[go: up one dir, main page]

WO2014017177A1 - Carbon ink, method for producing carbon ink, and electrophoretic display device - Google Patents

Carbon ink, method for producing carbon ink, and electrophoretic display device Download PDF

Info

Publication number
WO2014017177A1
WO2014017177A1 PCT/JP2013/065470 JP2013065470W WO2014017177A1 WO 2014017177 A1 WO2014017177 A1 WO 2014017177A1 JP 2013065470 W JP2013065470 W JP 2013065470W WO 2014017177 A1 WO2014017177 A1 WO 2014017177A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivatives
carbon
compound
carbon ink
particles
Prior art date
Application number
PCT/JP2013/065470
Other languages
French (fr)
Japanese (ja)
Inventor
修二 藤田
俊 山ノ井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2014017177A1 publication Critical patent/WO2014017177A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present disclosure relates to carbon ink, a carbon ink manufacturing method, and an electrophoretic display device, and is suitable for application to, for example, electronic paper.
  • An electrophoretic display device used for electronic paper or the like uses a carbon ink in which charged carbon particles are dispersed in a dispersion medium to apply a voltage between a pair of electrodes to apply an electric field to the charged carbon particles.
  • the image is displayed by being attracted to the electrode side by electrophoresis.
  • the conventional carbon particle charging method requires heating at a temperature of 60 ° C or higher, and it is necessary to frequently use harmful organic solvents in addition to dangerous strong acids and strong alkaline substances. There were difficulties in that it had to be. Further, the time required for producing the charged carbon particles is 5 hours or more, generally 10 hours or more in the early case. Furthermore, when carbon ink is actually used in an electrophoretic display device, it is necessary to use about 3% of a dispersant in order to highly disperse carbon particles in a dispersion medium. In this case, problems such as current leakage occur due to the addition of the dispersant, but it is difficult to reduce the amount of the dispersant used from the viewpoint of maintaining the dispersibility.
  • the problem to be solved by the present disclosure is a carbon ink in which carbon particles holding a sufficiently high-density electric charge are dispersed with high dispersibility, and the amount of dispersant used can be greatly reduced, and the production thereof Is to provide a method.
  • Another problem to be solved by the present disclosure is to provide a high-performance electrophoretic display device using the above-described excellent carbon ink as an electrophoretic dispersion.
  • This is a carbon ink containing carbon particles to which a positively or negatively charged aromatic compound is bonded.
  • the method for producing the carbon ink further includes a step of binding a compound that is polyvalently ionized to an aromatic compound as necessary.
  • An electrophoretic display device having a carbon ink containing carbon particles to which a positively or negatively charged aromatic compound is bonded.
  • the bonding (or adsorption) of the aromatic compound to the carbon particles can be easily performed via a functional group or a reactive group of the aromatic compound.
  • the aromatic portion of the aromatic compound is planar and that the aromatic portion has a larger number of ⁇ electrons.
  • the aromatic compound is preferably, for example, a polycyclic aromatic compound or a substance that is bonded to carbon by a ⁇ bond.
  • a compound to be multivalently ionized is bound to the aromatic compound. Bonding of a compound that is polyvalently ionized to an aromatic compound can be easily performed via a functional group or a reactive group of the aromatic compound. In this way, by binding the compound that is polyvalently ionized to the aromatic compound, it is possible to hold the carbon particles with a high density of charges.
  • the carbon particles may be porous carbon particles having pores on the surface.
  • polycyclic aromatic compound examples include as follows, and at least one selected from the group consisting of these compounds is used.
  • Pyrene derivatives ⁇ Coronene derivatives ⁇ Chrysene derivatives ⁇ Naphtacene derivatives ⁇ Pentacene derivatives ⁇ Picene derivatives ⁇ Perylene derivatives ⁇ Anthracene derivatives ⁇ Phenanthrenes (Phenanthrene) derivatives, Fluorene derivatives, Naphtalene derivatives, Fluoranthene derivatives, Acenaphthene derivatives, Acenaphthylene derivatives, Triphenylene derivatives
  • Substances that bind to carbon by a ⁇ bond are as follows, and at least one selected from the group consisting of these compounds is used.
  • ⁇ Terthiophene derivative ⁇ Tetraphenylbenzidine derivative
  • Tetraphenylnaphtacene derivative ⁇ Benzothiophene derivative
  • Thiophene derivative ⁇ Pyrrole derivative
  • Carbazole derivative ⁇ Phenanthroline derivatives, phenylpyridine derivatives, quinoline derivatives, triphenylamine derivatives, diphenylamine derivatives, oxazole derivatives, oxadiazole derivatives, p-phenyl (P-Phenyl) Derivatives, Quinacridone Derivatives, Flucrenone Derivatives, Phthalocyanine Derivatives, Spiropyran Derivatives, Viologen Derivatives, Sulfur Pyroperimidine derivative / Phenyl Esters ⁇ Benzoic Acids ⁇ Biphen
  • the positively or negatively charged compound to be bonded to the porous carbon particles the following can be used. Nucleoside, nucleotide, ribose, sugar, amino acid, lipid, sterol, terpene, steroid, propanoid, arkanoid, alcohol, amine, aminoalcohol, isocyanate, amide, ester, diol, glycidyl compound, hydrazine, silane, polyketide, polyamine Compounds containing cyclic organic compounds such as porphyrins, vitamins, crown ethers, cyclodextrins, diacrylates, dimethacrylates, tetracarboxylic acids, pyrrolidines, alkanols, carboxylic acids, azulene, quaternary ammoniums, fluorocarbons, aryls and cycloalkanes is there.
  • pyrene derivatives are preferable.
  • Pyrene derivatives include, for example, amine groups, sulfone groups, sulfhydryl groups, carboxy groups, hydroxyl groups, azido groups, azo groups, nitro groups, nitrile groups, cyano groups, allene groups, isonitrile groups, urea groups, aldehyde groups, ketone groups, It has functional groups and reactive groups such as NHS ester, imide ester, maleimide, pyridyldithiol, allyl azide, haloacetate, isocyanate, carbodiimide, allyl azide, diazirine, hydrazide, psoralen, iodo, pyridine disulfide, vinyl sulfone.
  • an alkyl group, polyethylene glycol or the like may be separated as a spacer between the functional group and the reactive group and pyrene.
  • these functional groups, reactive groups, spacers, and the like may be bonded to carbon at any position of pyrene.
  • the pyrene derivative can be covalently bonded to the compound to be multivalently ionized via its functional group or reactive group.
  • the carbon particles are, for example, at least one selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly oriented pyrolytic graphite (HOPG), plastic formed carbon, activated carbon, and porous carbon. Although there is, it is not limited to this.
  • the porous carbon particles are at least one selected from the group consisting of activated carbon, porous carbon, aggregated particles of the above-mentioned various carbons, carbon black, and biocarbon, but are not limited thereto.
  • the size of these carbon particles or porous carbon particles is not particularly limited, and is selected as necessary.
  • Carbon black includes furnace black, acetylene black, channel black, thermal black, ketjen black and the like.
  • Examples of the activated carbon include wood charcoal such as oak charcoal, kunugi charcoal, cedar charcoal, oak charcoal, hinoki charcoal, rubber charcoal, bamboo charcoal, oga charcoal, and coconut shell charcoal.
  • Biocarbon is made from a plant-derived material with a silicon (silicon) content of 5% by weight or more.
  • the specific surface area by nitrogen BET method is 10 m 2 / g or more, and the silicon content is 1% by weight or less.
  • a porous carbon material having a pore volume of 0.1 cm 3 / g or more by the BJH method and the MP method see Patent Document 2.
  • biocarbon is produced as follows, for example.
  • the crushed rice husk (produced in Kagoshima Prefecture, Isehikari rice husk) was carbonized by heating in a nitrogen stream at 500 ° C. for 5 hours to obtain a carbide. Thereafter, 10 g of this carbide was placed in an alumina crucible and heated to 1000 ° C. at a rate of 5 ° C./min in a nitrogen stream (10 liters / min). And after carbonizing at 1000 degreeC for 5 hours and converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was kept flowing during carbonization and cooling.
  • this porous carbon material precursor was subjected to an acid treatment by immersing it overnight in a 46% by volume hydrofluoric acid aqueous solution, and then washed with water and ethyl alcohol until the pH reached 7. And the porous carbon material, ie, biocarbon, is obtained by making it dry at the end.
  • the pore activation treatment of the porous carbon particles may be gas activation such as water vapor or chemical activation with zinc chloride or the like.
  • the compound to be polyvalently ionized is, for example, at least one selected from the group consisting of polyphosphoric acid and peptides such as polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, DNA and RNA, but is not limited thereto. It is not a thing. These compounds may be linear or cyclic. Examples of the polyamine include hexaazacyclooctadecane, spermine, spermidine, polylysine, polyarginine, and polyethyleneimine.
  • the polycarboxylic acid includes polyacrylic acid. These compounds may be enantiomers or racemates.
  • the amide bond site of poly-L-lysine may be ⁇ -position or ⁇ -position, but ⁇ -position is more preferable. Polyethyleneimine may be branched or linear.
  • the use of the carbon ink according to the present disclosure is not particularly limited, but is preferably an ink for electrophoretic display devices (electrophoretic dispersion liquid).
  • the electrophoretic display device is typically electronic paper.
  • This electrophoretic display device can be used for various devices using the display device, for example, electronic devices, mobile objects (automobiles, motorcycles, aircraft, rockets, spacecrafts, etc.), power devices, construction machines, machine tools, etc. it can.
  • mobile objects autonomouss, motorcycles, aircraft, rockets, spacecrafts, etc.
  • power devices construction machines, machine tools, etc. it can.
  • Electronic devices may be basically any type, and include both portable and stationary devices. Specific examples include mobile phones, mobile devices (portable information terminals). (PDA, etc.), robots, personal computers (including both desktop and notebook computers), game machines, camera-integrated VTRs (video tape recorders), in-vehicle devices, home appliances, industrial products, and the like.
  • PDA portable information terminals
  • PDA portable information terminals
  • robots personal computers (including both desktop and notebook computers), game machines, camera-integrated VTRs (video tape recorders), in-vehicle devices, home appliances, industrial products, and the like.
  • VTRs video tape recorders
  • in-vehicle devices home appliances, industrial products, and the like.
  • a positive charge or a negatively charged aromatic compound is bonded to the carbon particle, or further, a compound that is polyvalently ionized is bonded to the aromatic compound, whereby a high-density charge is obtained.
  • Retained carbon particles can be obtained.
  • the carbon particles can be produced under mild conditions such as neutral room temperature conditions. Further, the dispersibility of the carbon particles in the carbon ink is very good.
  • the present disclosure it is possible to obtain a carbon ink in which carbon particles having a sufficiently high density of charge are dispersed with high dispersibility, and the amount of dispersant used can be significantly reduced.
  • this excellent carbon ink as an electrophoretic dispersion liquid, the carbon particles as image display fine particles are charged with high density and in addition, the dispersibility is extremely good, so that display can be performed at high speed.
  • a high-performance electrophoretic display device that can be performed and can reduce power consumption by reducing a voltage necessary for display can be realized.
  • FIG. It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 2, and the carbon ink of the comparative example 2.
  • FIG. It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 3, and the carbon ink of the comparative example 3.
  • FIG. 1 shows a carbon ink according to the first embodiment.
  • carbon particles 11 to which a positively or negatively charged aromatic compound is bonded are dispersed in a dispersion medium 12.
  • bonded with the carbon particle 11 is positively charged is shown.
  • the aromatic compound is selected as necessary from among the aromatic compounds already described.
  • the carbon particles are selected, for example, from the already described carbon particles as necessary.
  • the content of each component in the carbon ink and the type of the dispersion medium are appropriately selected according to the use of the carbon ink.
  • FIG. 2 shows, as an example, carbon particles 11 to which a positively or negatively charged aromatic compound 13 is bonded.
  • the carbon particles 11 and the aromatic compound 13 are bonded by a ⁇ - ⁇ bond.
  • the aromatic compound 13 enters the pores of the carbon particles 11 and is adsorbed on the surface of the carbon particles 11.
  • FIG. 3 shows a case where the aromatic compound 13 is a positively charged pyrene derivative.
  • a compound 15 to be polyionized may be bonded to the aromatic compound 13 bonded to the carbon particles 11.
  • the compound 15 to be polyvalently ionized is selected from among the compounds already described. Specific examples of the compound 15 to be polyvalent ionized are as follows.
  • ⁇ -poly-L-lysine may be used instead of ⁇ -poly-L-lysine.
  • the carbon ink is an electrophoretic display ink, that is, an electrophoretic dispersion
  • the carbon particles 11 are fine particles for image display.
  • the ratio of the fine particles for image display to the dispersion medium in the electrophoretic dispersion is, for example, 0.1 parts by mass or more and 15 parts by mass or less, preferably 1 part by mass or more with respect to 100 parts by mass of the dispersion medium. It is 10 parts by mass or less.
  • the dispersion medium for dispersing the image display fine particles a colorless and transparent liquid having high insulation properties is preferably used.
  • the dispersion medium include nonpolar dispersion media, and more specifically, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and silicone oils.
  • aliphatic hydrocarbon include pentane, hexane, cyclohexane, heptane, octane, nonane, decane, dodecane, ligroin, solvent naphtha, kerosene, normal paraffin, and isoparaffin.
  • examples of the aromatic hydrocarbon include benzene, toluene, xylene, and alkylbenzene.
  • silicone oil include various dimethylpolysiloxanes containing modified silicone oil.
  • Shellsol 70, 71, 72, A, AB, and Naphthesol L, M, H, manufactured by Nippon Oil Corporation may be used independently and 2 or more types may be mixed and used.
  • An oil-soluble dye may be used to color the dispersion medium.
  • a yellow dye comprising an azo compound, an orange dye, a brown dye, a red dye, or a blue dye comprising anthraquinones.
  • green dyes and purple dyes may be used alone or in combination of two or more.
  • the concentration of the dye is preferably 0.1 parts by mass or more and 3.5 parts by mass or less with respect to 100 parts by mass of the dispersion medium, but is not limited thereto.
  • a positive charge control agent may be used in combination to positively charge the fine particles for image display.
  • the positive charge control agent include nigrosine-based dyes such as nigrosine base EX (manufactured by Orient Chemical Co., Ltd.), P-51 (manufactured by Orient Chemical Co., Ltd.), copy charge PX VP435 (manufactured by Hoechst Japan Co., Ltd.) and the like.
  • Examples thereof include quaternary ammonium salts, alkoxylated amines, alkylamides, molybdate chelate pigments, imidazole compounds such as PLZ1001 (eg, Shikoku Kasei Kogyo Co., Ltd.), and transparent or white onium compounds.
  • the onium compound can be freely selected from primary to quaternary, and is selected from an ammonium compound, a sulfonium compound, and a phosphonium compound, for example, a substituent bonded to a nitrogen, sulfur, or phosphorus atom.
  • a halogen element typified by chlorine, a hydroxy group, a carboxylic acid group or the like is suitable as a counter ion, but is not limited thereto.
  • primary to tertiary amine salts and quaternary ammonium salts are particularly preferable.
  • a negative charge control agent may be used to negatively charge the fine particles for image display.
  • Examples of the negative charge control agent include Bontron S-22, Bontron S-34, Bontron E-81, Bontron E-84 (above, manufactured by Orient Chemical Co., Ltd.), Spiron Black TRH (Hodogaya Chemical Co., Ltd.).
  • Metal complexes such as thioindigo pigments, quaternary ammonium salts such as copy charge NXVP434 (manufactured by Hoechst Japan Ltd.), calixarene compounds such as Bontron E-89 (manufactured by Orient Chemical Industries Ltd.), LR147 (Japan) Borit compounds such as Carlit Co., Ltd.), fluorine compounds such as magnesium fluoride and carbon fluoride, aluminum stearate, calcium stearate, aluminum laurate, barium laurate, sodium oleate, zirconium octylate, cobalt naphthenate Any or known metal soap, it may be mentioned salicylic acid metal complexes and phenolic condensates of azin
  • Examples of the dispersant added to the electrophoretic dispersion include sorbitan fatty acid esters (for example, sorbitan monooleate, sorbitan monolaurate, sorbitan sesquioleate, sorbitan trioleate), polyoxyethylene sorbitan fatty acid esters (for example, Polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, etc.), polyethylene glycol fatty acid esters (eg, polyoxyethylene monostearate, polyethylene glycol diisostearate, etc.), polyoxyethylene alkyl phenyl ethers (eg, Polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, etc.), nonionic surface actives such as aliphatic diethanolamides Agent can be used.
  • sorbitan fatty acid esters for example, sorbitan monooleate, sorbitan monolaurate, sorbitan sesquioleate,
  • polymer dispersant examples include styrene-maleic acid resin, styrene-acrylic resin, rosin, urethane polymer compound BYK-160, 162, 164, 182 (manufactured by BYK Chemie), urethane dispersant EFKA-47. LP-4050 (manufactured by EFKA), polyester polymer compound Solsperse 24000 (manufactured by Geneca Corporation), aliphatic diethanolamide polymer compound Solsperse 17000 (manufactured by Geneca Corporation), and the like.
  • monomers such as lauryl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, cetyl methacrylate and the like that can form a solvated part in the dispersion medium, a part that is difficult to solvate in the dispersion medium
  • Random copolymer of monomers such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, styrene, vinyltoluene and the like and monomers having a polar functional group, which are capable of forming styrene, grafts disclosed in JP-A-3-188469 A copolymer etc.
  • monomers such as lauryl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, cetyl methacrylate and the like that can form a solvated part in the dispersion medium, a part that is difficult to solvate in the disper
  • Examples of monomers having polar functional groups include monomers having acidic functional groups such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, styrene sulfonic acid, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and vinylpyridine.
  • Monomers having basic functional groups such as vinylpyrrolidine, vinylpiperidine, vinyllactam, salts thereof, styrene-butadiene copolymers, styrene and long chain disclosed in JP-A-60-10263 Examples thereof include block copolymers of alkyl methacrylate.
  • a dispersant such as a graft copolymer disclosed in JP-A-3-188469 may be added.
  • the addition amount of the dispersant may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the image display fine particles, but usually 2 parts by mass or less, that is, 2% or less is sufficient.
  • An ionic surfactant may be added to the electrophoretic dispersion in order to more effectively cause electrophoresis of the image display fine particles.
  • the anionic surfactant include sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate and the like.
  • the cationic surfactant examples include alkylbenzene dimethyl ammonium chloride, alkyl trimethyl ammonium chloride, distearyl ammonium chloride and the like.
  • An ionic additive that is soluble in a nonpolar dispersion medium such as a trifluorosulfonylimide salt, trifluoroacetate salt, trifluorosulfate salt, or the like, may be added.
  • the addition amount of the ionic additive is, for example, from 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the image display fine particles.
  • This carbon ink can be manufactured as follows. First, the carbon particles 11 and the aromatic compound 13 are mixed with a solvent and stirred. As the solvent, for example, water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used. Next, the carbon particles 11 are recovered from the solution by centrifugation or filtration. Next, the collected carbon particles 11 are washed. In the case where a compound 15 that is polyvalently ionized, that is, a highly charged compound, is bonded to the aromatic compound 13, the aromatic compound 13 is bonded to the carbon particles 11, and then the aromatic compound 13 is mixed with the aromatic compound 13 by a similar method. The compound 15 to be ionized is bound.
  • a solvent for example, water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used.
  • the carbon particles 11 are recovered from the solution by centrifugation or filtration. Next, the collected carbon particles 11 are washed.
  • a compound 15 that is polyvalently ionized that is,
  • a compound in which a polyvalent ionized compound 15 is bonded to the aromatic compound 13 may be formed, and the aromatic compound 13 may be bonded to the carbon particles 11.
  • a coupling reaction such as an amide bond or a thioether bond can be used. These methods can be easily carried out under mild conditions under neutral room temperature conditions. In this way, the carbon particles 11 bonded with the positively or negatively charged aromatic compound 13 or further bonded with the aromatic compound 13 and the compound 15 capable of polyvalent ionization and the dispersion medium 12 are mixed and stirred, whereby carbon Manufacture ink.
  • the compound 15 that binds the positively or negatively charged aromatic compound 12 to the carbon particles 11 or further multivalently ionizes the aromatic compound 12 is obtained.
  • carbon particles 11 having a high density of charge can be obtained.
  • this carbon particle 11 can be manufactured on mild conditions, such as neutral room temperature conditions, for example.
  • the dispersibility of the carbon particles 11 in the carbon ink is very good. For this reason, by using this carbon ink as an electrophoretic dispersion liquid, the carbon particles 11 are charged with a high density and, in addition, the dispersibility is extremely good, so that electrophoresis can be performed at high speed. Power consumption can be reduced by reducing the voltage required for electrophoresis.
  • This carbon ink is suitable for use in an electrophoretic display ink, that is, an electrophoretic dispersion.
  • FIG. 5 shows an electrophoretic display device according to a second embodiment.
  • pixel electrodes 52 having a predetermined shape are provided in a matrix on a substrate 51, and an insulating film 53 is provided so as to cover these pixel electrodes 52.
  • a substrate 54 is provided facing the substrate 51.
  • a counter electrode 55 and an insulating film 56 are sequentially provided on the surface of the substrate 54 on the substrate 51 side.
  • the outer peripheral portions of the substrate 51 and the substrate 54 are sealed with a sealing material 57.
  • the space between the insulating film 53 on the substrate 51 and the insulating film 56 on the substrate 54 is divided for each pixel by a partition wall 58 provided between the insulating films 53 and 54.
  • Each space divided by the partition wall 58 is filled with an electrophoretic dispersion 59 made of carbon ink according to the first embodiment.
  • a voltage can be applied between each pixel electrode 52 and the counter electrode 55 independently of each other.
  • the electrophoretic dispersion 59 includes carbon particles 11 as electrophoretic particles and a dispersion medium 12.
  • a compound 13 that is positively or negatively charged is bonded to the carbon particles 11, or a compound 15 that is polyvalently ionized is bonded to the compound 13.
  • a display image is observed from the outside of the substrate 54.
  • the substrate 54 for example, an electrically insulating transparent glass substrate or a transparent plastic substrate can be used.
  • the substrate 51 is not particularly limited as long as it is an electrically insulating substrate.
  • a glass substrate or a plastic substrate can be used.
  • a substrate made of a transparent inorganic material such as quartz, sapphire, glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride.
  • a transparent plastic substrate made of tetraacetylcellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, polysulfones, polyolefins, or the like can be used. If the thickness of the substrates 51 and 54 is too small, it will be difficult to ensure the strength and uniformity of the spacing between the substrates 51 and 54. On the other hand, if the thickness of the substrates 51 and 54 is too large, the sharpness of the image as a display device and a decrease in contrast occur. In particular, when this electrophoretic display device is applied to electronic paper, it is flexible. May be lacking. For this reason, the thickness of the substrates 51 and 54 is, for example, preferably 2 ⁇ m to 5 mm, and more preferably 5 ⁇ m to 1 mm.
  • a transparent electrode can be used as the counter electrode 55.
  • the material constituting the transparent electrode include, for example, indium-tin composite oxide (ITO), fluorine-doped SnO 2 (FTO), F-doped In 2 O 3 (IFO), antimony-doped SnO 2 (ATO ), SnO 2 , ZnO (including Al-doped ZnO and B-doped ZnO), indium-zinc composite oxide (IZO), spinel oxide, oxide having YbFe 2 O 4 structure, polyaniline, polypyrrole, polythiophene, etc.
  • a conductive polymer or the like can be used.
  • As the counter electrode 55 two or more of these materials can be used in combination.
  • the pixel electrode 52 can be composed of not only the material constituting the transparent electrode but also a metal such as gold, silver, copper, aluminum, or an alloy of these metals, and a black electrode material layer (specifically, Can be composed of, for example, a titanium carbide layer, a blackened chromium layer, an aluminum layer having a black layer formed on the surface, or a titanium black layer).
  • a metal such as gold, silver, copper, aluminum, or an alloy of these metals
  • a black electrode material layer specifically, Can be composed of, for example, a titanium carbide layer, a blackened chromium layer, an aluminum layer having a black layer formed on the surface, or a titanium black layer.
  • a colorless and transparent insulating resin can be used as a material constituting the insulating films 53 and 56.
  • a colorless and transparent insulating resin include acrylic resin, epoxy resin, fluorine resin, silicone resin, polyimide resin, and polystyrene resin. If necessary, fine particles for scattering light such as aluminum oxide and titanium oxide may be added to the colorless and transparent insulating resin.
  • the width of the partition wall 58 is, for example, 1 ⁇ 10 ⁇ 6 m or more and 1 ⁇ 10 ⁇ 3 m or less, preferably 3 ⁇ 10 ⁇ 6 m or more and 5 ⁇ 10 ⁇ 4 m.
  • the height of the partition wall 58 is, for example, 1 ⁇ 10 ⁇ 5 m to 5 mm, preferably 1 ⁇ 10 ⁇ 5 m to 0.5 mm.
  • the planar shape of the pixel surrounded by the partition wall 58 is not particularly limited. For example, a quadrangle, a triangle, a circle, a hexagon (honeycomb structure), or the like can be used.
  • the size of the pixel surrounded by the partition wall 58 is determined based on specifications required for the electrophoretic display device.
  • the length of one side is preferably 1 ⁇ 10 ⁇ 5 m or more and 5 mm or less. Is 3 ⁇ 10 ⁇ 5 m or more and 0.5 mm or less.
  • the volume ratio of the carbon particles 11 in each pixel is, for example, 0.1 or more and 0.8 or less, preferably 0.1 or more and 0.7 or less.
  • the partition wall 58 is formed of, for example, a photosensitive resin, but is not limited thereto.
  • the method of filling the electrophoretic dispersion liquid 59 into each pixel is not particularly limited, but, for example, an ink jet method can be adopted.
  • a voltage is applied between each pixel electrode 52 and the counter electrode 55 in accordance with an image to be displayed.
  • an electric field E is generated between each pixel electrode 52 and the counter electrode 55, and this electric field E is applied to the dispersion liquid 59 for electrophoresis of each pixel.
  • the pixel electrode 52 moves toward the counter electrode 55.
  • An electric field E is applied to the electrophoretic dispersion 59 of the pixel. The state of the electrophoresis dispersion 59 at this time is shown in FIG. As shown in FIG.
  • the positively charged carbon particles 11 contained in the electrophoresis dispersion liquid 59 migrate toward the counter electrode 55.
  • an electric field E directed from the counter electrode 55 to the pixel electrode 52 is applied to the electrophoretic dispersion 59 of the pixel, the positively charged carbon particles 11 are directed toward the pixel electrode 52.
  • the carbon particles 11 in the electrophoresis dispersion liquid 59 are attracted to the counter electrode 55 side for each pixel according to the displayed image, or the electrophoresis dispersion liquid
  • the carbon particles 11 in 59 are attracted to the pixel electrode 52 side.
  • the carbon particles 11 as the image display fine particles are charged with high density.
  • a high-performance electrophoretic display device capable of displaying at high speed and reducing power consumption by reducing the voltage required for display is realized. Can do.
  • This electrophoretic display device is suitable for application to electronic paper, for example.
  • Example 1 A carbon ink using biocarbon as the carbon particles 11, NHS pyrene as the compound 13, and ⁇ -poly-L-lysine ( ⁇ -PLL) modified as the compound 15 as the NHS pyrene was prepared as follows. .
  • biocarbon was recovered by centrifugation. Note that a vortex may be used instead of the ultrasonic treatment, and biocarbon may be recovered by filtration instead of centrifugation.
  • biocarbon was recovered from the liquid in which the biocarbon was dispersed by centrifugation.
  • Biocarbon may be recovered by filtration.
  • NHS pyrene binds to this NHS pyrene with ⁇ -poly-L-lysine modified biocarbon and the dispersant Solsperse 17000 to 1% each with respect to Isopar G as a dispersion medium.
  • Beads having a diameter of 0.1 mm were put into the obtained solution, stirred for 1 hour with a homogenizer, and then centrifuged at 3000 rpm for 15 minutes to collect the supernatant, thereby forming an ink. A carbon ink was thus prepared.
  • Example 2 Carbon ink using biocarbon as the carbon particles 11, NHS pyrene as the compound 13, and NHS pyrene modified with polyethyleneimine (PEI) as the compound 15 was produced in the same manner as in Example 1.
  • PEI polyethyleneimine
  • Example 3 Carbon ink using carbon black (CB) as the carbon particles 11, NHS pyrene as the compound 13, and ⁇ -poly-L-lysine ( ⁇ -PLL) as the compound 15 modified to NHS pyrene as Example 1 It produced similarly.
  • CB carbon black
  • ⁇ -PLL ⁇ -poly-L-lysine
  • Example 4 A carbon ink using carbon black (CB) as the carbon particles 11, NHS pyrene as the compound 13, and polyethyleneimine (PEI) as the compound 15 modified to NHS pyrene was produced in the same manner as in Example 1.
  • CB carbon black
  • NHS pyrene as the compound 13
  • PEI polyethyleneimine
  • a carbon ink was produced as follows. That is, 0.6 g of biocarbon, 0.15 g of 4-vinylaniline, and 0.9 mL of 2 molar HCl were added to 150 mL of pure water and heated to 40 ° C. with stirring. Next, a solution in which 0.087 g of sodium nitrite was dissolved in 10 mL of pure water was added and stirred for 16 hours. Then, the reaction-completed solution was centrifuged, and the operations of dispersion of solids using acetone and precipitation by centrifugation were repeated twice. Thereafter, the solid was dried under reduced pressure at room temperature for 24 hours and at 70 ° C. for 2 hours.
  • the material thus obtained was dissolved in 300 mL of ethyl acetate, 4 g of 2-ethylhexyl methacrylate was added, heated to 50 ° C., and stirred for 1 hour. Next, 0.1 gram of AIBN was added, heated to 65 ° C. and stirred for 7 hours. Thereafter, the obtained solution was centrifuged, and dispersion and centrifugation using ethyl acetate were repeated twice. Next, the obtained solid was dried under reduced pressure at room temperature for 24 hours and at 70 ° C. for 2 hours to obtain positively charged biocarbon.
  • Example 3 A carbon ink was produced in the same manner as in Example 1 using carbon black (CB) to which compounds 13 and 15 were not bonded. However, the content of Solsperse 17000, which is a dispersant, was 0.1%.
  • FIGS. 8 is a comparison between Example 1 and Comparative Example 2
  • FIG. 9 is a comparison between Example 2 and Comparative Example 2
  • FIG. 10 is a comparison between Example 3 and Comparative Example 3
  • FIG. 11 is a comparison with Example 4.
  • a comparison with Example 3 is shown. 8 to 11 indicate the relative absorbance with respect to Comparative Example 2 or 3.
  • the compounds 13 and 15 were used both when ⁇ -poly-L-lysine ( ⁇ -PLL) was modified and when polyethyleneimine (PEI) was modified. It is dispersed 2500 times as compared with the case where they are not coupled. Further, as can be seen from FIGS. 10 and 11, in carbon black (CB), when polyethyleneimine (PEI) is modified, it is dispersed 700 times as compared with the case where compounds 13 and 15 are not bound, Even when ⁇ -poly-L-lysine ( ⁇ -PLL) is modified, it is dispersed 13 times.
  • CB carbon black
  • this technique can also take the following structures.
  • the carbon particles are at least one selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly oriented pyrolytic graphite, plastic formed carbon, activated carbon, and porous carbon.
  • the porous carbon particles are any one of (1) to (6), which is at least one selected from the group consisting of activated carbon, porous carbon, carbon aggregated particles, carbon black, and biocarbon. Carbon ink described in 1.
  • the polycyclic aromatic compound includes pyrene derivatives, coronene derivatives, chrysene derivatives, naphthacene derivatives, pentacene derivatives, picene derivatives, perylene derivatives, anthracene derivatives, phenanthrene derivatives, fluorene derivatives, naphthalene derivatives, fluoranthene derivatives, acenaphthene derivatives,
  • the substance that is at least one selected from the group consisting of acenaphthylene derivatives and triphenylene derivatives and binds to carbon by the ⁇ bond is a terthiophene derivative, tetraphenylbenzidine derivative, tetraphenylnaphthacene derivative, benzothiophene derivative, thiophene derivative , Pyrrole derivative, carbazole derivative, phenanthroline derivative, phenylpyridine derivative, quinoline derivative, triphenylamine derivative, diphenylamine
  • the compound to be polyionized is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid, and peptide, any of (4) to (8)
  • the carbon ink according to crab is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid, and peptide, any of (4) to (8)
  • the carbon ink according to crab is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid, and peptide, any of (4) to (8)
  • the carbon ink according to crab is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid, and peptide, any of (4) to (8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A carbon ink contains carbon particles (11) to which a positively or negatively charged aromatic compound (13) is bonded. The carbon particles (11) may be microporous carbon particles having micropores on the surface. A polyvalently ionizable compound is further bonded to the aromatic compound (13) as needed. Either a polyaromatic compound or a substance that bonds to carbon by π bonds is used as the aromatic compound. At least one type selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly-ordered pyrolytic graphite (HOPG), plastic formed carbon, activated carbon, and porous carbon is used as the carbon particles (11).

Description

炭素インク、炭素インクの製造方法および電気泳動表示装置Carbon ink, carbon ink manufacturing method, and electrophoretic display device
 本開示は、炭素インク、炭素インクの製造方法および電気泳動表示装置に関し、例えば電子ペーパーなどに適用して好適なものである。 The present disclosure relates to carbon ink, a carbon ink manufacturing method, and an electrophoretic display device, and is suitable for application to, for example, electronic paper.
 電子ペーパーなどに用いられる電気泳動表示装置は、帯電した炭素粒子を分散媒に分散させた炭素インクに対し、一対の電極間に電圧を印加して電界を印加することにより帯電した炭素粒子を一方の電極側に電気泳動により引き付けて画像を表示するものである。 An electrophoretic display device used for electronic paper or the like uses a carbon ink in which charged carbon particles are dispersed in a dispersion medium to apply a voltage between a pair of electrodes to apply an electric field to the charged carbon particles. The image is displayed by being attracted to the electrode side by electrophoresis.
 従来、炭素粒子を帯電させる方法としては、炭素粒子を60℃以上に加熱したり、強酸や強アルカリ物質で炭素粒子を処理したりする方法が知られている。 Conventionally, as a method of charging carbon particles, a method of heating the carbon particles to 60 ° C. or higher, or treating the carbon particles with a strong acid or a strong alkali substance is known.
 なお、対向する2枚の基板間に封止された電気泳動分散液中に分散される多孔質炭素材料からなる画像表示用微粒子の表面改質処理として、化学処理または分子修飾を行うことが知られている(特許文献1参照。)。分子修飾としては、アミノ基などの正電荷を有する分子で修飾することによって、画像表示用微粒子の正電荷保持量を増加させることができ、水酸基、カルボキシ基、ケトン基、エステル基などの負電荷を有する分子で修飾することによって、画像表示用微粒子の負電荷保持量を増加させることができることが記載されている。 It is known that chemical treatment or molecular modification is performed as a surface modification treatment of fine particles for image display made of a porous carbon material dispersed in an electrophoretic dispersion liquid sealed between two opposing substrates. (See Patent Document 1). Molecular modification can increase the positive charge retention of image display fine particles by modifying with positively charged molecules such as amino groups, and negative charges such as hydroxyl groups, carboxy groups, ketone groups, and ester groups. It is described that the negative charge retention amount of the fine particles for image display can be increased by modifying the molecule with a molecule having a.
特開2012-22295号公報JP 2012-22295 A 特開2008-273816号公報JP 2008-273816 A
 しかしながら、従来の電気泳動表示装置用の炭素インクの炭素粒子は高密度に帯電させるのが困難である。また、従来の炭素粒子の帯電手法は、60℃以上の温度での加熱が必要であり、危険な強酸や強アルカリ物質に加えて有害な有機溶剤を頻繁に使用する必要があり取扱に注意しなければならないなどの点で難点があった。また、帯電した炭素粒子の製造に要する時間も、早い場合で5時間以上、一般的には10時間以上を必要とする。さらに、実際に電気泳動表示装置に炭素インクを使用する際には、分散媒中に炭素粒子を高分散させるために分散剤を3%程度使用する必要がある。この場合、分散剤の添加により電流リークなどの問題が生じるが、分散性の維持から分散剤の使用量の低減は困難であった。 However, it is difficult to charge the carbon particles of the carbon ink for the conventional electrophoretic display device with high density. In addition, the conventional carbon particle charging method requires heating at a temperature of 60 ° C or higher, and it is necessary to frequently use harmful organic solvents in addition to dangerous strong acids and strong alkaline substances. There were difficulties in that it had to be. Further, the time required for producing the charged carbon particles is 5 hours or more, generally 10 hours or more in the early case. Furthermore, when carbon ink is actually used in an electrophoretic display device, it is necessary to use about 3% of a dispersant in order to highly disperse carbon particles in a dispersion medium. In this case, problems such as current leakage occur due to the addition of the dispersant, but it is difficult to reduce the amount of the dispersant used from the viewpoint of maintaining the dispersibility.
 そこで、本開示が解決しようとする課題は、十分に高密度の電荷を保持した炭素粒子が高い分散性で分散され、分散剤の使用量の大幅な低減を図ることもできる炭素インクおよびその製造方法を提供することである。 Therefore, the problem to be solved by the present disclosure is a carbon ink in which carbon particles holding a sufficiently high-density electric charge are dispersed with high dispersibility, and the amount of dispersant used can be greatly reduced, and the production thereof Is to provide a method.
 本開示が解決しようとする他の課題は、上記の優れた炭素インクを電気泳動分散液に用いた高性能の電気泳動表示装置を提供することである。 Another problem to be solved by the present disclosure is to provide a high-performance electrophoretic display device using the above-described excellent carbon ink as an electrophoretic dispersion.
 上記課題およびその他の課題は、添付図面を参照した本明細書の以下の記述によって明らかとなるであろう。 The above and other problems will become apparent from the following description of the present specification with reference to the accompanying drawings.
 上記課題を解決するために、本開示は、
 正または負に帯電した芳香族化合物が結合した炭素粒子を含有する炭素インクである。
In order to solve the above problems, the present disclosure provides:
This is a carbon ink containing carbon particles to which a positively or negatively charged aromatic compound is bonded.
 また、本開示は、
 正または負に帯電した芳香族化合物が結合した炭素粒子と分散媒とを混合して攪拌する工程を有する炭素インクの製造方法である。
In addition, this disclosure
This is a method for producing a carbon ink having a step of mixing and stirring carbon particles to which a positively or negatively charged aromatic compound is bonded and a dispersion medium.
 ここで、この炭素インクの製造方法は、必要に応じて、芳香族化合物に、多価イオン化する化合物を結合させる工程をさらに有する。 Here, the method for producing the carbon ink further includes a step of binding a compound that is polyvalently ionized to an aromatic compound as necessary.
 また、本開示は、
 正または負に帯電した芳香族化合物が結合した炭素粒子を含有する炭素インクを有する電気泳動表示装置である。
In addition, this disclosure
An electrophoretic display device having a carbon ink containing carbon particles to which a positively or negatively charged aromatic compound is bonded.
 本開示において、炭素粒子に対する芳香族化合物の結合(あるいは吸着)は、芳香族化合物が有する官能基あるいは反応基を介して容易に行うことができる。芳香族化合物を炭素粒子に結合させるためには、芳香族化合物の芳香族部位が平面的であり、また、芳香族部分のπ電子数が多い方が好ましい。この観点より、芳香族化合物は、例えば、多環芳香族化合物またはπ結合により炭素と結合する物質が好ましい。必要に応じて、芳香族化合物に、多価イオン化する化合物を結合させる。芳香族化合物に対する、多価イオン化する化合物の結合は、芳香族化合物が有する官能基あるいは反応基を介して容易に行うことができる。このように芳香族化合物に、多価イオン化する化合物を結合させることにより、炭素粒子に高密度の電荷を保持させることができる。炭素粒子は、表面に細孔を有する細孔性炭素粒子であってもよい。 In the present disclosure, the bonding (or adsorption) of the aromatic compound to the carbon particles can be easily performed via a functional group or a reactive group of the aromatic compound. In order to bond the aromatic compound to the carbon particles, it is preferable that the aromatic portion of the aromatic compound is planar and that the aromatic portion has a larger number of π electrons. From this viewpoint, the aromatic compound is preferably, for example, a polycyclic aromatic compound or a substance that is bonded to carbon by a π bond. If necessary, a compound to be multivalently ionized is bound to the aromatic compound. Bonding of a compound that is polyvalently ionized to an aromatic compound can be easily performed via a functional group or a reactive group of the aromatic compound. In this way, by binding the compound that is polyvalently ionized to the aromatic compound, it is possible to hold the carbon particles with a high density of charges. The carbon particles may be porous carbon particles having pores on the surface.
 多環芳香族化合物の例を挙げると次の通りであり、これらの化合物からなる群より選ばれた少なくとも一種類が用いられる。
・ピレン(Pyrene)誘導体
・コロネン(Coronene)誘導体
・クリセン(Chrysene)誘導体
・ナフタセン(Naphtacene)誘導体
・ペンタセン(Pentacene)誘導体
・ピセン(Picene) 誘導体
・ペリレン(Perylene) 誘導体
・アントラセン(Anthracene)誘導体
・フェナントレン(Phenanthrene)誘導体
・フルオレン(Fluorene)誘導体
・ナフタレン(Naphtalene)誘導体
・フルオランテン(Fluoranthene)誘導体
・アセナフテン(Acenaphthene)誘導体
・アセナフチレン(Acenaphthylene)誘導体
・トリフェニレン(Triphenylene)誘導体
Examples of the polycyclic aromatic compound are as follows, and at least one selected from the group consisting of these compounds is used.
・ Pyrene derivatives ・ Coronene derivatives ・ Chrysene derivatives ・ Naphtacene derivatives ・ Pentacene derivatives ・ Picene derivatives ・ Perylene derivatives ・ Anthracene derivatives ・ Phenanthrenes (Phenanthrene) derivatives, Fluorene derivatives, Naphtalene derivatives, Fluoranthene derivatives, Acenaphthene derivatives, Acenaphthylene derivatives, Triphenylene derivatives
 π結合により炭素と結合する物質は次の通りであり、これらの化合物からなる群より選ばれた少なくとも一種類が用いられる。
・ターチオフェン(Terthiophene)誘導体
・テトラフェニルベンジジン(Tetraphenylbenzidine)誘導体
・テトラフェニルナフタセン(Tetraphenylnaphtacene)誘導体
・ベンゾチオフェン(Benzothiophene)誘導体
・チオフェン(Thiophene)誘導体
・ピロール(Pyrrole)誘導体
・カルバゾール(Carbazole)誘導体
・フェナントロリン(Phenanthroline) 誘導体
・フェニルピリジン(Phenylpyridine) 誘導体
・キノリン(Quinoline)誘導体
・トリフェニルアミン(Triphenylamine) 誘導体
・ジフェニルアミン(Diphenylamine)誘導体
・オキサゾール(Oxazole)誘導体
・オキサジアゾール(Oxadiazole) 誘導体
・p-フェニル(p-Phenyl) 誘導体
・キナクリドン(Quinacridone) 誘導体
・フルクレノン(Flucrenone) 誘導体
・フタロシアニン(Phthalocyanine) 誘導体
・スピロピラン(Spiropyran) 誘導体
・ビオロゲン(Viologen) 誘導体
・スピロペリミジン(Spiroperimidine)誘導体
・フェニルエステル(Phenyl Esters)
・ベンゾ酸(Benzoic Acids)
・ビフェニル(Biphenyl) 誘導体
・ベンゾフェノン(Benzophenone) 誘導体
・ジフェニルアミン(Diphenylamine)誘導体
・ジフェニルエーテル(Diphenyl Ethers)
・ジフェニルスルフィド(Diphenyl Sulfides)
・ジフェニルスルホン(Diphenyl Sulfones)
・ビスフェノール(Bisphenol)誘導体
・アントラキノン(Anthraquinone)誘導体
・ホスホニウム(Phosphonium)化合物
・フルオレセン(Fluorescein)誘導体
・ローダミン(Rhodamine)誘導体
・クマリン(Coumarin) 誘導体
・シアニン(Cyanine)誘導体
Substances that bind to carbon by a π bond are as follows, and at least one selected from the group consisting of these compounds is used.
・ Terthiophene derivative ・ Tetraphenylbenzidine derivative ・ Tetraphenylnaphtacene derivative ・ Benzothiophene derivative ・ Thiophene derivative ・ Pyrrole derivative ・ Carbazole derivative ・Phenanthroline derivatives, phenylpyridine derivatives, quinoline derivatives, triphenylamine derivatives, diphenylamine derivatives, oxazole derivatives, oxadiazole derivatives, p-phenyl (P-Phenyl) Derivatives, Quinacridone Derivatives, Flucrenone Derivatives, Phthalocyanine Derivatives, Spiropyran Derivatives, Viologen Derivatives, Sulfur Pyroperimidine derivative / Phenyl Esters
・ Benzoic Acids
・ Biphenyl derivatives ・ Benzophenone derivatives ・ Diphenylamine derivatives ・ Diphenyl Ethers
・ Diphenyl Sulfides
・ Diphenyl Sulfones
・ Bisphenol derivatives ・ Anthraquinone derivatives ・ Phosphonium compounds ・ Fluorescein derivatives ・ Rhodamine derivatives ・ Coumarin derivatives ・ Cyanine derivatives
 なお、細孔性炭素粒子に結合させる、正または負に帯電した化合物としては、下記のようなものを用いることもできる。すなわち、ヌクレオシド、ヌクレオチド、リボース、糖、アミノ酸、脂質、ステロール、テルペン、ステロイド、プロパノイド、アルカノイド、アルコール、アミン、アミノアルコール、イソシアナート、アミド、エステル、ジオール、グリシジル化合物、ヒドラジン、シラン、ポリケチド、ポリアミン、ポルフィリン、ビタミン、クラウンエーテル、シクロデキストリン、ジアクリラート、ジメタクリレート、テトラカルボン酸、ピロリジン、アルカノール、カルボン酸、アズレン、第四級アンモニウム、フルオロカーボン、アリールやシクロアルカンなどの環式有機化合物を含む化合物である。 In addition, as the positively or negatively charged compound to be bonded to the porous carbon particles, the following can be used. Nucleoside, nucleotide, ribose, sugar, amino acid, lipid, sterol, terpene, steroid, propanoid, arkanoid, alcohol, amine, aminoalcohol, isocyanate, amide, ester, diol, glycidyl compound, hydrazine, silane, polyketide, polyamine Compounds containing cyclic organic compounds such as porphyrins, vitamins, crown ethers, cyclodextrins, diacrylates, dimethacrylates, tetracarboxylic acids, pyrrolidines, alkanols, carboxylic acids, azulene, quaternary ammoniums, fluorocarbons, aryls and cycloalkanes is there.
 芳香族化合物の中でもピレン誘導体が好適である。ピレン誘導体は、例えば、アミン基、スルホン基、スルフヒドリル基、カルボキシ基、水酸基、アジ基、アゾ基、ニトロ基、ニトリル基、シアノ基、アレン基、イソニトリル基、ウレア基、アルデヒド基、ケトン基、NHSエステル、イミドエステル、マレイミド、ピリジルジチオール、アリルアジド、ハロアセテート、イソシアナート、カルボジイミド、アリルアジド、ジアジリン、ヒドラジド、ソラレン、ヨード、ピリジンジスルフィド、ビニルスルホンなどの官能基および反応基を有する。また、官能基および反応基とピレンとの間はアルキル基や、ポリエチレングリコールなどをスペーサーとして隔てられていてもよい。また、これらの官能基、反応基、スペーサーなどはピレンのどの位置の炭素に結合していてもよい。ピレン誘導体はその官能基あるいは反応基を介して、多価イオン化する化合物と共有結合により結合させることができる。 Among the aromatic compounds, pyrene derivatives are preferable. Pyrene derivatives include, for example, amine groups, sulfone groups, sulfhydryl groups, carboxy groups, hydroxyl groups, azido groups, azo groups, nitro groups, nitrile groups, cyano groups, allene groups, isonitrile groups, urea groups, aldehyde groups, ketone groups, It has functional groups and reactive groups such as NHS ester, imide ester, maleimide, pyridyldithiol, allyl azide, haloacetate, isocyanate, carbodiimide, allyl azide, diazirine, hydrazide, psoralen, iodo, pyridine disulfide, vinyl sulfone. Further, an alkyl group, polyethylene glycol or the like may be separated as a spacer between the functional group and the reactive group and pyrene. In addition, these functional groups, reactive groups, spacers, and the like may be bonded to carbon at any position of pyrene. The pyrene derivative can be covalently bonded to the compound to be multivalently ionized via its functional group or reactive group.
 炭素粒子は、例えば、カーボンブラック、天然黒鉛、グラファイト、グラッシーカーボン、カーボンナノチューブ、高配向熱分解黒鉛(HOPG)、プラスチックフォームドカーボン、活性炭および多孔質炭素からなる群より選ばれた少なくとも一種類であるが、これに限定されるものではない。細孔性炭素粒子は、活性炭、多孔質炭素、上記の各種の炭素の凝集粒子、カーボンブラックおよびバイオカーボンからなる群より選ばれた少なくとも一種類であるが、これに限定されるものではない。これらの炭素粒子あるいは細孔性炭素粒子の大きさは特に限定されず、必要に応じて選ばれる。カーボンブラックには、ファーネスブラック、アセチレンブラック、チャンネルブラック、サーマルブラック、ケッチェンブラックなどが含まれる。活性炭には、例えば、カシ炭、クヌギ炭、スギ炭、ナラ炭、ヒノキ炭などの木炭や、ゴム炭、竹炭、オガ炭、ヤシ殻炭などが含まれる。バイオカーボンは、ケイ素(シリコン)の含有率が5重量%以上である植物由来の材料を原料とし、窒素BET法による比表面積の値が10m2/g以上、ケイ素の含有率が1重量%以下、BJH法およびMP法による細孔の容積が0.1cm3/g以上である多孔質炭素材料である(特許文献2参照。)。バイオカーボンは、具体的には、例えば次のようにして作製する。すなわち、まず、粉砕した籾殻(鹿児島県産、イセヒカリの籾殻)を、窒素気流中において500℃、5時間加熱することにより炭化させ、炭化物を得た。その後、この炭化物の10gをアルミナ製のるつぼに入れ、窒素気流(10リットル/分)において5℃/分の昇温速度で1000℃まで昇温させた。そして、1000℃で5時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却した。なお、炭素化および冷却中、窒素ガスを流し続けた。次に、この多孔質炭素材料前駆体を46体積%のフッ化水素酸水溶液に一晩浸漬することにより酸処理を行った後、水およびエチルアルコールを用いてpH7になるまで洗浄した。そして、最後に乾燥させることにより、多孔質炭素材料、すなわちバイオカーボンが得られる。細孔性炭素粒子の細孔賦活化処理は、水蒸気などのガス賦活でも、塩化亜鉛などによる薬剤賦活でもよい。 The carbon particles are, for example, at least one selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly oriented pyrolytic graphite (HOPG), plastic formed carbon, activated carbon, and porous carbon. Although there is, it is not limited to this. The porous carbon particles are at least one selected from the group consisting of activated carbon, porous carbon, aggregated particles of the above-mentioned various carbons, carbon black, and biocarbon, but are not limited thereto. The size of these carbon particles or porous carbon particles is not particularly limited, and is selected as necessary. Carbon black includes furnace black, acetylene black, channel black, thermal black, ketjen black and the like. Examples of the activated carbon include wood charcoal such as oak charcoal, kunugi charcoal, cedar charcoal, oak charcoal, hinoki charcoal, rubber charcoal, bamboo charcoal, oga charcoal, and coconut shell charcoal. Biocarbon is made from a plant-derived material with a silicon (silicon) content of 5% by weight or more. The specific surface area by nitrogen BET method is 10 m 2 / g or more, and the silicon content is 1% by weight or less. , A porous carbon material having a pore volume of 0.1 cm 3 / g or more by the BJH method and the MP method (see Patent Document 2). Specifically, biocarbon is produced as follows, for example. That is, first, the crushed rice husk (produced in Kagoshima Prefecture, Isehikari rice husk) was carbonized by heating in a nitrogen stream at 500 ° C. for 5 hours to obtain a carbide. Thereafter, 10 g of this carbide was placed in an alumina crucible and heated to 1000 ° C. at a rate of 5 ° C./min in a nitrogen stream (10 liters / min). And after carbonizing at 1000 degreeC for 5 hours and converting into a carbonaceous substance (porous carbon material precursor), it cooled to room temperature. In addition, nitrogen gas was kept flowing during carbonization and cooling. Next, this porous carbon material precursor was subjected to an acid treatment by immersing it overnight in a 46% by volume hydrofluoric acid aqueous solution, and then washed with water and ethyl alcohol until the pH reached 7. And the porous carbon material, ie, biocarbon, is obtained by making it dry at the end. The pore activation treatment of the porous carbon particles may be gas activation such as water vapor or chemical activation with zinc chloride or the like.
 多価イオン化する化合物は、例えば、ポリアミン、ポリカルボン酸、ポリスルホン酸、ポリアニリン、ポリピロール、DNA、RNAなどのポリリン酸およびペプチドからなる群より選ばれた少なくとも一種類であるが、これに限定されるものではない。これらの化合物は直鎖状でも環状でもよい。ポリアミンには、例えば、ヘキサアザシクロオクタデカン、スペルミン、スペルミジン、ポリリジン、ポリアルギニン、ポリエチレンイミンなどが含まれる。また、ポリカルボン酸にはポリアクリル酸が含まれる。また、これらの化合物は、エナンチオマーでも、ラセミ体でもよい。また、ポリ-L-リジンのアミド結合部位はα位でもε位でもよいが、ε位がより好ましい。ポリエチレンイミンは分岐型でも直鎖型でもよい。 The compound to be polyvalently ionized is, for example, at least one selected from the group consisting of polyphosphoric acid and peptides such as polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, DNA and RNA, but is not limited thereto. It is not a thing. These compounds may be linear or cyclic. Examples of the polyamine include hexaazacyclooctadecane, spermine, spermidine, polylysine, polyarginine, and polyethyleneimine. The polycarboxylic acid includes polyacrylic acid. These compounds may be enantiomers or racemates. The amide bond site of poly-L-lysine may be α-position or ε-position, but ε-position is more preferable. Polyethyleneimine may be branched or linear.
 本開示による炭素インクの用途は特に限定されないが、好適には、電気泳動表示装置用インク(電気泳動分散液)である。電気泳動表示装置は、典型的には、電子ペーパーである。 The use of the carbon ink according to the present disclosure is not particularly limited, but is preferably an ink for electrophoretic display devices (electrophoretic dispersion liquid). The electrophoretic display device is typically electronic paper.
 この電気泳動表示装置は、表示装置を用いる各種の機器など、例えば、電子機器、移動体(自動車、二輪車、航空機、ロケット、宇宙船など)、動力装置、建設機械、工作機械などに用いることができる。 This electrophoretic display device can be used for various devices using the display device, for example, electronic devices, mobile objects (automobiles, motorcycles, aircraft, rockets, spacecrafts, etc.), power devices, construction machines, machine tools, etc. it can.
 電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器(携帯情報端末機(PDA)など)、ロボット、パーソナルコンピュータ(デスクトップ型、ノート型の双方を含む)、ゲーム機器、カメラ一体型VTR(ビデオテープレコーダ)、車載機器、家庭電気製品、工業製品などである。 Electronic devices may be basically any type, and include both portable and stationary devices. Specific examples include mobile phones, mobile devices (portable information terminals). (PDA, etc.), robots, personal computers (including both desktop and notebook computers), game machines, camera-integrated VTRs (video tape recorders), in-vehicle devices, home appliances, industrial products, and the like.
 上述のように、本開示においては、炭素粒子に正または負に帯電した芳香族化合物を結合させ、あるいはさらに、その芳香族化合物に多価イオン化する化合物を結合させることにより、高密度の電荷を保持した炭素粒子を得ることができる。また、この炭素粒子は、例えば中性室温条件下の温和な条件下で製造することができる。また、炭素インクにおけるこの炭素粒子の分散性は極めて良好である。 As described above, in the present disclosure, a positive charge or a negatively charged aromatic compound is bonded to the carbon particle, or further, a compound that is polyvalently ionized is bonded to the aromatic compound, whereby a high-density charge is obtained. Retained carbon particles can be obtained. The carbon particles can be produced under mild conditions such as neutral room temperature conditions. Further, the dispersibility of the carbon particles in the carbon ink is very good.
 本開示によれば、十分に高密度の電荷を保持した炭素粒子が高い分散性で分散され、分散剤の使用量の大幅な低減を図ることもできる炭素インクを得ることができる。そして、この優れた炭素インクを電気泳動分散液として用いることにより、画像表示用微粒子としての炭素粒子が高密度に帯電していることに加えて分散性も極めて良好であるため、高速で表示を行うことができ、かつ表示に必要な電圧の低減により消費電力の低減を図ることができる高性能の電気泳動表示装置を実現することができる。 According to the present disclosure, it is possible to obtain a carbon ink in which carbon particles having a sufficiently high density of charge are dispersed with high dispersibility, and the amount of dispersant used can be significantly reduced. By using this excellent carbon ink as an electrophoretic dispersion liquid, the carbon particles as image display fine particles are charged with high density and in addition, the dispersibility is extremely good, so that display can be performed at high speed. A high-performance electrophoretic display device that can be performed and can reduce power consumption by reducing a voltage necessary for display can be realized.
第1の実施の形態による炭素インクを示す略線図である。It is a basic diagram which shows the carbon ink by 1st Embodiment. 第1の実施の形態による炭素インクを構成する帯電した炭素粒子を示す略線図である。It is a basic diagram which shows the charged carbon particle which comprises the carbon ink by 1st Embodiment. 第1の実施の形態による炭素インクを構成する炭素粒子に正に帯電したピレン誘導体が結合した例を模式的に示す略線図である。It is a basic diagram which shows typically the example which the positively charged pyrene derivative couple | bonded with the carbon particle which comprises the carbon ink by 1st Embodiment. 第1の実施の形態による炭素インクを構成する炭素粒子に多価イオン化する化合物が結合した様子を示す略線図である。It is a basic diagram which shows a mode that the compound which carries out polyvalent ionization couple | bonded with the carbon particle which comprises the carbon ink by 1st Embodiment. 第2の実施の形態による電気泳動表示装置を示す略線図である。It is a basic diagram which shows the electrophoretic display device by 2nd Embodiment. 第2の実施の形態による電気泳動表示装置の動作を説明するための略線図である。It is an approximate line figure for explaining operation of an electrophoretic display device by a 2nd embodiment. 第2の実施の形態による電気泳動表示装置の動作を説明するための略線図である。It is an approximate line figure for explaining operation of an electrophoretic display device by a 2nd embodiment. 実施例1の炭素インクおよび比較例2の炭素インクの分散性の評価結果を示す略線図である。It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 1, and the carbon ink of the comparative example 2. FIG. 実施例2の炭素インクおよび比較例2の炭素インクの分散性の評価結果を示す略線図である。It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 2, and the carbon ink of the comparative example 2. FIG. 実施例3の炭素インクおよび比較例3の炭素インクの分散性の評価結果を示す略線図である。It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 3, and the carbon ink of the comparative example 3. FIG. 実施例4の炭素インクおよび比較例3の炭素インクの分散性の評価結果を示す略線図である。It is a basic diagram which shows the evaluation result of the dispersibility of the carbon ink of Example 4, and the carbon ink of the comparative example 3.
 以下、発明を実施するための形態(以下「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(炭素インクおよびその製造方法)
2.第2の実施の形態(電気泳動表示装置)
Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described. The description will be given in the following order.
1. First embodiment (carbon ink and manufacturing method thereof)
2. Second embodiment (electrophoretic display device)
〈1.第1の実施の形態〉
[炭素インク]
 図1に第1の実施の形態による炭素インクを示す。図1に示すように、この炭素インクにおいては、正または負に帯電した芳香族化合物が結合した炭素粒子11が分散媒12中に分散されている。図1においては、炭素粒子11に結合した芳香族化合物が正に帯電している場合が示されている。芳香族化合物は、例えば、既に述べた芳香族化合物の中から必要に応じて選ばれる。また、炭素粒子は、例えば、既に述べた炭素粒子の中から必要に応じて選ばれる。この炭素インクにおける各成分の含有量および分散媒の種類は、この炭素インクの用途などに応じて適宜選ばれる。
<1. First Embodiment>
[Carbon ink]
FIG. 1 shows a carbon ink according to the first embodiment. As shown in FIG. 1, in this carbon ink, carbon particles 11 to which a positively or negatively charged aromatic compound is bonded are dispersed in a dispersion medium 12. In FIG. 1, the case where the aromatic compound couple | bonded with the carbon particle 11 is positively charged is shown. The aromatic compound is selected as necessary from among the aromatic compounds already described. In addition, the carbon particles are selected, for example, from the already described carbon particles as necessary. The content of each component in the carbon ink and the type of the dispersion medium are appropriately selected according to the use of the carbon ink.
 図2に、一例として正または負に帯電した芳香族化合物13が結合した炭素粒子11を示す。ここで、炭素粒子11と芳香族化合物13とは、π-π結合により結合している。あるいは、炭素粒子11が細孔性炭素粒子である場合には、炭素粒子11の細孔の内部に芳香族化合物13が入り込んで炭素粒子11の表面に吸着している。 FIG. 2 shows, as an example, carbon particles 11 to which a positively or negatively charged aromatic compound 13 is bonded. Here, the carbon particles 11 and the aromatic compound 13 are bonded by a π-π bond. Alternatively, when the carbon particles 11 are porous carbon particles, the aromatic compound 13 enters the pores of the carbon particles 11 and is adsorbed on the surface of the carbon particles 11.
 図3に、芳香族化合物13が正に帯電したピレン誘導体である場合を示す。 FIG. 3 shows a case where the aromatic compound 13 is a positively charged pyrene derivative.
 図4に示すように、炭素粒子11に結合した芳香族化合物13に、多価イオン化する化合物15を結合させてもよい。多価イオン化する化合物15は、例えば、既に述べた化合物の中から選ばれる。多価イオン化する化合物15の具体例を挙げると次の通りである。 As shown in FIG. 4, a compound 15 to be polyionized may be bonded to the aromatic compound 13 bonded to the carbon particles 11. The compound 15 to be polyvalently ionized is selected from among the compounds already described. Specific examples of the compound 15 to be polyvalent ionized are as follows.
[ε-ポリ-L-リジン]
Figure JPOXMLDOC01-appb-I000001
[Ε-poly-L-lysine]
Figure JPOXMLDOC01-appb-I000001
[ポリエチレンイミン(分岐型)]
Figure JPOXMLDOC01-appb-I000002
[Polyethyleneimine (branch type)]
Figure JPOXMLDOC01-appb-I000002
 化合物15としては、ε-ポリ-L-リジンの代わりにα-ポリ-L-リジンを用いてもよい。 As the compound 15, α-poly-L-lysine may be used instead of ε-poly-L-lysine.
 この炭素インクが電気泳動表示装置用インク、すなわち電気泳動分散液である場合について説明する。この場合、炭素粒子11は画像表示用微粒子である。電気泳動分散液における分散媒に対する画像表示用微粒子の割合は、例えば、分散媒100質量部に対して、画像表示用微粒子0.1質量部以上15質量部以下、好適には、1質量部以上10質量部以下である。画像表示用微粒子を分散させる分散媒としては、好適には、高絶縁性を有し、無色透明な液体を用いる。分散媒としては、具体的には非極性分散媒、より具体的には、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、シリコーンオイルなどを挙げることができる。ここで、脂肪族炭化水素としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、リグロイン、ソルベントナフサ、ケロシン、ノルマルパラフィン、イソパラフィンなどを挙げることができる。また、芳香族炭化水素としては、ベンゼン、トルエン、キシレン、アルキルベンゼンなどを挙げることができる。シリコーンオイルとしては、変成シリコーンオイルを含む各種ジメチルポリシロキサンを挙げることができる。より具体的には、エクソンモービル有限会社製のアイソパーG、H、L、M、エクソールD30、D40、D80、D110、D130、出光石油化学株式会社製のIPソルベント1620、2028、2835、シェルケミカルズジャパン株式会社製のシェルゾール70、71、72、A、AB、日本石油株式会社製のナフテゾルL、M、Hなどを挙げることができる。なお、これらを単独に用いてもよいし、2種以上を混合して用いてもよい。分散媒を着色するには油溶染料を用いればよく、具体的には、例えば、アゾ化合物からなる黄色系染料や橙色系染料、茶色系染料、赤色系染料、アンスラキノン類から成る青色系染料や緑色系染料、紫色系染料などを挙げることができる。これらの染料は1種のみ用いてもよいし、2種以上を併用してもよい。染料の濃度は、好適には、分散媒100質量部に対して、0.1質量部以上3.5質量部以下であるが、これに限定されるものではない。 The case where the carbon ink is an electrophoretic display ink, that is, an electrophoretic dispersion will be described. In this case, the carbon particles 11 are fine particles for image display. The ratio of the fine particles for image display to the dispersion medium in the electrophoretic dispersion is, for example, 0.1 parts by mass or more and 15 parts by mass or less, preferably 1 part by mass or more with respect to 100 parts by mass of the dispersion medium. It is 10 parts by mass or less. As the dispersion medium for dispersing the image display fine particles, a colorless and transparent liquid having high insulation properties is preferably used. Specific examples of the dispersion medium include nonpolar dispersion media, and more specifically, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and silicone oils. Examples of the aliphatic hydrocarbon include pentane, hexane, cyclohexane, heptane, octane, nonane, decane, dodecane, ligroin, solvent naphtha, kerosene, normal paraffin, and isoparaffin. In addition, examples of the aromatic hydrocarbon include benzene, toluene, xylene, and alkylbenzene. Examples of the silicone oil include various dimethylpolysiloxanes containing modified silicone oil. More specifically, Isopar G, H, L, M, Exol D30, D40, D80, D110, D130 manufactured by ExxonMobil Co., Ltd., IP Solvents 1620, 2028, 2835 manufactured by Idemitsu Petrochemical Co., Ltd., Shell Chemicals Japan Examples thereof include Shellsol 70, 71, 72, A, AB, and Naphthesol L, M, H, manufactured by Nippon Oil Corporation. In addition, these may be used independently and 2 or more types may be mixed and used. An oil-soluble dye may be used to color the dispersion medium. Specifically, for example, a yellow dye comprising an azo compound, an orange dye, a brown dye, a red dye, or a blue dye comprising anthraquinones. And green dyes and purple dyes. These dyes may be used alone or in combination of two or more. The concentration of the dye is preferably 0.1 parts by mass or more and 3.5 parts by mass or less with respect to 100 parts by mass of the dispersion medium, but is not limited thereto.
 必要に応じて、画像表示用微粒子を正に帯電させるために正帯電制御剤を併用してもよい。正帯電制御剤としては、例えば、ニグロシンベースEX(オリエント化学工業社製)などのニグロシン系染料、P-51(オリエント化学工業株式会社製)、コピーチャージPX VP435(ヘキストジャパン株式会社製)などの第4級アンモニウム塩、アルコキシ化アミン、アルキルアミド、モリブデン酸キレート顔料、PLZ1001(四国化成工業株式会社など)などのイミダゾール化合物、透明または白色のオニウム化合物などを挙げることができる。なお、オニウム化合物としては、第1級から第4級まで、自由に選択可能であり、アンモニウム化合物、スルホニウム化合物、ホスホニウム化合物より選ばれ、例えば、窒素、硫黄あるいはリン原子に結合している置換基は、アルキル基またはアリール基であり、塩としては、塩素に代表されるハロゲン系元素やヒドロキシ基、カルボン酸基等がカウンターイオンとして好適であるが、これらに限定されるものでない。中でも第1級から第3級アミン塩や第4級アンモニウム塩が特に好ましい。必要に応じて、画像表示用微粒子を負に帯電させるために負帯電制御剤を用いてもよい。負帯電制御剤としては、例えば、ボントロンS-22、ボントロンS-34、ボントロンE-81、ボントロンE-84(以上、オリエント化学工業株式会社製)、スピロンブラックTRH(保土谷化学工業株式会社製)などの金属錯体、チオインジゴ系顔料、コピーチャージNXVP434(ヘキストジャパン株式会社製)などの第4級アンモニウム塩、ボントロンE-89(オリエント化学工業株式会社製)などのカリックスアレーン化合物、LR147(日本カーリット株式会社製)などのホウ素化合物、フッ化マグネシウム、フッ化カーボン等のフッ素化合物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ラウリン酸アルミニウム、ラウリン酸バリウム、オレイン酸ソーダ、オクチル酸ジルコニウム、ナフテン酸コバルトなどの公知の金属石鹸や、アジン化合物のサリチル酸系金属錯体およびフェノール系縮合物を挙げることができる。 If necessary, a positive charge control agent may be used in combination to positively charge the fine particles for image display. Examples of the positive charge control agent include nigrosine-based dyes such as nigrosine base EX (manufactured by Orient Chemical Co., Ltd.), P-51 (manufactured by Orient Chemical Co., Ltd.), copy charge PX VP435 (manufactured by Hoechst Japan Co., Ltd.) and the like. Examples thereof include quaternary ammonium salts, alkoxylated amines, alkylamides, molybdate chelate pigments, imidazole compounds such as PLZ1001 (eg, Shikoku Kasei Kogyo Co., Ltd.), and transparent or white onium compounds. The onium compound can be freely selected from primary to quaternary, and is selected from an ammonium compound, a sulfonium compound, and a phosphonium compound, for example, a substituent bonded to a nitrogen, sulfur, or phosphorus atom. Is an alkyl group or an aryl group, and as a salt, a halogen element typified by chlorine, a hydroxy group, a carboxylic acid group or the like is suitable as a counter ion, but is not limited thereto. Of these, primary to tertiary amine salts and quaternary ammonium salts are particularly preferable. If necessary, a negative charge control agent may be used to negatively charge the fine particles for image display. Examples of the negative charge control agent include Bontron S-22, Bontron S-34, Bontron E-81, Bontron E-84 (above, manufactured by Orient Chemical Co., Ltd.), Spiron Black TRH (Hodogaya Chemical Co., Ltd.). Metal complexes such as thioindigo pigments, quaternary ammonium salts such as copy charge NXVP434 (manufactured by Hoechst Japan Ltd.), calixarene compounds such as Bontron E-89 (manufactured by Orient Chemical Industries Ltd.), LR147 (Japan) Borit compounds such as Carlit Co., Ltd.), fluorine compounds such as magnesium fluoride and carbon fluoride, aluminum stearate, calcium stearate, aluminum laurate, barium laurate, sodium oleate, zirconium octylate, cobalt naphthenate Any or known metal soap, it may be mentioned salicylic acid metal complexes and phenolic condensates of azine compounds.
 電気泳動分散液に添加する分散剤としては、例えば、ソルビタン脂肪酸エステル(例えば、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンセスキオレエート、ソルビタントリオレエートなど)、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエートなど)、ポリエチレングリコール脂肪酸エステル(例えば、ポリオキシエチレンモノステアレート、ポリエチレングリコールジイソステアレートなど)、ポリオキシエチレンアルキルフェニルエーテル(例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテルなど)、脂肪族ジエタノールアミド系などのノニオン系界面活性剤を用いることができる。高分子系分散剤としては、例えば、スチレン-マレイン酸樹脂、スチレン-アクリル樹脂、ロジン、ウレタン系高分子化合物BYK-160、162、164、182(ビックケミー社製)、ウレタン系分散剤EFKA-47、LP-4050(EFKA社製)、ポリエステル系高分子化合物ソルスパース24000(ゼネカ社製)、脂肪族ジエタノールアミド系高分子化合物ソルスパース17000(ゼネカ社製)などを挙げることができる。また、その他の高分子系分散剤として、分散媒に溶媒和する部分を形成することが可能なラウリルメタクリレート、ステアリルメタクリレート、2-エチルヘキシルメタクリレート、セチルメタクリレートなどのモノマー、分散媒に溶媒和し難い部分を形成することが可能なメチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、スチレン、ビニルトルエンなどのモノマーおよび極性の官能基を有するモノマーのランダム共重合体、特開平3-188469号公報に開示されているグラフト共重合体などを挙げることができる。極性の官能基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸、スチレンスルホン酸などの酸性の官能基を有するモノマーや、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ビニルピリジン、ビニルピロリジン、ビニルピペリジン、ビニルラクタムなどの塩基性の官能基を有するモノマーや、これらの塩や、スチレン-ブタジエン共重合体、特開昭60-10263号公報に開示されているスチレンと長鎖アルキルメタクリレートのブロック共重合体などを挙げることができる。また、特開平3-188469号公報に開示されているグラフト共重合体といった分散剤を添加してもよい。分散剤の添加量としては、画像表示用微粒子100質量部に対して、0.01質量部から5質量部を挙げることができるが、通常は2質量部以下、すなわち2%以下で足りる。画像表示用微粒子の電気泳動を一層効果的に生じさせるために、電気泳動分散液にイオン性界面活性剤を添加してもよい。アニオン界面活性剤の具体例を挙げると、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウムなどである。カチオン界面活性剤の具体例を挙げると、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジステアリルアンモニウムクロライドなどである。トリフルオロスルホニルイミド塩、トリフルオロ酢酸塩、トリフルオロ硫酸塩などのような、非極性分散媒に可溶なイオン性添加剤を添加してもよい。イオン性添加剤の添加量は、例えば、画像表示用微粒子100質量部に対して、1質量部以上10質量部以下である。 Examples of the dispersant added to the electrophoretic dispersion include sorbitan fatty acid esters (for example, sorbitan monooleate, sorbitan monolaurate, sorbitan sesquioleate, sorbitan trioleate), polyoxyethylene sorbitan fatty acid esters (for example, Polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, etc.), polyethylene glycol fatty acid esters (eg, polyoxyethylene monostearate, polyethylene glycol diisostearate, etc.), polyoxyethylene alkyl phenyl ethers (eg, Polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, etc.), nonionic surface actives such as aliphatic diethanolamides Agent can be used. Examples of the polymer dispersant include styrene-maleic acid resin, styrene-acrylic resin, rosin, urethane polymer compound BYK-160, 162, 164, 182 (manufactured by BYK Chemie), urethane dispersant EFKA-47. LP-4050 (manufactured by EFKA), polyester polymer compound Solsperse 24000 (manufactured by Geneca Corporation), aliphatic diethanolamide polymer compound Solsperse 17000 (manufactured by Geneca Corporation), and the like. In addition, as other polymeric dispersants, monomers such as lauryl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, cetyl methacrylate and the like that can form a solvated part in the dispersion medium, a part that is difficult to solvate in the dispersion medium Random copolymer of monomers such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, styrene, vinyltoluene and the like and monomers having a polar functional group, which are capable of forming styrene, grafts disclosed in JP-A-3-188469 A copolymer etc. can be mentioned. Examples of monomers having polar functional groups include monomers having acidic functional groups such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, styrene sulfonic acid, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and vinylpyridine. Monomers having basic functional groups such as vinylpyrrolidine, vinylpiperidine, vinyllactam, salts thereof, styrene-butadiene copolymers, styrene and long chain disclosed in JP-A-60-10263 Examples thereof include block copolymers of alkyl methacrylate. Further, a dispersant such as a graft copolymer disclosed in JP-A-3-188469 may be added. The addition amount of the dispersant may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the image display fine particles, but usually 2 parts by mass or less, that is, 2% or less is sufficient. An ionic surfactant may be added to the electrophoretic dispersion in order to more effectively cause electrophoresis of the image display fine particles. Specific examples of the anionic surfactant include sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate and the like. Specific examples of the cationic surfactant include alkylbenzene dimethyl ammonium chloride, alkyl trimethyl ammonium chloride, distearyl ammonium chloride and the like. An ionic additive that is soluble in a nonpolar dispersion medium, such as a trifluorosulfonylimide salt, trifluoroacetate salt, trifluorosulfate salt, or the like, may be added. The addition amount of the ionic additive is, for example, from 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the image display fine particles.
[炭素インクの製造方法]
 この炭素インクは、次のようにして製造することができる。まず、炭素粒子11および芳香族化合物13を溶媒に混合して攪拌する。溶媒としては、例えば、水、有機溶剤、水と有機溶剤との混合溶媒などを用いることができる。次に、この溶液から遠心分離あるいは濾過などにより炭素粒子11を回収する。次に、回収された炭素粒子11を洗浄する。芳香族化合物13に多価イオン化する化合物15、すなわち高電荷性化合物を結合させる場合には、炭素粒子11に芳香族化合物13を結合させてからこの芳香族化合物13に、同様な方法により、多価イオン化する化合物15を結合させる。あるいは、芳香族化合物13に多価イオン化する化合物15を結合させたものを形成し、その芳香族化合物13を炭素粒子11に結合させてもよい。多価イオン化する化合物15を芳香族化合物13に結合させる場合は、アミド結合やチオエーテル結合などのカップリング反応などを利用することができる。これらの方法は、中性室温条件下の温和な条件で容易に実行することができる。こうして、正または負に帯電した芳香族化合物13が結合し、あるいはさらに芳香族化合物13に多価イオン化する化合物15が結合した炭素粒子11と分散媒12とを混合して攪拌することにより、炭素インクを製造する。
[Method for producing carbon ink]
This carbon ink can be manufactured as follows. First, the carbon particles 11 and the aromatic compound 13 are mixed with a solvent and stirred. As the solvent, for example, water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used. Next, the carbon particles 11 are recovered from the solution by centrifugation or filtration. Next, the collected carbon particles 11 are washed. In the case where a compound 15 that is polyvalently ionized, that is, a highly charged compound, is bonded to the aromatic compound 13, the aromatic compound 13 is bonded to the carbon particles 11, and then the aromatic compound 13 is mixed with the aromatic compound 13 by a similar method. The compound 15 to be ionized is bound. Alternatively, a compound in which a polyvalent ionized compound 15 is bonded to the aromatic compound 13 may be formed, and the aromatic compound 13 may be bonded to the carbon particles 11. When the compound 15 to be polyvalent ionized is bonded to the aromatic compound 13, a coupling reaction such as an amide bond or a thioether bond can be used. These methods can be easily carried out under mild conditions under neutral room temperature conditions. In this way, the carbon particles 11 bonded with the positively or negatively charged aromatic compound 13 or further bonded with the aromatic compound 13 and the compound 15 capable of polyvalent ionization and the dispersion medium 12 are mixed and stirred, whereby carbon Manufacture ink.
 以上のように、この第1の実施の形態によれば、炭素粒子11に正または負に帯電した芳香族化合物12を結合させ、あるいはさらに、その芳香族化合物12に多価イオン化する化合物15を結合させることにより、高密度の電荷を保持した炭素粒子11を得ることができる。また、この炭素粒子11は、例えば中性室温条件下の温和な条件下で製造することができる。さらに、炭素インクにおけるこの炭素粒子11の分散性は極めて良好である。このため、この炭素インクを電気泳動分散液として用いることにより、炭素粒子11が高密度に帯電していることに加えて分散性も極めて良好であるため、高速で電気泳動が可能であり、しかも電気泳動に必要な電圧の低減により消費電力の低減を図ることができる。この炭素インクは、電気泳動表示装置用インク、すなわち電気泳動分散液に用いて好適なものである。 As described above, according to the first embodiment, the compound 15 that binds the positively or negatively charged aromatic compound 12 to the carbon particles 11 or further multivalently ionizes the aromatic compound 12 is obtained. By bonding, carbon particles 11 having a high density of charge can be obtained. Moreover, this carbon particle 11 can be manufactured on mild conditions, such as neutral room temperature conditions, for example. Furthermore, the dispersibility of the carbon particles 11 in the carbon ink is very good. For this reason, by using this carbon ink as an electrophoretic dispersion liquid, the carbon particles 11 are charged with a high density and, in addition, the dispersibility is extremely good, so that electrophoresis can be performed at high speed. Power consumption can be reduced by reducing the voltage required for electrophoresis. This carbon ink is suitable for use in an electrophoretic display ink, that is, an electrophoretic dispersion.
〈2.第2の実施の形態〉
[電気泳動表示装置]
 第2の実施の形態による電気泳動表示装置を図5に示す。図5に示すように、この電気泳動表示装置においては、基板51上に所定形状の画素電極52がマトリクス状に設けられ、これらの画素電極52を覆うように絶縁膜53が設けられている。基板51と対向して基板54が設けられている。基板54の基板51側の面上に対向電極55および絶縁膜56が順次設けられている。これらの基板51および基板54の外周部が封止材57で封止されている。また、基板51上の絶縁膜53と基板54上の絶縁膜56との間の空間はこれらの絶縁膜53、54の間に設けられた隔壁58により画素毎に分割されている。隔壁58により分割された各空間に、第1の実施の形態による炭素インクからなる電気泳動用分散液59が充填されている。各画素電極52と対向電極55との間に互いに独立に電圧を印加することができるようになっている。電気泳動用分散液59は、電気泳動粒子としての炭素粒子11と分散媒12とからなる。炭素粒子11には、正または負に帯電した化合物13が結合し、あるいはさらに、この化合物13に多価イオン化する化合物15が結合している。
<2. Second Embodiment>
[Electrophoretic display device]
FIG. 5 shows an electrophoretic display device according to a second embodiment. As shown in FIG. 5, in the electrophoretic display device, pixel electrodes 52 having a predetermined shape are provided in a matrix on a substrate 51, and an insulating film 53 is provided so as to cover these pixel electrodes 52. A substrate 54 is provided facing the substrate 51. A counter electrode 55 and an insulating film 56 are sequentially provided on the surface of the substrate 54 on the substrate 51 side. The outer peripheral portions of the substrate 51 and the substrate 54 are sealed with a sealing material 57. The space between the insulating film 53 on the substrate 51 and the insulating film 56 on the substrate 54 is divided for each pixel by a partition wall 58 provided between the insulating films 53 and 54. Each space divided by the partition wall 58 is filled with an electrophoretic dispersion 59 made of carbon ink according to the first embodiment. A voltage can be applied between each pixel electrode 52 and the counter electrode 55 independently of each other. The electrophoretic dispersion 59 includes carbon particles 11 as electrophoretic particles and a dispersion medium 12. A compound 13 that is positively or negatively charged is bonded to the carbon particles 11, or a compound 15 that is polyvalently ionized is bonded to the compound 13.
 この電気泳動表示装置においては、基板54の外側から表示画像を観察するようになっている。基板54としては、例えば、電気的に絶縁性の透明ガラス基板や透明プラスチック基板などを用いることができる。基板51は、電気的に絶縁性の基板であれば特に限定されないが、例えば、ガラス基板やプラスチック基板などを用いることができる。具体的には、基板51としては、石英、サファイア、ガラスなどの透明無機材料からなる基板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルフォン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリフッ化ビニリデン、テトラアセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルフォン類、ポリオレフィン類などからなる透明プラスチック基板などを用いることができる。基板51、54の厚さは、小さ過ぎると、強度や基板51、54間の間隔均一性を確保するのが難しくなる。一方、基板51、54の厚さは、大きく過ぎると、表示装置としての画像の鮮明さやコントラストの低下などが発生し、特に、この電気泳動表示装置を電子ペーパーに適用する場合には可撓性に欠ける場合が生じる。このため、基板51、54の厚さは、例えば、好適には2μm以上5mm以下、より好適には5μm以上1mm以下とする。 In this electrophoretic display device, a display image is observed from the outside of the substrate 54. As the substrate 54, for example, an electrically insulating transparent glass substrate or a transparent plastic substrate can be used. The substrate 51 is not particularly limited as long as it is an electrically insulating substrate. For example, a glass substrate or a plastic substrate can be used. Specifically, as the substrate 51, a substrate made of a transparent inorganic material such as quartz, sapphire, glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride. A transparent plastic substrate made of tetraacetylcellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, polysulfones, polyolefins, or the like can be used. If the thickness of the substrates 51 and 54 is too small, it will be difficult to ensure the strength and uniformity of the spacing between the substrates 51 and 54. On the other hand, if the thickness of the substrates 51 and 54 is too large, the sharpness of the image as a display device and a decrease in contrast occur. In particular, when this electrophoretic display device is applied to electronic paper, it is flexible. May be lacking. For this reason, the thickness of the substrates 51 and 54 is, for example, preferably 2 μm to 5 mm, and more preferably 5 μm to 1 mm.
 対向電極55としては、透明電極を用いることができる。透明電極を構成する材料としては、具体的には、例えば、インジウム-スズ複合酸化物(ITO)、フッ素ドープSnO2(FTO)、FドープIn23(IFO)、アンチモンドープSnO2(ATO)、SnO2、ZnO(AlドープZnOやBドープZnOを含む)、インジウム-亜鉛複合酸化物(IZO)、スピネル型酸化物、YbFe24構造を有する酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子などを用いることができる。対向電極55としては、これらの材料を2種類以上組み合わせて用いることもできる。画素電極52は、上記の透明電極を構成する材料だけでなく、金、銀、銅、アルミニウムなどの金属あるいはこれらの金属の合金から構成することができるし、黒色の電極材料層(具体的には、例えば、炭化チタン層や黒色化処理したクロム層、黒色層を表面に形成したアルミニウム層、チタンブラック層)から構成することもできる。 A transparent electrode can be used as the counter electrode 55. Specific examples of the material constituting the transparent electrode include, for example, indium-tin composite oxide (ITO), fluorine-doped SnO 2 (FTO), F-doped In 2 O 3 (IFO), antimony-doped SnO 2 (ATO ), SnO 2 , ZnO (including Al-doped ZnO and B-doped ZnO), indium-zinc composite oxide (IZO), spinel oxide, oxide having YbFe 2 O 4 structure, polyaniline, polypyrrole, polythiophene, etc. A conductive polymer or the like can be used. As the counter electrode 55, two or more of these materials can be used in combination. The pixel electrode 52 can be composed of not only the material constituting the transparent electrode but also a metal such as gold, silver, copper, aluminum, or an alloy of these metals, and a black electrode material layer (specifically, Can be composed of, for example, a titanium carbide layer, a blackened chromium layer, an aluminum layer having a black layer formed on the surface, or a titanium black layer).
 絶縁膜53、56を構成する材料として、例えば、無色透明な絶縁性樹脂を用いることができる。この無色透明な絶縁性樹脂は、具体的には、例えば、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリイミド樹脂、ポリスチレン樹脂などを挙げることができる。また、必要に応じて、この無色透明な絶縁性樹脂に、光を散乱させるための微粒子、例えば、酸化アルミニウム、酸化チタンなどを添加してもよい。 As a material constituting the insulating films 53 and 56, for example, a colorless and transparent insulating resin can be used. Specific examples of the colorless and transparent insulating resin include acrylic resin, epoxy resin, fluorine resin, silicone resin, polyimide resin, and polystyrene resin. If necessary, fine particles for scattering light such as aluminum oxide and titanium oxide may be added to the colorless and transparent insulating resin.
 隔壁58の幅は、例えば、1×10-6m以上1×10-3m以下、好適には3×10-6m以上5×10-4mである。また、隔壁58の高さは、例えば、1×10-5m以上5mm以下、好適には、1×10-5m以上0.5mm以下である。隔壁58によって囲まれた画素の平面形状は特に限定されないが、例えば、四角形、三角形、円形、六角形(ハニカム構造)などを用いることができる。隔壁58によって囲まれた画素の大きさは、この電気泳動表示装置に要求される仕様に基づいて決定されるが、例えば、一辺の長さとが、1×10-5m以上5mm以下、好適には3×10-5m以上0.5mm以下である。隔壁58によって囲まれた画素の体積を1としたとき、各画素に占める炭素粒子11の体積割合は、例えば、0.1以上0.8以下、好適には0.1以上0.7以下とする。隔壁58は例えば感光性樹脂により形成されるが、これに限定されるものではない。各画素への電気泳動分散液59の充填方法は、特に限定されないが、例えば、インクジェット方式を採用することができる。 The width of the partition wall 58 is, for example, 1 × 10 −6 m or more and 1 × 10 −3 m or less, preferably 3 × 10 −6 m or more and 5 × 10 −4 m. The height of the partition wall 58 is, for example, 1 × 10 −5 m to 5 mm, preferably 1 × 10 −5 m to 0.5 mm. The planar shape of the pixel surrounded by the partition wall 58 is not particularly limited. For example, a quadrangle, a triangle, a circle, a hexagon (honeycomb structure), or the like can be used. The size of the pixel surrounded by the partition wall 58 is determined based on specifications required for the electrophoretic display device. For example, the length of one side is preferably 1 × 10 −5 m or more and 5 mm or less. Is 3 × 10 −5 m or more and 0.5 mm or less. When the volume of the pixels surrounded by the partition wall 58 is 1, the volume ratio of the carbon particles 11 in each pixel is, for example, 0.1 or more and 0.8 or less, preferably 0.1 or more and 0.7 or less. To do. The partition wall 58 is formed of, for example, a photosensitive resin, but is not limited thereto. The method of filling the electrophoretic dispersion liquid 59 into each pixel is not particularly limited, but, for example, an ink jet method can be adopted.
[電気泳動表示装置の動作]
 ここでは、この電気泳動表示装置の電気泳動用分散液59を構成する炭素粒子11が正に帯電している場合を例にとって説明する。
[Operation of electrophoretic display device]
Here, a case where the carbon particles 11 constituting the dispersion liquid 59 for electrophoresis of the electrophoretic display device are positively charged will be described as an example.
 図5に示す電気泳動表示装置において、表示する画像に応じて、各画素電極52と対向電極55との間に電圧を印加する。この電圧の印加により、各画素電極52と対向電極55との間に電界Eが発生し、この電界Eが各画素の電気泳動用分散液59に印加される。例えば、ある画素電極52と対向電極55との間に、対向電極55に対してその画素電極52の電位が高くなるような電圧が印加されるとすると、その画素電極52から対向電極55に向かう電界Eがその画素の電気泳動用分散液59に印加される。このときの電気泳動用分散液59の状態を図6に示す。図6に示すように、電気泳動用分散液59に含まれる正に帯電した炭素粒子11は対向電極55に向かって泳動する。図示は省略するが、逆に対向電極55から画素電極52に向かう電界Eがその画素の電気泳動用分散液59に印加された場合には、正に帯電した炭素粒子11は画素電極52に向かって泳動する。こうして、例えば、図7に示すように、表示される画像に応じて、画素毎に、電気泳動用分散液59中の炭素粒子11が対向電極55側に引き付けられ、あるいは、電気泳動用分散液59中の炭素粒子11が画素電極52側に引き付けられる。 In the electrophoretic display device shown in FIG. 5, a voltage is applied between each pixel electrode 52 and the counter electrode 55 in accordance with an image to be displayed. By applying this voltage, an electric field E is generated between each pixel electrode 52 and the counter electrode 55, and this electric field E is applied to the dispersion liquid 59 for electrophoresis of each pixel. For example, when a voltage that increases the potential of the pixel electrode 52 is applied to the counter electrode 55 between the pixel electrode 52 and the counter electrode 55, the pixel electrode 52 moves toward the counter electrode 55. An electric field E is applied to the electrophoretic dispersion 59 of the pixel. The state of the electrophoresis dispersion 59 at this time is shown in FIG. As shown in FIG. 6, the positively charged carbon particles 11 contained in the electrophoresis dispersion liquid 59 migrate toward the counter electrode 55. Although not shown, conversely, when an electric field E directed from the counter electrode 55 to the pixel electrode 52 is applied to the electrophoretic dispersion 59 of the pixel, the positively charged carbon particles 11 are directed toward the pixel electrode 52. Run. Thus, for example, as shown in FIG. 7, the carbon particles 11 in the electrophoresis dispersion liquid 59 are attracted to the counter electrode 55 side for each pixel according to the displayed image, or the electrophoresis dispersion liquid The carbon particles 11 in 59 are attracted to the pixel electrode 52 side.
 この第2の実施の形態によれば、第1の実施の形態による優れた炭素インクを電気泳動分散液として用いることにより、画像表示用微粒子としての炭素粒子11が高密度に帯電していることに加えて分散性も極めて良好であるため、高速で表示を行うことができ、かつ表示に必要な電圧の低減により消費電力の低減を図ることができる高性能の電気泳動表示装置を実現することができる。この電気泳動表示装置は例えば電子ペーパーに適用して好適なものである。 According to the second embodiment, by using the excellent carbon ink according to the first embodiment as the electrophoretic dispersion liquid, the carbon particles 11 as the image display fine particles are charged with high density. In addition to the extremely good dispersibility, a high-performance electrophoretic display device capable of displaying at high speed and reducing power consumption by reducing the voltage required for display is realized. Can do. This electrophoretic display device is suitable for application to electronic paper, for example.
 以下、実施例について説明する。
〈実施例1〉
 炭素粒子11としてバイオカーボン、化合物13としてNHSピレンを用い、NHSピレンに化合物15としてε-ポリ-L-リジン(ε-PLL)を修飾したものを用いた炭素インクを以下のようにして作製した。
Examples will be described below.
<Example 1>
A carbon ink using biocarbon as the carbon particles 11, NHS pyrene as the compound 13, and ε-poly-L-lysine (ε-PLL) modified as the compound 15 as the NHS pyrene was prepared as follows. .
 バイオカーボン300mgに対して10mg/mL(アセトン:水=9:1) のNHSピレン20mLを加えてバイオカーボンを分散させた。 The biocarbon was dispersed by adding 20 mL of NHS pyrene in an amount of 10 mg / mL (acetone: water = 9: 1) to 300 mg of biocarbon.
 次に、上記のようにしてバイオカーボンを分散させた液を超音波処理により攪拌した後、遠心分離によりバイオカーボンを回収した。なお、超音波処理の代わりにボルテクッスを用いてもよく、遠心分離の代わりに濾過によりバイオカーボンを回収してもよい。 Next, after the liquid in which biocarbon was dispersed as described above was agitated by ultrasonic treatment, biocarbon was recovered by centrifugation. Note that a vortex may be used instead of the ultrasonic treatment, and biocarbon may be recovered by filtration instead of centrifugation.
 次に、回収されたバイオカーボンをアセトン10mLで2回洗浄した。 Next, the recovered biocarbon was washed twice with 10 mL of acetone.
 次に、5%ε-ポリ-L-リジン(アセトン:水=1:1) 20mLに上記の回収されたバイオカーボンを分散させた後、室温にて適宜攪拌しながら1時間置いた。 Next, the recovered biocarbon was dispersed in 20 mL of 5% ε-poly-L-lysine (acetone: water = 1: 1) and left at room temperature for 1 hour with appropriate stirring.
 次に、このバイオカーボンが分散された液から遠心分離によりバイオカーボンを回収した。なお、濾過によりバイオカーボンを回収してもよい。 Next, the biocarbon was recovered from the liquid in which the biocarbon was dispersed by centrifugation. Biocarbon may be recovered by filtration.
 次に、回収されたバイオカーボンをアセトンと水との混合液(アセトン:水=1:1)10mLで2回洗浄した後、乾燥させた。 Next, the recovered biocarbon was washed twice with 10 mL of a mixed solution of acetone and water (acetone: water = 1: 1) and then dried.
 こうして得られた、NHSピレンが結合し、このNHSピレンにε-ポリ-L-リジンを修飾したバイオカーボンおよび分散剤であるソルスパース17000を分散媒であるアイソパーGに対してそれぞれ1%となるように加えた。得られた溶液に直径0.1mmのビーズを入れ、ホモジナイザーで1時間撹拌した後、遠心分離を3000回転で15分行って上澄みを回収することでインク化した。こうして炭素インクを作製した。 Thus obtained NHS pyrene binds to this NHS pyrene with ε-poly-L-lysine modified biocarbon and the dispersant Solsperse 17000 to 1% each with respect to Isopar G as a dispersion medium. Added to. Beads having a diameter of 0.1 mm were put into the obtained solution, stirred for 1 hour with a homogenizer, and then centrifuged at 3000 rpm for 15 minutes to collect the supernatant, thereby forming an ink. A carbon ink was thus prepared.
〈実施例2〉
 炭素粒子11としてバイオカーボン、化合物13としてNHSピレンを用い、NHSピレンに化合物15としてポリエチレンイミン(PEI)を修飾したものを用いた炭素インクを実施例1と同様にして作製した。
<Example 2>
Carbon ink using biocarbon as the carbon particles 11, NHS pyrene as the compound 13, and NHS pyrene modified with polyethyleneimine (PEI) as the compound 15 was produced in the same manner as in Example 1.
〈実施例3〉
 炭素粒子11としてカーボンブラック(CB)、化合物13としてNHSピレンを用い、NHSピレンに化合物15としてε-ポリ-L-リジン(ε-PLL)を修飾したものを用いた炭素インクを実施例1と同様にして作製した。
<Example 3>
Carbon ink using carbon black (CB) as the carbon particles 11, NHS pyrene as the compound 13, and ε-poly-L-lysine (ε-PLL) as the compound 15 modified to NHS pyrene as Example 1 It produced similarly.
〈実施例4〉
 炭素粒子11としてカーボンブラック(CB)、化合物13としてNHSピレンを用い、NHSピレンに化合物15としてポリエチレンイミン(PEI)を修飾したものを用いた炭素インクを実施例1と同様にして作製した。
<Example 4>
A carbon ink using carbon black (CB) as the carbon particles 11, NHS pyrene as the compound 13, and polyethyleneimine (PEI) as the compound 15 modified to NHS pyrene was produced in the same manner as in Example 1.
〈比較例1〉
 以下のようにして炭素インクを作製した。
 すなわち、純水150mLに、バイオカーボン0.6g、4-ビニルアニリン0.15g、2モルのHCl0.9mLを添加し、撹拌しながら40℃まで加熱した。次に、純水10mLに0.087gの亜硝酸ナトリウムを溶解した溶液を加えて、16時間、撹拌した。そして、反応が終了した溶液の遠心分離を行い、アセトンを用いた固形物の分散および遠心分離による沈殿という作業を2度繰り返した。その後、固形物を減圧下で室温24時間、70℃で2時間、乾燥させた。こうして得られた材料を300mLの酢酸エチルに溶かし、メタクリル酸2-エチルへキシル4gを加えて50℃まで加熱し、1時間、撹拌した。次に、AIBNを0.1グラム添加し、65℃まで加熱して、7時間、撹拌した。その後、得られた溶液の遠心分離を行い、酢酸エチルを用いた分散および遠心分離を2度繰り返した。次に、得られた固形物を減圧下で室温24時間、70℃で2時間、乾燥させることで、正に帯電したバイオカーボンを得た。
<Comparative example 1>
A carbon ink was produced as follows.
That is, 0.6 g of biocarbon, 0.15 g of 4-vinylaniline, and 0.9 mL of 2 molar HCl were added to 150 mL of pure water and heated to 40 ° C. with stirring. Next, a solution in which 0.087 g of sodium nitrite was dissolved in 10 mL of pure water was added and stirred for 16 hours. Then, the reaction-completed solution was centrifuged, and the operations of dispersion of solids using acetone and precipitation by centrifugation were repeated twice. Thereafter, the solid was dried under reduced pressure at room temperature for 24 hours and at 70 ° C. for 2 hours. The material thus obtained was dissolved in 300 mL of ethyl acetate, 4 g of 2-ethylhexyl methacrylate was added, heated to 50 ° C., and stirred for 1 hour. Next, 0.1 gram of AIBN was added, heated to 65 ° C. and stirred for 7 hours. Thereafter, the obtained solution was centrifuged, and dispersion and centrifugation using ethyl acetate were repeated twice. Next, the obtained solid was dried under reduced pressure at room temperature for 24 hours and at 70 ° C. for 2 hours to obtain positively charged biocarbon.
 こうして得られた、正に帯電したバイオカーボンおよび分散剤であるソルスパース17000を分散媒であるアイソパーGに対して、バイオカーボンは1%、ソルスパース17000は1.5%となるように加えた。得られた溶液に直径0.1mmのビーズを入れ、ホモジナイザーで4時間撹拌した後、遠心分離を5000回転で15分行って上澄みを回収することでインク化した。こうして炭素インクを作製した。 Thus obtained positively charged biocarbon and Solsperse 17000 as a dispersant were added to Isopar G as a dispersion medium so that Biocarbon was 1% and Solsperse 17000 was 1.5%. Beads having a diameter of 0.1 mm were put into the obtained solution, stirred for 4 hours with a homogenizer, and then centrifuged at 5000 rpm for 15 minutes to collect the supernatant, thereby forming an ink. A carbon ink was thus prepared.
〈比較例2〉
 化合物13、15を結合しないバイオカーボン(BC)を用いて実施例1と同様にして炭素インクを作製した。
<Comparative example 2>
A carbon ink was produced in the same manner as in Example 1 using biocarbon (BC) that does not bind compounds 13 and 15.
〈比較例3〉
 化合物13、15を結合しないカーボンブラック(CB)を用いて実施例1と同様にして炭素インクを作製した。ただし、分散剤であるソルスパース17000の含有量は0.1%とした。
<Comparative Example 3>
A carbon ink was produced in the same manner as in Example 1 using carbon black (CB) to which compounds 13 and 15 were not bonded. However, the content of Solsperse 17000, which is a dispersant, was 0.1%.
[評価結果]
 実施例1~4の炭素インクでは、黒色の炭素粒子が良好に分散したのに対し、比較例1~5の炭素インクでは、黒色の炭素粒子が沈殿してしまい無色透明であった。
[Evaluation results]
In the carbon inks of Examples 1 to 4, the black carbon particles were well dispersed, whereas in the carbon inks of Comparative Examples 1 to 5, the black carbon particles were precipitated and were colorless and transparent.
 実施例1~4の炭素インクおよび比較例2、3の炭素インク中に分散した炭素粒子の600nmの波長における吸光度を分光光度計により測定し、分散性を見積もった。その結果を図8~図11に示す。図8は実施例1と比較例2との比較、図9は実施例2と比較例2との比較、図10は実施例3と比較例3との比較、図11は実施例4と比較例3との比較を示す。図8~図11の縦軸は、比較例2または3に対する相対的吸光度を示す。 The absorbance at a wavelength of 600 nm of the carbon particles dispersed in the carbon inks of Examples 1 to 4 and Comparative Examples 2 and 3 was measured with a spectrophotometer to estimate the dispersibility. The results are shown in FIGS. 8 is a comparison between Example 1 and Comparative Example 2, FIG. 9 is a comparison between Example 2 and Comparative Example 2, FIG. 10 is a comparison between Example 3 and Comparative Example 3, and FIG. 11 is a comparison with Example 4. A comparison with Example 3 is shown. 8 to 11 indicate the relative absorbance with respect to Comparative Example 2 or 3.
 図8および図9から分かるように、バイオカーボン(BC)では、ε-ポリ-L-リジン(ε-PLL)を修飾した場合およびポリエチレンイミン(PEI)を修飾した場合とも、化合物13、15を結合しない場合に比べて2500倍も分散している。また、図10および図11から分かるように、カーボンブラック(CB)では、ポリエチレンイミン(PEI)を修飾した場合には、化合物13、15を結合しない場合に比べて700倍も分散しており、ε-ポリ-L-リジン(ε-PLL)を修飾した場合でも13倍も分散している。 As can be seen from FIG. 8 and FIG. 9, in the biocarbon (BC), the compounds 13 and 15 were used both when ε-poly-L-lysine (ε-PLL) was modified and when polyethyleneimine (PEI) was modified. It is dispersed 2500 times as compared with the case where they are not coupled. Further, as can be seen from FIGS. 10 and 11, in carbon black (CB), when polyethyleneimine (PEI) is modified, it is dispersed 700 times as compared with the case where compounds 13 and 15 are not bound, Even when ε-poly-L-lysine (ε-PLL) is modified, it is dispersed 13 times.
 また、実施例1の炭素インクにおいて、NHSピレンが結合し、このNHSピレンにε-ポリ-L-リジンを修飾したバイオカーボンのゼータ電位を測定したところ、7.5mVであった。 Further, in the carbon ink of Example 1, NHS pyrene was bonded, and the zeta potential of biocarbon in which NHS pyrene was modified with ε-poly-L-lysine was measured and found to be 7.5 mV.
 以上、本開示の実施の形態および実施例について具体的に説明したが、本開示は、上述の実施の形態および実施例に限定されるものではなく、各種の変形が可能である。 Although the embodiments and examples of the present disclosure have been specifically described above, the present disclosure is not limited to the above-described embodiments and examples, and various modifications can be made.
 例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。 For example, the numerical values, structures, configurations, shapes, materials, and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, configurations, shapes, materials, etc. are used as necessary. Also good.
 なお、本技術は以下のような構成も取ることができる。
(1)正または負に帯電した芳香族化合物が結合した炭素粒子を含有する炭素インク。

(2)上記芳香族化合物は多環芳香族化合物またはπ結合により炭素と結合する物質である前記(1)に記載の炭素インク。

(3)上記炭素粒子は表面に細孔を有する細孔性炭素粒子である前記(1)または(2)に記載の炭素インク。

(4)上記芳香族化合物に、多価イオン化する化合物が結合している前記(1)から(3)のいずれかに記載の炭素インク。

(5)上記炭素インクは電気泳動表示装置用インクである前記(1)から(4)のいずれかに記載の炭素インク。

(6)上記炭素粒子は、カーボンブラック、天然黒鉛、グラファイト、グラッシーカーボン、カーボンナノチューブ、高配向熱分解黒鉛、プラスチックフォームドカーボン、活性炭および多孔質炭素からなる群より選ばれた少なくとも一種類である前記(1)から(5)のいずれかに記載の炭素インク。

(7)上記細孔性炭素粒子は、活性炭、多孔質炭素、炭素の凝集粒子、カーボンブラックおよびバイオカーボンからなる群より選ばれた少なくとも一種類である前記(1)から(6)のいずれかに記載の炭素インク。

(8)上記多環芳香族化合物は、ピレン誘導体、コロネン誘導体、クリセン誘導体、ナフタセン誘導体、ペンタセン誘導体、ピセン誘導体、ペリレン誘導体、アントラセン誘導体、フェナントレン誘導体、フルオレン誘導体、ナフタレン誘導体、フルオランテン誘導体、アセナフテン誘導体、アセナフチレン誘導体およびトリフェニレン誘導体からなる群より選ばれた少なくとも一種類であり、上記π結合により炭素と結合する物質は、ターチオフェン誘導体、テトラフェニルベンジジン誘導体、テトラフェニルナフタセン誘導体、ベンゾチオフェン誘導体、チオフェン誘導体、ピロール誘導体、カルバゾール誘導体、フェナントロリン誘導体、フェニルピリジン誘導体、キノリン誘導体、トリフェニルアミン誘導体、ジフェニルアミン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、p-フェニル誘導体、キナクリドン誘導体、フルクレノン誘導体、フタロシアニン誘導体、スピロピラン誘導体、ビオロゲン誘導体、スピロペリミジン誘導体、フェニルエステル、ベンゾ酸、ビフェニル誘導体、ベンゾフェノン誘導体、ジフェニルアミン誘導体、ジフェニルエーテル、ジフェニルスルフィド、ジフェニルスルホン、ビスフェノール誘導体、アントラキノン誘導体、ホスホニウム化合物、フルオレセン誘導体、ローダミン誘導体、クマリン誘導体およびシアニン誘導体からなる群より選ばれた少なくとも一種類である前記(1)から(7)のいずれかに記載の炭素インク。

(9)上記多価イオン化する化合物は、ポリアミン、ポリカルボン酸、ポリスルホン酸、ポリアニリン、ポリピロール、ポリリン酸およびペプチドからなる群より選ばれた少なくとも一種類である前記(4)から(8)のいずれかに記載の炭素インク。
In addition, this technique can also take the following structures.
(1) A carbon ink containing carbon particles bonded with positively or negatively charged aromatic compounds.

(2) The carbon ink according to (1), wherein the aromatic compound is a polycyclic aromatic compound or a substance that bonds to carbon by a π bond.

(3) The carbon ink according to (1) or (2), wherein the carbon particles are porous carbon particles having pores on the surface.

(4) The carbon ink according to any one of (1) to (3), wherein the aromatic compound is bonded with a compound that is polyvalently ionized.

(5) The carbon ink according to any one of (1) to (4), wherein the carbon ink is an ink for an electrophoretic display device.

(6) The carbon particles are at least one selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly oriented pyrolytic graphite, plastic formed carbon, activated carbon, and porous carbon. The carbon ink according to any one of (1) to (5).

(7) The porous carbon particles are any one of (1) to (6), which is at least one selected from the group consisting of activated carbon, porous carbon, carbon aggregated particles, carbon black, and biocarbon. Carbon ink described in 1.

(8) The polycyclic aromatic compound includes pyrene derivatives, coronene derivatives, chrysene derivatives, naphthacene derivatives, pentacene derivatives, picene derivatives, perylene derivatives, anthracene derivatives, phenanthrene derivatives, fluorene derivatives, naphthalene derivatives, fluoranthene derivatives, acenaphthene derivatives, The substance that is at least one selected from the group consisting of acenaphthylene derivatives and triphenylene derivatives and binds to carbon by the π bond is a terthiophene derivative, tetraphenylbenzidine derivative, tetraphenylnaphthacene derivative, benzothiophene derivative, thiophene derivative , Pyrrole derivative, carbazole derivative, phenanthroline derivative, phenylpyridine derivative, quinoline derivative, triphenylamine derivative, diphenylamine derivative , Oxazole derivatives, oxadiazole derivatives, p-phenyl derivatives, quinacridone derivatives, fluorenone derivatives, phthalocyanine derivatives, spiropyran derivatives, viologen derivatives, spiroperimidine derivatives, phenyl esters, benzoic acid, biphenyl derivatives, benzophenone derivatives, diphenylamine derivatives, diphenyl ether, diphenyl Any one of the above (1) to (7), which is at least one selected from the group consisting of sulfide, diphenylsulfone, bisphenol derivative, anthraquinone derivative, phosphonium compound, fluorescene derivative, rhodamine derivative, coumarin derivative and cyanine derivative. Carbon ink.

(9) The compound to be polyionized is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid, and peptide, any of (4) to (8) The carbon ink according to crab.
 11・・・炭素粒子、12・・・分散媒、13・・・正または負に帯電した化合物、15・・・多価イオン化する化合物、51、54・・・基板、52・・・画素電極、55・・・対向電極、59・・・電気泳動分散液 DESCRIPTION OF SYMBOLS 11 ... Carbon particle, 12 ... Dispersion medium, 13 ... Positively or negatively charged compound, 15 ... Compound which carries out polyvalent ionization, 51, 54 ... Substrate, 52 ... Pixel electrode 55 ... Counter electrode, 59 ... Electrophoretic dispersion liquid

Claims (13)

  1.  正または負に帯電した芳香族化合物が結合した炭素粒子を含有する炭素インク。
    A carbon ink containing carbon particles bonded with positively or negatively charged aromatic compounds.
  2.  上記芳香族化合物は多環芳香族化合物またはπ結合により炭素と結合する物質である請求項1記載の炭素インク。
    The carbon ink according to claim 1, wherein the aromatic compound is a polycyclic aromatic compound or a substance that is bonded to carbon by a π bond.
  3.  上記炭素粒子は表面に細孔を有する細孔性炭素粒子である請求項2記載の炭素インク。
    The carbon ink according to claim 2, wherein the carbon particles are porous carbon particles having pores on the surface.
  4.  上記芳香族化合物に、多価イオン化する化合物が結合している請求項1記載の炭素インク。
    The carbon ink according to claim 1, wherein the aromatic compound is bonded with a compound that is polyvalently ionized.
  5.  上記炭素インクは電気泳動表示装置用インクである請求項1記載の炭素インク。
    The carbon ink according to claim 1, wherein the carbon ink is an ink for an electrophoretic display device.
  6.  上記炭素粒子は、カーボンブラック、天然黒鉛、グラファイト、グラッシーカーボン、カーボンナノチューブ、高配向熱分解黒鉛、プラスチックフォームドカーボン、活性炭および多孔質炭素からなる群より選ばれた少なくとも一種類である請求項1記載の炭素インク。
    2. The carbon particles are at least one selected from the group consisting of carbon black, natural graphite, graphite, glassy carbon, carbon nanotubes, highly oriented pyrolytic graphite, plastic formed carbon, activated carbon and porous carbon. The carbon ink described.
  7.  上記細孔性炭素粒子は、活性炭、多孔質炭素、炭素の凝集粒子、カーボンブラックおよびバイオカーボンからなる群より選ばれた少なくとも一種類である請求項3記載の炭素インク。
    4. The carbon ink according to claim 3, wherein the porous carbon particles are at least one selected from the group consisting of activated carbon, porous carbon, carbon aggregated particles, carbon black, and biocarbon.
  8.  上記多環芳香族化合物は、ピレン誘導体、コロネン誘導体、クリセン誘導体、ナフタセン誘導体、ペンタセン誘導体、ピセン誘導体、ペリレン誘導体、アントラセン誘導体、フェナントレン誘導体、フルオレン誘導体、ナフタレン誘導体、フルオランテン誘導体、アセナフテン誘導体、アセナフチレン誘導体およびトリフェニレン誘導体からなる群より選ばれた少なくとも一種類であり、上記π結合により炭素と結合する物質は、ターチオフェン誘導体、テトラフェニルベンジジン誘導体、テトラフェニルナフタセン誘導体、ベンゾチオフェン誘導体、チオフェン誘導体、ピロール誘導体、カルバゾール誘導体、フェナントロリン誘導体、フェニルピリジン誘導体、キノリン誘導体、トリフェニルアミン誘導体、ジフェニルアミン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、p-フェニル誘導体、キナクリドン誘導体、フルクレノン誘導体、フタロシアニン誘導体、スピロピラン誘導体、ビオロゲン誘導体、スピロペリミジン誘導体、フェニルエステル、ベンゾ酸、ビフェニル誘導体、ベンゾフェノン誘導体、ジフェニルアミン誘導体、ジフェニルエーテル、ジフェニルスルフィド、ジフェニルスルホン、ビスフェノール誘導体、アントラキノン誘導体、ホスホニウム化合物、フルオレセン誘導体、ローダミン誘導体、クマリン誘導体およびシアニン誘導体からなる群より選ばれた少なくとも一種類である請求項2記載の炭素インク。
    The polycyclic aromatic compounds include pyrene derivatives, coronene derivatives, chrysene derivatives, naphthacene derivatives, pentacene derivatives, picene derivatives, perylene derivatives, anthracene derivatives, phenanthrene derivatives, fluorene derivatives, naphthalene derivatives, fluoranthene derivatives, acenaphthene derivatives, acenaphthylene derivatives and The substance that is at least one selected from the group consisting of triphenylene derivatives and binds to carbon by the π bond is a terthiophene derivative, tetraphenylbenzidine derivative, tetraphenylnaphthacene derivative, benzothiophene derivative, thiophene derivative, pyrrole derivative Carbazole derivatives, phenanthroline derivatives, phenylpyridine derivatives, quinoline derivatives, triphenylamine derivatives, diphenylamine derivatives, Sazole derivatives, oxadiazole derivatives, p-phenyl derivatives, quinacridone derivatives, fluorenone derivatives, phthalocyanine derivatives, spiropyran derivatives, viologen derivatives, spiroperimidine derivatives, phenyl esters, benzoic acid, biphenyl derivatives, benzophenone derivatives, diphenylamine derivatives, diphenyl ether, diphenyl sulfide 3. The carbon ink according to claim 2, wherein the carbon ink is at least one selected from the group consisting of diphenylsulfone, bisphenol derivatives, anthraquinone derivatives, phosphonium compounds, fluorescene derivatives, rhodamine derivatives, coumarin derivatives and cyanine derivatives.
  9.  上記多価イオン化する化合物は、ポリアミン、ポリカルボン酸、ポリスルホン酸、ポリアニリン、ポリピロール、ポリリン酸およびペプチドからなる群より選ばれた少なくとも一種類である請求項4記載の炭素インク。
    5. The carbon ink according to claim 4, wherein the compound to be polyvalent ionized is at least one selected from the group consisting of polyamine, polycarboxylic acid, polysulfonic acid, polyaniline, polypyrrole, polyphosphoric acid and peptide.
  10.  正または負に帯電した芳香族化合物が結合した炭素粒子を含有する炭素インクを有する電気泳動表示装置。
    An electrophoretic display device having a carbon ink containing carbon particles to which a positively or negatively charged aromatic compound is bonded.
  11.  上記電気泳動表示装置は電子ペーパーである請求項10記載の電気泳動表示装置。
    The electrophoretic display device according to claim 10, wherein the electrophoretic display device is electronic paper.
  12.  正または負に帯電した芳香族化合物が結合した炭素粒子と分散媒とを混合して攪拌する工程を有する炭素インクの製造方法。
    A method for producing a carbon ink, comprising: mixing and stirring carbon particles to which a positively or negatively charged aromatic compound is bonded and a dispersion medium.
  13.  上記芳香族化合物に、多価イオン化する化合物を結合させる工程をさらに有する請求項12記載の炭素インクの製造方法。 13. The method for producing a carbon ink according to claim 12, further comprising a step of binding a compound that is polyvalently ionized to the aromatic compound.
PCT/JP2013/065470 2012-07-24 2013-06-04 Carbon ink, method for producing carbon ink, and electrophoretic display device WO2014017177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-163333 2012-07-24
JP2012163333 2012-07-24

Publications (1)

Publication Number Publication Date
WO2014017177A1 true WO2014017177A1 (en) 2014-01-30

Family

ID=49996994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065470 WO2014017177A1 (en) 2012-07-24 2013-06-04 Carbon ink, method for producing carbon ink, and electrophoretic display device

Country Status (1)

Country Link
WO (1) WO2014017177A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199149A (en) * 1999-11-12 2001-07-24 Canon Inc Image forming method, ink set, liquid drop injection recorded image, recorded material, surface treated article and method of surface treatment
JP2004502856A (en) * 2000-07-06 2004-01-29 キャボット コーポレイション Modified pigment product, dispersion thereof, and composition containing the same
JP2004526210A (en) * 2001-05-15 2004-08-26 イー−インク コーポレイション Electrophoretic particles
JP2004338361A (en) * 2003-03-14 2004-12-02 Ricoh Co Ltd Ink set, and image formation method, image forming apparatus, cartridge and record using the same
JP2006199744A (en) * 2005-01-18 2006-08-03 Canon Inc Ink for inkjet recording, ink set and image formation apparatus
JP2006293027A (en) * 2005-04-11 2006-10-26 Canon Inc Electrophoretic particle and method for manufacturing the same
JP2007163638A (en) * 2005-12-12 2007-06-28 Tokai Carbon Co Ltd Carbon black pigment for electronic paper, dispersion thereof and production method.
JP2007168119A (en) * 2005-12-19 2007-07-05 Canon Inc Ink-jet recording method, ink cartridge and ink-jet recording device
JP2008145879A (en) * 2006-12-12 2008-06-26 Ricoh Co Ltd Polymer grafted fine particle, method for manufacturing the same, electrophoretic dispersion liquid and image display device using the same
JP2010002586A (en) * 2008-06-19 2010-01-07 Ricoh Co Ltd Electrophoretic particle and manufacturing method thereof, electrophoretic dispersion containing electrophoretic particle, image display medium, and image display
JP2012027321A (en) * 2010-07-26 2012-02-09 Ricoh Co Ltd Black electrophoretic particle and production method of the same, electrophoretic dispersion liquid containing black electrophoretic particle, image display medium, and image display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199149A (en) * 1999-11-12 2001-07-24 Canon Inc Image forming method, ink set, liquid drop injection recorded image, recorded material, surface treated article and method of surface treatment
JP2004502856A (en) * 2000-07-06 2004-01-29 キャボット コーポレイション Modified pigment product, dispersion thereof, and composition containing the same
JP2004526210A (en) * 2001-05-15 2004-08-26 イー−インク コーポレイション Electrophoretic particles
JP2004338361A (en) * 2003-03-14 2004-12-02 Ricoh Co Ltd Ink set, and image formation method, image forming apparatus, cartridge and record using the same
JP2006199744A (en) * 2005-01-18 2006-08-03 Canon Inc Ink for inkjet recording, ink set and image formation apparatus
JP2006293027A (en) * 2005-04-11 2006-10-26 Canon Inc Electrophoretic particle and method for manufacturing the same
JP2007163638A (en) * 2005-12-12 2007-06-28 Tokai Carbon Co Ltd Carbon black pigment for electronic paper, dispersion thereof and production method.
JP2007168119A (en) * 2005-12-19 2007-07-05 Canon Inc Ink-jet recording method, ink cartridge and ink-jet recording device
JP2008145879A (en) * 2006-12-12 2008-06-26 Ricoh Co Ltd Polymer grafted fine particle, method for manufacturing the same, electrophoretic dispersion liquid and image display device using the same
JP2010002586A (en) * 2008-06-19 2010-01-07 Ricoh Co Ltd Electrophoretic particle and manufacturing method thereof, electrophoretic dispersion containing electrophoretic particle, image display medium, and image display
JP2012027321A (en) * 2010-07-26 2012-02-09 Ricoh Co Ltd Black electrophoretic particle and production method of the same, electrophoretic dispersion liquid containing black electrophoretic particle, image display medium, and image display device

Similar Documents

Publication Publication Date Title
JP5742395B2 (en) Fine particles for image display, method for producing the same, electrophoretic dispersion, and image display device
Zhao et al. Photocatalytic reduction of graphene oxide–TiO2 nanocomposites for improving resistive‐switching memory behaviors
Guan et al. Electrostatic‐Driven Exfoliation and Hybridization of 2D Nanomaterials
Wei et al. Extraordinary physical properties of functionalized graphene
JPH09501778A (en) Gas absorbing additive for electrophoretic suspensions
JP5414994B2 (en) Toner containing modified pigment and method for preparing the same
Chen et al. Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes
JP2017227907A (en) Colored electrophoresis display
Petukhova et al. Standing arrays of gold nanorods end‐tethered with polymer ligands
CN103818896B (en) A kind of method of asymmetric grapheme modified or graphene oxide
JP2015028590A (en) Electrophoretic particles, electrophoretic dispersion, display sheet, display device, and electronic device
JP5927938B2 (en) Electrophoretic particles, method for producing electrophoretic particles, electrophoretic dispersion, electrophoretic sheet, electrophoretic device, and electronic apparatus
KR100932401B1 (en) Microcapsules containing electrophoretic color organic / inorganic composite particles and preparation method thereof
US20160222215A1 (en) Method of surface modifying graphene
JP5061318B2 (en) Particles for display device, liquid for electrophoretic display and display device
CN106547157B (en) Electrophoretic particle, method for producing electrophoretic particle, electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic device, and electronic apparatus
JP4743810B2 (en) Image display medium
WO2014017177A1 (en) Carbon ink, method for producing carbon ink, and electrophoretic display device
Xia et al. Tunable Mesoporous Porphyrin‐Based Conjugated Polymer Capable of Boosting Four‐Electron Zn‐I2 Batteries
CN117181187A (en) Preparation method and application of micro-nano plastic and organic pollutant adsorbent in water
JP4377554B2 (en) Display device
JP2005241784A (en) Electrophoretic display device, and microcapsule and dispersion liquid used therefor
JP2004004741A (en) Electrophoretic particle dispersion solution, image display medium having the solution and image display device
Leber et al. High-Vacuum Deposition of Biferrocene Thin Films on Room-Temperature Substrates
JP4608846B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP