[go: up one dir, main page]

WO2014015823A1 - 一种搪瓷用钢及其制造方法 - Google Patents

一种搪瓷用钢及其制造方法 Download PDF

Info

Publication number
WO2014015823A1
WO2014015823A1 PCT/CN2013/080157 CN2013080157W WO2014015823A1 WO 2014015823 A1 WO2014015823 A1 WO 2014015823A1 CN 2013080157 W CN2013080157 W CN 2013080157W WO 2014015823 A1 WO2014015823 A1 WO 2014015823A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
enamel
producing
rolling
steel according
Prior art date
Application number
PCT/CN2013/080157
Other languages
English (en)
French (fr)
Inventor
孙全社
郑建忠
居发亮
张志超
刘玉章
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2014015823A1 publication Critical patent/WO2014015823A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel grades and a method of manufacturing the same, and more particularly to a steel for enamel and a method of manufacturing the same. Background technique
  • An enamel process is a coating process in which the glaze is directly applied without glazing and the glaze is fired on the steel plate.
  • the difference between an enamel process and a two-coating process is as follows: Two coatings first need to coat a bottom glaze on a bottom plate such as a steel plate, and then a layer of glaze on the bottom glaze, bottom glaze and steel plate bottom. And the bonding strength between the bottom glaze and the surface glaze is good, and is beneficial to improve the anti-scale explosion performance. Therefore, in comparison, the application of one coat to the adhesion between the steel plate bottom and the porcelain layer, the anti-scale explosion, and the prevention of defects such as bubbles and black spots are higher because of the scale explosion generated by the steel plate during the enamel process. Defects such as poor adhesion and air bubbles can seriously affect the quality of enamel products.
  • the scale explosion is caused by the water or crystal water in the porcelain slurry reacting with iron and carbon on the surface of the steel sheet to form atomic hydrogen.
  • the solubility of hydrogen in the steel drops sharply.
  • the hydrogen storage trap the hydrogen atoms will escape in a large amount, and the area of the steel plate and the porcelain layer will gather, and to a certain extent, the surface of the porcelain layer will be broken with a large pressure, and the scale will be peeled off.
  • Adhesion is an indicator used to measure the firmness of the bond between a steel plate and a porcelain layer. If the adhesion is poor, the porcelain layer is easily peeled off from the surface of the steel sheet.
  • the pinhole is a defect caused by the reaction of the crystal water in the porcelain slurry with the carbon in the steel at a high temperature to form a bubble, and the bubble escapes through the porcelain layer to form a pinhole shape.
  • the enamel is easy to produce bubbles and black spots during the firing process. Therefore, the enamel is also required to be produced during the firing process. There are fewer bubbles to avoid similar defects.
  • the prior art In order to avoid the occurrence of scale explosion defects, the prior art generally forms a sufficient amount of hydrogen storage traps in steel, such as microvoids, inclusions, dislocations, grain boundaries, etc., or by adding a sufficient amount of titanium to make titanium in steel. Inclusions are formed in the middle.
  • Japanese Patent Publication No. JP2006-37215A discloses an enamel steel sheet having a good adhesion enamel, a method for producing the same, and an enamel product thereof.
  • the technical solution is low carbon or ultra low.
  • a precious alloying element of at least one of Cu: 0.051 to 8.0%, Ni: 0.051 to 8.0%, Co: 0.051 to 8.0%, and Mo: 0.051 to 8.0% is added, and the alloying element is added in a relatively high amount. , but did not add Ca and Mg. Summary of the invention
  • An object of the present invention is to provide a steel for enamel and a method for producing the same, which should have good anti-scale and bubble resistance, and should also be able to overcome black spot defects, and the enamel steel should also have High strength, good formability and excellent coating properties.
  • the present invention provides a steel for enamel, wherein the chemical element mass percentage ratio control is: 0.020%; Si ⁇ O.05%; ⁇ : 0 ⁇ 10 ⁇ 0 ⁇ 50%; ⁇ ⁇ .03%; S: 0 ⁇ 003 ⁇ 0 ⁇ 050%; ⁇ 1: 0 ⁇ 001 ⁇ 0 ⁇ 03%; ⁇ : 0.001 ⁇ 0.015%; 0: 0 ⁇ 005 ⁇ 0 ⁇ 050%; Ca ⁇ 0.005%; Mg ⁇ 0.005%; Cu ⁇ O.10%; Cr ⁇ O.10%; Ni ⁇ O.10%; Mo ⁇ 0.10%; also contains B: 0.0005 ⁇ 3%, Nb 0.01%, V ⁇ O.02 %, Ti: at least one of 0 ⁇ 001 to 0 ⁇ 05%, and wherein ⁇ (%) X Ti (%) 3 X 10_ 4 ; the balance is Fe and other unavoidable impurities.
  • Carbon In general, the lower the carbon content, the better the formability. In addition, in the technical solution, the carbon content in the steel plays an important role on the surface quality of the enamel. When the carbon content in the steel is too high, more carbon monoxide is formed in the enamel process, and the number of bubbles formed is large and bulky. In severe cases, pinhole defects may occur on the surface of the enamel, which may damage the quality of the enamel. Therefore, the inventors have conducted extensive tests and verification to control the carbon content to 0.02%.
  • Silicon Silicon is easy to form oxides. In the present invention, when the silicon content is high, a large amount of inclusions having poor ductility are easily formed in hot rolling, and the workability of the steel is deteriorated during the rolling, so that the silicon content is controlled to 0.05%.
  • Manganese is a deoxidizing element that controls the oxygen content of steel. In addition to manganese oxide, manganese can also react with sulfur to form manganese sulfide or manganese oxysulfide. The simple manganese sulfide inclusions are distributed in a slender strip after rolling, which affects the lateral properties of the steel sheet.
  • manganese elements and a small amount of titanium elements in the steel form composite spherical inclusions such as manganese sulfide titanium, etc., and such inclusions can significantly improve the adverse effect of manganese sulfide on the processability.
  • the manganese content is too high, the adhesion property of the enamel is affected, and bubbles and black spots are easily generated, so the content of manganese is controlled to be 0.10 to 0.50%.
  • Phosphorus is easily segregated at the grain boundaries in steel, and bubbles and black spots are easily generated during simmering, which affects the surface quality of enamel. Therefore, in the present technical solution, phosphorus is a harmful element, and the lower the content, the better.
  • Sulfur is generally a harmful element in steel, but in this technical solution, an appropriate amount of sulfur element plays a beneficial role. Sulfur can not only form manganese sulfide with manganese, but also form titanium sulfide with titanium or the like, which is advantageous for improving the anti-scale explosion performance, so the sulfur content is designed to be 0.003 to 0.050%.
  • Aluminium is a strong deoxidizing element. A high aluminum content leads to a decrease in the oxygen content of the steel. Due to the poor plasticity of alumina inclusions, and the large amount of alumina inclusions can seriously impair the processing properties of steel. In the steel of the present invention, since a certain amount of oxygen needs to be retained, the aluminum content should not be too high, and it is controlled to be 0.001 to 0.03%.
  • nitrogen preferentially forms a titanium nitride compound than carbon and sulfur, which is advantageous for improving the anti-scale resistance.
  • titanium nitride is also beneficial for suppressing the growth of ferrite grains, on the one hand suppressing ferrite grain growth during hot rolling and cold rolling annealing, and on the other hand preventing ferrite during high temperature firing. Abnormal growth of bulk crystallites.
  • titanium nitride is formed at a high temperature or even in a molten steel, when the contents of nitrogen and titanium are both high, the solubility product of nitrogen and titanium is large, and the formation temperature of titanium nitride is high, and nitrogen is formed.
  • the particles of titanium will become larger.
  • nitrogen and titanium should be controlled at ⁇ (%:>* ⁇ %) 3 ⁇ 1( ⁇ 4 . This not only makes the formed titanium nitride particles fine and evenly distributed, but also improves Anti-scale explosion performance and inhibition of ferrite grain growth. Considering the nitrogen content at 0.001 ⁇ 0.015%.
  • Oxygen In this technical solution, oxygen directly affects the anti-scale and processing properties of steel. Controlling the oxygen content in the steel not only facilitates decarburization, but also oxygen and various elements are easily combined to form an oxide, which is favorable for forming a certain amount of oxide. Oxygen is an essential element in the present invention, but its content is also related to titanium. In order to prevent the formation of coarse oxide inclusions in the steel, it is necessary to control the oxygen content to be 0.05% or less, so that the oxygen content in the present invention is 0.005 to 0.05%.
  • Calcium and Magnesium Both calcium and magnesium can improve the morphology of inclusions such as manganese sulfide in steel, avoiding the formation of long Strip-shaped inclusions help to improve the plasticity of the steel. Therefore, both calcium and magnesium were controlled to 0.005%.
  • Copper In the present technical solution, copper is a residual element. The copper content is too high and the formability is lowered.
  • Chromium In the present technical solution, chromium is a residual element. Chromium is also prone to form oxides in steel, which makes the surface of the steel sheet resistant to pickling. When the content is too high, it not only affects the adhesion between the porcelain layer and the steel sheet but also increases the firing temperature of the steel sheet.
  • Nickel In the present technical solution, nickel is a residual element. Nickel can form oxides in steel, and especially nickel oxide formed on the surface makes the surface of the steel sheet resistant to pickling. When the nickel content is too high, it is not only unfavorable for improving the adhesion performance of the steel sheet, but also increases the firing temperature of the steel sheet.
  • molybdenum is also a residual element. Too high a molybdenum content increases the corrosion resistance of the steel sheet and affects the pickling speed of the steel sheet.
  • Boron is easily segregated at grain boundaries, and in the present technical solution, it can improve the resistance to scale and adhesion.
  • boron has the above-mentioned beneficial effects, in the present embodiment, if the boron content is too high, cracks are generated on the cast slab during the continuous casting process. Therefore, the inventors controlled the boron content to 0.0005 to 0.003%.
  • niobium is a precious metal, and from the viewpoint of cost, a large amount of niobium is not particularly added. Residual ruthenium is allowed in the present invention.
  • Vanadium In this technical solution, vanadium can combine with nitrogen and carbon to precipitate vanadium nitride and vanadium carbide. These second phase particles not only act as a strengthening matrix, but also effectively prevent the occurrence of scale explosion in the enamel process. trap.
  • nitrogen content When the nitrogen content is high, vanadium is mainly combined with nitrogen at a high temperature to precipitate vanadium nitride, which has good strengthening effect and anti-scale effect. Considering comprehensively, the vanadium content is controlled to 0.02%.
  • Titanium is a strong carbon and nitride forming element. Titanium can be combined with oxygen, carbon, nitrogen and sulfur to form a single compound or a composite compound. Titanium fixes carbon, nitrogen and sulfur to improve the plasticity and scale resistance of the steel sheet. Titanium is relatively stable with oxygen and nitrogen compounds, is not susceptible to thermal processing and process parameters during enamel, and is also very effective in improving pinhole defects and adhesion properties of steel sheets. However, titanium and oxygen are extremely easy to form compounds. If the titanium and oxygen content in the steel is too high, coarse oxide inclusions are formed, which seriously impairs the plasticity of the steel. Therefore, the technical solution controls the titanium content to be 0.001 to 0.05%.
  • the present invention also provides a method of manufacturing the steel for enamel, which comprises the following steps:
  • hot rolling of the slab controlling the hot rolling heating temperature to 950 ⁇ 1200 °C, divided into two stages The first stage is rolled in the austenite zone, the final rolling temperature is 900 ⁇ 1100 °C, the second stage is rolled in the ferrite zone, and the finishing temperature (FT, °C) satisfies the formula 600 FT -9250xC + 900, where C is the mass percentage of the element;
  • iron oxide powder is added during the smelting process of the step (1), and the iron oxide powder is added in an amount of 0.40 to 2.50 kg per ton of steel, and is sufficiently stirred after the addition, and the stirring time is not For more than 30 minutes, make O 010 ⁇ 0.050% in molten steel.
  • the casting method in the step (3) is continuous casting or molding.
  • the coiling temperature in the step (4) is 500 to 800 °C.
  • the total reduction ratio of cold rolling in the step (6) is controlled to be 60% or more.
  • the annealing temperature in the step (7) is 650 to 900 ° C, and the annealing time is 2 minutes to 25 hours.
  • the smelting and vacuum degassing steps ensure that the basic chemical composition of the molten steel meets the requirements, decarburizes and removes harmful gases such as hydrogen in the steel, and controls H ⁇ 2 ppm in the steel by stirring with argon blowing.
  • the oxygen content in the steel sheet is required to be high, the total oxygen content in the steel can be stably controlled by blowing oxygen or adding iron oxide powder during the smelting process to achieve the desired target value.
  • the addition of iron oxide powder is the preferred technical solution, because when the carbon content in the steel is high, the oxygen blowing method is used to increase the oxygen content, which is prone to boiling during the casting process, and excessive boiling easily leads to the connection. Casting problems such as steel leakage during casting, and the method of adding iron oxide powder can avoid excessive boiling of molten steel.
  • the addition of iron oxide powder to supplement and increase the oxygen content in the steel can shorten the refining time and save costs.
  • nitrogen can be increased in the steel by blowing nitrogen or adding ferromanganese nitride after vacuum degassing. Blowing nitrogen is the preferred technical side This is because the addition of ferromanganese iron increases carbon, so for steels with extremely low carbon requirements, nitrogen blowing can prevent carbon addition, and nitrogen blowing can save costs and stabilize nitrogen in steel.
  • the hot rolling adopts two-stage rolling, the first stage is rolling in the austenite region, and the second stage is rolling in the ferrite region. Because the second stage is rolled in the ferrite body, more deformation energy can be stored, which is beneficial to refining the ferrite grains and significantly improving the strength of the steel plate, which overcomes the difficulty in refining the ultra-low carbon steel grains and the strength. Low problem. And the refined ferrite grains are more beneficial to improve the yield strength and steel ductility after cold rolling and annealing.
  • the heating temperature of the slab rolled in the ferritic zone is lower than that of the conventional rolling, so that the heating energy consumption can be greatly reduced and the heating furnace output can be increased.
  • Low-temperature rolling also reduces the production of secondary iron oxide scale, improves the surface quality of hot rolled products, and greatly reduces production costs.
  • the hot rolled structure of the steel sheet and the structure after cold rolling and annealing are both ferrite or ferrite + cementite.
  • both the first and second stages of rolling use lower temperatures to reduce energy consumption.
  • the distortion inside the steel sheet can be increased to store sufficient distortion energy in the steel, so the use of a higher cold rolling reduction ratio is advantageous for the annealing after annealing. Crystallization and texture development.
  • the annealing may be selected by continuous annealing or hood annealing.
  • the annealing process involved in the present technical solution ensures the complete development of the ferrite structure in the steel to complete recrystallization, grain growth and recrystallization texture.
  • the present invention has the following beneficial effects by adopting the above technical solutions:
  • the enamel steel manufactured by the technical scheme can achieve the comprehensive performance requirements: yield strength: RpO.2 ⁇ 180 MPa, tensile strength: Rm 270 MPa; elongation: A 8 . 36%, with good plasticity and high strength;
  • the enamel steel according to the present invention has excellent coating properties, and has the advantages of resistance to scale explosion, and resistance to air bubbles and black spots;
  • the enamel steel according to the present invention has excellent moldability and can be processed into various complicated enamel members, and has high strength and improved resistance to deformation at high temperature firing.
  • Figure 1 shows the metallographic structure of an enamel steel sheet of Example A of the present invention. detailed description
  • the enamel steel of the present invention was produced in accordance with the following procedure, and the chemical elements of the respective examples were controlled as shown in Table 1 (see Table 2 for specific process parameters of each example):
  • the coiling temperature is 500 ⁇ 800 °C;
  • Annealing temperature is 650 to 900 ° C, and the annealing time is 2 minutes to 25 hours.
  • Table 2 and Table 1 it can be seen that the above-mentioned composition design and process parameters are used for smelting and processing, and the yield strength of the finished steel sheet is 180 ⁇ 03 ⁇ 4, the tensile strength is 270 ⁇ &, and the elongation is A 8 o ⁇ 36%. Has good plasticity and high strength. After double-sided enamel, there is no scale explosion phenomenon, and the adhesion between the steel plate and the enamel is excellent, and it has good properties such as resistance to bubbles and black spots.
  • the microstructure in the embodiment A of the present invention is a ferrite structure, and a small amount of inclusions are distributed in the grains or grain boundaries of the ferrite. 134582

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种搪瓷用钢,其化学元素质量百分含量为:C≤0.020%; Si≤0.05%;Mn:0.10~0.50%;P≤0.03%;S:0.003~0.050%;Al:0.001~0.03%;N:0.001~0.015%;O:0.005~0.050%;Ca≤0.005%;Mg≤0.005%;Cu≤0.10%;Cr≤0.10%;Ni≤0.10%;Mo≤0.10%;至少添加B:0.0005~ 0.003%,Nb≤0.01%,V≤0.02%、Ti:0.001~0.05%中的任一种,余量为Fe和其他不可避免的杂质,其中N(%)×Ti(%)≤3×10-4。相应地还公开了该搪瓷用钢的制造方法。该搪瓷用钢具有优良的综合性能。

Description

一种搪瓷用钢及其制造方法
技术领域
本发明涉及钢种及其制造方法, 尤其涉及一种搪瓷用钢及其制造方法。 背景技术
一次搪瓷工艺就是不施底釉而直接施面釉并将面釉烧制在钢板上的一种 涂搪工艺。 一次搪瓷工艺与两次涂搪工艺的不同之处在于: 两次涂搪首先需 要在钢板等底胚上搪一层底釉, 然后在底釉上面再搪一层面釉, 底釉与钢板 底胚以及底釉与面釉之间的结合力较好, 并且有利于提高抗鳞爆性能。 因此, 相比较而言, 一次涂搪对钢板底胚与瓷层之间的密着性、 抗鳞爆性以及防止 气泡和黑点等缺陷的要求较高, 因为钢板在搪瓷过程中产生的鳞爆、 密着不 良和气泡等缺陷会严重影响搪瓷产品的质量。
鳞爆是涂搪制胚在高温烧结时, 瓷浆内的水或结晶水与钢板表面的铁、 碳反应生成原子氢, 在冷却过程中, 由于氢在钢中的溶解度急剧下降, 如果 钢中没有足够的吸氢场所, 即贮氢陷阱, 氢原子则会大量逸出, 在钢板和瓷 层界面积聚, 至一定程度以很大的压力冲破瓷层表面, 产生鳞爆剥落。
密着性是用来衡量钢板与瓷层之间结合的牢固程度的指标。 密着不良则 瓷层很容易从钢板表面剥落。
针孔是由于在高温下瓷浆内的结晶水与钢中的碳反应生成气泡, 气泡穿 过瓷层逸出形成针孔状而造成的缺陷。
一次搪瓷除了对密着性、 抗鳞爆性、 针孔缺陷等方面有要求外, 由于瓷 层薄容易在烧成过程中产生气泡和黑点等缺陷, 因此还要求钢板在烧成过程 中产生的气泡少, 以避免产生相类似的缺陷。
为了避免产生鳞爆缺陷, 现有技术通常在钢中形成足量的贮氢陷阱, 如 微空穴、 夹杂物、 位错、 晶界等, 或通过加入足量的钛, 以使钛在钢中形成 夹杂物。
公开号为 CN 101535517A, 公开日期为 2009年 9月 16日的中国专利文 献公开了一种耐鳞爆性显著优良的搪瓷用钢板及其制造方法, 在该技术方案 中加入了 Nb: 0.055〜0.25%, 优选加入 V: 0.003〜0.15% 。 在连铸时需要控 制铸坯凝固时的冷却速度,即按铸坯板厚的 1/4厚的凝固时的冷却速度 10°C /s, 对于铸坯的冷却的要求较高。
公开号为 JP2006-37215A, 公开日期为 2006年 2月 9日的日本专利文献 公开了一种具有良好附着力搪瓷的搪瓷钢板, 其制造方法及其搪瓷产品, 该 技术方案在低碳或超低碳钢中加入 Cu: 0.051〜8.0%、 Ni: 0.051〜8.0%、 Co: 0.051〜8.0%、 Mo: 0.051〜8.0%中的至少一种以上的贵重合金元素, 而且合金 元素的加入量较高, 但是并未加入 Ca和 Mg。 发明内容
本发明的目的在于提供一种搪瓷用钢及其制造方法, 该搪瓷用钢应当具 有良好的抗鳞爆性和抗气泡性, 同时还应当能够克服黑点缺陷, 此外该搪瓷 用钢还应当具有较高的强度、 良好的成型性和优良的涂搪性能。
为达到上述目的, 本发明提供了一种搪瓷用钢, 其化学元素质量百分含 量配比控制为: 0.020%; Si^O.05%; Μη: 0· 10〜0·50%; Ρ^Ο.03%; S: 0·003〜0·050%; Α1: 0·001〜0·03%; Ν: 0.001〜0.015%; 0: 0·005〜0·050%; Ca^ 0.005%; Mg^ 0.005%; Cu^O.10%; Cr^O.10%; Ni^O.10%; Mo ^0.10%; 还含有 B: 0.0005〜議 3%、 Nb 0.01%、 V^O.02%, Ti: 0·001〜0·05%中 的至少一种, 且其中 Ν ( %) X Ti ( %) 3 X 10_4; 余量为 Fe和其他不可避 免的杂质。
本技术方案中的各化学元素配比的设计原理如下:
碳: 一般来说, 碳含量越低成形性能越好。 此外, 在本技术方案中, 钢 中的碳含量对搪瓷表面质量起着重要的影响, 钢中碳含量过高时会在搪瓷过 程中生成较多的一氧化碳, 其形成的气泡数量多、 体积大, 严重的情况下会 在搪瓷表面产生针孔缺陷, 损害搪瓷质量。 因此发明人经过大量试验和验证 将碳含量控制在 0.02%。
硅: 硅元素容易形成氧化物。 在本技术方案中, 当硅含量高时, 在热轧 中容易形成大量延展性差的夹杂物, 而且在轧制过程中会导致钢的加工性变 差, 因此将硅含量控制为 0.05%。 锰: 锰是脱氧元素, 可以控制钢中氧的含量。 锰除了形成氧化锰外, 还 可以与硫反应生成硫化锰或氧硫化锰。 单纯的硫化锰夹杂物经过轧制后呈细 长条状分布, 影响钢板的横向性能。 在本技术方案中, 锰元素与钢中少量的 钛元素会形成复合的球状夹杂物如硫化锰钛等, 这类夹杂物能够显著地改善 硫化锰对加工性能的不利影响。 但锰含量过高, 会影响搪瓷的密着性能, 并 且容易产生气泡和黑点, 所以将锰的含量控制为 0.10〜0.50%。
磷: 磷容易在钢中的晶界上偏聚, 在搪烧时容易产生气泡和黑点, 影响 搪瓷的表面质量。 因此, 在本技术方案中, 磷是有害元素, 含量越低越好。
硫: 硫一般来说在钢中都是有害元素, 但在本技术方案中, 适量的硫元 素起着有益的作用。 硫不仅可与锰形成硫化锰, 还可以与钛等形成硫化钛, 有利于提高抗鳞爆性能, 因此将硫含量设计为 0.003〜0.050%。
铝: 铝是强脱氧元素, 铝含量高会导致钢中氧含量的降低。 由于氧化铝 夹杂塑性差, 并且大量的氧化铝夹杂还会严重损害钢的加工性能。 本发明钢 中由于需要保留一定量的氧, 因此铝含量不宜过高, 将其控制为 0.001〜 0.03%。
氮: 在本技术方案中, 钢中加入钛元素后, 氮比碳和硫优先形成氮化钛 化合物, 其有利于提高抗鳞爆性。 同时, 氮化钛也有利于抑制铁素体晶粒的 长大, 一方面在热轧和冷轧退火过程中抑制铁素体晶粒长大, 另一方面在高 温烧成过程中防止铁素体晶粒的异常长大。 但由于氮化钛在高温甚至在钢液 中就会生成, 因此当氮和钛的含量都较高时, 那么氮和钛的溶度积大, 氮化 钛的形成温度就高, 形成的氮化钛的颗粒就会变大。 为了避免形成颗粒粗大 的氮化钛, 氮和钛应控制在 Ν(%:>*Τ %) 3 Χ 1(Τ4。这样不仅所形成的氮化钛 的颗粒细小、 分布均匀, 还能提高抗鳞爆性能和抑制铁素体晶粒长大。 综合 考虑, 将氮含量控制在 0.001〜0.015%。
氧: 在本技术方案中, 氧会直接影响钢的抗鳞爆性和加工性能。 控制钢 中的含氧量,不仅有利于脱碳,而且氧与多种元素都很容易结合形成氧化物, 有利于形成一定量的氧化物。 在本发明中氧是必需的元素, 但是其含量还与 钛有关。 为了防止钢中形成粗大的氧化物夹杂, 必须控制将氧含量控制在 0.05%以下, 故在本发明中的氧含量为 0.005〜0.05%。
钙和镁: 钙和镁都可以改善钢中夹杂物如硫化锰等的形态, 避免形成长 条状的夹杂物, 有利于提高钢的塑性。 因此将钙和镁均控制为 0.005%。 铜: 在本技术方案中, 铜是残余元素。 铜含量过高, 成型性下降。
铬: 在本技术方案中, 铬是残余元素。 铬在钢中也容易形成氧化物, 使 得钢板表面耐酸洗。 含量过高时, 不仅影响瓷层和钢板之间的密着性还会相 应提高钢板的烧成温度。
镍: 在本技术方案中, 镍是残余元素。 镍在钢中可以形成氧化物, 特别 是在表面形成的氧化镍会使钢板表面耐酸洗。 镍含量过高时, 不但不利于提 高钢板的密着性能, 还会使钢板的烧成温度上升。
钼: 在本技术方案中, 钼也是残余元素。 钼含量过高会增加钢板的耐蚀 性, 从而影响钢板的酸洗速度。
硼: 硼容易在晶界处偏聚, 在本技术方案中, 其可以提高抗鳞爆性和密 着性。 硼虽然具有上述有益作用, 但是在本技术方案中, 硼含量过高会在连 铸过程中于铸坯上产生裂纹。所以发明人将硼的含量控制在 0.0005〜0.003%。
铌: 在本技术方案中, 铌虽然对于提高抗鳞爆性有利, 但铌是贵重金属, 从成本上考虑, 并不特别加入大量的铌。 在本发明中允许有残留的铌。
钒: 在本技术方案中, 钒能够与氮、 碳结合析出氮化钒和碳化钒, 这些 第二相粒子不仅起着强化基体的作用, 而且是有效防止在搪瓷过程中发生鳞 爆的贮氢陷阱。 氮含量较高时, 钒主要与氮结合在高温析出较为稳定的氮化 钒,具有良好的强化效果和抗鳞爆作用。综合考虑,将钒含量控制为 0.02%。
钛: 钛是强碳、 氮化物形成元素。 钛可以与氧、 碳、 氮和硫等结合, 既 可以形成单一的化合物, 又可以形成复合的化合物, 钛固定碳、 氮和硫以后 会提高钢板的塑性和抗鳞爆性。钛与氧和氮形成的化合物相对来说十分稳定, 不易受热加工和搪瓷过程中工艺参数的影响, 对改善钢板的针孔缺陷和密着 性能也十分有效。但是, 钛和氧极易形成化合物, 如果钢中钛和氧含量过高, 会形成粗大的氧化物夹杂, 严重地损害钢的塑性。 所以, 本技术方案将钛含 量控制在 0.001〜0.05%。
相应地, 本发明还提供了该搪瓷用钢的制造方法, 其包括下列歩骤:
( 1 ) 冶炼, 真空脱气;
(2) 铸造;
(3 )将铸坯进行热轧: 控制热轧加热温度为 950〜1200°C, 分两阶段轧 制, 第一阶段在奥氏体区轧制, 终轧温度为 900〜1100°C, 第二阶段在铁素 体区轧制, 终轧温度 (FT, °C ) 满足公式 600 FT -9250xC +900, 其中 C 为元素的质量百分含量;
(4) 卷取;
( 5 ) 酸洗以去除氧化铁皮;
( 6) 冷轧;
(7) 退火。
优选地, 在上述搪瓷用钢的制造方法中, 歩骤(1 )的冶炼过程中加入氧 化铁粉, 氧化铁粉的加入量为每吨钢 0.40〜2.50kg, 加入后充分搅拌, 搅拌 时间不超过 30分钟, 使得钢水中 O 0.010〜0.050%。
优选地, 在上述搪瓷用钢的制造方法中, 在歩骤(1 ) 的真空脱气后吹氮 在上述搪瓷用钢的制造方法中, 歩骤 (3 ) 中的铸造方法为连铸或模铸。 在上述搪瓷用钢的制造方法中, 歩骤(4) 中的卷取温度为 500〜800°C。 在上述搪瓷用钢的制造方法中, 歩骤(6)中冷轧的总压下率控制在 60% 以上。
在上述搪瓷用钢的制造方法中, 歩骤 (7 ) 中退火温度为 650〜900°C, 退火时间为 2分钟〜 25小时。
在上述技术方案中, 在冶炼和真空脱气歩骤确保钢液的基本化学成分符 合要求, 脱碳并去除钢中的氢等有害气体, 通过吹氩气搅拌, 控制钢中的 H <2ppm, 加入必要的合金元素, 进行成分调整, 特别是要控制碳、 氮、 硫和 氧等元素, 因为它们可形成各种化合物有利于提高钢的抗鳞爆性, 但是过量 的夹杂物又会损害钢的成型性。 当要求钢板中氧含量较高时, 在冶炼过程中 可以通过吹氧或加入氧化铁粉来稳定地控制钢中的总含氧量, 使之达到所要 求的目标值。 其中, 加入氧化铁粉为优选的技术方案, 这是因为, 当钢中的 碳含量较高时,采用吹氧的方法来提高氧含量会在浇铸过程中极易产生沸腾, 过度沸腾易导致连铸时漏钢等浇铸问题, 而采用加入氧化铁粉的方法, 可以 避免钢液的过度沸腾。 此外, 采用加入氧化铁粉的方法来补充和提高钢中的 含氧量, 既可以缩短精炼时间, 又可以节约成本。 另外, 在真空脱气处理后 吹氮气或加入氮化锰铁, 都可以提高钢中的氮含量。 吹氮气是优选的技术方 案, 这是因为加入氮化锰铁会增碳, 因此对碳要求极低的钢, 吹氮可以防止 增碳, 采用吹氮方式既能节约成本, 又能稳定控制钢中的氮含量。
低碳钢或极低碳钢采用传统的热轧工艺时,铁素体晶粒普遍较大。因此, 本技术方案中, 热轧采用两阶段轧制, 第一阶段在奥氏体区轧制, 第二阶段 在铁素体区轧制。 因为第二阶段在铁素体内进行轧制, 可以贮存更多的形变 能, 有利于细化铁素体晶粒, 明显提高钢板强度, 克服了超低碳钢晶粒细化 较难、 强度较低的问题。 并且细化的铁素体晶粒经冷轧、 退火后, 对提高屈 服强度和钢材塑性更加有益。 在铁素体区轧制的钢坯的加热温度比常规轧制 的加热温度要低, 因此可以大幅度降低加热能耗, 提高加热炉产量。 低温轧 制还可降低二次氧化铁皮的产生, 提高热轧产品的表面质量, 可大大降低生 产成本。 通过在铁素体区轧制, 钢板的热轧组织和经过冷轧和退火以后的组 织均为铁素体或铁素体 +渗碳体。 同时, 第一阶段和第二阶段的轧制均采用 较低温度以降低能耗。
在本技术方案中, 随着冷轧压下率的提高, 钢板内部的畸变能增加, 以 在钢中储存足够的畸变能, 因此采用较高的冷轧压下率有利于在退火后的再 结晶和织构发展。
本技术方案中, 退火可以选择采用连续退火或罩式退火的方式。 本技术 方案涉及的退火工艺能够确保钢中的铁素体组织完成再结晶、 晶粒长大和再 结晶织构的充分发展。
与现有技术相比, 本发明通过采用上述技术方案, 具有下列有益效果:
( 1 )利用本技术方案制造出的搪瓷用钢可达到综合性能要求:屈服强度: RpO.2^ 180 MPa, 抗拉强度: Rm 270 MPa; 延伸率: A8。 36%, 具有良 好的塑性和较高的强度;
(2)本发明所述的搪瓷用钢具有优良的涂搪性能, 具有抗鳞爆性, 抗气 泡和黑点的优点;
(3 )本发明所述的搪瓷用钢具有优良的成型性,可以加工成各种较为复 杂的搪瓷部件, 由于具有较高的强度, 提高了在高温烧成时的抗变形能力。 附图说明
图 1显示了本发明实施例 A搪瓷钢板的金相组织。 具体实施方式
实施例 A-H:
按照下述歩骤制造本发明的搪瓷用钢,控制各实施例的化学元素配比如 表 1所示 (各实施例具体的工艺参数参见表 2):
( 1 )冶炼, 真空脱气: 冶炼过程中加入氧化铁粉, 氧化铁粉的加入量为 每吨钢 0.40〜2.50kg, 加入后充分搅拌, 搅拌时间不超过 30分钟, 使得钢水 中 O 0.010〜0.050%; 真空脱气后吹氩气搅拌, 控制钢中 H<2ppm, 当 N ^ (0.002〜0.015wt%), 在真空脱气处理后吹氮气;
(2) 连铸;
(3 )将铸坯进行热轧: 控制热轧加热温度为 950〜1200°C, 分两阶段轧 制, 第一阶段在奥氏体区轧制, 温度为 900〜1100°C, 第二阶段在铁素体区 轧制, 终轧温度 (FT, °C ) 满足公式 600 FT -9250xC +900, 其中 C为元 素的质量百分含量;
(4) 卷取: 卷取温度为 500〜800°C ;
( 5 ) 酸洗以去除氧化铁皮;
( 6) 冷轧: 总压下率控制在 60%以上;
(7) 退火: 退火温度为 650〜900°C, 退火时间为 2分钟〜 25小时。 结合表 2和表 1可以看出, 采用上述的成分设计和工艺参数进行冶炼和 加工, 其成品钢板的屈服强度 180^0¾, 抗拉强度 270^^&, 延伸率 A8o ^36%, 具有良好的塑性和较高的强度。 经双面搪瓷, 没有发生鳞爆现象, 钢板和瓷釉的密着性优良, 具有良好的抗气泡和黑点等缺陷等性能。
从图 1可以看出, 本发明实施例 A中的显微组织为铁素体组织, 有少量 的夹杂物分布在铁素体的晶粒内或晶界上。 134582
表 1.本发明各实施例的化学成分配比 (质量百分含量, wt%)
Figure imgf000010_0001
表 2. 本发明各实施例的具体工艺参数和性能
Figure imgf000010_0002

Claims

权利要求书
1. 一种搪瓷用钢, 其特征在于, 其化学元素质量百分含量为:
0.020%;
Si^O.05%;
Mm 0· 10〜0·50%;
Ρ^Ο.03%;
S: 0·003〜0·050%;
Α1: 0.001〜0·03%;
Ν: 0·001〜0·015%;
0: 0·005〜0·050%;
Ca^ 0.005%;
Mg^ 0.005%;
Cu^O.10%;
Cr^O.10%;
Ni^O.10%;
Mo ^0.10%;
B: 0·0005〜0·003%, Nb^O.01%, V^O.02%, Ti: 0.001〜0.05%中的至 少一种;
余量为 Fe和其他不可避免的杂质;
其中 N (%) X Ti ( %) 3 X 10-4。
2.如权利要求 1所述的搪瓷用钢的制造方法, 其特征在于, 包括下列歩 骤:
1)冶炼, 真空脱气;
2)铸造;
3)将铸坯进行热轧:控制热轧加热温度为 950〜1200°C,分两阶段轧制, 第一阶段在奥氏体区轧制, 终轧温度为 900〜1100°C, 第二阶段在铁素体区 轧制, 终轧温度 FT满足公式: 600 FT -9250 X C +900, 其中 C为元素的 质量百分含量;
4)卷取;
5)酸洗; 6)冷轧;
7)退火。
3.如权利要求 2所述的搪瓷用钢的制造方法, 其特征在于, 在所述歩骤 ( 1 )的冶炼过程中加入氧化铁粉,氧化铁粉的加入量为每吨钢 0.40〜2.50kg, 加入后充分搅拌, 搅拌时间不超过 30分钟, 使得钢水中 O 0.010〜0.050%。
4.如权利要求 2所述的搪瓷用钢的制造方法, 其特征在于, 在所述歩骤 ( 1 ) 的真空脱气后吹氮气。
5.如权利要求 2所述的搪瓷用钢的制造方法,其特征在于,所述歩骤(3 ) 中的铸造方法为连铸或模铸。
6.如权利要求 2所述的搪瓷用钢的制造方法,其特征在于,所述歩骤(4) 中的卷取温度为 500〜800°C。
7.如权利要求 2所述的搪瓷用钢的制造方法,其特征在于,所述歩骤(6) 中冷轧的总压下率控制在 60%以上。
8.如权利要求 2所述的搪瓷用钢的制造方法,其特征在于,所述歩骤(7) 中退火温度为 650〜900°C, 退火时间为 2分钟〜 25小时。
PCT/CN2013/080157 2012-07-27 2013-07-26 一种搪瓷用钢及其制造方法 WO2014015823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102648471A CN102747309A (zh) 2012-07-27 2012-07-27 一种搪瓷用钢及其制造方法
CN201210264847.1 2012-07-27

Publications (1)

Publication Number Publication Date
WO2014015823A1 true WO2014015823A1 (zh) 2014-01-30

Family

ID=47027794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080157 WO2014015823A1 (zh) 2012-07-27 2013-07-26 一种搪瓷用钢及其制造方法

Country Status (2)

Country Link
CN (1) CN102747309A (zh)
WO (1) WO2014015823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230029838A1 (en) * 2019-12-20 2023-02-02 Posco Enamel steel sheet and manufacturing method therefor

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法
CN104419874A (zh) * 2013-09-05 2015-03-18 鞍钢股份有限公司 抗鳞爆性能优异的热轧双面搪瓷钢及其制造方法
CN103469075B (zh) * 2013-09-18 2016-04-13 济钢集团有限公司 一种asp双联工艺生产的超深冲冷轧搪瓷钢及其制造方法
CN104250705B (zh) * 2014-09-19 2017-01-18 宝山钢铁股份有限公司 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法
CN104928577B (zh) * 2015-06-18 2017-08-25 宝山钢铁股份有限公司 一种具有高扩孔率和优良涂搪性能的钢板及其制造方法
CN105177411B (zh) * 2015-08-07 2017-09-26 华北理工大学 适宜连续退火生产的含硼冷轧搪瓷钢及其制造方法
MX2018002854A (es) * 2015-09-11 2018-06-15 Nippon Steel & Sumitomo Metal Corp Lamina de acero y producto esmaltado.
CN105088065A (zh) * 2015-09-25 2015-11-25 攀钢集团攀枝花钢铁研究院有限公司 一种冷轧搪瓷钢及其生产方法
CN105331883B (zh) * 2015-09-29 2017-08-25 宝山钢铁股份有限公司 一种双面搪瓷用热轧高强度中厚板及其制造方法
CN107881412B (zh) * 2016-09-30 2019-12-27 宝山钢铁股份有限公司 一种轻量化覆铝板带及其生产方法
CN107881422B (zh) * 2016-09-30 2020-09-25 宝山钢铁股份有限公司 一种覆铝基板用钢及其生产方法
CN107881425B (zh) * 2016-09-30 2019-12-27 宝山钢铁股份有限公司 一种高强度覆铝基板用钢及其生产方法
CN107881424B (zh) * 2016-09-30 2019-12-31 宝山钢铁股份有限公司 一种轻量化设计覆铝基板及其生产方法
CN107881426B (zh) * 2016-09-30 2019-12-31 宝山钢铁股份有限公司 一种高强度覆铝板带及其生产方法
CN106756482A (zh) * 2016-12-12 2017-05-31 山东钢铁股份有限公司 一种厨具用深冲冷轧钢板及其制造方法
CN108796382B (zh) * 2017-04-27 2020-10-27 宝山钢铁股份有限公司 一种适应大变形及易冲压的覆铝基板用含硼钢及其生产方法
CN108796384B (zh) * 2017-04-27 2020-06-23 宝山钢铁股份有限公司 一种易冲压加工的高表面质量覆铝板带及其生产方法
CN108796363B (zh) * 2017-04-27 2020-10-27 宝山钢铁股份有限公司 适应大变形及冲压加工的高表面质量覆铝基板用钢及其生产方法
CN107574375B (zh) * 2017-08-31 2019-06-07 武汉钢铁有限公司 具有优异涂搪性能的双面搪瓷用热轧酸洗钢板及其制造方法
CN109694999A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种冷轧搪瓷钢及其制造方法
CN111424215B (zh) * 2017-12-27 2021-09-21 柳州钢铁股份有限公司 家电用冷轧低碳搪瓷钢
CN110777301B (zh) * 2018-07-30 2021-05-14 宝山钢铁股份有限公司 一种冷轧搪瓷钢及其制造方法
TWI771963B (zh) * 2020-03-27 2022-07-21 日商日本製鐵股份有限公司 鋼板及琺瑯製品
KR102469876B1 (ko) * 2020-12-18 2022-11-23 주식회사 포스코 밀착성이 우수한 고강도 법랑용 냉연강판 및 이의 제조방법
KR102501947B1 (ko) * 2020-12-21 2023-02-20 주식회사 포스코 법랑용 강판 및 그 제조방법
CN112941418B (zh) * 2021-02-07 2022-08-05 首钢集团有限公司 一种冷轧搪瓷用高强钢及其制备方法
CN116254463A (zh) * 2022-08-17 2023-06-13 湖南华菱涟源钢铁有限公司 一种低碳加硼搪瓷钢及其生产方法
CN115558846B (zh) * 2022-09-16 2023-09-15 首钢集团有限公司 一种搪瓷钢板及其制备方法
CN115354235B (zh) * 2022-09-30 2023-01-24 武汉钢铁有限公司 一种高表面高精度的高强搪瓷钢及生产方法
CN118326242A (zh) * 2023-01-10 2024-07-12 宝山钢铁股份有限公司 一种搪瓷用冷轧高强钢及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037215A (ja) * 2004-07-30 2006-02-09 Nippon Steel Corp ホーロー密着性が良好なホーロー用鋼板およびその製造方法並びにホーロー製品
CN101353756A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 搪瓷用冷轧高强度钢板及其制造方法
CN102124132A (zh) * 2008-08-14 2011-07-13 Posco公司 搪瓷钢板及其制造方法
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037215A (ja) * 2004-07-30 2006-02-09 Nippon Steel Corp ホーロー密着性が良好なホーロー用鋼板およびその製造方法並びにホーロー製品
CN101353756A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 搪瓷用冷轧高强度钢板及其制造方法
CN102124132A (zh) * 2008-08-14 2011-07-13 Posco公司 搪瓷钢板及其制造方法
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230029838A1 (en) * 2019-12-20 2023-02-02 Posco Enamel steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
CN102747309A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2014015823A1 (zh) 一种搪瓷用钢及其制造方法
JP7611270B2 (ja) 深絞り内釜用冷間圧延エナメル鋼板およびその製造方法
JP7457843B2 (ja) 極地海洋工事用鋼板及びその製造方法
WO2014015822A1 (zh) 一种搪玻璃用高强度钢板及其制造方法
TWI473887B (zh) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
JP6851269B2 (ja) フェライト系ステンレス鋼板、鋼管および排気系部品用フェライト系ステンレス部材ならびにフェライト系ステンレス鋼板の製造方法
CN103789677B (zh) 一种具有高耐腐蚀性的高强钢筋及其制备方法
JP5362582B2 (ja) 耐食性及び張出成形性に優れたフェライト系ステンレス鋼及びその製造方法
CN103789625A (zh) 罩式退火线生产微合金化冷轧低合金高强钢的方法
WO2020135437A1 (zh) 一种耐海水腐蚀钢及其制造方法
CN102899582A (zh) 一种高强度镍基耐蚀合金及其制造方法
CN101736194B (zh) 一种车轮钢及其制备方法和车轮
CN114214557B (zh) 一种双面搪瓷用钢及其制造方法和应用
CN106498287B (zh) 一种ct90级连续管用热轧钢带及其生产方法
CN102676927A (zh) 一种高Ti微合金化中厚钢板及其制备方法
CN103966525B (zh) 一种高铬高钼铁素体不锈钢无缝管材及其制造方法
JP5042694B2 (ja) 延性及び加工性に優れた高強度低比重鋼板及びその製造方法
CN105970099B (zh) 一种含Cu止裂钢及其制备方法
JP2015137375A (ja) フェライト系ステンレス冷延鋼板およびその製造方法
CN113308647B (zh) 一种搪瓷用冷轧钢板及其制造方法
CN104769147A (zh) 具有优异抗氧化性、良好高温强度和良好成形性的铁素体不锈钢
CN110093563B (zh) 一种深冲用途的搪瓷用冷轧钢板及其生产方法
CN114908285B (zh) 一种低成本高温搪瓷用热轧钢板及其制造方法
CN108929987B (zh) 一种460MPa级冷轧微合金高强度钢及其制造方法
US20250003040A1 (en) Hot-rolled steel for enameling having enameling and firing strengthening property, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823342

Country of ref document: EP

Kind code of ref document: A1