[go: up one dir, main page]

WO2014020225A1 - Hybrid photoactive material, method for obtaining same and use of the material - Google Patents

Hybrid photoactive material, method for obtaining same and use of the material Download PDF

Info

Publication number
WO2014020225A1
WO2014020225A1 PCT/ES2013/070571 ES2013070571W WO2014020225A1 WO 2014020225 A1 WO2014020225 A1 WO 2014020225A1 ES 2013070571 W ES2013070571 W ES 2013070571W WO 2014020225 A1 WO2014020225 A1 WO 2014020225A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
limits
hybrid material
value
mgapo
Prior art date
Application number
PCT/ES2013/070571
Other languages
Spanish (es)
French (fr)
Inventor
Raquel GARCÍA SALAS
Joaquín PÉREZ PARIENTE
Luis GÓMEZ-HORTIGÜELA
Virginia MARTÍNEZ-MARTÍNEZ
Iñigo LÓPEZ-ARBELOA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Del País Vasco Euskal Herriko Unibertsitatea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Del País Vasco Euskal Herriko Unibertsitatea filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2014020225A1 publication Critical patent/WO2014020225A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/065Aluminophosphates containing other elements, e.g. metals, boron the other elements being metals only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention is encompassed in multiple areas of application, such as Chemistry and Pharmacy, Textile and Clothing, manufacturing and implementation of electrical, electronic or optical materials and equipment, as well as Energy. Due to their coloring these materials can be used as pigments for paints, plastics or ceramics. Likewise, thanks to the photophysical and optical properties of the material object of the invention, coloring materials with fluorescent properties, it has application in the development of photonic devices, such as solid state lasers, antenna system for the activation of solar cells and non-optical devices. linear as dichroic filters, frequency doubling systems and waveguides.
  • Zeolites are microporous materials that have a defined structure formed by silicon and aluminum tetrahedra that share oxygen vertices. The three-dimensional arrangement of these units results in the formation of very open and robust crystalline structures, with channels and cavities of defined dimensions. Traditionally, due to their properties, these materials have found application as molecular sieves, adsorbents and catalysts. However, due to their high surface area and porous crystalline structure, zeolites are increasingly used as hosts for various functional species (molecules, metal clusters, etc.).
  • this aggregation results in the known metachromic effect on the absorption spectrum, which consists in the partial loss of the main absorption band and the appearance of new absorption bands at higher energies for H-type aggregates (the monomers are arranged in parallel planes with sandwich geometry) and lower energies for aggregates of type J (coplanar monomers in head-tail geometry).
  • the formation of aggregates produces variations in the luminescent properties of the dye with respect to its monomeric form.
  • the fluorescent efficiency of the dye is reduced since the aggregates are efficient deactivators of the monomer emission, the type H being non-fluorescent, while the type J can present new emission bands located at longer wavelengths regarding the emission of the monomer.
  • the incorporation of dyes in microporous materials can lead to materials with improved and / or new fluorescent properties thanks to the space confined and restricted offered by the matrix.
  • the process of adsorption of dyes in solid systems has caused a worsening of their photophysical properties, due to the local increase in the concentration of dye on a surface, encouraging the formation of aggregates (type H), efficient monomer fluorescence deactivators.
  • the photophysical properties of the hybrid material finally obtained for a given dye depend on factors such as the number of T atoms that form the channel, that is, the dimensions and shape thereof, the number of molecules introduced into the channels and / or the degree or type of aggregation presented by encapsulated dye molecules. It is therefore very interesting to study these parameters in order to establish how the photophysical properties of the materials obtained vary.
  • the dye molecules can be incorporated into the zeolitic materials by post-synthesis methods, such as adsorption of the dye on the inner surface of the pores of the calcined material (by ion exchange in the case of charged molecules or by gas phase adsorption previous sublimation of the dye for neutral molecules), or by the method of inclusion during the crystallization of the material. In this latter method, the dye is added during the synthesis procedure of the microporous material. In addition, another organic molecule that acts as a structure directing agent in the crystallization of a particular material is usually added.
  • Gruettner-Merten, 12 November 1996) provides methods for the incorporation of azo dyes in silicate and aluminophosphate molecular sieves, both by incorporation from the gas phase and by the synthesis of azo dye directly into the pores of the microporous material (ship-in-the-bottle).
  • Patent applications WO 0236490 Al and GB 2461686 A (L. de Cola, M. Busby, G. Calzaferri, C. Blum, V. Subramaniam, 03.07.2008) describe the encapsulation of various dyes in calcined zeolite L crystals by ion exchange in solution.
  • the present invention proposes the incorporation of dyes in the restricted space of crystalline porous structures with unidirectional nanochannels, thus aiming, on the one hand, in the most favorable case, to completely eliminate the process of molecular aggregation, decrease it or otherwise incentivize aggregation J against H, since those (type J aggregates) may have red emission bands.
  • the dye when the dye is found in a more rigid environment, there is an increase in its average fluorescence lifetime, generally thanks to the decrease in non-radiant processes caused by the restriction of its mobility, which also leads to an improvement in the fluorescent properties of the encapsulated dye with respect to dissolution.
  • the encapsulation of the dye in materials that, thanks to its rigidity, force the dye to have a preferential orientation, in particular along the direction of the channels, resulting in an anisotropic distribution that is capable of producing phenomena of nonlinear optics due to the arrangement of the dye along that direction.
  • the present invention relates, in a first object, to a Photoactive hybrid material (compound) comprising a dye or mixtures of various dyes with fluorescent properties selected within the group having structure of general formula (I), which represents an aromatic molecule and its resonant forms:
  • a crystalline porous material of magnesium aluminum phosphate composition (MgAPO) with a determined pore size and structure that serves as a matrix (inorganic).
  • Said crystalline porous matrix of magnesium aluminum phosphate composition that protects and houses the dye has at least one system of monodirectional channels delimited by rings of ten to twelve atoms of Al and P in tetrahedral coordination, and pores with a first diameter in the range of 4 to 7 ⁇ , including both limits, and a second pore diameter in the range of 4 to 7.5 ⁇ , including both limits.
  • the dye is contained within the channel system of the porous crystalline material of magnesium aluminum phosphate composition (MgAPO), that is within its crystalline structure.
  • MgAPO magnesium aluminum phosphate composition
  • the crystals obtained from these materials have different shades useful for dyes and pigments that have the advantage of offering greater thermal and chemical stability as the dye is protected by the inorganic matrix.
  • the great advantage of these materials is that they have an anisotropic response to linearly polarized light since a microscopic orientation is induced where the host molecules are aligned in a preferential direction along the channels so that a material is generated with a non-centroymmetric arrangement that causes high hyperpolarizability due to molecular ordering.
  • an anisotropic material is obtained with high dichroic ratios (greater than or close to 10) capable of producing non-linear optical signals (NLO, Non-Linear Optics) with very important applications.
  • a second object of the present invention is a method of preparing the hybrid material defined above comprising the steps of:
  • R represents an organic compound used in the synthesis of microporous material that acts as a structure directing agent, since its presence favors the formation of a certain crystalline structure.
  • this method is suitable for encapsulating molecules of similar sizes to the dyes with structure of general formula (I), as in the best of the examples the Pironin Y (PY) dye and / or the Acridine (AC) dye , in a one-dimensional crystalline porous material of magnesium aluminum phosphate composition (MgAPO) with pore structure and size as defined above: characterized by having pores with a first diameter in the range of 4 to 7 ⁇ , including both limits, and a second pore diameter in the range of 4 to 7.5 ⁇ including both limits, which has at least one system of monodirectional channels delimited by rings of ten to twelve atoms of Al and P in tetrahedral coordination.
  • MgAPO magnesium aluminum phosphate composition
  • a third object of the present invention is an aqueous gel of composition: x MgO: 1 P 2 0 5 : (lx / 2 ) A1 2 0 3 : y R: z Col: w H 2 0, where x has a value between 0.05-0.2 including both limits; and has a value between 0.75-1.5 including both limits, z has a value between 0.001-0.1 including both limits and w has a value between 20-1000 including both limits, with the variables x, y, z and w being selected independently of each other; where R represents a structure directing agent that is an organic compound; and where Col represents a dye or mixture of dyes chosen within the group with general formula (I).
  • defined hybrid materials containing the indicated dye encapsulated in a matrix such as that described have potential application in various industrial fields, for example, as pigments for paints, plastics or ceramics.
  • they can be used for the development of various photonic devices, such as solid-state lasers, antenna systems for activation of solar cells and nonlinear optics devices such as dichroic filters, frequency doubling systems and waveguides.
  • a fourth and final object of the present invention would be constituted by the use of the hybrid material described herein as pigment, for example, although not limitedly, in paints, ceramics and plastics, as well as the use as an active medium in photonic and non-linear optical devices, such as a microllaser, frequency doubling system, waveguide, second harmonic generator, etc.
  • the one-dimensional crystalline porous material of magnesium aluminum phosphate composition is selected from medium and large crystalline magnesium aluminum phosphides: MgAPO-11 (AEL type structure) and MgAPO-36 (ATS type structure), respectively.
  • the MgAPO-36 crystalline magnesium aluminum phosphate has a structure characterized by the presence of monodirectional channels parallel to the crystallographic axis delimited by rings of twelve T atoms (Al and P atoms in tetrahedral coordination) with a pore diameter of 6.5 (first diameter) x 7.5 ⁇ (second diameter).
  • the MgAPO-11 material is a crystalline microporous magnesium aluminum phosphate having a system of monodirectional channels delimited by rings of ten T atoms and with pore diameter dimensions of 4 x 6.5 ⁇ .
  • the pores of the crystalline porous material are elliptical.
  • the dye is incorporated differently therein; for example in matrices with a pore diameter size within the described range of 4 x 6.5 ⁇ or near, that is of the MgAPO-11 type, it has been observed that said pore size is so adjusted to the dimensions of the dye that it is It distributes only in a monomeric state and fully aligned with respect to the direction of the channels, thus giving rise to hybrid anisotropic materials with high fluorescent efficiencies.
  • the dye molecules with structure of general formula (I) are arranged forming associations of type J geometry (coplanar monomers in head-tail geometry) giving rise to new red emission bands which, together with the emission of the monomers also occluded, they offer multicolored materials that allow to collect and transmit light in a wide region of the Visible spectrum (500-750 nm).
  • the porous material used as matrix is MgAPO-11
  • the dye is distributed in a monomeric state and aligned with respect to the direction of the channels of the matrix.
  • the material is MgAPO-36
  • the dye is arranged forming J-type geometric associations of coplanar monomers in head-tail geometry.
  • the dye has a preferential arrangement in the direction of the channels and is capable of showing non-linear optical properties, with potential applications such as second harmonic generator devices .
  • particular properties have been observed for each type of hybrid material, depending on the pore size of the matrix that encompasses the dye.
  • the fact that the dye is incorporated only in monomer units as with the MgAPO-11 matrix and in structures with a smaller pore size within the defined range gives the material resulting from high efficiencies Fluorescent important for applications in optics such as microláseres.
  • the dye or dyes be selected from the group consisting of pyronins, such as Pyronin Y; oxazines such as Oxazine 1 and Oxazine 4; and acridines, such as acridine orange, acridine yellow or proflavin, etc. More preferably, the dye used is selected from Pironin Y and / or Acridine.
  • Pironin Y is a fluorescent dye with a structure derived from the xanthene ring having the general formula (I), where X is CH; Cast; R3 is equal to R4 and both are H; Rl is equal to R2 and both are N (R11) (R12), Rll and R12 CH 3 being of molecular dimensions 13.7 ⁇ x 6.2 ⁇ x 3.2 ⁇ (first axis or main axis, second axis or minor axis, and thickness, respectively), which has a bright red color;
  • This dye is used in a histochemical staining technique, the procedure Standardized Green Methyl-Pyronine Y, which allows to distinguish RNA DNA simultaneously.
  • acridine has the general formula (I) where R1, R2, R3 and R4 are H; X is CH; and Y is N, with approximate molecular dimensions 9.2 x 5 x 3 ⁇ ;
  • This fluorescent dye has a yellow coloration and is mainly used as an acid-base indicator.
  • Pironin Y is still used.
  • the material incorporates at least two dyes. More preferably, each dye emits a different wavelength from the rest, resulting in multicolored hybrid materials. More preferably still, said dyes are Pironin Y and Acridine, as described. In these cases, each dye has fluorescent properties at different wavelengths, so that they cover a wide range of the spectrum together and in combination.
  • the matrix is MgAlPO-36 and the dye is Pironin Y.
  • the dye is Pironin Y.
  • x preferably has a value of 0.2; and has a value preferably of 0.75, z has a value preferably of 0.024, and w has a value preferably of 300, the variables x, y, z and w being independently selected from each other.
  • the structure directing agent can be a primary, secondary or tertiary amine or a quaternary ammonium cation.
  • R is preferably incorporated into the magnesium aluminum phosphate obtained in a weight percentage between 0.1-20%, including both limits, being more preferably still 5-15%.
  • R is preferably a tertiary amine such as tripropylamine.
  • R is preferably a secondary amine such as ethylbutylamine.
  • a magnesium compound is preferably used as the source of Magnesium, such as magnesium sulfate, magnesium nitrate, or more preferably magnesium acetate, and any combination thereof.
  • An aluminum compound is preferably used as an aluminum compound such as an aluminum oxide (alumina), a partially hydrated aluminum oxide such as pseudobohemite or bohemite, aluminum isopropoxide, or other aluminum salts, more preferably aluminum hydroxide and any combination thereof.
  • the phosphorus source is a phosphorus compound preferably selected from phosphoric acid (H 3 PO 4 ), phosphorous acid (H 3 PO 3 ) and any mixture thereof.
  • the heating of the aqueous synthesis gel is preferably carried out by heat treatment at a temperature between 100-200 ° C, including both limits, and more preferably at 180 ° C.
  • the heat treatment is carried out for a period of time between 5-72 hours, including both limits, being more preferably 12 hours when MgAPO-36 and 18 hours for MgAPO-11.
  • the heating of the gel or heat treatment can be carried out by known conventional techniques, being more preferred hydrothermal synthesis or microwave heating.
  • the separation of the magnesium aluminum phosphate crystals is carried out by filtering the solid product obtained after the heat treatment, and subsequent washing, preferably with abundant ethanol and deionized water until the collected washing waters are colorless, in order to eliminate excess dye that has not been incorporated into the crystals.
  • resulting materials are likely to be used as more photo- and thermostable pigments, preferably in products such as paints, plastics and ceramics.
  • the use of the material as a pigment is applied to any type of matrix used, regardless of its pore size.
  • the dye or dyes have a preferential arrangement in the direction of the channels and is capable of showing nonlinear optical properties, with potential applications such as second harmonic generator devices .
  • the hybrid materials of interest are likely to be used as microláseres, preferably as solid state tunable microláseres by means of the phenomena known as scattering and "random laser” reinforced laser emission (A. Tulek, RC Polson, ZV Vardeny, Nature Physics, 6 (2010) 303), as waveguides or even for the activation of solar cells by means of "antenna” systems by inserting dyes responsible for collecting visible radiation, transporting it in an orderly manner and subsequently transferring energy to the semiconductor.
  • scattering and "random laser” reinforced laser emission A. Tulek, RC Polson, ZV Vardeny, Nature Physics, 6 (2010) 303
  • the fact that the dye forms type J aggregates with emissions in regions of the visible spectrum other than the monomer, and therefore giving rise to a multicolored material presents interesting properties when designing antenna systems for cell activation solar. This occurs especially in materials with a larger pore interval within the proposed range, as is the case of MgAPO-36.
  • Figure 1 a) RX diffraction pattern characteristic of the MgAPO-36 structure and b) RX diffraction pattern characteristic of the MgAPO-ll structure.
  • Figure 3 B fluorescence images collected as a function of the polarization direction indicated by the double dates.
  • Figure 4. Excitation and emission spectra for the samples obtained according to Example 1, PY in MgAPO-36 (solid line), according to Example 2, PY in MgAPO-36 (dashed line), according to Example 3, PY in MgAPO-ll (dotted line), and PY in aqueous solution (gray line).
  • Example 1 Preparation of MgAPO-36 with a Pironin Y content of 0.008 in the synthesis gel
  • the gel is prepared by mixing in a polypropylene canister and in the order indicated, 1.61g of H3PO4 (Aldrich, 85 wt%), 36.40g of H 2 0 and 0.31g of magnesium acetate tetrahydrate, Mg (CH3CH2COO) 2 '4H 2 0 (Aldrich). The mixture is stirred for 10 minutes and then 0.98 g of Al (OH) 3 ⁇ xH 2 , 0.77g of tripropylamine (TPAm) are added and finally, 0.0155g of Pyronine Y chloride dye (PY; Aldrich). A gel of molar composition is obtained:
  • Example 2 Preparation of MgAPO-36 with a Pironin Y content of 0.024 in the synthesis gel. 1.61g of H 3 PO 4 (Aldrich, 85wt%), 36.28g of H 2 0 and 0.30g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 (Aldrich) are mixed in a polypropylene canister.
  • the diffractogram of the solid obtained similar to that shown in the Figure corresponds to the characteristic diffraction pattern of MgAPO-36.
  • Example 3 Preparation of MgAPO-11 with a Mg content of 0.2 and a Pyronine Y content of 0.024 in the synthesis gel.
  • H 3 PO 4 Aldrich, 85wt.%
  • the gel obtained (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 18 hours at the autogenous pressure of the static system.
  • Example 4 Preparation of MgAPO-ll with a Mg content of 0.2 and an Acridine content of 0.024 in the synthesis gel.
  • the gel obtained (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 18 hours at the autogenous pressure of the static system.
  • the diffractogram of the solid obtained has a characteristic diffraction pattern of MgAPO-ll, analogous to that shown in Figure Ib.
  • Example 5 Preparation of MgAPO-ll with a Mg content of 0.2, with an Acridine content of 0.012 and a Pyronine Y content of 0.012 in the synthesis gel.
  • the diffractogram of the solid obtained has a characteristic diffraction pattern of MgAPO-ll, analogous to that shown in Figure Ib.
  • Example 6 Preparation of MgAPO-36 with an Acridine content of 0.024 in the synthesis gel.
  • Example 7 Determination of the amount of dye incorporated in those obtained in examples 1, 2 and 3.
  • the solid is dissolved in 5M hydrochloric acid and subsequently neutralized with a 5M NaOH solution to pH ⁇ 6-7.
  • the solid that precipitates is centrifuged and an aliquot of the supernatant liquid is taken, which is subsequently diluted to a volume of 5 ml.
  • the concentration of this solution is obtained by measuring its UV-Vis spectrum by comparison with solutions of known concentration. The results are shown in Table 1.
  • Dye content determined by UV-Vis of the samples obtained according to the examples l r 2 and 3 r expressed grams of pironin per lOOgr of solid product and as density of pironin molecules per channel in 1000 ⁇ .
  • Example 8 Evaluation of the optical properties of the materials prepared according to examples 1, 2 and 3.
  • This example illustrates the fluorescent behavior of the samples obtained according to the procedures described in Examples 1, 2 and 3.
  • the crystals of the MgAPO-36 sample with low dye content (Table 1) synthesized in example 1 have sizes between 40-50 microns long and between 3 and 5 microns wide ( Figure 2).
  • Its fluorescence images collected on an Olympus BX51 microscope, equipped with a CCD DP72 color camera show green emission ( Figure 2) and uniform along the needles as shown by the intensity profile along the particle ( Figure 2). which confirms a homogeneous adsorption of the PY dye during the growth of the structure.
  • Table 2 shows the main spectroscopic parameters of the samples synthesized according to examples 1, 2 and 3 and PY in dilute aqueous solution.
  • a exc position of the maximum of the excitation spectrum
  • a f i maximum fluorescence of powder samples (measured in conventional fluorimeter model Fluorolog 3-22)
  • a f i * maximum fluorescence of individual particles (measured in confocal microscope , Micro Time 200 model)
  • i f i (ns) / (A%) life times (statistical weight of each life time)
  • O f i quantum yields
  • D dichroic radii.
  • the green emission recorded under blue light excitation (band filter 480/40) in the fluorescence images of the particles of example 1 ( Figure 2) is indicative of the absorption of the dye mainly in the monomeric state.
  • the excitation and fluorescence spectra of the synthesized samples are recorded (SPEX fluorometer model 3-22) ( Figure 4), as well as the times of life and emission spectra of individual particles by confocal fluorescence microscopy.
  • the sample of MgAPO-36 with high dye content synthesized in example 2 (Table 1) has mostly "corsage” particles with sizes ranging from 20 to 40 microns.
  • the transmission images show an interleaving of non-homogeneous PY along the particle, and a gradual decrease of the pinkish color is observed along the needles, or in the case of "corsage” particles, from the nucleus of union towards the ramifications.
  • the crystals have a multicolored fluorescent emission under blue excitation (band filter 480/40 nm) ( Figure 5).
  • the figure inserted on the left in Figure 5 shows how the RGB profiles of the color CCD camera vary in fluorescent emission along a single particle, being mostly green in the area where less dye has been incorporated (color by less intense pink transmission), and is attributed to the emission of the monomer, yellow (similar intensities of green (Green) and red (Red)) in the intermediate zone of the crystal where monomers and aggregates coexist and red attributed to aggregates only where more dye has been occluded (transmission shows an intense pink).
  • the aggregates may have new bands of absorption and fluorescence with respect to the monomers and, under observation under a microscope, are characterized by a red emission with respect to the green of the monomers.
  • the fluorescence spectrum recorded in the area with life times greater than 2 ns has a single band centered at 556 nm (solid line) and similar to that recorded in the powder sample of example 1 with low amount of dye, and therefore assigned to the PY occluded in MgAPO-36 in monomer units.
  • the recording of the emission spectrum, for the area of the particle characterized by short life times (less than lns) shows a spectrum characterized by three bands (dashed line), indicative of the formation of higher dimers and aggregates, possibly trimers.
  • fluorescence polarization measurements show an anisotropic response with D values around 3-5 (Table 2) indicative of a preferential orientation of the dye along the longitudinal axis of the crystals, confirming the occlusion of PY species ( monomer and aggregates) inside the channels.
  • the size and shape of the pores of the MgAPO-ll matrix is suitable for molecules of similar size and shape to PY, that is, other dyes with structure given in the general formula (I) of 3 fused aromatic rings (oxacins , resorefins, acridines ...) since the structure and the dye are adjusted as "key-lock", this method of synthesis being the only one possible to obtain the hybrid material with said guests incorporated in the channels, since not only diffusion is impeded but also the rotation of the molecules inside their channels, as can be deduced from the very high dichroic ratios in these samples (Table 2), with values around 40, the highest recorded so far for unidirectional materials doped with fluorescent hosts that would indicate a practically total alignment of the dipole moments of the PY molecules with respect to the axis of the channels, a very important property for applications in nonlinear optics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)

Abstract

The present invention relates to a hybrid photoactive material which includes at least one dye having fluorescent properties and a structure having the general formula (I), which is an aromatic molecule and the resonant forms thereof; where X is selected from CH or N and Y is selected from the group made up of S, O, N, CH and NH; such that when X=CH, Y is selected from S, O, N, CH or NH, and when X=N, then Y=0; n being equal to +1 when Y=O, NH or S and n being equal to 0 when Y=N or CH; R1, R2, R3 and R4 can be mutually identical or different and selected from: H, CH3, CH2CH3 or N(R11) (R12), where R11 and R12 are mutually identical or different and selected from the group made up of: H, CH3 and CH2CH3; said dye being contained and encapsulated in a crystalline porous material with magnesioaluminophosphate (MgAPO) composition, characterised by having pores with a first diameter in the interval of 4 to 7 Å, both limits included, and a second diameter in the interval of 4 to 7.5 Å, both limits included, which has a one-way system of channels defined by rings of ten to twelve atoms of Al and P with tetrahedral coordination. The invention further relates to a method for preparing the previously defined hybrid material, and to the uses of said hybrid material.

Description

MATERIAL HÍBRIDO FOTOACTIVO, MÉTODO DE OBTENCIÓN Y USO DEL  HYBRID PHOTOACTIVE MATERIAL, METHOD OF OBTAINING AND USING THE
MATERIAL  MATERIAL
Campo de la invención Field of the Invention
La presente invención se engloba en múltiples áreas de aplicación, como puede ser el de Química y Farmacia, el Textil y de confección, el de fabricación e implementación de materiales y equipos eléctricos, electrónicos u ópticos, asi como en el de Energía. Debido a su coloración estos materiales pueden ser usados como pigmentos para pinturas, plásticos o cerámicas. Asimismo, gracias a las propiedades fotofísicas y ópticas del material objeto de invención, materiales colorantes con propiedades fluorescentes, ésta tiene aplicación en el desarrollo de dispositivos fotónicos, como láseres en estado sólido, sistema antena para la activación de células solares y dispositivos de óptica no lineal como filtros dicroicos, sistemas dobladores de frecuencia y guías de onda. The present invention is encompassed in multiple areas of application, such as Chemistry and Pharmacy, Textile and Clothing, manufacturing and implementation of electrical, electronic or optical materials and equipment, as well as Energy. Due to their coloring these materials can be used as pigments for paints, plastics or ceramics. Likewise, thanks to the photophysical and optical properties of the material object of the invention, coloring materials with fluorescent properties, it has application in the development of photonic devices, such as solid state lasers, antenna system for the activation of solar cells and non-optical devices. linear as dichroic filters, frequency doubling systems and waveguides.
Estado de la técnica State of the art
Las zeolitas son materiales microporosos que poseen una estructura definida formada por tetraedros de silicio y aluminio que comparten vértices de oxígeno. El arreglo tridimensional de estas unidades da lugar a la formación de estructuras cristalinas muy abiertas y robustas, con canales y cavidades de dimensiones definidas. Tradicionalmente, debido a sus propiedades, estos materiales han encontrado aplicación como tamices moleculares, adsorbentes y catalizadores. Sin embargo, debido a su elevada área superficial y a su estructura porosa cristalina, las zeolitas encuentran cada vez más aplicación como anfitriones de diversas especies funcionales (moléculas, clústeres metálicos, etc) .  Zeolites are microporous materials that have a defined structure formed by silicon and aluminum tetrahedra that share oxygen vertices. The three-dimensional arrangement of these units results in the formation of very open and robust crystalline structures, with channels and cavities of defined dimensions. Traditionally, due to their properties, these materials have found application as molecular sieves, adsorbents and catalysts. However, due to their high surface area and porous crystalline structure, zeolites are increasingly used as hosts for various functional species (molecules, metal clusters, etc.).
La sustitución isomórfica de los elementos en posiciones tetraédricas de las zeolitas, silicio y aluminio, por diferentes elementos ha ampliado la familia original de aluminosilicatos y zeolitas puramente silíceas, dando lugar a los aluminofosfatos y metaloaluminofosfatos entre los que destacan los magnesioaluminofosfatos . The isomorphic replacement of the elements in tetrahedral positions of the zeolites, silicon and aluminum, by different elements has extended the original family of purely siliceous aluminosilicates and zeolites, giving rise to the aluminum phosphates and metalloaluminophosphates among which highlights magnesium aluminum phosphates.
Entre las aplicaciones desarrolladas para los materiales de estructura zeolitica, destaca en los últimos años el empleo de este material como anfitrión de sustancias, albergándolas en su interior y actuando asi como elemento protector de las mismas . Among the applications developed for zeolitic structure materials, in recent years the use of this material as a host of substances, housing them inside and acting as a protective element thereof, stands out.
Por otro lado, el interés en la encapsulación de moléculas fotoactivas, como son los colorantes fluorescentes, en matrices sólidas se debe a la posibilidad de obtener materiales con interesantes propiedades fotofisicas (G. Schulz-Ekloff, D. Wóhrle, B. van Duffel, R.A. Schoonheydt, Microporous and Mesoporous Materials 51 (2002) 91) . En general, cuando un colorante se encuentra en disolución, existe un valor de concentración por encima del cual las moléculas de colorante comienzan a agregarse de modo que, al aumentar la concentración de colorante, se pueden formar dimeros o agregados superiores. Generalmente, esta agregación tiene como consecuencia el conocido efecto metacrómico en el espectro de absorción, que consiste en la pérdida parcial de la banda principal de absorción y la aparición de nuevas bandas de absorción a mayores energías para agregados tipo H (los monómeros se disponen en planos paralelos con geometría tipo sándwich) y a menores energías para agregados de tipo J (monómeros coplanares en geometría cabeza-cola) . Además, la formación de agregados produce variaciones en las propiedades luminiscentes del colorante respecto a su forma monomérica. En general, la eficiencia fluorescente del colorante se ve reducida ya que los agregados son eficientes desactivadores de la emisión del monómero, siendo el de tipo H no fluorescente, mientras que el de tipo J puede presentar nuevas bandas de emisión situadas a mayores longitudes de onda respecto a la emisión del monómero. On the other hand, the interest in the encapsulation of photoactive molecules, such as fluorescent dyes, in solid matrices is due to the possibility of obtaining materials with interesting photophysical properties (G. Schulz-Ekloff, D. Wóhrle, B. van Duffel, RA Schoonheydt, Microporous and Mesoporous Materials 51 (2002) 91). In general, when a dye is in solution, there is a concentration value above which the dye molecules begin to aggregate so that, by increasing the dye concentration, higher dimeros or aggregates can be formed. Generally, this aggregation results in the known metachromic effect on the absorption spectrum, which consists in the partial loss of the main absorption band and the appearance of new absorption bands at higher energies for H-type aggregates (the monomers are arranged in parallel planes with sandwich geometry) and lower energies for aggregates of type J (coplanar monomers in head-tail geometry). In addition, the formation of aggregates produces variations in the luminescent properties of the dye with respect to its monomeric form. In general, the fluorescent efficiency of the dye is reduced since the aggregates are efficient deactivators of the monomer emission, the type H being non-fluorescent, while the type J can present new emission bands located at longer wavelengths regarding the emission of the monomer.
Por ello, la incorporación de colorantes en materiales microporosos puede dar lugar a materiales con propiedades fluorescentes mejoradas y/o nuevas gracias al espacio confinado y restringido que ofrece la matriz. No obstante, en otros muchos casos, el proceso de adsorción de colorantes en sistemas sólidos ha causado un empeoramiento de sus propiedades fotofisicas, debido al aumento local de la concentración de colorante en una superficie, incentivando la formación de agregados (de tipo H) , eficientes desactivadores de la fluorescencia del monómero. Therefore, the incorporation of dyes in microporous materials can lead to materials with improved and / or new fluorescent properties thanks to the space confined and restricted offered by the matrix. However, in many other cases, the process of adsorption of dyes in solid systems has caused a worsening of their photophysical properties, due to the local increase in the concentration of dye on a surface, encouraging the formation of aggregates (type H), efficient monomer fluorescence deactivators.
Las propiedades fotofisicas del material híbrido finalmente obtenido para un colorante determinado dependen de factores como el número de átomos T que forman el canal, es decir, de las dimensiones y forma del mismo, del número de moléculas introducidas en los canales y/o del grado o tipo de agregación que presenten las moléculas de colorante encapsuladas . Resulta por ello muy interesante estudiar estos parámetros con el fin de establecer cómo varían las propiedades fotofisicas de los materiales obtenidos. The photophysical properties of the hybrid material finally obtained for a given dye depend on factors such as the number of T atoms that form the channel, that is, the dimensions and shape thereof, the number of molecules introduced into the channels and / or the degree or type of aggregation presented by encapsulated dye molecules. It is therefore very interesting to study these parameters in order to establish how the photophysical properties of the materials obtained vary.
Las moléculas de colorante pueden incorporarse dentro de los materiales zeolíticos por métodos post-síntesis , tales como la adsorción del colorante en la superficie interna de los poros del material calcinado (por intercambio iónico en el caso de moléculas con carga o por adsorción en fase gas previa sublimación del colorante para moléculas neutras), o bien por el método de inclusión durante la cristalización del material. En este último método, se adiciona el colorante durante el procedimiento de síntesis del material microporoso. Además se suele adicionar otra molécula orgánica que actúa como agente director de estructura en la cristalización de un material particular . The dye molecules can be incorporated into the zeolitic materials by post-synthesis methods, such as adsorption of the dye on the inner surface of the pores of the calcined material (by ion exchange in the case of charged molecules or by gas phase adsorption previous sublimation of the dye for neutral molecules), or by the method of inclusion during the crystallization of the material. In this latter method, the dye is added during the synthesis procedure of the microporous material. In addition, another organic molecule that acts as a structure directing agent in the crystallization of a particular material is usually added.
En el caso de los métodos post-síntesis, es necesario que la molécula de colorante sea capaz de penetrar y difundir por los canales de la zeolita para asegurar un cierto llenado de los poros de los cristales del material, proceso limitado por el tamaño molecular y la longitud de los canales de la estructura. Esto supone un inconveniente relevante a la hora de desarrollar nuevos materiales híbridos del tipo indicado. Además este tipo de procedimiento requiere de un tratamiento previo a la adsorción del colorante de vaciado de los poros mediante calcinación del material, como se ha comentado anteriormente. Por el contrario, cuando el colorante se incorpora directamente en la síntesis del material microporoso, no existe, en principio, esta limitación de tamaño por ambas partes, tanto del colorante como de la matriz, puesto que la estructura se formará alrededor de la molécula de colorante y crecerá incorporándolo en la estructura, es decir en el sistema de canales, durante el propio proceso de cristalización. Sin embargo, hay que tener en cuenta otros factores como, por ejemplo, la estabilidad del colorante en las condiciones de síntesis del material o su solubilidad en el medio de síntesis. Por otro lado, estas preparaciones se realizan en presencia de una molécula orgánica que es la que actúa como agente director de estructura. Esta molécula puede ejercer una cierta influencia sobre la cantidad de colorante incorporado en el material, en caso de que haya competencia por la incorporación, así como en la agregación del mismo. Estos factores influyen en la manera en la que el colorante queda incorporado dentro del material y por tanto, en las propiedades finales del material obtenido, por lo que no es evidente predecir las propiedades fotofísicas de los materiales obtenidos por este procedimiento de incorporación del colorante. In the case of post-synthesis methods, it is necessary that the dye molecule be able to penetrate and diffuse through the zeolite channels to ensure a certain filling of the pores of the crystals of the material, a process limited by molecular size and the length of the channels of the structure. This is a significant inconvenience when developing new hybrid materials of the type indicated. Furthermore, this type of procedure requires a pre-adsorption treatment of the pore emptying dye by calcining the material, as previously mentioned. On the contrary, when the dye is incorporated directly into the synthesis of the microporous material, there is, in principle, this limitation of size on both sides, both of the dye and of the matrix, since the structure will form around the molecule of dye and will grow incorporating it in the structure, that is to say in the channel system, during the crystallization process itself. However, other factors have to be taken into account, such as the stability of the dye under the conditions of synthesis of the material or its solubility in the synthesis medium. On the other hand, these preparations are made in the presence of an organic molecule that acts as the structure directing agent. This molecule can exert a certain influence on the amount of dye incorporated in the material, in case there is competition for incorporation, as well as in the aggregation thereof. These factors influence the way in which the dye is incorporated into the material and therefore, the final properties of the material obtained, so it is not obvious to predict the photophysical properties of the materials obtained by this process of incorporation of the dye.
La incorporación de colorantes en materiales microporosos se ha descrito en detalle para diferentes colorantes y estructuras zeolíticas. La patente US 4,018,870 (T.V. Whittam, US4018870, 27 de enero de 1975) describe la adición de diversos colorantes con al menos un átomo de nitrógeno en el gel de síntesis de zeolitas aluminosilíceas, como método para inhibir la formación de productos indeseados. Algunos de los colorantes empleados son el azul de metileno, el violeta de cristal o el violeta de metilo y las zeolitas obtenidas son de tipo faujasita (zeolita X e Y) así como zeolita L y dos nuevas zeolitas AG5 y AG6. En la patente US 5,360,474 (G. Lauth, U. Mueller, W. Hoelderich, S. Brode, G. Wagenblast, 16 Septiembre, 1992) se describe en detalle el método (post-sintesis ) de incorporación del colorante 1 , 4-hidroxiantraquinona (quinizarina) , de un color rojo brillante, en los aluminofosfatos (A1PO) y/o silicoaluminofosfato (SAPO) con estructura AEL y VFI . Según el método descrito, el colorante se mezcla con el A1PO o SAPO calcinado y es calentado a vacio a una presión de 1 mbar. Un método similar se emplea en la patente US 5,968,242 (W. Hólderich, N. Róhrlich, L. Chassot, 19 diciembre 1997) para incorporar los pigmentos quinizarina e índigo en las zeolitas HY, NaY y H-mordenita. El método de encapsulación descrito en esta patente produce una menor lixiviación del colorante incorporado. La patente US 5,573,585 (G. Lauth, W. Hoelderich, U. Mueller, G. Wagenblast, B. Albert, G. Lamm, H. Reichelt, C. Grund, S. Gruettner-Merten, 12 noviembre 1996) proporciona métodos para la incorporación de colorantes azoicos en tamices moleculares de tipo silicato y aluminofosfato, tanto por incorporación a partir de la fase gaseosa como por la síntesis del colorante azoico directamente en los poros del material microporoso ( ship-in-the-bottle) . Las solicitudes de patente WO 0236490 Al y GB 2461686 A (L. de Cola, M. Busby, G. Calzaferri, C. Blum, V. Subramaniam, 03.07.2008) describen la encapsulación de diversos colorantes en cristales de zeolita L calcinada mediante intercambio iónico en disolución. En general, de estos estudios se puede concluir que los métodos de encapsulación post-síntesis producen una incorporación del colorante no homogénea, quedándose éste incorporado preferentemente en los extremos de los cristales, limitándose así dichos métodos a colorantes de tamaños moleculares relativamente más pequeños que los poros del material soporte cuyos cristales deben además ser cortos (< 5 μπι) . The incorporation of dyes in microporous materials has been described in detail for different dyes and zeolitic structures. US Patent 4,018,870 (TV Whittam, US4018870, January 27, 1975) describes the addition of various dyes with at least one nitrogen atom in the aluminosiliceous zeolite synthesis gel, as a method to inhibit the formation of unwanted products. Some of the dyes used are methylene blue, crystal violet or methyl violet and the zeolites obtained are of the faujasite type (zeolite X and Y) as well as zeolite L and two new zeolites AG5 and AG6. In US Patent 5,360,474 (G. Lauth, U. Mueller, W. Hoelderich, S. Brode, G. Wagenblast, September 16, 1992) the method (post-synthesis) of incorporation of dye 1, 4- is described in detail. hydroxyanthraquinone (quinizarin), of a bright red color, in aluminophosphates (A1PO) and / or silicoaluminophosphate (SAPO) with AEL and VFI structure. According to the described method, the dye is mixed with the calcined A1PO or SAPO and is heated under vacuum at a pressure of 1 mbar. A similar method is used in US Patent 5,968,242 (W. Hólderich, N. Róhrlich, L. Chassot, December 19, 1997) to incorporate the quinizarin and indigo pigments in the zeolites HY, NaY and H-mordenite. The encapsulation method described in this patent produces less leaching of the incorporated dye. US Patent 5,573,585 (G. Lauth, W. Hoelderich, U. Mueller, G. Wagenblast, B. Albert, G. Lamm, H. Reichelt, C. Grund, S. Gruettner-Merten, 12 November 1996) provides methods for the incorporation of azo dyes in silicate and aluminophosphate molecular sieves, both by incorporation from the gas phase and by the synthesis of azo dye directly into the pores of the microporous material (ship-in-the-bottle). Patent applications WO 0236490 Al and GB 2461686 A (L. de Cola, M. Busby, G. Calzaferri, C. Blum, V. Subramaniam, 03.07.2008) describe the encapsulation of various dyes in calcined zeolite L crystals by ion exchange in solution. In general, it can be concluded from these studies that post-synthesis encapsulation methods produce an incorporation of the non-homogeneous dye, which is preferably incorporated at the ends of the crystals, thus limiting these methods to dyes of molecular sizes relatively smaller than pores of the support material whose crystals must also be short (<5 μπι).
Por otra parte, la incorporación de colorante directamente durante la cristalización del material ha sido descrita en varios artículos en la literatura. La mayor parte de estos trabajos describen la incorporación de diferentes cromóforos en la estructura A1PO-5 (G.Ihlein, F. Schüth, O. Krauβ, U. Vietze, F . Laeri, Adv. Mater.1998, 10, 1117-1119; M . Ganschow, G . Schulz-Ekloff, M . Wark, . M . Wendschuh-Josties , D . Wóhrle, J. Mater. Chem. 2001) . En esta estructura, mediante la estrategia de inclusión por cristalización, se han incorporado diferentes colorantes como rodaminas, oxacinas, coumarinas o ftalocianinas , siguiendo el procedimiento desarrollado por Schulz-Ekloff (D. Wóhrle, A. K. Sobbi, O. Franke, G. Schulz- Ekloff, Zeolites, 15, 540-550, 1995) . Más aún, la encapsulación en un mismo cristal de tres cromóforos con distinto intervalo de absorción y emisión de luz ha demostrado la posibilidad de transferir energía desde el colorante que absorbe a longitudes de onda más cortas (mayor energía) hacia el colorante que absorbe a mayor longitud de onda (menor energía) a través de un colorante que absorba a longitudes de onda intermedias (M. Ganschow, C. Hellriegel, E. Kneuper, M. Wark, C. Thiel, G. Schulz-Ekloff, C. Br uchle, D. Wóhrle, Adv. Funct . Mater. 2004, 14, 269) . Se ha demostrado que algunos de los colorantes encapsulados en A1PO-5 presentan actividad láser (O. Weiβ, J. Loerke, U. Wüstefeld, F. Marlow, F. Schüth, J. Solid State Chemistry, 167 (2002) 302; D. Wóhrle, G. Schulz-Ekloff, C. Bráuchle, F. Laeri, Macromol. Symp. 2008, 270, 123) . No obstante, existen escasos ejemplos de encapsulación de colorantes en otro tipo de materiales aluminofosfato distintos del A1PO-5, aunque cabe destacar el empleo de azul de metileno en la síntesis de A1PO-11 (R. Hoppe, G. Schulz-Ekloff, J. Rathousky, J. Stárek, A. Zukal, Zeolites 14 (1994) 126] . Sin embargo, la información aportada respecto a la incorporación del colorante en este material y/o acerca de las propiedades fotofísicas del propio material resultante con el colorante encapsulado no es suficiente para poder conocer o predecir en cierta medida la relevancia de este material en la preparación de materiales híbridos con interesantes propiedades ópticas. Por las razones expuestas, existe un gran interés en la encapsulación de colorantes fluorescentes en sistemas zeolíticos que posean un sistema de canales, en el que las moléculas de colorante se puedan alinear a lo largo de una única dirección y por tanto dar lugar a este tipo de fenómenos no lineales. Éste es el principal objeto de la presente invención, donde se describe la elaboración y propiedades fotofisicas de los materiales híbridos resultantes de la encapsulación de un colorante fluorescente con una estructura de fórmula (I) como la que se presenta a continuación, como puede ser por ejemplo Pironina Y ó Acridina, durante la síntesis de magnesioaluminofosfatos con diferentes tipos de canales. De esta forma, la presente invención propone la incorporación de colorantes en el espacio restringido de estructuras porosas cristalinas con nanocanales unidireccionales, pretendiendo así, por un lado, en el caso más favorable, eliminar completamente el proceso de agregación molecular, disminuirlo o en su defecto incentivar la agregación J frente a la H, ya que aquellos (los agregados tipo J) pueden presentar bandas de emisión al rojo. Además, al encontrarse el colorante en un entorno más rígido, se produce un aumento de su tiempo de vida medio de fluorescencia, generalmente gracias a la disminución de los procesos no- radiantes causada por la restricción de su movilidad, lo que también conlleva una mejora en las propiedades fluorescentes del colorante encapsulado respecto a disolución. Por otro lado, el encapsulamiento del colorante en materiales que gracias a su rigidez obligan al colorante a disponerse con una orientación preferencial , en particular a lo largo de la dirección de los canales, dando lugar a una distribución anisotrópica que es susceptible de producir fenómenos de óptica no lineal debido al ordenamiento del colorante a lo largo de esa dirección. On the other hand, the incorporation of dye directly during crystallization of the material has been described in several articles in the literature. Most of these works describe the incorporation of different chromophores in the A1PO-5 structure (G.Ihlein, F. Schüth, O. Krauβ, U. Vietze, F. Laeri, Adv. Mater. 1998, 10, 1117-1119; M. Ganschow, G. Schulz-Ekloff, M. Wark,. M. Wendschuh-Josties, D. Wóhrle, J. Mater. Chem. 2001). In this structure, through the crystallization inclusion strategy, different dyes such as rhodamines, oxacines, coumarins or phthalocyanines have been incorporated, following the procedure developed by Schulz-Ekloff (D. Wóhrle, AK Sobbi, O. Franke, G. Schulz- Ekloff, Zeolites, 15, 540-550, 1995). Moreover, encapsulation in the same three chromophores crystal with different absorption and light emission ranges has demonstrated the possibility of transferring energy from the dye that absorbs at shorter wavelengths (higher energy) to the dye that absorbs the higher wavelength (lower energy) through a dye that absorbs at intermediate wavelengths (M. Ganschow, C. Hellriegel, E. Kneuper, M. Wark, C. Thiel, G. Schulz-Ekloff, C. Br uchle , D. Wóhrle, Adv. Funct. Mater. 2004, 14, 269). Some of the dyes encapsulated in A1PO-5 have been shown to have laser activity (O. Weiβ, J. Loerke, U. Wüstefeld, F. Marlow, F. Schüth, J. Solid State Chemistry, 167 (2002) 302; D Wóhrle, G. Schulz-Ekloff, C. Bráuchle, F. Laeri, Macromol. Symp. 2008, 270, 123). However, there are few examples of encapsulation of dyes in other types of aluminophosphate materials other than A1PO-5, although the use of methylene blue in the synthesis of A1PO-11 (R. Hoppe, G. Schulz-Ekloff, J Rathousky, J. Stárek, A. Zukal, Zeolites 14 (1994) 126] However, the information provided regarding the incorporation of the dye in this material and / or about the photophysical properties of the resulting material itself with the encapsulated dye it is not enough to be able to know or predict to some extent the relevance of this material in the preparation of hybrid materials with interesting optical properties.For the reasons stated above, there is a great interest in the encapsulation of fluorescent dyes in zeolitic systems that have a system of channels, in which the dye molecules can be aligned along a only direction and therefore give rise to this type of nonlinear phenomena. This is the main object of the present invention, where the elaboration and photophysical properties of the hybrid materials resulting from the encapsulation of a fluorescent dye with a structure of formula (I) such as the one presented below are described, as it can be by example Pironin Y or Acridine, during the synthesis of magnesium aluminum phosphates with different types of channels. In this way, the present invention proposes the incorporation of dyes in the restricted space of crystalline porous structures with unidirectional nanochannels, thus aiming, on the one hand, in the most favorable case, to completely eliminate the process of molecular aggregation, decrease it or otherwise incentivize aggregation J against H, since those (type J aggregates) may have red emission bands. In addition, when the dye is found in a more rigid environment, there is an increase in its average fluorescence lifetime, generally thanks to the decrease in non-radiant processes caused by the restriction of its mobility, which also leads to an improvement in the fluorescent properties of the encapsulated dye with respect to dissolution. On the other hand, the encapsulation of the dye in materials that, thanks to its rigidity, force the dye to have a preferential orientation, in particular along the direction of the channels, resulting in an anisotropic distribution that is capable of producing phenomena of nonlinear optics due to the arrangement of the dye along that direction.
Además, de manera inesperada, se ha podido comprobar que dependiendo del tamaño de poro de cada estructura zeolítica empleada, el colorante con estructura de fórmula (I) ofrece propiedades fotofisicas muy diferentes e interesantes, como se comenta a continuación. In addition, unexpectedly, it has been found that depending on the pore size of each zeolitic structure used, the dye with structure of formula (I) offers very different and interesting photophysical properties, as discussed below.
Descripción general de la invención General Description of the Invention
La presente invención se refiere, en un primer objeto, a un material híbrido (compuesto) fotoactivo que comprende un colorante o mezclas de varios colorantes con propiedades fluorescentes seleccionados dentro del grupo que posee estructura de fórmula general (I), que representa una molécula aromática y sus formas resonantes: The present invention relates, in a first object, to a Photoactive hybrid material (compound) comprising a dye or mixtures of various dyes with fluorescent properties selected within the group having structure of general formula (I), which represents an aromatic molecule and its resonant forms:
Figure imgf000010_0001
Figure imgf000010_0001
Fórmula (I) donde X es seleccionado entre CH ó N e Y es seleccionado dentro del grupo compuesto por S, O, N, CH y NH; de tal forma que cuando X=CH, Y es seleccionada entre S, O, N, CH ó NH, y cuando X=N, entonces Y=0; siendo n=+l cuando Y= O, NH ó S y n=0 cuando Y=N ó CH; Rl, R2, R3 y R4 pueden ser iguales o distintos entre sí y seleccionados dentro del grupo compuesto por: H, CH3, CH2CH3 y N(R11) (R12), donde Rll y R12 pueden ser iguales o distintos y seleccionados dentro del grupo compuesto por: H, CH3 y CH2CH3; estando dicho colorante contenido y encapsulado (es decir, recubierto y protegido) por un material poroso cristalino de composición magnesioaluminofosfato (MgAPO) con estructura y tamaño de poro determinada que hace las veces de matriz (inorgánica) . Dicha matriz porosa cristalina de composición magnesioaluminofosfato que protege y alberga el colorante presenta al menos un sistema de canales monodireccional delimitados por anillos de diez a doce átomos de Al y P en coordinación tetraédrica, y poros con un primer diámetro comprendido en el intervalo de 4 a 7 Á, incluidos ambos límites, y un segundo diámetro de poro comprendido en el intervalo de 4 a 7.5 Á, incluidos ambos límites. Formula (I) where X is selected from CH or N and Y is selected from the group consisting of S, O, N, CH and NH; such that when X = CH, Y is selected from S, O, N, CH or NH, and when X = N, then Y = 0; where n = + l when Y = O, NH or S and n = 0 when Y = N or CH; Rl, R2, R3 and R4 can be the same or different from each other and selected within the group consisting of: H, CH 3 , CH 2 CH 3 and N (R11) (R12), where Rll and R12 can be the same or different and selected from the group consisting of: H, CH 3 and CH 2 CH 3 ; said dye being contained and encapsulated (i.e. coated and protected) by a crystalline porous material of magnesium aluminum phosphate composition (MgAPO) with a determined pore size and structure that serves as a matrix (inorganic). Said crystalline porous matrix of magnesium aluminum phosphate composition that protects and houses the dye has at least one system of monodirectional channels delimited by rings of ten to twelve atoms of Al and P in tetrahedral coordination, and pores with a first diameter in the range of 4 to 7 Á, including both limits, and a second pore diameter in the range of 4 to 7.5 Á, including both limits.
El colorante se encuentra contenido en el interior del sistema de canales del material poroso cristalino de composición magnesioaluminofosfato (MgAPO) , es decir dentro de su estructura cristalina. Como resultado de esta combinación, se ha comprobado que el colorante presenta propiedades espectroscópicas modificadas respecto a disolución (e . tiempo de vida, espectros de excitación y emisión fluorescente) , gracias a la encapsulación en las matrices de magnesioaluminofosfatos porosos. The dye is contained within the channel system of the porous crystalline material of magnesium aluminum phosphate composition (MgAPO), that is within its crystalline structure. As a result of this combination, it has been proven that the dye has properties modified spectroscopic with respect to dissolution (e. lifetime, excitation spectra and fluorescent emission), thanks to encapsulation in porous magnesium aluminum phosphate matrices.
Los cristales obtenidos de estos materiales presentan diferentes tonalidades útiles para tintes y pigmentos que poseen la ventaja de ofrecer mayores estabilidades térmicas y químicas al estar el colorante protegido por la matriz inorgánica. Además la gran ventaja de estos materiales es que presentan una respuesta anisótropa a la luz linealmente polarizada ya que se induce una orientación microscópica donde se alinean las moléculas huésped en una dirección preferencial a lo largo de los canales de forma que se genera un material con una ordenación no centrosimétrica que origina una hiperpolarizabilidad alta, debido al ordenamiento molecular. Así, se obtiene un material anisótropo con razones dicróicas altas (mayores o cercanas a 10) susceptible de producir señales de óptica no-lineal (NLO, Non-Linear Optics) con importantísimas aplicaciones. Estas propiedades no lineales permiten el uso de estos sólidos como dobladores de frecuencias (SHG, Second Harmonio Generation) donde la respuesta anisótropa del material puede generar radiaciones con una longitud de onda mitad a la inicial (por ejemplo, posibilidad de convertir radiación infrarroja en visible y ésta en ultravioleta) . The crystals obtained from these materials have different shades useful for dyes and pigments that have the advantage of offering greater thermal and chemical stability as the dye is protected by the inorganic matrix. In addition, the great advantage of these materials is that they have an anisotropic response to linearly polarized light since a microscopic orientation is induced where the host molecules are aligned in a preferential direction along the channels so that a material is generated with a non-centroymmetric arrangement that causes high hyperpolarizability due to molecular ordering. Thus, an anisotropic material is obtained with high dichroic ratios (greater than or close to 10) capable of producing non-linear optical signals (NLO, Non-Linear Optics) with very important applications. These non-linear properties allow the use of these solids as frequency benders (SHG, Second Harmonium Generation) where the anisotropic response of the material can generate radiation with a wavelength half to the initial (for example, the possibility of converting infrared radiation into visible and this one in ultraviolet).
Un segundo objeto de la presente invención lo constituye un método de preparación del material híbrido definido anteriormente que comprende las etapas de: A second object of the present invention is a method of preparing the hybrid material defined above comprising the steps of:
mezclar mediante agitación al menos los siguientes reactivos: al menos una fuente de aluminio, al menos una fuente de magnesio, al menos una fuente de fósforo, al menos un colorante fluorescente con estructura general (I) y agua, hasta formar un gel acuoso de composición:  Mix by stirring at least the following reagents: at least one source of aluminum, at least one source of magnesium, at least one source of phosphorus, at least one fluorescent dye with general structure (I) and water, to form an aqueous gel of composition:
x MgO: 1 P205: (l-x/2) A1203: y R: z Col: w H20, donde x tiene un valor comprendido entre 0.05-0.2 incluidos ambos límites; y tiene un valor entre 0.75-1.5 incluidos ambos limites, z tiene un valor entre 0.001-0.1 incluidos ambos limites, w tiene un valor entre 20-1000 incluidos ambos limites, siendo las variables x, y, z y w seleccionadas independientemente unas de otras; donde R representa un agente director de estructura que es un compuesto orgánico; y donde Col representa un colorante fluorescente o mezclas de colorantes fluorescentes elegidos del grupo de fórmula general (I); x MgO: 1 P205: (lx / 2) A1203: y R: z Col: w H 2 0, where x has a value between 0.05-0.2 including both limits; and has a value between 0.75-1.5 including both limits, z has a value between 0.001-0.1 including both limits, w has a value between 20-1000 including both limits, the variables x, y, z and w being independently selected from each other; where R represents a structure directing agent that is an organic compound; and where Col represents a fluorescent dye or mixtures of fluorescent dyes chosen from the group of general formula (I);
calentar el gel acuoso, hasta obtener un producto sólido; - filtrar y lavar el producto sólido.  heat the aqueous gel, until a solid product is obtained; - filter and wash the solid product.
R representa un compuesto orgánico empleado en la síntesis del material microporoso que actúa como agente director de estructura, ya que su presencia favorece la formación de una determinada estructura cristalina. R represents an organic compound used in the synthesis of microporous material that acts as a structure directing agent, since its presence favors the formation of a certain crystalline structure.
Se ha comprobado que este procedimiento permite la incorporación directa del colorante dentro de los cristales del material durante su cristalización, con lo que se evita la necesidad de aplicar un tratamiento posterior de calcinación, para vaciar el sistema de poros y el llenado de los mismos con moléculas de colorante mediante el procedimiento de intercambio iónico o adsorción desde la fase gas previa sublimación del colorante. Una ventaja del presente procedimiento es que la incorporación del colorante en síntesis evita los problemas de difusión que se suelen producir durante el llenado de los poros donde las moléculas se incorporan mayoritariamente en la entrada de los poros del cristal, limitándose así dichos métodos a cristales de tamaño menor a 2 mieras. Así, el método que aquí se propone permite incorporar moléculas en cristales largos de hasta 200 mieras. Otra gran ventaja que ofrece esta técnica es la encapsulación de moléculas en espacios altamente restringidos, ya que el cristal se formará alrededor de las moléculas huésped y permite la oclusión de moléculas con un tamaño muy ajustado al del canal del soporte. Como consecuencia del alto confinamiento de las moléculas de colorante obtenido por dicho método, se obtienen materiales híbridos altamente ordenados (alineación de las moléculas huésped a lo largo de los canales) con propiedades fluorescentes mejoradas debido por una parte a la disminución de sus movimientos vibracionales , restricción de giro (respecto al eje principal c) de la molécula en el canal y limitación en la formación de agregados moleculares tipo H-sándwich que son eficientes desactivadores de la fluorescencia de las unidades monoméricas. Estas propiedades dotan al material resultante de altas prestaciones para su aplicación como láseres en estado sólido y dispositivos de óptica no-lineal (NLO, Non-Linear Optics) . It has been proven that this procedure allows the direct incorporation of the dye into the crystals of the material during its crystallization, which avoids the need to apply a subsequent calcination treatment, to empty the pore system and fill them with dye molecules by the ion exchange or adsorption process from the gas phase after sublimation of the dye. An advantage of the present process is that the incorporation of the dye in synthesis avoids the diffusion problems that usually occur during the filling of the pores where the molecules are mainly incorporated at the entrance of the pores of the crystal, thus limiting said methods to crystals of size smaller than 2 microns. Thus, the method proposed here allows to incorporate molecules in long crystals of up to 200 microns. Another great advantage offered by this technique is the encapsulation of molecules in highly restricted spaces, since the crystal will form around the host molecules and allows the occlusion of molecules with a size very tight to that of the support channel. As a consequence of the high confinement of the dye molecules obtained by said method, highly ordered hybrid materials are obtained (alignment of the host molecules along the channels) with improved fluorescent properties due on the one hand to the decrease in their vibrational movements, restriction of rotation (with respect to the main axis c) of the molecule in the channel and limitation in the formation of H-sandwich type molecular aggregates that are efficient fluorescence deactivators of monomer units. These properties provide the resulting material with high performance for its application as solid-state lasers and non-linear optical devices (NLO, Non-Linear Optics).
De hecho, este método es idóneo para encapsular moléculas de tamaños similares a los colorantes con estructura de fórmula general (I), como puede ser en el mejor de los ejemplos el colorante Pironina Y (PY) y/o el colorante Acridina (AC) , en un material poroso cristalino unidimensional de composición magnesioaluminofosfato (MgAPO) con estructura y tamaño de poro según se ha definido anteriormente: caracterizado por poseer poros con un primer diámetro comprendido en el intervalo de 4 a 7 Á, incluidos ambos limites, y un segundo diámetro de poro comprendido en el intervalo de 4 a 7.5 Á incluidos ambos limites, que presenta al menos un sistema de canales monodireccionales delimitados por anillos de diez a doce átomos de Al y P en coordinación tetraédrica. In fact, this method is suitable for encapsulating molecules of similar sizes to the dyes with structure of general formula (I), as in the best of the examples the Pironin Y (PY) dye and / or the Acridine (AC) dye , in a one-dimensional crystalline porous material of magnesium aluminum phosphate composition (MgAPO) with pore structure and size as defined above: characterized by having pores with a first diameter in the range of 4 to 7 Å, including both limits, and a second pore diameter in the range of 4 to 7.5 Á including both limits, which has at least one system of monodirectional channels delimited by rings of ten to twelve atoms of Al and P in tetrahedral coordination.
En el caso de los tamaños de poro más pequeños dentro del intervalo señalado, como por ejemplo poro igual o cercano a 4 x 6.5 Á, debido a que el tamaño del canal de la matriz anfitriona es muy similar al tamaño molecular de la molécula huésped, otros métodos del tipo intercambio catiónico o adsorción por sublimación del colorante no serian posibles para obtener un material con las propiedades pretendidas debido a que el proceso de difusión está totalmente impedido. Un tercer objeto de la presente invención es un gel acuoso de composición : x MgO: 1 P205: (l-x/2) A1203: y R: z Col: w H20, donde x tiene un valor comprendido entre 0.05-0.2 incluidos ambos limites; y tiene un valor entre 0.75-1.5 incluidos ambos limites, z tiene un valor entre 0.001-0.1 incluidos ambos limites y w tiene un valor entre 20-1000 incluidos ambos limites, siendo las variables x, y, z y w seleccionadas independientemente unas de otras; donde R representa un agente director de estructura que es un compuesto orgánico; y donde Col representa un colorante o mezcla de colorantes elegidos dentro del grupo con fórmula general (I) . In the case of smaller pore sizes within the indicated range, such as, for example, pore equal to or near 4 x 6.5 Á, because the size of the host matrix channel is very similar to the molecular size of the host molecule, Other methods of the cation exchange or sublimation adsorption of the dye would not be possible to obtain a material with the intended properties because the diffusion process is totally impeded. A third object of the present invention is an aqueous gel of composition: x MgO: 1 P 2 0 5 : (lx / 2 ) A1 2 0 3 : y R: z Col: w H 2 0, where x has a value between 0.05-0.2 including both limits; and has a value between 0.75-1.5 including both limits, z has a value between 0.001-0.1 including both limits and w has a value between 20-1000 including both limits, with the variables x, y, z and w being selected independently of each other; where R represents a structure directing agent that is an organic compound; and where Col represents a dye or mixture of dyes chosen within the group with general formula (I).
En general, los materiales híbridos definidos que contienen el colorante indicado encapsulado en una matriz como la descrita tienen potencial aplicación en varios campos industriales, por ejemplo, como pigmentos para pinturas, plásticos o cerámicas. Además, gracias a las nuevas propiedades fotofísicas y ópticas de los materiales preparados, derivadas del encapsulamiento del colorante fluorescente en las diversas estructuras MgAPO, pueden ser utilizados para el desarrollo de diversos dispositivos fotónicos, como por ejemplo láseres en estado sólido, sistemas antena para la activación de células solares y dispositivos de óptica no lineal como filtros dicroicos, sistemas dobladores de frecuencia y guías de onda. In general, defined hybrid materials containing the indicated dye encapsulated in a matrix such as that described have potential application in various industrial fields, for example, as pigments for paints, plastics or ceramics. In addition, thanks to the new photophysical and optical properties of the prepared materials, derived from the encapsulation of the fluorescent dye in the various MgAPO structures, they can be used for the development of various photonic devices, such as solid-state lasers, antenna systems for activation of solar cells and nonlinear optics devices such as dichroic filters, frequency doubling systems and waveguides.
De esta forma, un cuarto y último objeto de la presente invención estaría constituido por el uso del material híbrido aquí descrito como pigmento, por ejemplo, aunque no de manera limitante, en pinturas, cerámicas y pásticos, así como el uso como medio activo en dispositivos fotónicos y de óptica no lineal, como por ejemplo un microláser, sistema doblador de frecuencia, guía de onda, generador de segundo armónico, etc. In this way, a fourth and final object of the present invention would be constituted by the use of the hybrid material described herein as pigment, for example, although not limitedly, in paints, ceramics and plastics, as well as the use as an active medium in photonic and non-linear optical devices, such as a microllaser, frequency doubling system, waveguide, second harmonic generator, etc.
Descripción detallada de la invención Detailed description of the invention
Preferentemente, el material poroso cristalino unidimensional de composición magnesioaluminofosfato (MgAPO) es seleccionado entre magnesioaluminofosfatos cristalinos de poro medio y grande: MgAPO-11 (estructura tipo AEL) y MgAPO-36 (estructura tipo ATS), respectivamente. El magnesioaluminofosfato cristalino MgAPO-36 posee una estructura caracterizada por la presencia de canales monodireccionales paralelos al eje cristalográfico delimitados por anillos de doce átomos T (átomos de Al y P en coordinación tetraédrica) de diámetro de poro de 6.5 (primer diámetro) x 7.5 Á (segundo diámetro) . Análogamente, el material MgAPO-11 es un magnesioaluminofosfato microporoso cristalino que posee un sistema de canales monodireccionales delimitados por anillos de diez átomos T y con unas dimensiones de diámetro de poro de 4 x 6.5 Á. Preferably, the one-dimensional crystalline porous material of magnesium aluminum phosphate composition (MgAPO) is selected from medium and large crystalline magnesium aluminum phosphides: MgAPO-11 (AEL type structure) and MgAPO-36 (ATS type structure), respectively. The MgAPO-36 crystalline magnesium aluminum phosphate has a structure characterized by the presence of monodirectional channels parallel to the crystallographic axis delimited by rings of twelve T atoms (Al and P atoms in tetrahedral coordination) with a pore diameter of 6.5 (first diameter) x 7.5 Á (second diameter). Similarly, the MgAPO-11 material is a crystalline microporous magnesium aluminum phosphate having a system of monodirectional channels delimited by rings of ten T atoms and with pore diameter dimensions of 4 x 6.5 Á.
Preferentemente, los poros del material poroso cristalino son elípticos. Preferably, the pores of the crystalline porous material are elliptical.
Se ha observado que dependiendo de la estructura del magnesioaluminofosfato empleado como matriz de acuerdo con la descripción anterior, el colorante se incorpora de distinta manera en la misma; por ejemplo en matrices con un tamaño de diámetro de poro dentro del intervalo descrito de 4 x 6.5 Á o cercano, es decir del tipo MgAPO-11, se ha observado que dicho tamaño de poro es tan ajustado a las dimensiones del colorante que éste se distribuye únicamente en estado monomérico y totalmente alineado respecto a la dirección de los canales, dando lugar así a materiales híbridos anisótropos con altas eficiencias fluorescentes. Por su parte, en el caso de matrices con mayor tamaño de diámetro de poro dentro del intervalo definido, se ha visto que como consecuencia de sus poros ligeramente mayores (de diámetros 6.5 x 7.5 Á o cercanos, del tipo del material MgAPO-36) , las moléculas de colorante con estructura de fórmula general (I), se disponen formando asociaciones de geometría tipo J (monómeros coplanares en geometría cabeza-cola) dando lugar a nuevas bandas de emisión al rojo que, junto con la emisión de los monómeros también ocluidos, ofrecen materiales multicolores que permiten recoger y transmitir luz en una amplia región del espectro del Visible (500-750 nm) . Por tanto, cuando el material poroso que se emplea de matriz es el MgAPO-11, el colorante se distribuye en estado monomérico y alineado con respecto a la dirección de los canales de la matriz. Cuando el material es MgAPO-36, el colorante se dispone formando asociaciones geométricas tipo J de monómeros coplanares en geometría cabeza-cola. It has been observed that depending on the structure of the magnesium aluminum phosphate used as a matrix according to the above description, the dye is incorporated differently therein; for example in matrices with a pore diameter size within the described range of 4 x 6.5 Á or near, that is of the MgAPO-11 type, it has been observed that said pore size is so adjusted to the dimensions of the dye that it is It distributes only in a monomeric state and fully aligned with respect to the direction of the channels, thus giving rise to hybrid anisotropic materials with high fluorescent efficiencies. On the other hand, in the case of matrices with a larger pore diameter size within the defined range, it has been seen that as a consequence of their slightly larger pores (of diameters 6.5 x 7.5 Á or near, of the type of the MgAPO-36 material) , the dye molecules with structure of general formula (I), are arranged forming associations of type J geometry (coplanar monomers in head-tail geometry) giving rise to new red emission bands which, together with the emission of the monomers also occluded, they offer multicolored materials that allow to collect and transmit light in a wide region of the Visible spectrum (500-750 nm). Therefore, when the porous material used as matrix is MgAPO-11, the dye is distributed in a monomeric state and aligned with respect to the direction of the channels of the matrix. When the material is MgAPO-36, the dye is arranged forming J-type geometric associations of coplanar monomers in head-tail geometry.
En todos los materiales descritos, independientemente del tamaño de poro de la matriz, el colorante presenta una ordenación preferencial en la dirección de los canales y es susceptible de mostrar propiedades de óptica no lineal, con potenciales aplicaciones por ejemplo como dispositivos de generador de segundo armónico. Sin embargo, se han observado propiedades particulares para cada tipo de material híbrido, dependiendo del tamaño de poro de la matriz que engloba al colorante. Así, en el campo de la fotónica el hecho de que el colorante se incorpore únicamente en unidades monoméricas como ocurre con la matriz MgAPO-11 y en las estructuras con tamaño de poro más pequeño dentro del intervalo definido, confiere al material resultante de altas eficiencias fluorescentes importante para aplicaciones en óptica como son los microláseres . Por otro lado, el hecho de que forme agregados tipo J con emisiones en regiones del espectro Visible diferentes al monómero, y por tanto dando lugar a un material multicolor, presenta propiedades interesantes a la hora de diseñar sistemas antena para la activación de células solares. Esto ocurre en los materiales con un intervalo de poro más grande dentro del intervalo propuesto, como en los MgAPO-36. In all the materials described, regardless of the pore size of the matrix, the dye has a preferential arrangement in the direction of the channels and is capable of showing non-linear optical properties, with potential applications such as second harmonic generator devices . However, particular properties have been observed for each type of hybrid material, depending on the pore size of the matrix that encompasses the dye. Thus, in the photonics field, the fact that the dye is incorporated only in monomer units as with the MgAPO-11 matrix and in structures with a smaller pore size within the defined range, gives the material resulting from high efficiencies Fluorescent important for applications in optics such as microláseres. On the other hand, the fact that it forms J-type aggregates with emissions in regions of the Visible spectrum other than the monomer, and therefore giving rise to a multicolored material, presents interesting properties when designing antenna systems for the activation of solar cells. This occurs in materials with a larger pore interval within the proposed range, as in MgAPO-36.
En definitiva, se ha comprobado que de manera inesperada, en el caso de tamaños de poro más pequeños dentro del intervalo descrito para la matriz, es decir, del tipo descrito para el MgAPO-11, debido a su ajustado tamaño de poro con respecto a las dimensiones del colorante, las moléculas de dicho colorante se disponen exclusivamente ocluidas en estado monomérico y totalmente alineadas respecto al eje principal del canal, presentando rendimientos cuánticos (ver Tabla 2) altos y radios dicróicos muy elevados en la región verde del espectro electromagnético del Visible, puede decirse que las más altas registradas para materiales unidireccionales dopados con huéspedes fluorescentes. De hecho, hasta la fecha los radios dicróicos más elevados propuestos en cristales de la proteina GPF (Green Fluorescence Protein) donde el cromóforo está alineado a lo largo del eje principal de las agujas, poseen un valor de entorno a 10 (Lakowicz, J.R. Principies in Fluorescence Spectroscopy, Kluwer Academic, Plenium Press: New York, 2006, 3rd Edition) . En cambio, en los poros relativamente mayores del intervalo definido para la matriz, es decir, del tipo descrito para el MgAPO-36 se pueden ocluir concentraciones más altas de colorante donde se producen asociaciones con geometría tipo J, lo que implica la aparición de nuevas bandas desplazadas al rojo que junto con las del monómero permiten cubrir una zona ancha del espectro del visible (500-750 nm) con un único colorante. Estos resultados son inesperados en la medida en que este tipo de moléculas con tres anillos aromáticos tiende a producir una alta agregación, tanto tipo sandwich (dímeros H) como tipo J (dímeros cabeza- cola) , de tal forma que no es fácil predecir que el colorante no va a formar este tipo de agregados dentro del material. In short, it has been found that unexpectedly, in the case of smaller pore sizes within the range described for the matrix, that is, of the type described for MgAPO-11, due to its adjusted pore size with respect to the dimensions of the dye, the molecules of said dye are arranged exclusively occluded in a monomeric state and fully aligned with respect to the main axis of the channel, presenting quantum yields (see Table 2) high and very high dichroic radii in the green region of the Visible electromagnetic spectrum, the highest recorded for unidirectional materials doped with fluorescent hosts. In fact, to date the highest dichroic radii proposed in GPF (Green Fluorescence Protein) crystals where the chromophore is aligned along the main axis of the needles, have a value of around 10 (Lakowicz, JR Principies in Fluorescence Spectroscopy, Kluwer Academic, Plenium Press: New York, 2006, 3rd Edition). On the other hand, in the relatively larger pores of the range defined for the matrix, that is, of the type described for MgAPO-36, higher concentrations of dye can be occluded where associations with type J geometry occur, which implies the appearance of new bands displaced to red that together with those of the monomer allow to cover a wide area of the visible spectrum (500-750 nm) with a single dye. These results are unexpected to the extent that these types of molecules with three aromatic rings tend to produce high aggregation, both sandwich type (H dimers) and J type (head tail dimmers), so it is not easy to predict that The dye will not form this type of aggregates within the material.
Es preferible, aunque no exclusivo y limitante, que el colorante o colorantes sean seleccionados del grupo compuesto por pironinas, como la Pironina Y; oxazinas como pueden ser la Oxazina 1 y la Oxazina 4; y las acridinas, como por ejemplo el naranja de acridina, el amarillo de acridina o la proflavina, etc. Más preferentemente todavía, el colorante utilizado es seleccionado entre Pironina Y y/o Acridina. La Pironina Y es un colorante fluorescente con una estructura derivada del anillo xanteno que presenta la fórmula general (I), donde X es CH; Y es O; R3 es igual a R4 y ambos son H; Rl es igual a R2 y ambos son N(R11) (R12), siendo Rll y R12 CH3, de dimensiones moleculares 13.7Á x 6.2Á x 3.2 Á (primer eje o eje principal, segundo eje o eje menor, y espesor, respectivamente), que posee un color rojo brillante; este colorante se emplea en una técnica histoquímica de tinción, el procedimiento estandarizado Verde de Metilo-Pironina Y, que permite distinguir el ADN del ARN simultáneamente. Por su parte, la acridina presenta la fórmula general (I) donde Rl, R2, R3 y R4 son H; X es CH; e Y es N, con dimensiones moleculares aproximadas 9.2 x 5 x 3 Á; este colorante fluorescente posee una coloración amarilla y es utilizado principalmente como indicador ácido-base. It is preferable, although not exclusive and limiting, that the dye or dyes be selected from the group consisting of pyronins, such as Pyronin Y; oxazines such as Oxazine 1 and Oxazine 4; and acridines, such as acridine orange, acridine yellow or proflavin, etc. More preferably, the dye used is selected from Pironin Y and / or Acridine. Pironin Y is a fluorescent dye with a structure derived from the xanthene ring having the general formula (I), where X is CH; Cast; R3 is equal to R4 and both are H; Rl is equal to R2 and both are N (R11) (R12), Rll and R12 CH 3 being of molecular dimensions 13.7Á x 6.2Á x 3.2 Á (first axis or main axis, second axis or minor axis, and thickness, respectively), which has a bright red color; This dye is used in a histochemical staining technique, the procedure Standardized Green Methyl-Pyronine Y, which allows to distinguish RNA DNA simultaneously. On the other hand, acridine has the general formula (I) where R1, R2, R3 and R4 are H; X is CH; and Y is N, with approximate molecular dimensions 9.2 x 5 x 3 Á; This fluorescent dye has a yellow coloration and is mainly used as an acid-base indicator.
Más preferentemente todavía se emplea la Pironina Y. More preferably, Pironin Y is still used.
En otra realización preferida, del grupo de colorantes de fórmula general (I) se incorpora al material el colorante fluorescente Acridina (siendo en este caso como se ha dicho R1=R2=R3=R4=H; X=CH; Y=N) . In another preferred embodiment, the Acridine fluorescent dye is incorporated into the material from the group of general formula (I) (R1 = R2 = R3 = R4 = H; X = CH; Y = N) .
De manera preferida, el material incorpora al menos dos colorantes. Más preferentemente, cada colorante emite en una longitud de onda diferente al resto, dando lugar a materiales híbridos multicolores. Más preferentemente todavía, dichos colorantes son Pironina Y y Acridina, tal cual se han descrito. En estos casos, cada colorante presenta propiedades fluorescentes a diferente longitud de onda, de tal modo que cubren en conjunto y de forma combinada un rango amplio del espectro . Preferably, the material incorporates at least two dyes. More preferably, each dye emits a different wavelength from the rest, resulting in multicolored hybrid materials. More preferably still, said dyes are Pironin Y and Acridine, as described. In these cases, each dye has fluorescent properties at different wavelengths, so that they cover a wide range of the spectrum together and in combination.
En una realización preferida, la matriz es MgAlPO-36 y el colorante es Pironina Y. En este caso concreto, al formarse una agregación J del colorante se consigue un efecto multicolor del material con un único colorante. In a preferred embodiment, the matrix is MgAlPO-36 and the dye is Pironin Y. In this particular case, when an aggregation J of the dye is formed, a multicolored effect of the material is achieved with a single dye.
En lo que respecta al método de obtención del material híbrido descrito en cualquiera de sus variantes, así como al gel acuoso de síntesis que se divulga, x tiene preferentemente un valor de 0.2; y tiene un valor preferentemente de 0.75, z tiene un valor preferentemente de 0.024, y w tiene un valor preferentemente de 300, siendo las variables x, y, z y w seleccionadas independientemente unas de otras. Cabe destacar también que el agente director de estructura puede ser una amina primaria, secundaria o terciaria o un catión amonio cuaternario. R se incorpora preferentemente en el magnesioaluminofosfato obtenido en un porcentaje en peso entre 0.1-20%, incluidos ambos limites, siendo más preferentemente aún de 5-15%. En una realización particular de la invención, en el caso de que el material poroso cristalino unidimensional de composición magnesioaluminofosfato (MgAPO) es MgAPO-36, R es preferentemente una amina terciaria como tripropilamina . En otra realización particular de la invención, en el caso de que el material poroso cristalino unidimensional de composición magnesioaluminofosfato (MgAPO) es MgAPO-11, R es preferentemente una amina secundaria como etilbutilamina . As regards the method of obtaining the hybrid material described in any of its variants, as well as the aqueous synthesis gel disclosed, x preferably has a value of 0.2; and has a value preferably of 0.75, z has a value preferably of 0.024, and w has a value preferably of 300, the variables x, y, z and w being independently selected from each other. It should also be noted that the structure directing agent can be a primary, secondary or tertiary amine or a quaternary ammonium cation. R is preferably incorporated into the magnesium aluminum phosphate obtained in a weight percentage between 0.1-20%, including both limits, being more preferably still 5-15%. In a particular embodiment of the invention, in the case where the one-dimensional crystalline porous material of magnesium aluminum phosphate composition (MgAPO) is MgAPO-36, R is preferably a tertiary amine such as tripropylamine. In another particular embodiment of the invention, in the case where the one-dimensional crystalline porous material of magnesium aluminum phosphate composition (MgAPO) is MgAPO-11, R is preferably a secondary amine such as ethylbutylamine.
Como fuente de Magnesio se emplea preferentemente un compuesto de magnesio, como puede ser por ejemplo sulfato de magnesio, nitrato de magnesio, o más preferentemente acetato de magnesio, y cualquier combinación de los mismos. Como fuente de aluminio se emplea de manera preferida un compuesto de aluminio como un óxido de aluminio (alúmina) , un óxido de aluminio parcialmente hidratado como la pseudobohemita o la bohemita, isopropóxido de aluminio, u otras sales de aluminio, más preferentemente hidróxido de aluminio y cualquier combinación de los mismos. De manera preferida y no limitante, la fuente de fósforo es un compuesto de fósforo preferentemente seleccionado entre ácido fosfórico (H3PO4) , ácido fosforoso (H3PO3) y cualquier mezcla de ellos. El calentamiento del gel acuoso de síntesis se realiza preferentemente por tratamiento térmico a una temperatura comprendida entre 100-200°C, incluidos ambos límites, y más preferentemente a 180°C. El tratamiento térmico se realiza durante un periodo de tiempo comprendido entre 5-72 horas, incluidos ambos límites, siendo más preferentemente de 12 horas cuando el MgAPO-36 y de 18 horas para el MgAPO-11. El calentamiento del gel o tratamiento térmico puede realizarse mediante técnicas convencionales conocidas, siendo más preferidas la síntesis hidrotermal o el calentamiento por microondas . A magnesium compound is preferably used as the source of Magnesium, such as magnesium sulfate, magnesium nitrate, or more preferably magnesium acetate, and any combination thereof. An aluminum compound is preferably used as an aluminum compound such as an aluminum oxide (alumina), a partially hydrated aluminum oxide such as pseudobohemite or bohemite, aluminum isopropoxide, or other aluminum salts, more preferably aluminum hydroxide and any combination thereof. In a preferred and non-limiting manner, the phosphorus source is a phosphorus compound preferably selected from phosphoric acid (H 3 PO 4 ), phosphorous acid (H 3 PO 3 ) and any mixture thereof. The heating of the aqueous synthesis gel is preferably carried out by heat treatment at a temperature between 100-200 ° C, including both limits, and more preferably at 180 ° C. The heat treatment is carried out for a period of time between 5-72 hours, including both limits, being more preferably 12 hours when MgAPO-36 and 18 hours for MgAPO-11. The heating of the gel or heat treatment can be carried out by known conventional techniques, being more preferred hydrothermal synthesis or microwave heating.
La separación de los cristales de magnesioaluminofosfato se lleva a cabo mediante el filtrado del producto sólido obtenido tras el tratamiento térmico, y su posterior lavado, preferentemente con abundante etanol y agua desionizada hasta que las aguas de lavado recogidas sean incoloras, con el fin de eliminar el exceso de colorante que no se ha incorporado en el interior de los cristales. The separation of the magnesium aluminum phosphate crystals is carried out by filtering the solid product obtained after the heat treatment, and subsequent washing, preferably with abundant ethanol and deionized water until the collected washing waters are colorless, in order to eliminate excess dye that has not been incorporated into the crystals.
Estos materiales resultantes son susceptibles de ser utilizados como pigmentos más foto- y termoestables , preferentemente en productos como pinturas, plásticos y cerámicas. El uso del material como pigmento se aplica a cualquier tipo de matriz utilizada, independientemente de su tamaño de poro. These resulting materials are likely to be used as more photo- and thermostable pigments, preferably in products such as paints, plastics and ceramics. The use of the material as a pigment is applied to any type of matrix used, regardless of its pore size.
Además, en los materiales descritos, independientemente del tipo de matriz, el colorante o colorantes presentan una ordenación preferencial en la dirección de los canales y es susceptible de mostrar propiedades de óptica no lineal, con potenciales aplicaciones por ejemplo como dispositivos de generador de segundo armónico. In addition, in the materials described, regardless of the type of matrix, the dye or dyes have a preferential arrangement in the direction of the channels and is capable of showing nonlinear optical properties, with potential applications such as second harmonic generator devices .
Asimismo, los materiales híbridos objeto de interés son susceptibles de ser utilizados como microláseres , preferentemente como microláseres sintonizables en estado sólido mediante los fenómenos conocidos como emisión láser reforzada por scattering y "random láser" (A. Tulek, R.C. Polson, Z.V. Vardeny, Nature Physics, 6 (2010) 303), como guías de onda o incluso para la activación de células solares mediante sistemas "antenas" al intercalar colorantes encargados de recolectar la radiación visible, transportarla de forma ordenada y transferir posteriormente la energía al semiconductor. Esta aplicación del material en el campo de fotónica se debe al hecho de que el colorante o colorantes se incorporan solamente en unidades monoméricas como ocurre sobre todo en los materiales cuya matriz presenta un tamaño de poro menor dentro del intervalo definido, como por ejemplo el MgAPO-ll, confiriendo al material resultante altas eficiencias fluorescentes que es fundamental para aplicaciones en óptica, como son los microláseres . Likewise, the hybrid materials of interest are likely to be used as microláseres, preferably as solid state tunable microláseres by means of the phenomena known as scattering and "random laser" reinforced laser emission (A. Tulek, RC Polson, ZV Vardeny, Nature Physics, 6 (2010) 303), as waveguides or even for the activation of solar cells by means of "antenna" systems by inserting dyes responsible for collecting visible radiation, transporting it in an orderly manner and subsequently transferring energy to the semiconductor. This application of the material in the photonics field is due to the fact that the dye or dyes are incorporated only in monomer units as occurs on all in materials whose matrix has a smaller pore size within the defined range, such as MgAPO-ll, giving the resulting material high fluorescent efficiencies that is essential for optical applications, such as microláseres.
Por otro lado, el hecho de que el colorante forme agregados tipo J con emisiones en regiones del espectro visible diferentes al monómero, y por tanto dando lugar a un material multicolor, presenta propiedades interesantes a la hora de diseñar sistemas antena para la activación de células solares. Esto ocurre sobre todo en los materiales con un intervalo de poro mayor dentro del intervalo propuesto, como es el caso del MgAPO-36. On the other hand, the fact that the dye forms type J aggregates with emissions in regions of the visible spectrum other than the monomer, and therefore giving rise to a multicolored material, presents interesting properties when designing antenna systems for cell activation solar. This occurs especially in materials with a larger pore interval within the proposed range, as is the case of MgAPO-36.
Descripción de las figuras Description of the figures
Figura 1. a) Patrón de difracción de RX característico de la estructura MgAPO-36 y b) Patrón de difracción de RX característico de la estructura MgAPO-ll. Figure 1. a) RX diffraction pattern characteristic of the MgAPO-36 structure and b) RX diffraction pattern characteristic of the MgAPO-ll structure.
Figura 2. Imagen de fluorescencia bajo excitación azul (filtro de banda 480/40 nm) y registrando la emisión a partir de 515 nm, y el perfil de intensidad fluorescente a lo largo de una partícula de PY en MgAPO-36. Figure 2. Fluorescence image under blue excitation (480/40 nm band filter) and recording the emission from 515 nm, and the fluorescent intensity profile along a particle of PY in MgAPO-36.
Figura 3. Imágenes de fluorescencia B recogidas en función de la dirección de polarización indicada por las dobles fechas. Figura 4. Espectros de excitación y de emisión para las muestras obtenidas según el Ejemplo 1, PY en MgAPO-36 (línea sólida), según el Ejemplo 2, PY en MgAPO-36 (línea discontinua), según el Ejemplo 3, PY en MgAPO-ll (línea de puntos), y PY en disolución acuosa (línea gris) . Figure 3. B fluorescence images collected as a function of the polarization direction indicated by the double dates. Figure 4. Excitation and emission spectra for the samples obtained according to Example 1, PY in MgAPO-36 (solid line), according to Example 2, PY in MgAPO-36 (dashed line), according to Example 3, PY in MgAPO-ll (dotted line), and PY in aqueous solution (gray line).
Figura 5. Imagen de fluorescencia bajo excitación azul (filtro de banda 480/40 nm) y registrando la emisión a partir de 515 nm; figuras insertadas: perfil RGB (rojo, verde, azul) y espectros de fluorescencia registrados a lo largo de la Figure 5. Fluorescence image under blue excitation (480/40 nm band filter) and recording the emission from 515 nm; inserted figures: RGB profile (red, green, blue) and fluorescence spectra recorded throughout the
partícula señalada de PY en MgAPO-36. designated particle of PY in MgAPO-36.
Figura 6. Intensidad fluorescente recogidas en función de la dirección de polarización indicada por las fechas para una partícula de PY en MgAPO-ll. Figure 6. Fluorescent intensity collected as a function of the polarization direction indicated by the dates for a particle of PY in MgAPO-ll.
Ejemplos A continuación se especifican los detalles de la síntesis de varios materiales objeto de la presente patente, y se analizan las propiedades de los materiales híbridos fotoactivos obtenidos . Ejemplo 1: Preparación de MgAPO-36 con un contenido de Pironina Y de 0.008 en el gel de síntesis Examples The details of the synthesis of various materials object of the present patent are specified below, and the properties of the obtained photoactive hybrid materials are analyzed. Example 1: Preparation of MgAPO-36 with a Pironin Y content of 0.008 in the synthesis gel
El gel se prepara mezclando en un bote de polipropileno y en el orden indicado, 1.61g de H3PO4 (Aldrich, 85 wt%), 36.40g de H20 y 0.31g de acetato de magnesio tetrahidratado, Mg ( CH3CH2COO ) 2 ' 4H20 (Aldrich) . Se agita la mezcla durante 10 minutos y se añaden a continuación 0.98 g de Al (OH) 3 · xH20, 0.77g de tripropilamina (TPAm) y finalmente, 0.0155g de colorante cloruro de Pyronina Y (PY; Aldrich) . Se obtiene un gel de composición molar: The gel is prepared by mixing in a polypropylene canister and in the order indicated, 1.61g of H3PO4 (Aldrich, 85 wt%), 36.40g of H 2 0 and 0.31g of magnesium acetate tetrahydrate, Mg (CH3CH2COO) 2 '4H 2 0 (Aldrich). The mixture is stirred for 10 minutes and then 0.98 g of Al (OH) 3 · xH 2 , 0.77g of tripropylamine (TPAm) are added and finally, 0.0155g of Pyronine Y chloride dye (PY; Aldrich). A gel of molar composition is obtained:
0.2 MgO: 1 P205: 0.9 A1203: 0.75 TPAm: 0.008 PY: 300 H20 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 0.75 TPAm: 0.008 PY: 300 H 2 0
Tras una hora con agitación, el gel resultante (pH=3.44) se introduce en autoclaves de Tefón de 100ml, que son calentados a 180°C, en régimen estático, durante 24h. El producto resultante se filtra y se lava abundantemente con etanol y agua. Se obtienen unos cristales ligeramente coloreados, de un color rosa pálido (masa de sólido = 0.70g) . After one hour with stirring, the resulting gel (pH = 3.44) is introduced into 100 ml Tefon autoclaves, which are heated at 180 ° C, in a static regime, for 24 hours. The resulting product is filtered and washed thoroughly with ethanol and water. Slightly colored crystals of a pale pink color (mass of solid = 0.70g) are obtained.
El difractograma del sólido obtenido se presenta en la Figura la, en la que se puede observar el patrón de difracción característico de MgAPO-36. Ejemplo 2: Preparación de MgAPO-36 con un contenido de Pironina Y de 0.024 en el gel de síntesis. En un bote de polipropileno se mezclan 1.61g de H3PO4 (Aldrich, 85wt%), 36.28g de H20 y 0.30g de acetato de magnesio tetrahydratado, Mg (CH3CH2COO) 2 (Aldrich) . Se agita durante 10 minutos y se añaden a continuación 0.98 g de Al(OH)3xH20, 0.77g de tripropilamina (TPAm) y finalmente, 0.0507g de colorante cloruro de Pironina Y (PY; Aldrich) . Se mantiene el sistema con agitación vigorosa en un bote cerrado durante una hora para homogeneizar el gel de síntesis. El pH final del gel es pH=3.43 y la composición molar final del gel es: 0.2 MgO: 1 P205: 0.9 A1203: 0.75 TPAm: 0.024 PY: 300 H20 The diffractogram of the solid obtained is presented in Figure la, in which the characteristic diffraction pattern of MgAPO-36 can be observed. Example 2: Preparation of MgAPO-36 with a Pironin Y content of 0.024 in the synthesis gel. 1.61g of H 3 PO 4 (Aldrich, 85wt%), 36.28g of H 2 0 and 0.30g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 (Aldrich) are mixed in a polypropylene canister. It is stirred for 10 minutes and then 0.98 g of Al (OH) 3 x H 2 0, 0.77g of tripropylamine (TPAm) are added and finally, 0.0507g of Pironine Y chloride dye (PY; Aldrich). The system is maintained with vigorous agitation in a closed boat for one hour to homogenize the synthesis gel. The final pH of the gel is pH = 3.43 and the final molar composition of the gel is: 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 0.75 TPAm: 0.024 PY: 300 H 2 0
Se distribuye este gel (aproximadamente 40g) en dos autoclaves y se calienta a 180° C, durante 13 horas, en condiciones estáticas y a la presión autógena del sistema. El contenido del autoclave se filtra y se lava exhaustivamente con etanol y agua para eliminar el colorante sin incorporar. Se obtienen unos cristales rojos de MgAPO-36 (masa de sólido = 0.78g) . This gel (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 13 hours, under static conditions and at the autogenous system pressure. The contents of the autoclave are filtered and washed thoroughly with ethanol and water to remove the dye without incorporating. Red crystals of MgAPO-36 are obtained (mass of solid = 0.78g).
El difractograma del sólido obtenido similar al mostrado en la Figura la correspondiente al patrón de difracción característico de MgAPO-36. The diffractogram of the solid obtained similar to that shown in the Figure corresponds to the characteristic diffraction pattern of MgAPO-36.
Ejemplo 3: Preparación de MgAPO-11 con un contenido de Mg de 0.2 y un contenido de Pironina Y de 0.024 en el gel de síntesis . Example 3: Preparation of MgAPO-11 with a Mg content of 0.2 and a Pyronine Y content of 0.024 in the synthesis gel.
Se mezclan en un bote de polipropileno 1.60g de H3PO4 (Aldrich, 85wt. %), 36.50g de H20 y 0.30g de acetato de magnesio tetrahidratado, Mg (CH3CH2COO) 2 · 4H20 (Aldrich) . Se agita durante 10 minutos y se añaden a continuación 0.98 g de Al (OH) 3 · xH20, 0.73g de etilbutilamina (EtButAm) y finalmente, 0.0502 g de colorante cloruro de Pironina Y (PY; Aldrich) . Se mantiene el sistema con agitación vigorosa en un bote cerrado durante una hora para homogeneizar el gel de síntesis. El pH final del gel es pH=3.64 y la composición molar final del gel es: 1.60g of H 3 PO 4 (Aldrich, 85wt.%), 36.50g of H 2 0 and 0.30g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 · 4H 2 0 are mixed in a polypropylene canister (Aldrich) It is stirred for 10 minutes and then 0.98 g of Al (OH) 3 · xH 2 , 0.73g of ethylbutylamine (EtButAm) and finally 0.0502 g of Pironine Y chloride dye (PY; Aldrich) are added. The system is maintained with vigorous agitation in a closed boat during a time to homogenize the synthesis gel. The final pH of the gel is pH = 3.64 and the final molar composition of the gel is:
0.2 MgO: 1 P205: 0.9 A1203: 1 EtButAm: 0.024 PY: 300 H20 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 1 EtButAm: 0.024 PY: 300 H 2 0
El gel obtenido (aproximadamente 40g) se distribuye en dos autoclaves y se calienta a 180° C durante 18 horas a la presión autógena del sistema en estático. El contenido de los autoclaves se filtra y se lava exhaustivamente con agua destilada y etanol para eliminar el colorante que no se ha incorporado en el material. Se obtienen unos cristales rojos de MgAPO-ll (masa de sólido = 0.60g) . The gel obtained (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 18 hours at the autogenous pressure of the static system. The contents of the autoclaves are filtered and washed thoroughly with distilled water and ethanol to remove the dye that has not been incorporated into the material. Red crystals of MgAPO-ll are obtained (mass of solid = 0.60g).
El difractograma del sólido obtenido se presenta en la Figura Ib, en la que se puede observar el patrón de difracción The diffractogram of the solid obtained is presented in Figure Ib, in which the diffraction pattern can be observed
característico de MgAPO-ll. characteristic of MgAPO-ll.
Ejemplo 4: Preparación de MgAPO-ll con un contenido de Mg de 0.2 y un contenido de Acridina de 0.024 en el gel de síntesis. Example 4: Preparation of MgAPO-ll with a Mg content of 0.2 and an Acridine content of 0.024 in the synthesis gel.
Se mezclan en un bote de polipropileno 1.59g de H3PO4 (Aldrich, 85wt. %), 36.57g de H20 y 0.31g de acetato de magnesio tetrahidratado, Mg (CH3CH2COO) 2 · 4H20 (Aldrich) . Se agita durante 10 minutos y se añaden a continuación 0.99 g de Al (OH) 3 · xH20, 0.71g de etilbutilamina (EtButAm) y finalmente, 0.0300 g de colorante Acridina pura (Scharlau) . Se mantiene el sistema con agitación vigorosa en un bote cerrado durante una hora para homogeneizar el gel de síntesis. El pH final del gel es pH=4.30 y la composición molar final del gel es: 1.59g of H 3 PO 4 (Aldrich, 85wt.%), 36.57g of H 2 0 and 0.31g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 · 4H 2 0 are mixed in a polypropylene canister (Aldrich) It is stirred for 10 minutes and then 0.99 g of Al (OH) 3 · xH 2 , 0.71g of ethylbutylamine (EtButAm) and finally, 0.0300 g of pure Acridine dye (Scharlau) are added. The system is maintained with vigorous agitation in a closed boat for one hour to homogenize the synthesis gel. The final pH of the gel is pH = 4.30 and the final molar composition of the gel is:
0.2 MgO: 1 P205: 0.9 A1203: 1 EtButAm: 0.024 AC : 300 H20 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 1 EtButAm: 0.024 AC: 300 H 2 0
El gel obtenido (aproximadamente 40g) se distribuye en dos autoclaves y se calienta a 180° C durante 18 horas a la presión autógena del sistema en estático. El contenido de los autoclaves se filtra y se lava exhaustivamente con agua destilada y etanol para eliminar el colorante que no se ha incorporado en el material. Se obtienen unos cristales de MgAPO-ll de color amarillo intenso (masa de sólido = 0.70g) The gel obtained (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 18 hours at the autogenous pressure of the static system. The contents of the autoclaves are filtered and washed thoroughly with distilled water and ethanol to remove the dye that has not been incorporated into the material. Crystals of MgAPO-ll of intense yellow color (mass of solid = 0.70g)
El difractograma del sólido obtenido presenta un patrón de difracción característico de MgAPO-ll, análogo al mostrado en la figura Ib. The diffractogram of the solid obtained has a characteristic diffraction pattern of MgAPO-ll, analogous to that shown in Figure Ib.
Ejemplo 5: Preparación de MgAPO-ll con un contenido de Mg de 0.2, con un contenido de Acridina de 0.012 y un contenido de Pyronina Y de 0.012 en el gel de síntesis. Example 5: Preparation of MgAPO-ll with a Mg content of 0.2, with an Acridine content of 0.012 and a Pyronine Y content of 0.012 in the synthesis gel.
Se mezclan en un bote de polipropileno 1.60g de H3PO4 (Aldrich, 85wt. %), 36.53g de H20 y 0.31g de acetato de magnesio tetrahidratado, Mg (CH3CH2COO) 2 · 4H20 (Aldrich) . Se agita durante 10 minutos y se añaden a continuación 0.98 g de Al (OH) 3 · xH20, 0.72g de etilbutilamina (EtButAm) y finalmente, 0.0150 g de colorante Acridina pura (AC; Scharlau) y 0.0255g de colorante Pyronina Y (PY; Aldrich) . Se mantiene el sistema con agitación vigorosa en un bote cerrado durante una hora para homogeneizar el gel de síntesis. El pH final del gel es pH=4.00 y la composición molar final del gel es: 1.60g of H 3 PO 4 (Aldrich, 85wt.%), 36.53g of H 2 0 and 0.31g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 · 4H 2 0 are mixed in a polypropylene canister (Aldrich) It is stirred for 10 minutes and then 0.98 g of Al (OH) 3 · xH 2 0, 0.72g of ethylbutylamine (EtButAm) and finally, 0.0150 g of pure Acridine dye (AC; Scharlau) and 0.0255g of Pyronine dye are added And (PY; Aldrich). The system is maintained with vigorous agitation in a closed boat for one hour to homogenize the synthesis gel. The final pH of the gel is pH = 4.00 and the final molar composition of the gel is:
0.2 MgO: 1 P205: 0.9 A1203: 1 EtButAm: 0.012 AC : 0.012 PY: 300 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 1 EtButAm: 0.012 AC: 0.012 PY: 300
H20 El gel obtenido (aproximadamente 40g) se distribuye en dos autoclaves y se calienta a 180° C durante 18 horas a la presión autógena del sistema en estático. El contenido de los autoclaves se filtra y se lava exhaustivamente con agua destilada y etanol. Se obtienen unos cristales amarillentos de MgAPO-ll (masa de sólido = 0.60g) . H 2 0 The gel obtained (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 18 hours at the autogenous static system pressure. The contents of the autoclaves are filtered and washed thoroughly with distilled water and ethanol. Yellowish MgAPO-ll crystals are obtained (solid mass = 0.60g).
El difractograma del sólido obtenido presenta un patrón de difracción característico de MgAPO-ll, análogo al mostrado en la figura Ib. The diffractogram of the solid obtained has a characteristic diffraction pattern of MgAPO-ll, analogous to that shown in Figure Ib.
Ejemplo 6: Preparación de MgAPO-36 con un contenido de Acridina de 0.024 en el gel de síntesis. En un bote de polipropileno se mezclan 1.60g de H3PO4 (Aldrich, 85wt%), 36.67g de H20 y 0.31g de acetato de magnesio tetrahydratado, Mg (CH3CH2COO) 2 (Aldrich) . Se agita durante 10 minutos y se añaden a continuación 0.98 g de Al(OH)3xH20, 0.76g de tripropilamina (TPAm) y finalmente, 0.0309g de colorante Acridina (AC; Scharlau) . Se mantiene el sistema con agitación vigorosa en un bote cerrado durante una hora para homogeneizar el gel de síntesis. El pH final del gel es pH=3.95 y la composición molar final del gel es: Example 6: Preparation of MgAPO-36 with an Acridine content of 0.024 in the synthesis gel. In a polypropylene canister 1.60g of H 3 PO 4 (Aldrich, 85wt%), 36.67g of H 2 0 and 0.31g of magnesium acetate tetrahydrate, Mg (CH 3 CH 2 COO) 2 (Aldrich) are mixed. It is stirred for 10 minutes and then 0.98 g of Al (OH) 3 x H 2 0, 0.76g of tripropylamine (TPAm) and finally 0.0309g of Acridine dye (AC; Scharlau) are added. The system is maintained with vigorous agitation in a closed boat for one hour to homogenize the synthesis gel. The final pH of the gel is pH = 3.95 and the final molar composition of the gel is:
0.2 MgO: 1 P205: 0.9 A1203: 0.75 TPAm: 0.024 AC: 300 H20 0.2 MgO: 1 P 2 0 5 : 0.9 A1 2 0 3 : 0.75 TPAm: 0.024 AC: 300 H 2 0
Se distribuye este gel (aproximadamente 40g) en dos autoclaves y se calienta a 180° C, durante 13 horas, en condiciones estáticas y a la presión autógena del sistema. El contenido del autoclave se filtra y se lava exhaustivamente con etanol y agua. Se obtienen unos cristales amarillos intenso de MgAPO-36 (masa de sólido = 0.60g) . El difractograma del sólido obtenido similar al mostrado en la Figura la correspondiente al patrón de difracción característico de MgAPO-36. This gel (approximately 40g) is distributed in two autoclaves and heated at 180 ° C for 13 hours, under static conditions and at the autogenous system pressure. The contents of the autoclave are filtered and washed thoroughly with ethanol and water. Intense yellow crystals of MgAPO-36 are obtained (solid mass = 0.60g). The diffractogram of the solid obtained similar to that shown in the Figure corresponds to the characteristic diffraction pattern of MgAPO-36.
Ejemplo 7: Determinación de la cantidad de colorante incorporada en los obtenidos en los ejemplos 1, 2 y 3. Example 7: Determination of the amount of dye incorporated in those obtained in examples 1, 2 and 3.
Para determinar el contenido de colorante incorporado en los materiales descritos en los ejemplos 1, 2 y 3, se disuelve el sólido en ácido clorhídrico 5 M y posteriormente se neutraliza con una disolución de NaOH 5M hasta pH~6-7. El sólido que precipita se centrifuga y se toma una alícuota del líquido sobrenadante, que es posteriormente diluida hasta un volumen de 5 mi. La concentración de esta disolución se obtiene midiendo su espectro UV-Vis por comparación con disoluciones de concentración conocida. Los resultados se muestran en la Tabla 1. To determine the dye content incorporated in the materials described in Examples 1, 2 and 3, the solid is dissolved in 5M hydrochloric acid and subsequently neutralized with a 5M NaOH solution to pH ~ 6-7. The solid that precipitates is centrifuged and an aliquot of the supernatant liquid is taken, which is subsequently diluted to a volume of 5 ml. The concentration of this solution is obtained by measuring its UV-Vis spectrum by comparison with solutions of known concentration. The results are shown in Table 1.
Tabla 1. Contenido de colorante determinado por UV-Vis de las muestras obtenidas según los ejemplos lr 2 y 3r expresado gramos de pironina por lOOgr de producto sólido y como densidad de moléculas de pironina por canal en 1000 Á. Table 1. Dye content determined by UV-Vis of the samples obtained according to the examples l r 2 and 3 r expressed grams of pironin per lOOgr of solid product and as density of pironin molecules per channel in 1000 Á.
Figure imgf000027_0001
Figure imgf000027_0001
Ejemplo 8: Evaluación de las propiedades ópticas de los materiales preparados según los ejemplos 1, 2 y 3. Example 8: Evaluation of the optical properties of the materials prepared according to examples 1, 2 and 3.
Este ejemplo ilustra el comportamiento fluorescente de las muestras obtenidas según los procedimientos descritos en los Ej emplos 1 , 2 y 3. This example illustrates the fluorescent behavior of the samples obtained according to the procedures described in Examples 1, 2 and 3.
En general, los cristales de la muestra de MgAPO-36 con bajo contenido de colorante (Tabla 1) sintetizado en el ejemplo 1 presentan tamaños comprendidos entre 40-50 mieras de largo y entre 3 y 5 mieras de ancho (Figura 2) . Sus imágenes de fluorescencia recogidas en un microscopio Olympus BX51, equipado con cámara a color CCD DP72 muestran emisión verde (Figura 2) y uniforme a lo largo de las agujas como muestra el perfil de intensidad a lo largo de la partícula (Figura 2) lo que confirma una adsorción homogénea del colorante PY durante el crecimiento de la estructura. Además, mediante los experimentos de luz linealmente polarizada realizados mediante la incorporación de polarizador U-AN-360-3 antes del registro en la cámara CCD (Figura 3) se detecta una respuesta anisótropa ya que se recoge máxima señal de fluorescencia cuando la orientación del polarizador es paralela al eje principal de las agujas, lo que es indicativo de la adsorción del colorante preferentemente en la dirección de los canales monodireccionales y por tanto mayoritariamente en el interior de los nanoporos. Las razones dicróicas "D" obtenidas (relación de la intensidad fluorescente registrada simultáneamente en dirección paralela y perpendicular al eje principal de una única partícula) son elevadas, de en torno a 10-15 (Tabla 2), indicando un alto grado de alineación de los momentos dipolares de la PY con respecto a los canales. In general, the crystals of the MgAPO-36 sample with low dye content (Table 1) synthesized in example 1 have sizes between 40-50 microns long and between 3 and 5 microns wide (Figure 2). Its fluorescence images collected on an Olympus BX51 microscope, equipped with a CCD DP72 color camera show green emission (Figure 2) and uniform along the needles as shown by the intensity profile along the particle (Figure 2). which confirms a homogeneous adsorption of the PY dye during the growth of the structure. In addition, by means of linearly polarized light experiments carried out by incorporating the U-AN-360-3 polarizer before recording in the CCD camera (Figure 3) an anisotropic response is detected since maximum fluorescence signal is collected when the orientation of the The polarizer is parallel to the main axis of the needles, which is indicative of the adsorption of the dye preferably in the direction of the monodirectional channels and therefore mostly inside the nanopores. The "D" dichroic ratios obtained (ratio of the recorded fluorescent intensity simultaneously in the direction parallel and perpendicular to the main axis of a single particle) they are high, around 10-15 (Table 2), indicating a high degree of alignment of the dipole moments of the PY with respect to the channels.
La Tabla 2 muestra los parámetros espectroscópicos principales de las muestras sintetizadas según los ejemplos 1, 2 y 3 y PY en disolución acuosa diluida. Aexc : posición del máximo del espectro de excitación, Afi : máximo de fluorescencia de muestras en polvo (medidas en fluorímetro convencional modelo Fluorolog 3-22), Afi* : máximo de fluorescencia de partículas individuales (medidas en microscopio confocal, modelo Micro Time 200), i fi (ns)/(A%) : tiempos de vida (peso estadístico de cada tiempo de vida), Ofi : rendimientos cuánticos y D: radios dicróicos . Table 2 shows the main spectroscopic parameters of the samples synthesized according to examples 1, 2 and 3 and PY in dilute aqueous solution. A exc : position of the maximum of the excitation spectrum, A f i: maximum fluorescence of powder samples (measured in conventional fluorimeter model Fluorolog 3-22), A f i *: maximum fluorescence of individual particles (measured in confocal microscope , Micro Time 200 model), i f i (ns) / (A%): life times (statistical weight of each life time), O f i: quantum yields and D: dichroic radii.
Tabla 2. Parámetros espectroscópicos de las muestras de material híbrido sintetizadas en los Ejemplos 1, 2 y 3. Table 2. Spectroscopic parameters of the samples of hybrid material synthesized in Examples 1, 2 and 3.
Figure imgf000028_0001
Figure imgf000028_0001
1.- Muestras medidas en estado sólido mediante 1 técnica conocida como esfera integradora (Hamamats C9920) . 2.- PY en disolución acuosa diluida 10~6 M (monómeros) registrada a temperatura ambiente en un fluorimetro convencional (SPEX modelo Fluorolog 3- 22) . *La emisión fluorescente de PY en disolución acuosa disminuye drásticamente a medida que aumenta la concentración de colorante con valores de rendimiento cuántico de Ofl = 2% para 10~4 M y Ofl = 0.4% para una disolución saturada (> 2 xl0~4 M) debido a la formación de agregados H. 1.- Samples measured in solid state using 1 technique known as integrating sphere (Hamamats C9920). 2.- PY in 10 ~ 6 M diluted aqueous solution (monomers) recorded at room temperature in a conventional fluorimeter (SPEX model Fluorolog 3- 22). * The fluorescent emission of PY in aqueous solution decreases dramatically as the dye concentration increases with quantum yield values of Ofl = 2% for 10 ~ 4 M and Ofl = 0.4% for a saturated solution (> 2 xl0 ~ 4 M ) due to the formation of aggregates H.
Además, la emisión verde registrada bajo excitación de luz azul (filtro de banda 480/40) en las imágenes de fluorescencia de las partículas del ejemplo 1 (Figura 2) es indicativa de la absorción del colorante principalmente en estado monomérico. Para una caracterización espectroscópica más detallada de las especies de colorante ocluido en los canales de los magnesioaluminofosfatos se registran los espectros de excitación y fluorescencia del polvo de las muestras sintetizadas (fluorimetro SPEX modelo 3-22) (Figura 4), así como los tiempos de vida y espectros de emisión de partículas individuales mediante microscopía confocal de fluorescencia. En primer lugar, cabe destacar que los espectros de excitación y emisión registrados para la muestra del ejemplo 1 en polvo (línea sólida Figura 4), con bandas centradas en 538 nm y 556 nm (Tabla 2), respectivamente, aparecen desplazados en torno a 10 nm a menores longitudes de onda respecto a la disolución diluida de PY (línea gris Figura 4), con máximos a 548 nm y 568 nm (Tabla 2), respectivamente, como consecuencia de la disposición del colorante en un ambiente restringido, corroborando así su oclusión en el interior de los canales. Además, no se registran nuevas bandas y son similares a las registradas en disolución diluida de PY (línea sólida gris Figura 4), lo que indica que la adsorción del colorante tiene lugar mayoritariamente en estado monomérico. Sin embargo, del análisis de los tiempos de vida registrados en varias partículas individuales realizado por microscopía confocal resuelta en el tiempo (microscopio modelo MicroTime 200 de PicoQuant) , se derivan dos tiempos de vida fluorescente que, si bien se encuentran distribuidos homogéneamente a lo largo de la partícula, es indicativo de la existencia de dos especies: por un lado, el tiempo mayoritario (70-65%), en torno a 2.7-2.9 ns (Tabla 2 ), se atribuye a los monómeros de PY, con un valor ligeramente superior al registrado en disolución diluida de colorante (2 ns) debido a una disminución de los procesos de desactivación no radiante por la disminución de su movilidad interna y flexibilidad en el entorno rígido, aumentando así su eficiencia fluorescente; por otro lado, el tiempo minoritario (30-35%), de valor más bajo, en torno a 1-1.2 ns (Tabla 2), sugiere una posible desactivación del monómero por la presencia de algún agregado. In addition, the green emission recorded under blue light excitation (band filter 480/40) in the fluorescence images of the particles of example 1 (Figure 2) is indicative of the absorption of the dye mainly in the monomeric state. For a more detailed spectroscopic characterization of the species of dye occluded in the channels of the magnesium aluminum phosphates, the excitation and fluorescence spectra of the synthesized samples are recorded (SPEX fluorometer model 3-22) (Figure 4), as well as the times of life and emission spectra of individual particles by confocal fluorescence microscopy. First, it should be noted that the excitation and emission spectra recorded for the sample of example 1 in powder (solid line Figure 4), with bands centered at 538 nm and 556 nm (Table 2), respectively, are displaced around 10 nm at lower wavelengths with respect to the diluted PY solution (gray line Figure 4), with maximums at 548 nm and 568 nm (Table 2), respectively, as a result of the arrangement of the dye in a restricted environment, thus corroborating its occlusion inside the channels. In addition, no new bands are registered and are similar to those recorded in dilute PY solution (gray solid line Figure 4), indicating that the adsorption of the dye takes place mostly in a monomeric state. However, from the analysis of the life times recorded in several individual particles performed by time-resolved confocal microscopy (PicoQuant MicroTime 200 model microscope), two fluorescent life times are derived which, Although they are distributed homogeneously throughout the particle, it is indicative of the existence of two species: on the one hand, the majority time (70-65%), around 2.7-2.9 ns (Table 2), is attributed to the monomers of PY, with a slightly higher value than the one registered in diluted dye solution (2 ns) due to a decrease in non-radiant deactivation processes due to the decrease of its internal mobility and flexibility in the rigid environment, thus increasing its fluorescent efficiency; on the other hand, the minority time (30-35%), of lower value, around 1-1.2 ns (Table 2), suggests a possible deactivation of the monomer due to the presence of some aggregate.
La muestra de MgAPO-36 con alto contenido de colorante sintetizado en el ejemplo 2 (Tabla 1) presenta partículas mayoritariamente en forma de "ramillete" con tamaños comprendidos entre 20 y 40 mieras. Las imágenes de transmisión muestran una intercalación de PY no homogénea a lo largo de la partícula, y se observa una disminución gradual del color rosáceo a lo largo de las agujas, o en el caso de partículas en forma de "ramillete", desde el núcleo de unión hacia las ramificaciones. Los cristales presentan una emisión fluorescente multicolor bajo excitación azul (filtro de banda 480/40 nm) (Figura 5) . La figura insertada a la izquierda en la Figura 5 muestra cómo varían los perfiles RGB de la cámara CCD a color en la emisión fluorescente a lo largo de una única partícula, siendo mayoritariamente verde en la zona donde menos cantidad de colorante se ha incorporado (color por transmisión rosa menos intenso) , y se atribuye a la emisión del monómero, amarillo (intensidades de verde (Green) y rojo (Red) similares) en la zona intermedia del cristal donde coexisten monómeros y agregados y rojo atribuido a los agregados únicamente donde más colorante se ha ocluido (transmisión muestra un rosa intenso) . Los agregados pueden presentar nuevas bandas de absorción y fluorescencia respecto a los monómeros y, bajo observación al microscopio, se caracterizan por una emisión roja respecto al verde de los monómeros. Así, para su completa caracterización espectroscópica se muestran los espectros de excitación y emisión (Figura 4) . La muestra sintetizada en el ejemplo 2, con mayor contenido de colorante respecto al ejemplo 1 (Tabla 1), presenta un espectro de excitación más ancho en la región menos energética (550-600 nm) y una nueva banda de emisión a mayores longitudes de onda, en torno a 605 nm (Tabla 2), respecto a la banda monomérica principal a 556 nm (Figura 4, linea discontinua) , indicativo de la formación de agregados tipo J. Del análisis de los tiempos de vida registrados a lo largo de un cristal individual por microscopía confocal de fluorescencia resuelta en el tiempo, se obtienen tri- exponenciales (Tabla 2) con valores en torno 0.5-0.7 ns (50- 70%), 1.7-2.0ns (40-25%) y 4.0-4.2 ns (5-10%) distribuidos en zonas concretas de la partícula. Como es difícil dar una interpretación física a cada tiempo de vida, se empleó la técnica de microscopía confocal de fluorescencia con resolución espectral, que hace posible el registro del espectro de fluorescencia en áreas ≥ 1 μπι; así, se procedió a registrar el espectro de emisión de las zonas de la partícula con distribuciones de tiempo de vida diferenciados (Figura insertada derecha en Figura 5) . El espectro de fluorescencia registrado en el área con tiempos de vida mayores de 2 ns presenta una única banda centrada a 556 nm (línea sólida) y similar al registrado en la muestra en polvo del ejemplo 1 con baja cantidad de colorante, y por tanto se asigna a la PY ocluida en MgAPO-36 en unidades monoméricas. El registro del espectro de emisión, para el área de la partícula caracterizada por tiempos de vida cortos (inferiores a lns) muestra un espectro caracterizado por tres bandas (línea discontinua) , indicativo de la formación de dímeros y agregados superiores, posiblemente trímeros. Tras la deconvolución del espectro, se obtienen bandas de fluorescencia centradas a 560 nm, 610 nm y 660 nm con áreas relativas bajo la curva de 12%, 7% y 81%, respectivamente, siendo la situada a mayor longitud de onda la más importante. Por primera vez hasta donde conocemos, se ha obtenido experimentalmente el espectro puro de un agregado superior, ya que, en general, la eficiencia fluorescente de estas especies respecto a los monómeros es tan pequeña que se hace indetectable en medidas convencionales (e.j. espectro de fluorescencia de muestras en polvo) , quedando su espectro de emisión enmascarado bajo la señal de la banda monomérica. The sample of MgAPO-36 with high dye content synthesized in example 2 (Table 1) has mostly "corsage" particles with sizes ranging from 20 to 40 microns. The transmission images show an interleaving of non-homogeneous PY along the particle, and a gradual decrease of the pinkish color is observed along the needles, or in the case of "corsage" particles, from the nucleus of union towards the ramifications. The crystals have a multicolored fluorescent emission under blue excitation (band filter 480/40 nm) (Figure 5). The figure inserted on the left in Figure 5 shows how the RGB profiles of the color CCD camera vary in fluorescent emission along a single particle, being mostly green in the area where less dye has been incorporated (color by less intense pink transmission), and is attributed to the emission of the monomer, yellow (similar intensities of green (Green) and red (Red)) in the intermediate zone of the crystal where monomers and aggregates coexist and red attributed to aggregates only where more dye has been occluded (transmission shows an intense pink). The aggregates may have new bands of absorption and fluorescence with respect to the monomers and, under observation under a microscope, are characterized by a red emission with respect to the green of the monomers. Thus, for its complete characterization Spectroscopic excitation and emission spectra are shown (Figure 4). The sample synthesized in example 2, with a higher dye content compared to example 1 (Table 1), has a wider excitation spectrum in the less energetic region (550-600 nm) and a new emission band at greater lengths of wave, around 605 nm (Table 2), with respect to the main monomer band at 556 nm (Figure 4, dashed line), indicative of the formation of type J aggregates. From the analysis of the life times recorded along the an individual crystal by confocal microscopy of time-resolved fluorescence, three-exponentials are obtained (Table 2) with values around 0.5-0.7 ns (50-70%), 1.7-2.0ns (40-25%) and 4.0- 4.2 ns (5-10%) distributed in specific areas of the particle. As it is difficult to give a physical interpretation at each time of life, the confocal fluorescence microscopy technique with spectral resolution was used, which makes it possible to record the fluorescence spectrum in areas ≥ 1 μπι; Thus, the emission spectrum of the areas of the particle with differentiated time-of-life distributions was recorded (Figure inserted right in Figure 5). The fluorescence spectrum recorded in the area with life times greater than 2 ns has a single band centered at 556 nm (solid line) and similar to that recorded in the powder sample of example 1 with low amount of dye, and therefore assigned to the PY occluded in MgAPO-36 in monomer units. The recording of the emission spectrum, for the area of the particle characterized by short life times (less than lns) shows a spectrum characterized by three bands (dashed line), indicative of the formation of higher dimers and aggregates, possibly trimers. After the deconvolution of the spectrum, fluorescence bands centered at 560 nm, 610 nm and 660 nm are obtained with relative areas under the curve of 12%, 7% and 81%, respectively, with the largest wavelength being the most important . For the first time as far as we know, the pure spectrum of a superior aggregate has been experimentally obtained, since, in general, the fluorescent efficiency of these species with respect to the monomers, it is so small that it becomes undetectable in conventional measurements (eg fluorescence spectrum of powder samples), its emission spectrum being masked under the monomer band signal.
Además, las medidas de polarización de fluorescencia muestran una respuesta anisótropa con valores D en torno 3-5 (Tabla 2) indicativo de una orientación preferencial del colorante a lo largo del eje longitudinal de los cristales, confirmando la oclusión de las especies de PY (monómero y agregados) en el interior de los canales. In addition, fluorescence polarization measurements show an anisotropic response with D values around 3-5 (Table 2) indicative of a preferential orientation of the dye along the longitudinal axis of the crystals, confirming the occlusion of PY species ( monomer and aggregates) inside the channels.
Para la muestra de MgAPO-11 sintetizada en el ejemplo 3, como muestran sus imágenes de microscopía (Figura 6), se obtuvieron cristales en forma de placas rectangulares de tamaño 15-30 mieras por 10-20 mieras. Las imágenes de fluorescencia muestran un color verde intenso, indicativo de la adsorción de PY en los canales principalmente en forma monomérica. Esta asignación se confirma mediante la microscopía confocal de fluorescencia con resolución temporal con la obtención de monoexponenciales de las curvas de decaimiento fluorescente obtenidas en el registro de varios cristales individuales. Del análisis de las curvas monoexponciales se obtiene un valor de tiempo de vida de 2.95 ns, mayor con respecto al registrado en disolución (2 ns), como es de esperar para colorantes en estado sólido ya que las matrices proporcionan un ambiente rígido, lo que reduce los procesos de desactivación no radiante, aumentando por tanto la eficacia fluorescente del colorante. De hecho, los rendimientos cuánticos que se registran en este ejemplo 3 son aproximadamente de un orden superior al recogido en los ejemplos 1 y 2 (Tabla 2) . For the MgAPO-11 sample synthesized in Example 3, as shown by their microscopy images (Figure 6), crystals in the form of rectangular plates of size 15-30 microns per 10-20 microns were obtained. The fluorescence images show an intense green color, indicative of the adsorption of PY in the channels mainly in monomeric form. This assignment is confirmed by confocal fluorescence microscopy with temporal resolution with the obtaining of mono-exponential fluorescence decay curves obtained in the registration of several individual crystals. From the analysis of the monoexponcial curves, a life time value of 2.95 ns is obtained, greater than that recorded in solution (2 ns), as expected for solid state dyes since the matrices provide a rigid environment, which reduces non-radiant deactivation processes, thereby increasing the fluorescent efficiency of the dye. In fact, the quantum yields recorded in this example 3 are approximately of an order higher than that shown in examples 1 and 2 (Table 2).
La forma estrecha sin presencia de nuevas bandas en los espectros de excitación y emisión registrados para esta muestra (Figura 4, línea de puntos) corroboran la adsorción únicamente de monómeros de PY, cuyas bandas del espectro excitación y emisión, centradas a 523 nm y 537 nm respectivamente, sufren mayores desplazamientos al azul (25 nm y 31 nm, respectivamente, con respecto a los monómeros de PY en disolución acuosa diluida) que las muestras sintetizadas con estructura MgAPO-36, a consecuencia de la incorporación del colorante en una ambiente aún más confinado en el caso del MgAPO-ll . The narrow shape without the presence of new bands in the excitation and emission spectra recorded for this sample (Figure 4, dotted line) corroborate the adsorption only of PY monomers, whose bands of the excitation and emission spectrum, centered at 523 nm and 537 nm respectively, they suffer greater displacements to the blue (25 nm and 31 nm, respectively, with respect to the PY monomers in dilute aqueous solution) than the samples synthesized with MgAPO-36 structure, as a result of the incorporation of the dye in an even more ambient confined in the case of MgAPO-ll.
De hecho, el tamaño y forma de los poros de la matriz MgAPO-ll es idóneo para moléculas de dimensiones y forma similares a PY, es decir, otros colorantes con estructura dada en la fórmula general (I) de 3 anillos aromáticos fusionados (oxacinas, resorefinas, acridinas...) ya que la estructura y el colorante se ajustan como "llave -cerradura", siendo este método de síntesis el único posible para poder obtener el material híbrido con dichos huéspedes incorporados en los canales, ya que no sólo la difusión está impedida sino también la rotación de las moléculas en el interior de sus canales, como se deduce de las altísimas relaciones dicróicas en estas muestras (Tabla 2), con valores en torno a 40, las más altas hasta ahora registradas para materiales unidireccionales dopados con huéspedes fluorescentes que indicarían una alineación prácticamente total de los momentos dipolares de las moléculas de PY con respecto al eje de los canales, propiedad muy importante para aplicaciones en óptica no lineal. In fact, the size and shape of the pores of the MgAPO-ll matrix is suitable for molecules of similar size and shape to PY, that is, other dyes with structure given in the general formula (I) of 3 fused aromatic rings (oxacins , resorefins, acridines ...) since the structure and the dye are adjusted as "key-lock", this method of synthesis being the only one possible to obtain the hybrid material with said guests incorporated in the channels, since not only diffusion is impeded but also the rotation of the molecules inside their channels, as can be deduced from the very high dichroic ratios in these samples (Table 2), with values around 40, the highest recorded so far for unidirectional materials doped with fluorescent hosts that would indicate a practically total alignment of the dipole moments of the PY molecules with respect to the axis of the channels, a very important property for applications in nonlinear optics.

Claims

RE IVI DICACIONES RE IVI DICATIONS
1. Un material híbrido fotoactivo que comprende al menos un colorante con propiedades fluorescentes seleccionado dentro del grupo de fórmula general (I), que representa una molécula aromática y cualquiera de sus formas resonantes: 1. A photoactive hybrid material comprising at least one dye with fluorescent properties selected within the group of general formula (I), which represents an aromatic molecule and any of its resonant forms:
Figure imgf000034_0001
Figure imgf000034_0001
Fórmula (I)  Formula (I)
donde X es seleccionado entre CH ó N e Y es seleccionado dentro del grupo compuesto por S, O, N, CH y NH, de tal forma que where X is selected from CH or N and Y is selected from the group consisting of S, O, N, CH and NH, so that
cuando X=CH, Y es seleccionada entre S, O, N, CH ó NH; y cuando X=N, Y=0; when X = CH, Y is selected from S, O, N, CH or NH; and when X = N, Y = 0;
siendo n=+l cuando Y= O, NH ó S y n=0 cuando Y=N ó CH; where n = + l when Y = O, NH or S and n = 0 when Y = N or CH;
Rl, R2, R3 y R4 pueden ser iguales o distintos entre si y seleccionados dentro del grupo compuesto por: H, CH3, CH2CH3 y N(R11) (R12), donde Rll y R12 pueden ser iguales o distintos y seleccionados dentro del grupo compuesto por: H, CH3 y CH2CH3; estando dicho colorante encapsulado en un material poroso cristalino de composición magnesioaluminofosfato que presenta al menos un sistema de canales monodireccional delimitados por anillos de diez a doce átomos de Al y P en coordinación tetraédrica, y poros con un primer diámetro comprendido en el intervalo de 4 a 7 Á, incluidos ambos limites, y un segundo diámetro de poro comprendido en el intervalo de 4 a 7.5 Á, incluidos ambos limites. Rl, R2, R3 and R4 can be the same or different from each other and selected within the group consisting of: H, CH 3 , CH 2 CH 3 and N (R11) (R12), where Rll and R12 can be the same or different and selected from the group consisting of: H, CH 3 and CH 2 CH 3 ; said dye being encapsulated in a porous crystalline material of magnesium aluminum phosphate composition having at least one system of monodirectional channels delimited by rings of ten to twelve atoms of Al and P in tetrahedral coordination, and pores with a first diameter in the range of 4 to 7 Á, including both limits, and a second pore diameter in the range of 4 to 7.5 Á, including both limits.
2. El material híbrido según la reivindicación 1, donde el material poroso cristalino presenta un primer diámetro de poro de 4 Á y un segundo diámetro de poro de 6.5 Á, o un primer diámetro de poro de 6.5 Á y un segundo diámetro de poro de 7.5 Á. 2. The hybrid material according to claim 1, wherein the crystalline porous material has a first pore diameter of 4 Á and a second pore diameter of 6.5 Á, or a first pore diameter of 6.5 Á and a second pore diameter of 7.5 Á.
3. El material híbrido según la reivindicación 2, donde el material poroso cristalino es MgAPO-11 cuando el primer diámetro de poro es de 4 Á y el segundo de 6.5 Á, o MgAPO-36 cuando el primer diámetro de poro es de 6.5 Á y el segundo de 7.5 Á. . El material híbrido según la reivindicación 3, donde el colorante se distribuye en estado monomérico y alineado con respecto a la dirección de los canales de la matriz cuando el material poroso es MgAPO-11. 5. El material híbrido según la reivindicación 3, donde el colorante se dispone formando asociaciones geométricas tipo J de monómeros coplanares en geometría cabeza-cola cuando el material poroso es MgAPO-36. 6. El material híbrido según una cualquiera de las reivindicaciones 1 a 5, donde el material híbrido es un material híbrido anisótropo. 3. The hybrid material according to claim 2, wherein the crystalline porous material is MgAPO-11 when the first Pore diameter is 4 Á and the second one is 6.5 Á, or MgAPO-36 when the first pore diameter is 6.5 Á and the second one is 7.5 Á. . The hybrid material according to claim 3, wherein the dye is distributed in a monomeric state and aligned with respect to the direction of the matrix channels when the porous material is MgAPO-11. 5. The hybrid material according to claim 3, wherein the dye is arranged forming J-type geometric associations of coplanar monomers in head-tail geometry when the porous material is MgAPO-36. 6. The hybrid material according to any one of claims 1 to 5, wherein the hybrid material is an anisotropic hybrid material.
7. El material híbrido según una cualquiera de las reivindicaciones 1 a 6, donde el colorante es seleccionado dentro del grupo compuesto por Pironina, Acridina y Oxazina. 7. The hybrid material according to any one of claims 1 to 6, wherein the dye is selected from the group consisting of Pironin, Acridine and Oxazine.
8. El material híbrido según la reivindicación anterior, donde el colorante es Pironina Y. 8. The hybrid material according to the preceding claim, wherein the dye is Pironin Y.
9. El material híbrido según una cualquiera de las reivindicaciones 1 a 8, donde la matriz es MgAlPO-36 y el colorante es Pironina Y. 10. El material híbrido según una cualquiera de las reivindicaciones 1 a 9, que comprende dos colorantes. 9. The hybrid material according to any one of claims 1 to 8, wherein the matrix is MgAlPO-36 and the dye is Pironin Y. 10. The hybrid material according to any one of claims 1 to 9, comprising two dyes.
11. Un método de preparación del material híbrido definido en una cualquiera de las reivindicaciones 1 a 10 que comprende las etapas de: 11. A method of preparing the hybrid material defined in any one of claims 1 to 10 comprising the steps of:
mezclar mediante agitación al menos los siguientes reactivos: al menos una fuente de aluminio, al menos una fuente de magnesio, al menos una fuente de fósforo, al menos un colorante fluorescente de fórmula general (I) y agua, hasta formar un gel acuoso de composición: mix by stirring at least the following reagents: at least one source of aluminum, at least one source of magnesium, at least one source of phosphorus, at less a fluorescent dye of general formula (I) and water, to form an aqueous gel of composition:
x MgO: 1 P205: (l-x/2) A1203: y R: z Col: w H20, donde x tiene un valor comprendido entre 0.05-0.2 incluidos ambos limites; y tiene un valor entre 0.75-1.5 incluidos ambos limites, z tiene un valor entre 0.001-0.1 incluidos ambos limites y w tiene un valor entre 20-1000 incluidos ambos limites, siendo las variables x, y, z y w seleccionadas independientemente unas de otras; donde R representa un agente director de estructura que es un compuesto orgánico; y donde Col representa el colorante fluorescente o la mezcla de colorantes fluorescentes; x MgO: 1 P205: (lx / 2) A1203: y R: z Col: w H 2 0, where x has a value between 0.05-0.2 including both limits; and has a value between 0.75-1.5 including both limits, z has a value between 0.001-0.1 including both limits and w has a value between 20-1000 including both limits, with the variables x, y, z and w being selected independently of each other; where R represents a structure directing agent that is an organic compound; and where Col represents the fluorescent dye or the mixture of fluorescent dyes;
calentar el gel acuoso, hasta obtener un producto sólido; filtrar y lavar el producto sólido.  heat the aqueous gel, until a solid product is obtained; filter and wash the solid product.
12. El método según la reivindicación 11, donde x tiene un valor de 0.2; y tiene un valor de 0.75, z tiene un valor de 0.024 y w tiene un valor de 300 siendo las variables x, y, z y w seleccionadas independientemente unas de otras. 12. The method according to claim 11, wherein x has a value of 0.2; y has a value of 0.75, z has a value of 0.024 and w has a value of 300 being the variables x, y, z and w independently selected from each other.
13. El método según una cualquiera de las reivindicaciones 11 ó 12, donde R es seleccionado dentro del grupo compuesto por una amina primaria, una amina secundaria, una amina terciaria y un catión amonio cuaternario. 13. The method according to any one of claims 11 or 12, wherein R is selected from the group consisting of a primary amine, a secondary amine, a tertiary amine and a quaternary ammonium cation.
14. El método según la reivindicación 13, donde R es tripropilamina o etilbutilamina . 14. The method according to claim 13, wherein R is tripropylamine or ethylbutylamine.
15. El método según una cualquiera de las reivindicaciones 11 a 14, donde la fuente de magnesio es seleccionada dentro del grupo compuesto por sulfato de magnesio, nitrato de magnesio y acetato de magnesio. 15. The method according to any one of claims 11 to 14, wherein the source of magnesium is selected from the group consisting of magnesium sulfate, magnesium nitrate and magnesium acetate.
16. El método según una cualquiera de las reivindicaciones 11 a 15, donde la fuente de aluminio es seleccionada dentro del grupo compuesto por un óxido de aluminio, un óxido de aluminio parcialmente hidratado, un isopropóxido de aluminio, hidróxido de aluminio y cualquier combinación de los mismos. 16. The method according to any one of claims 11 to 15, wherein the aluminum source is selected from the group consisting of an aluminum oxide, a partially hydrated aluminum oxide, an aluminum isopropoxide, aluminum hydroxide and any combination of the same.
17. El método según una cualquiera de las reivindicaciones 11 a 16, donde la fuente de fósforo es ácido ortofosfórico . 18. El método según una cualquiera de las reivindicaciones 11 a 16, donde el calentamiento del gel acuoso de síntesis se realiza por tratamiento térmico a una temperatura comprendida entre 100-200°C, incluidos ambos límites. 19. El método según la reivindicación 18, donde la temperatura es de 180°C. 17. The method according to any one of claims 11 to 16, wherein the phosphorus source is orthophosphoric acid. 18. The method according to any one of claims 11 to 16, wherein the heating of the aqueous synthesis gel is carried out by heat treatment at a temperature between 100-200 ° C, including both limits. 19. The method according to claim 18, wherein the temperature is 180 ° C.
20. El método según una cualquiera de las reivindicaciones 11 a 19, donde el calentamiento se realiza durante un periodo de tiempo comprendido entre 5-72 horas, incluidos ambos límites. 20. The method according to any one of claims 11 to 19, wherein the heating is carried out for a period of time between 5-72 hours, including both limits.
21. El método según una cualquiera de las reivindicaciones 11 a 19, donde el calentamiento se lleva a cabo mediante síntesis hidrotermal o mediante microondas. 21. The method according to any one of claims 11 to 19, wherein the heating is carried out by hydrothermal synthesis or by microwave.
22. Un gel acuoso de composición: 22. An aqueous gel of composition:
x MgO: 1 P205: (l-x/2) A1203: y R: z Col: w H20, donde x tiene un valor comprendido entre 0.05-0.2 incluidos ambos límites; y tiene un valor entre 0.75-1.5 incluidos ambos límites, z tiene un valor entre 0.001- 0.1 incluidos ambos límites y w tiene un valor entre 20-1000 incluidos ambos límites, siendo las variables x, y, z y w seleccionadas independientemente unas de otras; donde R representa un agente director de estructura que es un compuesto orgánico; y donde Col representa el colorante o mezcla de colorantes de fórmula general (I), que se obtiene mediante la etapa de mezcla de reactivos del método descrito en una cualquiera de las reivindicaciones 10 a 20. 23. Uso del material híbrido fotoactivo descrito en una cualquiera de las reivindicaciones 1 a 10 como pigmento. x MgO: 1 P 2 0 5 : (lx / 2) A1 2 0 3 : y R: z Col: w H 2 0, where x has a value between 0.05-0.2 including both limits; and has a value between 0.75-1.5 including both limits, z has a value between 0.001-0.1 including both limits and w has a value between 20-1000 including both limits, the variables x, y, z and w being independently selected from each other; where R represents a structure directing agent that is an organic compound; and wherein Col represents the dye or mixture of dyes of general formula (I), which is obtained by the reagent mixing step of the method described in any one of claims 10 to 20. 23. Use of the photoactive hybrid material described in a any of claims 1 to 10 as pigment.
24. Uso según la reivindicación anterior, como pigmento en pinturas, plástico o cerámicas. 24. Use according to the preceding claim, as a pigment in paints, plastic or ceramics.
25. Uso del material híbrido fotoactivo descrito en una cualquiera de las reivindicaciones 1 a 10 en láser en estado sólido. 25. Use of the photoactive hybrid material described in any one of claims 1 to 10 in solid state laser.
26. Uso según la reivindicación anterior, donde el láser está integrado en un dispositivo fotónico. 27. Uso según la reivindicación anterior, donde el dispositivo fotónico es seleccionado dentro del grupo compuesto por un láser en estado sólido, un dispositivo antena para la activación de células solares y un dispositivo de óptica no lineal . 26. Use according to the preceding claim, wherein the laser is integrated into a photonic device. 27. Use according to the preceding claim, wherein the photonic device is selected from the group consisting of a solid state laser, an antenna device for the activation of solar cells and a non-linear optics device.
28. Uso según la reivindicación anterior, donde el dispositivo de óptica no lineal es seleccionado dentro del grupo compuesto por filtros dicroicos, sistemas dobladores de frecuencia y guias de onda. 28. Use according to the preceding claim, wherein the non-linear optics device is selected from the group consisting of dichroic filters, frequency bender systems and waveguides.
29. Uso según la reivindicación 25, donde el láser es un microláser sintonizable en estado sólido mediante uno de los fenómenos seleccionados entre emisión láser reforzada por scattering o random láser. 29. Use according to claim 25, wherein the laser is a solid state tunable microllaser by means of one of the phenomena selected from scattering or random laser reinforced laser emission.
PCT/ES2013/070571 2012-08-02 2013-08-01 Hybrid photoactive material, method for obtaining same and use of the material WO2014020225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231259 2012-08-02
ES201231259A ES2445493B1 (en) 2012-08-02 2012-08-02 Hybrid photoactive material, method of obtaining and using the material

Publications (1)

Publication Number Publication Date
WO2014020225A1 true WO2014020225A1 (en) 2014-02-06

Family

ID=50027322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070571 WO2014020225A1 (en) 2012-08-02 2013-08-01 Hybrid photoactive material, method for obtaining same and use of the material

Country Status (2)

Country Link
ES (1) ES2445493B1 (en)
WO (1) WO2014020225A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099604A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 SCM-26 aluminophosphate and preparation method thereof
CN115636423A (en) * 2021-07-19 2023-01-24 中国石油化工股份有限公司 MgAPO-11 molecular sieve and preparation method and application thereof
WO2025051780A1 (en) * 2023-09-04 2025-03-13 Optical Additives Gmbh Dye-loaded zeolite composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036490A1 (en) * 2000-11-03 2002-05-10 Universitaet Bern Dye loaded zeolite material
EP2141122A1 (en) * 2008-07-03 2010-01-06 Westfälische Wilhelms-Universität Münster Method for intercalating chromophores into Zeolite-L nanochannels and products thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036490A1 (en) * 2000-11-03 2002-05-10 Universitaet Bern Dye loaded zeolite material
EP2141122A1 (en) * 2008-07-03 2010-01-06 Westfälische Wilhelms-Universität Münster Method for intercalating chromophores into Zeolite-L nanochannels and products thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. BUSBY ET AL.: "Time, space and spectrally resolved studies on J-aggregate interactions in zeolite-L nanochannels", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 130, 2008, pages 10970 - 10976 *
O. WEIB ET AL.: "Host-guest interactions and laser activity in AIP04-5/laser dye composites", JOURNAL OF SOLID STATE CHEMISTRY, vol. 167, no. 2, 2002, pages 302 - 309 *
S. CHOI ET AL.: "Optical properties of organic dye molecules incorporated within different zeolitic structures", JOURNAL OF KOREAN PHYSICAL SOCIETY, vol. 58, no. 4, 2011, pages 1035 - 1038 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099604A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 SCM-26 aluminophosphate and preparation method thereof
CN115636423A (en) * 2021-07-19 2023-01-24 中国石油化工股份有限公司 MgAPO-11 molecular sieve and preparation method and application thereof
CN115636423B (en) * 2021-07-19 2024-05-10 中国石油化工股份有限公司 MgAPO-11 molecular sieve and preparation method and application thereof
WO2025051780A1 (en) * 2023-09-04 2025-03-13 Optical Additives Gmbh Dye-loaded zeolite composite materials

Also Published As

Publication number Publication date
ES2445493A1 (en) 2014-03-03
ES2445493B1 (en) 2015-03-10

Similar Documents

Publication Publication Date Title
Dang et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R= Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs)
Liu et al. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting
Vidya et al. Euphorbia tirucalli mediated green synthesis of rose like morphology of Gd2O3: Eu3+ red phosphor: Structural, photoluminescence and photocatalytic studies
Xu et al. Gadolinium fluoride mesoporous microspheres: controllable synthesis, materials and biological properties
Song et al. Emission enhancement and color tuning for GdVO4: Ln3+ (Ln= Dy, Eu) by surface modification at single wavelength excitation
WO2014020225A1 (en) Hybrid photoactive material, method for obtaining same and use of the material
Lv et al. Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres
Xue et al. Lanthanide based white-light-emitting hydrogel mediated by fluorescein and carbon dots with high quantum yield and multi-stimuli responsiveness
Silva et al. Highly fluorescent hybrid pigments from anthocyanin-and red wine pyranoanthocyanin-analogs adsorbed on sepiolite clay
Pyne et al. An easy and smart way to explore the light-emitting responses of carbon dot and doxorubicin hydrochloride assembly: white light generation and pH-dependent reversible photoswitching
de Queiroz et al. Strategies for reducing dye aggregation in luminescent host-guest systems: Rhodamine 6G incorporated in new mesoporous sol-gel hosts
CN105732678A (en) Rare-earth organic framework material for fluorescent temperature sensation imaging in biological tissue and cells and preparation method thereof
Song et al. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties
KR102241926B1 (en) A green nano-phosphor with high stability and ultra-narrow full-width at half-maximum for display application, and preparing method the same
Chen et al. Multi-component assembly and luminescence tuning of lanthanide hybrids based with both zeolite L/A and SBA-15 through two organically grafted linkers
ES2337823T3 (en) PORTABLE MATERIAL OF LANTANIDO-ORGASNICO HIDROFOBO WITH FLUORESCENCE AND MAGNETIC PROPERTIES.
Ambili et al. Synthesis of hybrid materials by immobilizing para-aminobenzoic acid complexes of Eu3+ and Tb3+ in zeolite Y and their luminescent properties
Liao et al. Oriented Growth of Highly Emissive Manganese Halide Microrods for Dual‐Mode Low‐Loss Optical Waveguides
Camerel et al. Ionic columnar clustomesogens: associations between anionic hexanuclear rhenium clusters and liquid crystalline triphenylene tethered imidazoliums
Zhang et al. Clarifying a competitive crystallization mechanism of upconversion luminescent oxyfluoride glass ceramics by solid-state NMR spectroscopy
Botelho et al. Efficient luminescent materials based on the incorporation of a Eu (III) tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts
Tom et al. A stimuli responsive multifunctional ZMOF based on an unorthodox polytopic ligand: reversible thermochromism and anion triggered metallogelation
Shenoi-Perdoor et al. Red-emitting fluorescent organic@ silicate core–shell nanoparticles for bio-imaging
Ding et al. Hydrothermal synthesis, energy transfer and luminescent properties of β-NaLuF4: Ce3+/Gd3+/Sm3+ microcrystals
Chernyak et al. Spectroscopic behaviour of malachite green in sol-gel glasses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824825

Country of ref document: EP

Kind code of ref document: A1