[go: up one dir, main page]

WO2014021050A1 - Ceramic metal halide lamp - Google Patents

Ceramic metal halide lamp Download PDF

Info

Publication number
WO2014021050A1
WO2014021050A1 PCT/JP2013/068359 JP2013068359W WO2014021050A1 WO 2014021050 A1 WO2014021050 A1 WO 2014021050A1 JP 2013068359 W JP2013068359 W JP 2013068359W WO 2014021050 A1 WO2014021050 A1 WO 2014021050A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodide
rei
nai
metal halide
mol
Prior art date
Application number
PCT/JP2013/068359
Other languages
French (fr)
Japanese (ja)
Inventor
泰 笹井
祥克 小野
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Priority to EP13826338.9A priority Critical patent/EP2881975A4/en
Publication of WO2014021050A1 publication Critical patent/WO2014021050A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/88Lamps with discharge constricted by high pressure with discharge additionally constricted by envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/48Means forming part of the tube or lamp for the purpose of supporting it

Definitions

  • the present invention relates to a high-intensity discharge lamp, and more particularly to a ceramic metal halide lamp.
  • High-intensity discharge lamps are widely used because of their high efficiency and economy.
  • HID lamps are roughly classified into three types, mercury lamps, metal halide lamps, and high-pressure sodium lamps, depending on the type of additive sealed in the arc tube.
  • high-pressure sodium lamps have a long lifetime and high luminous efficiency, but high-saturation and color-rendering high-pressure sodium lamps are known as light sources for vividly displaying red colors, although their lifetime and luminous efficiency are inferior to ordinary high-pressure sodium lamps. It has been.
  • ceramic metal halide lamps using an arc tube made of ceramic (translucent alumina: PCA) instead of an arc tube made of quartz glass have been widely used. The lamp life and luminous efficiency of ceramic metal halide lamps are said to be superior to that of high chroma and color rendering high pressure sodium lamps.
  • high-saturation and color-rendering high-pressure sodium lamps are usually used for lighting fresh foods.
  • There are various factors such as the correlated color temperature CCT, the color rendering index CRI, and the wavelength spectrum distribution.
  • the correlated color temperature can be mentioned. The reason is that there is a demand for vivid colors of red lines in lighting of fresh foods such as vegetables, bread and meat.
  • the correlated color temperature is about 2500 K.
  • the correlated color temperature is relatively high, and it is difficult to achieve about 2500 K.
  • Japanese Unexamined Patent Publication No. 2004-288617 discloses a ceramic metal halide lamp having a correlated color temperature of 2000 to 4500 K, Japanese Unexamined Patent Publication No. 2003-187744 and Japanese Unexamined Patent Publication No. 2009-520323. Ceramic metal halide lamps having a color temperature of 2500 to 4500K, Japanese Unexamined Patent Application Publication Nos. 2007-53004 and 2011-154847 describe ceramic metal halide lamps having a color temperature of 2800 to 3700K, respectively.
  • these patent documents do not disclose specific techniques for reducing the correlated color temperature to about 2500K. In fact, the color temperature of ceramic metal halide lamps currently on the market is 2800K or higher even for low color temperature types.
  • JP 2004-288617 A Patent No. 4279122
  • Japanese Patent Laid-Open No. 2003-1877444 Japanese Patent Laid-Open No. 2003-1877444
  • the content of sodium Na in the additive sealed in the arc tube should be increased.
  • the content of sodium Na is increased, the total amount of additive is increased.
  • the amount of erosion to translucent alumina (PCA) constituting the arc tube is increased, and the lamp life is shortened.
  • PCA translucent alumina
  • Japanese Unexamined Patent Application Publication No. 2010-3488 describes that the lamp life of a ceramic metal halide lamp is 15000 hours or more, but does not describe that a correlated color temperature of about 2500 K is achieved at the same time.
  • An object of the present invention is to provide a ceramic metal halide lamp capable of achieving a correlated color temperature of about 2500 K without sacrificing lamp life.
  • a ceramic metal halide lamp having an arc tube formed of a translucent ceramic that encloses a pair of electrodes, and a translucent outer tube that houses the arc tube
  • the arc tube encloses a starting rare gas, mercury, and an additive.
  • the additive includes thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 , lithium iodide LiI, and rare earth metal iodide.
  • the molar ratio of sodium iodide to the total number of moles of the additive is M (NaI) [mol%]
  • the sum of the molar ratio of the rare earth metal iodide ReI 3 and the molar ratio of thallium iodide TlI is M (ReI 3 + TlI ) [mol%]
  • M (NaI) and M (ReI 3 + TlI) satisfy the following formula.
  • G (total) [mg / cm 3 ] is the total amount of the additive per 1 cm 3 arc tube volume, and the amount of rare earth metal iodide contained in the additive per 1 cm 3 arc tube Is G (ReI 3 ) [mg / cm 3 ], the G (total) and G (ReI 3 ) may satisfy the following equation.
  • the molar ratio M (NaI) of sodium iodide, the molar ratio M of calcium iodide (CaI 2 ), and the molar ratio M of lithium iodide M may satisfy the following formula:
  • the molar ratio M (NaI) of sodium iodide, the molar ratio M of calcium iodide (CaI 2 ), and the molar ratio M of lithium iodide M ( LiI) may each satisfy the following equation:
  • the additive may include at least one of thulium iodide TmI 3 , dysprosium Dy, holmium Ho, and cerium Ce iodide as a rare earth metal iodide (thulium iodide TmI 3 is essential). .
  • the correlated color temperature of the arc tube is 2400 to 2600 K, and the M (NaI) and M (ReI 3 + TlI) may satisfy the following equation.
  • a ceramic metal halide lamp capable of achieving a correlated color temperature of about 2500 K without sacrificing lamp life can be provided.
  • FIG. 1 is a diagram illustrating an example of an arc tube of a ceramic metal halide lamp according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a ceramic metal halide lamp according to the present invention.
  • FIG. 3 is a diagram illustrating an example of a ceramic metal halide lamp according to the present invention.
  • FIG. 4A is a diagram for explaining the test results of the arc tube of the ceramic metal halide lamp according to the present invention.
  • FIG. 4B is a diagram for explaining the test results of the arc tube of the ceramic metal halide lamp according to the present invention.
  • the arc tube 2 includes a light emitting unit 3 and capillaries 4A and 4B extending at both ends thereof.
  • the light emitting section 3 and the capillaries 4A and 4B are formed by compressing and integrally forming a light transmitting ceramic powder such as alumina.
  • Electrode assemblies 6A and 6B are inserted through both ends of the capillaries 4A and 4B, respectively. Both ends of the capillaries 4A and 4B are hermetically sealed by frit glass having electrical insulation. Thereby, the electrode assemblies 6A and 6B are fixed in place in the capillaries 4A and 4B.
  • the electrodes 5A and 5B provided at the inner ends of the electrode assemblies 6A and 6B are arranged at fixed positions in the light emitting unit 3. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
  • Additives include luminescent materials such as alkali metal iodides, alkaline earth metal iodides, rare earth metal iodides, and the like.
  • the additive sealed in the light emitting unit 3 will be described in detail later.
  • the effective length L and the effective inner diameter D are defined as the inner dimensions of the arc tube 2.
  • the effective length L is the distance between both end faces in the case of a cylindrical arc tube, and in the arc tube in which the light emitting part and the capillary are continuously formed as shown in FIG. 1, light is emitted from the straight tubular capillaries 4A and 4B. It is defined by the distance between the outer ends of the transition curved surfaces L1, L1 between the tubes 3.
  • the effective inner diameter D is defined as the maximum inner diameter of the central portion between the electrodes 5A and 5B in a light emitting tube other than a cylindrical shape.
  • the effective length of the arc tube 2 is L, the effective inner diameter is D, and the ratio L / D between them is called the aspect ratio.
  • the temperature of each part of the light emitting unit 3 is determined by the wall load of the arc tube, the gas pressure in the translucent outer tube, the arc tube material, and the aspect ratio (L / D) of the arc tube, and particularly depends greatly on the wall load.
  • the wall surface load is defined by a value obtained by dividing the lamp power by the total inner area of the light emitting unit 3.
  • the light emitting unit 3 is designed so that the wall load is 20 to 30 W / cm 2 (rated output 35 to 400 W).
  • the chemical reaction rate between the material constituting the inner wall surface of the light emitting part and the rare earth metal iodide can be kept low, and the life of the lamp can be extended.
  • the ceramic metal halide lamp 1 of the present example includes a light emitting tube 2, a cylindrical translucent sleeve 18 disposed so as to surround the light emitting portion 3, and an outer sphere 13 provided with a base 12 at one end.
  • the structure of the arc tube 2 has been described with reference to FIG.
  • Two stems 15 and 16 are mounted on the stem 14 of the base 12.
  • Two support disks 17A and 17B are mounted on the support at predetermined intervals.
  • a cylindrical translucent sleeve 18 is fixed to the disks 17A and 17B.
  • a getter 20 is mounted on the disk 17B.
  • Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16 directly or via nickel wires 19A and 19B, respectively.
  • the electrodes 5A and 5B of the arc tube 2 are electrically connected to the base 12 via the power supply leads 7A and 7B and the columns 15 and 16.
  • the ceramic metal halide lamp 1 of this example has an arc tube 2 and an outer bulb 13.
  • the structure of the arc tube 2 has been described with reference to FIG.
  • An outer sphere tip-off portion 13A is formed at one end of the outer sphere 13, and a pinch seal portion 13B is formed at the other end.
  • a base 12 is attached to the end of the pinch seal portion 13B.
  • External terminals 9 ⁇ / b> A and 9 ⁇ / b> B are attached to the base 12.
  • Two struts 15 and 16 are fixed to the pinch seal portion 13B.
  • Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
  • the tips of the power supply leads 7A and 7B are welded to the columns 15 and 16, respectively.
  • a getter 20 is mounted on the column 15.
  • the support columns 15 and 16 are electrically connected to the external terminals 9A and 9B via the metal foils 8A and 8B at the pinch seal portion 13B.
  • the electrodes 5A and 5B of the arc tube 2 are electrically connected to the external terminals 9A and 9B via the power supply leads 7A and 7B, the support columns 15 and 16, and the metal foils 8A and 8B.
  • the ceramic metal halide lamp according to the present invention may be a reflective ceramic metal halide lamp provided with a concave reflecting mirror in addition to the examples shown in FIGS.
  • the inventor of the present application examined the reason why high-saturation and high-color-rendering high-pressure sodium lamps were favorably used for lighting fresh foods.
  • Various factors such as correlated color temperature CCT, color rendering index CRI, and wavelength spectrum distribution can be considered as the reason.
  • CCT correlated color temperature
  • CRI color rendering index
  • wavelength spectrum distribution can be considered as the reason.
  • the correlated color temperature of a high-saturation, high color rendering high-pressure sodium lamp is usually around 2500K.
  • a conventional ceramic metal halide lamp it is difficult to obtain the same correlated color temperature, and usually a higher correlated color temperature is obtained.
  • the inventor of the present application considered creating a ceramic metal halide lamp capable of obtaining a correlated color temperature comparable to that of a high-saturation, high color rendering high-pressure sodium lamp.
  • the desired correlated color temperature can be achieved, it is meaningless if the lamp life, the chromaticity deviation Duv, the color rendering index CRI, the light emission efficiency ⁇ , and the like deteriorate. Therefore, the inventors of the present application set the following goals.
  • Target correlated color temperature about 2500K, that is, 2500K ⁇ 10% (2250-2750K), preferably 2400-2600K.
  • the color rendering index CRI and the luminous efficiency ⁇ are greater than or equal to predetermined values.
  • the chromaticity deviation Duv represents a deviation from the black body locus (BBL) on the chromaticity diagram.
  • the black body locus (BBL) on the chromaticity diagram represents the natural color of sunlight.
  • Duv 0 indicates that the chromaticity is on the black body locus (BBL).
  • the inventor of the present application diligently studied the additives to be sealed in the arc tube of the ceramic metal halide lamp, and created various combinations of additives and conducted experiments.
  • additives rare earth metal iodides, alkali metal iodides, and alkaline earth metal iodides were used.
  • the rare earth metal iodides include iodides such as dysprosium Dy, holmium Ho, thulium Tm, and cerium Ce.
  • Alkali metal iodides include iodides such as sodium Na and lithium Li.
  • Alkaline earth metal iodides include iodides such as calcium Ca.
  • thallium Tl iodide is included as an additive. Indium, barium, etc. are not used. In the experiments conducted by the inventors, iodide was used as the halide, but other halides may be used.
  • Na for example, sodium and mercury amalgam
  • sodium iodide NaI is used in a ceramic metal halide lamp.
  • the saturated vapor pressures of liquid sodium and liquid sodium iodide are expressed by the following equations, respectively.
  • the saturated vapor pressure P [atm] of liquid sodium and liquid sodium iodide at a temperature of 800 ° C. can be obtained.
  • the saturated vapor pressure P (NaI) of liquid sodium iodide at 800 ° C. is 1/100 or less of the saturated vapor pressure P (Na) of liquid sodium. Therefore, the amount of sodium iodide vaporized in the arc tube of the ceramic metal halide lamp is very small compared to the amount of sodium vaporized in the arc tube of the high-pressure sodium lamp.
  • the technique of enhancing the color rendering index CRI by excessively increasing the absorption of the 589 nm sodium emission line and increasing the color rendering index CRI, such as a high saturation high color rendering high pressure sodium lamp cannot be used with ceramic metal halide lamps. Even if the absolute amount of sodium iodide to be encapsulated is increased, if a large amount of thallium iodide or rare earth iodide is encapsulated, blue to green light emission will increase and the correlated color temperature CCT of the entire lamp will not decrease. There is also.
  • the inventors of the present application selected the following parameters by paying attention to the amount of sodium iodide in the additive.
  • the amount of rare earth metal iodide added is G (ReI 3 )
  • the amount of alkali metal iodide added is G (AI)
  • the amount of alkaline earth metal iodide added is G (AeI 2 ).
  • the amount of thallium iodide added is expressed as G (TlI)
  • the total amount of additives is expressed as G (total).
  • the total amount G (total) of the additive is expressed by the following formula.
  • G (total) G (ReI 3 ) + G (AI) + G (AeI 2 ) + G (TlI) Equation 3
  • G (total), G (ReI 3 ), G (AI), G (AeI 2 ), and G (TlI) are masses per 1 cm 3 of the arc tube volume, and the unit is [mg / cm 3 ].
  • the molar ratio of sodium iodide to the total number of moles of additive is M (NaI) [mol%]
  • the sum of the molar ratio of the rare earth metal iodide and the thallium iodide is M (ReI 3 + TlI) [mol %].
  • be the ratio of the molar ratio M (NaI) of sodium iodide to the sum M (ReI 3 + TlI) of this molar ratio. ⁇ is represented by the following equation.
  • FIG. 4A is a diagram illustrating a result of an experiment performed by the inventor of the present application.
  • the vertical axis represents the correlated color temperature
  • the horizontal axis represents the ratio ⁇ represented by Equation 4.
  • the target of the correlated color temperature that is, about 2500 K ⁇ 10% (2250 to 2750 K) is obtained when the ratio ⁇ is 4 ⁇ ⁇ 16.
  • the correlated color temperature is 2400 to 2600 K when the ratio ⁇ is 7 ⁇ ⁇ 13.
  • FIG. 4B is a diagram illustrating a result of an experiment performed by the inventor of the present application.
  • the vertical axis represents the chromaticity deviation Duv, and the horizontal axis represents the sum M (ReI 3 + TlI) [mol%] of the molar ratio of the rare earth metal iodide and the molar ratio of thallium iodide to the total number of moles of the additive.
  • the target of the correlated color temperature that is, about 2500K ⁇ 10% (2250-2750K)
  • the target of the chromaticity deviation Duv that is, the condition that Duv is ⁇ 2 to +1 are as follows. It is represented by the formula of
  • Table 1 shows the composition of the arc tube additive of the ceramic metal halide lamp used in the experiment conducted by the inventors of the present application. Here, conditions of five types of ceramic metal halide lamps that can achieve the target of the correlated color temperature and the target of the chromaticity deviation Duv are shown.
  • M (TmI 3 ), M (HoI 3 ), M (TlI), M (NaI), M (CaI 2 ), and M (LiI) are respectively thulium iodide TmI 3 and iodide.
  • the arc tube additive contains thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI.
  • Sodium Na contributes to the orange system
  • calcium Ca contributes to the red system
  • lithium Li contributes to the crimson system.
  • the additive may include thulium iodide TmI 3 as the rare earth metal iodide ReI 3, and may further include holmium iodide HoI 3 .
  • Luminous efficiency is improved by adding thulium iodide TmI 3 and holmium iodide HoI 3 , respectively.
  • the arc tube additive includes sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI, and the molar ratio thereof is expressed as follows.
  • Table 2 50mol% ⁇ M (NaI + CaI 2 + LiI) ⁇ 96mol% formula 12
  • the numerical values in Table 2 are the values of ⁇ represented by Formula 4, the sum of the rare earth metal iodide molar ratio and the thallium iodide molar ratio M (ReI 3 + TlI), for the additives shown in Table 1.
  • 3 shows the results of calculating the total amount G (total) of additives per 1 cm 3 arc tube volume represented by 3 and the rare earth metal iodide addition amount G (ReI 3 ) per 1 cm 3 arc tube volume.
  • rare earth metal iodides ReI 3 are thulium iodide TmI 3 and holmium iodide HoI 3 .
  • Table 3 shows the results of measuring the correlated color temperature CCT, the chromaticity deviation Duv, the average color rendering index Ra, and the luminous efficiency ⁇ for these five ceramic metal halide lamps.
  • the average color rendering index Ra was greater than 90, and the luminous efficiency was greater than 75 lm / W.
  • Table 4 summarizes some of the lamp specifications that the applicant has developed so far. Here, 10 types of ceramic metal halide lamps Nos. 11 to 20 are summarized.
  • G (total) is the total amount of additive per 1 cm 3 arc tube volume represented by Equation 3.
  • G (ReI 3 ) is the amount of rare earth metal iodide added per 1 cm 3 arc tube volume. In either case, the unit is [mg / cm 3 ]. From this result, it can be seen that it is necessary to limit the total amount of additive and the amount of rare earth iodide added in order to extend the lamp life. Test numbers No. 16 to 20 have a lamp life L [h] longer than 15000 hours. From the above results, the following conditions are necessary for satisfying the conditions of Expressions 5 to 11 and for the lamp life L [h] to be longer than 15000 hours.
  • SYMBOLS 1 Ceramic metal halide lamp, 2 ... Arc tube, 4A, 4B ... Capillary, 5A, 5B ... Electrode, 6A, 6B ... Electrode assembly, 7A, 7B ... Power supply lead, 8A, 8B ... Metal foil, 9A, 9B ... External Terminal: 12 ... Base, 13 ... Outer sphere, 14 ... Stem, 15, 16 ... Post, 17A, 17B ... Support disk, 18 ... Translucent sleeve, 19A, 19B ... Nickel wire, 20 ... Getter, 13A ... Outer sphere Chip-off part, 13B ... Pinch seal part

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

Provided is a ceramic metal halide lamp that can achieve a correlated color temperature on the order of 2500 K without sacrificing lamp life. An additive contains thallium iodide (TlI), sodium iodide (NaI), calcium iodide (CaI2), lithium iodide (LiI), and a rare earth metal iodide, and is further configured in a manner so that the correlated color temperature is 2250-2750 K, the bulb wall loading is 20-30 W/cm2, and the rated output is 35-400 W. When the mole ratio of sodium iodide to the total number of moles of the additive is M(NaI) (in mol%) and the sum of the mole ratio of the rare earth metal iodide (ReI3) and the mole ratio of thallium iodide (TlI) is M(ReI3+TlI) (in mol%), 4 < M(NaI)/M(ReI3+TlI) < 16 and 2 mol% < M(ReI3+TlI) < 9 mol%.

Description

セラミックメタルハライドランプCeramic metal halide lamp
 本発明は、高輝度放電ランプに関し、特に、セラミックメタルハライドランプに関する。 The present invention relates to a high-intensity discharge lamp, and more particularly to a ceramic metal halide lamp.
 高輝度放電ランプ(以下、HIDランプという。)は、高効率であり経済性に優れているため広く用いられている。HIDランプは、発光管に封入する添加物の種類に応じて、水銀ランプ、メタルハライドランプ、及び、高圧ナトリウムランプの3種類に大きく分けられる。一般に高圧ナトリウムランプは長寿命且つ高発光効率であるが、高彩度高演色形高圧ナトリウムランプは、寿命及び発光効率が一般の高圧ナトリウムランプより劣るものの赤系統の色を鮮やかに見せるための光源として知られている。近年、石英ガラス製の発光管の代わりにセラミック(透光性アルミナ:PCA)製の発光管を用いるセラミックメタルハライドランプが広く使用されている。セラミックメタルハライドランプのランプ寿命及び発光効率は、高彩度高演色形高圧ナトリウムランプのランプ寿命及び発光効率よりも優れていると言われている。 High-intensity discharge lamps (hereinafter referred to as HID lamps) are widely used because of their high efficiency and economy. HID lamps are roughly classified into three types, mercury lamps, metal halide lamps, and high-pressure sodium lamps, depending on the type of additive sealed in the arc tube. In general, high-pressure sodium lamps have a long lifetime and high luminous efficiency, but high-saturation and color-rendering high-pressure sodium lamps are known as light sources for vividly displaying red colors, although their lifetime and luminous efficiency are inferior to ordinary high-pressure sodium lamps. It has been. In recent years, ceramic metal halide lamps using an arc tube made of ceramic (translucent alumina: PCA) instead of an arc tube made of quartz glass have been widely used. The lamp life and luminous efficiency of ceramic metal halide lamps are said to be superior to that of high chroma and color rendering high pressure sodium lamps.
 しかしながら、生鮮食品の照明には、通常、高彩度高演色形高圧ナトリウムランプが用いられている。その理由として、相関色温度CCT、演色指数CRI、および波長スペクトル分布などの、様々な要因が考えられるが、先ず、相関色温度が挙げられる。その理由は、野菜、パン、肉等の生鮮食品の照明では、赤系統の色を鮮やかに見せたいとの要求があるからである。 However, high-saturation and color-rendering high-pressure sodium lamps are usually used for lighting fresh foods. There are various factors such as the correlated color temperature CCT, the color rendering index CRI, and the wavelength spectrum distribution. First, the correlated color temperature can be mentioned. The reason is that there is a demand for vivid colors of red lines in lighting of fresh foods such as vegetables, bread and meat.
 高彩度高演色形高圧ナトリウムランプの場合、相関色温度は2500K程度であるが、セラミックメタルハライドランプの場合、相関色温度は比較的高く、2500K程度を達成することは困難である。 In the case of a high saturation high color rendering high-pressure sodium lamp, the correlated color temperature is about 2500 K. However, in the case of a ceramic metal halide lamp, the correlated color temperature is relatively high, and it is difficult to achieve about 2500 K.
 特開2004-288617号公報(特許4279122号公報)には、相関色温度が2000~4500Kとなるセラミックメタルハライドランプ、特開2003-187744号公報及び特開2009-520323号公報には、色温度が2500~4500Kとなるセラミックメタルハライドランプ、特開2007-53004号公報、及び、特開2011-154847号公報には、色温度が2800~3700Kとなるセラミックメタルハライドランプが、それぞれ記載されている。しかしながら、これらの特許文献には、相関色温度を2500K程度まで下げるための具体的な技術は開示されていない。実際、現在市場に流通しているセラミックメタルハライドランプの色温度は、低色温度の品種でも2800K以上である。 Japanese Unexamined Patent Publication No. 2004-288617 (Japanese Patent No. 4279122) discloses a ceramic metal halide lamp having a correlated color temperature of 2000 to 4500 K, Japanese Unexamined Patent Publication No. 2003-187744 and Japanese Unexamined Patent Publication No. 2009-520323. Ceramic metal halide lamps having a color temperature of 2500 to 4500K, Japanese Unexamined Patent Application Publication Nos. 2007-53004 and 2011-154847 describe ceramic metal halide lamps having a color temperature of 2800 to 3700K, respectively. However, these patent documents do not disclose specific techniques for reducing the correlated color temperature to about 2500K. In fact, the color temperature of ceramic metal halide lamps currently on the market is 2800K or higher even for low color temperature types.
特開2004-288617号公報(特許4279122号公報)JP 2004-288617 A (Patent No. 4279122) 特開2003-1877444号公報(特許4262968号公報)Japanese Patent Laid-Open No. 2003-1877444 (Japanese Patent No. 4262968) 特開2009-520329号公報JP 2009-520329 A 特開2007-53004号公報JP 2007-53004 A 特開2011-154847号公報JP 2011-154847 特開2010-3488号公報JP 2010-3488
 一般に、相関色温度を低くするには、発光管に封入する添加物におけるナトリウムNaの含有量を増加させればよい。しかしながら、ナトリウムNaの含有量を増加させると、添加物総量が増加することとなる。それによって、発光管を構成する透光性アルミナ(PCA)への侵食量が増加し、ランプ寿命が短くなる。例えば、特開2010-3488号公報には、セラミックメタルハライドランプのランプ寿命を15000時間以上とすることが記載されているが、同時に2500K程度の相関色温度を達成することは記載されていない。 Generally, in order to lower the correlated color temperature, the content of sodium Na in the additive sealed in the arc tube should be increased. However, when the content of sodium Na is increased, the total amount of additive is increased. Thereby, the amount of erosion to translucent alumina (PCA) constituting the arc tube is increased, and the lamp life is shortened. For example, Japanese Unexamined Patent Application Publication No. 2010-3488 describes that the lamp life of a ceramic metal halide lamp is 15000 hours or more, but does not describe that a correlated color temperature of about 2500 K is achieved at the same time.
 本発明の目的は、ランプ寿命を犠牲にすることなく2500K程度の相関色温度を達成することができるセラミックメタルハライドランプを提供することにある。 An object of the present invention is to provide a ceramic metal halide lamp capable of achieving a correlated color temperature of about 2500 K without sacrificing lamp life.
 本発明によると、1対の電極を内包し透光性セラミックによって形成された発光管と、前記発光管を収納する透光性外管と、を有するセラミックメタルハライドランプにおいて、
 前記発光管は、始動用希ガス、水銀及び添加物を封入しており、該添加物はヨウ化タリウムTlI、ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2、ヨウ化リチウムLiI、及び、希土類金属ヨウ化物ReI3を含み、更に、相関色温度が2250~2750K、管壁負荷が20~30W/cm2、定格出力が35~400W、となるように構成され、
 前記添加物の全モル数に対するヨウ化ナトリウムのモル比率をM(NaI)[mol%]、希土類金属ヨウ化物ReI3のモル比率とヨウ化タリウムTlIのモル比率の和をM(ReI3 +TlI)[mol%]とするとき、前記M(NaI)、及び、M(ReI3 +TlI)は、次の式を満たすことを特徴とする。
According to the present invention, in a ceramic metal halide lamp having an arc tube formed of a translucent ceramic that encloses a pair of electrodes, and a translucent outer tube that houses the arc tube,
The arc tube encloses a starting rare gas, mercury, and an additive. The additive includes thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 , lithium iodide LiI, and rare earth metal iodide. includes a compound ReI 3, further correlated color temperature of 2250 ~ 2750K, tube wall loading is 20 ~ 30W / cm 2, is configured to rated output is 35 ~ 400W, and,
The molar ratio of sodium iodide to the total number of moles of the additive is M (NaI) [mol%], and the sum of the molar ratio of the rare earth metal iodide ReI 3 and the molar ratio of thallium iodide TlI is M (ReI 3 + TlI ) [mol%], M (NaI) and M (ReI 3 + TlI) satisfy the following formula.
 4<M(NaI)/M(ReI3 +TlI)<16
 2mol%<M(ReI3 +TlI)<9mol%
 本実施形態によると、前記添加物の発光管容積1cm3当たりの総量をG(total)[mg/cm3]、前記添加物に含まれる希土類金属のヨウ化物の発光管1cm3当たりの添加量をG(ReI3)[mg/cm3]とするとき、前記G(total)、及びG(ReI3)は、次の式を満たしてよい。
4 <M (NaI) / M (ReI 3 + TlI) <16
2 mol% <M (ReI 3 + TlI) <9 mol%
According to this embodiment, G (total) [mg / cm 3 ] is the total amount of the additive per 1 cm 3 arc tube volume, and the amount of rare earth metal iodide contained in the additive per 1 cm 3 arc tube Is G (ReI 3 ) [mg / cm 3 ], the G (total) and G (ReI 3 ) may satisfy the following equation.
 G(total)<44mg/cm3
 G(ReI3)<11mg/cm3
 本実施形態によると、セラミックメタルハライドランプにおいて、前記添加物の全モル数に対するヨウ化ナトリウムのモル比率M(NaI)、ヨウ化カルシウムのモル比率M(CaI2)及びヨウ化リチウムのモル比率M(LiI)の合計をM(NaI+ CaI2+ LiI)とするとき、該合計は、次の式を満たしてよい。
G (total) <44 mg / cm 3
G (ReI 3 ) <11 mg / cm 3
According to this embodiment, in the ceramic metal halide lamp, the molar ratio M (NaI) of sodium iodide, the molar ratio M of calcium iodide (CaI 2 ), and the molar ratio M of lithium iodide M ( When the sum of LiI) is M (NaI + CaI 2 + LiI), the sum may satisfy the following formula:
 50mol%<M(NaI+ CaI2+LiI)<96mol%
 本実施形態によると、セラミックメタルハライドランプにおいて、前記添加物の全モル数に対するヨウ化ナトリウムのモル比率M(NaI)、ヨウ化カルシウムのモル比率M(CaI2)及びヨウ化リチウムのモル比率M(LiI)は、それぞれ次の式を満たしてよい。
50mol% <M (NaI + CaI 2 + LiI) <96mol%
According to this embodiment, in the ceramic metal halide lamp, the molar ratio M (NaI) of sodium iodide, the molar ratio M of calcium iodide (CaI 2 ), and the molar ratio M of lithium iodide M ( LiI) may each satisfy the following equation:
 30mol%<M(NaI)<70mol%
 10mol%<M(CaI2)<40mol%
 10mol%<M(LiI)<30mol%
 本実施形態によると、セラミックメタルハライドランプにおいて、
 前記添加物は、希土類金属ヨウ化物として、ヨウ化ツリウムTmI3、ジスプロシウムDy、ホルミウムHo、及び、セリウムCeのヨウ化物のいずれか1つ以上(ただしヨウ化ツリウムTmI3は必須)を含んでよい。
30 mol% <M (NaI) <70 mol%
10 mol% <M (CaI 2 ) <40 mol%
10 mol% <M (LiI) <30 mol%
According to this embodiment, in the ceramic metal halide lamp,
The additive may include at least one of thulium iodide TmI 3 , dysprosium Dy, holmium Ho, and cerium Ce iodide as a rare earth metal iodide (thulium iodide TmI 3 is essential). .
 本実施形態によると、セラミックメタルハライドランプにおいて、
 前記発光管の相関色温度は2400~2600Kであり、前記M(NaI)及びM(ReI3 +TlI)は次の式を満たしてよい。
According to this embodiment, in the ceramic metal halide lamp,
The correlated color temperature of the arc tube is 2400 to 2600 K, and the M (NaI) and M (ReI 3 + TlI) may satisfy the following equation.
 7<M(NaI)/M(ReI3 +TlI)<13 7 <M (NaI) / M (ReI 3 + TlI) <13
 本発明によれば、ランプ寿命を犠牲にすることなく2500K程度の相関色温度を達成することができるセラミックメタルハライドランプを提供することができる。 According to the present invention, a ceramic metal halide lamp capable of achieving a correlated color temperature of about 2500 K without sacrificing lamp life can be provided.
図1は、本発明に係るセラミックメタルハライドランプの発光管の例を説明する図である。FIG. 1 is a diagram illustrating an example of an arc tube of a ceramic metal halide lamp according to the present invention. 図2は、本発明に係るセラミックメタルハライドランプの例を説明する図である。FIG. 2 is a diagram illustrating an example of a ceramic metal halide lamp according to the present invention. 図3は、本発明に係るセラミックメタルハライドランプの例を説明する図である。FIG. 3 is a diagram illustrating an example of a ceramic metal halide lamp according to the present invention. 図4Aは、本発明に係るセラミックメタルハライドランプの発光管の試験結果を説明する図である。FIG. 4A is a diagram for explaining the test results of the arc tube of the ceramic metal halide lamp according to the present invention. 図4Bは、本発明に係るセラミックメタルハライドランプの発光管の試験結果を説明する図である。FIG. 4B is a diagram for explaining the test results of the arc tube of the ceramic metal halide lamp according to the present invention.
 以下、本発明に係るセラミックメタルハライドランプの実施形態に関して、添付の図面を参照しながら詳細に説明する。なお、図中、同一の要素に対しては同一の参照符号を付して、重複した説明を省略する。 Hereinafter, embodiments of a ceramic metal halide lamp according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1を参照して本発明に係るセラミックメタルハライドランプの発光管の例を説明する。発光管2は、発光部3と、その両端に延びるキャピラリ4A、4Bを有する。発光部3とキャピラリ4A、4Bは、アルミナなど透光性セラミックの粉末を圧縮して一体成形することにより形成される。キャピラリ4A、4Bの両端には、電極アセンブリ6A、6Bが、それぞれ挿通されている。キャピラリ4A、4Bの両端は、電気絶縁性を有するフリットガラスによって気密にシールされる。それによって、電極アセンブリ6A、6Bは、キャピラリ4A、4B内の定位置に固定される。電極アセンブリ6A、6Bの内端に設けられた電極5A、5Bは、発光部3内の定位置に配置される。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。 An example of an arc tube of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The arc tube 2 includes a light emitting unit 3 and capillaries 4A and 4B extending at both ends thereof. The light emitting section 3 and the capillaries 4A and 4B are formed by compressing and integrally forming a light transmitting ceramic powder such as alumina. Electrode assemblies 6A and 6B are inserted through both ends of the capillaries 4A and 4B, respectively. Both ends of the capillaries 4A and 4B are hermetically sealed by frit glass having electrical insulation. Thereby, the electrode assemblies 6A and 6B are fixed in place in the capillaries 4A and 4B. The electrodes 5A and 5B provided at the inner ends of the electrode assemblies 6A and 6B are arranged at fixed positions in the light emitting unit 3. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
 発光部3の内部には、アルゴン及び水銀に加えて、添加物が封入されている。添加物には、アルカリ金属のヨウ化物、アルカリ土類金属のヨウ化物、希土類金属のヨウ化物、等の発光物質が含まれる。発光部3に封入される添加物については後に詳細に説明する。 The inside of the light emitting unit 3 is filled with additives in addition to argon and mercury. Additives include luminescent materials such as alkali metal iodides, alkaline earth metal iodides, rare earth metal iodides, and the like. The additive sealed in the light emitting unit 3 will be described in detail later.
 発光管2の内側寸法として、有効長さLと有効内径Dを定義する。有効長さLは、円筒形発光管においては両端面間の距離であり、図1のように発光部とキャピラリが連続的に成形されている発光管においては直管状のキャピラリ4A、4Bと発光管3の間の遷移曲面L1、L1の外端間の距離で定義される。有効内径Dは、円筒形以外の発光管にあっては、電極5A、5B間中央部の最大内径で定義される。発光管2の有効長さをL、有効内径をDとし、両者の比L/Dをアスペクト比と称することとする。 The effective length L and the effective inner diameter D are defined as the inner dimensions of the arc tube 2. The effective length L is the distance between both end faces in the case of a cylindrical arc tube, and in the arc tube in which the light emitting part and the capillary are continuously formed as shown in FIG. 1, light is emitted from the straight tubular capillaries 4A and 4B. It is defined by the distance between the outer ends of the transition curved surfaces L1, L1 between the tubes 3. The effective inner diameter D is defined as the maximum inner diameter of the central portion between the electrodes 5A and 5B in a light emitting tube other than a cylindrical shape. The effective length of the arc tube 2 is L, the effective inner diameter is D, and the ratio L / D between them is called the aspect ratio.
 発光部3の各部の温度は、発光管の壁面負荷、透光性外管内のガス圧力、発光管材質及び発光管のアスペクト比(L/D)によって決まり、特に壁面負荷に大きく依存する。壁面負荷は、ランプ電力を発光部3の全内面積で除した値で定義される。本実施形態では、発光部3は、壁面負荷が20~30W/cm2(定格出力35~400W)となるように設計されている。こうして本実施形態では、発光部の内壁面を構成する材料と希土類金属ヨウ化物の化学反応速度を低く抑えることができ、ランプを長寿命化することができる。 The temperature of each part of the light emitting unit 3 is determined by the wall load of the arc tube, the gas pressure in the translucent outer tube, the arc tube material, and the aspect ratio (L / D) of the arc tube, and particularly depends greatly on the wall load. The wall surface load is defined by a value obtained by dividing the lamp power by the total inner area of the light emitting unit 3. In the present embodiment, the light emitting unit 3 is designed so that the wall load is 20 to 30 W / cm 2 (rated output 35 to 400 W). Thus, in this embodiment, the chemical reaction rate between the material constituting the inner wall surface of the light emitting part and the rare earth metal iodide can be kept low, and the life of the lamp can be extended.
 図2を参照して本発明に係るセラミックメタルハライドランプの例を説明する。本例のセラミックメタルハライドランプ1は、発光管2と、発光部3を囲むように配置された円筒状の透光性スリーブ18と、片端に口金12が設けられた外球13とを有する。発光管2の構造は図1を参照して説明した。 An example of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The ceramic metal halide lamp 1 of the present example includes a light emitting tube 2, a cylindrical translucent sleeve 18 disposed so as to surround the light emitting portion 3, and an outer sphere 13 provided with a base 12 at one end. The structure of the arc tube 2 has been described with reference to FIG.
 口金12のステム14に、2本の支柱15、16が装着されている。支柱には、2つのサポートディスク17A、17Bが所定間隔にて装着されている。また、ディスク17A、17Bに円筒状の透光性スリーブ18が固定されている。ディスク17Bにゲッタ20が装着されている。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。電力供給リード7A、7Bの先端は、直接、又は、ニッケル線19A、19Bを介して、それぞれ、支柱15、16に溶接される。こうして、発光管2の電極5A、5Bは、電力供給リード7A、7B及び支柱15、16を介して、口金12に電気的に接続される。 Two stems 15 and 16 are mounted on the stem 14 of the base 12. Two support disks 17A and 17B are mounted on the support at predetermined intervals. A cylindrical translucent sleeve 18 is fixed to the disks 17A and 17B. A getter 20 is mounted on the disk 17B. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16 directly or via nickel wires 19A and 19B, respectively. Thus, the electrodes 5A and 5B of the arc tube 2 are electrically connected to the base 12 via the power supply leads 7A and 7B and the columns 15 and 16.
 図3を参照して本発明に係るセラミックメタルハライドランプの例を説明する。本例のセラミックメタルハライドランプ1は、発光管2と外球13を有する。発光管2の構造は図1を参照して説明した。外球13の一端に、外球チップオフ部13Aが形成され、他端に、ピンチシール部13Bが形成されている。ピンチシール部13Bの端部には口金12が装着されている。口金12には外部端子9A、9Bが装着されている。 An example of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The ceramic metal halide lamp 1 of this example has an arc tube 2 and an outer bulb 13. The structure of the arc tube 2 has been described with reference to FIG. An outer sphere tip-off portion 13A is formed at one end of the outer sphere 13, and a pinch seal portion 13B is formed at the other end. A base 12 is attached to the end of the pinch seal portion 13B. External terminals 9 </ b> A and 9 </ b> B are attached to the base 12.
 ピンチシール部13Bには、2本の支柱15、16が固定されている。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。電力供給リード7A、7Bの先端は、それぞれ、支柱15、16に溶接される。支柱15にゲッタ20が装着されている。支柱15、16は、ピンチシール部13Bにて、金属箔8A、8Bを介して外部端子9A、9Bに電気的に接続されている。 Two struts 15 and 16 are fixed to the pinch seal portion 13B. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16, respectively. A getter 20 is mounted on the column 15. The support columns 15 and 16 are electrically connected to the external terminals 9A and 9B via the metal foils 8A and 8B at the pinch seal portion 13B.
 こうして、発光管2の電極5A、5Bは、電力供給リード7A、7B、及び、支柱15、16、及び、金属箔8A、8Bを介して、外部端子9A、9Bに電気的に接続される。 Thus, the electrodes 5A and 5B of the arc tube 2 are electrically connected to the external terminals 9A and 9B via the power supply leads 7A and 7B, the support columns 15 and 16, and the metal foils 8A and 8B.
 本発明に係るセラミックメタルハライドランプは、図2及び図3に示す例のほか、凹面状の反射鏡を備えた反射型セラミックメタルハライドランプであってもよい。 The ceramic metal halide lamp according to the present invention may be a reflective ceramic metal halide lamp provided with a concave reflecting mirror in addition to the examples shown in FIGS.
 本願の発明者は、生鮮食品の照明に、高彩度高演色形高圧ナトリウムランプが好んで用いられている理由を検討した。その理由として、相関色温度CCT、演色指数CRI、および波長スペクトル分布など、様々な要因が考えられるが、先ず、相関色温度CCTに着目した。その理由は、野菜、パン、肉等の生鮮食品の照明では、赤系統の色を鮮やかに見せたいとの要求があるからである。 The inventor of the present application examined the reason why high-saturation and high-color-rendering high-pressure sodium lamps were favorably used for lighting fresh foods. Various factors such as correlated color temperature CCT, color rendering index CRI, and wavelength spectrum distribution can be considered as the reason. First, focused on correlated color temperature CCT. The reason is that there is a demand for vivid colors of red lines in lighting of fresh foods such as vegetables, bread and meat.
 高彩度高演色形高圧ナトリウムランプの相関色温度は、通常、2500K前後である。一方、従来のセラミックメタルハライドランプでは、同程度の相関色温度を得ることは困難であり、通常、それよりも高い相関色温度が得られる。本願の発明者は、高彩度高演色形高圧ナトリウムランプの相関色温度と同程度の相関色温度を得ることができるセラミックメタルハライドランプを作り出すことを考えた。但し、所望の相関色温度を達成することができても、ランプ寿命、色度偏差Duv、演色指数CRI、発光効率η等が劣化したのでは意味が無い。そこで、本願の発明者は次のような目標を設定した。 The correlated color temperature of a high-saturation, high color rendering high-pressure sodium lamp is usually around 2500K. On the other hand, with a conventional ceramic metal halide lamp, it is difficult to obtain the same correlated color temperature, and usually a higher correlated color temperature is obtained. The inventor of the present application considered creating a ceramic metal halide lamp capable of obtaining a correlated color temperature comparable to that of a high-saturation, high color rendering high-pressure sodium lamp. However, even if the desired correlated color temperature can be achieved, it is meaningless if the lamp life, the chromaticity deviation Duv, the color rendering index CRI, the light emission efficiency η, and the like deteriorate. Therefore, the inventors of the present application set the following goals.
 (1)相関色温度の目標:約2500K、即ち、2500K±10%(2250~2750K)、好ましくは、2400~2600Kである。 (1) Target correlated color temperature: about 2500K, that is, 2500K ± 10% (2250-2750K), preferably 2400-2600K.
 (2)ランプ寿命の目標:15000時間以上である。 (2) Lamp life target: 15000 hours or more.
 (3)色度偏差Duvの目標:-2<Duv<+1である。演色指数CRI、及び、発光効率ηは所定値以上である。色度偏差Duvは、色度図上における黒体軌跡(BBL)からのずれを表す。色度図上における黒体軌跡(BBL)は、太陽光の自然な色味を表す。Duv=0は、色度が黒体軌跡(BBL)上にあることを表す。 (3) Target of chromaticity deviation Duv: −2 <Duv <+1. The color rendering index CRI and the luminous efficiency η are greater than or equal to predetermined values. The chromaticity deviation Duv represents a deviation from the black body locus (BBL) on the chromaticity diagram. The black body locus (BBL) on the chromaticity diagram represents the natural color of sunlight. Duv = 0 indicates that the chromaticity is on the black body locus (BBL).
 本願の発明者は、このような目標を達成するために、セラミックメタルハライドランプの発光管に封入する添加物を鋭意検討し、様々な添加物の組み合わせを作成して、実験を行った。添加物として、希土類金属のヨウ化物、アルカリ金属のヨウ化物、及び、アルカリ土類金属のヨウ化物を用いた。 In order to achieve such a goal, the inventor of the present application diligently studied the additives to be sealed in the arc tube of the ceramic metal halide lamp, and created various combinations of additives and conducted experiments. As additives, rare earth metal iodides, alkali metal iodides, and alkaline earth metal iodides were used.
 本願の発明者が行った実験において、希土類金属のヨウ化物には、ジスプロシウムDy、ホルミウムHo、ツリウムTm、セリウムCe等のヨウ化物が含まれる。アルカリ金属のヨウ化物には、ナトリウムNa、リチウムLi等のヨウ化物が含まれる。アルカリ土類金属ヨウ化物には、カルシウムCa等のヨウ化物が含まれる。更に、本願の発明者が行った実験において、添加物として、タリウムTlのヨウ化物が含まれる。尚、インジウム、バリウム等は用いていない。発明者の行った実験では、ハロゲン化物として、ヨウ化物を用いたが、他のハロゲン化物であってもよい。 In experiments conducted by the inventors of the present application, the rare earth metal iodides include iodides such as dysprosium Dy, holmium Ho, thulium Tm, and cerium Ce. Alkali metal iodides include iodides such as sodium Na and lithium Li. Alkaline earth metal iodides include iodides such as calcium Ca. Furthermore, in experiments conducted by the inventors of the present application, thallium Tl iodide is included as an additive. Indium, barium, etc. are not used. In the experiments conducted by the inventors, iodide was used as the halide, but other halides may be used.
 一般に、ナトリウムNaを添加すると、相関色温度が下がることが知られているが、本実施形態では、更にリチウムLiを加えることにより、赤色のバランスを調整することとした。ヨウ化ジスプロシウムDyI3を添加すると、演色性が向上するが、発光効率が下がり、ヨウ化ホルミウムHoI3、及び、ヨウ化ツリウムTmI3を添加すると、それぞれ、発光効率が上がることが知られている。ヨウ化セリウムCeI3、及び、ヨウ化タリウムTlIを添加すると、それぞれ、発光効率が上がり、色度偏差Duvの数値が大きくなる方向にずれることが知られている。ヨウ化カルシウムCaI2を添加すると、色度偏差Duvの数値が小さくなる方向にずれるが、特殊演色評価数(赤系)R9が向上することが知られている。 In general, it is known that when sodium Na is added, the correlated color temperature decreases. However, in this embodiment, the red balance is adjusted by further adding lithium Li. The addition of dysprosium iodide DyI 3, but improves the color rendering, luminous efficiency is lowered, iodide holmium HoI 3 and, that the addition of iodide thulium TmI 3, it is known that each luminous efficiency is improved . It is known that when cerium iodide CeI 3 and thallium iodide TlI are added, the luminous efficiency increases and the numerical value of the chromaticity deviation Duv increases. It is known that the addition of calcium iodide CaI 2 shifts the numerical value of the chromaticity deviation Duv, but the special color rendering index (red) R9 is improved.
 一般に、高圧ナトリウムランプでは、添加物としてNa(例えばナトリウムと水銀のアマルガム)を用いるが、セラミックメタルハライドランプでは、ヨウ化ナトリウムNaIを用いる。液体ナトリウムと液体ヨウ化ナトリウムの飽和蒸気圧はそれぞれ次の式によって表される。 Generally, Na (for example, sodium and mercury amalgam) is used as an additive in a high-pressure sodium lamp, but sodium iodide NaI is used in a ceramic metal halide lamp. The saturated vapor pressures of liquid sodium and liquid sodium iodide are expressed by the following equations, respectively.
 logP(Na)=-5269(1/T)+4.555                 式1
 logP(NaI)=-8046(1/T)+5.084                式2
 P(Na)は液体ナトリウムの飽和蒸気圧[atm]、P(NaI)は液体ヨウ化ナトリウムの飽和蒸気圧[atm]である。logは常用対数、Tは絶対温度[K]である。
logP (Na) =-5269 (1 / T) +4.555 Equation 1
logP (NaI) =-8046 (1 / T) +5.084 Equation 2
P (Na) is the saturated vapor pressure [atm] of liquid sodium, and P (NaI) is the saturated vapor pressure [atm] of liquid sodium iodide. log is the common logarithm, and T is the absolute temperature [K].
 これらの式を用いて、例えば、温度800℃における液体ナトリウムと液体ヨウ化ナトリウムの飽和蒸気圧P[atm]を求めることができる。T=800℃=1073Kを式1及び式2に代入すると、P(Na)=0.441atm、P(NaI)=0.00385atmとなる。800℃における液体ヨウ化ナトリウムの飽和蒸気圧P(NaI)は、液体ナトリウムの飽和蒸気圧P(Na)の1/100以下である。従って、セラミックメタルハライドランプの発光管内におけるヨウ化ナトリウムの気化量は、高圧ナトリウムランプの発光管内におけるナトリウムの気化量と比較すると、極めて少量である。 Using these equations, for example, the saturated vapor pressure P [atm] of liquid sodium and liquid sodium iodide at a temperature of 800 ° C. can be obtained. Substituting T = 800 ° C. = 1073 K into Equation 1 and Equation 2 results in P (Na) = 0.441 atm and P (NaI) = 0.00385 atm. The saturated vapor pressure P (NaI) of liquid sodium iodide at 800 ° C. is 1/100 or less of the saturated vapor pressure P (Na) of liquid sodium. Therefore, the amount of sodium iodide vaporized in the arc tube of the ceramic metal halide lamp is very small compared to the amount of sodium vaporized in the arc tube of the high-pressure sodium lamp.
 従って高彩度高演色高圧ナトリウムランプのように589nmのナトリウム輝線の吸収を過剰に大きくして赤系統の発色を強調し演色指数CRIを高める手法はセラミックメタルハライドランプでは使えない。また封入するヨウ化ナトリウムの絶対量を多くしても、ヨウ化タリウムや希土類のヨウ化物が多く封入されていれば青色~緑色系統の発光が多くなりランプ全体の相関色温度CCTは低くならない場合もある。 Therefore, the technique of enhancing the color rendering index CRI by excessively increasing the absorption of the 589 nm sodium emission line and increasing the color rendering index CRI, such as a high saturation high color rendering high pressure sodium lamp, cannot be used with ceramic metal halide lamps. Even if the absolute amount of sodium iodide to be encapsulated is increased, if a large amount of thallium iodide or rare earth iodide is encapsulated, blue to green light emission will increase and the correlated color temperature CCT of the entire lamp will not decrease. There is also.
 そこで、本願の発明者は、添加物に占めるヨウ化ナトリウム量に着目して以下のようなパラメータを選択した。 Therefore, the inventors of the present application selected the following parameters by paying attention to the amount of sodium iodide in the additive.
 希土類金属のヨウ化物の添加量をG(ReI3)、アルカリ金属のヨウ化物の添加量をG(AI)、アルカリ土類金属のヨウ化物の添加量をG(AeI2)と表すこととする。ヨウ化タリウムの添加量をG(TlI)、添加物の総量をG(total)と表すこととする。添加物の総量G(total)は次の式によって表される。 The amount of rare earth metal iodide added is G (ReI 3 ), the amount of alkali metal iodide added is G (AI), and the amount of alkaline earth metal iodide added is G (AeI 2 ). . The amount of thallium iodide added is expressed as G (TlI), and the total amount of additives is expressed as G (total). The total amount G (total) of the additive is expressed by the following formula.
 G(total)=G(ReI3)+G(AI)+G(AeI2)+G(TlI)     式3
 ここで、G(total)、G(ReI3)、G(AI)、G(AeI2)、及び、G(TlI)は、発光管容積1cm3当たりの質量であり、単位は[mg/cm3]である。
G (total) = G (ReI 3 ) + G (AI) + G (AeI 2 ) + G (TlI) Equation 3
Here, G (total), G (ReI 3 ), G (AI), G (AeI 2 ), and G (TlI) are masses per 1 cm 3 of the arc tube volume, and the unit is [mg / cm 3 ].
 添加物の全モル数に対するヨウ化ナトリウムのモル比率をM(NaI)[mol%]、希土類金属のヨウ化物のモル比率とヨウ化タリウムのモル比率の和をM(ReI3+TlI)[mol%]と表すこととする。このモル比率の和M(ReI3+TlI)に対するヨウ化ナトリウムのモル比率M(NaI)の比をαとする。αは次の式によって表される。 The molar ratio of sodium iodide to the total number of moles of additive is M (NaI) [mol%], and the sum of the molar ratio of the rare earth metal iodide and the thallium iodide is M (ReI 3 + TlI) [mol %]. Let α be the ratio of the molar ratio M (NaI) of sodium iodide to the sum M (ReI 3 + TlI) of this molar ratio. α is represented by the following equation.
 α= M(NaI)/M(ReI3 +TlI)      式4
 図4Aは、本願の発明者が行った実験の結果を示す図である。縦軸は、相関色温度、横軸は、式4によって表される比αである。相関色温度の目標、即ち、約2500K±10%(2250~2750K)となるのは、比αが4<α<16の場合である。更に、相関色温度が2400~2600Kとなるのは、比αが7<α<13の場合である。
α = M (NaI) / M (ReI 3 + TlI) Formula 4
FIG. 4A is a diagram illustrating a result of an experiment performed by the inventor of the present application. The vertical axis represents the correlated color temperature, and the horizontal axis represents the ratio α represented by Equation 4. The target of the correlated color temperature, that is, about 2500 K ± 10% (2250 to 2750 K) is obtained when the ratio α is 4 <α <16. Further, the correlated color temperature is 2400 to 2600 K when the ratio α is 7 <α <13.
 図4Bは、本願の発明者が行った実験の結果を示す図である。縦軸は、色度偏差Duv、横軸は、添加物の全モル数に対する希土類金属ヨウ化物のモル比率とヨウ化タリウムのモル比率の和M(ReI3 +TlI)[mol%]である。色度偏差Duvの目標、即ち、Duv=-2~1となるのは、2mol%<M(ReI3 +TlI)<9mol%の場合である。 FIG. 4B is a diagram illustrating a result of an experiment performed by the inventor of the present application. The vertical axis represents the chromaticity deviation Duv, and the horizontal axis represents the sum M (ReI 3 + TlI) [mol%] of the molar ratio of the rare earth metal iodide and the molar ratio of thallium iodide to the total number of moles of the additive. The target of the chromaticity deviation Duv, that is, Duv = −2 to 1 is when 2 mol% <M (ReI 3 + TlI) <9 mol%.
 こうして図4A及び図4Bより、相関色温度の目標、即ち、約2500K±10%(2250~2750K)、及び、色度偏差Duvの目標、即ち、Duvが-2~+1となる条件は、次の式によって表される。 4A and 4B, the target of the correlated color temperature, that is, about 2500K ± 10% (2250-2750K), and the target of the chromaticity deviation Duv, that is, the condition that Duv is −2 to +1 are as follows. It is represented by the formula of
 4<M(NaI)/M(ReI3 +TlI)<16     式5
 2mol%<M(ReI3 +TlI)<9mol%     式6
 相関色温度の目標、2400~2600K、及び、色度偏差Duvの目標、Duvが-2~+1となる条件は、次の式によって表される。
4 <M (NaI) / M (ReI 3 + TlI) <16 Formula 5
2 mol% <M (ReI 3 + TlI) <9 mol% Formula 6
The target of the correlated color temperature, 2400 to 2600 K, the target of the chromaticity deviation Duv, and the condition that Duv is −2 to +1 are expressed by the following equations.
 7<M(NaI)/M(ReI3 +TlI)<13     式7
 2mol%<M(ReI3 +TlI)<9mol%     式8
 表1は、本願の発明者が行った実験に使用したセラミックメタルハライドランプの発光管の添加物の組成を示す。ここでは、相関色温度の目標と色度偏差Duvの目標を達成することができた5種のセラミックメタルハライドランプの条件を示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、M(TmI3)、M(HoI3)、M(TlI)、M(NaI)、M(CaI2)、及び、M(LiI)は、それぞれ、ヨウ化ツリウムTmI3、ヨウ化ホルミウムHoI3、ヨウ化タリウムTlI、ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIのモル比率(百分率)を表す。本願の発明者が行った実験では、発光管の添加物は、ヨウ化タリウムTlI、ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIを含む。ナトリウムNaは橙色系、カルシウムCaは赤色系、リチウムLiは真紅色系に寄与する。ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIをそれぞれ所定のモル比率にて添加することにより、所望の相関色温度が得られる。
7 <M (NaI) / M (ReI 3 + TlI) <13 Formula 7
2 mol% <M (ReI 3 + TlI) <9 mol% Formula 8
Table 1 shows the composition of the arc tube additive of the ceramic metal halide lamp used in the experiment conducted by the inventors of the present application. Here, conditions of five types of ceramic metal halide lamps that can achieve the target of the correlated color temperature and the target of the chromaticity deviation Duv are shown.
Figure JPOXMLDOC01-appb-T000001
In Table 1, M (TmI 3 ), M (HoI 3 ), M (TlI), M (NaI), M (CaI 2 ), and M (LiI) are respectively thulium iodide TmI 3 and iodide. It represents the molar ratio (percentage) of holmium HoI 3 , thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI. In experiments conducted by the inventors of the present application, the arc tube additive contains thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI. Sodium Na contributes to the orange system, calcium Ca contributes to the red system, and lithium Li contributes to the crimson system. By adding sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI in a predetermined molar ratio, a desired correlated color temperature can be obtained.
 ヨウ化タリウムTlIを添加することにより、発光効率が上がるが、色度偏差Duvが大きくなる方向にずれる。しかしながら、本実施形態では、ヨウ化カルシウムCaI2を添加することにより、色度偏差Duvの増加を抑えている。 By adding thallium iodide TlI, the luminous efficiency increases, but the chromaticity deviation Duv increases. However, in this embodiment, by adding calcium iodide CaI 2, to suppress the increase of the chromaticity deviation Duv.
 更に、添加物は、希土類金属ヨウ化物ReI3として、ヨウ化ツリウムTmI3を含み、更に、ヨウ化ホルミウムHoI3を含んでもよい。ヨウ化ツリウムTmI3、及び、ヨウ化ホルミウムHoI3を添加することにより、それぞれ発光効率が向上する。 Further, the additive may include thulium iodide TmI 3 as the rare earth metal iodide ReI 3, and may further include holmium iodide HoI 3 . Luminous efficiency is improved by adding thulium iodide TmI 3 and holmium iodide HoI 3 , respectively.
 表1から次の知見が得られる。本実施形態によると、発光管の添加物は、ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIを含み、これらのモル比率は次のように表される。 The following knowledge is obtained from Table 1. According to the present embodiment, the arc tube additive includes sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI, and the molar ratio thereof is expressed as follows.
 30mol%<M(NaI)<70mol%     式9
 10mol%<M(CaI2)<40mol%     式10
 10mol%<M(LiI)<30mol%     式11
 更に、ヨウ化ナトリウムのモル比率、ヨウ化カルシウムのモル比率、及び、ヨウ化リチウムのモル比率の合計を、M(NaI+ CaI2+ LiI)とすると、この値は、次の式を満たす。
30 mol% <M (NaI) <70 mol% Formula 9
10 mol% <M (CaI 2 ) <40 mol% Formula 10
10 mol% <M (LiI) <30 mol% Formula 11
Further, when the sum of the molar ratio of sodium iodide, the molar ratio of calcium iodide, and the molar ratio of lithium iodide is M (NaI + CaI 2 + LiI), this value satisfies the following formula.
 50mol%<M(NaI+ CaI2+ LiI)<96mol%     式12
 表2の数値は、表1に示した添加物について、式4によって表されるαの値、希土類金属ヨウ化物のモル比率とヨウ化タリウムのモル比率の和M(ReI3 +TlI)、式3によって表される発光管容積1cm3当たりの添加物の総量G(total)、発光管容積1cm3当たりの希土類金属ヨウ化物の添加量G(ReI3)を計算した結果を示す。希土類金属ヨウ化物ReI3は、表1に示すように、ヨウ化ツリウムTmI3とヨウ化ホルミウムHoI3である。
Figure JPOXMLDOC01-appb-T000002
 表3はこれらの5種のセラミックメタルハライドランプについて、相関色温度CCT、色度偏差Duv、平均演色評価数Ra、及び、発光効率ηを測定した結果を示す。平均演色評価数Raはいずれも90より大きく、発光効率はいずれも75lm/Wより大きかった。
Figure JPOXMLDOC01-appb-T000003
 次に、本願の発明者は、セラミックメタルハライドランプの発光管に封入する添加物をパラメータとして、ランプ寿命L[h]が15000時間以上となる条件を見出した。表4は、出願人が今までに開発してきたうち一部のランプ仕様を整理したものである。ここでは、No.11~20の10種のセラミックメタルハライドランプについてまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4において、G(total)は、式3によって表される発光管容積1cm3当たりの添加物の総量である。G(ReI3)は、発光管容積1cm3当たりの希土類金属ヨウ化物の添加量である。いずれも、単位は[mg/cm3]である。この結果から、ランプ寿命を長くするためには添加物総量及び希土類ヨウ化物の添加量を制限する必要があることが判る。ランプ寿命L[h]が15000時間より長いのは、試験番号No.16~20である。以上の結果から、式5~式11の条件を有し、且つ、ランプ寿命L[h]が15000時間より長くなるためには、次の条件が必要である。
50mol% <M (NaI + CaI 2 + LiI) <96mol% formula 12
The numerical values in Table 2 are the values of α represented by Formula 4, the sum of the rare earth metal iodide molar ratio and the thallium iodide molar ratio M (ReI 3 + TlI), for the additives shown in Table 1. 3 shows the results of calculating the total amount G (total) of additives per 1 cm 3 arc tube volume represented by 3 and the rare earth metal iodide addition amount G (ReI 3 ) per 1 cm 3 arc tube volume. As shown in Table 1, rare earth metal iodides ReI 3 are thulium iodide TmI 3 and holmium iodide HoI 3 .
Figure JPOXMLDOC01-appb-T000002
Table 3 shows the results of measuring the correlated color temperature CCT, the chromaticity deviation Duv, the average color rendering index Ra, and the luminous efficiency η for these five ceramic metal halide lamps. The average color rendering index Ra was greater than 90, and the luminous efficiency was greater than 75 lm / W.
Figure JPOXMLDOC01-appb-T000003
Next, the inventor of the present application has found a condition that the lamp life L [h] is 15000 hours or longer with the additive enclosed in the arc tube of the ceramic metal halide lamp as a parameter. Table 4 summarizes some of the lamp specifications that the applicant has developed so far. Here, 10 types of ceramic metal halide lamps Nos. 11 to 20 are summarized.
Figure JPOXMLDOC01-appb-T000004
In Table 4, G (total) is the total amount of additive per 1 cm 3 arc tube volume represented by Equation 3. G (ReI 3 ) is the amount of rare earth metal iodide added per 1 cm 3 arc tube volume. In either case, the unit is [mg / cm 3 ]. From this result, it can be seen that it is necessary to limit the total amount of additive and the amount of rare earth iodide added in order to extend the lamp life. Test numbers No. 16 to 20 have a lamp life L [h] longer than 15000 hours. From the above results, the following conditions are necessary for satisfying the conditions of Expressions 5 to 11 and for the lamp life L [h] to be longer than 15000 hours.
 G(total)<44mg/cm3                式13
 G(ReI3)<11mg/cm3                 式14
 以上、本実施形態に係るセラミックメタルハライドランプについて説明したが、これらは例示であって、本発明の範囲を制限するものではない。当業者が、本実施形態に対して容易になしえる追加・削除・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の特許請求の記載によって定められる。
G (total) <44 mg / cm 3 Formula 13
G (ReI 3 ) <11 mg / cm 3 Formula 14
The ceramic metal halide lamp according to the present embodiment has been described above, but these are examples and do not limit the scope of the present invention. Additions, deletions, changes, improvements, and the like that can be easily made by those skilled in the art to the present embodiment are within the scope of the present invention. The technical scope of the present invention is defined by the appended claims.
1…セラミックメタルハライドランプ、 2…発光管、 4A、4B…キャピラリ、 5A、5B…電極、 6A、6B…電極アセンブリ、 7A、7B…電力供給リード、 8A、8B…金属箔、 9A、9B…外部端子、 12…口金、 13…外球、 14…ステム、 15、16…支柱、 17A、17B…サポートディスク、 18…透光性スリーブ、 19A、19B…ニッケル線、 20…ゲッタ、 13A…外球チップオフ部、
 13B…ピンチシール部
DESCRIPTION OF SYMBOLS 1 ... Ceramic metal halide lamp, 2 ... Arc tube, 4A, 4B ... Capillary, 5A, 5B ... Electrode, 6A, 6B ... Electrode assembly, 7A, 7B ... Power supply lead, 8A, 8B ... Metal foil, 9A, 9B ... External Terminal: 12 ... Base, 13 ... Outer sphere, 14 ... Stem, 15, 16 ... Post, 17A, 17B ... Support disk, 18 ... Translucent sleeve, 19A, 19B ... Nickel wire, 20 ... Getter, 13A ... Outer sphere Chip-off part,
13B ... Pinch seal part

Claims (6)

  1.  1対の電極を内包し透光性セラミックによって形成された発光管と、前記発光管を収納する透光性外管と、を有するセラミックメタルハライドランプにおいて、
     前記発光管は、始動用希ガス、水銀及び添加物を封入しており、該添加物はヨウ化タリウムTlI、ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2、ヨウ化リチウムLiI、及び、希土類金属ヨウ化物ReI3を含み、更に、相関色温度が2250~2750K、管壁負荷が20~30W/cm2、定格出力が35~400W、となるように構成され、
     前記添加物の全モル数に対するヨウ化ナトリウムのモル比率をM(NaI)[mol%]、希土類金属ヨウ化物ReI3のモル比率とヨウ化タリウムTlIのモル比率の和をM(ReI3 +TlI)[mol%]とするとき、前記M(NaI)、及び、M(ReI3 +TlI)は、次の式を満たすことを特徴とするセラミックメタルハライドランプ。
     4<M(NaI)/M(ReI3 +TlI)<16
     2mol%<M(ReI3 +TlI)<9mol%
    In a ceramic metal halide lamp having a light-emitting tube that includes a pair of electrodes and is formed of a light-transmitting ceramic, and a light-transmitting outer tube that houses the light-emitting tube,
    The arc tube encloses a starting rare gas, mercury, and an additive. The additive includes thallium iodide TlI, sodium iodide NaI, calcium iodide CaI 2 , lithium iodide LiI, and rare earth metal iodide. includes a compound ReI 3, further correlated color temperature of 2250 ~ 2750K, tube wall loading is 20 ~ 30W / cm 2, is configured to rated output is 35 ~ 400W, and,
    The molar ratio of sodium iodide to the total number of moles of the additive is M (NaI) [mol%], and the sum of the molar ratio of the rare earth metal iodide ReI 3 and the molar ratio of thallium iodide TlI is M (ReI 3 + TlI ) [mol%], the ceramic metal halide lamp characterized in that M (NaI) and M (ReI 3 + TlI) satisfy the following formula.
    4 <M (NaI) / M (ReI 3 + TlI) <16
    2 mol% <M (ReI 3 + TlI) <9 mol%
  2.  請求項1記載のセラミックメタルハライドランプにおいて、
     前記添加物の発光管容積1cm3当たりの総量をG(total)[mg/cm3]、前記添加物に含まれる希土類金属のヨウ化物の発光管1cm3当たりの添加量をG(ReI3)[mg/cm3]とするとき、前記G(total)、及びG(ReI3)は、次の式を満たすことを特徴とするセラミックメタルハライドランプ。
     G(total)<44mg/cm3
     G(ReI3)<11mg/cm3
    The ceramic metal halide lamp according to claim 1,
    Wherein the total amount of the arc tube volume 1 cm 3 per additives G (total) [mg / cm 3], the amount per arc tube 1 cm 3 of the iodide of a rare earth metal contained in the additive G (ReI 3) When [mg / cm 3 ], the ceramic metal halide lamp is characterized in that G (total) and G (ReI 3 ) satisfy the following formula.
    G (total) <44 mg / cm 3
    G (ReI 3 ) <11 mg / cm 3
  3.  請求項1又は2記載のセラミックメタルハライドランプにおいて、前記添加物の全モル数に対するヨウ化ナトリウムのモル比率M(NaI)、ヨウ化カルシウムのモル比率M(CaI2)及びヨウ化リチウムのモル比率M(LiI)の合計をM(NaI+ CaI2+ LiI)とするとき、該合計は、次の式を満たすことを特徴とするセラミックメタルハライドランプ。
     50mol%<M(NaI+ CaI2+LiI)<96mol%
    3. The ceramic metal halide lamp according to claim 1, wherein the molar ratio M (NaI) of sodium iodide, the molar ratio M of calcium iodide (CaI 2 ), and the molar ratio M of lithium iodide with respect to the total number of moles of the additive. A ceramic metal halide lamp characterized in that when the sum of (LiI) is M (NaI + CaI 2 + LiI), the sum satisfies the following formula.
    50mol% <M (NaI + CaI 2 + LiI) <96mol%
  4.  請求項1~3のいずれか1項記載のセラミックメタルハライドランプにおいて、前記添加物の全モル数に対するヨウ化ナトリウムのモル比率M(NaI)、ヨウ化カルシウムのモル比率M(CaI2)及びヨウ化リチウムのモル比率M(LiI)は、それぞれ次の式を満たすことを特徴とするセラミックメタルハライドランプ。
     30mol%<M(NaI)<70mol%
     10mol%<M(CaI2)<40mol%
     10mol%<M(LiI)<30mol%
    The ceramic metal halide lamp according to any one of claims 1 to 3, wherein the molar ratio M (NaI) of sodium iodide, the molar ratio M (CaI 2 ) of calcium iodide and the iodide with respect to the total number of moles of the additive. A ceramic metal halide lamp characterized in that the molar ratio M (LiI) of lithium satisfies the following formula.
    30 mol% <M (NaI) <70 mol%
    10 mol% <M (CaI 2 ) <40 mol%
    10 mol% <M (LiI) <30 mol%
  5.  請求項1~4のいずれか1項記載のセラミックメタルハライドランプにおいて、
     前記添加物は、希土類金属ヨウ化物として、ヨウ化ツリウムTmI3、ジスプロシウムDy、ホルミウムHo、及び、セリウムCeのヨウ化物のいずれか1つ以上(ただしヨウ化ツリウムTmI3は必須)を含むことを特徴とするセラミックメタルハライドランプ。
    The ceramic metal halide lamp according to any one of claims 1 to 4,
    The additive includes, as rare earth metal iodide, at least one of thulium iodide TmI 3 , dysprosium Dy, holmium Ho, and cerium Ce iodide (thulium iodide TmI 3 is essential). Characteristic ceramic metal halide lamp.
  6.  請求項1~5のいずれか1項記載のセラミックメタルハライドランプにおいて、
     前記発光管の相関色温度は2400~2600Kであり、前記M(NaI)及びM(ReI3 +TlI)は次の式を満たすことを特徴とするセラミックメタルハライドランプ。
     7<M(NaI)/M(ReI3 +TlI)<13
    The ceramic metal halide lamp according to any one of claims 1 to 5,
    The correlative color temperature of the arc tube is 2400-2600K, and the M (NaI) and M (ReI 3 + TlI) satisfy the following formulas.
    7 <M (NaI) / M (ReI 3 + TlI) <13
PCT/JP2013/068359 2012-08-03 2013-07-04 Ceramic metal halide lamp WO2014021050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13826338.9A EP2881975A4 (en) 2012-08-03 2013-07-04 CERAMIC HALIDE LAMPS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012172901A JP5397514B1 (en) 2012-08-03 2012-08-03 Ceramic metal halide lamp
JP2012-172901 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021050A1 true WO2014021050A1 (en) 2014-02-06

Family

ID=50027738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068359 WO2014021050A1 (en) 2012-08-03 2013-07-04 Ceramic metal halide lamp

Country Status (3)

Country Link
EP (1) EP2881975A4 (en)
JP (1) JP5397514B1 (en)
WO (1) WO2014021050A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042335A1 (en) * 2021-09-16 2023-03-23 岩崎電気株式会社 Ceramic metal halide lamp for plant cultivation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130331A (en) * 1993-10-29 1995-05-19 Matsushita Electron Corp Metal halide lamp
JP2003187744A (en) 2001-12-03 2003-07-04 General Electric Co <Ge> Ceramic metal halide lamp
JP2004288617A (en) 2003-03-03 2004-10-14 Osram Melco Toshiba Lighting Kk High-pressure discharge lamp and lighting device
JP2006339156A (en) * 2005-06-02 2006-12-14 Patent Treuhand Ges Elektr Gluehlamp Mbh Metal halide lamp
JP2007053004A (en) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Metal-halide lamp and lighting system using it
JP2009512969A (en) * 2005-10-19 2009-03-26 パナソニック株式会社 High red color rendering metal halide lamp
JP2009087602A (en) * 2007-09-28 2009-04-23 Iwasaki Electric Co Ltd Metal halide lamp
JP2009520329A (en) 2005-12-19 2009-05-21 スリーエム イノベイティブ プロパティズ カンパニー Board mount header for cable connector assembly
JP2009520323A (en) 2005-12-16 2009-05-21 ゼネラル・エレクトリック・カンパニイ Ceramic metal halide lamp
JP2010003488A (en) 2008-06-19 2010-01-07 Osram Melco Toshiba Lighting Kk Metal halide lamp and lighting fixture
JP2011154847A (en) 2010-01-27 2011-08-11 Iwasaki Electric Co Ltd Metal halide lamp and lighting fixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207674B2 (en) * 2008-02-18 2012-06-26 General Electric Company Dose composition suitable for low wattage ceramic metal halide lamp

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130331A (en) * 1993-10-29 1995-05-19 Matsushita Electron Corp Metal halide lamp
JP2003187744A (en) 2001-12-03 2003-07-04 General Electric Co <Ge> Ceramic metal halide lamp
JP4262968B2 (en) 2001-12-03 2009-05-13 ゼネラル・エレクトリック・カンパニイ Ceramic metal halide lamp
JP2004288617A (en) 2003-03-03 2004-10-14 Osram Melco Toshiba Lighting Kk High-pressure discharge lamp and lighting device
JP4279122B2 (en) 2003-03-03 2009-06-17 オスラム・メルコ・東芝ライティング株式会社 High pressure discharge lamp and lighting device
JP2006339156A (en) * 2005-06-02 2006-12-14 Patent Treuhand Ges Elektr Gluehlamp Mbh Metal halide lamp
JP2007053004A (en) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Metal-halide lamp and lighting system using it
JP2009512969A (en) * 2005-10-19 2009-03-26 パナソニック株式会社 High red color rendering metal halide lamp
JP2009520323A (en) 2005-12-16 2009-05-21 ゼネラル・エレクトリック・カンパニイ Ceramic metal halide lamp
JP2009520329A (en) 2005-12-19 2009-05-21 スリーエム イノベイティブ プロパティズ カンパニー Board mount header for cable connector assembly
JP2009087602A (en) * 2007-09-28 2009-04-23 Iwasaki Electric Co Ltd Metal halide lamp
JP2010003488A (en) 2008-06-19 2010-01-07 Osram Melco Toshiba Lighting Kk Metal halide lamp and lighting fixture
JP2011154847A (en) 2010-01-27 2011-08-11 Iwasaki Electric Co Ltd Metal halide lamp and lighting fixture

Also Published As

Publication number Publication date
EP2881975A4 (en) 2015-08-05
EP2881975A1 (en) 2015-06-10
JP5397514B1 (en) 2014-01-22
JP2014032858A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP4693995B2 (en) Metal halide lamp
US20020185979A1 (en) 150W-1000W mastercolor ceramic metal halide lamp series with color temperature about 4000K, for high pressure sodium or quartz metal halide retrofit applications
JP2001076670A (en) Metal halide lamp containing no mercury
JPH0565977B2 (en)
JP5504682B2 (en) Ceramic metal halide lamp
CN100468607C (en) Variable brightness metal halide lamp and lighting method
US20090267516A1 (en) Ceramic metal halide daylight lamp
CN100576423C (en) Chemical composition of metal halide lamps with magnesium and indium
US7012375B2 (en) Thallium-free metal halide fill for discharge lamps and discharge lamp containing same
JP5397514B1 (en) Ceramic metal halide lamp
JP2004349242A (en) High-pressure discharge lamp and lighting system
JP4279120B2 (en) High pressure discharge lamp and lighting device
JP5370878B1 (en) Ceramic metal halide lamp
JP5874589B2 (en) Ceramic metal halide lamp
JP3925249B2 (en) Metal halide lamp
JP2001185079A (en) High pressure mercury lamp for reduced sensitivity to fluctuations of actuation parameter
JP5825130B2 (en) Ceramic metal halide lamp
JPH04332450A (en) One side sealing type metal halide lamp
JP2008218192A (en) High-pressure discharge lamp, and luminaire
JP4331037B2 (en) Metal halide lamp
JP2014186835A (en) Ceramic metal halide lamp
WO2015064309A1 (en) Light source and manufacturing method therefor
JP2015170549A (en) Ceramic metal halide lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013826338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013826338

Country of ref document: EP