[go: up one dir, main page]

WO2014032728A1 - Batterieladesystem und verfahren zum kabellosen laden einer batterie - Google Patents

Batterieladesystem und verfahren zum kabellosen laden einer batterie Download PDF

Info

Publication number
WO2014032728A1
WO2014032728A1 PCT/EP2012/066988 EP2012066988W WO2014032728A1 WO 2014032728 A1 WO2014032728 A1 WO 2014032728A1 EP 2012066988 W EP2012066988 W EP 2012066988W WO 2014032728 A1 WO2014032728 A1 WO 2014032728A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
battery
charging system
charging
current
Prior art date
Application number
PCT/EP2012/066988
Other languages
English (en)
French (fr)
Inventor
Thomas Komma
Stephan Rupf
Jörg WEISS
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US14/425,099 priority Critical patent/US10173539B2/en
Priority to CN201280075405.0A priority patent/CN104584372B/zh
Priority to PCT/EP2012/066988 priority patent/WO2014032728A1/de
Priority to DE112012006861.0T priority patent/DE112012006861B4/de
Publication of WO2014032728A1 publication Critical patent/WO2014032728A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a battery charging system and a method for wireless charging of a battery, in particular a battery of an electric vehicle.
  • a battery charger as it is suitable for loading Trakomsbatte ⁇ rien, is typically designed as an electronically Gere ⁇ applies DC and -Stromquelle.
  • a regulated charge current with a final voltage limitation can be impressed up to a specific charge end voltage.
  • a charging characteristic may provide a variable charging current depending on the type of battery.
  • an automatic electric battery charger which comprises a device for monitoring the charging current and to adjust it to a predetermined value.
  • the battery charger further comprises a battery voltage responsive device that progressively reduces said value in accordance with a function of the battery voltage during the charging process.
  • a charging device for motor vehicles is known for example from DE 10 2011 004 215 AI.
  • This charging device has a circuit breaker, which is opened when a current strength is above a current ⁇ strength threshold for a minimum period.
  • a motor vehicle having a battery to be charged is connected by means of a charging cable to the charge ⁇ device.
  • a traction battery charging system with inductive coupling is known. In this case, charging energy is transferred from a charging station to an electric vehicle as alternating current in the range from 10 kHz to 200 kHz and in the electric field. rectified vehicle.
  • the traction battery charging system should be particularly suitable for vehicles which are equipped with egg ⁇ nem battery energy management system (BEMS).
  • BEMS egg ⁇ nem battery energy management system
  • An on-board battery-specific charging control module which is present in the electric vehicle makes decisions and sends signals regarding the size and timing of the charging current to the charging station.
  • the charging station is described in EP 0 820 653 B1 as universal in the sense that ei ⁇ ne variety of different electric vehicles should be connectable.
  • the invention has for its object to further develop the wireless charging of a battery, in particular vehicle battery, compared to the cited prior art and this to keep the equipment cost comparatively low in meeting high quality requirements.
  • the battery charging system is particularly suitable for charging the batteries of a motor vehicle with electric drive.
  • the batteries may be, for example, nickel-cadmium or lithium-ion batteries.
  • the battery charging system for charging a battery wirelessly includes
  • a primary-side charging unit also referred to as the primary side for short
  • a secondary-side charging unit also referred to for short as the secondary side
  • a transformer having a primary side winding as part of the primary side and a secondary side Wick ⁇ ment as part of the secondary side, wherein the charging battery is to be the secondary-side charging unit ⁇ close,
  • one voltage sensor each on the primary side and on the secondary side
  • one communication unit each on the primary side and on the secondary side
  • the invention is based on the consideration that during the charging of a battery the charging current has to be measured with sufficient accuracy and in real time in order to be able to maintain a given charging characteristic and to be able to react sufficiently quickly to possible faults. While these Anfor ⁇ alteration is relatively easy to meet in a non-split charger, provides for a split charger separation between primary and secondary side, a potential weak point in terms of the transmission of data. In order to transfer data between the primary and secondary side To ensure sufficient reliability, it is in principle possible to provide a serial communication channel with oversized channel capacity. In the case of a wireless data transmission, which is desired in inductive, split charging systems, however, such a reliable, deterministic communication channel is much more difficult to implement than with a wired data transmission.
  • the method for wirelessly charging a battery by means of the split battery charging system comprises the following features: electric power is transmitted by means of a transformer from a primary side of the battery charging system to a secondary side of the battery charging system,
  • the battery to be charged is connected to the secondary side of the battery charging system
  • the charging current of the battery is regulated by means of a primary-side power control.
  • the primary-side power control is based on current and voltage measurements made on the primary side of the battery charging system.
  • the current and the voltage sensor on the secondary side of the battery charging system are not used to make ei ⁇ ne current or voltage control during the charging process. Rather, the current and voltage sensors on the secondary side have functions as part of the calibration of the battery charging system.
  • the primary side of the battery charging system is subjected to an electrical power which, taking into account all tolerances, is safely below the permissible maximum load, also with regard to the secondary side. Damage to the Denden to la ⁇ battery through the calibration process is excluded.
  • the supplied for calibration power is preferably set while successively on different levels firmly ⁇ , for example, 10% and 90% of the maximum allowed power. Based on the known supplied power, the current and the voltage on the secondary side of the battery charging system are measured as part of the calibration and thus determines the efficiency of the transformer.
  • the control of the charging current of the battery does not take place with the aid of a direct, secondary-side measurement of the charging current, but only indirectly, namely by means of a power control on the primary side of the battery charging ⁇ system.
  • the current and voltage sensors used for this power control have in a preferred embodiment, a lower measurement accuracy than the used for calibration ⁇ th secondary current and voltage sensors. Since the primary-side current and voltage sensors are not involved in the calibration process, the lower accuracy of measurement is sufficient for these sensors.
  • the measurement accuracy is at least twice as large in the given during the operation of Batterieladesys ⁇ tems, including calibration and power control areas in the secondary-side current and voltage sensors, particularly preferably at least four times as large, for example at least ten times as large as in the primary-side current and voltage sensors ⁇ .
  • the calibration is performed cyclically, ie recurring in the course of charging the battery.
  • re-calibration steps are also referred to as post-calibration.
  • post-calibration Compared to the total duration of the charging process, all calibration operations in the
  • a significant disruption of the intended operation of the battery charging system could theoretically be caused, for example, by a metallic object in the air gap of the transformer.
  • the object would heat up, with the active power increasing on the primary side, while it tends to decrease on the secondary side.
  • An overload of the battery to be charged is therefore not by the introduction of metalli ⁇ 's object in the air gap of the transformer expected. Rather, the changed, deteriorated properties of the transformer should be compensated by the calibration and control.
  • the metallic object is removed again from the air gap of the transformer, it could very quickly lead to an overload of the battery due to the abruptly improved properties of the transformer ⁇ .
  • the secondary-side threshold value monitoring would take effect and protect the battery against overloading.
  • a control-technical function on the secondary side of the Batte ⁇ rieladesystems in normal operation is not given thereby.
  • the advantage of the invention is, in particular, that in a split battery charging system, a secondary-side DC-DC converter is omitted, as part of a primary-side power control with known characteristics of the
  • FIG 2 shows the scheme of the battery charger system of Figure 1 in egg ⁇ ner opposite 1 shows a simplified representation
  • FIG 3 is a block diagram showing the basic structure of a non-claimed, not split battery charging system
  • FIG 4 shows the control of the battery charging system of FIG 3 in egg ⁇ ner illustration analogous to FIG 2
  • 5 shows a block diagram of the basic structure of an unclaimed, split battery charging system
  • Figure 6 illustrates the control of battery charging system of FIG 5 in egg ⁇ ner illustration analogous to FIG 2,
  • FIG 7 a flow chart showing the operation of the battery charging ⁇ system of Figure 1
  • FIG. 8 shows the battery charging system according to FIG. 1 in comparison to FIG.
  • FIG. 3 shows the basic structure of a possible, non-split battery charger 1.
  • the Batte ⁇ rielade réelle designated overall by the reference numeral 1 is used to charge a battery 2 and includes a power supply 3, which supplies an AC voltage, a DC-DC converter 4 (DC-DC converter), a controller 5, a current sensor 6, and a voltage sensor. 7 Furthermore, a communication unit 8 is provided for the exchange of data, for example with a superordinate controller.
  • the entire battery charger 1 according to FIG 3 is designed as a construction ⁇ unit to which the battery to be charged 2 play as anschmony- at ⁇ with a cable or with an adapter bar.
  • FIG. 1 The regulation of the charging process, concerning the non-split battery 1 according to FIG. 1, is illustrated in FIG. There is only a single control loop, called main loop RH, given.
  • FIGS. 3 and 4 show a split-type battery charger which, due to its comfort plexeren, shared structure is referred to as battery charging system 1.
  • the battery charging system 1 is composed of a primary mär researchen charging unit 9, also briefly designated as the primary side ⁇ net, and a secondary charging unit 10, also referred to as secondary side.
  • the interface between the Pri ⁇ märseite 9 and the secondary side 10 is formed by a transformer 11 having a primary-side winding 12 and a secondary winding 13.
  • the split battery charging system 1 differs according to FIG 3 of the device according to FIG 1 also in that no current measurement is provided on the primary side 9. Da ⁇ against is located on the secondary side 10 both a
  • the secondary side 10 typically within a vehicle, an auxiliary power supply 16 is present. Furthermore, the secondary side 10 has a DC-DC converter 17, a controller 18, and a communication unit 19.
  • two control circuits a primary control loop RP on the primary side 9, and a secondary control circuit RS on the secondary side 10.
  • a primary control loop RP on the primary side 9 and a secondary control circuit RS on the secondary side 10.
  • NaEM ⁇ Lich Han it delt located in the primary control loop RP to aivesrege ⁇ ment and the secondary control circuit RS to a current control.
  • the two control circuits RP and RS are hierarchically separated from each other in the battery charging system 1 according to FIG.
  • the over the Communication units 8,17 ongoing communication is merely informative, warning or protection functions, as well as the data transmission in asynchronous events. Such events include, for example, the connection and disconnection, as well as an emergency shutdown of the battery charging system 1.
  • FIGS. 1 and 2 show, in contrast to FIGS. 3 to 6, a battery charging system 1 in which all features of the invention are realized.
  • the battery charging system 1 according to FIG. 1 is for charging a
  • the primary-side Ladeein ⁇ unit 9 is designed as a stationary device, while the secondary-side charging unit 10 is on board an electrically powered vehicle, such as scooter, motor ⁇ wheel, passenger car, bus, truck or land ⁇ economical vehicle.
  • an electrically powered vehicle such as scooter, motor ⁇ wheel, passenger car, bus, truck or land ⁇ economical vehicle.
  • the battery charging system 1 according to FIG. 1 also has a current sensor 6 on the primary side 9.
  • This current sensor 6 is used together with the likewise primary-side voltage sensor 7 for a power control by means of a outlined in Figure 2 primary-side power control loop RL.
  • This power control loop RL represents the only control loop within the battery charging system 1 and is used for the indirect control of the current flowing from the secondary side 10 to the battery 2 current.
  • neither a control circuit nor a DC-DC converter is present.
  • the fourth step V4 will hereinafter be tested to determine whether the, at least one is getting on the secondary side ⁇ ne measured value, namely, a current or voltage measurement value stably without flutter, are available. If this condition is met, in the fifth method step V5 the primary-side power is set to a second standard value which is several times higher than the power value selected in method step V3, but still has a sufficient safety distance to the maximum permissible power with which the secondary-side charging unit 10 is allowed to feed the battery 2, taking into account all given at this stage of the process tolerances guaranteed. As in method step V4, it is again checked in the subsequent method step V6 whether the obtained current and voltage measurement values are available in sufficient quality.
  • the method step V5 as well as previously necessary, the method step V3, as ⁇ repeats. Otherwise, in the next method step V7, the calibration of parameters to be used for the power control takes place. In particular, the gain (gain) and optionally an offset are determined. Thus, all the steps required for the initial calibration are completed and the power of the primary side 9 is set to a suitable normal value in method step V8.
  • step V9 During charging ⁇ sweeping or permanently is retrieved in process step V9 again whether the condition or loading conditions for completing the charging process. Once this is the case, the state of the primary-side charging unit 9 is again referred to the gegebe ⁇ nen in step VI state, also known as wait state is set.
  • the recalibration comprises in the method step VII summarized measuring operations, which include the steps to be performed in the method steps V3 to V6, in particular the check as to whether measured values are of sufficient quality.
  • the recalibration takes place in method step V12, which can lead to a changed parameter setting (method step V8).
  • the charging operation is continued with the updated parameter setting until the conditions for completing the charging of the battery 2 (step V9) are met.
  • FIG. 8 shows in more detail the battery charging system 1 according to FIG. 1, with which the charging method explained with reference to FIG. 7, including charging control and calibration, can be carried out.
  • the DC-DC converter 4 is designed as a resonant converter.
  • a fan control 24 is indicated on the primary side.
  • the primary-side Medu ⁇ nikationshim 8 is composed of a cation Netzkommuni- element 25, which has a function in a public areas ⁇ chen the power supply network, and an internal communication element 26 which is used for calibration and maintenance ⁇ purposes.
  • the secondary-side communica tion ⁇ unit 19 is composed of several components which do not necessarily physically separates ⁇ ge from each other need.
  • a vehicle communication element 27 built into the vehicle is present on the secondary side 10.
  • the supply of electrical energy from the secondary side 10 of the battery charging system 1 to the battery 2 is done, as shown in FIG 8, from the secondary side winding 13 via a rectifier 28 and a capacitor 29.
  • a DC-DC converter is, as in connection with FIG already ⁇ leads 1, on the secondary side 10 of the battery charging system 1 is not required because a conventional charging current control is replaced by the primary-side power regulation, always is maintained by the described calibration procedures, a precise control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Ein Batterieladesystem (1) zum kabellosen Laden einer Batterie (2) umfasst - eine primärseitige Ladeeinheit (9) als Primärseite, - eine sekundärseitige Ladeeinheit (10) als Sekundärseite, - einen Transformator (11), welcher eine primärseitige Wicklung (12) als Teil der Primärseite (9) und eine sekundärseitige Wicklung (13) als Teil der Sekundärseite (10) aufweist, - jeweils einen Controller (5,18) auf der Primärseite (9) und auf der Sekundärseite (10), jeweils einen Spannungssensor (7,15) auf der Primärseite (9) und auf der Sekundärseite (10), - jeweils einen Stromsensor (6,14) auf der Primärseite (9) und auf der Sekundärseite (10), - jeweils eine Kommunikationseinheit (8,19) auf der Primärseite (9) und auf der Sekundärseite (10), wobei ausschließlich auf der Primärseite (9) ein Gleichspannungswandler (4) vorgesehen ist.

Description

Beschreibung
Batterieladesystem und Verfahren zum kabellosen Laden einer Batterie
Die Erfindung betrifft ein Batterieladesystem sowie ein Verfahren zum kabellosen Laden einer Batterie, insbesondere einer Batterie eines Elektrofahrzeugs . Ein Batterieladegerät, wie es zum Laden von Traktionsbatte¬ rien verwendbar ist, ist üblicherweise als elektronisch gere¬ gelte Gleichspannungs- und -Stromquelle ausgebildet. Während des Ladevorgangs kann beispielsweise bis zu einer bestimmten Ladeschlussspannung ein geregelter Ladestrom mit abschließen- der Spannungsbegrenzung eingeprägt werden. Eine Ladekennlinie kann je nach Batterietyp einen variablen Ladestrom vorsehen.
Aus der DE 27 09 863 AI ist ein automatisches elektrisches Batterieladegerät bekannt, welches eine Einrichtung zum Über- wachen des Ladestroms und zu seiner Einstellung auf einen vorbestimmten Wert umfasst. Das Batterieladegerät umfasst weiter eine auf die Batteriespannung ansprechende Einrichtung, welche den genannten Wert entsprechend einer Funktion der Batteriespannung im Laufe des Ladevorgangs fortschreitend verringert.
Eine Ladevorrichtung für Kraftfahrzeuge ist beispielsweise aus der DE 10 2011 004 215 AI bekannt. Diese Ladevorrichtung weist einen Überlastschalter auf, welcher geöffnet wird, wenn über eine Mindestdauer eine Stromstärke oberhalb eines Strom¬ stärkengrenzwertes vorliegt. Ein Kraftfahrzeug mit einer zu ladenden Batterie ist mittels eines Ladekabels an die Lade¬ vorrichtung anschließbar. Aus der EP 0 820 653 Bl ist ein Traktionsbatterieladesystem mit induktiver Ankopplung bekannt. Hierbei wird Ladeenergie von einer Ladestation an ein Elektrofahrzeug als Wechselstrom im Bereich von 10 kHz bis zu 200 kHz übertragen und im Elekt- rofahrzeug gleichgerichtet. Das Traktionsbatterieladesystem soll insbesondere für Fahrzeuge geeignet sein, welche mit ei¬ nem Batterieenergie-Managementsystem (BEMS) ausgerüstet sind. Ein bordinternes batteriespezifisches Ladesteuermodul, das im Elektrofahrzeug vorhanden ist, trifft Entscheidungen und schickt Signale bezüglich der Größe und des Zeitpunkts des Ladestroms an die Ladestation. Die Ladestation wird in der EP 0 820 653 Bl als universell in dem Sinne bezeichnet, dass ei¬ ne Vielzahl verschiedener Elektrofahrzeuge anschließbar sein soll.
Der Erfindung liegt die Aufgabe zugrunde, das kabellose Laden einer Batterie, insbesondere Fahrzeugbatterie, gegenüber dem genannten Stand der Technik weiterzuentwickeln und hierbei den apparativen Aufwand bei Erfüllung hoher Qualitätsanforderungen vergleichsweise gering zu halten.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Batterie¬ ladesystem mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren zum kabellosen Laden einer Batterie mittels eines gesplitteten Batterieladesystems mit den Merkmalen des Anspruchs 5. Im Folgenden im Zusammenhang mit dem Batterieladesystems erläuterte Ausgestaltungen und Vorteile der Erfindung gelten sinngemäß auch für das Verfahren und umgekehrt. Das Batterieladesystem ist insbesondere für das Laden der Batterien eines Kraftfahrzeugs mit elektrischem Antrieb geeignet. Bei den Batterien kann es sich beispielsweise um Nickel- Cadmium- oder um Lithium-Ionen-Batterien handeln. Das Batterieladesystem zum kabellosen Laden einer Batterie umfasst
eine primärseitige Ladeeinheit, kurz auch als Primärseite bezeichnet,
eine sekundärseitige Ladeeinheit, kurz auch als Sekundär- seite bezeichnet,
einen Transformator, welcher eine primärseitige Wicklung als Teil der Primärseite und eine sekundärseitige Wick¬ lung als Teil der Sekundärseite aufweist, wobei die zu ladende Batterie an die sekundärseitige Ladeeinheit anzu¬ schließen ist,
jeweils einen Controller auf der Primärseite und auf der Sekundärseite,
jeweils einen Spannungssensor auf der Primärseite und auf der Sekundärseite,
jeweils einen Stromsensor auf der Primärseite und auf der Sekundärseite,
jeweils eine Kommunikationseinheit auf der Primärseite und auf der Sekundärseite,
wobei ausschließlich auf der Primärseite ein Gleichspannungs¬ wandler vorgesehen und dieser Gleichspannungswandler als Komponente einer primärseitigen Leistungsregelung ausgebildet ist, während die Sekundärseite keinen Gleichspannungswandler aufweist .
Die Erfindung geht von der Überlegung aus, dass während des Ladens einer Batterie der Ladestrom mit ausreichender Genauigkeit und in Echtzeit gemessen werden muss, um eine vorgege- bene Ladekennlinie einzuhalten und auf eventuelle Störungen ausreichend schnell reagieren zu können. Während diese Anfor¬ derung bei einem nicht gesplitteten Ladegerät relativ leicht zu erfüllen ist, stellt bei einem gesplitteten Ladegerät die Trennung zwischen Primär- und Sekundärseite eine potentielle Schwachstelle, was die Übertragung von Daten betrifft, dar. Um eine Datenübertragung zwischen Primär- und Sekundärseite mit ausreichender Zuverlässigkeit sicherzustellen, ist es prinzipiell möglich, einen seriellen Kommunikationskanal mit überdimensionierter Kanalkapazität bereitzustellen. Im Fall einer drahtlosen Datenübertragung, welche bei induktiven, gesplitteten Ladesystemen gewünscht ist, ist ein solcher zuverlässiger, deterministischer Kommunikationskanal jedoch deutlich schwieriger realisierbar als bei einer leitungsgebundenen Datenübertragung.
Die genannten prinzipbedingten Nachteile bezüglich der Datenübertragung bei einem gesplitteten Batterieladesystem werden gemäß der Erfindung dadurch umgangen, dass statt einer sekun- därseitigen Stromregelung eine primärseitige Leistungsrege¬ lung vorgesehen ist. Der Entfall eines bei herkömmlichen gesplitteten Ladesystemen erforderlichen sekundärseitigen DC- DC-Wandlers reduziert zudem die Komplexität auf der Sekundär- seite des Batterieladesystems.
Das Verfahren zum kabellosen Laden einer Batterie mittels des gesplitteten Batterieladesystems umfasst folgende Merkmale: - Elektrische Leistung wird mittels eines Transformators von einer Primärseite des Batterieladesystems zu einer Sekundärseite des Batterieladesystems übertragen,
an die Sekundärseite des Batterieladesystems wird die zu ladende Batterie angeschlossen,
- der Ladestrom der Batterie wird mittels einer primär- seitigen Leistungsregelung geregelt.
Die primärseitige Leistungsregelung basiert auf Strom- und Spannungsmessungen, welche auf der Primärseite des Batterie- ladesystems vorgenommen werden. Der Strom- und der Spannungssensor auf der Sekundärseite des Batterieladesystems werden dagegen nicht dazu verwendet, um während des Ladevorgangs ei¬ ne Strom- oder Spannungsregelung vorzunehmen. Vielmehr haben der Strom- und der Spannungssensor auf der Sekundärseite Funktionen im Rahmen der Kalibrierung des Batterieladesystems .
Zum Zweck der Kalibrierung wird hierbei zunächst die Primärseite des Batterieladesystems mit einer elektrischen Leistung beaufschlagt, welche unter Berücksichtigung aller Toleranzen sicher unterhalb der zulässigen Höchstbelastung, auch bezüglich der Sekundärseite, liegt. Eine Beschädigung der zu la¬ denden Batterie durch den Kalibriervorgang ist damit ausgeschlossen. Die für die Kalibrierung zugeführte Leistung wird dabei vorzugsweise nacheinander auf verschiedene Stufen fest¬ gesetzt, beispielsweise 10 % und 90 % der maximal zulässigen Leistung . Ausgehend von der bekannten zugeführten Leistung wird im Rahmen der Kalibrierung der Strom und die Spannung auf der Sekundärseite des Batterieladesystems gemessen und damit der Wirkungsgrad des Transformators bestimmt. Nach Abschluss der Kalibrierung erfolgt die Regelung des Ladestroms der Batterie nicht mit Hilfe einer direkten, sekundärseitigen Messung des Ladestroms, sondern ausschließlich indirekt, nämlich mittels einer Leistungsregelung auf der Primärseite des Batterielade¬ systems. Die für diese Leistungsregelung verwendeten Strom- und Spannungssensoren haben in bevorzugter Ausgestaltung eine geringere Messgenauigkeit als die zur Kalibrierung verwende¬ ten sekundärseitigen Strom- und Spannungssensoren. Da die primärseitigen Strom- und Spannungssensoren in den Vorgang der Kalibrierung nicht eingebunden sind, reicht bei diesen Sensoren die geringere Messgenauigkeit aus. Vorzugsweise ist die Messgenauigkeit in den beim Betrieb des Batterieladesys¬ tems, einschließlich Kalibrierung und Leistungsregelung, gegebenen Bereichen bei den sekundärseitigen Strom- und Spannungssensoren mindestens doppelt so groß, besonders bevorzugt mindestens vier mal so groß, beispielsweise mindestens zehn mal so groß, wie bei den primärseitigen Strom- und Spannungs¬ sensoren .
Unabhängig von den einzelnen Leistungsdaten der Vorrichtungen zur Strom-, Spannungs- und Leistungsbestimmung werden mit
Hilfe der beschriebenen Kalibrierung neben dem Wirkungsgrad des Transformators insbesondere mess- und verstärkungstech¬ nische Parameter wie Offset und Gain bestimmt. Gemäß einer vorteilhaften Weiterbildung wird die Kalibrierung zyklisch, d.h. im Laufe des Ladens der Batterie wiederkehrend, durchgeführt. Die auf die erstmalige Kalibrierung fol¬ genden, erneuten Schritte der Kalibrierung werden auch als Nach-Kalibrierung bezeichnet. Im Vergleich zur Gesamtdauer des Ladevorgangs nehmen sämtliche Kalibriervorgänge in der
Summe lediglich einen vergleichsweise kleinen Zeitraum, beispielsweise weniger als 2 % der Gesamtdauer, ein. Die zu ladende Batterie stellt für das Batterieladesystem ei¬ ne sich nur langsam und stetig ändernde Last dar. Ebenso ist unter normalen Betriebsbedingungen davon auszugehen, dass der Transformator sich höchstens langsam ändernde elektrische Ei- genschaften aufweist. Mit den zyklischen Nach-Kalibrierungen werden somit quasistationäre Messwerte von Strom und Spannung auf der Sekundärseite des Batterieladesystems ausgelesen. Trotz der im Vergleich zum gesamten Ladevorgang nahezu nur punktuell, auf der Zeitachse betrachtet, vorgenommenen Kalib- rierungen ist somit eine vorgegebene Ladekurve mit hoher Prä¬ zision einhaltbar. Von besonderem Vorteil gegenüber einer herkömmlichen, sekundärseitigen Ladestromregelung ist hierbei auch die Tatsache, dass keinerlei Totzeiten auftreten, die bei einer sekundärseitigen Messung und anschließenden Daten- Übertragung auf die Primärseite zwangsläufig gegeben wären.
Unabhängig von der laufenden Regelung des Ladevorgangs durch Leistungsregelung sind nach einer vorteilhaften Weiterbildung Überwachungs- und Schutzfunktionen im Batterieladesystem rea- lisiert, wobei hierfür insbesondere auf messtechnische Kompo¬ nenten auf der Sekundärseite zugegriffen werden kann. Insbesondere sind Strom- und Spannungswerte auf der Sekundärseite hinsichtlich der Überschreitung von Schwellwerten überwachbar, wobei Informationen über Schwellwertüberschreitungen au- tomatisch, in der Regel drahtlos, an die Primärseite übertra¬ gen werden. Je nach Art einer mittels einer Schwellwertüberwachung festgestellten Abweichung vom bestimmungsgemäßen Betrieb kann auch ein automatischer Abbruch des Ladevorgangs vorgesehen sein.
Eine erhebliche Störung des bestimmungsgemäßen Betriebs des Batterieladesystems könnte theoretisch beispielsweise durch einen metallischen Gegenstand im Luftspalt des Transformators hervorgerufen sein. Der Gegenstand würde sich hierbei erwär- men, wobei die Wirkleistung primärseitig zunimmt, während sie sekundärseitig tendenziell abnimmt. Eine Überlastung der zu ladenden Batterie ist also durch die Einbringung des metalli¬ schen Gegenstands in den Luftspalt des Transformators nicht zu erwarten. Vielmehr dürften die geänderten, verschlechterten Eigenschaften des Transformators durch die Kalibrierung und Regelung kompensiert werden. Wird jedoch der metallische Gegenstand wieder aus dem Luftspalt des Transformators ent- fernt, so könnte es sehr kurzfristig zu einer Überlastung der Batterie aufgrund der schlagartig wieder verbesserten Eigen¬ schaften des Transformators kommen. In einem solchen, hypothetischen Fall würde die sekundärseitige Schwellwertüberwa¬ chung greifen und die Batterie vor Überlastung schützen. Eine regelungstechnische Funktion auf der Sekundärseite des Batte¬ rieladesystems im bestimmungsgemäßen Betrieb ist hierdurch jedoch nicht gegeben.
Der Vorteil der Erfindung liegt insbesondere darin, dass bei einem gesplitteten Batterieladesystem ein sekundärseitiger DC-DC-Wandler entfällt, da im Rahmen einer primärseitigen Leistungsregelung bei bekannten Eigenschaften des die
Schnittstelle zwischen Primärseite und Sekundärseite bilden¬ den Transformators ein Ladestromersatzwert zur ausreichend präzisen Ladestromregelung nutzbar ist, wobei aufgrund der Konzentration der regelungstechnischen Komponenten auf der Primärseite des Batterieladesystems ein besonders robuster Ablauf des Ladevorgangs gegeben ist. Nachfolgend werden ein Ausführungsbeispiel der Erfindung so¬ wie zur Erläuterung nicht beanspruchte Ausführungsform eines Batterieladesystems anhand einer Zeichnung näher erläutert. Hierin zeigen: FIG 1 in einem Blockdiagramm den groben Aufbau eines Batterieladesystems gemäß der Erfindung,
FIG 2 die Regelung des Batterieladesystems nach FIG 1 in ei¬ ner gegenüber FIG 1 vereinfachten Darstellung, FIG 3 in einem Blockdiagramm den prinzipiellen Aufbau eines nicht beanspruchten, nicht gesplitteten Batterieladesystems ,
FIG 4 die Regelung des Batterieladesystems nach FIG 3 in ei¬ ner Darstellung analog FIG 2, FIG 5 in einem Blockdiagramm den prinzipiellen Aufbau eines nicht beanspruchten, gesplitteten Batterieladesystems,
FIG 6 die Regelung des Batterieladesystems nach FIG 5 in ei¬ ner Darstellung analog FIG 2,
FIG 7 in einem Flussdiagramm den Betrieb des Batterielade¬ systems nach FIG 1,
FIG 8 das Batterieladesystem nach FIG 1 in im Vergleich zu
FIG 1 detaillierterer Darstellung. Einander prinzipiell entsprechende oder gleichwirkende Kompo¬ nenten sind in allen Figuren mit den gleichen Bezugszeichen gekennzeichnet .
Zur Erläuterung von Vorüberlegungen wird zunächst auf FIG 3 verwiesen, welche den grundsätzlichen Aufbau eines möglichen, nicht gesplitteten Batterieladegerätes 1 zeigt.
Das insgesamt mit dem Bezugszeichen 1 gekennzeichnete Batte¬ rieladegerät dient der Aufladung einer Batterie 2 und umfasst eine Spannungsversorgung 3, welche eine Wechselspannung liefert, einen Gleichspannungswandler 4 (DC-DC-Wandler) , einen Controller 5, einen Stromsensor 6, sowie einen Spannungssensor 7. Weiter ist eine Kommunikationseinheit 8 zum Austausch von Daten, etwa mit einem übergeordneten Controller, vorgese- hen.
Das gesamte Batterieladegerät 1 gemäß FIG 3 ist als eine Bau¬ einheit ausgeführt, an welche die zu ladende Batterie 2 bei¬ spielsweise mit einem Kabel oder mit einem Adapter anschließ- bar ist.
Die Regelung des Ladevorgangs, betreffend die nicht gesplit- tete Batterie 1 nach FIG 1, ist in FIG 2 veranschaulicht. Es ist lediglich ein einziger Regelkreis, als Hauptregelkreis RH bezeichnet, gegeben.
Die FIG 3 und 4 zeigen im Unterschied zu den FIG 1 und 2 ein gesplittetes Batterieladegerät, welches aufgrund seines kom- plexeren, geteilten Aufbaus als Batterieladesystem 1 bezeichnet wird.
Das Batterieladesystem 1 setzt sich zusammen aus einer pri- märseitigen Ladeeinheit 9, kurz auch als Primärseite bezeich¬ net, und einer sekundärseitigen Ladeeinheit 10, kurz auch als Sekundärseite bezeichnet. Die Schnittstelle zwischen der Pri¬ märseite 9 und der Sekundärseite 10 ist gebildet durch einen Transformator 11 mit einer primärseitigen Wicklung 12 und ei- ner sekundärseitigen Wicklung 13. Abgesehen vom Transformator 11 unterscheidet sich das gesplittete Batterieladesystem 1 nach FIG 3 von der Vorrichtung nach FIG 1 auch dadurch, dass auf der Primärseite 9 keine Strommessung vorgesehen ist. Da¬ gegen befindet sich auf der Sekundärseite 10 sowohl ein
Stromsensor 14 als auch ein Spannungssensor 15. Weiter ist auf der Sekundärseite 10, typischerweise innerhalb eines Fahrzeugs, eine Hilfsspannungsversorgung 16 vorhanden. Ferner weist die Sekundärseite 10 einen Gleichspannungswandler 17, einen Controller 18, sowie eine Kommunikationseinheit 19 auf.
Wie aus FIG 4 hervorgeht, sind im Fall des gesplitteten Bat¬ terieladesystems 1 nach FIG 3 zwei Regelkreise gebildet, näm¬ lich ein Primärregelkreis RP auf der Primärseite 9 und ein Sekundärregelkreis RS auf der Sekundärseite 10. Hierbei han- delt es sich beim Primärregelkreis RP um eine Spannungsrege¬ lung und beim Sekundärregelkreis RS um eine Stromregelung. Die eigentliche Regelung des Ladestroms der Batterie 2 er¬ folgt somit durch den sekundärseitigen DC-DC-Wandler 17. Nicht in die beiden Regelkreise eingebunden ist ein Informa- tionsfluss, welcher über die beiden Kommunikationseinheiten 8,17 von der Sekundärseite 10 zur Primärseite 9 fließt. Ähn¬ lich wie im Beispiel nach FIG 1 können auch beim Batteriela¬ desystem 1 nach FIG 3 die Kommunikationseinheiten 8,17 mit einem übergeordneten Controller Daten austauschen.
Die beiden Regelkreise RP und RS sind beim Batterieladesystem 1 nach FIG 3 hierarchisch voneinander getrennt. Die über die Kommunikationseinheiten 8,17 laufende Kommunikation dient lediglich informativen, Warn- oder Schutzfunktionen, sowie der Datenübermittlung bei asynchronen Ereignissen. Unter solche Ereignisse fallen beispielsweise die An- und Abschaltung, so- wie eine Notabschaltung des Batterieladesystems 1.
Die FIG 1 und FIG 2 zeigen im Gegensatz zu den FIG 3 bis 6 ein Batterieladesystem 1, in welchem alle Merkmale der Erfindung verwirklicht sind.
Das Batterieladesystem 1 nach FIG 1 ist zum Laden eines
Elektrofahrzeugs vorgesehen, wobei die primärseitige Ladeein¬ heit 9 als stationäres Gerät ausgebildet ist, während sich die sekundärseitige Ladeeinheit 10 an Bord eines elektrisch angetriebenen Fahrzeugs, beispielsweise Motorrollers, Motor¬ rads, Personenkraftwagens, Busses, Lastkraftwagens oder land¬ wirtschaftlichen Fahrzeugs befindet.
Im Unterschied zur primärseitigen Ladeeinheit 9 der Vorrich- tung nach FIG 3 weist das Batterieladesystem 1 nach FIG 1 auch auf der Primärseite 9 einen Stromsensor 6 auf. Dieser Stromsensor 6 wird zusammen mit dem ebenfalls primärseitigen Spannungssensor 7 für eine Leistungsregelung mittels eines in FIG 2 skizzierten primärseitigen Leistungsregelkreises RL verwendet. Dieser Leistungsregelkreis RL stellt den einzigen Regelkreis innerhalb des Batterieladesystem 1 dar und dient der indirekten Regelung des von der Sekundärseite 10 aus zur Batterie 2 fließenden Stroms. Auf der Sekundärseite 10 des Batterieladesystems 1 nach FIG 1 ist weder ein Regelkreis noch ein DC-DC-Wandler vorhanden. Zur Kalibrierung von Parametern des Leistungsregelkreises RL werden mit Hilfe eines sekundärseitigen Stromsensors 14 und eines sekundärseitigen Spannungssensors 15 Strom- und Span- nungswerte gemessen und in einem Kalibrierprozess verwertet, welcher in FIG 7 in einem Flussdiagramm visualisiert ist: Der Beginn des Verfahrens, bei welchem eine Initialisierung der primärseitigen Ladeeinheit 9 vorgesehen ist, wird als erster Verfahrensschritt VI bezeichnet. Im nächsten Verfah¬ rensschritt V2 erfolgt eine automatische Abfrage, ob die se- kundärseitige, d.h. fahrzeugseitige, Ladeeinheit 10 erkennbar ist. Ist dies der Fall, so wird im dritten Verfahrensschritt V3 eine Leistung der Primärseite 9 auf einen ersten, niedrigen Standardwert von beispielsweise 10 % der Maximalleistung festgesetzt .
Daraufhin wird im folgenden, vierten Verfahrensschritt V4 getestet, ob der mindestens eine auf der Sekundärseite erhalte¬ ne Messwert, nämlich Strom- oder Spannungsmesswert, stabil, ohne Flattern, zur Verfügung steht. Sofern diese Bedingung erfüllt ist, wird im fünften Verfahrensschritt V5 die primär- seitige Leistung auf einen zweiten Standardwert gesetzt, der um ein Mehrfaches höher als der im Verfahrensschritt V3 ge¬ wählte Leistungswert ist, jedoch noch einen ausreichenden Sicherheitsabstand zur maximal zulässigen Leistung, mit welcher die sekundärseitige Ladeeinheit 10 die Batterie 2 speisen darf, unter Berücksichtigung aller in diesem Stadium des Verfahrens gegebenen Toleranzen gewährleistet. Ebenso wie im Verfahrensschritt V4 wird im anschließenden Verfahrensschritt V6 wiederum geprüft, ob die erhaltenen Strom- und Spannungs- messwerte in ausreichender Qualität zur Verfügung stehen. Ist dies nicht der Fall, so wird der Verfahrensschritt V5, ebenso wie zuvor erforderlichenfalls der Verfahrensschritt V3, wie¬ derholt. Ansonsten erfolgt im nächsten Verfahrensschritt V7 die Kalibrierung von Parametern, welche für die Leistungsre- gelung zu verwenden sind. Insbesondere werden der Verstärkungsgrad (gain) sowie gegebenenfalls ein Offset bestimmt. Damit sind alle zur erstmaligen Kalibrierung erforderlichen Schritte abgeschlossen und die Leistung der Primärseite 9 wird im Verfahrensschritt V8 auf einen geeigneten Normalwert gesetzt.
Während des Ladevorgangs wird im Verfahrensschritt V9 wieder¬ kehrend oder permanent abgefragt, ob die Bedingung oder Be- dingungen für den Abschluss des Ladevorgangs erfüllt sind. Sobald dies der Fall ist, wird der Zustand der primärseitigen Ladeeinheit 9 wieder auf den im Verfahrensschritt VI gegebe¬ nen Zustand, auch als Wartestatus bezeichnet, gesetzt.
Solange der Ladevorgang noch nicht abgeschlossen ist, erfolgt im Verfahrensschritt VIO eine wiederkehrende Abfrage, ob eine erneute Kalibrierung erforderlich ist. Im einfachsten Fall hat eine Kalibrierung jeweils nach Ablauf einer bestimmten Zeitspanne erneut zu erfolgen. Die erneute Kalibrierung um- fasst im Verfahrensschritt Vll zusammengefasste Messvorgänge, welche die in den Verfahrensschritten V3 bis V6 durchzuführenden Schritte, insbesondere die Prüfung, ob Messwerte in ausreichender Qualität vorliegen, einschließen. Nach Beendi- gung des Verfahrensschrittes Vll erfolgt im Verfahrensschritt V12 die Rekalibrierung, welche zu einer geänderten Parameterfestsetzung (Verfahrensschritt V8) führen kann. Anschließend wird der Ladevorgang mit der aktualisierten Parametersetzung fortgeführt bis die Bedingungen zum Abschluss des Ladens der Batterie 2 (Verfahrensschritt V9) erfüllt sind.
Das Blockdiagramm nach FIG 8 zeigt in detaillierterer Weise das Batterieladesystem 1 nach FIG 1, mit welchem das anhand FIG 7 erläuterte Ladeverfahren einschließlich Laderegelung und Kalibrierung durchführbar ist.
Zusätzlich zu den in FIG 1 dargestellten primärseitigen Komponenten des Batterieladesystems 1 sind in FIG 8 ein Gleich¬ richter 20, ein Leistungsfaktorkorrekturfilter 21 (PFC = Po- wer Factor Correction) , ein Zwischenkreis 22 (DC-Link) und ein Verstärker 23 erkennbar. Der DC-DC-Wandler 4 ist als Resonanzwandler ausgeführt. Weiter ist in FIG 8 primärseitig eine Lüftersteuerung 24 angedeutet. Die primärseitige Kommu¬ nikationseinheit 8 setzt sich zusammen aus einem Netzkommuni- kationselement 25, welches eine Funktion in einem öffentli¬ chen Energieversorgungsnetz hat, und einem internen Kommunikationselement 26, welches für Kalibrierungs- und Wartungs¬ zwecke verwendbar ist. In ähnlicher Weise ist auch die sekundärseitige Kommunika¬ tionseinheit 19 aus mehreren Komponenten zusammengesetzt, welche nicht notwendigerweise physikalisch voneinander ge¬ trennt sein müssen. Neben einem internen Kommunikationselement 26 ist auf der Sekundärseite 10 ein in das Fahrzeug ein¬ gebautes Fahrzeugkommunikationselement 27 vorhanden.
Die Zuführung von elektrischer Energie von der Sekundärseite 10 des Batterieladesystems 1 zur Batterie 2 geschieht, wie in FIG 8 dargestellt, von der sekundärseitigen Wicklung 13 aus über einen Gleichrichter 28 und eine Kapazität 29. Ein DC-DC- Wandler ist, wie im Zusammenhang mit FIG 1 bereits ausge¬ führt, auf der Sekundärseite 10 des Batterieladesystems 1 nicht erforderlich, da eine herkömmliche Ladestromregelung durch die primärseitige Leistungsregelung ersetzt ist, wobei durch die beschriebenen Kalibriervorgänge stets eine präzise Regelung gewahrt bleibt.

Claims

Patentansprüche
1. Batterieladesystem (1) zum kabellosen Laden einer Batterie (2 ) , mit
- einer primärseitigen Ladeeinheit (9) als Primärseite,
- einer sekundärseitigen Ladeeinheit (10) als Sekundärseite,
- einem Transformator (11), welcher eine primärseitige Wick¬ lung (12) als Teil der Primärseite (9) und eine sekundär- seitige Wicklung (13) als Teil der Sekundärseite (10) auf- weist,
- jeweils einem Controller (5,18) auf der Primärseite (9) und auf der Sekundärseite (10),
- jeweils einem Spannungssensor (7,15) auf der Primärseite (9) und auf der Sekundärseite (10),
- jeweils einem Stromsensor (6,14) auf der Primärseite (9) und auf der Sekundärseite (10),
- jeweils einer Kommunikationseinheit (8,19) auf der Primär¬ seite (9) und auf der Sekundärseite (10),
wobei ausschließlich auf der Primärseite (9) ein Gleichspan- nungswandler (4) vorgesehen ist.
2. Batterieladesystem nach Anspruch 1,
dadurch gekennzeichnet, dass der sekundärseitige Spannungs¬ sensor (15) eine höhere Messgenauigkeit als der primärseitige Spannungssensor (7) aufweist.
3. Batterieladesystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der sekundärseitige Stromsensor (14) eine höhere Messgenauigkeit als der primärseitige Strom- sensor (6) aufweist.
4. Verwendung eines Batterieladesystems (1) nach Anspruch 1 zum Laden eines Elektrofahrzeugs .
5. Verfahren zum kabellosen Laden einer Batterie (2) mittels eines gesplitteten Batterieladesystems (1), mit folgenden Merkmalen : - Elektrische Leistung wird mittels eines Transformators (11) von einer Primärseite (9) des Batterieladesystems (1) zu einer Sekundärseite (10) des Batterieladesystems (1) übertragen,
- an die Sekundärseite (10) des Batterieladesystems (1) wird die zu ladende Batterie (2) angeschlossen,
- der Ladestrom der Batterie (2) wird mittels einer primär- seitigen Leistungsregelung (RL) geregelt.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass eine Strom- und Spannungsmessung sowohl auf der Primärseite (9) als auch auf der Sekundärseite (10) des Batterieladesystems (1) erfolgt.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass die Strom- und Spannungsmessung auf der Sekundärseite (10) zu Kalibrierzwecken erfolgt.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dass außerhalb der Kalibrierung eine permanente Ladestromkontrolle ausschließlich über die primär- seitige Leistungsregelung (RL) erfolgt.
9. Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass die Kalibrierung im Laufe des Ladens der Batterie (2) wiederkehrend erfolgt.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass durch die wiederkehrende Kalib- rierung Wirkungsgradänderungen des Transformators (11) er- fasst und durch die Anpassung von Parametern der primärseiti- gen Leistungsregelung (RL) kompensiert werden.
11. Verfahren nach einem der Ansprüche 5 bis 11,
dadurch gekennzeichnet, dass Strom- und Spannungswerte auf der Sekundärseite (10) hinsichtlich der Überschreitung von Schwellwerten überwacht werden, wobei Informationen über Schwellwertüberschreitungen automatisch an die Primärseite (9) übertragen werden.
PCT/EP2012/066988 2012-08-31 2012-08-31 Batterieladesystem und verfahren zum kabellosen laden einer batterie WO2014032728A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/425,099 US10173539B2 (en) 2012-08-31 2012-08-31 Battery charging system and method for cableless charging of a battery with voltage and current sensors on both the primary and secondary sides and a DC-DC converter on the primary side involved in an efficiency calibration power loop
CN201280075405.0A CN104584372B (zh) 2012-08-31 2012-08-31 用于给蓄电池无线充电的蓄电池充电系统和方法
PCT/EP2012/066988 WO2014032728A1 (de) 2012-08-31 2012-08-31 Batterieladesystem und verfahren zum kabellosen laden einer batterie
DE112012006861.0T DE112012006861B4 (de) 2012-08-31 2012-08-31 Batterieladesystem und Verfahren zum kabellosen Laden einer Batterie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/066988 WO2014032728A1 (de) 2012-08-31 2012-08-31 Batterieladesystem und verfahren zum kabellosen laden einer batterie

Publications (1)

Publication Number Publication Date
WO2014032728A1 true WO2014032728A1 (de) 2014-03-06

Family

ID=46889011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/066988 WO2014032728A1 (de) 2012-08-31 2012-08-31 Batterieladesystem und verfahren zum kabellosen laden einer batterie

Country Status (4)

Country Link
US (1) US10173539B2 (de)
CN (1) CN104584372B (de)
DE (1) DE112012006861B4 (de)
WO (1) WO2014032728A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050403A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Batteriemanagementsystem und verfahren zur kalibrierung eines sensors eines batteriemanagementsystems
WO2021213969A1 (de) * 2020-04-23 2021-10-28 Robert Bosch Gmbh Batterie-ladesystem sowie batterieeinrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885324B (zh) * 2012-11-05 2019-05-28 苹果公司 感应耦合电力传输系统
GB2538272A (en) * 2015-05-13 2016-11-16 Bombardier Transp Gmbh Arrangement and method for transferring energy to a vehicle by generating a magnetic field
DE102016109074A1 (de) 2016-05-18 2017-11-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Anordnung zum Laden einer Fahrzeugbatterie

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709863A1 (de) 1976-03-09 1977-09-15 Chloride Group Ltd Automatisches elektrisches batterieladegeraet
EP0820653B1 (de) 1995-04-10 1999-06-02 Norvik Traction Inc. Traktionsbatterieladesystem mit induktiver ankopplung
US20070228833A1 (en) * 2004-05-11 2007-10-04 Stevens Michael C Controlling Inductive Power Transfer Systems
US20080079392A1 (en) * 2006-09-29 2008-04-03 Access Business Group International Llc System and method for inductively charging a battery
WO2011097608A2 (en) * 2010-02-08 2011-08-11 Access Business Group International Llc Input parasitic metal detection
DE102011004215A1 (de) 2011-02-16 2012-08-16 Siemens Aktiengesellschaft Ladevorrichtung für Kraftfahrzeuge sowie Verfahren zum Laden eines Speichers für elektrische Ladung in einem Kraftfahrzeug

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023677A (ja) * 1996-07-03 1998-01-23 Uniden Corp 無接点充電装置、充電器、コードレス機器および無接点充電器
JP3661904B2 (ja) * 1997-02-03 2005-06-22 ソニー株式会社 充電装置及び充電方法
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
EP1020973A3 (de) * 1999-01-18 2001-05-02 Hitachi, Ltd. Ladungs- und Entladungssystem für eine elektrische Energiespeicheranlage
US6586909B1 (en) * 2001-12-21 2003-07-01 Ron Trepka Parallel battery charging device
US7378818B2 (en) * 2002-11-25 2008-05-27 Tiax Llc Bidirectional power converter for balancing state of charge among series connected electrical energy storage units
JP2004184135A (ja) * 2002-11-29 2004-07-02 Sanyo Electric Co Ltd 電池の残容量演算システム
US7626365B2 (en) * 2003-11-26 2009-12-01 Motorola Inc. Charging system and method
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US7683586B2 (en) * 2006-07-14 2010-03-23 Davison William C Method and system of fault powered supply voltage regulation
JP2008211951A (ja) * 2007-02-28 2008-09-11 Brother Ind Ltd 非接触型充電器と非接触型充電装置
US20090001941A1 (en) * 2007-06-29 2009-01-01 Microsoft Corporation Inductive Powering Surface for Powering Portable Devices
KR100819753B1 (ko) * 2007-07-13 2008-04-08 주식회사 한림포스텍 배터리팩 솔루션을 위한 무접점충전시스템 및 그 제어방법
US8729734B2 (en) * 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
AU2008339681A1 (en) * 2007-12-21 2009-07-02 Access Business Group International Llc Inductive power transfer
EP2232669B1 (de) * 2008-01-07 2019-12-04 Philips IP Ventures B.V. Induktive stromversorgung mit taktzyklussteuerung
US8120311B2 (en) * 2008-02-22 2012-02-21 Access Business Group International Llc Inductive power supply system with battery type detection
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
JP5188211B2 (ja) * 2008-03-07 2013-04-24 キヤノン株式会社 給電装置及び給電方法
CA2718901C (en) * 2008-03-17 2018-10-16 Powermat Ltd. Inductive transmission system
US20090284369A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
US8581542B2 (en) * 2008-09-08 2013-11-12 Qualcomm Incorporated Receive antenna arrangement for wireless power
JP5297730B2 (ja) * 2008-09-09 2013-09-25 矢崎総業株式会社 電圧検出装置
WO2010035545A1 (ja) * 2008-09-26 2010-04-01 株式会社村田製作所 無接点充電システム
US8963488B2 (en) * 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
WO2010040015A2 (en) * 2008-10-03 2010-04-08 Access Business Group International Llc Power system
EP2331363A1 (de) * 2008-10-07 2011-06-15 Boston-Power, Inc. Li-ionen-batterieanordnung für fahrzeug- und andere anwendungen mit hoher kapazität
US8069100B2 (en) * 2009-01-06 2011-11-29 Access Business Group International Llc Metered delivery of wireless power
US8497658B2 (en) * 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9130394B2 (en) * 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
US8854224B2 (en) * 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US20100201311A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US20100201312A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US8796999B2 (en) * 2009-02-12 2014-08-05 Qualcomm Incorporated Wireless power transfer for low power devices
US8963486B2 (en) * 2009-02-13 2015-02-24 Qualcomm Incorporated Wireless power from renewable energy
US9407327B2 (en) * 2009-02-13 2016-08-02 Qualcomm Incorporated Wireless power for chargeable and charging devices
JP4576465B2 (ja) * 2009-03-06 2010-11-10 三菱重工業株式会社 架線レス交通車両の充電方法及び充電システム
US8452235B2 (en) * 2009-03-28 2013-05-28 Qualcomm, Incorporated Tracking receiver devices with wireless power systems, apparatuses, and methods
US8970180B2 (en) * 2009-04-07 2015-03-03 Qualcomm Incorporated Wireless power transmission scheduling
US9013141B2 (en) * 2009-04-28 2015-04-21 Qualcomm Incorporated Parasitic devices for wireless power transfer
US8853995B2 (en) * 2009-06-12 2014-10-07 Qualcomm Incorporated Devices for conveying wireless power and methods of operation thereof
JP4807443B2 (ja) * 2009-07-08 2011-11-02 トヨタ自動車株式会社 二次電池の温度推定装置
US8922329B2 (en) * 2009-07-23 2014-12-30 Qualcomm Incorporated Battery charging to extend battery life and improve efficiency
NZ597748A (en) * 2009-07-24 2013-12-20 Access Business Group Int Llc A wireless power supply
US9312728B2 (en) * 2009-08-24 2016-04-12 Access Business Group International Llc Physical and virtual identification in a wireless power network
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
US8547057B2 (en) * 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer
TWI502842B (zh) * 2009-11-19 2015-10-01 Access Business Group Int Llc 多用途無線電力系統及其無線電力供應器與遠端裝置
JP5918146B2 (ja) * 2010-01-25 2016-05-18 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力リンク上のデータ通信を検出するシステム及び方法
CN102754303A (zh) * 2010-02-25 2012-10-24 三洋电机株式会社 蓄电池控制装置、蓄电池系统、电动车辆、充电控制装置、充电器、移动体、电源系统、电力贮存装置及电源装置
TWM384453U (en) * 2010-03-02 2010-07-11 Winharbor Technology Co Ltd Pull-resistant illuminating/heat generating structure capable of being charged in wireless manner
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US8934857B2 (en) * 2010-05-14 2015-01-13 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
JP2012016125A (ja) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd 非接触給電システム及び非接触給電システムの金属異物検出装置
KR101922034B1 (ko) * 2010-10-15 2018-11-26 페어차일드 세미컨덕터 코포레이션 과전압 보호를 가진 전력 관리
US20120104997A1 (en) * 2010-11-01 2012-05-03 Qualcomm Incorporated Wireless charging device
TW201236301A (en) * 2010-12-08 2012-09-01 Access Business Group Int Llc System and method for providing communications in a wireless power supply
US9075587B2 (en) * 2012-07-03 2015-07-07 Fu Da Tong Technology Co., Ltd. Induction type power supply system with synchronous rectification control for data transmission
DE102011003516A1 (de) * 2011-02-02 2012-08-02 Osram Ag Energiebox mit induktivem Ladegerät sowie Verfahren zum Laden einer Energiebox
JP6001563B2 (ja) * 2011-02-07 2016-10-05 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力伝送システムで通信を提供するシステム及び方法
KR101896921B1 (ko) * 2011-05-17 2018-09-12 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
WO2013031025A1 (ja) * 2011-09-02 2013-03-07 富士通株式会社 電力中継器
EP2771754B1 (de) * 2011-10-25 2019-08-07 Cameron, D. Kevin Leistungsregelungsschaltung zur maximierung der stromabgabe durch einen nichtlinearen generator
JP6019581B2 (ja) * 2011-12-26 2016-11-02 ソニー株式会社 検知装置、検知システム、送電装置、非接触電力伝送システム及び検知方法
JP2013135599A (ja) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd 無接点充電方法
JP2013158589A (ja) * 2012-02-08 2013-08-19 Toshiba Corp 医用画像診断装置
JP2013183496A (ja) * 2012-02-29 2013-09-12 Equos Research Co Ltd 電力伝送システム
US8942624B2 (en) * 2012-03-30 2015-01-27 Integrated Device Technology, Inc. Apparatus, system, and method for back-channel communication in an inductive wireless power transfer system
JP5872374B2 (ja) * 2012-04-25 2016-03-01 三洋電機株式会社 無接点給電方法
DE112012005944T5 (de) * 2012-04-27 2014-12-18 Mitsubishi Electric Corporation DC/DC-Wandler, Onboard-Einheit und Ladevorrichtung
US9325187B2 (en) * 2012-05-21 2016-04-26 Lg Electronics Inc. Structure of transmission and reception unit in wireless charging system
EP2685601B1 (de) * 2012-07-09 2017-03-08 LG Electronics Inc. Drahtloses Energieübertragungsverfahren, Vorrichtung und System
TW201405995A (zh) * 2012-07-24 2014-02-01 Powerwow Technology Inc 感應輸電設備及非接觸式感應輸電系統
EP2909912B1 (de) * 2012-10-19 2022-08-10 WiTricity Corporation Fremdkörpererkennung in drahtlosen energieübertragungssystemen
CN105453380B (zh) * 2013-06-21 2018-09-21 通用汽车环球科技运作有限责任公司 用于电网到车辆的电池充电的装置和方法
JP2015154606A (ja) * 2014-02-14 2015-08-24 株式会社リコー 蓄電状態調整回路、蓄電状態調整システム、及び電池パック
US9829599B2 (en) * 2015-03-23 2017-11-28 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709863A1 (de) 1976-03-09 1977-09-15 Chloride Group Ltd Automatisches elektrisches batterieladegeraet
EP0820653B1 (de) 1995-04-10 1999-06-02 Norvik Traction Inc. Traktionsbatterieladesystem mit induktiver ankopplung
US20070228833A1 (en) * 2004-05-11 2007-10-04 Stevens Michael C Controlling Inductive Power Transfer Systems
US20080079392A1 (en) * 2006-09-29 2008-04-03 Access Business Group International Llc System and method for inductively charging a battery
WO2011097608A2 (en) * 2010-02-08 2011-08-11 Access Business Group International Llc Input parasitic metal detection
DE102011004215A1 (de) 2011-02-16 2012-08-16 Siemens Aktiengesellschaft Ladevorrichtung für Kraftfahrzeuge sowie Verfahren zum Laden eines Speichers für elektrische Ladung in einem Kraftfahrzeug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050403A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Batteriemanagementsystem und verfahren zur kalibrierung eines sensors eines batteriemanagementsystems
CN106716168A (zh) * 2014-10-02 2017-05-24 罗伯特·博世有限公司 电池组管理系统和用于校准电池组管理系统的传感器的方法
WO2021213969A1 (de) * 2020-04-23 2021-10-28 Robert Bosch Gmbh Batterie-ladesystem sowie batterieeinrichtung

Also Published As

Publication number Publication date
CN104584372A (zh) 2015-04-29
US20150291042A1 (en) 2015-10-15
DE112012006861A5 (de) 2015-05-21
DE112012006861B4 (de) 2024-01-11
CN104584372B (zh) 2017-07-04
US10173539B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
DE102013203253B4 (de) Verfahren zum Aufladen eines Steckdosen-Elektrofahrzeugs
DE102016122115B3 (de) Schaltzustand eines mechanischen schalters
WO2015139927A1 (de) Verfahren zur erkennung von anomalien in einer batteriezelle und kurzschlusssensorik
EP2819265B1 (de) Verfahren zum Betreiben einer Ladestation
DE102015116453A1 (de) Vorrichtung und Verfahren zum Steuern eines Ladestroms
DE112017005816T5 (de) Fahrzeugbatterieüberwachungsvorrichtung und fahrzeugbatterieüberwachungssystem
WO2017182146A1 (de) Ladesystem und verfahren zum betreiben eines ladesystems
DE102017009355A1 (de) Verfahren zum Betreiben von elektrischen Bordnetzen
EP2750922B1 (de) Verfahren und vorrichtung zum laden eines energiespeichers eines fahrzeugs
EP3708416A1 (de) Verfahren und ladeeinrichtung zur bestimmung einer maximalen speicherkapazität eines energiespeichers
WO2014032728A1 (de) Batterieladesystem und verfahren zum kabellosen laden einer batterie
DE102016220860A1 (de) Verfahren, Vorrichtung und System zur Bewertung einer Traktionsbatterie
DE102014216289A1 (de) Verfahren zur Messung des Ladezustands eines Flow-Batterie-Stacks und Batteriemanagementsystem
DE102014216020A1 (de) Überwachung einer Stromzuführung beim Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102019202201A1 (de) Verfahren und Vorrichtung zum Steuern einer Energieübertragung zwischen einer Ladestation eines elektrischen Versorgungsnetzes und einem Energiespeicher eines elektrischen Fahrzeugbordnetzes
WO2012052218A2 (de) Verfahren zur erkennung von manipulationen im hochvoltnetz von elektro- und/oder hybridfahrzeugen
DE102012015522A1 (de) Batterielager- und -logistiksystem
EP2911269B1 (de) Energieversorgungseinrichtung mit Batterieüberwachung und Batterieüberwachungsverfahren
DE102019200510A1 (de) Messanordnung, Hochvoltbatterie, Kraftfahrzeug und Verfahren zum Bestimmen einer komplexen Impedanz
DE112019007854B4 (de) Prüfvorrichtung für Stromabnehmer
WO2016177488A1 (de) VERFAHREN ZUM DETEKTIEREN EINER ORDNUNGSGEMÄßEN VERBINDUNG ZUMINDEST EINES ENERGIESPEICHERS MIT EINEM BORDNETZ
DE102014017569A1 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs und Kraftfahrzeug
DE102020110190A1 (de) Verfahren zum Überwachen eines elektrischen Potentials eines elektrisch betriebenen Fahrzeugs, sowie elektronisches Überwachungssystem
DE102012209885A1 (de) Vorrichtung und Verfahren zum Betreiben eines elektrischen Energiespeichers
DE112016001496T5 (de) Degradationsschätzer für eine Energiespeichervorrichtung, Energiespeichervorrichtung, Ein-/Ausgabe-Steuervorrichtung für eine Energiespeichervorrichtung und Verfahren zur Steuerung der Ein- und Ausgabe des Energiespeichers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120068610

Country of ref document: DE

Ref document number: 112012006861

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14425099

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112012006861

Country of ref document: DE

Effective date: 20150521

122 Ep: pct application non-entry in european phase

Ref document number: 12762237

Country of ref document: EP

Kind code of ref document: A1