WO2014033813A1 - 無線通信システム及び基地局 - Google Patents
無線通信システム及び基地局 Download PDFInfo
- Publication number
- WO2014033813A1 WO2014033813A1 PCT/JP2012/071595 JP2012071595W WO2014033813A1 WO 2014033813 A1 WO2014033813 A1 WO 2014033813A1 JP 2012071595 W JP2012071595 W JP 2012071595W WO 2014033813 A1 WO2014033813 A1 WO 2014033813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- resource
- resource information
- transmission
- value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present disclosure relates to a wireless communication system and a base station.
- LTE LongLTerm Evolution
- 3GPP has already developed LTE-Advanced IV (Release IV 10) with greatly expanded functions.
- active discussions are taking place to further expand the functionality in the next release, Release 11.
- FFR frequency reuse
- relative narrowband transmission power (Relative Narrow-band Tx Power: RNTP) is defined as an information element exchanged on the interface between base stations (X2 interface).
- RNTP indicates a frequency resource (Resource Block: RB) of transmission power exceeding a threshold value by “1”, and indicates RB of transmission power (including transmission power zero) below the threshold value by “0”.
- the base station indicates an RB whose transmission power is equal to or less than the threshold value by RNTP and declares it to the base station of the neighboring cell.
- the base station can know the RB whose transmission power in the adjacent cell is equal to or less than the threshold.
- the user scheduler in the base station of the adjacent cell allocates the RB to a mobile station (User Equipment: UE) at the adjacent cell boundary. By such FFR, interference with the mobile station is suppressed.
- UE User Equipment
- CoMP Coordinated Multiplex Point
- JT joint transmission
- the UE In normal cellular communication, the UE receives a signal from a cell adjacent to the connected cell as an interference signal.
- a plurality of base stations cooperate to transmit a downlink shared channel (PDSCH) based on the same data to a specific UE.
- PDSCH downlink shared channel
- the UE can receive not only a signal from the connected cell but also a signal from an adjacent cell as a desired signal. For this reason, inter-cell interference is reduced.
- Fig. 2 shows the CoMP JT system model.
- base stations there are forms such as a macro base station, a pico base station, and RRH (Remote Radio Head), but in FIG. 2, they are represented as TP (Transmission Point) without distinguishing the transmission stations.
- TP Transmission Point
- ing. 2 is a transmitting station (TP) of a connected cell with which the UE exchanges control signals and the like, and transmits a data signal s1 to the UE.
- TP2 is a transmitting station (TP) of the coordinated cell, and includes a scheduler connected to the scheduler of TP1 via the X2 interface.
- the scheduler of TP2 transmits the same data signal s1 as the data signal s1 transmitted from TP1 to the UE in cooperation with TP1.
- a cooperative cell selection method for example, based on the downlink received power measurement value (Reference Signal Received Power: RSRP) fed back from the UE, a cell that falls within the RSRP threshold with the connected cell is selected.
- RSRP Reference Signal Received Power
- JP 2010-178237 A JP 2011-49617 A JP 2011-87009 A JP 2011-151779 A JP 2011-155501 A JP 2010-283632 A
- the purpose of the present disclosure is to provide a technology capable of realizing inter-base station cooperative transmission while suppressing the expansion range of existing information elements.
- the first base station is A receiving device that receives resource information about a plurality of resources that can be allocated to the mobile station, and predetermined data used to interpret the resource information; Used for inter-base station cooperative transmission selected based on the resource information when the predetermined data has a first value that means that the resource information indicates a resource that can be used for inter-base station cooperative transmission And a control device that performs processing for performing inter-base station cooperative transmission with the second base station using the selected resource to the second base station.
- inter-base station cooperative transmission can be realized while suppressing the expansion range of existing information elements.
- FIG. 1 shows a usage example of the control information RNTP.
- FIG. 2 shows a CoMP JT system model. It is explanatory drawing in case the value of the RNTP replacement instruction
- FIG. 4 is a diagram illustrating a configuration example of a mobile station (UE) applied to the embodiment.
- FIG. 5 is a diagram illustrating a configuration example of a base station that can be used as a base station (TP1) of a connected cell and a base station (TP2) of a cooperative cell (neighboring cell) in the embodiment.
- FIG. 6 is a sequence diagram illustrating an example of processing (cooperative transmission between base stations) in the embodiment.
- the embodiment provides a method for efficiently exchanging information on resources that can be used for CoMP (cooperative transmission between base stations) between base stations.
- the base station reserves a frequency resource (RB) for CoMP (that is, in an unallocated state) and notifies the neighboring base station of information on the RB. This initiates a procedure for combined transmission (JT).
- RB frequency resource
- JT combined transmission
- the RNTP can indicate an RB with limited transmission power, but an unallocated (zero transmission power) RB Cannot be shown. Therefore, new control information (RNTP replacement instruction) is provided and exchanged between base stations. Based on the RNTP replacement instruction notified by the neighboring base stations, the base station replaces the RNTP information with information on resources that can be used for CoMP transmission.
- the RNTP replacement instruction is a flag having a binary value of “0” or “1”.
- the RNTP is an example of resource information regarding a plurality of resources that can be allocated to the mobile station, and the RNTP replacement instruction is an example of predetermined data used for interpreting the resource information, and the first value (“1”) and the first value It has a value of 2 (“0”).
- FFR partial frequency reuse
- the resource information (RB) that can be used for CoMP transmission is transmitted to the base station of the neighboring cell only by adding a control information element (RNTP replacement instruction) of a small size (1 bit). You can be notified.
- RNTP replacement instruction a control information element
- the bit value indicating the RNTP replacement instruction may be opposite to the above.
- the number of bits for indicating the first and second values is not limited to one bit, and may be two or more bits.
- FIG. 4 is a diagram illustrating a configuration example of a mobile station (UE) applied to the embodiment.
- FIG. 4 shows, as an example, a configuration of a UE in a mobile communication system in which an orthogonal frequency division multiple access (OFDMA) scheme is applied to a radio access scheme.
- OFDMA orthogonal frequency division multiple access
- a UE 10 includes a radio (RF) transmission / reception circuit 11, a DSP (Digital Signal Processor) 12 that functions as a part of a baseband processing unit, and an LSI (Large Scale Integrated) that functions as a part of a baseband processing unit. circuit) 13.
- RF radio
- DSP Digital Signal Processor
- LSI Large Scale Integrated
- the RF transmission / reception circuit 11 manages processing related to a radio (RF) signal.
- the RF transceiver circuit 11 includes a reception RF circuit (wireless receiver) 15 connected to the reception antenna 14 and a transmission RF circuit (wireless transmitter) 17 connected to the transmission antenna 16.
- the reception RF circuit 15 connected to the reception antenna 14 is an example of a reception device included in the mobile station.
- the DSP 12 is an example of a processor, and the processor can include a CPU.
- the DSP 12 loads a program stored in a storage device (auxiliary storage device) (not shown) into the main storage device (main memory) and executes it.
- the DSP 12 performs fast Fourier transform (FFT) processing 18, channel estimation processing 19, control signal demodulation processing 20, reference signal received power (RSRP) calculation processing 21, and uplink control signal.
- FFT fast Fourier transform
- RSRP reference signal received power
- the LSI 13 is an example of an integrated circuit, and includes a data signal demodulation circuit 23 that performs data signal demodulation processing.
- Each process executed by the DSP 12 can be realized by using one or more integrated circuits such as an LSI, an ASIC (Application Specific Specific Integrated Circuit), or a programmable logic device such as an FPGA.
- the reception RF circuit performs radio frequency-to-baseband conversion, quadrature demodulation, and analog-digital (A / D) conversion on a signal (downlink received signal) from the base station (TP) received by the receiving antenna 14. .
- FFT processing 18 FFT timing detection, CP (Cyclic prefix) removal, and FFT are performed on the received signal (output signal of reception RF circuit 15). Moreover, in the channel estimation process 18, the reference signal for every base station (TP) is extracted from the received signal after FFT (the signal generated by the FFT process 18). Next, the cross-correlation between the extracted reference signal and the known reference signal of each base station is calculated. As a result, a channel estimation value of the radio channel represented by a complex number is obtained for each base station.
- RSRP calculation processing 21 calculates the RSRP of each base station.
- a control signal is extracted from the received signal after FFT (the signal generated by the FFT process 18).
- control information (resource allocation information) is restored from the control signal by performing channel compensation, data demodulation, and error correction decoding using the channel estimation value for the control signal.
- the data signal demodulation circuit 23 extracts the data signal from the received signal after FFT (the signal generated by the FFT process 18) based on the resource allocation information obtained by the demodulation process 20. Further, the demodulation circuit 23 restores information bits from the data signal by performing channel compensation, data demodulation, and error correction decoding using the channel estimation value obtained by the channel estimation processing 19.
- a control signal is generated by encoding, data modulation, or the like with respect to control information including RSRP of each base station.
- the transmission RF circuit 17 performs conversion from baseband to radio frequency by performing digital-analog (D / A) conversion and quadrature modulation on the control signal.
- the radio frequency signal is transmitted from the transmission antenna 16 as an upstream transmission signal.
- FIG. 5 shows a configuration example of the base station TP1 of the connected cell that exchanges signals with the UE 10 shown in FIG. 4 and the base station TP2 of the cooperative cell located around the connected cell. Since the base station TP1 and the base station TP2 have the same configuration, the configuration of the base station TP1 will be described.
- “Base station” means a downlink transmission station, and includes, for example, a macro base station, a pico base station, an RRH, and the like.
- the base station TP1 includes an RF transmission / reception circuit 31, a DSP 32 functioning as a baseband processing unit, and a wired interface circuit (wired I / F) 33.
- the RF transmission / reception circuit 31 manages processing related to a radio (RF) signal.
- the RF transceiver circuit 31 includes a reception RF circuit (wireless receiver) 35 connected to the reception antenna 34 and a transmission RF circuit (wireless transmitter) 37 connected to the transmission antenna 36.
- the DSP 32 is an example of a processor, and the processor can include a CPU.
- the DSP 32 loads a program stored in a storage device (auxiliary storage device) (not shown) into the main storage device (main memory) and executes it.
- the DSP 32 performs an uplink control signal demodulation process 38, a cooperative transmission control process 39, a process (scheduling) as a scheduler 40, an RNTP information generation process 41, a data signal generation process 42, and a control signal.
- Generation processing 43, reference signal generation processing 44, physical channel multiplexing processing 45, and inverse fast Fourier transform (IFFT) processing 46 are executed.
- Each process executed by the DSP 32 can be realized by using one or more integrated circuits such as IC, LSI, and ASIC, or a programmable logic device such as FPGA.
- the wired I / F 33 is connected to the wired I / F 33 of the base station TP2 via a wired interface.
- the DSP 32 and the RF transmission / reception circuit 31 in the base station TP2 are not shown.
- the reception RF circuit 35 performs radio frequency-to-baseband conversion, orthogonal demodulation, and A / D conversion on the uplink received signal from the UE 10 (FIG. 4).
- the uplink control signal demodulation process 38 an uplink control signal demodulation process is performed, and control information (RSRP of each cell) is extracted.
- RNTP information generation process 41 setting of RNTP and RNTP replacement instruction is performed.
- scheduler 40 allocation of frequency resources to UEs, selection of transmission parameters, and the like are performed.
- the wired I / F 33 performs data transfer (transfer of RNTP and RNTP replacement instruction, UE data, etc.) to and from the base station TP2 of the cooperative cell.
- each physical channel is frequency-multiplexed.
- IFFT processing 46 executes IFFT on the signal multiplexed by multiplexing processing 45, and CP is added to the signal obtained by IFFT.
- the transmission RF circuit 37 performs D / A conversion and quadrature modulation on the signal to which the CP is added. Thereby, the conversion from the baseband to the radio frequency is performed.
- the radio signal generated in this way is transmitted from the transmission antenna 36 as a downlink transmission signal.
- FIG. 6 is a sequence diagram illustrating a processing example in the embodiment.
- the base station TP1 of the connected cell of the UE 10 and the base station TP2 which is a neighboring base station transmit a downlink (DL) reference signal (pilot signal) to the UE 10 ( ⁇ 1> in FIG. 6).
- DL downlink
- pilot signal pilot signal
- the UE 10 measures the RSRP of each cell using the reference signal received from the base stations TP1 and TP2 of the connected cell ( ⁇ 2> in FIG. 6). Specifically, the DSP 12 of the UE 10 measures the RSRP of each cell using the reference signal. Specifically, the DSP 12 calculates a channel estimation value from the correlation between the known reference signal and the received reference signal by the channel estimation processing 19. Furthermore, the DSP 12 measures RSRP by averaging the power value of the received reference signal over time by the RSRP calculation process 21. Further, the DSP 12 generates an uplink control signal including an RSRP measurement result by the generation process 22. The transmission RF circuit 17 generates a radio signal (uplink transmission signal) of the uplink control signal and transmits it from the transmission antenna 16 to the base station TP1 ( ⁇ 3> in FIG. 6).
- the uplink transmission signal of the UE is received as the uplink reception signal, and the uplink control signal is demodulated by the demodulation process 38 of the DSP 32. Further, the DSP 32 determines a cooperation target base station for the UE 10 based on the RSRP measurement result included in the uplink control signal by the cooperative transmission control process 39 ( ⁇ 4> in FIG. 6). In the example illustrated in FIG. 6, the base station TP2 is determined as a cooperation target.
- the coordinated transmission control processing 39 sets, for example, that some resources (RB) are not used for transmission when the amount of data traffic under the cell of the own station is small. Such an RB is referred to as a “no transmission RB”.
- the value corresponding to the non-transmission RB in RNTP is set to “0”, and the value of the RNTP replacement instruction is set to “1” ( ⁇ 5> in FIG. 6). ).
- the base station TP2 reserves the CoMP RB for CoMP JT based on the information on the CoMP RB received from the base station TP1, and updates the RNTP (FIG. 6 ⁇ 9>). Specifically, the DSP 32 sets the value of the RB in the RNTP corresponding to the CoMP RB to “1” by the RNTP information generation process 41. With such a setting, it is possible to prevent a base station of a neighboring cell from misinterpreting that “the non-transmission RB can be used for CoMP” in the next RNTP transmission.
- the base station TP2 transmits a notification indicating that cooperation is possible (that is, the CoMP RB notified from the base station TP1 is reserved) to the base station TP1 by the cooperative transmission control processing 39 (FIG. 6). ⁇ 10>).
- the coordinated transmission control processing 39 transmits data for the UE 10 transmitted by CoMP JT, control information (transmission parameters such as a modulation scheme), and the like. Is transferred to the base station TP2 through the wired I / F 33 ( ⁇ 11> in FIG. 6).
- the base station TP1 and the base station TP2 perform user scheduling of the UE 10 that transmits by CoMPJT based on the exchanged CoMP RB information (FIG. 6 ⁇ 12>, ⁇ 13>).
- the PDSCH is transmitted by CoMP JT (FIG. 6 ⁇ 14>, ⁇ 15>). Thereby, the same data is transmitted from the base station TP1 and the base station TP2.
- the base station TP1 monitors the channel state for the UE 10 used for CoMP JT transmission based on the regularly reported RSRP, and serves as the base station of the cooperative cell that performs CoMP JT for the UE 10 If it is determined that TP2 is inappropriate, a notification of cancellation of cooperation is transmitted to the base station TP2 via the wired I / F 33 ( ⁇ 16> in FIG. 6).
- the DSP 32 is information indicating that the RNTP has a resource (RB) whose original transmission power is equal to or less than a threshold, that is, each RB.
- the corresponding value (0 or 1) is interpreted as a value indicating whether or not the transmission power is less than or equal to the threshold value.
- the base station TP1 assigns an RB having a value of “0” to the UE located at the cell boundary with the base station TP2.
- the CoMP JT is transmitted by transmitting the RNTP in which the value of the free RB (RB usable for CoMP) is set to 0 and the RNTP replacement instruction “1” to the neighboring cells. It is possible to inform the base station of the neighboring cell of the resource information that can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
基地局は、移動局に割り当て可能な複数のリソースに関するリソース情報と、リソース情報の解釈データとを周辺基地局から受信し、解釈データがリソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する値を有するときにリソース情報に基づいて選択された基地局間協調送信に使用するリソースを周辺基地局へ通知するとともに、選択されたリソースを用いて移動局に対する基地局間協調送信を周辺基地局と行うための処理を実行する。
Description
本開示は、無線通信システム及び基地局に関する。
新しい移動通信システムであるLong Term Evolution (LTE (Release 8))の商用サービスが開始された。国際標準化機関3GPPは、大幅に機能が拡張されたLTE-Advanced (Release 10)を既に開発した。現在、次期リリースであるRelease 11で更なる機能拡張を行うため、活発な議論が行われている。
下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)用のセル間干渉対策として、部分周波数再利用(Fractional Frequency Reuse:FFR)技術が既に実用化されている。FFRの具体的な仕組みについて、図1を用いて説明する。
図1において、基地局間インタフェース(X2インタフェース)上でやり取りする情報要素として相対的狭帯域送信電力(Relative Narrow-band Tx Power:RNTP)が定義されている。RNTPは、閾値を上回る送信電力の周波数リソース( Resource Block:RB)を“1”で示し、閾値以下の送信電力(送信電力ゼロを含む)のRBを“0”であらわす。基地局は、送信電力が閾値以下のRBをRNTPで示し、周辺セルの基地局に宣言する。
RNTPの受信によって、基地局は、隣接セルにおける送信電力が閾値以下のRBを知ることができる。隣接セルの基地局におけるユーザスケジューラは、当該RBを隣接セル境界の移動局( User Equipment:UE)に割り当てる。このようなFFRによって、当該移動局への干渉が抑圧される。
3GPPは、別のセル間干渉対策として、基地局間協調送信(Coordinated Multiple Point:CoMP)と呼ばれる技術をRelease 11に導入するための検討を行っている。CoMPの一形態として、結合送信(Joint Transmission:JT)がある。
通常のセルラー通信では、UEは接続セルに隣接するセルからの信号を干渉信号として受信する。これに対し、基地局間協調送信における結合送信(CoMP JT)では、複数の基地局が協調して、同一データに基づく下り共有チャネル(PDSCH)を特定のUEに対して送信する。これによって、UEは、接続セルからの信号だけでなく、隣接するセルからの信号も希望信号として受信することができる。このため、セル間干渉が低減される。
図2は、CoMP JTのシステムモデルを示す。下りリンク信号の送信局(基地局)としては、マクロ基地局、ピコ基地局、RRH (Remote Radio Head)などの形態があるが、図2では送信局を区別しないでTP (Transmission Point)として表している。図2に示すTP1は、UEが制御信号などをやり取りする接続セルの送信局(TP)であり、データ信号s1をUEへ送信する。
TP2は協調セルの送信局(TP)であり、TP1のスケジューラとX2インタフェースを介して接続されるスケジューラを備えている。TP2のスケジューラは、TP1との協調によって、TP1から送信されるデータ信号s1と同一のデータ信号s1をUEへ送信する。
協調セルの選択方法としては、例えば、UEからフィードバックされた各セルの下り受信電力測定値(Reference Signal Received Power : RSRP)に基づき、接続セルとのRSRPのしきい値内となるセルを選択する方法が知られている。
Release 11の標準化では、同一基地局装置内の異なるセクタ間で協調する形態や、基地局装置とそれに付随するRRH間で協調する形態のCoMPが検討されている。これらの形態は、同一装置内に閉じた協調制御とみなすことができる。
一方、異なる基地局装置を用いたCoMPを実現するには、図2に示したように、接続セル及び協調セルの各基地局におけるスケジューリング情報や協調制御に必要な情報などをX2インタフェース上でやり取りすることが要求される。X2インタフェース上でやり取りする情報要素は、従来リリース用に既に規定されている。このため、制御情報のオーバーヘッドの観点から、既存の情報要素を大きく拡張することなく、CoMPを実現できることが望ましい。
本開示の目的は、既存の情報要素の拡張範囲を抑えて基地局間協調送信を実現可能とする技術を提供することにある。
本発明の実施形態の態様の1つは、第1基地局と、上記第1基地局の周辺基地局である第2基地局と、前記第1基地局および前記第2基地局と通信可能な移動局とを含み、
上記第1基地局は、
上記移動局に割り当て可能な複数のリソースに関するリソース情報と、上記リソース情報の解釈に用いられる所定のデータとを受信する受信装置と、
上記所定のデータが、上記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する第1の値を有するときに上記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを上記第2基地局へ通知するとともに、選択されたリソースを用いて上記移動局に対する基地局間協調送信を上記第2の基地局と行うための処理を実行する制御装置と、を含み、
上記第2の基地局は、基地局間協調送信に使用可能なリソースを上記第1基地局に通知するときに、上記リソース情報と上記第1の値を有する所定のデータとを上記第1基地局に送信する一方で、送信電力が閾値以下のリソースを上記第1基地局に通知するときに、上記リソース情報と、前記リソース情報が送信電力が閾値以下のリソースを示すことを意味する第2の値を有する上記所定のデータとを上記第1基地局に送信する送信装置を含み、
前記移動局は、前記第1基地局および前記第2基地局から基地局間協調送信により送信された信号を受信可能な受信装置を含む無線通信システムである。
上記第1基地局は、
上記移動局に割り当て可能な複数のリソースに関するリソース情報と、上記リソース情報の解釈に用いられる所定のデータとを受信する受信装置と、
上記所定のデータが、上記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する第1の値を有するときに上記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを上記第2基地局へ通知するとともに、選択されたリソースを用いて上記移動局に対する基地局間協調送信を上記第2の基地局と行うための処理を実行する制御装置と、を含み、
上記第2の基地局は、基地局間協調送信に使用可能なリソースを上記第1基地局に通知するときに、上記リソース情報と上記第1の値を有する所定のデータとを上記第1基地局に送信する一方で、送信電力が閾値以下のリソースを上記第1基地局に通知するときに、上記リソース情報と、前記リソース情報が送信電力が閾値以下のリソースを示すことを意味する第2の値を有する上記所定のデータとを上記第1基地局に送信する送信装置を含み、
前記移動局は、前記第1基地局および前記第2基地局から基地局間協調送信により送信された信号を受信可能な受信装置を含む無線通信システムである。
本開示によれば、既存の情報要素の拡張範囲を抑えて基地局間協調送信を実現することができる。
以下、図面を参照して本発明の実施形態について説明する。実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
実施形態では、CoMP(基地局間協調送信)に使用できるリソースの情報を基地局間で効率よく交換する方法を提供する。基地局は、CoMP用の周波数リソース(RB)を予約して(すなわち、未割当の状態にして)、当該RBの情報を周辺基地局に通知する。これによって、結合送信(JT)のための手続きが開始される。
ここで、図1を用いて説明した相対的狭帯域送信電力(RNTP)に着目すると、RNTPは、送信電力が制限されたRBを示すことはできるが、未割当の(送信電力ゼロの) RBを示すことはできない。そこで、新たな制御情報(RNTP読替指示)を設けて、基地局間で交換する。基地局は周辺基地局が通知したRNTP読替指示に基づき、RNTPの情報を、CoMP送信に使用できるリソースの情報と読み替える。RNTP読替指示は、“0”又は“1”の二値を持つフラグである。RNTPは、移動局に割り当て可能な複数のリソースに関するリソース情報の一例であり、RNTP読替指示は、リソース情報の解釈に用いる所定のデータの一例であり、第1の値(“1”)と第2の値(“0”)とを有する。
図3Aは、RNTP読替指示の値が“1”(RNTP読替指示=1)のときの説明図である。基地局は、RNTP読替指示“1”を他の基地局に通知することによって、RNTP=0のRBをCoMP送信に使用できることを宣言する。すなわち、RNTP=0のRBは、未割り当てのRBを表し、且つ部分周波数再利用(FFR)に使用可能なRBを表す。
図3Bは、RNTP読替指示の値が“0”(RNTP読替指示=0)のときの説明図である。基地局は、RNTP読替指示“0”を周辺セルの基地局に通知することによって、RNTP=0のRBをCoMP送信に使用できないことを宣言する。当該RBは、例えば、低送信電力でのデータ送信に使われていることを想定することができる。すなわち、RNTP=0のRBは、FFRに使用可能なRBであることを表すことができる。
RNTP読替指示及び各RBのRNTPを受信する周辺セルの基地局(周辺基地局)は、以下のような解釈を行う。すなわち、RNTP読替指示の値が“1”(RNTP読替指示=1)であれば、周辺セルの基地局は、RNTP=0のRBをCoMP送信に使用できると解釈する。これに対し、RNTP読替指示の値が“0”(RNTP読替指示=0)であれば、周辺セルの基地局は、RNTP=0のRBをFFRに使用できると解釈する。
上記構成によれば、わずかなサイズ(1ビット)の制御情報要素(RNTP読替指示)を追加するだけで、周辺セルの基地局に対して、CoMP送信に使用可能なリソースの情報(RB)を通知することができる。また、RNTPの定義自体は変えていないため、RNTP読替指示を“0”に設定することによって、従来通り、RNTPを用いたFFRの機能をサポートすることができる。なお、RNTP読替指示を示すビット値が示す意味は、上記と逆であっても良い。また、第1及び第2の値を示すためのビット数は、1ビットに制限されず、2以上のビットであっても良い。
図4は、実施形態に適用される移動局(UE)の構成例を示す図である。図4は、例として、無線アクセス方式に直交周波数分割多重アクセス(Orthogonal Frequency Division Multiple Access:OFDMA)方式が適用された移動通信システムにおけるUEの構成を示す。
図4において、UE10は、無線(RF)送受信回路11と、ベースバンド処理部の一部として機能するDSP(Digital Signal Processor)12と、ベースバンド処理部の一部として機能するLSI(Large Scale Integrated circuit)13とを備えている。
RF送受信回路11は、無線(RF)信号に係る処理を司る。RF送受信回路11は、受信アンテナ14に接続された受信RF回路(無線受信機)15と、送信アンテナ16に接続された送信RF回路(無線送信機)17とを含んでいる。受信アンテナ14に接続された受信RF回路15は、移動局に含まれる受信装置の一例である。
DSP12は、プロセッサの一例であり、プロセッサは、CPUを含むことができる。DSP12は、図示しない記憶装置(補助記憶装置)に記憶されたプログラムを主記憶装置(メインメモリ)にロードして実行する。これによって、DSP12は、高速フーリエ変換(FFT)処理18と、チャネル推定処理19と、制御信号の復調処理20と、参照信号受信電力(Reference Signal Received Power:RSRP)算出処理21と、上り制御信号の生成処理22とを実行する。
LSI13は、集積回路の一例であり、データ信号復調処理を行うデータ信号の復調回路23を含んでいる。なお、DSP12で実行される各処理は、LSI、ASIC(Application Specific Integrated Circuit)のような1以上の集積回路、あるいは、FPGAのようなプログラマブルロジックデバイスを用いて実現することができる。
受信RF回路は、受信アンテナ14で受信された基地局(TP)からの信号(下り受信信号)に対する、無線周波数からベースバンドへの変換、直交復調、アナログ-ディジタル(A/D)変換を行う。
FFT処理18において、受信信号(受信RF回路15の出力信号)に対するFFTタイミング検出、CP (Cyclic prefix)除去、FFTが行われる。また、チャネル推定処理18において、FFT後の受信信号(FFT処理18によって生成された信号)から基地局(TP)毎の参照信号が抽出される。次に、抽出された参照信号と、既知である各基地局の参照信号との相互相関が計算される。これによって、複素数で表される無線チャネルのチャネル推定値が基地局毎に求められる。
RSRP算出処理21によって、各基地局のRSRPが算出される。制御信号の復調処理20では、FFT後の受信信号(FFT処理18によって生成された信号)から制御信号が抽出される。また、復調処理20では、制御信号に対するチャネル推定値を用いたチャネル補償,データ復調,及び誤り訂正復号の実行によって、制御信号から制御情報(リソース割当情報)が復元される。
データ信号の復調回路23は、復調処理20によって得られたリソース割当情報に基づき、FFT後の受信信号(FFT処理18によって生成された信号)からデータ信号を抽出する。さらに、復調回路23は、チャネル推定処理19によって得られたチャネル推定値を用いたチャネル補償,データ復調,及び誤り訂正復号の実行によって、データ信号から情報ビットを復元する。
上り制御信号の生成処理22では、各基地局のRSRPを含む制御情報に対する、符号化、データ変調等によって、制御信号が生成される。送信RF回路17は、制御信号に対するディジタル-アナログ(D/A)変換、直交変調を行うことによって、ベースバンドから無線周波数への変換を行う。無線周波数の信号は、上り送信信号として送信アンテナ16から送信される。
図5は、図4に示したUE10と信号のやりとりを行う接続セルの基地局TP1、接続セルの周辺に位置する協調セルの基地局TP2の構成例を示す。基地局TP1と基地局TP2とは同一の構成を有するため、基地局TP1の構成について説明する。「基地局」は、下りリンクの送信局を意味し、例えば、マクロ基地局,ピコ基地局,RRH等を含む。
基地局TP1は、RF送受信回路31と、ベースバンド処理部として機能するDSP32と、有線インタフェース回路(有線I/F)33とを備える。
RF送受信回路31は、無線(RF)信号に係る処理を司る。RF送受信回路31は、受信アンテナ34に接続された受信RF回路(無線受信機)35と、送信アンテナ36に接続された送信RF回路(無線送信機)37とを含んでいる。
DSP32は、プロセッサの一例であり、プロセッサは、CPUを含むことができる。DSP32は、図示しない記憶装置(補助記憶装置)に記憶されたプログラムを主記憶装置(メインメモリ)にロードして実行する。これによって、DSP32は、上り制御信号の復調処理38と、協調送信制御処理39と、スケジューラ40としての処理(スケジューリング)と、RNTP情報の生成処理41と、データ信号の生成処理42と、制御信号の生成処理43と、参照信号の生成処理44と、物理チャネルの多重処理45と、逆高速フーリエ変換(IFFT)処理46とを実行する。
なお、DSP32で実行される各処理は、IC、LSI、ASICのような1以上の集積回路、あるいは、FPGAのようなプログラマブルロジックデバイスを用いて実現することができる。
有線I/F33は、有線インタフェースを介して基地局TP2の有線I/F33に接続される。なお、図5では、基地局TP2におけるDSP32,RF送受信回路31の図示は省略されている。
受信RF回路35は、UE10(図4)からの上りリンクの受信信号に対する無線周波数からベースバンドへの変換,直交復調,A/D変換を行う。上り制御信号の復調処理38では、上りリンクの制御信号の復調処理が行われ、制御情報(各セルのRSRP)が抽出される。
協調送信制御処理39では、RSRPなどに基づき、協調対象の基地局(例えば基地局TP2)の決定,CoMP用のリソース(RB)の設定,協調可能か否かの判定,結合送信(JT)の実行指示,協調解除の判定が行われる。
RNTP情報生成処理41では、RNTP及びRNTP読替指示の設定が行われる。スケジューラ40では、UEへの周波数リソースの割り当てや送信パラメータの選択などが行われる。有線I/F33は、協調セルの基地局TP2との間のデータ転送(RNTP及びRNTP読替指示、UE用データなどの転送)を行う。
データ信号の生成処理42では、データ情報に誤り訂正符号化、データ変調などが行われる。制御信号の生成処理43では、リソース割当情報のような制御情報に対して、誤り訂正符号化、データ変調などの実行によって、制御信号が生成される。参照信号の生成処理44では、当該基地局TP1の参照信号が生成される。物理チャネル多重処理45では、各物理チャネルが周波数多重される。
その後、典型的なOFDM方式と同様の処理が実行される。すなわち、IFFT処理46によって、多重処理45で多重化された信号に対するIFFTが実行され、IFFTによって得られた信号にCPが付加される。CPが付加された信号に対し、送信RF回路37は、CPが付加された信号に対するD/A変換及び直交変調を行う。これによって、ベースバンドから無線周波数への変換が行われる。このようにして生成された無線信号は、下り送信信号として送信アンテナ36から送信される。
図6は、実施形態における処理例を示すシーケンス図である。図6において、最初に、UE10の接続セルの基地局TP1及び周辺基地局である基地局TP2は、下りリンク(DL)の参照信号(パイロット信号)をUE10に送信する(図6<1>)。
UE10は、接続セルの基地局TP1及びTP2から受信した参照信号を用いて、各セルのRSRPを測定する(図6<2>)。具体的には、UE10のDSP12は、参照信号を用いて各セルのRSRPを測定する。具体的には、DSP12は、チャネル推定処理19によって、既知の参照信号と受信された参照信号の相関より、チャネル推定値を算出する。さらに、DSP12は、RSRP算出処理21によって、受信された参照信号の電力値を時間平均することにより、RSRPを測定する。さらに、DSP12は、生成処理22によって、RSRPの測定結果を含む上り制御信号を生成する。送信RF回路17は、上り制御信号の無線信号(上り送信信号)を生成し、送信アンテナ16から基地局TP1へ送信する(図6<3>)。
基地局TP1では、UEの上り送信信号を上り受信信号として受信し、上り制御信号がDSP32の復調処理38によって復調される。さらに、DSP32は、協調送信制御処理39によって、上り制御信号に含まれるRSRPの測定結果に基づき、UE10に関する協調対象の基地局を決定する(図6<4>)。図6に示す例では、基地局TP2が協調対象として決定される。
基地局TP2では、協調送信制御処理39によって、例えば、自局のセル配下のデータトラフィック量が少ない場合に、一部のリソース(RB)を送信のために使わないように設定する。このようなRBを“無送信RB”と呼ぶ。また、基地局TP2では、RNTP情報生成処理41において、RNTPにおける無送信RBに対応する値を“0”に設定し、且つRNTP読替指示の値を“1”に設定する(図6<5>)。RNTP及びRNTP読替指示(=1)は、例えば、有線I/F33を通じて周辺セルに伝達される(図6<6>)。
基地局TP1では、DSP32による協調送信制御処理39によって、基地局TP2からのRNTP及びRNTP読替指示を認識する。これによって、基地局TP1は、基地局TP2がCoMPのために使用可能なRBを知ることができる。すなわち、DSP32は、RNTP読替指示(=1)に従って、値“0”のRBが無送信RB(CoMPに使用可能なRB)であるとの認識に基づき、無送信RBの中からCoMPに適した1以上のRBを選択し、選択したRBをCoMP用RBとして決定する(図6<7>)。CoMP用RBの情報は、有線I/F33を用いて基地局TP2へ送信される(図6<8>)。
基地局TP2は、基地局TP1から受信されたCoMP用RBの情報に基づき、CoMP用RBをCoMP JTのために予約し、RNTPを更新する(図6<9>)。具体的には、DSP32がRNTP情報生成処理41によって、CoMP用RBに対応するRNTP中のRBの値を“1”に設定する。このような設定によって、次回のRNTP送信において、「無送信RBをCoMPに使用できる」と周辺セルの基地局が誤って解釈するのを防ぐことができる。基地局TP2は、協調送信制御処理39によって、基地局TP1に対し、協調可能である(すなわち、基地局TP1から通知されたCoMP用RBが予約された)ことを示す通知を送信する(図6<10>)。
基地局TP1は、協調可能であることを示す通知を基地局TP2から受信すると、協調送信制御処理39によって、CoMP JTで送信するUE10向けのデータと、制御情報(変調方式などの送信パラメータ)とを有線I/F33を通じて基地局TP2へ転送する(図6<11>)。
基地局TP1及び基地局TP2は、交換したCoMP用RB情報に基づき、CoMPJTで送信するUE10のユーザスケジューリングを行い(図6<12>,<13>)。CoMP JTで、PDSCHを送信する(図6<14>,<15>)。これによって、同一のデータが基地局TP1及び基地局TP2から送信される。
その後、基地局TP1は、定期的に報告されるRSRPに基づき、CoMP JT送信で使用されるUE10向けのチャネル状態を監視し、当該UE10のためのCoMP JTを行う協調セルの基地局として基地局TP2が不適であると判定した場合には、協調解除の通知を有線I/F33を介して基地局TP2へ送信する(図6<16>)。
なお、基地局TP1がRNTP読替指示(=0)とともにRNTPを受信した場合には、DSP32は、RNTPが本来の送信電力が閾値以下のリソース(RB)を示す情報である、すなわち、各RBに対応する値(0又は1)が、送信電力が閾値以下か否かを示す値であると解釈する。そして、基地局TP1は、値が“0”のRBを、基地局TP2とのセル境界に位置するUEに割り当てる。
このように、実施形態によれば、空き状態のRB(CoMPに使用可能なRB)の値が0に設定されたRNTPとRNTP読替指示“1”とを周辺セルに送信することによって、CoMP JTに使用可能なリソース情報を周辺セルの基地局に知らせることができる。
このように、基地局間で送受信される情報要素について、RNTP読替指示を定義する最小限(少なくとも1ビット)の追加によって、CoMP送信(基地局間協調送信)に使用可能なリソース(RB)の情報を通知する仕組みを構築することができる。
TP1,TP2・・・基地局
10・・・UE
32・・・DSP
10・・・UE
32・・・DSP
Claims (8)
- 第1基地局と、
前記第1基地局の周辺基地局である第2基地局と、
前記第1基地局および前記第2基地局と通信可能な移動局とを含み、
前記第1基地局は、
前記移動局に割り当て可能な複数のリソースに関するリソース情報と、前記リソース情報の解釈に用いられる所定のデータとを受信する受信装置と、
前記所定のデータが、前記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する第1の値を有するときに、前記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを前記第2基地局へ通知するとともに、選択されたリソースを用いて前記移動局に対する基地局間協調送信を前記第2の基地局と行うための処理を実行する制御装置と、を含み、
前記第2の基地局は、
基地局間協調送信に使用可能なリソースを前記第1基地局に通知するときに、前記リソース情報と前記第1の値を有する所定のデータとを前記第1基地局に送信する一方で、送信電力が閾値以下のリソースを前記第1基地局に通知するときに、前記リソース情報と、前記リソース情報が送信電力が閾値以下のリソースを示すことを意味する第2の値を有する前記所定のデータとを前記第1基地局に送信する送信装置を含み、
前記移動局は、
前記第1基地局および前記第2基地局から基地局間協調送信により送信された信号を受信可能な受信装置を含む、
無線通信システム。 - 前記制御装置は、前記所定のデータが前記第1の値と前記第2の値とのいずれを有するかを判定する
請求項1記載の無線通信システム。 - 前記第1の基地局は、前記リソース情報と前記第2の値を有する所定のデータとが受信されたときに、前記リソース情報に基づいて前記第2の基地局とのセル境界に位置する移動局に対して前記送信電力が閾値以下のリソースを割り当てる
請求項1または2に記載の無線通信システム。 - 前記リソース情報がRNTP(Relative Narrow-band Tx Power)である
請求項1から3のいずれか1項に記載の無線通信システム。 - 移動局に割り当て可能な複数のリソースに関するリソース情報と、前記リソース情報の解釈に用いられる所定のデータとを周辺基地局から受信する受信装置と、
前記所定のデータが、前記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する値を有するときに、前記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを前記周辺基地局へ通知するとともに、選択されたリソースを用いて前記移動局に対する基地局間協調送信を前記周辺基地局と行うための処理を実行する制御装置と、
を含む基地局。 - 基地局間協調送信に使用可能なリソースを周辺基地局に通知するときに、移動局に割り当て可能な複数のリソースに関するリソース情報と、前記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する第1の値を有する所定のデータとを前記周辺基地局に送信する一方で、送信電力が閾値以下のリソースを前記周辺基地局に通知するときに、前記リソース情報と前記リソース情報が送信電力が閾値以下のリソースを示すことを意味する第2の値を有する前記所定のデータとを前記周辺基地局に送信する送信装置と、
前記周辺基地局から受信される、前記リソース情報に基づいて選択された基地局間協調送信用のリソースを示す情報を用いて前記移動局に対する基地局間協調送信を前記周辺基地局との間で行うための処理を実行する制御装置と
を含む基地局。 - 割り当て可能な複数のリソースに関するリソース情報の解釈に用いられる所定のデータが、前記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する第1の値を有するときに、前記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを前記周辺基地局へ通知する第1基地局と、基地局間協調送信に使用可能なリソースを前記第1基地局に通知するときに、前記リソース情報と前記第1の値を有する所定のデータとを前記第1基地局に送信する一方で、送信電力が閾値以下のリソースを前記第1基地局に通知するときに、前記リソース情報と、前記リソース情報が送信電力が閾値以下のリソースを示すことを意味する第2の値を有する前記所定のデータとを前記第1基地局に送信する第2基地局と、から選択されたリソースを用いて基地局間協調送信により送信された信号を受信する受信装置
を含む移動局。 - 移動局に割り当て可能な複数のリソースに関するリソース情報と、前記リソース情報の解釈に用いられる所定のデータとを周辺基地局から受信し、
前記所定のデータが、前記リソース情報が基地局間協調送信に使用可能なリソースを示すことを意味する値を有するときに、前記リソース情報に基づいて選択された基地局間協調送信に使用するリソースを前記周辺基地局へ通知するとともに、選択されたリソースを用いて前記移動局に対する基地局間協調送信を前記周辺基地局と行うための処理を実行する、
ことを含む基地局間協調送信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/071595 WO2014033813A1 (ja) | 2012-08-27 | 2012-08-27 | 無線通信システム及び基地局 |
PCT/JP2013/072903 WO2014034679A1 (ja) | 2012-08-27 | 2013-08-27 | 無線通信システム及び基地局 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/071595 WO2014033813A1 (ja) | 2012-08-27 | 2012-08-27 | 無線通信システム及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014033813A1 true WO2014033813A1 (ja) | 2014-03-06 |
Family
ID=50182664
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071595 WO2014033813A1 (ja) | 2012-08-27 | 2012-08-27 | 無線通信システム及び基地局 |
PCT/JP2013/072903 WO2014034679A1 (ja) | 2012-08-27 | 2013-08-27 | 無線通信システム及び基地局 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072903 WO2014034679A1 (ja) | 2012-08-27 | 2013-08-27 | 無線通信システム及び基地局 |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2014033813A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084268A1 (ja) * | 2014-11-28 | 2016-06-02 | パナソニックIpマネジメント株式会社 | 基地局および協調送信方式選択方法 |
EP3253104B1 (en) | 2015-01-29 | 2021-08-25 | Sony Group Corporation | Device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137313A1 (ja) * | 2009-05-27 | 2010-12-02 | Kddi株式会社 | 周波数割当装置およびプログラム |
WO2011052643A1 (ja) * | 2009-10-29 | 2011-05-05 | 日本電気株式会社 | 無線通信システム、無線通信方法、無線局、およびプログラム |
JP2011182063A (ja) * | 2010-02-26 | 2011-09-15 | Softbank Mobile Corp | 無線通信システム及び基地局間協調通信制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2496012B1 (en) * | 2009-10-30 | 2016-01-06 | Fujitsu Limited | Base station, communication method and mobile station |
-
2012
- 2012-08-27 WO PCT/JP2012/071595 patent/WO2014033813A1/ja active Application Filing
-
2013
- 2013-08-27 WO PCT/JP2013/072903 patent/WO2014034679A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137313A1 (ja) * | 2009-05-27 | 2010-12-02 | Kddi株式会社 | 周波数割当装置およびプログラム |
WO2011052643A1 (ja) * | 2009-10-29 | 2011-05-05 | 日本電気株式会社 | 無線通信システム、無線通信方法、無線局、およびプログラム |
JP2011182063A (ja) * | 2010-02-26 | 2011-09-15 | Softbank Mobile Corp | 無線通信システム及び基地局間協調通信制御方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2014034679A1 (ja) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10064064B2 (en) | LTE-U communication devices and methods for aperiodic beacon and reference signal transmission | |
CN107113902B (zh) | 在无线通信网络中选择通信模式的网络节点、无线设备及其方法 | |
US9277414B2 (en) | Wireless communication system, base station, and mobile station | |
JP5496406B2 (ja) | 基地局及びプロセッサ | |
CN102469466B (zh) | 一种干扰处理方法与装置 | |
CN103024751B (zh) | 干扰控制方法和设备 | |
JP5747125B2 (ja) | 通信ネットワークにおいて基本系列を処理する方法及びデバイス | |
JP5054422B2 (ja) | 移動通信システム、基地局装置、移動局装置、および、スケジューリング方法 | |
CN106465167B (zh) | 用于在无线电通信网络中启用设备到设备(d2d)通信的用户设备、网络节点以及其中的方法 | |
US20150103789A1 (en) | Radio communication system, radio base station apparatus, terminal apparatus, and radio resource allocation method | |
JP6953549B2 (ja) | 無線通信システムにおいてセル間干渉を制御する方法及びそのための装置 | |
EP2568717B1 (en) | Method, device and system for signal transmission | |
JP5534028B2 (ja) | 無線通信システム、基地局、移動局および無線通信方法 | |
CN110392385B (zh) | 通信方法及相关设备 | |
JP2012129793A (ja) | 基地局、及び保護サブフレーム使用状況通知方法 | |
US8817731B2 (en) | Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station | |
US20170094673A1 (en) | Wireless communication system, wireless communication method, wireless device, and wireless base station | |
RU2630409C2 (ru) | Способ и устройство для передачи и приема сигнала в системе беспроводной связи | |
CN104244262A (zh) | 一种干扰处理方法与装置 | |
WO2014063355A1 (zh) | 传输参考信号的方法和装置 | |
CN113273121B (zh) | 用于测量侧链路接收信号强度的方法、设备和计算机可读介质 | |
WO2014033813A1 (ja) | 無線通信システム及び基地局 | |
EP3376811A1 (en) | Base station, user device, reference signal transmission method, and signal reception method | |
US9807781B2 (en) | Base station and scheduling method | |
WO2013161054A1 (ja) | 無線基地局、無線端末、無線通信システム及び通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12883521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12883521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |