WO2014030015A1 - A printing ink - Google Patents
A printing ink Download PDFInfo
- Publication number
- WO2014030015A1 WO2014030015A1 PCT/GB2013/052234 GB2013052234W WO2014030015A1 WO 2014030015 A1 WO2014030015 A1 WO 2014030015A1 GB 2013052234 W GB2013052234 W GB 2013052234W WO 2014030015 A1 WO2014030015 A1 WO 2014030015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- nvc
- pea
- jet
- ctfa
- Prior art date
Links
- 238000007639 printing Methods 0.000 title claims description 11
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 claims abstract description 64
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000178 monomer Substances 0.000 claims abstract description 42
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 33
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 238000004040 coloring Methods 0.000 claims abstract description 8
- QSJFDOVQWZVUQG-XLPZGREQSA-N 3',5'-cyclic dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@@H]2COP(O)(=O)O[C@H]2C1 QSJFDOVQWZVUQG-XLPZGREQSA-N 0.000 claims abstract description 5
- 239000000049 pigment Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 claims description 5
- 238000007641 inkjet printing Methods 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 3
- ZEMYZPXPNMSHCE-UHFFFAOYSA-N (3-methyl-1-prop-2-enoyloxypentyl) prop-2-enoate Chemical compound CCC(C)CC(OC(=O)C=C)OC(=O)C=C ZEMYZPXPNMSHCE-UHFFFAOYSA-N 0.000 claims description 2
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical group CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 claims description 2
- XYRRJTMWSSGQGR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO.OCC(CO)(CO)CO XYRRJTMWSSGQGR-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 claims description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 claims description 2
- 125000004386 diacrylate group Chemical group 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- 239000000976 ink Substances 0.000 description 128
- 230000000903 blocking effect Effects 0.000 description 34
- 230000005855 radiation Effects 0.000 description 12
- -1 methacrylates) Chemical compound 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 4
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 4
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 4
- XOALFFJGWSCQEO-UHFFFAOYSA-N tridecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCOC(=O)C=C XOALFFJGWSCQEO-UHFFFAOYSA-N 0.000 description 4
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 2
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000012952 cationic photoinitiator Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- OGBWMWKMTUSNKE-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CCCCCC(OC(=O)C(C)=C)OC(=O)C(C)=C OGBWMWKMTUSNKE-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- 102100030356 Arginase-2, mitochondrial Human genes 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 101000792835 Homo sapiens Arginase-2, mitochondrial Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- BDGDYAHBIXFCIS-UHFFFAOYSA-N [(2,6-dimethylbenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethylphenyl)methanone Chemical compound CC=1C=CC=C(C)C=1C(=O)P(=O)(CC(CC(C)(C)C)C)C(=O)C1=C(C)C=CC=C1C BDGDYAHBIXFCIS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZCQCKDXLBKERRC-UHFFFAOYSA-M diphenyliodanium;fluoride Chemical compound [F-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 ZCQCKDXLBKERRC-UHFFFAOYSA-M 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000012949 free radical photoinitiator Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/32—Inkjet printing inks characterised by colouring agents
- C09D11/322—Pigment inks
Definitions
- This invention relates to a printing ink, in particular to an ink which achieves a balance between cure speed at low dose of radiation and avoiding (or minimising) blocking.
- ink-jet printing minute droplets of black, white or coloured ink are ejected in a controlled manner from one or more reservoirs or printing heads through narrow nozzles on to a substrate which is moving relative to the reservoirs.
- the ejected ink forms an image on the substrate.
- the inks must flow rapidly from the printing heads, and, to ensure that this happens, they must have in use a low viscosity, typically below 100 mPas at 25°C although in most applications the viscosity should be below 50 mPas, and often below 25 mPas.
- the ink when ejected through the nozzles, the ink has a viscosity of less than 25 mPas, preferably 5-15 mPas and ideally 10.5 mPas at the jetting temperature which is often elevated to about 40°C (the ink might have a much higher viscosity at ambient temperature).
- the inks must also be resistant to drying or crusting in the reservoirs or nozzles.
- ink-jet inks for application at or near ambient temperatures are commonly formulated to contain a large proportion of a mobile liquid vehicle or solvent. In one common type of ink- jet ink this liquid is water - see for example the paper by Henry R. Kang in the Journal of Imaging Science, 35(3), pp.
- ink-jet inks that include a large proportion of water or solvent cannot be handled after printing until the inks have dried, either by evaporation of the solvent or its absorption into the substrate. This drying process is often slow and in many cases (for example, when printing on to a heat-sensitive substrate such as paper) cannot be accelerated.
- ink-jet ink contains unsaturated organic compounds, termed monomers, which polymerise by irradiation, commonly with ultraviolet light, in the presence of a photoinitiator.
- monomers unsaturated organic compounds
- This type of ink has the advantage that it is not necessary to evaporate the liquid phase to dry the print; instead the print is exposed to radiation to cure or harden it, a process which is more rapid than evaporation of solvent at moderate temperatures.
- monomers possessing a low viscosity.
- curable components suffer from significant drawbacks.
- Blocking occurs when an ink-jet ink based on curable components is inadequately cured after having been printed on to a substrate.
- the substrates On placement of a further printed substrate on to the substrate having ink-jet ink which is inadequately cured thereon, the substrates have a tendency to adhere to form a block. This adhesion of one substrate to another by this process is known in the art as "blocking". Blocking may also occur in roll-to-roll printing where the wrappings of the roll adhere to one another.
- a high dose of radiation is required.
- a high dose of radiation is expensive, has increased safety risks, increased heat dissipation, increased heat on the substrate, requires additional guards for heat escape and requires a large and heavy lamp.
- cure speed is reduced at low dose of radiation.
- Ink-jet inks based on curable components can contain monofunctional and multifunctional components.
- the monofunctional components are typically soft, flexible and provide good adhesion properties while multifunctional components typically provide good cure and surface hardness.
- using either only monofunctional or multifunctional components in an ink can lead to problems.
- An ink containing solely multifunctional components can form films that suffer from embrittlement and inks solely containing monofunctional components tend to form films that are too soft and which may be prone to physical or chemical attack.
- the present invention provides an ink-jet ink comprising from 40 to 80 wt% of N- vinyl caprolactam (NVC), phenoxyethyl acrylate (PEA) and cyclic T P formal acrylate (CTFA) combined based on the total weight of the ink; 5 to 25 wt% of a multifunctional (meth)acrylate monomer, based on the total weight of the ink; 1 to 12 wt% of a radiation-curable oligomer, based on the total weight of the ink; a radical photoinitiator; and a colouring agent; wherein the molar ratio of NVC to PEA is 1.4-2.0:1.0 and the molar ratio of NVC to CTFA is 0.7- 2.8:1.0.
- NVC N- vinyl caprolactam
- PEA phenoxyethyl acrylate
- CTFA cyclic T P formal acrylate
- the present invention provides an ink-jet ink comprising from 40 to 80 wt% of N-vinyl caprolactam (NVC) and phenoxyethyl acrylate (PEA) or cyclic TMP formal acrylate (CTFA) combined, based on the total weight of the ink; 5 to 25 wt% of a multifunctional (meth)acrylate monomer, based on the total weight of the ink; 1 to 12 wt% of a radiation-curable oligomer, based on the total weight of the ink; a radical photoinitiator; and a colouring agent; wherein the molar ratio of NVC to PEA is 1 .4-2.0:1 .0 or the molar ratio of NVC to CTFA is 0.7-2.8:1 .0; and wherein PEA or CTFA is the sole monofunctional (meth)acrylate monomer in the ink.
- NVC N-vinyl caprolactam
- PEA phenoxyethyl
- Fig. 1 shows a graph of the blocking performance against weight percentage of NVC for ink- jet inks
- Fig. 2 shows a bar chart of the blocking performance against NVC:PEA molar ratio for ink-jet inks
- Fig. 3 shows a graph of the dose against weight percentage of NVC based on the total weight of the ink
- Fig. 4 shows a bar chart of blocking performance against NVC:CTFA molar ratio for ink-jet inks
- Fig. 5 shows a graph of the blocking performance against weight percentage of multifunctional monomer for ink-jet inks of the present invention.
- Fig. 6 shows a graph of the blocking performance against weight percentage of radiation- curable oligomer for ink-jet inks of the present invention.
- the ink-jet ink of the present invention dries primarily by curing, i.e. by the polymerisation of the monomers present, as discussed hereinabove, and hence is a curable ink.
- the ink does not, therefore, require the presence of water or a volatile organic solvent to effect drying of the ink.
- the ink-jet ink of the present invention is preferably substantially free of water and volatile organic solvents.
- the ink-jet ink of the present invention comprises less than 5 wt% of water and volatile organic solvent combined, based on the total weight of the ink.
- ink-jet inks largely based on curable components suffer from blocking, especially when the ink is cured at a low dose of radiation.
- a high dose of radiation is required in order to prevent blocking from occurring in such inks.
- cure speed is reduced at low dose.
- NVC N-vinyl caprolactam
- NVC is a well- known N-vinyl amide and a detailed description is therefore not required.
- N-Vinyl amides have a vinyl group attached to the nitrogen atom of an amide which may be further substituted in an analogous manner to the (meth)acrylate monomers. following chemical structure:
- the ink-jet ink of the present invention further comprises PEA and CTFA.
- PEA Phenoxyethyl acrylate
- CTFA cyclic T P formal acrylate
- CFA Cyclic TMP formal acrylate
- PDA Phenoxyethyl acrylate
- the total amount of the NVC, PEA and CTFA in combination is from 40 to 80 wt%, preferably 50 to 70 wt%, more preferably at least 60 wt%, based on the total weight of the ink.
- the total amount of NVC, PEA and CTFA in combination/combined means that the sum of all of the amounts of NVC, PEA and CTFA in the ink-jet ink is from 40 to 80 wt%, preferably 50 to 70 wt%, more preferably at least 60 wt%, based on the total weight of the ink.
- the molar ratio of NVC to PEA is 1.4-2.0:1.0, preferably 1.4-1.9:1 .0.
- a preferred molar ratio of NVC to PEA is 1 .44:1.0 and 1 .86:1 .0.
- a particularly preferred molar ratio of NVC to PEA is 1.38-1 .84:1.0.
- a minimum dose of radiation is required when the ratio of NVC to PEA is 1.38:1 .
- the molar ratio of NVC to CTFA is 0.7-2.8:1.0, preferably 0.9-2.8:1 .0.
- a preferred molar ratio of NVC to CTFA is 0.97:1 .0 to 2.8:1 .0.
- a particularly preferred molar ratio of NVC to CTFA is 1.01 :1 .0 to 2.8:1.0.
- the molar ratio of NVC to PEA and CTFA combined is 0.7:1.0 to 3.0:1 .0.
- the molar ratio of NVC to PEA and CTFA combined is 0.9:1 .0 to 2.0:1 .0.
- the molar ratio of NVC to monofunctional (meth)acrylate monomer is therefore 0.7 to 3.0.
- the upper limit to this ratio is preferably 2.0 or less.
- the lower limit to this ratio is preferably 0.9 or more and most preferably 1.2 or more.
- the molar ratio of NVC to PEA and CTFA in combination/combined means that the molar ratio of NVC to the sum of the molar ratios of PEA and CTFA in the ink-jet ink is 0.7:1 .0 to 3.0:1.0, preferably 0.9:1.0 to 2.0:1.0, more preferably 1 .2:1 .0 to 2.0:1 .0.
- PEA and CTFA are the sole monofunctional (meth)acrylate monomers present in the ink.
- the ink of the present invention further contains a multifunctional (meth)acrylate monomer.
- Multifunctional (meth)acrylate monomers are also well known in the art and have a functionality of two or higher. Functionalities of two, three or four are preferred and preferably this monomer is a difunctional or trifunctional monomer.
- Examples of the multifunctional acrylate monomers that may be included in the ink include hexanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, polyethyleneglycol diacrylate (for example tetraethyleneglycol diacrylate), dipropyleneglycol diacrylate, tri(propylene glycol) triacrylate, neopentylglycol diacrylate, bis(pentaerythritol) hexaacrylate, 3-methyl pentanediol diacrylate, and the acrylate esters of ethoxylated or propoxylated glycols and polyols, for example, propoxylated neopentyl glycol diacrylate, ethoxylated trimethylolpropane triacrylate, and mixtures thereof.
- suitable multifunctional methacrylate monomers also include esters of methacrylic acid (i.e. methacrylates), such as hexanediol dimethacrylate, trimethylolpropane trimethacrylate, triethyleneglycol dimethacrylate, diethyleneglycol dimethacrylate, ethyleneglycol dimethacrylate, 1 ,4-butanediol dimethacrylate and mixtures thereof.
- methacrylates esters of methacrylic acid
- methacrylates such as hexanediol dimethacrylate, trimethylolpropane trimethacrylate, triethyleneglycol dimethacrylate, diethyleneglycol dimethacrylate, ethyleneglycol dimethacrylate, 1 ,4-butanediol dimethacrylate and mixtures thereof.
- the multifunctional (meth)acrylate monomers is selected from propoxylated neopentyl glycol diacrylate, ethoxylated trimethylolpropane triacrylate, and mixtures thereof.
- the monomers typically have a viscosity of less than 2 mPas at 25°C and they typically have a molecular weight of more than 200 and less than 450.
- the total amount of the multifunctional monomer is from 5 to 25 wt% based on the total weight of the ink.
- the multifunctional monomer is present from 10 to 21 wt%, more preferably from 13 to 18 wt%, even more preferably from 13 to 17 wt% and most preferably from 15 to 17 wt%, based on the total weight of the ink.
- the ink also contains a radiation-curable (i.e. polymerisable) oligomer, preferably a (meth)acrylate oligomer.
- a radiation-curable (i.e. polymerisable) oligomer preferably a (meth)acrylate oligomer.
- curable oligomer has its standard meaning in the art, namely that the component is partially reacted to form a pre-polymer having a plurality of repeating monomer units which is capable of further polymerisation.
- the oligomer preferably has a molecular weight of at least 450. The molecularweight is preferably 4,000 or less.
- the degree of functionality of the oligomer determines the degree of crosslinking and hence the properties of the cured ink.
- the oligomer is multifunctional meaning that it contains on average more than one reactive functional group per molecule.
- the average degree of functionality is preferably from 2 to 6.
- Preferred oligomers for use in the invention have a viscosity of 0.5 to 20 Pas at 60°C, more preferably 5 to 15 Pas at 60°C and most preferably 5 to 10 Pas at 60°C. Oligomer viscosities can be measured using an ARG2 rheometer manufactured by T.A. Instruments, which uses a 40 mm oblique / 2° steel cone at 60°C with a shear rate of 25 s "1 .
- UV-curable oligomers of this type are well known in the art.
- the oligomer is preferably based on bisphenol A, a polyester, a polyether or a urethane.
- the total amount of the oligomer is preferably from 1 to 12 wt%, based on the total weight of the ink.
- the oligomer is present from 2 to 10 wt%, more preferably from 4 to 8 wt%, most preferably from 6 to 9 wt%, based on the total weight of the ink.
- blocking performance is increased wherein the oligomer is present in the ink from 4 to 10 wt%, based on the total weight of the ink.
- ( eth)acrylate is intended herein to have its standard meaning, i.e. acrylate and/or methacrylate.
- Mono and multifunctional are also intended to have their standard meanings, i.e. one and two or more groups, respectively, which take part in the polymerisation reaction on curing.
- the ink also includes a photoinitiator which, under irradiation, for example by ultraviolet light, initiates the polymerisation of the monomers.
- a photoinitiator which, under irradiation, for example by ultraviolet light, initiates the polymerisation of the monomers.
- photoinitiators which produce free radicals on irradiation (free radical photoinitiators), such as benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl- 2-dimethylamino-(4-morpholinophenyl)butan-1 -one, benzil dimethylketal, bis(2,6- dimethylbenzoyl)-2,4,4-trimethylpentylphosphine oxide or mixtures thereof.
- photoinitiators are known and commercially available such as, for example, under the trade names Irgacure, Darocur (from Ciba) and Lucerin (from BASF).
- the photoinitiator is present from 1 to 20% by weight, more preferably from 5 to 15% by weight, most preferably from 4 to 10% by weight, based on the total weight of the ink.
- the wavelength of the radiation and the nature of the photoinitiator system used must of course coincide.
- the ink is cured by irradiation with actinic radiation, such as UV, x-ray, electron beam etc, although UV curing is preferred.
- the ink-jet ink of the present invention also includes a colouring agent, which may be either dissolved or dispersed in the liquid medium of the ink.
- a colouring agent is a dispersed pigment, of the types known in the art and commercially available such as, for example, under the trade-names Paliotol (available from BASF pic), Cinquasia, Irgalite (both available from Ciba Speciality Chemicals) and Hostaperm (available from Clariant UK).
- the pigment may be of any desired colour such as, for example, Pigment Yellow 13, Pigment Yellow 83, Pigment Red 9, Pigment Red 184, Pigment Blue 15:3, Pigment Green 7, Pigment Violet 19, Pigment Black 7.
- black and the colours required for trichromatic process printing may be used.
- Cyan phthalocyanine pigments such as Phthalocyanine blue 15.4.
- Yellow azo pigments such as Pigment yellow 120, Pigment yellow 151 and Pigment yellow 155.
- Magenta quinacridone pigments, such as Pigment violet 19 or mixed crystal quinacridones such as Cromophtal Jet magenta 2BC and Cinquasia RT-355D.
- Black carbon black pigments such as Pigment black 7.
- Pigment particles dispersed in the ink should be sufficiently small to allow the ink to pass through an ink-jet nozzle, typically having a particle size less than 8 pm, preferably less than 5 pm, more preferably less than 1 pm and particularly preferably less than 0.5 pm.
- the pigment is preferably present in an amount of 20 weight % or less, preferably 15 weight %, based on the total weight of the ink.
- Preferably the total amount of pigment is present from 0.5 to 12% by weight, more preferably from 1 to 10% by weight.
- a higher concentration of pigment may be required for white inks, however, for example up to and including 30 weight %, or 25 weight % based on the total weight of the ink.
- the ink of the present invention cures by a free radical mechanism
- the ink of the present invention may also be a so-called "hybrid" ink which cures by a radical and cationic mechanism.
- the ink-jet ink of the present invention in one embodiment, therefore further comprises a cationically curable monomer, such as a vinyl ether, and a cationic photoinitiator, such as an iodonium or sulfonium salt, e.g. diphenyliodonium fluoride and triphenylsulfonium hexafluophosphate.
- a cationically curable monomer such as a vinyl ether
- a cationic photoinitiator such as an iodonium or sulfonium salt, e.g. diphenyliodonium fluoride and triphenylsulfonium hexafluophosphate.
- Suitable cationic photoinitiators are be sold under the Trade names of Irgacure 184, Irgacure 500, Darocure 1173, Irgacure 907, ITX, Lucerin TPO, Irgacure 369, Irgacure 1700, Darocure 4265, Irgacure 651 , Irgacure 819, Irgacure 1000, Irgacure 1300, Esacure KT046, Esacure KIP150, Esacure KT37, Esacure EDB, H-Nu 470, H-Nu 470X, the Union Carbide UVI-69-series, Deuteron UV 1240 and IJY2257, Ciba Irgacure 250 and CGI 552, IG -C440, Rhodia 2047 and UV9380c.
- components of types known in the art may be present in the ink to improve the properties or performance.
- These components may be, for example, additional monofunctional (meth)acrylate monomers, surfactants, defoamers, dispersants, synergists for the photoinitiator, stabilisers against deterioration by heat or light, reodorants, flow or slip aids, biocides and identifying tracers.
- Monofunctional (meth)acrylate monomers are well known in the art and are preferably the esters of acrylic acid.
- Preferred additional monofunctional (meth)acrylate monomer examples include isobornyl acrylate (IBOA), tetrahydrofurfuryl acrylate (THFA), 2-(2-ethoxyethoxy)ethyl acrylate, octadecyl acrylate (ODA), tridecyl acrylate (TDA), isodecyl acrylate (IDA), lauryl acrylate and mixtures thereof.
- IBOA isobornyl acrylate
- THFA tetrahydrofurfuryl acrylate
- 2-(2-ethoxyethoxy)ethyl acrylate 2-(2-ethoxyethoxy)ethyl acrylate
- ODA octadecyl acrylate
- TDA tridecyl acrylate
- IDA isodecyl acrylate
- IBOA Isobornyl acrylate
- THFA Tetrahydrofurfuryl acrylate
- ODA Octadecyl acrylate
- TDA Tridecyl acrylate
- the substituents of the monofunctional monomers are not limited other than by the constraints imposed by the use in an ink-jet ink, such as viscosity, stability, toxicity etc.
- the substituents are typically alkyl, cycloalkyl, aryl and combinations thereof, any of which may be interrupted by heteroatoms.
- Non-limiting examples of substituents commonly used in the art include C 1-18 alkyl, C 3 . 8 cycloalkyl, C 6 . 0 aryl and combinations thereof, such as C 6 . 0 aryl- or C 3 .
- cycloalkyl-substituted C H8 alkyl any of which may be interrupted by 1-10 heteroatoms, such as oxygen or nitrogen, with nitrogen further substituted by any of the above described substituents.
- the substituents may together also form a cyclic structure.
- the present invention also provides a method of ink-jet printing using the above-described ink and a substrate having the cured ink thereon.
- Suitable substrates include styrene, PolyCarb (a polycarbonate), BannerPVC (a PVC), VIVAK (a polyethylene terephthalate glycol modified), polyolefin substrates, such as polyethylene and polypropylene, e.g. PE85 Trans T/C, PE85 White or PP Top White, polyethylene terephthalate (PET) and paper.
- Polyolefin substrates represent the most difficult of these substrates on which to gain adhesion.
- the ink of the present invention is preferably cured by ultraviolet irradiation and is suitable for application by ink-jet printing.
- the ink-jet ink exhibits a desirable low viscosity (less than 100 mPas, preferably less than 50 mPas and most preferably less than 25 mPas at 25°C). Viscosity may be determined using a Brookfield DV-I + running at 20 rpm.
- the inks of the invention may be prepared by known methods such as, for example, stirring with a high-speed water-cooled stirrer, or milling on a horizontal bead-mill.
- Inks were prepared by mixing the components in the amounts shown in Table 1. Amounts are given as weight percentages based on the total weight of the ink.
- the dispersion comprises 30 wt% of pigment blue 15:4, based on the total weight of the dispersion, 60 wt% of propoxylated neopentylglycol diacrylate, based on the total weight of the dispersion and 10 % of dispersant (Solsperse 32000), based on the total weight of the dispersion.
- Irg 184 is hydroxycyclohexyl phenyl ketone.
- TPO is diphenyl,-(2,4,6-trimethyl benzoyl) phosphine oxide.
- blocking performance is increased for the inks of the invention when compared to the comparative ink.
- Blocking performance is greater when the molar ratio of NVC to PEA is 1 .4-2.0:1.0.
- Cure speed was also evaluated for the inks of Table 1 .
- the inks of the invention have a cure speed that is better than comparison ink 1.
- a low dose is required for inks of the invention and there is a dip in the dose required for an ink having a molar ratio of NVC: PEA of 1 .38:1 as shown in Fig. 3.
- a performance trend can be seen such that samples with lower concentrations of NVC show poor blocking performance.
- the inks of the invention also have a low viscosity.
- Inks were prepared by mixing the components in the amounts shown in Table 4. Amounts are given as weight percentages based on the total weight of the ink. The effect of multifunctional monomer content was studied by changing multifunctional monomer concentration from 6.19 to 20.19% in an ink formulation having an NVC:PEA molar ratio of 1.38:1 , which has a good blocking performance and was selected as a reference formulation.
- the dispersion, Irg 184 and TPO are as described for Example 1 .
- Inks were prepared by mixing the components in the amounts shown in Table 5. Amounts are given as weight percentages based on the total weight of the ink. The effect of radiation- curable oligomer content was studied by changing radiation-curable oligomer concentration from 1 to 10% in an ink formulation having an NVC:PEA molar ratio of 1.38:1 , which has a good blocking performance and was selected as a reference formulation.
- the dispersion, Irg 184 and TPO are as described for Example 1 .
- Inks were prepared by mixing the components in the amounts shown in Table 6. Amounts are given as weight percentages based on the total weight of the ink.
- Component PEA of Inks 2-5 of Table 1 was replaced by CTFA to prepare Inks 18-21 of Table 6 in order to compare the blocking performance between inks having a different monofunctional (meth)acrylate monomer present.
- the quantities of NVC for these inks were kept the same. There is however a slight difference in the molar ratios.
- Two further Inks 22- 23 were also prepared.
- the dispersion, Irg 184 and TPO are as described for Example 1.
- blocking performance is increased for the inks of the invention and provides a blocking performance comparable to Inks 4-5.
- Blocking performance is greater for the inks comprising CTFA when the molar ratio of NVC to CTFA is 0.7-2.8:1 .0.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1504818.4A GB2520465B (en) | 2012-08-23 | 2013-08-23 | A printing ink |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1215062.9 | 2012-08-23 | ||
GBGB1215062.9A GB201215062D0 (en) | 2012-08-23 | 2012-08-23 | A printing ink |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014030015A1 true WO2014030015A1 (en) | 2014-02-27 |
Family
ID=47045310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2013/052234 WO2014030015A1 (en) | 2012-08-23 | 2013-08-23 | A printing ink |
Country Status (2)
Country | Link |
---|---|
GB (2) | GB201215062D0 (en) |
WO (1) | WO2014030015A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063029A1 (en) * | 2014-10-20 | 2016-04-28 | Fujifilm Speciality Ink Systems Limited | Printing ink |
WO2016063030A1 (en) * | 2014-10-20 | 2016-04-28 | Fujifilm Speciality Ink Systems Limited | Printing ink |
US20190002715A1 (en) * | 2017-06-29 | 2019-01-03 | The Procter & Gamble Company | Low migration ink composition |
JP2020139002A (en) * | 2019-02-27 | 2020-09-03 | 富士フイルム株式会社 | Inkjet ink composition for building material, image recording method, and image record |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2412768A2 (en) * | 2010-07-27 | 2012-02-01 | Fujifilm Corporation | Inkjet ink composition, inkjet recording method, and printed material |
EP2412765A1 (en) * | 2010-07-29 | 2012-02-01 | FUJIFILM Corporation | Inkjet recording method, and printed material |
EP2471880A1 (en) * | 2010-12-28 | 2012-07-04 | Fujifilm Corporation | Ink composition, inkjet recording method, and printed material |
EP2471879A1 (en) * | 2010-12-28 | 2012-07-04 | Fujifilm Corporation | Ink set for inkjet recording, inkjet recording method, and printed material |
EP2484729A1 (en) * | 2011-02-03 | 2012-08-08 | Fujifilm Corporation | Inkjet ink composition, ink set, inkjet recording method, and printed material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2471897T3 (en) * | 2009-09-30 | 2018-01-15 | Fuji Oil Co Ltd | PROCEDURE FOR REDUCING CHLOROPROPANOLS AND CREATING SUBSTANCES, GLYCIDOL FAT ACID ESTERS, IN GLYCERIDE OILS |
-
2012
- 2012-08-23 GB GBGB1215062.9A patent/GB201215062D0/en not_active Ceased
-
2013
- 2013-08-23 GB GB1504818.4A patent/GB2520465B/en not_active Expired - Fee Related
- 2013-08-23 WO PCT/GB2013/052234 patent/WO2014030015A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2412768A2 (en) * | 2010-07-27 | 2012-02-01 | Fujifilm Corporation | Inkjet ink composition, inkjet recording method, and printed material |
EP2412765A1 (en) * | 2010-07-29 | 2012-02-01 | FUJIFILM Corporation | Inkjet recording method, and printed material |
EP2471880A1 (en) * | 2010-12-28 | 2012-07-04 | Fujifilm Corporation | Ink composition, inkjet recording method, and printed material |
EP2471879A1 (en) * | 2010-12-28 | 2012-07-04 | Fujifilm Corporation | Ink set for inkjet recording, inkjet recording method, and printed material |
EP2484729A1 (en) * | 2011-02-03 | 2012-08-08 | Fujifilm Corporation | Inkjet ink composition, ink set, inkjet recording method, and printed material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063029A1 (en) * | 2014-10-20 | 2016-04-28 | Fujifilm Speciality Ink Systems Limited | Printing ink |
WO2016063030A1 (en) * | 2014-10-20 | 2016-04-28 | Fujifilm Speciality Ink Systems Limited | Printing ink |
US10683425B2 (en) | 2014-10-20 | 2020-06-16 | Fujifilm Speciality Ink Systems Limited | Printing ink |
US20190002715A1 (en) * | 2017-06-29 | 2019-01-03 | The Procter & Gamble Company | Low migration ink composition |
US10543135B2 (en) * | 2017-06-29 | 2020-01-28 | The Procter & Gamble Company | Low migration ink composition |
US11083648B2 (en) | 2017-06-29 | 2021-08-10 | The Procter & Gamble Company | Low migration ink composition |
JP2020139002A (en) * | 2019-02-27 | 2020-09-03 | 富士フイルム株式会社 | Inkjet ink composition for building material, image recording method, and image record |
JP7134116B2 (en) | 2019-02-27 | 2022-09-09 | 富士フイルム株式会社 | Inkjet ink composition for building materials, image recording method and image recorded matter |
Also Published As
Publication number | Publication date |
---|---|
GB201215062D0 (en) | 2012-10-10 |
GB201504818D0 (en) | 2015-05-06 |
GB2520465A (en) | 2015-05-20 |
GB2520465B (en) | 2020-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1984464B3 (en) | A printing ink | |
EP2142613B1 (en) | A printing ink | |
US8133935B2 (en) | Printing ink | |
EP3019566B3 (en) | Printing ink | |
US10844234B2 (en) | Method of printing | |
WO2014030015A1 (en) | A printing ink | |
EP3209736A1 (en) | Printing ink | |
EP2997096B1 (en) | A printing ink | |
WO2015140539A1 (en) | Printing ink | |
WO2010029351A1 (en) | A printing ink | |
EP3417020B1 (en) | Printing ink | |
WO2018078355A1 (en) | Printing ink | |
WO2016063029A1 (en) | Printing ink | |
EP3019565A1 (en) | Printing ink | |
WO2011148201A1 (en) | Printing ink | |
WO2015075457A1 (en) | Printing ink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13756199 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 1504818 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20130823 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1504818.4 Country of ref document: GB |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13756199 Country of ref document: EP Kind code of ref document: A1 |