, and a phenyldiethylsilyl group.
- examples of the arylalkyl group represented by R 1 and R 2 include a benzyl group, an ⁇ -methylbenzyl group, a cinnamyl group, an ⁇ -ethylbenzyl group, an ⁇ , ⁇ -dimethylbenzyl group, Examples include 4-methylbenzyl group, 4-ethylbenzyl group, 2-tert-butylbenzyl group, 4-n-octylbenzyl group, naphthylmethyl group, diphenylmethyl group and the like.
- examples of the aryl group represented by R 1 and R 2 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, And monovalent groups derived from a pyrene ring, a pyranthrene ring, an anthraanthrene ring, and the like.
- examples of the heteroaryl group represented by R 1 and R 2 include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
- examples of the non-aromatic hydrocarbon ring group represented by R 1 and R 2 include a cycloalkane (eg, cyclopentane ring, cyclohexane ring, etc.), a cycloalkoxy group (eg, cyclopentyloxy). Group, cyclohexyloxy group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), cyclohexylaminosulfonyl group, tetrahydronaphthalene ring, 9,10-dihydroanthracene ring, biphenylene ring, etc. The group of is mentioned.
- examples of the non-aromatic heterocyclic group represented by R 1 and R 2 include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, and a dioxolane ring.
- R 1 and R 2 are both an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms, and at least one of R 1 and R 2 is a branched alkyl group having 3 or more carbon atoms. It is also preferable. More preferably, both R 1 and R 2 are branched alkyl groups having 3 or more carbon atoms.
- R 3 is an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
- R 3 is a branched alkyl group having 3 or more carbon atoms or a cycloalkyl group having 5 or more carbon atoms, and more preferably R 3 is a branched alkyl group having 3 or more carbon atoms.
- Ra, Rb, Rc and Rd are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, It represents an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
- the halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group and arylalkyl group represented by Ra, Rb, Rc and Rd are In the formula (1), the same groups as those described as the halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, and arylalkyl group represented by R 1 and R 2 are the same. Can be mentioned.
- the aryl group and heteroaryl group represented by Ra, Rb, Rc and Rd are the aryl group and heterocycle represented by R 1 and R 2 in the general formula (1). Examples thereof include the same groups as those exemplified as the aryl group.
- the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by Ra, Rb, Rc and Rd are represented by R 1 and R 2 in the general formula (1).
- Examples thereof include the same groups as those exemplified as the non-aromatic hydrocarbon ring group and the non-aromatic heterocyclic group.
- nb and nd represent an integer of 1 to 4
- na and nc represent 1 or 2.
- ne represents an integer of 1 to 20.
- Adjacent ring A and ring D, or ring D and ring E may be bonded to adjacent rings at two positions to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
- ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne are the above Synonymous with ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne in general formulas (1) and (2) .
- L represents one or more of monoanionic bidentate ligands coordinated to M.
- Specific examples of the monoanionic bidentate ligand represented by L include a ligand represented by the following formula.
- R ′, R ′′ and R ′′ ′ represent a hydrogen atom or a substituent.
- substituent represented by R ′, R ′′ and R ′′ ′′ include an alkyl group (for example, methyl Group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) ), Alkynyl groups (for example, ethynyl group, propargyl group, etc.), non-aromatic hydrocarbon ring groups (for example, cycloalkyl groups (for example, cyclopentyl group, cyclohexyl groups, etc.)), cycloalkoxy groups (for example,
- a monovalent group derived from the above an alkoxy group (for example, a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, etc.), an aryloxy group (for example, a fluorine group).
- an alkoxy group for example, a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, etc.
- an aryloxy group for example, a fluorine group
- Nonoxy group, naphthyloxy group, etc. alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), Alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl groups (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) ), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminos
- M represents a transition metal atom having an atomic number of 40 or more and a group 8 to 10 in the periodic table, preferably Os, Ir, Pt, more preferably Ir. It is.
- n an integer of 0 to 2
- n is at least 1
- m + n represents 2 or 3.
- Phosphorescent organometallic complex represented by general formula (5) or general formula (6) Phosphorescent organometallic complex represented by general formula (3) or general formula (4)
- a preferred embodiment of the complex is a phosphorescent organometallic complex represented by the following general formula (5) or general formula (6).
- ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne It is synonymous with the rings E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne in the formula (1) and the general formula (2).
- M, L, m, and n are synonymous with M, L, m, and n in General formula (3) and General formula (4).
- adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring, or ring A and ring D. And ring E may form one condensed ring.
- the structure of the ligand is more specifically represented by the following general formulas (L1A) to (L1AA) and general formulas (L2A) to (L2Q).
- ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne are the ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb of the above general formulas (1) and (2). , Nc, nd and ne.
- Ra 1 to Ra 4 , Rc 1 to Ra 2 and Rd 1 to Rd 4 represent the positional differences of the substituents Ra, Rc and Rd, respectively.
- W, X, Y, and Z are carbon atoms that may have a substituent and nitrogen that may have a substituent.
- An atom, a silicon atom having a substituent, an oxygen atom or a sulfur atom is represented.
- W, X, Y and Z are a nitrogen atom, an oxygen atom or a sulfur atom which may have a substituent. More preferably, W, X, Y and Z are an oxygen atom or a sulfur atom.
- H indicates that all are substituted with hydrogen atoms, and when a specific substituent is described. In addition to the substituents, the hydrogen atom is substituted.
- phosphorescent organometallic complexes represented by any one of the general formulas (3) to (6) are shown in Tables 1-1 to 1-6 below. The invention is not limited to these.
- the phosphorescent organometallic complex represented by any one of the general formulas (3) to (6) is represented by the general formula: (L) n -M- ( AL)
- Each configuration is represented by m . That is, in the general formula, L represents a ligand represented by the general formula (1) or (2) according to the present invention, and AL represents a conventionally known monoanionic bidentate ligand. , N represents the number of L coordinated to M, and m represents the number of AL coordinated to M.
- DP-1 in the table can be represented as “(L1A-4) 3 Ir”
- DP-459 in the table is represented by “(L2M-21) 2 Ir (AL-11)”.
- It can be expressed as.
- the structural formulas of DP-1 and DP-459 are shown below.
- the conventionally known ligands AL-1 to AL15 in Table 1-1 to Table 1-6 are the compounds shown below.
- Tables 1-1 to 1-6 below show specific examples (DP-1 to DP) of phosphorescent organometallic complexes (phosphorescent dopants) represented by any of the general formulas (3) to (6) -543).
- intermediate B-1 was hydrogenated in ethyl acetate-ethanol at room temperature in the presence of 10% palladium on carbon catalyst to obtain intermediate C-1.
- Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes having a high fluorescence quantum yield such as laser dyes and the like, and dyes based on dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
- the light-emitting dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, a phosphorescent dopant and A combination of fluorescent dopants may also be used.
- Known phosphorescent dopants and fluorescent dopants can be used.
- the host compound is a phosphorescent quantum that emits phosphorescence at room temperature (25 ° C.) and has a mass ratio of 20% or more in the light-emitting layer.
- a yield is defined as a compound of less than 0.1.
- the phosphorescence quantum yield is preferably less than 0.01.
- the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
- the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used.
- a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being longer, and has a high Tg (glass transition temperature) is preferable.
- conventionally known host compounds may be used alone or in combination of two or more.
- a plurality of types of host compounds it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
- the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Of course, one or more of such compounds may be used.
- a compound represented by the following general formula (B) or general formula (E) is particularly preferable as the host compound of the light emitting layer of the organic EL device of the present invention.
- Xa represents an oxygen atom or a sulfur atom.
- Xb, Xc, Xd and Xe each represent a hydrogen atom, a substituent or a group represented by the following general formula (C).
- At least one of Xb, Xc, Xd and Xe represents a group represented by the following general formula (C), and at least one of the groups represented by the following general formula (C) represents Ar as a carbazolyl group. .
- L 4 represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
- n represents an integer of 0 to 3, and when n is 2 or more, the plurality of L 4 may be the same or different.
- * Represents a linking site with the general formula (B) or the general formula (E).
- Ar represents a group represented by the following general formula (D).
- Xf represents N (R ′′), an oxygen atom or a sulfur atom
- E 1 to E 8 represent C (R ′′ 1 ) or N
- R ′′ and R ′′ 1 are hydrogen atoms
- It represents a substituent or a linking site with L 4 in formula (C).
- * Represents a linking site with L 4 in the general formula (C).
- a compound represented by the following general formula (B ′) is particularly preferably used as the host compound of the light emitting layer of the organic EL device of the present invention.
- Xa represents an oxygen atom or a sulfur atom
- Xb and Xc each represents a substituent or a group represented by the above general formula (C).
- At least one of Xb and Xc represents a group represented by the above general formula (C), and at least one of the groups represented by the general formula (C) represents Ar as a carbazolyl group.
- Ar in the general formula (C) represents a carbazolyl group which may have a substituent, and more preferably, in the general formula (C).
- Ar may have a substituent, and represents a carbazolyl group linked to L 4 in formula (C) at the N-position.
- Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
- An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
- Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
- anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
- copper phthalocyanine is used.
- Representative phthalocyanine buffer layer oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) )
- Orthometalated complex layers represented by iridium complexes and the like.
- azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole injection material.
- cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
- Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
- the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
- ⁇ Blocking layer hole blocking layer, electron blocking layer>
- the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
- the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
- the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
- the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
- the hole blocking layer contains the carbazole derivative, carboline derivative, or diazacarbazole derivative (shown in which any one of the carbon atoms constituting the carboline ring of the carboline derivative is replaced by a nitrogen atom). It is preferable to contain.
- the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
- 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
- the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
- Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
- the ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
- the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
- a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
- the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
- the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
- the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
- the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
- the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
- No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
- NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
- JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
- JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
- the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
- the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- This hole transport layer may have a single layer structure composed of one or more of the above materials.
- a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
- a hole transport layer having such a high p property because a device with lower power consumption can be produced.
- the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
- the electron transport layer can be provided as a single layer or a plurality of layers.
- an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode.
- any material can be selected from conventionally known compounds and used alone or in combination. Fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
- the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as electron transport materials.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
- the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
- the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
- the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the electron transport layer may have a single layer structure composed of one or more of the above materials.
- an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- an electron transport layer having such a high n property because an element with lower power consumption can be produced.
- an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- the anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- a wet film forming method such as a printing method or a coating method can be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the emission luminance is advantageously improved.
- a transparent or translucent cathode can be manufactured by forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon.
- an element in which both the anode and the cathode are transmissive can be manufactured.
- the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
- the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
- Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
- a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
- the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
- the method for forming the barrier film is not particularly limited.
- the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
- the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
- the external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
- the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
- a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
- the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
- ⁇ Sealing> As a sealing means used for this invention, the method of adhere
- the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
- Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
- the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- a polymer film and a metal film can be preferably used because the element can be thinned.
- the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
- sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
- the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
- hot-melt type polyamide, polyester, and polyolefin can be mentioned.
- a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
- an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
- a desiccant may be dispersed in the adhesive.
- Application of the adhesive to the sealing portion may be performed using a commercially available dispenser or may be printed like screen printing.
- the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
- the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
- vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
- a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
- a vacuum is also possible.
- a hygroscopic compound can also be enclosed inside.
- hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
- metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
- sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
- metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
- perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
- anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
- a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
- the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
- the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
- the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
- a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
- these methods can be used in combination with the organic EL device of the present invention.
- a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
- the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
- the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
- the method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency.
- This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
- Bragg diffraction such as first-order diffraction and second-order diffraction.
- light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
- the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
- the refractive index distribution a two-dimensional distribution
- the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
- the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
- the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
- the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
- the organic EL element of the present invention can be processed on a light extraction side of a substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example in a specific direction, for example, with respect to the element light emitting surface.
- a condensing sheet for example in a specific direction, for example, with respect to the element light emitting surface.
- quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
- One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
- the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
- a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
- BEF brightness enhancement film
- the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
- a light diffusion plate / film may be used in combination with the light collecting sheet.
- a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
- a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm. Make it.
- organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
- each of these layers there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
- film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.
- the organic layer containing the phosphorescent organometallic complex according to the present invention is preferably formed through a wet process for the above reason.
- liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
- Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
- a dispersion method it can disperse
- a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
- a desired organic EL element can be obtained.
- a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
- An alternating voltage may be applied.
- the alternating current waveform to be applied may be arbitrary.
- the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
- lighting devices home lighting, interior lighting
- clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
- the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
- patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
- patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
- a conventionally known method is used. Can do.
- the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Optics) is applied to the CIE chromaticity coordinates.
- the display device of the present invention will be described.
- the display device of the present invention has the organic EL element.
- the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
- a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
- the method is not limited, but is preferably a vapor deposition method, an inkjet method, or a printing method. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
- a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
- the alternating current waveform to be applied may be arbitrary.
- the multicolor display device can be used as a display device, a display, and various light sources.
- a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
- Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
- Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. However, it is not limited to this.
- FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
- the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
- the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
- the image information is sequentially emitted to scan the image and display the image information on the display unit A.
- FIG. 2 is a schematic diagram of the display unit A.
- the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
- the main members of the display unit A will be described below.
- FIG. 2 shows a case where the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
- the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
- the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
- a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
- FIG. 3 is a schematic diagram of the circuit.
- the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
- a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
- an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
- a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
- the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
- the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
- the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10.
- the power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
- the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
- the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
- the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL elements 10 of the plurality of pixels, and the organic EL elements 10 of the plurality of pixels 3 emit light. It is carried out.
- Such a light emitting method is called an active matrix method.
- the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
- the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
- the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
- FIG. 4 is a schematic view of a passive matrix display device.
- a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
- the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
- the lighting device of the present invention will be described.
- the illuminating device of this invention has the said organic EL element.
- the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image ( It may be used as a display.
- the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
- the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
- a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
- the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
- a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
- an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
- luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
- CF color filter
- the white light emitting organic EL element according to the present invention is used as a kind of lamp such as household illumination, interior lighting, and exposure light source as various light emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices.
- the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
- a device can be formed.
- FIG. 5 shows a schematic diagram of the lighting device. As shown in FIG. 5, the organic EL element 101 is covered with a glass cover 102.
- the sealing operation with the glass cover 102 is preferably performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 into contact with the atmosphere.
- FIG. 6 shows a cross-sectional view of the lighting device.
- the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102.
- the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
- Example 1 ⁇ Vapor deposition type blue light emitting organic EL element> ⁇ Production of Blue Light-Emitting Organic EL Element 1-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
- ITO indium tin oxide
- This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is put into another resistance heating boat made of molybdenum, 100 mg of the luminescent dopant (Comparative Compound 1) is put into another resistance heating boat made of molybdenum, and the electron transport material 1 is put into another resistance heating boat made of molybdenum. And 200 mg of the electron transport material 2 was put in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
- the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
- the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively.
- a 40 nm-thick luminescent layer was provided by co-evaporation.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
- the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
- the substrate temperature at the time of vapor deposition was room temperature.
- organic EL element 1-1 lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 1-1 was produced.
- the organic EL element is abbreviated as EL, for example, the organic EL element 1-1 is denoted as EL1-1.
- FIG. 5 shows a schematic diagram of the lighting device.
- the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover 102 is a glove box (purity of 99.999% or more in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere). In a high-purity nitrogen gas atmosphere).
- FIG. 6 shows a cross-sectional view of the lighting device. Inside the lighting device, a glass substrate 107 with a transparent electrode as an anode, an organic EL layer 106 and a cathode 105 are laminated in this order. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
- the external extraction quantum yields are all expressed as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
- Drive voltage ⁇ (drive voltage of each element / drive voltage of the organic EL element 1-1 (initial luminance 2000 cd / m 2 )) ⁇ ⁇ 100 A smaller value indicates a lower drive voltage for comparison.
- Drive voltage increase rate (%) ⁇ [(Drive voltage after driving 200 hours for each organic EL element / V) ⁇ (Initial drive voltage for each organic EL element / V)] / (Initial drive voltage for each organic EL element) / V) ⁇ ⁇ 100 (4)
- Half light emission lifetime (25 ° C) The half-light emission lifetime was evaluated according to the measurement method shown below.
- Each organic EL element is driven at a constant current in a constant temperature bath at 25 ° C. and 70 ° C. with a current that gives an initial luminance of 2000 cd / m 2 , and a time that is 1 ⁇ 2 of the initial luminance (1000 cd / m 2 ) is obtained. This was taken as a measure of half-life.
- the half-light emission lifetime was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL device 1-1 obtained at 25 ° C.
- the initial deterioration was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL element 1-1.
- the initial deterioration was calculated based on the following formula.
- Initial degradation ⁇ (90% arrival time of luminance of organic EL element 1-1 (hr)) / (90% arrival time of each organic EL element (hr)) ⁇ ⁇ 100 That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.
- the organic EL elements 1-5 to 1-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 1-1 to 1-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 1-5 to 1-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
- Example 2 ⁇ Wet process type blue light emitting element> ⁇ Preparation of Blue Light-Emitting Organic EL Element 2-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
- ITO indium tin oxide
- This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving 50 mg of the hole transport material 2 in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . Furthermore, after irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to obtain a second hole transport layer.
- a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 30 nm.
- HFIP hexafluoroisopropanol
- this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed to produce an organic EL element 2-1.
- the organic EL elements 2-5 to 2-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 2-1 to 2-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 2-5 to 2-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
- the phosphorescent organic material according to the present invention is used as a light emitting dopant in order to improve the light emitting efficiency, reduce the driving voltage, and improve the light emitting lifetime. It can be seen that it is useful to use a metal complex.
- Example 3 ⁇ Vapor deposition type white light emitting element-1> ⁇ Production of White Light-Emitting Organic EL Element 3-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
- ITO indium tin oxide
- This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added.
- the luminescent dopant (D -6) was put in 100 mg, 200 mg of the electron transport material 1 was put in another resistance heating boat made of molybdenum, and 200 mg of the electron transport material 2 was put in another resistance heating boat made of molybdenum, and attached to the vacuum deposition apparatus.
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
- the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
- the heating boat containing the host compound (OC-11), the luminescent dopant (Comparative Compound 1) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.020 nm, respectively.
- a light emitting layer having a film thickness of 40 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / second.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
- the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
- the substrate temperature at the time of vapor deposition was room temperature.
- lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 3-1 was produced.
- Organic EL elements 3-2 to 3-161 were produced in the same manner as EL element 3-1.
- the organic EL elements 3-5 to 3-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 3-1 to 3-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 3-5 to 3-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
- the invention relates to the present invention as a light emitting dopant in order to improve light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use a phosphorescent organometallic complex.
- Example 4 ⁇ Vapor deposition type white light emitting element-2> ⁇ Preparation of white light emitting element 4-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
- ITO indium tin oxide
- This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added.
- the luminescent dopant (D -3) 100 mg, 100 mg of luminescent dopant (D-6) in another molybdenum resistance heating boat, 200 mg of electron transport material 1 in another molybdenum resistance heating boat, and another molybdenum resistance heating boat 200 mg of the electron transport material 2 was put in and attached to a vacuum deposition apparatus.
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
- the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
- the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the luminescent dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.020 nm / second, respectively.
- a blue light emitting layer having a thickness of 20 nm was provided by co-evaporation.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the host compound (OC-11), the luminescent dopant (D-3), and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively.
- a yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
- the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
- the substrate temperature at the time of vapor deposition was room temperature.
- lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 4-1 was produced.
- Organic EL elements 4-2 to 4-161 are produced in the same manner as the EL element 4-1.
- the organic EL elements 4-5 to 4-161 of the present invention have a higher external extraction quantum efficiency than the comparative organic EL elements 4-1 to 4-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 4-5 to 4-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
- Example 5 ⁇ Vapor deposition type white light emitting element-3> ⁇ Preparation of white light emitting element 5-1 >> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
- ITO indium tin oxide
- This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of host compound 1 (OC-11) is put into another resistance heating boat made of molybdenum, 200 mg of host compound 2 (OC-6) is put into another resistance heating boat made of molybdenum, and the luminescent dopant is put into another resistance heating boat made of molybdenum.
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
- the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
- the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the luminescent dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.020 nm / second, respectively.
- a blue light emitting layer having a thickness of 20 nm was provided by co-evaporation.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the host compound (OC-6), the luminescent dopant (D-3) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively.
- a yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec.
- the substrate temperature at the time of vapor deposition was room temperature.
- the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
- the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm.
- the substrate temperature at the time of vapor deposition was room temperature.
- lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 5-1 was produced.
- Organic EL elements 5-2 to 5-161 In the preparation of the organic EL element 5-1, the hole injection material, the hole transport material, the host compound 1, the host compound 2, and the light emitting dopant (only the comparison compound 1) are converted into the compounds shown in Tables 6-1 to 6-6. Organic EL elements 5-2 to 5-161 were produced in the same manner as the organic EL element 5-1, except that the organic EL elements were replaced.
- the organic EL elements 5-5 to 5-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 5-1 to 5-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 5-5 to 5-161 of the present invention suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
- Example 6 ⁇ Wet process type white light emitting element-1> ⁇ Production of White Light-Emitting Organic EL Element 6-1 >> This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
- the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
- a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 30 nm.
- HFIP hexafluoroisopropanol
- this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 6-1 was produced.
- the substrate temperature at the time of vapor deposition was room temperature.
- the organic EL elements 6-5 to 6-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 6-1 to 6-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 6-5 to 6-161 of the present invention also suppress the generation of uneven light emission and dark spots and the increase in driving voltage.
- Example 7 ⁇ Wet process type white light emitting element-2> ⁇ Production of White Light-Emitting Organic EL Element 7-1 >> This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
- the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
- a thin film was formed on this light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of electron transport material 4 dissolved in 10 ml of methanol. After irradiating with ultraviolet light for 60 seconds to perform photopolymerization / crosslinking, it was further vacuum-dried at 60 ° C. for 1 hour to obtain an electron transport layer having a film thickness of about 30 nm.
- this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 7-1 was produced.
- the substrate temperature at the time of vapor deposition was room temperature.
- the organic EL elements 7-5 to 7-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 7-1 to 7-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
- the organic EL elements 7-5 to 7-161 of the present invention also suppress the generation of uneven light emission and dark spots and the increase in driving voltage.
- the organic electroluminescence element of the present invention has a low driving voltage, high light emission efficiency, excellent durability, excellent dark spot and emission unevenness prevention effects, and can be suitably used for lighting devices and display devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
The present invention addresses the problems of providing: an organic electroluminescent element which works at a low voltage, has a high luminescent efficiency and excellent durability, and is highly effective in preventing the generation of dark spots or luminescence unevenness; and an illuminator and a display device which are equipped with the organic electroluminescent element.
This organic electroluminescent element comprises an anode and a cathode and, sandwiched therebetween, one or more organic layers including a luminescent layer, and is characterized in that at least one of the organic layers contains a phosphorescent organometallic complex in which a ligand represented by general formula (1) or general formula (2) has coordinated to a metal atom.
Description
本発明は、有機エレクトロルミネッセンス素子、照明装置及び表示装置に関し、更に詳しくは、有機エレクトロルミネッセンス素子に好ましく用いることのできる化合物に関する。
The present invention relates to an organic electroluminescence element, an illuminating device, and a display device, and more particularly, to a compound that can be preferably used for an organic electroluminescence element.
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (ELD). As a constituent element of ELD, an inorganic electroluminescence element and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given. Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
実用化に向けた有機EL素子の開発としては、例えば、プリンストン大より、M.A.Baldo et al.,nature、395巻、151~154ページ(1998年)に記載のように、励起三重項からのリン光発光を用いる有機EL素子の報告がされ、以来、米国特許第6,097,147号明細書、M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)などに記載のように、室温でリン光を示す材料の研究が活発になってきている。
Develop organic EL elements for practical use, for example, Princeton University A. Baldo et al. , Nature, 395, pages 151 to 154 (1998), an organic EL device using phosphorescence emission from an excited triplet has been reported. Since then, US Pat. No. 6,097,147 has been disclosed. , M.C. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), and the like, research on materials that exhibit phosphorescence at room temperature has become active.
リン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
Organic EL elements that use phosphorescence emission can in principle achieve light emission efficiency about 4 times that of elements that use previous fluorescence emission. Research and development of electrodes and electrodes are conducted all over the world.
発光素子を構成する材料として、イリジウム錯体系等重金属錯体を中心に多くの化合物の合成検討がなされており、例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)には、それらの金属錯体を有機エレクトロルミネッセンス素子(有機EL素子ともいう。)の発光層に使用することが記載されている。
As a material constituting a light-emitting element, many compounds have been studied focusing on heavy metal complexes such as iridium complexes. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001) describes that these metal complexes are used in a light emitting layer of an organic electroluminescence element (also referred to as an organic EL element).
このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかと共に、リン光発光性材料自身の発光性をいかに向上させるかが、素子の効率・寿命の面から、重要な技術的な課題となっている。
As described above, the phosphorescence emission method is a method having a very high potential, but in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center, in particular, recombination inside the emission layer, How to stably emit light and how to improve the light emitting property of the phosphorescent material itself is an important technical issue from the viewpoint of the efficiency and life of the device.
有機EL素子に使用される青色リン光用の発光材料として、フェニルピラゾール系、イミダゾフェナンスリジン系、フェニルイミダゾール系等の配位子を有するイリジウム錯体が知られているが、発光性、短波長発光、高耐久性の全てを同時に満足させることは非常に困難である。
As luminescent materials for blue phosphorescence used in organic EL devices, iridium complexes having ligands such as phenylpyrazole, imidazophenanthridine, and phenylimidazole are known. It is very difficult to satisfy all of light emission and high durability at the same time.
単純なフェニルピラゾールのイリジウム錯体は室温では全く発光せず、置換基としてベンゼン環のようなバンドギャップを小さくするような基を導入してはじめて発光するようになることが知られている(例えば、特許文献1参照。)。
It is known that a simple iridium complex of phenylpyrazole does not emit light at room temperature, but only emits light when a group that reduces the band gap such as a benzene ring is introduced as a substituent (for example, (See Patent Document 1).
また、配位子としてイミダゾフェナンスリジンを有する金属錯体は発光波長が短波な発光材料であることが開示されている(例えば、特許文献2、3参照。)。
Further, it is disclosed that a metal complex having imidazophenanthridine as a ligand is a light-emitting material having a short emission wavelength (see, for example, Patent Documents 2 and 3).
また、フェニルイミダゾールの金属錯体は発光波長が比較的短波な発光材料であることが開示されている(例えば、特許文献4、5、6、7参照。)。
Further, it is disclosed that a metal complex of phenylimidazole is a light emitting material having a relatively short emission wavelength (see, for example, Patent Documents 4, 5, 6, and 7).
しかしながら、特許文献1に記載の技術にあっては、発光性と発光寿命を同時に改善するためにはπ共役系を拡張して発光波長を長波化する必要があり、青色リン光ドーパントの要件を満たすことができない。また、特許文献2及び3に記載の技術にあっては、発光効率が低く、消費電力の低減と発光寿命の長寿命化とを同時に達成することができない。また、特許文献4、5、6及び7に記載の技術にあっては、発光寿命を十分に長寿命化することができない。
However, in the technique described in Patent Document 1, it is necessary to extend the π-conjugated system to increase the emission wavelength in order to improve the light emission property and the light emission lifetime at the same time. I can't meet. Further, in the techniques described in Patent Documents 2 and 3, the light emission efficiency is low, and it is impossible to simultaneously achieve reduction in power consumption and increase in light emission life. In addition, in the techniques described in Patent Documents 4, 5, 6, and 7, the light emission life cannot be sufficiently extended.
一方、有機EL素子の大面積化、低コスト化、高生産性の観点から、有機EL素子の製造方法として、湿式法(ウェットプロセス等ともいう。)が注目されている。この湿式法によれば、真空プロセスでの成膜に比して低温で成膜を行うことができるため、下層に位置する有機層のダメージを低減することができ、発光効率や素子寿命の改善が期待される。しかしながら、青色リン光発光を利用する有機EL素子のホスト材料や電子輸送材料は、溶剤に対する溶解性、溶液安定性が不十分であり、湿式法による製造を行うことが困難である。また、当該ホスト材料や電子輸送材料を用いて製造された有機EL素子は、駆動電圧が高いという問題もある。
On the other hand, from the viewpoint of increasing the area of organic EL elements, reducing costs, and increasing productivity, a wet method (also referred to as a wet process) has been attracting attention as a method for manufacturing organic EL elements. According to this wet method, film formation can be performed at a lower temperature than film formation by a vacuum process, so that damage to the organic layer located in the lower layer can be reduced, and luminous efficiency and device lifetime are improved. There is expected. However, the host material and the electron transport material of the organic EL element using blue phosphorescence are insufficient in solubility in a solvent and solution stability, and are difficult to manufacture by a wet method. Moreover, the organic EL element manufactured using the said host material and electron transport material also has a problem that a drive voltage is high.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れる有機エレクトロルミネッセンス素子を提供することである。またそれが具備された照明装置及び表示装置を提供することである。
The present invention has been made in view of the above-mentioned problems and circumstances, and the problem to be solved is organic electroluminescence that has a low driving voltage, high light emission efficiency, excellent durability, and excellent dark spot and light emission unevenness prevention effects. It is to provide an element. Moreover, it is providing the illuminating device and display apparatus with which it was comprised.
本発明者は、上記課題を解決すべく、上記問題の原因等について、フェニルイミダゾールを配位子として有する有機金属錯体の、フェニルイミダゾール部分で発光効率の向上効果とイミダゾール環のN-フェニル基と結合しているアリール基でキャリア移動効果との機能とを分離して効率よく達成するという観点で化学構造を鋭意検討した結果、一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属を含有した有機EL素子により上記課題を解決できることを見出した。
In order to solve the above-mentioned problems, the present inventor has found that the cause of the above-mentioned problem, etc., of the organometallic complex having phenylimidazole as a ligand, the effect of improving the luminous efficiency at the phenylimidazole moiety and the N-phenyl group of the imidazole ring Coordination represented by the general formula (1) or the general formula (2) as a result of intensive investigation of the chemical structure from the viewpoint of efficiently achieving the function of separating the carrier transfer effect from the bonded aryl group. It has been found that the above problems can be solved by an organic EL device containing a phosphorescent organic metal whose child is coordinated to a metal atom.
すなわち、本発明に係る上記課題は、以下の手段により解決される。
That is, the above-mentioned problem according to the present invention is solved by the following means.
1.陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層が、下記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein at least one of the organic layers is represented by the following general formula (1) or general formula (2): The organic electroluminescent element characterized by containing the phosphorescence-emitting organometallic complex in which the ligand represented by this coordinated to the metal atom.
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。〕
2.前記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が、下記一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring. ]
2. The phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom is represented by the following general formula (3) or the general formula (4). 2. The organic electroluminescence device according to item 1, which is a phosphorescent organic metal complex.
2.前記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が、下記一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring. ]
2. The phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom is represented by the following general formula (3) or the general formula (4). 2. The organic electroluminescence device according to item 1, which is a phosphorescent organic metal complex.
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
Adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
Lは、Mに配位したモノアニオン性の二座配位子のうちの1つ又は複数を表す。Mは、原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは、0~2の整数を表す。nは、少なくとも1であり、m+nは、2又は3である。〕
3.前記一般式(3)又は(4)で表されるリン光発光性有機金属錯体が、下記一般式(5)又は(6)で表されるリン光発光性有機金属錯体であることを特徴とする第2項に記載の有機エレクトロルミネッセンス素子。 L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ]
3. The phosphorescent organometallic complex represented by the general formula (3) or (4) is a phosphorescent organometallic complex represented by the following general formula (5) or (6), The organic electroluminescent element according to item 2.
3.前記一般式(3)又は(4)で表されるリン光発光性有機金属錯体が、下記一般式(5)又は(6)で表されるリン光発光性有機金属錯体であることを特徴とする第2項に記載の有機エレクトロルミネッセンス素子。 L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ]
3. The phosphorescent organometallic complex represented by the general formula (3) or (4) is a phosphorescent organometallic complex represented by the following general formula (5) or (6), The organic electroluminescent element according to item 2.
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
Nb and nd represent integers of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
Adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
Lは、Mに配位したモノアニオン性の二座配位子のうちの1つ又は複数を表す。Mは、原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは、0~2の整数を表す。nは、少なくとも1であり、m+nは、2又は3である。〕
4.前記有機金属錯体の、隣接する環Aと環D、環Dと環E、又は環Aと環Dと環Eのいずれかが縮合環を形成していることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ]
4). Any one of the adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex forms a condensed ring. The organic electroluminescence device according to any one ofitems 3 to 3.
4.前記有機金属錯体の、隣接する環Aと環D、環Dと環E、又は環Aと環Dと環Eのいずれかが縮合環を形成していることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ]
4). Any one of the adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex forms a condensed ring. The organic electroluminescence device according to any one of
5.前記原子番号40以上且つ元素周期表における8~10族の遷移金属原子が、イリジウムであることを特徴とする第2項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
5. 5. The organic electroluminescence device according to any one of items 2 to 4, wherein the transition metal atom having an atomic number of 40 or more and in the periodic table of groups 8 to 10 is iridium.
6.前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体又はこれらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されている環構造を有する誘導体を含有することを特徴とする第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
6. A derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the light emitting layer is composed of a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative, or a condensed ring compound derivative thereof. The organic electroluminescent element according to any one of items 1 to 5, which is contained.
7.前記リン光発光性有機金属錯体を含有した有機層が、ウェットプロセスを経て形成された層であることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
7. The organic electroluminescent device according to any one of items 1 to 6, wherein the organic layer containing the phosphorescent organometallic complex is a layer formed through a wet process. .
8.発光色が、白色であることを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
8. 8. The organic electroluminescence element according to any one of items 1 to 7, wherein the emission color is white.
9.第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする表示装置。
9. A display device comprising the organic electroluminescence element according to any one of items 1 to 8.
10.第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする照明装置。
10. An organic electroluminescence element according to any one of items 1 to 8 is provided.
本発明の上記手段により、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れる有機エレクトロルミネッセンス素子、またそれが具備された照明装置及び表示装置を提供できる。
By the above means of the present invention, there is provided an organic electroluminescence device having a low driving voltage, high luminous efficiency, excellent durability, and excellent dark spot and emission unevenness prevention effect, and an illumination device and a display device equipped with the organic electroluminescent device. it can.
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。一般式(1)又は一般式(2)で表される配位子のイミダゾール環のN-フェニル基と結合しているD環部分がイミダゾール環に対してm-位あるいはo-位に張り出しているため、D環部分及びE環部分による発光ドーパント同士の相互作用が必要以上に強くなり過ぎず、フェニルイミダゾール部分で発光効率の向上効果と、イミダゾール環のN-フェニル基と結合しているD環部分及びE環部分でキャリア移動という機能分離効果がより強く発現したものと考えられる。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. The D ring portion bonded to the N-phenyl group of the imidazole ring of the ligand represented by the general formula (1) or the general formula (2) protrudes to the m-position or the o-position with respect to the imidazole ring. Therefore, the interaction between the light-emitting dopants by the D ring part and the E ring part is not excessively strong, and the phenylimidazole part has an effect of improving the light emission efficiency and is bonded to the N-phenyl group of the imidazole ring. It is considered that the function separation effect of carrier transfer is more strongly expressed in the ring portion and the E ring portion.
本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層が、前記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体を含有することを特徴とする。この特徴は、請求項1から請求項10までの請求項に係る発明に共通する技術的特徴である。
The organic electroluminescence device of the present invention is an organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one layer of the organic layer has the general formula The ligand represented by (1) or general formula (2) contains a phosphorescent organometallic complex coordinated to a metal atom. This feature is a technical feature common to the inventions according to claims 1 to 10.
本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が、一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体であることが好ましい。また前記一般式(3)又は(4)で表されるリン光発光性有機金属錯体が、一般式(5)又は(6)で表されるリン光発光性有機金属錯体であることが好ましい。
As an embodiment of the present invention, a phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom from the viewpoint of manifesting the effect of the present invention. However, it is preferable that it is a phosphorescence-emitting organometallic complex represented by General formula (3) or General formula (4). The phosphorescent organometallic complex represented by the general formula (3) or (4) is preferably a phosphorescent organometallic complex represented by the general formula (5) or (6).
さらに、本発明においては、前記有機金属錯体の、隣接する環Aと環D、環Dと環E、又は環Aと環Dと環Eのいずれかが縮合環を形成していることが好ましい。
Furthermore, in the present invention, it is preferable that any of adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex form a condensed ring. .
また、前記原子番号40以上且つ元素周期表における8~10族の遷移金属原子が、イリジウムであることが好ましい。また、前前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体又はこれらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されている環構造を有する誘導体を含有することが、好ましい。
Further, the transition metal atom of group 8 to 10 in the periodic table with the atomic number of 40 or more is preferably iridium. Further, the light emitting layer has a ring structure in which at least one of carbon atoms of a hydrocarbon ring constituting a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative or a condensed ring compound derivative thereof is substituted with a nitrogen atom. It is preferable to contain the derivative | guide_body which has.
また、前記リン光発光性有機金属錯体を含有した有機層が、ウェットプロセスを経て形成された層であることが、均質な膜が得られやすく、且つピンホールが生成しにくいことから好ましい。
Further, it is preferable that the organic layer containing the phosphorescent organometallic complex is a layer formed through a wet process because a homogeneous film is easily obtained and pinholes are hardly generated.
さらに、発光色が、白色であることが好ましい。
Furthermore, the luminescent color is preferably white.
本発明の有機エレクトロルミネッセンス素子は、表示装置及び照明装置に好適に具備され得る。
The organic electroluminescence element of the present invention can be suitably provided in a display device and a lighting device.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
《有機EL素子の構成層》
本発明において、有機層とは、有機物を含有する層をいう。陽極と陰極との間に設けられている有機エレクトロルミネッセンス(以下、有機ELともいう。)を構成する正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等が有機層に含まれる。 << Constituent layers of organic EL elements >>
In the present invention, the organic layer refers to a layer containing an organic substance. A hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection constituting organic electroluminescence (hereinafter also referred to as organic EL) provided between the anode and the cathode. Layers and the like are included in the organic layer.
本発明において、有機層とは、有機物を含有する層をいう。陽極と陰極との間に設けられている有機エレクトロルミネッセンス(以下、有機ELともいう。)を構成する正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等が有機層に含まれる。 << Constituent layers of organic EL elements >>
In the present invention, the organic layer refers to a layer containing an organic substance. A hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection constituting organic electroluminescence (hereinafter also referred to as organic EL) provided between the anode and the cathode. Layers and the like are included in the organic layer.
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
The constituent layers of the organic EL element of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vi)陽極//正孔輸送層/陽極バッファー層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極及び陰極を除く発光層を含む有機化合物層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、更に中間層は電荷発生層を含んでいてもよい。 (I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode // hole transport layer / anode buffer layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode Buffer layer / Hole transport layer / Light emitting layer / Electron transport layer / Cathode buffer layer / cathode When a plurality of light emitting layers are included, a non-light emitting intermediate layer may be provided between the light emitting layers. In addition, among the above layer structures, an organic compound layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked. The plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vi)陽極//正孔輸送層/陽極バッファー層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極及び陰極を除く発光層を含む有機化合物層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、更に中間層は電荷発生層を含んでいてもよい。 (I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode // hole transport layer / anode buffer layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode Buffer layer / Hole transport layer / Light emitting layer / Electron transport layer / Cathode buffer layer / cathode When a plurality of light emitting layers are included, a non-light emitting intermediate layer may be provided between the light emitting layers. In addition, among the above layer structures, an organic compound layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked. The plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた表示装置及び照明装置であることが好ましい。
The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a display device and a lighting device using these.
本発明の有機EL素子を構成する各層について説明する。
Each layer constituting the organic EL element of the present invention will be described.
《発光層》
本発明に係る発光層は、陰極若しくは電子輸送層又は陽極若しくは正孔輸送層から注入されてくる電子及び正孔が再結合して生成した励起子が失活する際発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。 <Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light when excitons generated by recombination of electrons and holes injected from the cathode or the electron transport layer or the anode or the hole transport layer are deactivated. The portion to be formed may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
本発明に係る発光層は、陰極若しくは電子輸送層又は陽極若しくは正孔輸送層から注入されてくる電子及び正孔が再結合して生成した励起子が失活する際発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。 <Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light when excitons generated by recombination of electrons and holes injected from the cathode or the electron transport layer or the anode or the hole transport layer are deactivated. The portion to be formed may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整され、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。
The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferably adjusted in the range of 2 nm to 5 μm, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により製膜して形成することができる。好ましくは発光層が、ウェットプロセスを経て形成された層である。ウェットプロセスにより層を形成することにより、真空蒸着法に比べて熱による発光層のダメージを軽減することができる。
For the production of the light emitting layer, a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, The film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like. Preferably, the light emitting layer is a layer formed through a wet process. By forming the layer by a wet process, damage to the light emitting layer due to heat can be reduced as compared with the vacuum deposition method.
本発明の有機EL素子の発光層には、発光ドーパントと、ホスト化合物とを含有し、少なくとも1つの発光ドーパントは、前述の一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体であり、好ましくは、一般式(3)から(6)までのいずれかで表されるリン光発光性有機金属錯体である。
The light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host compound, and at least one light emitting dopant is a ligand represented by the above general formula (1) or general formula (2). Is a phosphorescent organometallic complex coordinated to a metal atom, and is preferably a phosphorescent organometallic complex represented by any one of formulas (3) to (6).
また、本発明に係る発光層には、以下の特許公報に記載されている化合物等を併用してもよい。
In addition, the light-emitting layer according to the present invention may be used in combination with compounds described in the following patent publications.
例えば、国際公開第00/70655号、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等である。
For example, International Publication No. 00/70655, JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International publication No. 02/15645, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No. 117978, Japanese Patent Laid-Open No. 2002-3385 No. 8, JP-A No. 2002-170684, JP-A No. 2002-352960, WO 01/93642, JP-A No. 2002-50483, JP-A No. 2002-1000047, JP-A No. 2002-173684 Gazette, JP-A-2002-359082, JP-A-2002-175484, JP-A-2002-363552, JP-A-2002-184582, JP-A-2003-7469, JP-T-2002-525808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-233506, JP JP 2002-241751 A, JP 2001-31977 A JP, JP 2001-319780, JP 2002-62824, JP 2002-1000047, JP 2002-203679, JP 2002-343572, JP 2002-203678. Etc.
(1)発光ドーパント
発光ドーパントについて説明する。 (1) Luminescent dopant A luminescent dopant is demonstrated.
発光ドーパントについて説明する。 (1) Luminescent dopant A luminescent dopant is demonstrated.
発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう。)、リン光ドーパント(リン光発光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)を用いることができる。
Fluorescent dopants (also referred to as fluorescent compounds) and phosphorescent dopants (also referred to as phosphorescent dopants, phosphorescent compounds, phosphorescent compounds, etc.) can be used as the light-emitting dopant.
本発明者らは、上記した本発明の目的を達成するために鋭意研究を重ねた結果、一般式(1)又は(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体をリン光ドーパントとして用いることにより、高い発光輝度と低駆動電圧、さらに発光寿命の長寿命化も同時に達成できることを見出し、本発明に至った。また、本発明のリン光ドーパントを用いて作製された有機EL素子は経時安定性の点でも改善されることが分かった。
As a result of intensive studies to achieve the above-described object of the present invention, the present inventors have made phosphorescence emission in which a ligand represented by the general formula (1) or (2) is coordinated to a metal atom. The present inventors have found that by using a light-emitting organometallic complex as a phosphorescent dopant, high light emission luminance, low driving voltage, and longer light emission lifetime can be achieved at the same time. Moreover, it turned out that the organic electroluminescent element produced using the phosphorescence dopant of this invention is improved also at the point of temporal stability.
上記特許文献6、7に記載されているように、特定の置換基を有するイミダゾール骨格を有する配位子が配位した金属錯体が、有機EL素子における発光ドーパントとして有用であることは既に知られている。
As described in Patent Documents 6 and 7, it is already known that a metal complex coordinated with a ligand having an imidazole skeleton having a specific substituent is useful as a light-emitting dopant in an organic EL device. ing.
これらの金属錯体は、配位子のフェニルイミダゾール部分で発光効率の向上効果、イミダゾール環のN-フェニル基と結合しているアリール基でキャリア移動が担われるという機能分離効果により、材料の堅牢性が向上していると推定されるが、N-フェニル基と結合しているアリール基同士の相互作用が強くなり過ぎるために、発光ドーパント同士の濃度消光による発光効率の低下が見過ごせなくなり、発光寿命の向上も十分ではなかった。
These metal complexes have improved material efficiency due to the effect of improving luminous efficiency at the phenylimidazole part of the ligand and the function separation effect of carrier movement being carried out by the aryl group bonded to the N-phenyl group of the imidazole ring. However, since the interaction between the aryl groups bonded to the N-phenyl group becomes too strong, the decrease in light emission efficiency due to concentration quenching between the light emitting dopants cannot be overlooked, and the light emission lifetime The improvement was not enough.
本発明の一般式(3)~(6)のいずれかで表されるリン光発光性有機金属錯体では、一般式(1)又は(2)で表される配位子のイミダゾール環のN-フェニル基と結合しているD環部分がイミダゾール環に対してm-位あるいはo-位に張り出しているため、D環部分及びE環部分による発光ドーパント同士の相互作用が必要以上に強くなり過ぎず、フェニルイミダゾール部分で発光効率の向上効果と、イミダゾール環のN-フェニル基と結合しているD環部分及びE環部分でキャリア移動という機能分離効果がより強く発現し、材料の堅牢性がさらに向上した。また、発光ドーパント分子の形状が球形に近づくことで、ホスト化合物に対する分散性が向上し、素子全体のキャリアバランスの最適化や、発光層のより中心部位でのキャリアの再結合が実現できるようになり、発光寿命が向上するとともに、発光層の均一性が向上して発光ムラの発生が抑制されていると考えられる。
In the phosphorescent organometallic complex represented by any one of the general formulas (3) to (6) of the present invention, N— of the imidazole ring of the ligand represented by the general formula (1) or (2) Since the D ring part bonded to the phenyl group protrudes to the m-position or the o-position with respect to the imidazole ring, the interaction between the light-emitting dopants by the D ring part and the E ring part becomes too strong. In addition, the effect of improving the light emission efficiency in the phenylimidazole part and the function separation effect of carrier movement in the D ring part and E ring part bonded to the N-phenyl group of the imidazole ring are more strongly expressed, and the robustness of the material is improved. Further improved. In addition, since the shape of the light-emitting dopant molecules approaches a spherical shape, the dispersibility with respect to the host compound is improved, so that the carrier balance of the entire device can be optimized and the recombination of carriers at a more central portion of the light-emitting layer can be realized. Thus, it is considered that the light emission lifetime is improved and the uniformity of the light emitting layer is improved so that the occurrence of light emission unevenness is suppressed.
本発明に係る一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体においては、Mは遷移金属原子であることが好ましい。遷移金属原子Mに配位している配位子の組み合わせを変更したり、配位子に置換基を導入したりすることによって、リン光発光性有機金属錯体の発光波長を所望の領域に制御することができる。
In the phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) according to the present invention is coordinated to a metal atom, M is preferably a transition metal atom. By changing the combination of the ligands coordinated to the transition metal atom M or introducing a substituent into the ligand, the emission wavelength of the phosphorescent organometallic complex can be controlled in the desired region. can do.
このような金属錯体を有機EL素子材料として用いることにより、初期駆動電圧が低く、半減寿命が長く、ダークスポットや発光ムラの生成がなく、外部取り出し量子効率が高く、且つ、所望の発光波長で発光をコントロール可能な有機エレクトロルミネッセンス素子(有機EL素子)、またそれが具備された照明装置及び表示装置を提供することができる。
By using such a metal complex as an organic EL device material, the initial driving voltage is low, the half-life is long, dark spots and light emission unevenness are not generated, external extraction quantum efficiency is high, and a desired emission wavelength is obtained. An organic electroluminescence element (organic EL element) capable of controlling light emission, and a lighting device and a display device including the organic electroluminescence element can be provided.
(1.1)リン光ドーパント
本発明に係るリン光ドーパントについて説明する。 (1.1) Phosphorescent dopant The phosphorescent dopant according to the present invention will be described.
本発明に係るリン光ドーパントについて説明する。 (1.1) Phosphorescent dopant The phosphorescent dopant according to the present invention will be described.
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield is 25 ° C. The phosphorescence quantum yield is preferably 0.1 or more.
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
リン光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう1つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
There are two types of emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
本発明の実施形態におけるリン光ドーパントとしては、以下に説明する、一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が用いられる。一般式(3)から一般式(6)までのいずれかで表されるリン光発光性有機金属錯体が用いられることが好ましい。
As the phosphorescent dopant in the embodiment of the present invention, a phosphorescent organometallic complex in which a ligand represented by the general formula (1) or the general formula (2) described below is coordinated to a metal atom is described. Used. It is preferable to use a phosphorescent organometallic complex represented by any one of General Formula (3) to General Formula (6).
(1.1.1)一般式(1)又は一般式(2)で表される配位子が配位したリン光発光性有機金属錯体
(1.1.1) A phosphorescent organometallic complex in which a ligand represented by the general formula (1) or the general formula (2) is coordinated
一般式(1)及び一般式(2)において、環Bで表される5員又は6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられる。
In the general formula (1) and the general formula (2), examples of the 5-membered or 6-membered aromatic heterocycle represented by the ring B include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, and a pyridazine. A ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, a thiazole ring, and the like.
環Bとして好ましくはベンゼン環である。
Ring B is preferably a benzene ring.
一般式(1)及び一般式(2)において、環Eは、炭素原子、ケイ素原子又は窒素原子を表すGを介して環Dに結合している炭素数6~30の芳香族炭化水素環又は炭素数1~30の芳香族複素環を表す。
In the general formula (1) and the general formula (2), the ring E is an aromatic hydrocarbon ring having 6 to 30 carbon atoms bonded to the ring D through G representing a carbon atom, a silicon atom, or a nitrogen atom, or Represents an aromatic heterocycle having 1 to 30 carbon atoms.
一般式(1)及び(2)において、環Eで表される炭素数6~30の芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、フェナントレン環、ベンゾフェナントレン環、クリセン環、ベンゾクリセン環、トリフェニレン環、ピセン環、ナフトクリセン環、フェナントロクリセン環などが挙げられる。
In general formulas (1) and (2), examples of the aromatic hydrocarbon ring having 6 to 30 carbon atoms represented by ring E include, for example, a benzene ring, naphthalene ring, phenanthrene ring, benzophenanthrene ring, chrysene ring, benzochrysene Ring, triphenylene ring, picene ring, naphthochrysene ring, phenanthrochrysene ring and the like.
一般式(1)及び(2)において、環Eで表される炭素数1~30芳香族複素環としては、例えば、フラン環、チオフェン環、ピロール環、シロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ベンゾフラン環、ベンゾチオフェン環、インドール環、インデン環、ベンゾシロール環、フロフラン環、チエノチオフェン環、フロピロール環、チエノピロール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、ナフチリジン環、ベンズイミダゾール環、インダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フルオレン環、ジベンゾシロール環、ベンゾジフラン環、ベンゾジチオフェン環、フロインドール環、チエノインドール環、ベンゾフラノベンゾフラン環、ベンゾチエノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環、インドロインドール環、ベンゾチエノベンゾフラン環、ベンゾフラノカルバゾール環、ベンゾチエノカルバゾール環、インドロカルバゾール環、ベンゾシロロカルバゾール環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、キンドリン環、キニンドリン環、ベンゾフロキノリン環、ベンゾチエノキノリン環、トリフェノジチアジン環、トリフェノジオキサジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環等が挙げられる。
In the general formulas (1) and (2), examples of the aromatic heterocycle having 1 to 30 carbon atoms represented by ring E include, for example, a furan ring, a thiophene ring, a pyrrole ring, a silole ring, a pyridine ring, a pyridazine ring, and a pyrimidine. Ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, benzofuran ring, benzothiophene ring, indole ring, indene ring, benzosilol ring, furofuran ring, thienothiophene ring , Furopyrrole ring, thienopyrrole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, naphthyridine ring, benzimidazole ring, indazole ring, benzotriazole ring, benzoxazole ring, benzothiazole ring, dibenzofuran ring, dibenzothiophene ring, Ruvazole ring, fluorene ring, dibenzosilole ring, benzodifuran ring, benzodithiophene ring, furindole ring, thienoindole ring, benzofuranobenzofuran ring, benzothienobenzothiophene ring, benzofuroindole ring, benzothienoindole ring, indoloindole ring Ring, benzothienobenzofuran ring, benzofuranocarbazole ring, benzothienocarbazole ring, indolocarbazole ring, benzosilolocarbazole ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, kindrin ring, quinindrin ring , Benzofuroquinoline ring, benzothienoquinoline ring, triphenodithiazine ring, triphenodioxazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiol Down ring, Nafutojifuran ring, naphthodifuran thiophene ring, Antorafuran ring, anthradithiophene furan ring, anthracite thiophene ring, anthradithiophene ring, a thianthrene ring, a phenoxathiin ring, and the like.
環Eとして好ましくはベンゼン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フルオレン環である。
Ring E is preferably a benzene ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring or fluorene ring.
一般式(1)において、R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素数3以上のシクロアルキル基を表す。
In the general formula (1), R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group Represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
一般式(1)において、R1及びR2で表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。
In the general formula (1), examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and a bromine atom.
一般式(1)において、R1及びR2で表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。
In the general formula (1), examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, and dodecyl. Group, tridecyl group, tetradecyl group, pentadecyl group and the like.
一般式(1)において、R1及びR2で表されるアルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。
In the general formula (1), examples of the alkenyl group represented by R 1 and R 2 include a vinyl group and an allyl group.
一般式(1)において、R1及びR2で表されるアルキニル基としては、例えば、エチニル基、プロパルギル基等が挙げられる。
In the general formula (1), examples of the alkynyl group represented by R 1 and R 2 include an ethynyl group and a propargyl group.
一般式(1)において、R1及びR2で表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等が挙げられる。
In the general formula (1), examples of the alkoxy group represented by R 1 and R 2 include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group. Can be mentioned.
一般式(1)において、R1及びR2で表されるアミノ基としては、例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等が挙げられる。
In the general formula (1), examples of the amino group represented by R 1 and R 2 include an amino group, an ethylamino group, a dimethylamino group, a butylamino group, a cyclopentylamino group, a 2-ethylhexylamino group, and a dodecylamino group. Group, anilino group, naphthylamino group, 2-pyridylamino group and the like.
一般式(1)において、R1及びR2で表されるシリル基としては、例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等が挙げられる。
In the general formula (1), examples of the silyl group represented by R 1 and R 2 include a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, and a phenyldiethylsilyl group.
一般式(1)において、R1及びR2で表されるアリールアルキル基としては、例えば、ベンジル基、α-メチルベンジル基、シンナミル基、α-エチルベンジル基、α,α-ジメチルベンジル基、4-メチルベンジル基、4-エチルベンジル基、2-tert-ブチルベンジル基、4-n-オクチルベンジル基、ナフチルメチル基、ジフェニルメチル基等が挙げられる。
In the general formula (1), examples of the arylalkyl group represented by R 1 and R 2 include a benzyl group, an α-methylbenzyl group, a cinnamyl group, an α-ethylbenzyl group, an α, α-dimethylbenzyl group, Examples include 4-methylbenzyl group, 4-ethylbenzyl group, 2-tert-butylbenzyl group, 4-n-octylbenzyl group, naphthylmethyl group, diphenylmethyl group and the like.
一般式(1)において、R1及びR2で表されるアリール基としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される1価の基が挙げられる。
In the general formula (1), examples of the aryl group represented by R 1 and R 2 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, And monovalent groups derived from a pyrene ring, a pyranthrene ring, an anthraanthrene ring, and the like.
一般式(1)において、R1及びR2で表されるヘテロアリール基としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される1価の基が挙げられる。
In the general formula (1), examples of the heteroaryl group represented by R 1 and R 2 include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring. , Triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole A ring, an azacarbazole ring (representing any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), a dibenzosilole ring, a dibenzofuran ring, a dibenzothiophene ring, a benzothiophene ring or a dibenzofuran ring Carbon source A ring in which one or more of the above are replaced by a nitrogen atom, a benzodifuran ring, a benzodithiophene ring, an acridine ring, a benzoquinoline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a cyclazine ring, a kindrin ring, a tepenidine ring, a quinindrin Ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene And monovalent groups derived from a ring, an anthradithiophene ring, a thianthrene ring, a phenoxathiin ring, a dibenzocarbazole ring, an indolocarbazole ring, a dithienobenzene ring, and the like.
一般式(1)において、R1及びR2で表される非芳香族炭化水素環基としては、例えば、シクロアルカン(例えば、シクロペンタン環、シクロヘキサン環等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、シクロヘキシルアミノスルホニル基、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等から導出される1価の基が挙げられる。
In the general formula (1), examples of the non-aromatic hydrocarbon ring group represented by R 1 and R 2 include a cycloalkane (eg, cyclopentane ring, cyclohexane ring, etc.), a cycloalkoxy group (eg, cyclopentyloxy). Group, cyclohexyloxy group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), cyclohexylaminosulfonyl group, tetrahydronaphthalene ring, 9,10-dihydroanthracene ring, biphenylene ring, etc. The group of is mentioned.
一般式(1)において、R1及びR2で表される非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される1価の基が挙げられる。
In the general formula (1), examples of the non-aromatic heterocyclic group represented by R 1 and R 2 include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, and a dioxolane ring. Pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, Morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2, 2,2] -Ok Down ring, phenoxazine ring, a phenothiazine ring, Okisantoren ring, thioxanthene ring, and a monovalent group derived from phenoxathiin ring.
好ましくは、R1及びR2が共に炭素原子数1以上のアルキル基又は炭素数3以上のシクロアルキル基であり、また、R1及びR2の少なくとも一方が炭素原子数3以上の分岐アルキル基であることも好ましい。さらに好ましくはR1及びR2が共に炭素原子数3以上の分岐アルキル基である。
Preferably, R 1 and R 2 are both an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms, and at least one of R 1 and R 2 is a branched alkyl group having 3 or more carbon atoms. It is also preferable. More preferably, both R 1 and R 2 are branched alkyl groups having 3 or more carbon atoms.
一般式(2)において、R3は炭素原子数1以上のアルキル基又は炭素数3以上のシクロアルキル基である。
In the general formula (2), R 3 is an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
好ましくは、R3が炭素原子数3以上の分岐アルキル基又は炭素数5以上のシクロアルキル基であり、さらに好ましくはR3が炭素原子数3以上の分岐アルキル基である。
Preferably, R 3 is a branched alkyl group having 3 or more carbon atoms or a cycloalkyl group having 5 or more carbon atoms, and more preferably R 3 is a branched alkyl group having 3 or more carbon atoms.
一般式(1)及び(2)において、Ra、Rb、Rc及びRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
In the general formulas (1) and (2), Ra, Rb, Rc and Rd are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, It represents an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
一般式(1)及び(2)において、Ra、Rb、Rc及びRdで表されるハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基としては、一般式(1)においてR1及びR2で表されるハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基として挙げられたものと、それぞれ同様の基が挙げられる。
In the general formulas (1) and (2), the halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group and arylalkyl group represented by Ra, Rb, Rc and Rd are In the formula (1), the same groups as those described as the halogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, and arylalkyl group represented by R 1 and R 2 are the same. Can be mentioned.
一般式(1)及び(2)において、Ra、Rb、Rc及びRdで表されるアリール基及びヘテロアリール基としては、一般式(1)においてR1及びR2で表されるアリール基及びヘテロアリール基として挙げられたものと同様の基が挙げられる。
In the general formulas (1) and (2), the aryl group and heteroaryl group represented by Ra, Rb, Rc and Rd are the aryl group and heterocycle represented by R 1 and R 2 in the general formula (1). Examples thereof include the same groups as those exemplified as the aryl group.
一般式(1)において、Ra、Rb、Rc及びRdで表される非芳香族炭化水素環基及び非芳香族複素環基としては、一般式(1)においてR1及びR2で表される非芳香族炭化水素環基及び非芳香族複素環基として挙げられたものと同様の基が挙げられる。
In the general formula (1), the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by Ra, Rb, Rc and Rd are represented by R 1 and R 2 in the general formula (1). Examples thereof include the same groups as those exemplified as the non-aromatic hydrocarbon ring group and the non-aromatic heterocyclic group.
一般式(1)及び(2)において、nb及びndは1~4の整数を表し、na及びncは1又は2を表す。neは1~20の整数を表す。
In the general formulas (1) and (2), nb and nd represent an integer of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
隣接する環Aと環D、環Dと環Eは、互いに隣接する環と2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
Adjacent ring A and ring D, or ring D and ring E may be bonded to adjacent rings at two positions to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
(1.1.2)一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体
(1.1.2) A phosphorescent organometallic complex represented by general formula (3) or general formula (4)
一般式(3)及び(4)において、環B、環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneは、上記一般式(1)及び(2)の環B、環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneと同義である。
In the general formulas (3) and (4), ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne are the above Synonymous with ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne in general formulas (1) and (2) .
一般式(3)及び(4)において、Lは、Mに配位したモノアニオン性の二座配位子のうちの1つ又は複数を表す。Lで表されるモノアニオン性の二座配位子の具体例としては、下記式の配位子等が挙げられる。
In the general formulas (3) and (4), L represents one or more of monoanionic bidentate ligands coordinated to M. Specific examples of the monoanionic bidentate ligand represented by L include a ligand represented by the following formula.
上記の式中において、R′、R″及びR″′は水素原子又は置換基を表し、R′、R″及びR″′で表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、非芳香族炭化水素環基(例えば、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等から導出される1価の基)、非芳香族複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される一価の基)、芳香族炭化水素基(例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される一価の基)、芳香族複素環基(例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される一価の基)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
In the above formula, R ′, R ″ and R ″ ′ represent a hydrogen atom or a substituent. Examples of the substituent represented by R ′, R ″ and R ″ ″ include an alkyl group (for example, methyl Group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) ), Alkynyl groups (for example, ethynyl group, propargyl group, etc.), non-aromatic hydrocarbon ring groups (for example, cycloalkyl groups (for example, cyclopentyl group, cyclohexyl groups, etc.)), cycloalkoxy groups (for example, cyclopentyloxy group, cyclohexyl) Oxy group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), A monovalent group derived from a lahydronaphthalene ring, a 9,10-dihydroanthracene ring, a biphenylene ring, etc.), a non-aromatic heterocyclic group (for example, an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, Thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, Hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring The A monovalent group derived from a north ring, diazabicyclo [2,2,2] -octane ring, phenoxazine ring, phenothiazine ring, oxanthrene ring, thioxanthene ring, phenoxathiin ring, etc.), aromatic hydrocarbon group ( For example, benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, Monovalent group derived from acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring), Aromatic heterocyclic groups (eg silole, furan, thiophene, oxa Ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, Benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (representing any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), dibenzosilole Ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or ring in which any one or more of carbon atoms constituting dibenzofuran ring is replaced by nitrogen atom, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phena Gin ring, phenanthridine ring, phenanthroline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene Ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring, etc. A monovalent group derived from the above), an alkoxy group (for example, a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, etc.), an aryloxy group (for example, a fluorine group). Nonoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), Alkoxycarbonyl groups (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl groups (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) ), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexyla) Nosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl) Group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyl) Oxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethyl carbonate) Rubonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group ), Carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecyl) Aminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), Id group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, Methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl Group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl Or a heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2- Ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (for example, fluorine atom, chlorine atom, bromine atom), fluorinated hydrocarbon group (for example, fluoromethyl group, trimethyl group) Fluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group) Etc.), Phosphono Groups and the like.
一般式(3)及び一般式(4)において、Mは原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表すが、好ましくはOs、Ir、Ptであり、さらに好ましくはIrである。
In the general formulas (3) and (4), M represents a transition metal atom having an atomic number of 40 or more and a group 8 to 10 in the periodic table, preferably Os, Ir, Pt, more preferably Ir. It is.
一般式(3)及び一般式(4)において、mは0~2の整数を表し、nは少なくとも1であり、m+nは2又は3を表す。
In the general formulas (3) and (4), m represents an integer of 0 to 2, n is at least 1, and m + n represents 2 or 3.
(1.1.3)一般式(5)又は一般式(6)で表されるリン光発光性有機金属錯体
一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体の好ましい実施態様が下記一般式(5)又は一般式(6)で表されるリン光発光性有機金属錯体である。 (1.1.3) Phosphorescent organometallic complex represented by general formula (5) or general formula (6) Phosphorescent organometallic complex represented by general formula (3) or general formula (4) A preferred embodiment of the complex is a phosphorescent organometallic complex represented by the following general formula (5) or general formula (6).
一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体の好ましい実施態様が下記一般式(5)又は一般式(6)で表されるリン光発光性有機金属錯体である。 (1.1.3) Phosphorescent organometallic complex represented by general formula (5) or general formula (6) Phosphorescent organometallic complex represented by general formula (3) or general formula (4) A preferred embodiment of the complex is a phosphorescent organometallic complex represented by the following general formula (5) or general formula (6).
一般式(5)及び一般式(6)において、環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneは、上記一般式(1)及び一般式(2)の環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneと同義である。
In general formula (5) and general formula (6), ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne It is synonymous with the rings E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne in the formula (1) and the general formula (2).
また、一般式(5)及び一般式(6)において、M、L、m及びnは、一般式(3)及び一般式(4)におけるM、L、m及びnと同義である。
Moreover, in General formula (5) and General formula (6), M, L, m, and n are synonymous with M, L, m, and n in General formula (3) and General formula (4).
本発明に係る一般式(1)又は一般式(2)で表される青色リン光発光性有機金属錯体の配位子についてさらに説明する。
The ligand of the blue phosphorescent organometallic complex represented by the general formula (1) or the general formula (2) according to the present invention will be further described.
一般式(1)及び一般式(2)において、隣接する環Aと環D、環Dと環Eは互いに2か所で結合して縮合環を形成しても良いし、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
In general formula (1) and general formula (2), adjacent ring A and ring D, ring D and ring E may be bonded to each other at two points to form a condensed ring, or ring A and ring D. And ring E may form one condensed ring.
縮合環を形成しない場合及び縮合環を形成する場合の全ての場合において、配位子の構造をより具体的に表すと、以下の一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)で表すことができる。
In all cases where the condensed ring is not formed and in the case where the condensed ring is formed, the structure of the ligand is more specifically represented by the following general formulas (L1A) to (L1AA) and general formulas (L2A) to (L2Q).
一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)において、環B、環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneは、上記一般式(1)及び(2)の環B、環E、G、R1、R2、R3、Ra、Rb、Rc、Rd、Re、na、nb、nc、nd及びneと同義である。
In general formulas (L1A) to (L1AA) and general formulas (L2A) to (L2Q), ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb, nc, nd and ne are the ring B, ring E, G, R 1 , R 2 , R 3 , Ra, Rb, Rc, Rd, Re, na, nb of the above general formulas (1) and (2). , Nc, nd and ne.
Ra1~Ra4、Rc1~Ra2及びRd1~Rd4は、それぞれ、置換基Ra、Rc及びRdの位置違いを表す。
Ra 1 to Ra 4 , Rc 1 to Ra 2 and Rd 1 to Rd 4 represent the positional differences of the substituents Ra, Rc and Rd, respectively.
一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)において、W、X、Y及びZは、置換基を有しても良い炭素原子、置換基を有しても良い窒素原子、置換基を有するケイ素原子、酸素原子又は硫黄原子を表す。
In the general formulas (L1A) to (L1AA) and the general formulas (L2A) to (L2Q), W, X, Y, and Z are carbon atoms that may have a substituent and nitrogen that may have a substituent. An atom, a silicon atom having a substituent, an oxygen atom or a sulfur atom is represented.
好ましくは、W、X、Y及びZが置換基を有しても良い窒素原子、酸素原子又は硫黄原子である。更に好ましくは、W、X、Y及びZが酸素原子又は硫黄原子である。
Preferably, W, X, Y and Z are a nitrogen atom, an oxygen atom or a sulfur atom which may have a substituent. More preferably, W, X, Y and Z are an oxygen atom or a sulfur atom.
(1.1.4)具体例
以下に、一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)、並びに一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)で表される配位子の具体例をそれぞれ記載するが、本発明はこれらに限定されない。 (1.1.4) Specific Examples Hereinafter, general formulas (L1A) to (L1AA) and general formulas (L2A) to (L2Q), and general formulas (L1A) to (L1AA) and general formulas (L2A) to ( Specific examples of the ligand represented by L2Q) are described, but the present invention is not limited thereto.
以下に、一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)、並びに一般式(L1A)~(L1AA)及び一般式(L2A)~(L2Q)で表される配位子の具体例をそれぞれ記載するが、本発明はこれらに限定されない。 (1.1.4) Specific Examples Hereinafter, general formulas (L1A) to (L1AA) and general formulas (L2A) to (L2Q), and general formulas (L1A) to (L1AA) and general formulas (L2A) to ( Specific examples of the ligand represented by L2Q) are described, but the present invention is not limited thereto.
なお、Ra、Rb、Rc及びRdの欄のように複数の置換基が置換できる場合、「H」は全て水素原子で置換されていることを表し、特定の置換基が記されている場合は、その置換基以外は水素原子が置換されていることを表す。
In addition, when a plurality of substituents can be substituted as in the columns of Ra, Rb, Rc, and Rd, “H” indicates that all are substituted with hydrogen atoms, and when a specific substituent is described. In addition to the substituents, the hydrogen atom is substituted.
以下の表1-1~表-1-6に、一般式(3)~(6)のいずれかで表されるリン光発光性有機金属錯体(リン光ドーパント)の具体例を示すが、本発明はこれらに限定されない。表1-1~表-1-6中においては、一般式(3)~(6)のいずれかで表されるリン光発光性有機金属錯体を、一般式:(L)n-M-(AL)mで表したときの各構成を示している。即ち、当該一般式中、Lは上記した本発明に係る一般式(1)又は(2)で表される配位子を表し、ALは従来公知のモノアニオン性の2座配位子を表し、nはMに配位しているLの個数、mはMに配位しているALの個数をそれぞれ表す。
Specific examples of phosphorescent organometallic complexes (phosphorescent dopants) represented by any one of the general formulas (3) to (6) are shown in Tables 1-1 to 1-6 below. The invention is not limited to these. In Table 1-1 to Table 1-6, the phosphorescent organometallic complex represented by any one of the general formulas (3) to (6) is represented by the general formula: (L) n -M- ( AL) Each configuration is represented by m . That is, in the general formula, L represents a ligand represented by the general formula (1) or (2) according to the present invention, and AL represents a conventionally known monoanionic bidentate ligand. , N represents the number of L coordinated to M, and m represents the number of AL coordinated to M.
具体的には、例えば、表中のDP-1は、「(L1A-4)3Ir」と表すことができ、表中のDP-459は「(L2M-21)2Ir(AL-11)」と表すことができる。これらDP-1及びDP-459の構造式を下記に示す。
Specifically, for example, DP-1 in the table can be represented as “(L1A-4) 3 Ir”, and DP-459 in the table is represented by “(L2M-21) 2 Ir (AL-11)”. "It can be expressed as. The structural formulas of DP-1 and DP-459 are shown below.
表1-1~表-1-6中における従来公知の配位子AL-1~AL15は、以下に示す化合物である。
The conventionally known ligands AL-1 to AL15 in Table 1-1 to Table 1-6 are the compounds shown below.
以下の表1-1~表1-6に、一般式(3)~(6)のいずれかで表されるリン光発光性有機金属錯体(リン光ドーパント)の具体例(DP-1~DP-543)を示す。
Tables 1-1 to 1-6 below show specific examples (DP-1 to DP) of phosphorescent organometallic complexes (phosphorescent dopants) represented by any of the general formulas (3) to (6) -543).
これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、Organic Letter誌、vol8、No.3、415~418頁(2006)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
These metal complexes are described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), Organic Letter, vol8, No. 3, pp. 415 to 418 (2006), and further by applying methods such as references described in these documents.
以下に、代表的な化合物の合成例を示す。
The synthesis examples of typical compounds are shown below.
〔錯体 DP-1の合成〕
(配位子 L1A-4の合成)
1.中間体A-1の合成
以下の反応スキームに沿って、公知の方法でm-ブロモアニリンから、2工程の反応で中間体A-1を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々72%(鈴木カップリング)、84%(ブロモ化)だった。 [Synthesis of Complex DP-1]
(Synthesis of Ligand L1A-4)
1. Synthesis of Intermediate A-1 According to the following reaction scheme, Intermediate A-1 was synthesized from m-bromoaniline by a known method in a two-step reaction. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 72% (Suzuki coupling) and 84% (brominated), respectively.
(配位子 L1A-4の合成)
1.中間体A-1の合成
以下の反応スキームに沿って、公知の方法でm-ブロモアニリンから、2工程の反応で中間体A-1を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々72%(鈴木カップリング)、84%(ブロモ化)だった。 [Synthesis of Complex DP-1]
(Synthesis of Ligand L1A-4)
1. Synthesis of Intermediate A-1 According to the following reaction scheme, Intermediate A-1 was synthesized from m-bromoaniline by a known method in a two-step reaction. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 72% (Suzuki coupling) and 84% (brominated), respectively.
2.中間体C-1の合成
以下の反応スキームに沿って、3当量のイソプロペニルボロン酸ピナコールエステルと1等量の中間体A-1、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phos(2-ジシクロへキシルホスフィノ-2′,6′-ジメトキシビフェニル)からトルエン-水(9:1)中、還流温度での反応12時間で中間体B-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は68%だった。次いで中間体B-1を10%のパラジウム炭素触媒共存下に酢酸エチル-エタノール中、室温で水素添加反応し、中間体C-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は87%だった。 2. Synthesis of Intermediate C-1 According to the following reaction scheme, 3 equivalents of isopropenylboronic acid pinacol ester and 1 equivalent of Intermediate A-1, 3 equivalents of potassium phosphate, 2% palladium acetate, 4% Intermediate B-1 was obtained from S-Phos (2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl) in toluene-water (9: 1) at the reflux temperature for 12 hours. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 68%. Next, intermediate B-1 was hydrogenated in ethyl acetate-ethanol at room temperature in the presence of 10% palladium on carbon catalyst to obtain intermediate C-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 87%.
以下の反応スキームに沿って、3当量のイソプロペニルボロン酸ピナコールエステルと1等量の中間体A-1、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phos(2-ジシクロへキシルホスフィノ-2′,6′-ジメトキシビフェニル)からトルエン-水(9:1)中、還流温度での反応12時間で中間体B-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は68%だった。次いで中間体B-1を10%のパラジウム炭素触媒共存下に酢酸エチル-エタノール中、室温で水素添加反応し、中間体C-1を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は87%だった。 2. Synthesis of Intermediate C-1 According to the following reaction scheme, 3 equivalents of isopropenylboronic acid pinacol ester and 1 equivalent of Intermediate A-1, 3 equivalents of potassium phosphate, 2% palladium acetate, 4% Intermediate B-1 was obtained from S-Phos (2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl) in toluene-water (9: 1) at the reflux temperature for 12 hours. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 68%. Next, intermediate B-1 was hydrogenated in ethyl acetate-ethanol at room temperature in the presence of 10% palladium on carbon catalyst to obtain intermediate C-1. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 87%.
3.配位子L1A-4の合成
以下の反応スキームに沿って、1当量の中間体C-1と1.1当量の安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-1をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L1A-4を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は48%(4step)だった。 3. Synthesis of Ligand L1A-4 According to the following reaction scheme, 1 equivalent of intermediate C-1 and 1.1 equivalents of benzoic chloride, 1.1 equivalents of triethylamine in toluene at reflux temperature for 2 hours By reacting, intermediate C-1 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to obtain ligand L1A-4. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 48% (4step).
以下の反応スキームに沿って、1当量の中間体C-1と1.1当量の安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-1をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L1A-4を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は48%(4step)だった。 3. Synthesis of Ligand L1A-4 According to the following reaction scheme, 1 equivalent of intermediate C-1 and 1.1 equivalents of benzoic chloride, 1.1 equivalents of triethylamine in toluene at reflux temperature for 2 hours By reacting, intermediate C-1 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to obtain ligand L1A-4. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 48% (4step).
窒素雰囲気下で配位子L1A-4 1.14g(2.50ミリモル)及びトリスアセチルアセトナトイリジウム 0.25g(0.50ミリモル)をエチレングリコール30mlに懸濁させた。窒素雰囲気下に還流温度で48時間反応させた。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量510mg(収率65%)の粗生成物を得た。この粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)によって精製し330mg(収率42%)の錯体DP-1を得た。
In a nitrogen atmosphere, 1.14 g (2.50 mmol) of ligand L1A-4 and 0.25 g (0.50 mmol) of trisacetylacetonatoiridium were suspended in 30 ml of ethylene glycol. The reaction was performed at reflux temperature for 48 hours under a nitrogen atmosphere. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol, and dried to obtain 510 mg (65% yield) of a crude product. The crude product was purified by column gel chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) to obtain 330 mg (42% yield) of complex DP-1.
精製した化合物が目的物であることをMASS、1H-NMRにより確認した。
It was confirmed by MASS and 1 H-NMR that the purified compound was the target product.
日立製作所製F-4500を用いて測定した例示化合物DP-25の溶液におけるPL発光極大波長は、466nm(T=77K、2-メチルテトラヒドロフラン中)、475nm(室温、塩化メチレン中)であった。
The PL emission maximum wavelength in a solution of Exemplified Compound DP-25 measured using Hitachi F-4500 was 466 nm (T = 77K in 2-methyltetrahydrofuran) and 475 nm (room temperature in methylene chloride).
〔錯体 DP-404の合成〕
(配位子 L2G-13の合成)
1.中間体A-2の合成
以下の反応スキームに沿って、公知の方法で合成した1-ニトロ-8-フェニルジベンゾチオフェンから、2工程の反応で中間体A-2を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々85%(水素添加)、78%(ブロモ化)だった。 [Synthesis of Complex DP-404]
(Synthesis of ligand L2G-13)
1. Synthesis of Intermediate A-2 According to the following reaction scheme, Intermediate A-2 was synthesized in a two-step reaction from 1-nitro-8-phenyldibenzothiophene synthesized by a known method. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 85% (hydrogenation) and 78% (bromination), respectively.
(配位子 L2G-13の合成)
1.中間体A-2の合成
以下の反応スキームに沿って、公知の方法で合成した1-ニトロ-8-フェニルジベンゾチオフェンから、2工程の反応で中間体A-2を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々85%(水素添加)、78%(ブロモ化)だった。 [Synthesis of Complex DP-404]
(Synthesis of ligand L2G-13)
1. Synthesis of Intermediate A-2 According to the following reaction scheme, Intermediate A-2 was synthesized in a two-step reaction from 1-nitro-8-phenyldibenzothiophene synthesized by a known method. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 85% (hydrogenation) and 78% (bromination), respectively.
2.中間体C-2の合成
以下の反応スキームに沿って、3当量の2-ペンテン-3-イルボロン酸ピナコールエステルと1等量の中間体A-2、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phosからトルエン-水(9:1)中、還流温度での反応12時間で中間体B-2を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は72%だった。次いで中間体B-2を10%のパラジウム炭素触媒共存下に酢酸エチル-エタノール中、室温で水素添加反応し、中間体C-2を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は88%だった。 2. Synthesis of Intermediate C-2 According to the following reaction scheme, 3 equivalents of 2-penten-3-ylboronic acid pinacol ester and 1 equivalent of Intermediate A-2, 3 equivalents of potassium phosphate, 2% acetic acid Intermediate B-2 was obtained from palladium, 4% S-Phos in toluene-water (9: 1) in 12 hours reaction at reflux temperature. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 72%. Next, intermediate B-2 was hydrogenated in ethyl acetate-ethanol at room temperature in the presence of 10% palladium on carbon catalyst to obtain intermediate C-2. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 88%.
以下の反応スキームに沿って、3当量の2-ペンテン-3-イルボロン酸ピナコールエステルと1等量の中間体A-2、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phosからトルエン-水(9:1)中、還流温度での反応12時間で中間体B-2を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は72%だった。次いで中間体B-2を10%のパラジウム炭素触媒共存下に酢酸エチル-エタノール中、室温で水素添加反応し、中間体C-2を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は88%だった。 2. Synthesis of Intermediate C-2 According to the following reaction scheme, 3 equivalents of 2-penten-3-ylboronic acid pinacol ester and 1 equivalent of Intermediate A-2, 3 equivalents of potassium phosphate, 2% acetic acid Intermediate B-2 was obtained from palladium, 4% S-Phos in toluene-water (9: 1) in 12 hours reaction at reflux temperature. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 72%. Next, intermediate B-2 was hydrogenated in ethyl acetate-ethanol at room temperature in the presence of 10% palladium on carbon catalyst to obtain intermediate C-2. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 88%.
3.配位子L2G-13の合成
以下の反応スキームに沿って、1当量の中間体C-2と1.1当量の安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-2をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L2G-13を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は45%(4step)だった。 3. Synthesis of Ligand L2G-13 According to the following reaction scheme, 1 equivalent of Intermediate C-2, 1.1 equivalents of benzoic acid chloride, 1.1 equivalents of triethylamine in toluene at reflux temperature for 2 hours By reacting, intermediate C-2 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to give ligand L2G-13. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 45% (4step).
以下の反応スキームに沿って、1当量の中間体C-2と1.1当量の安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-2をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L2G-13を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は45%(4step)だった。 3. Synthesis of Ligand L2G-13 According to the following reaction scheme, 1 equivalent of Intermediate C-2, 1.1 equivalents of benzoic acid chloride, 1.1 equivalents of triethylamine in toluene at reflux temperature for 2 hours By reacting, intermediate C-2 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to give ligand L2G-13. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 45% (4step).
4.錯体Aの合成
以下の反応スキームに沿って、1当量の三塩化イリジウム・三水和物350mg(1.0ミリモル)と2.5当量のジフェニルピラゾール誘導体620mgをエトキシエタノール-水(3:1)20ml中、窒素雰囲気化に還流温度で6時間反応し、錯体Aとした。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量520mg(収率72%)の錯体Aを得た。 4). Synthesis of Complex A According to the following reaction scheme, 350 mg (1.0 mmol) of 1 equivalent of iridium trichloride trihydrate and 620 mg of 2.5 equivalents of diphenylpyrazole derivative were mixed with ethoxyethanol-water (3: 1). In 20 ml, the mixture was reacted in a nitrogen atmosphere at reflux temperature for 6 hours to obtain Complex A. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 520 mg (yield 72%) of complex A after drying.
以下の反応スキームに沿って、1当量の三塩化イリジウム・三水和物350mg(1.0ミリモル)と2.5当量のジフェニルピラゾール誘導体620mgをエトキシエタノール-水(3:1)20ml中、窒素雰囲気化に還流温度で6時間反応し、錯体Aとした。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量520mg(収率72%)の錯体Aを得た。 4). Synthesis of Complex A According to the following reaction scheme, 350 mg (1.0 mmol) of 1 equivalent of iridium trichloride trihydrate and 620 mg of 2.5 equivalents of diphenylpyrazole derivative were mixed with ethoxyethanol-water (3: 1). In 20 ml, the mixture was reacted in a nitrogen atmosphere at reflux temperature for 6 hours to obtain Complex A. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 520 mg (yield 72%) of complex A after drying.
窒素雰囲気下で配位子L2G-13 815mg(1.5ミリモル)、錯体A 430mg(0.30ミリモル)及びトリフルオロ酢酸銀 200mg(0.90ミリモル)を酢酸フェニル30ml中に添加した。窒素雰囲気下に180度で4時間反応させた。反応液をろ過し不溶物を除去した。ろ液を減圧濃縮し酢酸フェニルを溜去した後に冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量695mg(収率76%)の粗生成物を得た。この粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)によって精製し440mg(収率48%)の錯体DP-404を得た。
Under a nitrogen atmosphere, 815 mg (1.5 mmol) of ligand L2G-13, 430 mg (0.30 mmol) of complex A, and 200 mg (0.90 mmol) of silver trifluoroacetate were added to 30 ml of phenyl acetate. The reaction was carried out at 180 degrees for 4 hours in a nitrogen atmosphere. The reaction solution was filtered to remove insoluble matters. The filtrate was concentrated under reduced pressure, and phenyl acetate was distilled off, followed by cooling. 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol, and after drying, a crude product having a yield of 695 mg (yield 76%) was obtained. The crude product was purified by silica gel column chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) to obtain 440 mg (yield 48%) of complex DP-404.
精製した化合物が目的物であることをMASS、1H-NMRにより確認した。
It was confirmed by MASS and 1 H-NMR that the purified compound was the target product.
日立製作所製F-4500を用いて測定した例示化合物DP-404の溶液におけるPL発光極大波長は、460nm(T=77K、2-メチルテトラヒドロフラン中)、471nm(室温、塩化メチレン中)であった。
The PL emission maximum wavelength in the solution of Exemplified Compound DP-404 measured using Hitachi F-4500 was 460 nm (T = 77 K in 2-methyltetrahydrofuran) and 471 nm (room temperature in methylene chloride).
〔錯体 DP-459の合成〕
(配位子 L2M-21の合成)
1.中間体B-3の合成
以下の反応スキームに沿って、市販のジベンゾフランから、2工程の反応で中間体B-3を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々85%(ブロモ化)、65%(ボロン酸ピナコレート化)だった。 [Synthesis of Complex DP-459]
(Synthesis of Ligand L2M-21)
1. Synthesis of Intermediate B-3 Intermediate B-3 was synthesized in a two-step reaction from commercially available dibenzofuran according to the following reaction scheme. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 85% (bromination) and 65% (boronic acid pinacolation), respectively.
(配位子 L2M-21の合成)
1.中間体B-3の合成
以下の反応スキームに沿って、市販のジベンゾフランから、2工程の反応で中間体B-3を合成した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は各々85%(ブロモ化)、65%(ボロン酸ピナコレート化)だった。 [Synthesis of Complex DP-459]
(Synthesis of Ligand L2M-21)
1. Synthesis of Intermediate B-3 Intermediate B-3 was synthesized in a two-step reaction from commercially available dibenzofuran according to the following reaction scheme. The isolated yields after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) were 85% (bromination) and 65% (boronic acid pinacolation), respectively.
2.2-ブロモ-6-イソプロピルアニリンの合成
以下の反応スキームに沿って、市販の2-イソプロピルアニリンと1.1当量のN-ブロモコハク酸イミドを塩化メチレン中、0℃で3時間反応させ、2-ブロモ-6-イソプロピルアニリンを得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は86%だった。 2. Synthesis of 2-bromo-6-isopropylaniline According to the following reaction scheme, commercially available 2-isopropylaniline and 1.1 equivalent of N-bromosuccinimide were reacted in methylene chloride at 0 ° C. for 3 hours. 2-Bromo-6-isopropylaniline was obtained. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 86%.
以下の反応スキームに沿って、市販の2-イソプロピルアニリンと1.1当量のN-ブロモコハク酸イミドを塩化メチレン中、0℃で3時間反応させ、2-ブロモ-6-イソプロピルアニリンを得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は86%だった。 2. Synthesis of 2-bromo-6-isopropylaniline According to the following reaction scheme, commercially available 2-isopropylaniline and 1.1 equivalent of N-bromosuccinimide were reacted in methylene chloride at 0 ° C. for 3 hours. 2-Bromo-6-isopropylaniline was obtained. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 86%.
3.中間体C-3の合成
以下の反応スキームに沿って、1.2当量の中間体B-3と1当量の2-ブロモ-6-イソプロピルアニリン、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phosからトルエン-水(9:1)中、還流温度での反応10時間で中間体C-3を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は64%だった。 3. Synthesis of Intermediate C-3 According to the following reaction scheme, 1.2 equivalents of Intermediate B-3 and 1 equivalent of 2-bromo-6-isopropylaniline, 3 equivalents of potassium phosphate, 2% palladium acetate Intermediate C-3 was obtained from 4% S-Phos in toluene-water (9: 1) in 10 hours of reaction at reflux temperature. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 64%.
以下の反応スキームに沿って、1.2当量の中間体B-3と1当量の2-ブロモ-6-イソプロピルアニリン、3当量のリン酸カリウム、2%の酢酸パラジウム、4%のS-Phosからトルエン-水(9:1)中、還流温度での反応10時間で中間体C-3を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は64%だった。 3. Synthesis of Intermediate C-3 According to the following reaction scheme, 1.2 equivalents of Intermediate B-3 and 1 equivalent of 2-bromo-6-isopropylaniline, 3 equivalents of potassium phosphate, 2% palladium acetate Intermediate C-3 was obtained from 4% S-Phos in toluene-water (9: 1) in 10 hours of reaction at reflux temperature. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 64%.
4.配位子L2M-21の合成
以下の反応スキームに沿って、1当量の中間体C-3と1.1当量の4-フッ化安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-3をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L2G-13を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は43%(4step)だった。 4). Synthesis of Ligand L2M-21 According to the following reaction scheme, 1 equivalent of Intermediate C-3, 1.1 equivalent of 4-fluorobenzoic acid chloride, 1.1 equivalent of triethylamine was refluxed in toluene. The reaction was carried out for 2 hours at temperature, and intermediate C-3 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to give ligand L2G-13. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 43% (4step).
以下の反応スキームに沿って、1当量の中間体C-3と1.1当量の4-フッ化安息香酸クロリド、1.1等量のトリエチルアミンをトルエン中、還流温度に2時間反応し、中間体C-3をベンズアミドとした。次いで、このベンズアミドを1.1等量のオキシ塩化リンとトルエン中、還流温度で2時間反応し、イミノクロリドに変換した。次いで、このイミノクロリドを4等量のアミノアセタール、10等量のトリエチルアミンとアセトニトリル中、室温で3時間反応し、ベンズイミダミドに変換した。最後にこのベンズイミダミドをトルエン中5当量のリン酸と還流温度に2時間反応し、配位子L2G-13を得た。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=10:1~2:1)による精製後の単離収率は43%(4step)だった。 4). Synthesis of Ligand L2M-21 According to the following reaction scheme, 1 equivalent of Intermediate C-3, 1.1 equivalent of 4-fluorobenzoic acid chloride, 1.1 equivalent of triethylamine was refluxed in toluene. The reaction was carried out for 2 hours at temperature, and intermediate C-3 was converted to benzamide. The benzamide was then reacted with 1.1 equivalents of phosphorus oxychloride in toluene at reflux temperature for 2 hours to convert to imino chloride. The imino chloride was then reacted with 4 equivalents of aminoacetal, 10 equivalents of triethylamine in acetonitrile at room temperature for 3 hours to convert to benzimidazole. Finally, this benzimidamide was reacted with 5 equivalents of phosphoric acid in toluene at reflux temperature for 2 hours to give ligand L2G-13. The isolated yield after purification by silica gel chromatography (hexane: ethyl acetate = 10: 1 to 2: 1) was 43% (4step).
5.錯体Bの合成
以下の反応スキームに沿って、1当量の三塩化イリジウム・三水和物350mg(1.0ミリモル)と2.5当量のフェニルピラゾール360mgをエトキシエタノール-水(3:1)20ml中、窒素雰囲気化に還流温度で6時間反応し、錯体Bとした。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量370mg(収率72%)の錯体Bを得た。 5. Synthesis of Complex B According to the following reaction scheme, 350 mg (1.0 mmol) of 1 equivalent of iridium trichloride trihydrate and 360 mg of 2.5 equivalents of phenylpyrazole were added to 20 ml of ethoxyethanol-water (3: 1). The mixture was reacted in a nitrogen atmosphere at reflux temperature for 6 hours to obtain complex B. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 370 mg (yield 72%) of complex B after drying.
以下の反応スキームに沿って、1当量の三塩化イリジウム・三水和物350mg(1.0ミリモル)と2.5当量のフェニルピラゾール360mgをエトキシエタノール-水(3:1)20ml中、窒素雰囲気化に還流温度で6時間反応し、錯体Bとした。反応液を冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量370mg(収率72%)の錯体Bを得た。 5. Synthesis of Complex B According to the following reaction scheme, 350 mg (1.0 mmol) of 1 equivalent of iridium trichloride trihydrate and 360 mg of 2.5 equivalents of phenylpyrazole were added to 20 ml of ethoxyethanol-water (3: 1). The mixture was reacted in a nitrogen atmosphere at reflux temperature for 6 hours to obtain complex B. The reaction solution was cooled, 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol and dried to obtain 370 mg (yield 72%) of complex B after drying.
窒素雰囲気下で配位子L2M-21 670mg(1.5ミリモル)、錯体B 310mg(0.30ミリモル)及びトリフルオロ酢酸銀 200mg(0.90ミリモル)を酢酸フェニル30ml中に添加した。窒素雰囲気下に180度で4時間反応させた。反応液をろ過し不溶物を除去した。ろ液を減圧濃縮し酢酸フェニルを溜去した後に冷却し、メタノール30mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後収量405mg(収率73%)の粗生成物を得た。この粗生成物をシカゲルカラムクロマトグラフィー(ヘキサン-テトラヒドロフラン=10:1~4:1)によって精製し250mg(収率45%)の錯体DP-459を得た。
Under a nitrogen atmosphere, 670 mg (1.5 mmol) of ligand L2M-21, 310 mg (0.30 mmol) of complex B and 200 mg (0.90 mmol) of silver trifluoroacetate were added to 30 ml of phenyl acetate. The reaction was carried out at 180 degrees for 4 hours in a nitrogen atmosphere. The reaction solution was filtered to remove insoluble matters. The filtrate was concentrated under reduced pressure, and phenyl acetate was distilled off, followed by cooling. 30 ml of methanol was added, and the precipitated crystals were collected by filtration. The obtained crystals were further washed with methanol, and after drying, a yield of 405 mg (yield 73%) was obtained as a crude product. The crude product was purified by silica gel column chromatography (hexane-tetrahydrofuran = 10: 1 to 4: 1) to obtain 250 mg (yield 45%) of complex DP-459.
精製した化合物が目的物であることをMASS、1H-NMRにより確認した。
It was confirmed by MASS and 1 H-NMR that the purified compound was the target product.
日立製作所製F-4500を用いて測定した例示化合物DP-1の溶液におけるPL発光極大波長は、458nm(T=77K、2-メチルテトラヒドロフラン中)、468nm(室温、塩化メチレン中)であった。
The PL emission maximum wavelength in the solution of Exemplified Compound DP-1 measured using Hitachi F-4500 was 458 nm (T = 77K in 2-methyltetrahydrofuran) and 468 nm (room temperature in methylene chloride).
本発明のその他の化合物も上記の合成例と同様に、適切な原料、反応を用いることで収率良く合成することができる。
Other compounds of the present invention can also be synthesized with good yield by using appropriate raw materials and reactions as in the above synthesis examples.
(1.2)蛍光ドーパント
蛍光ドーパント(蛍光性化合物ともいう)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。 (1.2) Fluorescent dopants Fluorescent dopants (also referred to as fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes having a high fluorescence quantum yield such as laser dyes and the like, and dyes based on dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
蛍光ドーパント(蛍光性化合物ともいう)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。 (1.2) Fluorescent dopants Fluorescent dopants (also referred to as fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes having a high fluorescence quantum yield such as laser dyes and the like, and dyes based on dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
(1.3)従来公知の発光ドーパントとの併用
また本発明に係る発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。併用するリン光ドーパント及び蛍光ドーパントとして、公知のものを用いることができる。 (1.3) Combined use with conventionally known light-emitting dopants The light-emitting dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, a phosphorescent dopant and A combination of fluorescent dopants may also be used. Known phosphorescent dopants and fluorescent dopants can be used.
また本発明に係る発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。併用するリン光ドーパント及び蛍光ドーパントとして、公知のものを用いることができる。 (1.3) Combined use with conventionally known light-emitting dopants The light-emitting dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, a phosphorescent dopant and A combination of fluorescent dopants may also be used. Known phosphorescent dopants and fluorescent dopants can be used.
(2)ホスト化合物
本発明においてホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 (2) Host Compound In the present invention, the host compound is a phosphorescent quantum that emits phosphorescence at room temperature (25 ° C.) and has a mass ratio of 20% or more in the light-emitting layer. A yield is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
本発明においてホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 (2) Host Compound In the present invention, the host compound is a phosphorescent quantum that emits phosphorescence at room temperature (25 ° C.) and has a mass ratio of 20% or more in the light-emitting layer. A yield is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
本発明に用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも1つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
The host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. Typically, a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound or the like having a basic skeleton, or a carboline derivative or a diazacarbazole derivative (here And the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
本発明に用いることができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
As the known host compound that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being longer, and has a high Tg (glass transition temperature) is preferable.
また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、前記リン光ドーパントとして用いられる本発明の金属錯体及び/又は従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
In the present invention, conventionally known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of the metal complex of this invention used as the said phosphorescence dopant, and / or a conventionally well-known compound, and, thereby, arbitrary luminescent colors can be obtained.
また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよく、このような化合物を1種又は複数種用いても良い。
The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Of course, one or more of such compounds may be used.
公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。
Specific examples of known host compounds include compounds described in the following documents.
特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
以下、本発明の有機EL素子の発光層のホスト化合物として用いられる具体例を挙げるが、本発明はこれらに限定されない。
Hereinafter, although the specific example used as a host compound of the light emitting layer of the organic EL element of this invention is given, this invention is not limited to these.
更に、本発明の有機EL素子の発光層のホスト化合物として特に好ましいものは、下記一般式(B)又は一般式(E)で表される化合物である。
Furthermore, a compound represented by the following general formula (B) or general formula (E) is particularly preferable as the host compound of the light emitting layer of the organic EL device of the present invention.
一般式(B)及び一般式(E)中、Xaは酸素原子又は硫黄原子を表す。Xb、Xc、Xd及びXeは、各々水素原子、置換基又は下記一般式(C)で表される基を表す。Xb、Xc、Xd及びXeのうち少なくとも1つは下記一般式(C)で表される基を表し、下記一般式(C)で表される基のうち少なくとも1つはArがカルバゾリル基を表す。
In general formula (B) and general formula (E), Xa represents an oxygen atom or a sulfur atom. Xb, Xc, Xd and Xe each represent a hydrogen atom, a substituent or a group represented by the following general formula (C). At least one of Xb, Xc, Xd and Xe represents a group represented by the following general formula (C), and at least one of the groups represented by the following general formula (C) represents Ar as a carbazolyl group. .
一般式(C)
Ar-(L4)n-*
一般式(C)中、L4は、芳香族炭化水素環又は芳香族複素環から導出される2価の連結基を表す。nは0~3の整数を表し、nが2以上の場合、複数のL4は同じでも異なっていてもよい。*は一般式(B)又は一般式(E)との連結部位を表す。Arは下記一般式(D)で表される基を表す。 General formula (C)
Ar- (L 4 ) n- *
In General Formula (C), L 4 represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring. n represents an integer of 0 to 3, and when n is 2 or more, the plurality of L 4 may be the same or different. * Represents a linking site with the general formula (B) or the general formula (E). Ar represents a group represented by the following general formula (D).
Ar-(L4)n-*
一般式(C)中、L4は、芳香族炭化水素環又は芳香族複素環から導出される2価の連結基を表す。nは0~3の整数を表し、nが2以上の場合、複数のL4は同じでも異なっていてもよい。*は一般式(B)又は一般式(E)との連結部位を表す。Arは下記一般式(D)で表される基を表す。 General formula (C)
Ar- (L 4 ) n- *
In General Formula (C), L 4 represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring. n represents an integer of 0 to 3, and when n is 2 or more, the plurality of L 4 may be the same or different. * Represents a linking site with the general formula (B) or the general formula (E). Ar represents a group represented by the following general formula (D).
一般式(D)中、XfはN(R″)、酸素原子又は硫黄原子を表し、E1~E8はC(R″1)又はNを表し、R″及びR″1は水素原子、置換基又は一般式(C)におけるL4との連結部位を表す。*は一般式(C)におけるL4との連結部位を表す。
In general formula (D), Xf represents N (R ″), an oxygen atom or a sulfur atom, E 1 to E 8 represent C (R ″ 1 ) or N, R ″ and R ″ 1 are hydrogen atoms, It represents a substituent or a linking site with L 4 in formula (C). * Represents a linking site with L 4 in the general formula (C).
上記一般式(B)で表される化合物においては、好ましくは、Xb、Xc、Xd及びXeのうち少なくとも2つが一般式(C)で表され、より好ましくはXcが一般式(C)で表され且つ一般式(C)のArが置換基を有していてもよいカルバゾリル基を表す。
In the compound represented by the general formula (B), preferably at least two of Xb, Xc, Xd and Xe are represented by the general formula (C), and more preferably Xc is represented by the general formula (C). And Ar in the general formula (C) represents a carbazolyl group which may have a substituent.
また、本発明の有機EL素子の発光層のホスト化合物として、下記一般式(B′)で表される化合物も、特に好ましく用いられる。
Also, a compound represented by the following general formula (B ′) is particularly preferably used as the host compound of the light emitting layer of the organic EL device of the present invention.
一般式(B′)中、Xaは酸素原子又は硫黄原子を表し、Xb及びXcは、各々置換基又は上記した一般式(C)で表される基を表す。Xb及びXcのうち少なくとも1つは上記した一般式(C)で表される基を表し、該一般式(C)で表される基のうち少なくとも1つはArがカルバゾリル基を表す。
In the general formula (B ′), Xa represents an oxygen atom or a sulfur atom, and Xb and Xc each represents a substituent or a group represented by the above general formula (C). At least one of Xb and Xc represents a group represented by the above general formula (C), and at least one of the groups represented by the general formula (C) represents Ar as a carbazolyl group.
上記一般式(B′)で表される化合物においては、好ましくは、一般式(C)のArが置換基を有していてもよいカルバゾリル基を表し、より好ましくは、一般式(C)のArが置換基を有していてもよく、且つN位で一般式(C)におけるL4と連結したカルバゾリル基を表す。
In the compound represented by the general formula (B ′), preferably, Ar in the general formula (C) represents a carbazolyl group which may have a substituent, and more preferably, in the general formula (C). Ar may have a substituent, and represents a carbazolyl group linked to L 4 in formula (C) at the N-position.
次に、本発明の有機EL素子の構成層として好ましく用いられる、注入層、阻止層、電子輸送層等について説明する。
Next, an injection layer, a blocking layer, an electron transport layer, and the like that are preferably used as the constituent layers of the organic EL element of the present invention will be described.
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。 << Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。 << Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。また、特表2003-519432号や特開2006-135145号等に記載されているようなアザトリフェニレン誘導体も同様に正孔注入材料として用いることができる。
The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Representative phthalocyanine buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) ) Orthometalated complex layers represented by iridium complexes and the like. Further, azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole injection material.
陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 <Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 <Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
Moreover, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
正孔阻止層には、前述のホスト化合物として挙げたカルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれかひとつが窒素原子で置き換わったものを示す)を含有することが好ましい。
The hole blocking layer contains the carbazole derivative, carboline derivative, or diazacarbazole derivative (shown in which any one of the carbon atoms constituting the carboline ring of the carboline derivative is replaced by a nitrogen atom). It is preferable to contain.
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
(2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmの範囲内である。
Moreover, the structure of the hole transport layer described later can be used as an electron blocking layer as necessary. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。 《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。 《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。また、特表2003-519432号や特開2006-135145号等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. In addition, azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、銅フタロシアニンやトリス(2-フェニルピリジン)イリジウム錯体等に代表されるシクロメタル化錯体やオルトメタル化錯体等も正孔輸送材料として使用することができる。
Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. In addition, cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmの範囲内である。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。 《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。 《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる。)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して、単独又は組み合わせて用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
Conventionally, when a single electron transport layer and a plurality of layers are used, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode. As long as it has a function of transmitting the generated electrons to the light emitting layer, any material can be selected from conventionally known compounds and used alone or in combination. Fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
また8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as electron transport materials.
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。 "anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。 "anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. The anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。 "cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。 "cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
また、陰極に上記金属を1~20nmの範囲内の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
In addition, a transparent or translucent cathode can be manufactured by forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m2・24h・atm)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
The external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。 <Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。 <Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.
更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。
In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive.
封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
Application of the adhesive to the sealing portion may be performed using a commercially available dispenser or may be printed like screen printing.
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。 《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。 《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
全反射を起こす界面、若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
The method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of these, light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
導入する回折格子は、2次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
しかしながら、屈折率分布を2次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
As described above, the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度の範囲が好ましい。
At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいはいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。 《Condensing sheet》
The organic EL element of the present invention can be processed on a light extraction side of a substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example in a specific direction, for example, with respect to the element light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいはいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。 《Condensing sheet》
The organic EL element of the present invention can be processed on a light extraction side of a substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example in a specific direction, for example, with respect to the element light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。 << Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。 << Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. Make it.
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。
Next, organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。特に、本発明に係るリン光発光性有機金属錯体を含有した有機層は、ウェットプロセスを経て形成されることが上記の理由で好ましい。
As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention. In particular, the organic layer containing the phosphorescent organometallic complex according to the present invention is preferably formed through a wet process for the above reason.
本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm. By providing, a desired organic EL element can be obtained.
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
It is also possible to reverse the production order and produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 <Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 <Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Optics) is applied to the CIE chromaticity coordinates.
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。 <Display device>
The display device of the present invention will be described. The display device of the present invention has the organic EL element.
本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。 <Display device>
The display device of the present invention will be described. The display device of the present invention has the organic EL element.
本発明の表示装置は、単色でも多色でもよいが、ここでは多色表示装置について説明する。
The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
In the case of patterning only the light emitting layer, the method is not limited, but is preferably a vapor deposition method, an inkjet method, or a printing method. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
It is also possible to reverse the production order to produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode in this order.
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
The multicolor display device can be used as a display device, a display, and various light sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. However, it is not limited to this.
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like. The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
図2は表示部Aの模式図である。
FIG. 2 is a schematic diagram of the display unit A.
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。図2においては、画素3の発光した光Lが白矢印方向(下方向)へ取り出される場合を示している。
The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below. FIG. 2 shows a case where the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
次に、画素の発光プロセスを説明する。
Next, the light emission process of the pixel will be described.
図3は回路の模式図である。
FIG. 3 is a schematic diagram of the circuit.
画素は有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
図3において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。
3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. The power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。
When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
That is, the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL elements 10 of the plurality of pixels, and the organic EL elements 10 of the plurality of pixels 3 emit light. It is carried out. Such a light emitting method is called an active matrix method.
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。 《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。 《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
The organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image ( It may be used as a display.
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
Further, the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
発光層若しくは正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
It is only necessary to provide a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and simply arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is unnecessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
As described above, the white light emitting organic EL element according to the present invention is used as a kind of lamp such as household illumination, interior lighting, and exposure light source as various light emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices.
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
Others such as backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
《本発明の照明装置の一態様》
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。 << One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。 << One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.
図5は、照明装置の概略図を示している。図5に示すとおり、有機EL素子101はガラスカバー102で覆われている。
FIG. 5 shows a schematic diagram of the lighting device. As shown in FIG. 5, the organic EL element 101 is covered with a glass cover 102.
ガラスカバー102での封止作業は、好ましくは、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行われる。
The sealing operation with the glass cover 102 is preferably performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 into contact with the atmosphere.
図6は、照明装置の断面図を示している。図6に示すとおり、照明装置は主に陰極105、有機EL層106及び透明電極付きガラス基板107で構成され、これら部材がガラスカバー102で覆われている。ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
FIG. 6 shows a cross-sectional view of the lighting device. As shown in FIG. 6, the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
実施例において用いられる化合物の構造を下記に示す。
The structure of the compound used in the examples is shown below.
〔実施例1〕
〈蒸着型青色発光有機EL素子〉
《青色発光有機EL素子1-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 1]
<Vapor deposition type blue light emitting organic EL element>
<< Production of Blue Light-Emitting Organic EL Element 1-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈蒸着型青色発光有機EL素子〉
《青色発光有機EL素子1-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 1]
<Vapor deposition type blue light emitting organic EL element>
<< Production of Blue Light-Emitting Organic EL Element 1-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取り付けた。
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is put into another resistance heating boat made of molybdenum, 100 mg of the luminescent dopant (Comparative Compound 1) is put into another resistance heating boat made of molybdenum, and the electron transport material 1 is put into another resistance heating boat made of molybdenum. And 200 mg of the electron transport material 2 was put in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し膜厚20nmの正孔注入層を設けた。
The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚20nmの正孔輸送層を設けた。
Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the light emitting dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.012 nm / second, respectively. A 40 nm-thick luminescent layer was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
Furthermore, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚20nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was established. In addition, the substrate temperature at the time of vapor deposition was room temperature.
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。なお以下の表では、有機EL素子をELと略記し、例えば有機EL素子1-1をEL1-1と表記した。
Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 1-1 was produced. In the table below, the organic EL element is abbreviated as EL, for example, the organic EL element 1-1 is denoted as EL1-1.
《有機EL素子1-2~1-161の作製》
有機EL素子1-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパントを表2-1~表2-6に示す化合物に置き換えた以外は有機EL素子1-1と同様にして、有機EL素子1-2~1-161を作製した。 << Preparation of organic EL elements 1-2 to 1-161 >>
In the production of the organic EL element 1-1, except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant were replaced with the compounds shown in Table 2-1 to Table 2-6, Similarly, organic EL elements 1-2 to 1-161 were produced.
有機EL素子1-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパントを表2-1~表2-6に示す化合物に置き換えた以外は有機EL素子1-1と同様にして、有機EL素子1-2~1-161を作製した。 << Preparation of organic EL elements 1-2 to 1-161 >>
In the production of the organic EL element 1-1, except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant were replaced with the compounds shown in Table 2-1 to Table 2-6, Similarly, organic EL elements 1-2 to 1-161 were produced.
《有機EL素子の評価》
得られた有機EL素子1-1~1-161を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して評価した。 << Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 1-1 to 1-161, the non-light emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
得られた有機EL素子1-1~1-161を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成して評価した。 << Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 1-1 to 1-161, the non-light emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
図5は照明装置の概略図を示している。有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバー102での封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。
FIG. 5 shows a schematic diagram of the lighting device. The organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover 102 is a glove box (purity of 99.999% or more in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere). In a high-purity nitrogen gas atmosphere).
図6は照明装置の断面図を示している。照明装置の内部には、陽極としての透明電極付きガラス基板107、有機EL層106及び陰極105がこの順に積層されている。ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
FIG. 6 shows a cross-sectional view of the lighting device. Inside the lighting device, a glass substrate 107 with a transparent electrode as an anode, an organic EL layer 106 and a cathode 105 are laminated in this order. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
(1)外部取り出し量子効率
各有機EL素子を室温(25℃)、初期輝度2000cd/m2、及び4000cd/m2を与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、発光効率の評価尺度として外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定はCS-1000(コニカミノルタオプティクス社製)を用いた。 (1) taking out at room temperature the quantum efficiency organic EL elements (25 ° C.), the initial luminance 2000 cd / m 2, and 4000 cd / m 2 at a current giving by constant current driving, the lighting start immediately after the drive current [mA] to By measuring, external extraction quantum efficiency (η) was calculated as an evaluation scale of luminous efficiency. Here, CS-1000 (manufactured by Konica Minolta Optics) was used for measurement of light emission luminance.
各有機EL素子を室温(25℃)、初期輝度2000cd/m2、及び4000cd/m2を与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、発光効率の評価尺度として外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定はCS-1000(コニカミノルタオプティクス社製)を用いた。 (1) taking out at room temperature the quantum efficiency organic EL elements (25 ° C.), the initial luminance 2000 cd / m 2, and 4000 cd / m 2 at a current giving by constant current driving, the lighting start immediately after the drive current [mA] to By measuring, external extraction quantum efficiency (η) was calculated as an evaluation scale of luminous efficiency. Here, CS-1000 (manufactured by Konica Minolta Optics) was used for measurement of light emission luminance.
外部取り出し量子収率はいずれも、初期輝度2000cd/m2における有機EL素子1-1を基準(100)とした相対値で示した。
The external extraction quantum yields are all expressed as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
(2)駆動電圧
各有機EL素子を室温(約23~25℃)、初期輝度2000cd/m2、及び4000cd/m2を与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、駆動電圧を測定した。ここで、発光輝度の測定はCS-1000(コニカミノルタオプティクス社製)を用いた。 (2) RT driving voltage the organic EL element (about 23 ~ 25 ° C.), the initial luminance 2000 cd / m 2, and 4000 cd / m 2 at a current giving by constant current driving, immediately after the lighting start drive current [mA] The drive voltage was measured by measuring Here, CS-1000 (manufactured by Konica Minolta Optics) was used for measurement of light emission luminance.
各有機EL素子を室温(約23~25℃)、初期輝度2000cd/m2、及び4000cd/m2を与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、駆動電圧を測定した。ここで、発光輝度の測定はCS-1000(コニカミノルタオプティクス社製)を用いた。 (2) RT driving voltage the organic EL element (about 23 ~ 25 ° C.), the initial luminance 2000 cd / m 2, and 4000 cd / m 2 at a current giving by constant current driving, immediately after the lighting start drive current [mA] The drive voltage was measured by measuring Here, CS-1000 (manufactured by Konica Minolta Optics) was used for measurement of light emission luminance.
駆動電圧はいずれも、初期輝度2000cd/m2における有機EL素子1-1を基準(100)とした相対値で示した。
All of the drive voltages are shown as relative values with the organic EL element 1-1 at an initial luminance of 2000 cd / m 2 as a reference (100).
駆動電圧={(各素子の駆動電圧/有機EL素子1-1の駆動電圧(初期輝度2000cd/m2))}×100
値が小さいほうが比較に対して駆動電圧が低いことを示す。 Drive voltage = {(drive voltage of each element / drive voltage of the organic EL element 1-1 (initial luminance 2000 cd / m 2 ))} × 100
A smaller value indicates a lower drive voltage for comparison.
値が小さいほうが比較に対して駆動電圧が低いことを示す。 Drive voltage = {(drive voltage of each element / drive voltage of the organic EL element 1-1 (initial luminance 2000 cd / m 2 ))} × 100
A smaller value indicates a lower drive voltage for comparison.
(3)駆動電圧上昇率
10mA/cm2の一定電流で駆動したときに、初期電圧と200時間後の電圧を測定した。初期電圧に対する200時間後の電圧の上昇を百分率で表示し駆動電圧上昇率とした。 (3) Driving voltage increase rate When driving at a constant current of 10 mA / cm 2 , the initial voltage and the voltage after 200 hours were measured. The increase in voltage after 200 hours with respect to the initial voltage was displayed as a percentage and used as the drive voltage increase rate.
10mA/cm2の一定電流で駆動したときに、初期電圧と200時間後の電圧を測定した。初期電圧に対する200時間後の電圧の上昇を百分率で表示し駆動電圧上昇率とした。 (3) Driving voltage increase rate When driving at a constant current of 10 mA / cm 2 , the initial voltage and the voltage after 200 hours were measured. The increase in voltage after 200 hours with respect to the initial voltage was displayed as a percentage and used as the drive voltage increase rate.
駆動電圧上昇率(%)={[(各有機EL素子の駆動200時間後の駆動電圧/V)-(各有機EL素子の初期駆動電圧/V)]/(各有機EL素子の初期駆動電圧/V)}×100
(4)半減発光寿命(25℃)
下記に示す測定法に従って、半減発光寿命の評価を行った。 Drive voltage increase rate (%) = {[(Drive voltage after driving 200 hours for each organic EL element / V) − (Initial drive voltage for each organic EL element / V)] / (Initial drive voltage for each organic EL element) / V)} × 100
(4) Half light emission lifetime (25 ° C)
The half-light emission lifetime was evaluated according to the measurement method shown below.
(4)半減発光寿命(25℃)
下記に示す測定法に従って、半減発光寿命の評価を行った。 Drive voltage increase rate (%) = {[(Drive voltage after driving 200 hours for each organic EL element / V) − (Initial drive voltage for each organic EL element / V)] / (Initial drive voltage for each organic EL element) / V)} × 100
(4) Half light emission lifetime (25 ° C)
The half-light emission lifetime was evaluated according to the measurement method shown below.
各有機EL素子を25℃及び70℃の恒温槽内で、初期輝度2000cd/m2を与える電流で定電流駆動して、初期輝度の1/2(1000cd/m2)になる時間を求め、これを半減発光寿命の尺度とした。
Each organic EL element is driven at a constant current in a constant temperature bath at 25 ° C. and 70 ° C. with a current that gives an initial luminance of 2000 cd / m 2 , and a time that is ½ of the initial luminance (1000 cd / m 2 ) is obtained. This was taken as a measure of half-life.
半減発光寿命は、25℃において得られた有機EL素子1-1の半減発光寿命を基準(100)と設定する相対値で表した。
The half-light emission lifetime was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL device 1-1 obtained at 25 ° C.
(5)初期劣化
下記に示す測定法に従って、初期劣化の評価を行った。 (5) Initial degradation Initial degradation was evaluated according to the measurement method shown below.
下記に示す測定法に従って、初期劣化の評価を行った。 (5) Initial degradation Initial degradation was evaluated according to the measurement method shown below.
前記25℃での半減発光寿命の測定時に、各有機EL素子の発光輝度が初期輝度の90%(1800cd/m2)に到達する時間を測定し、これを初期劣化の尺度とした。
At the time of measuring the half light emission lifetime at 25 ° C., the time required for the emission luminance of each organic EL element to reach 90% (1800 cd / m 2 ) of the initial luminance was measured, and this was used as a measure of initial deterioration.
初期劣化は、有機EL素子1-1の半減発光寿命を基準(100)と設定する相対値で表した。
The initial deterioration was expressed as a relative value set with the reference (100) as the half-light emission lifetime of the organic EL element 1-1.
初期劣化は以下の計算式を基に計算した。
The initial deterioration was calculated based on the following formula.
初期劣化={(有機EL素子1-1の輝度90%到達時間(hr))/(各有機EL素子の輝度90%到達時間(hr))}×100
すなわち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。 Initial degradation = {(90% arrival time of luminance of organic EL element 1-1 (hr)) / (90% arrival time of each organic EL element (hr))} × 100
That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.
すなわち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。 Initial degradation = {(90% arrival time of luminance of organic EL element 1-1 (hr)) / (90% arrival time of each organic EL element (hr))} × 100
That is, the smaller the initial deterioration value is, the smaller the initial deterioration is.
(6)連続駆動時の発光ムラ
初期輝度2000cd/m2での定電流駆動において、150hr後の発光輝度を分光放射輝度計CS-1000(コニカミノルタオプティクス社製)を用いて測定した。発光面中の任意な点20点を測定し、この際の測定値より、発光ムラ=面内最低輝度/最高輝度として算出し、下記のように3段階のランク評価を行った。発光ムラが0.90以上の場合を「○」、発光ムラが0.86以上0.90未満の場合を「△」、発光ムラが0.86未満の場合を「×」とした。 (6) Luminous unevenness during continuous driving In constant current driving at an initial luminance of 2000 cd / m 2 , the luminous luminance after 150 hours was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). 20 arbitrary points on the light emitting surface were measured, and from the measured value at this time, light emission unevenness = in-plane minimum luminance / maximum luminance was calculated, and three-level rank evaluation was performed as follows. The case where the light emission unevenness was 0.90 or more was indicated by “◯”, the case where the light emission unevenness was 0.86 or more and less than 0.90 was indicated by “Δ”, and the case where the light emission unevenness was less than 0.86 was indicated by “x”.
初期輝度2000cd/m2での定電流駆動において、150hr後の発光輝度を分光放射輝度計CS-1000(コニカミノルタオプティクス社製)を用いて測定した。発光面中の任意な点20点を測定し、この際の測定値より、発光ムラ=面内最低輝度/最高輝度として算出し、下記のように3段階のランク評価を行った。発光ムラが0.90以上の場合を「○」、発光ムラが0.86以上0.90未満の場合を「△」、発光ムラが0.86未満の場合を「×」とした。 (6) Luminous unevenness during continuous driving In constant current driving at an initial luminance of 2000 cd / m 2 , the luminous luminance after 150 hours was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). 20 arbitrary points on the light emitting surface were measured, and from the measured value at this time, light emission unevenness = in-plane minimum luminance / maximum luminance was calculated, and three-level rank evaluation was performed as follows. The case where the light emission unevenness was 0.90 or more was indicated by “◯”, the case where the light emission unevenness was 0.86 or more and less than 0.90 was indicated by “Δ”, and the case where the light emission unevenness was less than 0.86 was indicated by “x”.
(7)ダークスポット
各有機EL素子を室温下、初期輝度2000cd/m2を与える電流で定電流駆動して連続点灯を行った際の発光面を目視で評価した。 (7) Dark Spot The light emitting surface when each organic EL element was continuously lit by driving at constant current with a current giving an initial luminance of 2000 cd / m 2 at room temperature was visually evaluated.
各有機EL素子を室温下、初期輝度2000cd/m2を与える電流で定電流駆動して連続点灯を行った際の発光面を目視で評価した。 (7) Dark Spot The light emitting surface when each organic EL element was continuously lit by driving at constant current with a current giving an initial luminance of 2000 cd / m 2 at room temperature was visually evaluated.
無作為に抽出した10人による目視評価で、連続点灯時間10時間経過後の各素子において以下の尺度で評価した。
目視 Randomly extracted by visual evaluation by 10 people, each element after 10 hours of continuous lighting time was evaluated according to the following scale.
× ダークスポットを確認した人数が5人以上の場合
△ ダークスポットを確認した人数が14人の場合
○ ダークスポットを確認した人数が0人の場合
以上の評価結果を表2-1~表2-6に示す。 × When the number of confirmed dark spots is 5 or more △ When the number of confirmed dark spots is 14 ○ When the number of confirmed dark spots is 0 The above evaluation results are shown in Table 2-1 to Table 2- It is shown in FIG.
△ ダークスポットを確認した人数が14人の場合
○ ダークスポットを確認した人数が0人の場合
以上の評価結果を表2-1~表2-6に示す。 × When the number of confirmed dark spots is 5 or more △ When the number of confirmed dark spots is 14 ○ When the number of confirmed dark spots is 0 The above evaluation results are shown in Table 2-1 to Table 2- It is shown in FIG.
表2-1~表2-6から、比較の有機EL素子1-1~1-4に比べて、本発明の有機EL素子1-5~1-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Table 2-1 to Table 2-6, the organic EL elements 1-5 to 1-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 1-1 to 1-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子1-5~1-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 1-5 to 1-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
かかる結果から、少なくとも発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, it can be seen that it is useful to use the phosphorescent organometallic complex according to the present invention as a luminescent dopant in at least improving luminous efficiency, reducing driving voltage, and improving luminous lifetime.
〔実施例2〕
〈ウェットプロセス型青色発光素子〉
《青色発光有機EL素子2-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 2]
<Wet process type blue light emitting element>
<< Preparation of Blue Light-Emitting Organic EL Element 2-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈ウェットプロセス型青色発光素子〉
《青色発光有機EL素子2-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 [Example 2]
<Wet process type blue light emitting element>
<< Preparation of Blue Light-Emitting Organic EL Element 2-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgの正孔輸送材料2を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。更に180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。
This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving 50 mg of the hole transport material 2 in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . Furthermore, after irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to obtain a second hole transport layer.
この第2正孔輸送層上に、100mgのホスト化合物(ホスト材料1)と15mgの発光ドーパント(比較化合物1)とを10mlの酢酸ブチルに溶解した溶液を用いて600rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
On this second hole transport layer, using a solution in which 100 mg of the host compound (host material 1) and 15 mg of the luminescent dopant (comparative compound 1) are dissolved in 10 ml of butyl acetate, under the condition of 600 rpm for 30 seconds, A thin film was formed by spin coating. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer with a film thickness of about 70 nm.
次に、この発光層上に、50mgの電子輸送材料3を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
Next, a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 30 nm.
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2-1を作製した。
Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed to produce an organic EL element 2-1.
《有機EL素子2-2~2-161の作製》
有機EL素子2-1の作製において、ホスト化合物及び発光ドーパントを表3-1~表3-6に示す化合物に置き換えた以外は有機EL素子2-1同様にして、有機EL素子2-2~2-161を作製した。 << Preparation of organic EL elements 2-2 to 2-161 >>
In the production of the organic EL element 2-1, the organic EL element 2-2 to the organic EL element 2-1 were prepared in the same manner as the organic EL element 2-1, except that the host compound and the light-emitting dopant were replaced with the compounds shown in Tables 3-1 to 3-6. 2-161 was prepared.
有機EL素子2-1の作製において、ホスト化合物及び発光ドーパントを表3-1~表3-6に示す化合物に置き換えた以外は有機EL素子2-1同様にして、有機EL素子2-2~2-161を作製した。 << Preparation of organic EL elements 2-2 to 2-161 >>
In the production of the organic EL element 2-1, the organic EL element 2-2 to the organic EL element 2-1 were prepared in the same manner as the organic EL element 2-1, except that the host compound and the light-emitting dopant were replaced with the compounds shown in Tables 3-1 to 3-6. 2-161 was prepared.
《有機EL素子の評価》
得られた有機EL素子2-1~2-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 2-1 to 2-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
得られた有機EL素子2-1~2-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 2-1 to 2-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子2-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half light emission lifetime, and (5) initial deterioration, the example was based on the organic EL element 2-1. The relative value was determined in the same manner as in 1.
評価結果を表3-1~表3-6に示す。
Evaluation results are shown in Tables 3-1 to 3-6.
表3-1~表3-6から、比較の有機EL素子2-1~2-4に比べて、本発明の有機EL素子2-5~2-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Tables 3-1 to 3-6, the organic EL elements 2-5 to 2-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 2-1 to 2-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子2-5~2-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 2-5 to 2-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
かかる結果から、発光層をスピンコート法によるウェットプロセスで形成する場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even when the light emitting layer is formed by a wet process using a spin coating method, the phosphorescent organic material according to the present invention is used as a light emitting dopant in order to improve the light emitting efficiency, reduce the driving voltage, and improve the light emitting lifetime. It can be seen that it is useful to use a metal complex.
〔実施例3〕
〈蒸着型白色発光素子-1〉
《白色発光有機EL素子の3-1作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 3
<Vapor deposition type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 3-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈蒸着型白色発光素子-1〉
《白色発光有機EL素子の3-1作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 3
<Vapor deposition type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 3-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取り付けた。
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added. In another molybdenum resistance heating boat, the luminescent dopant (D -6) was put in 100 mg, 200 mg of the electron transport material 1 was put in another resistance heating boat made of molybdenum, and 200 mg of the electron transport material 2 was put in another resistance heating boat made of molybdenum, and attached to the vacuum deposition apparatus.
次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し膜厚20nmの正孔注入層を設けた。
The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚20nmの正孔輸送層を設けた。
Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.020nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the heating boat containing the host compound (OC-11), the luminescent dopant (Comparative Compound 1) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.020 nm, respectively. A light emitting layer having a film thickness of 40 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / second. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
Furthermore, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚20nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was established. In addition, the substrate temperature at the time of vapor deposition was room temperature.
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3-1を作製した。
Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 3-1 was produced.
《有機EL素子3-2~3-161の作製》
有機EL素子3-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパント(比較化合物1のみ)を表4-1~表4-6に示す化合物に置き換えた以外は有機EL素子3-1と同様にして、有機EL素子3-2~3-161を作製した。 << Preparation of organic EL elements 3-2 to 3-161 >>
In the production of the organic EL element 3-1, organic materials were used except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant (only the comparative compound 1) were replaced with the compounds shown in Tables 4-1 to 4-6. Organic EL elements 3-2 to 3-161 were produced in the same manner as EL element 3-1.
有機EL素子3-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパント(比較化合物1のみ)を表4-1~表4-6に示す化合物に置き換えた以外は有機EL素子3-1と同様にして、有機EL素子3-2~3-161を作製した。 << Preparation of organic EL elements 3-2 to 3-161 >>
In the production of the organic EL element 3-1, organic materials were used except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant (only the comparative compound 1) were replaced with the compounds shown in Tables 4-1 to 4-6. Organic EL elements 3-2 to 3-161 were produced in the same manner as EL element 3-1.
《有機EL素子の評価》
得られた有機EL素子3-1~3-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 3-1 to 3-161, the performance of the organic EL device was evaluated in the same manner as in Example 1.
得られた有機EL素子3-1~3-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 3-1 to 3-161, the performance of the organic EL device was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子3-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half light emission lifetime, and (5) initial deterioration, the example is based on the organic EL element 3-1. The relative value was determined in the same manner as in 1.
評価結果を表4-1~表4-6に示す。
Evaluation results are shown in Tables 4-1 to 4-6.
なお、本発に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で、1000cd/m2での2度視野角正面輝度を測定した結果、CIE色度座標(CIE1931表色系)における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあり、白色に発光することを確認した。
The organic EL element according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). As a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates (CIE1931) were obtained. It was confirmed that the chromaticity in the color system was in the region of X = 0.33 ± 0.07, Y = 0.33 ± 0.1 and emitted white light.
表4-1~表4-6から、比較の有機EL素子3-1~3-4に比べて、本発明の有機EL素子3-5~3-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Table 4-1 to Table 4-6, the organic EL elements 3-5 to 3-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 3-1 to 3-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子3-5~3-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 3-5 to 3-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
かかる結果から、2種の発光ドーパントで単層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even in the case where a single light emitting layer is formed with two kinds of light emitting dopants to emit white light, the invention relates to the present invention as a light emitting dopant in order to improve light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use a phosphorescent organometallic complex.
〔実施例4〕
〈蒸着型白色発光素子-2〉
《白色発光素子4-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 4
<Vapor deposition type white light emitting element-2>
<< Preparation of white light emitting element 4-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈蒸着型白色発光素子-2〉
《白色発光素子4-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 4
<Vapor deposition type white light emitting element-2>
<< Preparation of white light emitting element 4-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-3)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取り付けた。
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, In another molybdenum resistance heating boat, 200 mg of the host compound (OC-11) is added. In another molybdenum resistance heating boat, 100 mg of the luminescent dopant (Comparative Compound 1) is added. In another molybdenum resistance heating boat, the luminescent dopant (D -3) 100 mg, 100 mg of luminescent dopant (D-6) in another molybdenum resistance heating boat, 200 mg of electron transport material 1 in another molybdenum resistance heating boat, and another molybdenum resistance heating boat 200 mg of the electron transport material 2 was put in and attached to a vacuum deposition apparatus.
次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し膜厚20nmの正孔注入層を設けた。
The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚20nmの正孔輸送層を設けた。
Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.020nm/秒で前記正孔輸送層上に共蒸着して、膜厚20nmの青色発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the luminescent dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.020 nm / second, respectively. A blue light emitting layer having a thickness of 20 nm was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、ホスト化合物(OC-11)と発光ドーパント(D-3)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.010nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、膜厚20nmの黄色発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the heating boat containing the host compound (OC-11), the luminescent dopant (D-3), and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively. A yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
Furthermore, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚20nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was established. In addition, the substrate temperature at the time of vapor deposition was room temperature.
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4-1を作製した。
Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 4-1 was produced.
《有機EL素子4-2~4-161の作製》
有機EL素子4-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパント(比較化合物1のみ)を表5-1~表5-6に示す化合物に置き換えた以外は有機EL素子4-1と同様にして、有機EL素子4-2~4-161を作製した。 << Preparation of organic EL elements 4-2 to 4-161 >>
In the production of the organic EL element 4-1, organic materials except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 5-1 to 5-6. Organic EL elements 4-2 to 4-161 were produced in the same manner as the EL element 4-1.
有機EL素子4-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物及び発光ドーパント(比較化合物1のみ)を表5-1~表5-6に示す化合物に置き換えた以外は有機EL素子4-1と同様にして、有機EL素子4-2~4-161を作製した。 << Preparation of organic EL elements 4-2 to 4-161 >>
In the production of the organic EL element 4-1, organic materials except that the hole injection material, the hole transport material, the host compound, and the light emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 5-1 to 5-6. Organic EL elements 4-2 to 4-161 were produced in the same manner as the EL element 4-1.
《有機EL素子の評価》
得られた有機EL素子4-1~4-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 4-1 to 4-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
得られた有機EL素子4-1~4-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 4-1 to 4-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子4-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) driving voltage, (4) half-light emission lifetime, and (5) initial deterioration, the example is based on the organic EL element 4-1. The relative value was determined in the same manner as in 1.
評価結果を表5-1~表5-6に示す。
Evaluation results are shown in Tables 5-1 to 5-6.
なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で、1000cd/m2での2度視野角正面輝度を測定した結果、CIE色度座標(CIE1931表色系)における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあり、白色に発光することを確認した。
The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). As a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates (CIE1931) were obtained. It was confirmed that the chromaticity in the color system was in the region of X = 0.33 ± 0.07, Y = 0.33 ± 0.1 and emitted white light.
表5-1~表5-6から、比較の有機EL素子4-1~4-4に比べて、本発明の有機EL素子4-5~4-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Tables 5-1 to 5-6, the organic EL elements 4-5 to 4-161 of the present invention have a higher external extraction quantum efficiency than the comparative organic EL elements 4-1 to 4-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子4-5~4-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 4-5 to 4-161 of the present invention also suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
かかる結果から、同一のホスト化合物と3種の発光ドーパントとで2層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even when two layers of light emitting layers are formed with the same host compound and three types of light emitting dopants to emit white light, it is necessary to improve the light emission efficiency, drive voltage, and light emission life. It can be seen that it is useful to use the phosphorescent organometallic complex according to the present invention as a dopant.
〔実施例5〕
〈蒸着型白色発光素子-3〉
《白色発光素子5-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 5
<Vapor deposition type white light emitting element-3>
<< Preparation of white light emitting element 5-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈蒸着型白色発光素子-3〉
《白色発光素子5-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 5
<Vapor deposition type white light emitting element-3>
<< Preparation of white light emitting element 5-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔注入材料1を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物1(OC-11)を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物2(OC-6)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(比較化合物1)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-3)を100mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパント(D-6)を100mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料1を200mg入れ、更に別のモリブデン製抵抗加熱ボートに電子輸送材料2を200mg入れ、真空蒸着装置に取り付けた。
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of the hole injection material 1 is put into a molybdenum resistance heating boat, and 200 mg of the hole transport material 1 is put into another molybdenum resistance heating boat, 200 mg of host compound 1 (OC-11) is put into another resistance heating boat made of molybdenum, 200 mg of host compound 2 (OC-6) is put into another resistance heating boat made of molybdenum, and the luminescent dopant is put into another resistance heating boat made of molybdenum. 100 mg of (Comparative Compound 1) was added, 100 mg of the luminescent dopant (D-3) was put in another molybdenum resistance heating boat, and 100 mg of the luminescent dopant (D-6) was put in another molybdenum resistance heating boat. 200 mg of electron transport material 1 is put in a resistance heating boat, and another molybdenum resistance heating boat The electron transport material 2 placed 200mg Doo was attached to a vacuum deposition apparatus.
次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し膜厚20nmの正孔注入層を設けた。
The vacuum chamber was then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing the hole injection material 1, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm hole injection layer was provided.
更に、真空槽を4×10-4Paまで減圧した後、正孔輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚20nmの正孔輸送層を設けた。
Furthermore, after reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing the hole transport material 1 was heated by heating, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. A 20 nm thick hole transport layer was provided.
更に、ホスト化合物(OC-11)と発光ドーパント(比較化合物1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.020nm/秒で前記正孔輸送層上に共蒸着して、膜厚20nmの青色発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the hole transport layer was heated by energizing the heating boat containing the host compound (OC-11) and the luminescent dopant (Comparative Compound 1) at a deposition rate of 0.2 nm / second and 0.020 nm / second, respectively. A blue light emitting layer having a thickness of 20 nm was provided by co-evaporation. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、ホスト化合物(OC-6)と発光ドーパント(D-3)と発光ドーパント(D-6)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.010nm/秒、0.0010nm/秒で前記正孔輸送層上に共蒸着して、膜厚20nmの黄色発光層を設けた。なお、蒸着時の基板温度は室温であった。
Further, the heating boat containing the host compound (OC-6), the luminescent dopant (D-3) and the luminescent dopant (D-6) was energized and heated, and the deposition rates were 0.2 nm / second and 0.010 nm, respectively. A yellow light emitting layer having a thickness of 20 nm was provided by co-evaporation on the hole transport layer at a rate of 0.0010 nm / sec. In addition, the substrate temperature at the time of vapor deposition was room temperature.
更に、電子輸送材料1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
Furthermore, the heating boat containing the electron transport material 1 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer.
その上に、更に、電子輸送材料2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚20nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
In addition, the heating boat containing the electron transport material 2 is further energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to further form an electron transport layer having a thickness of 20 nm. Was established. In addition, the substrate temperature at the time of vapor deposition was room temperature.
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子5-1を作製した。
Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and an organic EL element 5-1 was produced.
《有機EL素子5-2~5-161の作製》
有機EL素子5-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物1、ホスト化合物2及び発光ドーパント(比較化合物1のみ)を表6-1~表6-6に示す化合物に置き換えた以外は有機EL素子5-1と同様にして、有機EL素子5-2~5-161を作製した。 << Preparation of organic EL elements 5-2 to 5-161 >>
In the preparation of the organic EL element 5-1, the hole injection material, the hole transport material, the host compound 1, the host compound 2, and the light emitting dopant (only the comparison compound 1) are converted into the compounds shown in Tables 6-1 to 6-6. Organic EL elements 5-2 to 5-161 were produced in the same manner as the organic EL element 5-1, except that the organic EL elements were replaced.
有機EL素子5-1の作製において、正孔注入材料、正孔輸送材料、ホスト化合物1、ホスト化合物2及び発光ドーパント(比較化合物1のみ)を表6-1~表6-6に示す化合物に置き換えた以外は有機EL素子5-1と同様にして、有機EL素子5-2~5-161を作製した。 << Preparation of organic EL elements 5-2 to 5-161 >>
In the preparation of the organic EL element 5-1, the hole injection material, the hole transport material, the host compound 1, the host compound 2, and the light emitting dopant (only the comparison compound 1) are converted into the compounds shown in Tables 6-1 to 6-6. Organic EL elements 5-2 to 5-161 were produced in the same manner as the organic EL element 5-1, except that the organic EL elements were replaced.
《有機EL素子の評価》
得られた有機EL素子5-1~5-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 5-1 to 5-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
得られた有機EL素子5-1~5-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 5-1 to 5-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子5-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half-light emission lifetime, and (5) initial deterioration, the example is based on the organic EL element 5-1. The relative value was determined in the same manner as in 1.
評価結果を表6-1~表6-6に示す。
Evaluation results are shown in Table 6-1 to Table 6-6.
なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で、1000cd/m2での2度視野角正面輝度を測定した結果、CIE色度座標(CIE1931表色系)における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあり、白色に発光することを確認した。
The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). As a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates (CIE1931) were obtained. It was confirmed that the chromaticity in the color system was in the region of X = 0.33 ± 0.07, Y = 0.33 ± 0.1 and emitted white light.
表6-1~表6-6から、比較の有機EL素子5-1~5-4に比べて、本発明の有機EL素子5-5~5-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Table 6-1 to Table 6-6, the organic EL elements 5-5 to 5-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 5-1 to 5-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子5-5~5-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can also be seen that the organic EL elements 5-5 to 5-161 of the present invention suppress the generation of uneven light emission, dark spots, and increase in driving voltage.
かかる結果から、互いに異なる2種のホスト化合物と3種の発光ドーパントとで2層の発光層を形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even when two light emitting layers are formed with two different host compounds and three light emitting dopants to emit white light, the light emission efficiency is improved, the driving voltage is reduced, and the light emission life is improved. Then, it turns out that it is useful to use the phosphorescence-emitting organometallic complex which concerns on this invention as a light emission dopant.
〔実施例6〕
〈ウェットプロセス型白色発光素子-1〉
《白色発光有機EL素子6-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 6
<Wet process type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 6-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈ウェットプロセス型白色発光素子-1〉
《白色発光有機EL素子6-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 6
<Wet process type white light emitting element-1>
<< Production of White Light-Emitting Organic EL Element 6-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの正孔輸送材料3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。
The substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
この第2正孔輸送層上に、100mgのホスト化合物(OC-11)、10mgの発光ドーパント(比較化合物1)と1mgの発光ドーパント(D-13)と0.5mgの発光ドーパント(D-6)とを10mlのトルエンに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、発光層を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
On this second hole transport layer, 100 mg of the host compound (OC-11), 10 mg of the luminescent dopant (Comparative Compound 1), 1 mg of the luminescent dopant (D-13) and 0.5 mg of the luminescent dopant (D-6) ) Was dissolved in 10 ml of toluene using a spin coating method at 1000 rpm for 30 seconds to form a light emitting layer. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer with a film thickness of about 70 nm.
次に、この発光層上に、50mgの電子輸送材料3を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
Next, a thin film was formed on the light emitting layer by spin coating using a solution obtained by dissolving 50 mg of the electron transport material 3 in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 30 nm.
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子6-1を作製した。
Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 6-1 was produced.
なお、蒸着時の基板温度は室温であった。
In addition, the substrate temperature at the time of vapor deposition was room temperature.
《有機EL素子6-2~6-161の作製》
有機EL素子6-1の作製において、ホスト化合物、及び発光ドーパント(比較化合物1のみ)を表7-1~表7-6に示す化合物に置き換えた以外は有機EL素子6-1と同様にして、有機EL素子6-2~6-161を作製した。 << Preparation of organic EL elements 6-2 to 6-161 >>
In the production of the organic EL element 6-1, in the same manner as the organic EL element 6-1 except that the host compound and the light emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 7-1 to 7-6. Organic EL elements 6-2 to 6-161 were produced.
有機EL素子6-1の作製において、ホスト化合物、及び発光ドーパント(比較化合物1のみ)を表7-1~表7-6に示す化合物に置き換えた以外は有機EL素子6-1と同様にして、有機EL素子6-2~6-161を作製した。 << Preparation of organic EL elements 6-2 to 6-161 >>
In the production of the organic EL element 6-1, in the same manner as the organic EL element 6-1 except that the host compound and the light emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 7-1 to 7-6. Organic EL elements 6-2 to 6-161 were produced.
《有機EL素子の評価》
得られた有機EL素子6-1~6-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 6-1 to 6-161, the performance of the organic EL device was evaluated in the same manner as in Example 1.
得られた有機EL素子6-1~6-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 6-1 to 6-161, the performance of the organic EL device was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子6-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half light emission lifetime, and (5) initial deterioration, the example is based on the organic EL element 6-1. The relative value was determined in the same manner as in 1.
評価結果を表7-1~表7-6に示す。
Evaluation results are shown in Tables 7-1 to 7-6.
なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で、1000cd/m2での2度視野角正面輝度を測定した結果、CIE色度座標(CIE1931表色系)における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあり、白色に発光することを確認した。
The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). As a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates (CIE1931) were obtained. It was confirmed that the chromaticity in the color system was in the region of X = 0.33 ± 0.07, Y = 0.33 ± 0.1 and emitted white light.
表7-1~表7-6から、比較の有機EL素子6-1~6-4に比べて、本発明の有機EL素子6-5~6-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Tables 7-1 to 7-6, the organic EL elements 6-5 to 6-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 6-1 to 6-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子6-5~6-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 6-5 to 6-161 of the present invention also suppress the generation of uneven light emission and dark spots and the increase in driving voltage.
かかる結果から、3種の発光ドーパントを用いて発光層をスピンコート法によるウェットプロセスで形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even when a light emitting layer is formed by a wet process using a spin coating method using three kinds of light emitting dopants to emit white light, in order to improve light emission efficiency, drive voltage, and light emission life, It can be seen that it is useful to use the phosphorescent organometallic complex according to the present invention as a dopant.
〔実施例7〕
〈ウェットプロセス型白色発光素子-2〉
《白色発光有機EL素子7-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 7
<Wet process type white light emitting element-2>
<< Production of White Light-Emitting Organic EL Element 7-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
〈ウェットプロセス型白色発光素子-2〉
《白色発光有機EL素子7-1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 Example 7
<Wet process type white light emitting element-2>
<< Production of White Light-Emitting Organic EL Element 7-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After the film formation by spin coating, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
この基板を窒素雰囲気下に移し、第1正孔輸送層上に、50mgの正孔輸送材料3を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により製膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。
The substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of the hole transport material 3 dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. After irradiating with ultraviolet light for 180 seconds to carry out photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
この第2正孔輸送層上に、100mgのホスト化合物(ホスト材料1)、10mgの発光ドーパント(比較化合物1)と1mgの発光ドーパント(D-33)と0.5mgの発光ドーパント(Ir-14)とを10mlの酢酸ブチルに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、発光層を形成した。15秒間紫外光を照射し、光重合・架橋を行わせ、更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
On this second hole transport layer, 100 mg of the host compound (host material 1), 10 mg of the luminescent dopant (Comparative Compound 1), 1 mg of the luminescent dopant (D-33), and 0.5 mg of the luminescent dopant (Ir-14). ) Was dissolved in 10 ml of butyl acetate using a spin coating method at 1000 rpm for 30 seconds to form a light emitting layer. Ultraviolet light was irradiated for 15 seconds to cause photopolymerization / crosslinking, and further vacuum drying at 60 ° C. for 1 hour to obtain a light emitting layer having a film thickness of about 70 nm.
次に、この発光層上に、50mgの電子輸送材料4を10mlのメタノールに溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。60秒間紫外光を照射し、光重合・架橋を行った後、更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
Next, a thin film was formed on this light emitting layer by spin coating under a condition of 1000 rpm and 30 seconds using a solution of 50 mg of electron transport material 4 dissolved in 10 ml of methanol. After irradiating with ultraviolet light for 60 seconds to perform photopolymerization / crosslinking, it was further vacuum-dried at 60 ° C. for 1 hour to obtain an electron transport layer having a film thickness of about 30 nm.
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子7-1を作製した。
Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 × 10 −4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed, and an organic EL element 7-1 was produced.
なお、蒸着時の基板温度は室温であった。
In addition, the substrate temperature at the time of vapor deposition was room temperature.
《有機EL素子7-2~7-161の作製》
有機EL素子7-1の作製において、ホスト化合物、及び発光ドーパント(比較化合物1のみ)を表8-1~表8-6に示す化合物に置き換えた以外は有機EL素子7-1と同様にして、有機EL素子7-2~7-161を作製した。 << Preparation of organic EL elements 7-2 to 7-161 >>
In the production of the organic EL device 7-1, the same procedure as in the organic EL device 7-1 was conducted, except that the host compound and the light-emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 8-1 to 8-6. Organic EL elements 7-2 to 7-161 were produced.
有機EL素子7-1の作製において、ホスト化合物、及び発光ドーパント(比較化合物1のみ)を表8-1~表8-6に示す化合物に置き換えた以外は有機EL素子7-1と同様にして、有機EL素子7-2~7-161を作製した。 << Preparation of organic EL elements 7-2 to 7-161 >>
In the production of the organic EL device 7-1, the same procedure as in the organic EL device 7-1 was conducted, except that the host compound and the light-emitting dopant (only comparative compound 1) were replaced with the compounds shown in Tables 8-1 to 8-6. Organic EL elements 7-2 to 7-161 were produced.
《有機EL素子の評価》
得られた有機EL素子7-1~7-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 7-1 to 7-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
得られた有機EL素子7-1~7-161について、実施例1と同様の手法で、有機EL素子の性能を評価した。 << Evaluation of organic EL elements >>
For the obtained organic EL devices 7-1 to 7-161, the performance of the organic EL devices was evaluated in the same manner as in Example 1.
なお、本実施例では、(1)外部取り出し量子効率、(2)駆動電圧、(4)半減発光寿命、及び(5)初期劣化の各評価では、有機EL素子7-1を基準として実施例1と同様にして相対値を求めた。
In this example, in each evaluation of (1) external extraction quantum efficiency, (2) drive voltage, (4) half light emission lifetime, and (5) initial deterioration, the example was based on the organic EL element 7-1. The relative value was determined in the same manner as in 1.
評価結果を表8-1~表8-6に示す。
Evaluation results are shown in Table 8-1 to Table 8-6.
なお、本発明に係る有機EL素子は、分光放射輝度計CS-1000(コニカミノルタオプティクス社製)で、1000cd/m2での2度視野角正面輝度を測定した結果、CIE色度座標(CIE1931表色系)における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあり、白色に発光することを確認した。
The organic EL device according to the present invention was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics). As a result of measuring the 2-degree viewing angle front luminance at 1000 cd / m 2 , CIE chromaticity coordinates (CIE1931) were obtained. It was confirmed that the chromaticity in the color system was in the region of X = 0.33 ± 0.07, Y = 0.33 ± 0.1 and emitted white light.
表8-1~表8-6から、比較の有機EL素子7-1~7-4に比べて、本発明の有機EL素子7-5~7-161は、外部取り出し量子効率が高く、且つ、初期の輝度劣化が少なく、それに伴って室温でも高温度でも長寿命であることがわかる。
From Table 8-1 to Table 8-6, the organic EL elements 7-5 to 7-161 of the present invention have higher external extraction quantum efficiency than the comparative organic EL elements 7-1 to 7-4, and It can be seen that there is little deterioration in luminance at the initial stage, and accordingly, the lifetime is long at both room temperature and high temperature.
さらに、本発明の有機EL素子7-5~7-161は、発光ムラやダークスポットの生成や駆動電圧の上昇も抑えられていることもわかる。
Furthermore, it can be seen that the organic EL elements 7-5 to 7-161 of the present invention also suppress the generation of uneven light emission and dark spots and the increase in driving voltage.
かかる結果から、3種の発光ドーパントを用いて発光層をスピンコート法によるウェットプロセスで形成し白色発光させる場合も、発光効率の向上や駆動電圧の低減、発光寿命の向上を図るうえでは、発光ドーパントとして本発明に係るリン光発光性有機金属錯体を使用することが有用であることがわかる。
From these results, even when a light emitting layer is formed by a wet process using a spin coating method using three kinds of light emitting dopants to emit white light, in order to improve light emission efficiency, drive voltage, and light emission life, It can be seen that it is useful to use the phosphorescent organometallic complex according to the present invention as a dopant.
本発明の有機エレクトロルミネッセンス素子は、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れ、照明装置及び表示装置に好適に使用できる。
The organic electroluminescence element of the present invention has a low driving voltage, high light emission efficiency, excellent durability, excellent dark spot and emission unevenness prevention effects, and can be suitably used for lighting devices and display devices.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスター
12 駆動トランジスター
13 コンデンサー
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
L 光 DESCRIPTION OF SYMBOLS 1Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode Nitrogen gas 109 Water capturing Agent A Display part B Control part L Light
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスター
12 駆動トランジスター
13 コンデンサー
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
L 光 DESCRIPTION OF SYMBOLS 1
Claims (10)
- 陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層が、下記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。〕 An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein at least one of the organic layers is represented by the following general formula (1) or general formula (2): The organic electroluminescent element characterized by containing the phosphorescence-emitting organometallic complex in which the ligand represented by this coordinated to the metal atom.
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb and nd represent an integer of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring. ] - 前記一般式(1)又は一般式(2)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が、下記一般式(3)又は一般式(4)で表されるリン光発光性有機金属錯体であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
Lは、Mに配位したモノアニオン性の二座配位子のうちの1つ又は複数を表す。Mは、原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは、0~2の整数を表す。nは、少なくとも1であり、m+nは、2又は3である。〕 The phosphorescent organometallic complex in which the ligand represented by the general formula (1) or the general formula (2) is coordinated to a metal atom is represented by the following general formula (3) or the general formula (4). The organic electroluminescent device according to claim 1, wherein the organic electroluminescent device is a phosphorescent organic metal complex.
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb and nd represent an integer of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ] - 前記一般式(3)又は(4)で表されるリン光発光性有機金属錯体が、下記一般式(5)又は(6)で表されるリン光発光性有機金属錯体であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。R1及びR2の少なくとも一方は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。R3は、炭素原子数1以上のアルキル基又は炭素原子数3以上のシクロアルキル基を表す。
Ra、Rb、Rc、Rd及びReは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、さらに置換基を有していてもよい。
nb及びndは、1~4の整数を表し、na及びncは、1又は2を表す。neは、1~20の整数を表す。
隣接する環Aと環D、環Dと環Eは、互いに2か所で結合して縮合環を形成しても良い。さらに、環Aと環Dと環Eとが1つの縮合環を形成しても良い。
Lは、Mに配位したモノアニオン性の二座配位子のうちの1つ又は複数を表す。Mは、原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは、0~2の整数を表す。nは、少なくとも1であり、m+nは、2又は3である。〕 The phosphorescent organometallic complex represented by the general formula (3) or (4) is a phosphorescent organometallic complex represented by the following general formula (5) or (6), The organic electroluminescent element according to claim 2.
R 1 and R 2 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-group It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. At least one of R 1 and R 2 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms. R 3 represents an alkyl group having 1 or more carbon atoms or a cycloalkyl group having 3 or more carbon atoms.
Ra, Rb, Rc, Rd and Re are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, hetero group It represents an aryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
nb and nd represent an integer of 1 to 4, and na and nc represent 1 or 2. ne represents an integer of 1 to 20.
Adjacent ring A and ring D, and ring D and ring E may be bonded to each other at two points to form a condensed ring. Furthermore, ring A, ring D, and ring E may form one condensed ring.
L represents one or more of monoanionic bidentate ligands coordinated to M. M represents an atomic number of 40 or more and a transition metal atom of Group 8 to 10 in the periodic table, and m represents an integer of 0 to 2. n is at least 1 and m + n is 2 or 3. ] - 前記有機金属錯体の、隣接する環Aと環D、環Dと環E、又は環Aと環Dと環Eのいずれかが縮合環を形成していることを特徴とする請求項1から3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 Any one of the adjacent ring A and ring D, ring D and ring E, or ring A, ring D and ring E of the organometallic complex forms a condensed ring. The organic electroluminescent element as described in any one of the above.
- 前記原子番号40以上且つ元素周期表における8~10族の遷移金属原子が、イリジウムであることを特徴とする請求項2から4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 2 to 4, wherein the transition metal atom having an atomic number of 40 or more and a group 8 to 10 in the periodic table is iridium.
- 前記発光層が、フルオレン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体又はこれらの縮環化合物誘導体を構成する炭化水素環の炭素原子の少なくとも1つが窒素原子で置換されている環構造を有する誘導体を含有することを特徴とする請求項1から5までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 A derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the light emitting layer is composed of a fluorene derivative, a dibenzofuran derivative, a dibenzothiophene derivative, a carbazole derivative, or a condensed ring compound derivative thereof. It contains, The organic electroluminescent element as described in any one of Claim 1-5 characterized by the above-mentioned.
- 前記リン光発光性有機金属錯体を含有した有機層が、ウェットプロセスを経て形成された層であることを特徴とする請求項1から6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the organic layer containing the phosphorescent organometallic complex is a layer formed through a wet process.
- 発光色が、白色であることを特徴とする請求項1から7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the emission color is white.
- 請求項1から8までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 8.
- 請求項1から8までのいずれか一項に記載の有機エレクトロルミネッセンス素子が備えられていることを特徴とする照明装置。 A lighting device comprising the organic electroluminescence element according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014532991A JP6137184B2 (en) | 2012-08-27 | 2013-08-26 | Organic electroluminescence element, lighting device and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012186499 | 2012-08-27 | ||
JP2012-186499 | 2012-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034584A1 true WO2014034584A1 (en) | 2014-03-06 |
Family
ID=50183396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072664 WO2014034584A1 (en) | 2012-08-27 | 2013-08-26 | Organic electroluminescent element, illuminator, and display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6137184B2 (en) |
WO (1) | WO2014034584A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014074000A (en) * | 2012-10-05 | 2014-04-24 | Mitsubishi Chemicals Corp | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device |
JP2014111549A (en) * | 2012-12-05 | 2014-06-19 | Konica Minolta Inc | Iridium complex, organic electroluminescent element material, and organic electroluminescent element using the same |
JP2016523856A (en) * | 2013-06-13 | 2016-08-12 | チェイル インダストリーズ インコーポレイテッド | Organic compound, organic optoelectronic device and display device |
JP2018181916A (en) * | 2017-04-04 | 2018-11-15 | 株式会社半導体エネルギー研究所 | Light emitting element, light emitting device, electronic device, and lighting device |
JP2019147807A (en) * | 2013-09-04 | 2019-09-05 | ラレキサー セラピューティクス,インク | Modulator of liver X receptor (LXR) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090795A1 (en) * | 2007-01-26 | 2008-07-31 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, display device and illuminating device |
JP2009019121A (en) * | 2007-07-12 | 2009-01-29 | Konica Minolta Holdings Inc | Organic electroluminescent material, organic electroluminescent element, display device and illuminating device |
JP2009114369A (en) * | 2007-11-08 | 2009-05-28 | Konica Minolta Holdings Inc | Organic electroluminescent material, organic electroluminescent element, display and illuminator |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
WO2011106344A1 (en) * | 2010-02-25 | 2011-09-01 | Universal Display Corporation | Phosphorescent emitters |
-
2013
- 2013-08-26 WO PCT/JP2013/072664 patent/WO2014034584A1/en active Application Filing
- 2013-08-26 JP JP2014532991A patent/JP6137184B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090795A1 (en) * | 2007-01-26 | 2008-07-31 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, display device and illuminating device |
JP2009019121A (en) * | 2007-07-12 | 2009-01-29 | Konica Minolta Holdings Inc | Organic electroluminescent material, organic electroluminescent element, display device and illuminating device |
JP2009114369A (en) * | 2007-11-08 | 2009-05-28 | Konica Minolta Holdings Inc | Organic electroluminescent material, organic electroluminescent element, display and illuminator |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
WO2011106344A1 (en) * | 2010-02-25 | 2011-09-01 | Universal Display Corporation | Phosphorescent emitters |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014074000A (en) * | 2012-10-05 | 2014-04-24 | Mitsubishi Chemicals Corp | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device |
JP2014111549A (en) * | 2012-12-05 | 2014-06-19 | Konica Minolta Inc | Iridium complex, organic electroluminescent element material, and organic electroluminescent element using the same |
JP2016523856A (en) * | 2013-06-13 | 2016-08-12 | チェイル インダストリーズ インコーポレイテッド | Organic compound, organic optoelectronic device and display device |
US9653690B2 (en) | 2013-06-13 | 2017-05-16 | Samsung Sdi Co., Ltd. | Organic compound, organic optoelectronic device and display device |
JP2019147807A (en) * | 2013-09-04 | 2019-09-05 | ラレキサー セラピューティクス,インク | Modulator of liver X receptor (LXR) |
US11034657B2 (en) | 2013-09-04 | 2021-06-15 | Ellora Therapeutics, Inc. | Liver X receptor (LXR) modulators |
JP2018181916A (en) * | 2017-04-04 | 2018-11-15 | 株式会社半導体エネルギー研究所 | Light emitting element, light emitting device, electronic device, and lighting device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014034584A1 (en) | 2016-08-08 |
JP6137184B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6582540B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5765223B2 (en) | MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT | |
JP5499519B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP5742586B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP5853964B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP5782836B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND COMPOUND | |
JP5900001B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE PROVIDED WITH SAME | |
JP2010135467A (en) | Organic electroluminescent element, lighting system equipped with the element, and display device | |
JP5692011B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE | |
JP5652083B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP5569531B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5929512B2 (en) | ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE | |
JP5862117B2 (en) | Organic electroluminescence element, lighting device and display device | |
JPWO2012173079A1 (en) | Organic electroluminescence element, lighting device and display device | |
JP6137184B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6011535B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT | |
JP2014017494A (en) | Organic electroluminescent element, and display device and illuminating device including the element | |
JP5552268B2 (en) | ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE | |
JP6468314B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6160685B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6044695B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE PROVIDED WITH SAME | |
JP5720505B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6070758B2 (en) | Organic electroluminescence element, lighting device and display device | |
JP6065933B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE | |
JP5833201B2 (en) | ORGANIC ELECTROLUMINESCENCE ELEMENT ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832670 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014532991 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832670 Country of ref document: EP Kind code of ref document: A1 |