WO2014013538A1 - Method for hydrolyzing plasmalogen, method for measuring plasmalogen, phospholipase-containing composition, and method for producing phospholipase - Google Patents
Method for hydrolyzing plasmalogen, method for measuring plasmalogen, phospholipase-containing composition, and method for producing phospholipase Download PDFInfo
- Publication number
- WO2014013538A1 WO2014013538A1 PCT/JP2012/068073 JP2012068073W WO2014013538A1 WO 2014013538 A1 WO2014013538 A1 WO 2014013538A1 JP 2012068073 W JP2012068073 W JP 2012068073W WO 2014013538 A1 WO2014013538 A1 WO 2014013538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasmalogen
- phospholipase
- amino acid
- acid sequence
- seq
- Prior art date
Links
- 102000015439 Phospholipases Human genes 0.000 title claims abstract description 132
- 108010064785 Phospholipases Proteins 0.000 title claims abstract description 132
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 122
- 230000003301 hydrolyzing effect Effects 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 230000000694 effects Effects 0.000 claims abstract description 66
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 claims abstract description 25
- 241000187747 Streptomyces Species 0.000 claims abstract description 13
- 150000001413 amino acids Chemical class 0.000 claims description 74
- 230000009471 action Effects 0.000 claims description 61
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 46
- 229910001424 calcium ion Inorganic materials 0.000 claims description 46
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 30
- 244000005700 microbiome Species 0.000 claims description 30
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 28
- 241001468227 Streptomyces avermitilis Species 0.000 claims description 23
- 241000186361 Actinobacteria <class> Species 0.000 claims description 18
- 241000187761 Streptomyces albidoflavus Species 0.000 claims description 13
- 125000003275 alpha amino acid group Chemical group 0.000 claims 47
- 241001446247 uncultured actinomycete Species 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 155
- 239000000243 solution Substances 0.000 description 133
- 239000000126 substance Substances 0.000 description 80
- 150000003904 phospholipids Chemical group 0.000 description 69
- 239000012074 organic phase Substances 0.000 description 60
- 239000000872 buffer Substances 0.000 description 53
- 239000003153 chemical reaction reagent Substances 0.000 description 43
- 102000004190 Enzymes Human genes 0.000 description 33
- 108090000790 Enzymes Proteins 0.000 description 33
- 102100026918 Phospholipase A2 Human genes 0.000 description 32
- 229940088598 enzyme Drugs 0.000 description 32
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 30
- 238000004809 thin layer chromatography Methods 0.000 description 30
- 239000000047 product Substances 0.000 description 27
- 239000000523 sample Substances 0.000 description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 108090000623 proteins and genes Proteins 0.000 description 23
- 210000004556 brain Anatomy 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 101710096328 Phospholipase A2 Proteins 0.000 description 18
- 102100037883 Phospholipase B1, membrane-associated Human genes 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 17
- 235000014113 dietary fatty acids Nutrition 0.000 description 17
- 239000000194 fatty acid Substances 0.000 description 17
- 229930195729 fatty acid Natural products 0.000 description 17
- 150000004665 fatty acids Chemical class 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 241000588724 Escherichia coli Species 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 102000019054 Group II Phospholipases A2 Human genes 0.000 description 15
- 108010026929 Group II Phospholipases A2 Proteins 0.000 description 15
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 15
- 102100031415 Hepatic triacylglycerol lipase Human genes 0.000 description 13
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 13
- 108010058864 Phospholipases A2 Proteins 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 235000002639 sodium chloride Nutrition 0.000 description 11
- RLFWWDJHLFCNIJ-UHFFFAOYSA-N 4-aminoantipyrine Chemical compound CN1C(C)=C(N)C(=O)N1C1=CC=CC=C1 RLFWWDJHLFCNIJ-UHFFFAOYSA-N 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 9
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 9
- 239000006174 pH buffer Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000012295 chemical reaction liquid Substances 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 108010011449 Long-chain-fatty-acid-CoA ligase Proteins 0.000 description 7
- 102000003992 Peroxidases Human genes 0.000 description 7
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 235000011130 ammonium sulphate Nutrition 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000012263 liquid product Substances 0.000 description 7
- 108040007629 peroxidase activity proteins Proteins 0.000 description 7
- 102000004539 Acyl-CoA Oxidase Human genes 0.000 description 6
- 108020001558 Acyl-CoA oxidase Proteins 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 108030001275 Ethanolamine oxidases Proteins 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 229920004890 Triton X-100 Polymers 0.000 description 6
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical group C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 6
- 229960001231 choline Drugs 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- 102000005870 Coenzyme A Ligases Human genes 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 108010022198 alkylglycerophosphoethanolamine phosphodiesterase Proteins 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000013611 chromosomal DNA Substances 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000012488 sample solution Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000013024 dilution buffer Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002327 glycerophospholipids Chemical class 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000008057 potassium phosphate buffer Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 239000012089 stop solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108091006149 Electron carriers Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 108020002496 Lysophospholipase Proteins 0.000 description 3
- 241000187180 Streptomyces sp. Species 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001448 anilines Chemical class 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- -1 ether phospholipid Chemical class 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000007986 glycine-NaOH buffer Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 108010038773 lysoplasmalogenase Proteins 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 239000006179 pH buffering agent Substances 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 150000004992 toluidines Chemical class 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical group OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- XXZCIYUJYUESMD-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(morpholin-4-ylmethyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCOCC1 XXZCIYUJYUESMD-UHFFFAOYSA-N 0.000 description 2
- XUJZNKFIBZHDKL-UHFFFAOYSA-N 2-[[3,7-bis(dimethylamino)phenothiazine-10-carbonyl]amino]acetic acid Chemical compound C1=C(N(C)C)C=C2SC3=CC(N(C)C)=CC=C3N(C(=O)NCC(O)=O)C2=C1 XUJZNKFIBZHDKL-UHFFFAOYSA-N 0.000 description 2
- XQXPVVBIMDBYFF-UHFFFAOYSA-N 4-hydroxyphenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C=C1 XQXPVVBIMDBYFF-UHFFFAOYSA-N 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000016938 Catalase Human genes 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- 238000007900 DNA-DNA hybridization Methods 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Chemical group CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102100034337 Long-chain-fatty-acid-CoA ligase 6 Human genes 0.000 description 2
- 102100035302 Lysoplasmalogenase Human genes 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Chemical group OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- NLEBIOOXCVAHBD-QKMCSOCLSA-N dodecyl beta-D-maltoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NLEBIOOXCVAHBD-QKMCSOCLSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960004756 ethanol Drugs 0.000 description 2
- 229940031098 ethanolamine Drugs 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000002795 fluorescence method Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- QRMZSPFSDQBLIX-UHFFFAOYSA-N homovanillic acid Chemical compound COC1=CC(CC(O)=O)=CC=C1O QRMZSPFSDQBLIX-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical group O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Chemical group 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Chemical group OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- 229960001153 serine Drugs 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DRCWOKJLSQUJPZ-DZGCQCFKSA-N (4ar,9as)-n-ethyl-1,4,9,9a-tetrahydrofluoren-4a-amine Chemical compound C1C2=CC=CC=C2[C@]2(NCC)[C@H]1CC=CC2 DRCWOKJLSQUJPZ-DZGCQCFKSA-N 0.000 description 1
- PHOLIFLKGONSGY-CSKARUKUSA-N (e)-(3-methyl-1,3-benzothiazol-2-ylidene)hydrazine Chemical compound C1=CC=C2S\C(=N\N)N(C)C2=C1 PHOLIFLKGONSGY-CSKARUKUSA-N 0.000 description 1
- XVYPOHCSLJZFED-QZEVRULJSA-N 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine Chemical compound CCCCCCCCCCCCCCCC\C=C/OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC XVYPOHCSLJZFED-QZEVRULJSA-N 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- BLAASVRGWKURAW-UHFFFAOYSA-N 1-n,1-n-dimethyl-3-phenylbenzene-1,2-diamine Chemical compound CN(C)C1=CC=CC(C=2C=CC=CC=2)=C1N BLAASVRGWKURAW-UHFFFAOYSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- HFZWRUODUSTPEG-UHFFFAOYSA-N 2,4-dichlorophenol Chemical compound OC1=CC=C(Cl)C=C1Cl HFZWRUODUSTPEG-UHFFFAOYSA-N 0.000 description 1
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical group ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WWSJZGAPAVMETJ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethoxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OCC WWSJZGAPAVMETJ-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 1
- BTIDJAQNJLWPTI-UHFFFAOYSA-N 3-(n-ethyl-3,5-dimethoxyanilino)-2-hydroxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)CN(CC)C1=CC(OC)=CC(OC)=C1 BTIDJAQNJLWPTI-UHFFFAOYSA-N 0.000 description 1
- CDGBQMHYFARRCC-UHFFFAOYSA-N 3-(n-ethyl-3,5-dimethylanilino)-2-hydroxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)CN(CC)C1=CC(C)=CC(C)=C1 CDGBQMHYFARRCC-UHFFFAOYSA-N 0.000 description 1
- NPROGRQJOGOVDS-UHFFFAOYSA-N 3-(n-ethyl-3,5-dimethylanilino)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCN(CC)C1=CC(C)=CC(C)=C1 NPROGRQJOGOVDS-UHFFFAOYSA-N 0.000 description 1
- ZTQGWROHRVYSPW-UHFFFAOYSA-N 3-(n-ethyl-3-methylanilino)-2-hydroxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)CN(CC)C1=CC=CC(C)=C1 ZTQGWROHRVYSPW-UHFFFAOYSA-N 0.000 description 1
- ZBQCCTCQUCOXBO-UHFFFAOYSA-N 4-(4-aminophenyl)-2,2,6,6-tetramethylcyclohex-3-en-1-amine Chemical compound CC1(C)C(N)C(C)(C)CC(C=2C=CC(N)=CC=2)=C1 ZBQCCTCQUCOXBO-UHFFFAOYSA-N 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FRPHFZCDPYBUAU-UHFFFAOYSA-N Bromocresolgreen Chemical compound CC1=C(Br)C(O)=C(Br)C=C1C1(C=2C(=C(Br)C(O)=C(Br)C=2)C)C2=CC=CC=C2S(=O)(=O)O1 FRPHFZCDPYBUAU-UHFFFAOYSA-N 0.000 description 1
- 101100246536 Caenorhabditis elegans pyc-1 gene Proteins 0.000 description 1
- 241000122205 Chamaeleonidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108010000659 Choline oxidase Proteins 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 102100021977 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 Human genes 0.000 description 1
- 108050004000 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000239366 Euphausiacea Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241001191009 Gymnomyza Species 0.000 description 1
- 102000015779 HDL Lipoproteins Human genes 0.000 description 1
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001008429 Homo sapiens Nucleobindin-2 Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000012218 Kunkel's method Methods 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100027441 Nucleobindin-2 Human genes 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100035200 Phospholipase A and acyltransferase 4 Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 241000828254 Streptomyces lividans TK24 Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241001228709 Suruga Species 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- NSFFHOGKXHRQEW-UHFFFAOYSA-N Thiostrepton B Natural products N1C(=O)C(C)NC(=O)C(=C)NC(=O)C(C)NC(=O)C(C(C)CC)NC(C(C2=N3)O)C=CC2=C(C(C)O)C=C3C(=O)OC(C)C(C=2SC=C(N=2)C2N=3)NC(=O)C(N=4)=CSC=4C(C(C)(O)C(C)O)NC(=O)C(N=4)CSC=4C(=CC)NC(=O)C(C(C)O)NC(=O)C(N=4)=CSC=4C21CCC=3C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-UHFFFAOYSA-N 0.000 description 1
- 101150017670 Tmem86b gene Proteins 0.000 description 1
- 241000251555 Tunicata Species 0.000 description 1
- DZGWFCGJZKJUFP-UHFFFAOYSA-N Tyramine Natural products NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004082 amperometric method Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical class [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000013095 identification testing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- KNJDBYZZKAZQNG-UHFFFAOYSA-N lucigenin Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.C12=CC=CC=C2[N+](C)=C(C=CC=C2)C2=C1C1=C(C=CC=C2)C2=[N+](C)C2=CC=CC=C12 KNJDBYZZKAZQNG-UHFFFAOYSA-N 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000006395 oxidase reaction Methods 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 150000004059 quinone derivatives Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- HDARHUHTZKLJET-UHFFFAOYSA-M sodium;3-(n-ethyl-3,5-dimethoxyanilino)-2-hydroxypropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC(OC)=CC(OC)=C1 HDARHUHTZKLJET-UHFFFAOYSA-M 0.000 description 1
- HLXGRHNZZSMNRX-UHFFFAOYSA-M sodium;3-(n-ethyl-3,5-dimethylanilino)-2-hydroxypropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC(C)=CC(C)=C1 HLXGRHNZZSMNRX-UHFFFAOYSA-M 0.000 description 1
- IRQRBVOQGUPTLG-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methylanilino)-2-hydroxypropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(C)=C1 IRQRBVOQGUPTLG-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940083466 soybean lecithin Drugs 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 229930188070 thiostrepton Natural products 0.000 description 1
- NSFFHOGKXHRQEW-AIHSUZKVSA-N thiostrepton Chemical compound C([C@]12C=3SC=C(N=3)C(=O)N[C@H](C(=O)NC(/C=3SC[C@@H](N=3)C(=O)N[C@H](C=3SC=C(N=3)C(=O)N[C@H](C=3SC=C(N=3)[C@H]1N=1)[C@@H](C)OC(=O)C3=CC(=C4C=C[C@H]([C@@H](C4=N3)O)N[C@H](C(N[C@@H](C)C(=O)NC(=C)C(=O)N[C@@H](C)C(=O)N2)=O)[C@@H](C)CC)[C@H](C)O)[C@](C)(O)[C@@H](C)O)=C\C)[C@@H](C)O)CC=1C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-AIHSUZKVSA-N 0.000 description 1
- 229940063214 thiostrepton Drugs 0.000 description 1
- NSFFHOGKXHRQEW-OFMUQYBVSA-N thiostrepton A Natural products CC[C@H](C)[C@@H]1N[C@@H]2C=Cc3c(cc(nc3[C@H]2O)C(=O)O[C@H](C)[C@@H]4NC(=O)c5csc(n5)[C@@H](NC(=O)[C@H]6CSC(=N6)C(=CC)NC(=O)[C@@H](NC(=O)c7csc(n7)[C@]8(CCC(=N[C@@H]8c9csc4n9)c%10nc(cs%10)C(=O)NC(=C)C(=O)NC(=C)C(=O)N)NC(=O)[C@H](C)NC(=O)C(=C)NC(=O)[C@H](C)NC1=O)[C@@H](C)O)[C@](C)(O)[C@@H](C)O)[C@H](C)O NSFFHOGKXHRQEW-OFMUQYBVSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960003732 tyramine Drugs 0.000 description 1
- DZGWFCGJZKJUFP-UHFFFAOYSA-O tyraminium Chemical compound [NH3+]CCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-O 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6481—Phosphoglycerides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/92—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/916—Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
- G01N2333/918—Carboxylic ester hydrolases (3.1.1)
- G01N2333/92—Triglyceride splitting, e.g. by means of lipase
Definitions
- the present invention relates to a method for hydrolyzing plasmalogen to lysoplasmalogen using a phospholipase having a novel action, a method for measuring plasmalogen using the above-mentioned phospholipase, and a method for hydrolysis containing the above-mentioned phospholipase or It is related with the composition for a measurement, and the method of manufacturing said phospholipase.
- the technical fields in which the present invention can be used include, for example, diagnostic techniques for diseases associated with plasmalogen and / or lysoplasmalogen, and production techniques for foods and foods containing plasmalogen and / or lysoplasmalogen.
- the known phospholipase A2 (EC 3.1.1.4) is an enzyme having a molecular weight of 14 to 18.5 kDa that exhibits the action of hydrolyzing the sn-2 position of phospholipid to form lysophospholipid in the presence of calcium ions. Yes (Non-Patent Document 1).
- Non-patent Document 2 Since plasmalogen is one of phospholipids, it has been considered that an enzyme having an action of hydrolyzing the sn-2 position of plasmalogen to form lysoplasmalogen is phospholipase A2 (Non-patent Document 2). .
- phospholipase A1 (EC 3.1.1.32) as another known enzyme having an action of hydrolyzing the sn-2 position of phospholipid to form lysophospholipid.
- Phospholipase A1 mainly has the action of hydrolyzing the sn-1 position of phospholipids to give lysophospholipids, but also has the action of hydrolyzing the sn-2 position to make lysophospholipids (Non-patent Document 1).
- Non-patent Document 4 As phospholipase A1 derived from microorganisms, phospholipase A1 (non-patent document 3), which requires calcium ions for its action, and phospholipase A1 (non-patent document 4), whose action is activated by calcium ions, are known. It has been reported that the molecular weight of microorganism-derived phospholipase A1 by the SDS-PAGE method is 35 kDa (Non-patent Document 4).
- the problem to be solved by the present invention is to provide a method for hydrolyzing plasmalogen to lysoplasmalogen using phospholipase, a method for measuring plasmalogen using phospholipase, a composition containing phospholipase, and a method for producing phospholipase. It is.
- the present inventors tried to hydrolyze plasmalogen into lysoplasmalogen by the action of phospholipase A2 according to the information in Non-Patent Document 2. However, the present inventors have found that phospholipase A2 does not have an action of efficiently hydrolyzing plasmalogen to lysoplasmalogen even in the presence of calcium ions, which is different from conventional common knowledge.
- PLB may not have an action of efficiently hydrolyzing plasmalogen into a fatty acid and lysoplasmalogen even in the presence of calcium ions.
- the present inventors tried to hydrolyze plasmalogen to lysoplasmalogen by the action of phospholipase A1, which has both actions of phospholipase A1 and phospholipase A2, but the action of phospholipase A1 is stronger than that of phospholipase A2. .
- this phospholipase has an action of efficiently hydrolyzing plasmalogen into lysoplasmalogen, which was not foreseeable from conventional common sense.
- this phospholipase In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 18: 1) is 19 ⁇ 5% relative to dipalmitoylphosphocholine, (Ii) in the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 20: 4) is 29 ⁇ 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine; (Iii) the molecular weight by SDS-PAGE method is in the range of about 25-30 kDa, In this respect, it was found that the known phospholipase A1 and phospholipase A2 are clearly different.
- the present inventors have found a novel method for hydrolyzing plasmalogen to lysoplasmalogen using the above phospholipase, and a novel method for measuring plasmalogen using the above phospholipase, and The present invention was completed by creating a composition containing the above phospholipase and a method for producing the above phospholipase.
- plasmalogen can be efficiently hydrolyzed to lysoplasmalogen.
- An action of hydrolyzing plasmalogen (Pls) of a novel phospholipase (PL (A)) to lysoplasmalogen (lyPls) and a method for measuring ethanolamine-type plasmalogen (PlsEtn) using a known lysoplasmalogogenase It is a simplified diagram. It is a simplified diagram showing an action of hydrolyzing Pls of PL (A) to lyPls and a method of measuring PlsEtn using Lysophospholipase D. It is a simplified diagram showing the activity measurement method of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L).
- 2 is a graph showing a comparison of the reaction rate of PL (A) with respect to sn-1 and sn-2 positions of phosphatidylcholine.
- 2 is an electrophoresis photograph showing the results of SDS-PAGE of each phospholipase. It is a photograph which shows the comparison with respect to PlsEtn extracted from the pig brain of each phospholipase by thin layer chromatography (TLC). However, it is in the presence of calcium ions. It is a photograph which shows the comparison of the effect
- the present invention relates to a method of hydrolyzing plasmalogen to lysoplasmalogen using phospholipase, a method of measuring the content of plasmalogen at an unknown concentration in a sample using phospholipase, a composition containing phospholipase, and a phospholipase It is a method to do.
- the plasmalogen (sometimes abbreviated as plasmalogen, Pls) of the present invention includes known Pls.
- Preferred Pls of the present invention is an alkenyl acyl type glycerophospholipid (alkenyl acyl type ether phospholipid) in which fatty acid is vinyl ether-bonded at the sn-1 (C1) position among glycerophospholipids, and is represented by the following (Chemical Formula 1).
- R 1 and R 2 are each independently a lower or higher alkyl group or an alkenyl group, and X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof
- Pls in which X is choline or ethanolamine in the above formula is particularly preferable.
- the case where X is choline is referred to as choline-type plasmalogen (sometimes abbreviated as PlsCho)
- PlsEtn ethanolamine-type plasmalogen
- the simple description of Pls includes at least PlsCho and PlsEtn, and PlsEtn is preferred in the present invention.
- the lysoplasmagen of the present invention (sometimes abbreviated as lysoplasmagen, lyPls) includes known lyPls.
- a preferred lyPls in the present invention is an alkenyl acyl type glycerophospholipid (alkenyl acyl type ether phospholipid) in which a fatty acid is vinyl ether-bonded at the sn-1 position among glycerophospholipids, and is represented by the following (Chemical Formula 2).
- R 1 is a lower or higher alkyl group or an alkenyl group
- X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof
- lyPls in which X is choline or ethanolamine in the above formula is particularly preferable.
- choline-type lysoplasmalogen sometimes abbreviated as lyPlsCho
- lyPlsEtn ethanolamine-type lysoplasmalogen
- the simple description of lyPls includes at least lyPlsCho and lyPlsEtn, and lyPlsEtn is preferred in the present invention.
- the phospholipase used for the method of hydrolyzing Pls to lyPls and / or the method of measuring Pls preferably has any of the following characteristics and properties.
- phospholipase has an action (property) to hydrolyze phospholipids into fatty acids and other lipophilic substances, specifically, an action to hydrolyze an acyl group at the sn-1 position of phospholipid (phospholipase A1).
- the action of hydrolyzing the acyl group at the sn-2 position of the phospholipid (phospholipase A2)), the action of hydrolyzing the acyl group at the sn-1 position and the sn-2 position of the phospholipid, It preferably has one or more of the actions of hydrolyzing the acyl group at the sn-1 position or sn-2 position (phospholipase B).
- the presence or absence of the property is not particularly limited. Further, it is more preferable that any one or more of the characteristics and properties described in the present specification are provided. More preferably, it has characteristics (a) to (c) described below, particularly preferably (a) to (e), and more preferably (a) to (m).
- the phospholipase is sometimes referred to herein as PL (A).
- the experimental method is, for example, “Protein / Enzyme Experimental Method, Revised 2nd Edition, Takeichi Horio, 1994 Nankodo”, “Does not fail in bio-experiments! Tips for detection and quantification, edited by Tatsuya Moriyama , Yodosha, 2005 "," Bio-Experiment Illustrated ⁇ 5> Protein is not annoying, Takato Nishiyama, Shujunsha, 2003 1st Edition 5th Edition "and commercial kits Although it can be carried out by following the procedure manual, the measured value can change depending on the measurement conditions and the accuracy of the equipment used.
- PlsEtn (C18, 20: 4)
- PlsEtn in which the fatty acid at the sn-1 position has 18 carbon atoms, the fatty acid at the sn-2 position has 20 carbon atoms, and the number of double bonds is 4.
- An example of such PlsEtn is 1- (1Z-octadedecyl) -2-arachidonoyl-sn-glycero-3-phosphoethanolamine (Chemical Formula 3). This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 852469.
- Activity (U / mL) can be measured by the following method.
- ⁇ First reaction reagent mixture 80 mM Tris-HCl buffer pH 8.0 50 mM calcium chloride 4 mM ATP 4 mM CoA 1.06U / mL Acyl-CoA Synthetase 2 mM PlsEtn (C18, 20: 4)
- ⁇ Second reaction reagent mixture 40 mM PIPES-NaOH buffer pH 7.5 0.06% 4-AA 0.04% Phenol 4.5U / mL peroxidase 30U / mL Acyl-CoA Oxidase 0.2% Triton X-100 20 mM ATP 0.1 mM FAD Acyl-CoA Synthetase (EC 6.2.1.3) and Acyl-CoA Oxidase (EC 1.3.3.6) can be obtained from Asahi Kasei Pharma Corporation (part numbers are T-16 and T17, respectively) .
- ⁇ Reaction stop solution 0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate)
- ⁇ PL (A) Dissolution Solution 10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA
- ⁇ Measurement operation method (1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
- Equation 2 The activity is calculated according to the following (Equation 2).
- U One unit (U) is defined as the amount of enzyme that PL (A) hydrolyzes PlsEtn (C18, 20: 4) and produces 1 ⁇ mol of fatty acid per minute under the above conditions.
- the protein concentration (mg / mL) may be measured by, for example, an ultraviolet absorption method, a Bradford method, a Lowry method, a BCA method or the like, but the ultraviolet absorption method is preferable because it is easy.
- the specific activity of PL (A) with respect to PlsEtn (C18, 20: 4) only needs to be present, so there is no lower limit, but if it is provided, it is 0.1 U / mg, even 0.2 U / mg. It may be 0.3 U / mg or 0.4 U / mg, but 0.46 U / mg is most preferable.
- the specific activity of PL (A) with respect to PlsEtn (C18, 20: 4) is preferably as high as possible, so there is no upper limit, but if it is provided, it is 200 U / mg, may be 100 U / mg, and may be 50 U / mg. It may be 10 U / mg, 5 U / mg, 2 U / mg, 1 U / mg, and most preferably 0.86 U / mg.
- the molecular weight measurement by SDS-PAGE (Poly-Acrylamide Gel Electrophoresis) method in the present invention refers to a protein (polypeptide) that has been denatured (forms an SDS-protein complex) by sodium dodecyl sulfate (SDS).
- SDS sodium dodecyl sulfate
- the molecular weight measurement method utilizes the fact that each polypeptide can be separated according to its mobility by applying a voltage in a gel polymerized with acrylamide.
- the type, number, pH, concentration, and voltage of the electrophoresis buffer such as the type and number of molecular weight markers to be used, polyacrylamide content of polyacrylamide gel, size, manufacturing method, etc.
- the measured value may contain an error depending on the method of staining, decoloring, etc. of the polypeptide, such as temperature, current, and time.
- the molecular weight of the phospholipase by SDS-PAGE is not limited as long as it is in the range of about 25 to 30 kDa, but the lower limit is about 25 kDa, preferably 26 kDa, and more preferably 27 kDa.
- the upper limit is about 30 kDa, preferably 29 kDa, and more preferably 28 kDa.
- a strain isolated from soil, lakes, seas, the surface of a living organism or inside a body cavity is a microorganism belonging to the genus Streptomyces, for example, “Bergey's Manual 2nd edition (2001)”, “Classification of microorganisms” ⁇ Methods of identification experiment-Focusing on molecular genetics and molecular biology (Springer Lab Manual) Springer Fairlark Tokyo, September 2001 ", etc., commercially available bacteria identification test products (for example, BIOMERIEUX) ), A method entrusted to “Techno Suruga Lab Co., Ltd. (Shizuoka City, Shizuoka City)” and the like.
- strains are Streptomyces albidoflavus or Streptomyces avermitilis, "Stackebrandt E., Ebers J .: Taxonomic parameters revised: tert. It may be determined by a method or the like. That is, if DNA-DNA hybridization has 70% or more homology, or 16S rRNA is 98.5% or more identical, it can be judged as a cognate homolog. Preferably, if homology of 70% or more is found in DNA-DNA hybridization, it is judged as a cognate homolog.
- PlsEtn (C18, 18: 1) means PlsEtn in which the fatty acid at the sn-1 position has 18 carbon atoms, the fatty acid at the sn-2 position has 18 carbon atoms, and the number of double bonds is 1. means.
- An example of such PlsEtn is 1- (1Z-octadecenyl) -2-oleoyl-sn-glycero-3-phosphoethanolamine (Chemical Formula 4). This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 852758.
- DPPC dipalmitoylphosphocholine
- DPPC dipalmitoylphosphocholine
- DPPC phosphatidylcholine in which the fatty acid at the sn-1 position has 16 carbon atoms and the fatty acid at the sn-2 position has 16 carbon atoms.
- An example of such phosphatidylcholine is 1,2-dipalmitoyyl-sn-glycero-3-phosphocholine (Chemical Formula 5).
- This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 850355.
- the relative activity means the relative value (%) of the reaction rate (hydrolysis rate (acting rate)) of PL (A) to PlsEtn (C18, 18: 1) and DPPC. 3).
- the relative activity (%) of PlsEtn (C18, 18: 1) in the present invention with respect to DPPC is 19 ⁇ 5%, but it may be 9% or more, 11% or more, 12% or more, or 13% or more. It may be 14% or more, preferably 15% or more, and more preferably 16% or more. Needless to say, the higher the relative activity, the better, so the upper limit is not particularly set. However, if the upper limit is set, it is 100% or less, 80% or less, 60% or less, or 40% or less, It may be 30% or less, may be 24% or less, may be 21% or less, and may be 19% or less.
- 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (Chemical Formula 6).
- This POPC is available, for example, from Avanti Polar Lipids, Inc. Can be purchased as part number 850457.
- the relative activity means the relative value (%) of the reaction rate (hydrolysis rate (rate of action)) of PL (A) to PlsEtn (C18, 20: 4) and POPC. 4).
- PlsEtn (C18, 20: 4) has a relative activity (%) to POPC of 29 ⁇ 13%, preferably 16% or more, and more preferably 20% or more. It goes without saying that the higher the relative activity, the better. Therefore, the upper limit is not particularly set. However, if the upper limit is set, it is 42% or less, preferably 35% or less, and may be 30% or less.
- the origin of the calcium ion in the above (d) and (e) is not limited by the counter ion (counter ion), and examples thereof include chloride, bromide, sulfate, acetate, nitrate and the like.
- non-existence means that calcium ions are not intentionally present.
- water, pH buffer, Pls, phospholipase and container in the present invention in the composition for hydrolyzing Pls to lyPls do not intentionally contain calcium ions. That is, the case where calcium ions are present in the composition for hydrolyzing Pls to lyPls without our fault is also included in the “absence” in the present invention.
- the concentration of calcium ions in the composition for hydrolyzing Pls to lyPls may be 10 ⁇ M or less, preferably 1 ⁇ M or less, more preferably 0.1 ⁇ M or less, and most preferably 0 ⁇ M.
- (J) having an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing Pls to lyPls.
- (L) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 2, and has an action of hydrolyzing Pls to lyPls.
- (M) having an amino acid sequence in which one or more amino acids are mutated, deleted, or added in the amino acid sequence shown in SEQ ID NO: 2, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing Pls to lyPls.
- PL (A) of the present invention consists of the amino acid sequence described in SEQ ID NO: 1 or SEQ ID NO: 2, for example, and in addition, an amino acid sequence substantially equivalent to the amino acid sequence described in SEQ ID NO: 1 or SEQ ID NO: 2 Or consisting of an amino acid sequence in which some amino acids not involved in catalysis are mutated or various amino acid residues are added, and this amino acid sequence is the amino acid sequence shown in SEQ ID NO: 9 and SEQ ID NO: 10
- a phospholipase containing an amino acid sequence and having an action of hydrolyzing Pls to lyPls can be used.
- the preferred homology of such amino acid sequences is 50% or more, preferably 60%, more preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more.
- a functional enzyme such as thioredoxin enzyme or other amino acid sequence
- a functional enzyme such as thioredoxin enzyme or other amino acid sequence
- a functional enzyme such as thioredoxin enzyme or other amino acid sequence
- examples include a case where a portion called a tag that can be purified or confirmed by fusing is fused, and in some cases, even if the tag portion is deleted, all or a part of the portion remains.
- a portion called a tag that can be purified or confirmed by fusing is fused, and in some cases, even if the tag portion is deleted, all or a part of the portion remains.
- about 20 signal peptides for transporting the PL (A) of the present invention to the outside of a cell or the periplasm, or addition of 4 to 10 His for efficient purification may be used. They may be added in series.
- protease recognition amino acid sequences can be arranged and added between these amino acid sequences. Similar to the addition example described above, deletion or substitution can be performed, for example, when there is a domain consisting of several amino acids unrelated to the essential function of PL (A) of the present invention, or When there is a gap consisting of a plurality of amino acids in the amino acid sequence shown in SEQ ID NO: 1, those deletions can be combined. It is also possible to combine deletion, substitution or addition as appropriate. Examples of the additional amino acid residue include a signal peptide, a TEE sequence, an S tag, or a His tag.
- amino acid described in SEQ ID NO: 1 or SEQ ID NO: 2 is deleted, for example, an example in which Met on the N-terminal side or Lys on the C-terminal side is deleted in order.
- amino acid sequence shown in SEQ ID NO: 1 phospholipase modified after translation, such as deletion of Met at the N-terminus or modification of the N-terminus with an acyl group or an alkyl group is also PL (A) of the present invention.
- the PL (A) of the present invention is chemically modified with succinic anhydride, PEG or the like by a known method, and changes are made so that the properties such as optimum pH and stability of the PL (A) of the present invention can be easily used. It is also possible to make it.
- a preferred amino acid sequence of PL (A) of the present invention is the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
- the molecular weight of PL (A) of the present invention is 27199, and in the case of SEQ ID NO: 2, the molecular weight of PL (A) of the present invention is estimated to be 27565.
- the molecular weight changes due to the addition of the tag portion described above or the deletion of some amino acids.
- base sequence of PL (A) of the present invention is required, one or a plurality of amino acid sequences described in SEQ ID NO: 1 or SEQ ID NO: 2 and amino acid sequences described in SEQ ID NO: 1 or SEQ ID NO: 2 are used.
- a base sequence encoding PL (A) may be used.
- a preferred base sequence of the phospholipase used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is the base sequence set forth in SEQ ID NO: 3 or SEQ ID NO: 4, and SEQ ID NO: 1 or SEQ ID NO: 2, respectively. Is encoded.
- any base sequence encoding the amino acid sequence shown in SEQ ID NO: 9 and SEQ ID NO: 10 may be selected from the genetic code table.
- the base sequence encoding the amino acid sequence shown in SEQ ID NO: 9 is the base sequence shown in SEQ ID NO: 11 or SEQ ID NO: 12, and the base sequence encoding the amino acid sequence shown in SEQ ID NO: 10 is SEQ ID NO: 13 or This is the base sequence set forth in SEQ ID NO: 14.
- the Pls of the present invention is preferably Pls in the sample.
- the origin of Pls of the present invention is not particularly limited, but Pls in the sample is preferable.
- Samples may include plasma, serum, urine, research samples, and biological samples including whole blood, plasma, serum, blood cells, spinal fluid, lymph fluid, urine, etc. that are expected to contain Pls Samples and extracts thereof can be mentioned, and these samples are preferably samples that are expected to contain Pls. Examples of other samples include extracts from organisms such as sea squirts, krill, and shellfish, seawater, natural water, fruit juice, beverages, and waste liquids.
- Pls in such a sample is expected to contain Pls such as (Chemical Formula 3) and (Chemical Formula 4), for example, and other Pls are also considered to be mixed.
- the determination of the possibility of Pls being included in the sample includes the case where the presence or absence of the possibility of Pls being included in the sample can be determined before the measurement method of the present invention is performed (for example, normal Human blood contains Pls (Plasmalogens in human serum positively correlated with high-density lipoprotein and decree with aging. Maeba et al., P. 14th-Mal.
- the presence or absence of the possibility may be determined by a conventional technique such as JP-A-2007-33410 and LC-MS (JP-A-2011-136926).
- the amount of PL (A) used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is not particularly limited as long as Pls can be hydrolyzed to lyPls and / or Pls can be measured. It is determined so that favorable results can be obtained according to the amount of Pls contained in the sample, the degree of hydrolysis of the target Pls, the equipment used, the purity of PL (A), and / or economic circumstances. obtain. Furthermore, when using a pH buffer, a metal ion, and a surfactant, the same applies to the type and amount thereof.
- the amount of PL (A) used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is, for example, that the amount of Pls contained in the sample is 2 ⁇ mol or less, and all of them is 37 ° C.
- the lower limit is 0.05 mU or more, preferably 0.1 mU or more, more preferably 0.5 mU or more, and it is clear that the larger the amount of phospholipase, the better the hydrolysis efficiency.
- An upper limit is not particularly provided, but if an upper limit is provided for economic reasons, for example, it is 10 U or less, preferably 5 U or less, more preferably 1 U or less.
- the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls may be performed in a liquid, a gas phase, a solid phase, or the like or on each critical surface, but may be performed in a liquid.
- the liquid may be an aqueous solution, an organic solvent, etc., and the measurement method of the present invention is preferably carried out in an aqueous solution.
- an aqueous medium containing an appropriate organic solvent may be used, and in such a case, an appropriate pH buffering agent may be used. Is preferably used.
- the type of the pH buffer is not particularly limited as long as the target pH can be maintained, and Pls can be hydrolyzed to lyPls and / or Pls can be measured.
- the pH for carrying out the present invention is not particularly limited as long as Pls can be hydrolyzed to lyPls and / or Pls can be measured, but the lower limit is pH 4 or more, preferably pH 5 or more, more preferably pH 6 or more, and the upper limit.
- the pH is 11 or less, preferably 10.5 or less, more preferably 10 or less.
- the concentration of the pH buffer is not particularly limited as long as the target pH can be maintained and Pls can be hydrolyzed to lyPls and / or Pls can be measured, but the lower limit is 3 mM or more, preferably 5 mM or more, more preferably 10 mM or more.
- the upper limit is 500 mM or less, preferably 200 mM or less, more preferably 100 mM or less.
- an enzyme (PL (A), etc.) is immobilized using a sol-gel method or a sensor is prepared.
- a sol-gel for example, a polysaccharide such as agar may be used.
- the emulsion may be implemented as an emulsion.
- an organic solvent or the like may be used, and if an amphiphilic substance is used, micelles can be used.
- a pH buffer it is the same as described above.
- the reaction time is not particularly limited as long as Pls in a sample can be hydrolyzed to lyPls and / or Pls can be measured.
- the lower limit is 15 seconds or longer, preferably 1 minute or longer, more preferably 3 minutes or longer. Although there is no particular upper limit, it is preferably 30 minutes or less, more preferably 15 minutes or less, and particularly preferably 10 minutes or less.
- the temperature is not particularly limited as long as it is a temperature at which Pls in a sample can be hydrolyzed to lyPls and / or a temperature at which Pls can be measured.
- the lower limit is 10 ° C. or higher, preferably 20 ° C. or higher, more preferably 25 ° C. or higher
- the upper limit is 70 ° C. or lower, preferably 60 ° C. or lower, more preferably 50 ° C. It is as follows.
- the method for measuring Pls of the present invention includes a method of hydrolyzing Pls to lyPls using PL (A) having the characteristics and properties described herein. That is, the method for measuring Pls of the present invention is as follows. ⁇ Step 1> A step of hydrolyzing Pls to lyPls using phospholipase (PL (A)) having the properties and properties described in the present specification, including.
- the method for measuring Pls of the present invention may further include a known step for measuring lyPls different from ⁇ Step 1>.
- An example of such a process is ⁇ Step 2-1> lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5, alkenyl hydrolase, (Biochimica et Biophysica Acta, 1437, 1999, pages 142 to 156, The journal of pharmacology) chemistry, 286, 24916-24930, 2011), which may be abbreviated as “lyPls as”), ⁇ Step 2-2> A method using thin layer chromatography (TLC), etc.
- TLC thin layer chromatography
- ⁇ Step 2-1> is preferable from the viewpoint that Pls can be accurately measured without erasing even if a substance other than Pls is mixed in the sample.
- ⁇ Step 2-2> is preferable from the viewpoint that materials necessary for measurement are inexpensive and easily available and can be easily implemented by those skilled in the art.
- ⁇ Step 2-3> is preferable from the viewpoint that one kind of enzyme is used as compared with ⁇ Step 2-1>.
- ⁇ Step 2-4> is preferable from the viewpoint of accurate quantification.
- ⁇ Step 2-5> is preferable from the viewpoint that the molecular species of Pls (R 1 of “Chemical Formula 1”) can also be specified.
- a method for measuring PlsEtn is shown in a simplified manner in FIG.
- the lyPls as used here is described in “Biochimica et Biophysica Acta, 1437, 1999, pages 142 to 156” or “The journal of biologics, 286, 24916 to 24930, 2011”.
- Glycerophylphospholine phosphatase GPCP, EC 3.1.4.2
- Ethanolamine oxidase may be produced by the method of Bioscience, Biotechnology, and Biochemistry 2008, Vol.
- H 2 O 2 is Peroxidase (POD, EC 1.11.1. 7), a chromogen of a Trinder reagent such as a phenol derivative, an aniline derivative or a toluidine derivative described later, 4-aminoantipyrine or 3-methyl-2-benzo. It can be quantified by a known method such as using a coupler such as thiazolinone hydrazone. H 2 O 2 can also be analyzed by a fluorescence method or an electrode method.
- compounds that emit fluorescence upon oxidation such as homovanillic acid, 4-hydroxyphenylacetic acid, tyramine, paracresol, diacetylfluorescin derivatives, and the like, and in the chemiluminescence method, luminol, lucigenin, isoluminol, Pyrogallol can be used.
- the electrode is not particularly limited as long as it is a material that can exchange electrons with H 2 O 2.
- platinum, gold, silver and the like can be used to measure electrodes.
- a known method such as amperometry, potentiometry, coulometry, etc. can be used.
- an electron carrier is interposed in the reaction between the oxidase or substrate and the electrode, and the resulting oxidation, reduction current or electric current thereof is obtained. The amount may be measured.
- Any substance having an electron transfer function can be used as the electron carrier, and examples thereof include substances such as ferrocene derivatives and quinone derivatives.
- the oxide obtained by interposing an electron carrier between the H 2 O 2 and the electrode generated by oxidase reaction may measure the reduction current or the electrical quantity.
- buffers, enzyme stabilizers, preservatives, and the like are appropriately used as analytical reagents as necessary.
- lyPlsase enzyme used in ⁇ Step 2-1> is 4.2 U / mL as described in Biochimica et Biophysica Acta, Volume 1437, 1999, pages 142-156.
- the lyPls ase used in ⁇ Step 2-1> is “Tmem86b (inventor ⁇ : gene of lyPls ase), foundlybesided in The journal of biologic chemistry, 286, 24916-24930, 2011”. "Including humans, rice, rats, cows, dogs, and zebrafish.”, human, mouse, rat, cow, dog, and sebrafish are used.
- the TLC of ⁇ Step 2-2> may be performed by appropriately combining known methods described in, for example, “No failure in bio-experiments! Tips for detection and quantification, Tatsuya Moriyama, Yodosha, 2005”.
- Examples of the detection method include a UV lamp and a coloration method.
- Examples of the colorant include anis-sulfuric acid, phosphomolybdic acid, iodine, ninhydrin solution, chameleon solution, 2,4-dinitrophenylhydrazine solution, bromocresol green solution, and Dragendorfff.
- a known reagent such as a reagent can be determined so as to obtain a preferable result according to the purpose, sample, apparatus used, and the like.
- a method for measuring PlsEtn is shown in a simplified manner in FIG.
- Lysophospholipase D used here, for example, a human-derived enzyme described in “The journal of biochemical chemistry, 277, 39436-39442, 2002” can be used.
- the case of measuring Ethanolamine oxidase and PlsCho is the same as in the case of ⁇ Step 2-1>.
- the amount of Lysophospholipase D enzyme used in ⁇ Step 2-3> is the same as in ⁇ Step 2-1>.
- ⁇ Step 1> and ⁇ Step 2-1>, ⁇ Step 2-2> or ⁇ Step 2-3> can be carried out in different reaction vessels (phases), but in the same reaction vessel (phase). Is preferred.
- ⁇ Step 1> and ⁇ Step 2-1>, ⁇ Step 2-2> or ⁇ Step 2-3> can be performed discontinuously, but are preferably performed continuously.
- ⁇ Step 1> and ⁇ Step 2-1>, ⁇ Step 2-2> or ⁇ Step 2-3> are followed by ⁇ Step 1>, ⁇ Step 1>, ⁇ Step 2-1>, and ⁇ Step 2-2 or ⁇ Step 2-3> may be performed, and ⁇ Step 1> and ⁇ Step 2-1>, ⁇ Step 2-2> or ⁇ Step 2-3> may be performed simultaneously.
- ⁇ Step 1> and ⁇ Step 2-4> or ⁇ Step 2-5> are usually performed in the order of ⁇ Step 1>, ⁇ Step 2-4> or ⁇ Step 2-5>.
- ⁇ Step 2-1> and ⁇ Step 2-3> are the same as in ⁇ Step 1>, but ⁇ Step 1> and ⁇ Step 2-1> or ⁇ Step 2>
- the aspect of -2> such as pH, reaction time, reaction temperature and the like is not necessarily uniform with ⁇ Step 1>, and may be uneven with ⁇ Step 1> within the range described in this specification.
- PL (A) for hydrolyzing Pls having the characteristics and properties of the present invention to lyPls and / or PL (A) for measuring Pls is a composition for hydrolyzing Pls to lyPls and / or It can be a composition for measuring Pls.
- the composition of the present invention may be a composition (phospholipase-containing composition) containing the following component (I), but (I) having the characteristics and properties of the present invention is preferable.
- the composition of the present invention may be a composition containing the components (I), (V) and (IV), but a composition containing the components (I) to (IV) is more preferred.
- the composition may be any of a composition for hydrolyzing Pls to lyPls, a composition for measuring Pls, and a composition for hydrolyzing Pls to lyPls and measuring Pls.
- compositions may be used as peroxidase, catalase (EC 1.11.1.6), chromogens of Trinder reagents such as phenol derivatives, aniline derivatives, toluidine derivatives, 4-aminoantipyrine (4-AA).
- a coupler such as 3-methyl-2-benzothiazolinone hydrazone may be contained.
- chromogen of the Trinder type reagent phenol derivatives, aniline derivatives, toluidine derivatives and the like can be used. Specific examples include N, N dimethylaniline, N, N diethylaniline, 2,4 dichlorophenol, N-ethyl- N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N-sulfopropyl-3,5 dimethylaniline (MAPS), N-ethyl-N- (2- Hydroxy-3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine (TOOS) (manufactured by Doujin Chemical Laboratory) Etc.
- DAOS N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline
- Hydrogen peroxide can be colored using a leuco reagent in the presence of peroxidase.
- this reagent include o-dianisidine, o-tolidine, 3,3 diaminobenzidine, 3,3,5,5-tetramethylbenzidine (manufactured by Dojindo Laboratories), N- (carboxymethylaminocarbonyl). ) -4,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) phenothiazine (DA67) (manufactured by Wako Pure Chemical Industries, Ltd.) It is done.
- the composition for hydrolyzing Pls of the present invention to lyPls and / or the composition for measuring Pls may not contain calcium ions.
- carbon dioxide in the air may dissolve in the composition over time.
- the calcium ions may be precipitated as calcium carbonate and the composition may become cloudy.
- the composition and Pls for hydrolyzing Pls of the present invention to lyPls are measured.
- the composition for this purpose does not need to contain calcium ions, and therefore has an advantage that such a change with time does not easily occur.
- composition of the present invention among the above components, (I) and (II), (III) and (IV) are preferably combined with (V) immediately before measurement to become the composition of the present invention. . That is, in order to obtain the composition of the present invention having all the components necessary for measurement, at least (I), (II), (III) and (IV) and (V) are separated before the measurement. It is preferable. A preferable form is divided into three reagents, the first reagent contains (I) and (II), the second reagent contains (III) and (IV), and the third reagent contains (V). When these are united immediately before the measurement to obtain a composition, the uniting order is arbitrary, and may be united one by one or may be united at the same time.
- the most preferred form is divided into two reagents, the first reagent contains (I), (II), (III) and (IV), and the second reagent contains (V).
- the first reagent and the second reagent are kept separate until just before the measurement. These are united immediately before the measurement to obtain a composition.
- composition of the present invention can be a composition for hydrolyzing Pls to lyPls and / or a composition for measuring Pls. Therefore, the effective addition amount and pH buffering agent conditions are the same as those in the measurement method of the present invention.
- composition of the present invention preferably contains a pH buffer as appropriate. It is also preferable to include a calibration reagent comprising at least a known amount of Pls.
- the calibration reagent is preferably a reagent containing at least a known amount of Pls, but is preferably a reagent containing a pH buffer, a preservative such as sodium azide and antibiotics, and a stabilizer such as sugar.
- a pH buffering agent When a pH buffering agent is included, conditions such as the type and concentration are the same as in the measurement method of the present invention.
- sodium azide or antibiotics When sodium azide or antibiotics are included, the type and concentration are not limited as long as they have a preservative effect.
- the lower limit is 0.005% or more, preferably 0.01% or more, more preferably It is 0.03% or more, and the upper limit is 1% or less, preferably 0.5% or less, and more preferably 0.1% or less.
- the lower limit is 5 ⁇ g / mL or more, preferably 10 ⁇ g / mL or more, more preferably 30 ⁇ g / mL or more, and the upper limit is 100 ⁇ g / mL or less, preferably 75 ⁇ g / mL or less, more preferably 60 ⁇ g / mL or less. is there.
- a stabilizer When a stabilizer is included, conditions such as the type and concentration are the same as those of the above-described phospholipase stabilizer.
- a single inspection quantity, a multi-inspection quantity (a broken line or a spline), a linear regression of the multi-inspection quantity, and the like can be selected.
- the known amount is not particularly limited, and may be selected in order to accurately measure Pls in the sample.
- the lower limit is 0.00 ⁇ M or more, preferably 10 ⁇ M or more, more preferably 50 ⁇ M or more
- the upper limit is 500 ⁇ M or less, preferably 200 ⁇ M or less, more preferably 150 ⁇ M or less.
- the composition and calibration reagent for Pls measurement of the present invention are liquid products, frozen products of liquid products, freeze-dried products of liquid products, or dried products of liquid products (heat-dried and / or air-dried and / or dried under reduced pressure, etc.) According to). Liquid frozen products are preferred, liquid freeze-dried products are more preferred, and liquid products are most preferred. In another embodiment, a frozen liquid product may be preferable. As yet another aspect, lyophilization of a liquid product may be preferred.
- the composition for hydrolyzing Pls of the present invention to lyPls and / or the composition for measuring Pls may be a composition of one reagent, but usually it is separated into two or more reagents as described above. Is preferred.
- salts such as NaCl and KCl, surfactants such as TX-100 and Tween 20, and / or preservatives such as sodium azide and antibiotics may be mixed.
- concentration of each component is preferably higher than usual. For example, it may be fixed or soaked in paper or a film. Or a gel-sol composition.
- the type and concentration are not limited, but it is usually in the range of 5 to 200 mM, and when mixing a surfactant, the type and concentration are not limited, but usually 0.001% to 2%.
- the preservative is mixed, it is the same as the case of the calibration reagent.
- the method for producing a phospholipase of the present invention is a method for producing any one of the following ⁇ 1> to ⁇ 3>, wherein a step of forming a phospholipase based on a nucleotide sequence encoding phospholipase and a phospholipase are obtained.
- a process for producing a phospholipase comprising a step.
- the amino acid sequence described in SEQ ID NO: 2 consists of an amino acid sequence in which one or more amino acids are deleted, substituted or added, and the amino acid sequence is described in SEQ ID NO: 9 and SEQ ID NO: 10 It has the effect
- the action of hydrolyzing Pls to lyPls and the characteristics (a) to (d) are the same as described above. That is, the method for producing phospholipase is the method for producing PL (A) of the present invention.
- the amino acid sequences described in SEQ ID NO: 2, SEQ ID NO: 9 and SEQ ID NO: 10 are the same as described above.
- the nucleotide sequences encoding the amino acid sequences described in SEQ ID NO: 2, SEQ ID NO: 9 and SEQ ID NO: 10, and preferred nucleotide sequences SEQ ID NO: 4, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13 and SEQ ID NO: 14 The base sequence is the same as described above.
- a step of forming PL (A) based on the base sequence encoding PL (A) can be used.
- a cell-free protein synthesis system containing a base sequence encoding PL (A), preferably a step using cells containing a base sequence encoding PL (A), or natural PL (A) is formed.
- Examples include a step of using a microorganism having a base sequence encoding PL (A) such as a microorganism, a step of using a transformant into which a base sequence encoding PL (A) is introduced, and the like.
- PL (A) As a typical method for producing PL (A) of the present invention, there is an example in which PL (A) is formed using a natural microorganism that forms PL (A).
- the natural microorganism that forms the PL (A) of the present invention can be a mutant strain further treated with a drug such as NTG, ultraviolet rays, and / or radiation.
- the mutant strain can improve the productivity of the PL (A) of the present invention and can form a mutant of the PL (A) of the present invention, and is excellent in stability, productivity, reactivity and the like. It is also possible to form mutants having different properties.
- a transformant is prepared by inserting the above base sequence into a vector and introducing it into a host microorganism. The process of forming a protein using a converter is illustrated.
- the transformant introduced with the base sequence encoding PL (A) of the present invention includes cells or microorganisms into which a recombinant phage or recombinant plasmid, which is a vector having the base sequence inserted, is introduced into a host.
- the base sequence encoding PL (A) of the present invention can be used by synthesizing a part or all of the base sequence.
- the base sequence encoding PL (A) of the present invention is obtained from a gene donor.
- a phage or plasmid constructed for gene recombination among phages or plasmids that can autonomously grow in the host microorganism is suitable.
- a microorganism belonging to E. coli is used as a host, ⁇ gt ⁇ ⁇ C, ⁇ gt ⁇ ⁇ B, and the like can be used.
- plasmid vectors for example, when Escherichia coli is used as a host, Novagen's pET vector, or pBR322, pBR325, pACYC184, pUC system, and Bacillus subtilis as hosts, pWH1520, pUB110, pKH300PLK, When actinomycetes are used as hosts, pIJ680 and pIJ702 can be used. When yeasts, particularly Saccharomyces cerevisiae, are used as hosts, YRp7, pYC1, YEp13 and the like can be used. In the present invention, plasmid vectors using Escherichia coli and actinomycetes as hosts are preferred.
- the promoter is not particularly limited as long as it can be expressed in the host.
- a vector fragment is prepared by cleaving such a vector with a restriction enzyme that produces the same end as the end of the base sequence generated by the restriction enzyme used to cleave the base sequence encoding PL (A) of the present invention.
- the base sequence fragment encoding the PL (A) of the present invention is ligated with a fragment of the base sequence encoding the PL (A) of the present invention by DNA ligase according to a conventional method, and the base sequence encoding the PL (A) of the present invention is inserted into the target vector. Recombinant phage or recombinant plasmid.
- the host into which the recombinant plasmid is introduced may be any cell or microorganism that can stably and autonomously propagate the recombinant plasmid, and Escherichia coli B strain, K strain, C strain and lysogens thereof can be used.
- Escherichia coli B strain, K strain, C strain and lysogens thereof can be used.
- the host microorganism is a microorganism belonging to the genus Bacillus, Bacillus subtilis, Bacillus megaterium, etc.
- Saccharomyces cerevisiae Saccharomyces cerevisiae INVSC1 etc.
- the PL (A) of the present invention may be formed by culturing a transformant introduced with a base sequence encoding PL (A) or a microorganism having a base sequence encoding PL (A).
- the PL (A) of the present invention can be produced by a method including the step of obtaining the PL (A) of the present invention formed as described above.
- the crude protein of the protein of the present invention does not substantially contain impurities depending on the purpose and application, but usually, for example, 50% or more, 70% or more, 95% or more of various kinds It is exemplified to make it pure. The purity may be confirmed by a known method such as SDS-PAGE or HPLC.
- PL (A) of the present invention is obtained by culturing natural microorganisms that form PL (A), microorganisms of transformants into which a base sequence encoding PL (A) has been introduced, and the like. Can be manufactured. First, microorganisms and the like are cultured in a nutrient medium to form PL (A) in the microbial cells or in the culture solution, and when formed in the microbial cells, the obtained culture is filtered or centrifuged after completion of the culture. Bacteria are collected by the means described above.
- this bacterial cell is destroyed by a mechanical method or an enzymatic method such as lysozyme, and EDTA and / or an appropriate surfactant is added as necessary to concentrate or concentrate PL (A).
- a mechanical method or an enzymatic method such as lysozyme, and EDTA and / or an appropriate surfactant is added as necessary to concentrate or concentrate PL (A).
- the PL (A) of the present invention is precipitated and recovered by applying a fractional precipitation method using an organic solvent such as acetone, methanol, ethanol or the like, a salting out method using ammonium sulfate, sodium chloride, or the like.
- the precipitate is subjected to dialysis and isoelectric precipitation, if necessary, and then subjected to gel filtration, adsorption chromatography such as affinity chromatography, ion exchange chromatography or hydrophobic chromatography to obtain the PL ( A) can be obtained. Moreover, it can carry out combining these methods suitably. Further, when the PL (A) of the present invention is formed in a culture solution, the cells are removed by means of filtration or centrifugation, and the culture solution is formed in the cells. The same processing may be performed.
- the PL (A) of the present invention obtained by these methods can be used as a stabilizer, such as ultrafiltration concentration, lyophilization, etc., with or without various salts, saccharides, proteins, lipids, surfactants and the like.
- the liquid or solid PL (A) of the present invention can be obtained, and may be freeze-dried as appropriate. In this case, 0.5 to 0.5% of saccharose, mannitol, sodium chloride, albumin or the like is used as a stabilizer. About 10% may be added.
- the base sequence described in SEQ ID NO: 4 is Nat. Biotechnol. 21, 526-531, 2003, but the nature of the protein encoded by the base sequence has not been elucidated so far and was simply expected as a hydrolase. That is, the protein consisting of the amino acid sequence shown in SEQ ID NO: 2 encoded by the base sequence shown in SEQ ID NO: 4 has an action of hydrolyzing Pls to lyPls (the property of the present invention as PL (A)) It has never been known before.
- the phospholipase A2 used in this example is as follows.
- PLA2 II L (Lot 1001A, Asahi Kasei Pharma Corporation, derived from Streptomyces avermitilis, product number T-194).
- PLA2 Nagase (manufacturing number 7907851, derived from Nagase ChemteX Corporation, Streptomyces avermitilis).
- LIPOMOD 699L (Batch No. 90825437, Biocatalyst, derived from porcine pancreas, product number L699L).
- the reagents used in this example are those manufactured by Wako Pure Chemical Industries, Ltd., Sigma Aldrich, Takara Bio, etc., and those that are readily available in the market are used.
- Measured values shown below may vary depending on measurement conditions, accuracy of equipment used, reagent manufacturer and purity.
- Example 1 Activity measurement method
- PL phospholipase
- PLB phospholipase
- PLA2 II L PLA2 Nagase
- LIPOMOD 699L LIPOMOD 699L
- ⁇ Second reaction reagent mixture 40 mM PIPES-NaOH buffer pH 7.5 0.06% 4-AA 0.04% Phenol 4.5U / mL peroxidase 30U / mL Acyl-CoA Oxidase 0.2% Triton X-100 20 mM ATP 0.1 mM FAD ⁇ Reaction stop solution> 0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate) ⁇ Enzyme dissolution dilution> 10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA ⁇ Measurement operation method> (1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
- ⁇ Calculation> Activity is calculated according to (Equation 5) below.
- U One unit (U) was defined as a reaction rate at which each phospholipase hydrolyzes a substrate (DPPC in Example 1) to produce 1 ⁇ mol of fatty acid per minute under the conditions of this example.
- the activity measurement method of this example is a method for measuring fatty acids produced by the action of each phospholipase. Therefore, the activity of PL (A) could be measured by the activity measurement method of this example, indicating that PL (A) acts on DPPC to produce at least fatty acids, like other PLA2. ing.
- Example 1 The activity of each phospholipase measured in Example 1 is shown in Table 1.
- each phospholipase shown in Table 1 was appropriately diluted and used. That is, the display activity of each phospholipase was not employed in this example.
- the cells were suspended in 5 mL of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / ml lysozyme, and treated overnight at 37 ° C.
- a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / ml lysozyme, and treated overnight at 37 ° C.
- 750 ⁇ L of 10% (w / v) SDS and 5 mg of proteinase K were added and treated at 55 ° C. for 2 hours.
- 7.5 mL of chloroform was added and stirred, and 5 mL of the aqueous phase was collected by centrifugation.
- Step 1 98 ° C., 2 minutes
- Step 2 98 ° C., 15 seconds
- Step 3 72 ° C., 15 seconds
- Step 4 74 ° C., 60 seconds
- Step 5 74 ° C., 4 minutes.
- a specific amplification product of about 900 bp was obtained by this PCR.
- the 689 AGATCT 694 sequence in the amplified product is the Kunkel method (Kunkel, T.A. (1985) Rapid and effective site-specific mutations with the phenotype of the United States of America. Page) 689 AAATCT 694 .
- the amplified fragment was digested with NheI and BglII, and inserted into the NheI-BglII site of the actinomycete plasmid (pMD20-T vector (manufactured by TaKaRa)) as an expression vector to obtain a recombinant plasmid.
- Reference Example 1-3 Production of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297
- the protoplast actinomycete Streptomyces lividans 1326 was transformed according to the method described in “PRACTICAL STREPTOMY CES GENETICS (Kieser et al., John Inns Foundation, 2000)”. The recombinant actinomycetes were obtained after conversion.
- Reference Example 1-4 Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297
- the recombinant actinomycetes obtained in Reference Example 1-3 were cultured in 100 mL ⁇ 4 tryptic soy media (Pecton Dickinson) containing 12 ⁇ g / mL thiostrepton.
- the supernatant was recovered from the obtained culture solution (340 mL) by centrifugation (15000 rpm, 5 minutes, 4 ° C.), and the precipitate was recovered by ammonium sulfate fractionation.
- the collected precipitate was dissolved in 20 mM squirrel-hydrochloric acid buffer (pH 8.0) and dialyzed with 20 mM Tris-hydrochloric acid buffer (pH 8.0) as an external solution to obtain an enzyme solution.
- concentration of the obtained PL (A) was about 2.5 U / mL, and it was appropriately concentrated with 10-kDa centrifugal filter device (Millipore) or the like, and the PL (A) of the present invention was used in Examples 1 to 11. Used as.
- electrophoretically purified enzyme was obtained from Streptomycessp. NA684 strain.
- Example 2 Substrate specificity 1 of PL (A)
- the reaction rate (hydrolysis rate) of PL (A) with respect to the sn-1 and sn-2 positions of phosphatidylcholine was compared.
- 50 ⁇ L of the ⁇ reaction solution> was taken out, and 50 ⁇ L of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to this ⁇ reaction solution> and mixed.
- the breakdown is about 80% of 2-acyl-sn-glycero-3-phosphocholine (1-Acyl-sn-glycero-3-phosphocholine), 1-acyl-sn-glycose-3-phosphocholine (1-AcyL- sn-glycero-3-phosphocholine) was about 20%, and the ratio was constant for at least 5 to 30 minutes after the start of the reaction (FIG. 4).
- reaction rate ratio of PL (A) to the sn-1 and sn-2 positions of phosphatidylcholine was about 4: 1.
- Example 3 Substrate specificity 2 and specific activity of PL (A)
- PlsEtn (C18, 18: 1) was compared with the reaction rate (hydrolysis rate) of PL (A) against DPPC, and the specific activity was measured.
- Example 4 Substrate specificity 3 of PL (A)
- the reaction rate (hydrolysis rate) of PL (A) against PlsEtn (C18, 20: 4) and POPC was compared.
- Example 5 Molecular weight measurement of each phospholipase by SDS-PAGE method
- ⁇ SDS-PAGE sample buffer > 125 mM Tris-HCl buffer (pH 6.8) 4 (W / V)% SDS 10 (W / V)% Sucrose 0.01 (W / V)% Bromophenol Blue 10 (W / V)% 2-Mercaptoethanol
- ⁇ Migration buffer > 3g / L Tris 14.4 g / L Glycine 1g / L SDS
- Each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L) solution was diluted with distilled water so that the absorbance at 280 nm was about 1.0 to obtain each phospholipase aqueous solution.
- each phospholipase aqueous solution and 20 ⁇ L of ⁇ SDS-PAGE sample buffer> were mixed and denatured by heating at 99 ° C. for 20 minutes.
- Each denatured phospholipase was cooled to room temperature, and 10 ⁇ L was measured for molecular weight by SDS-PAGE.
- SDS-PAGE standard Broad range Bio RAD, product number 161-0317) was used.
- e-PAGEEL As the polyacrylamide gel, e-PAGEEL (Ato Corporation, product number E-T15S) was used.
- the electrophoresis buffer is as described above. Electrophoresis was performed at room temperature and constant current (20 mA) for about 60 minutes. Ez Stain Aqua (Ato Co., product number AE-1340) was used for polypeptide staining. Pure water was used for decolorization.
- Lanes 1 and 7 in FIG. 5 are markers.
- Lanes 2 to 6 are phospholipases, and the molecular weight by SDS-PAGE method is Lane 2 PL (A) Range of about 25-30 kDa Lane 3 PLB Range of about 43-45 kDa Lane 4 PLA2 II L Range of about 12-14 kDa Lane 5 PLA2 Nagase Range of about 12-14 kDa Lane 6 LIPOMOD 699L About 12-14 kDa It became the range.
- the molecular weight of PLA2 II L, PLA2 Nagase and PLIPMOD 699L by SDS-PAGE was the same as that of the known phospholipase A2.
- the molecular weight of PL (A) by SDS-PAGE was in the range of about 25-30 kDa, which was clearly different from phospholipase A1 and phospholipase A2.
- Example 6-1 Action of each phospholipase on PlsEtn (in the presence of calcium ion)]
- the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn extracted from pig brain were compared in the presence of calcium ions.
- PlsEtn (Brain, Porcine, Avanti Polar Lipids, Inc., part number 840022) extracted from pig brain is a natural product and a plurality of PlsEtns including (Chemical Formula 3) and (Chemical Formula 4) are mixed. Conceivable. That is, it is considered that PlsEtn, a molecular species that is easily acted by each phospholipase, and PlsEtn, a molecular species that is difficult to act.
- Each phospholipase ⁇ reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, an equal amount of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to the ⁇ reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the ⁇ reaction solution>.
- TLC thin layer chromatography
- MERCK thin layer chromatography
- a suitable amount of ninhydrin spray (Wako Pure Chemical Industries, Ltd., product number 145-08601) was sprayed on the developed TLC and heated in a dry heat oven at 100 ° C. for about 15 to 30 seconds to detect lyPlsEtn and PlsEtn.
- the TLC conditions in other examples are the same as those in this example.
- Lanes 1 to 7 in FIG. 6 are as follows.
- Lane 1 is a phospholipid extracted into the organic phase from ⁇ reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn extracted from pig brain.
- Lane 2 is a phospholipid extracted from the ⁇ reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
- Lane 3 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn extracted from pig brain.
- Lane 4 is a phospholipid extracted into the organic phase from the ⁇ reaction solution> in which PLB was allowed to act on PlsEtn extracted from pig brain.
- Lane 5 is a phospholipid extracted in the organic phase from the ⁇ reaction solution> in which PLA2 II L is allowed to act on PlsEtn extracted from pig brain.
- Lane 6 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn extracted from pig brain.
- Lane 7 is a phospholipid extracted from the ⁇ reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn extracted from pig brain to the organic phase.
- Example 6-2 Action of each phospholipase on PlsEtn (in the presence of calcium ion)
- PlsEtn the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 1) were compared in the presence of calcium ions.
- Lanes 1 to 7 in FIG. 7 are as follows.
- Lane 1 is a phospholipid extracted from an organic phase from ⁇ reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn (Chemical Formula 4).
- Lane 2 is a phospholipid extracted from the ⁇ reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
- Lane 3 is a phospholipid extracted into an organic phase from a ⁇ reaction solution> in which PL (A) is allowed to act on PlsEtn (Chemical Formula 4).
- Lane 4 is a phospholipid extracted from the ⁇ reaction solution> in which PLB was allowed to act on PlsEtn (chemical formula 4) to the organic phase.
- Lane 5 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PLA2 II L is allowed to act on PlsEtn (Chemical Formula 4).
- Lane 6 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn (Chemical Formula 4).
- Lane 7 is a phospholipid extracted from the ⁇ reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase.
- Example 7-1 Action of each phospholipase on Pls (in the absence of calcium ion)]
- PlsEtn extracted from pig brain was compared in the absence of calcium ions.
- Each phospholipase ⁇ reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as ⁇ reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the ⁇ reaction solution>.
- Lanes 1 to 7 in FIG. 8 are as follows.
- Lane 1 is a phospholipid extracted into the organic phase from ⁇ reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn extracted from pig brain.
- Lane 2 is a phospholipid extracted from the ⁇ reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
- Lane 3 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn extracted from pig brain.
- Lane 4 is a phospholipid extracted into the organic phase from the ⁇ reaction solution> in which PLB was allowed to act on PlsEtn extracted from pig brain.
- Lane 5 is a phospholipid extracted in the organic phase from the ⁇ reaction solution> in which PLA2 II L is allowed to act on PlsEtn extracted from pig brain.
- Lane 6 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn extracted from pig brain.
- Lane 7 is a phospholipid extracted from the ⁇ reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn extracted from pig brain to the organic phase.
- PL (A) strongly showed the effect that PlsEtn extracted from pig brain disappeared even in the absence of calcium, and the mobility changed to the same position as lyPlsEtn (Chemical Formula 7) (lane 3).
- Example 7-2 Action of each phospholipase on PlsEtn (in the absence of calcium ion)]
- the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 4) were compared in the presence of calcium ions.
- Each phospholipase ⁇ reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as ⁇ reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the ⁇ reaction solution>.
- Lanes 1 to 7 in FIG. 9 are as follows.
- Lane 1 is a phospholipid extracted from an organic phase from ⁇ reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn (Chemical Formula 4).
- Lane 2 is a phospholipid extracted from the ⁇ reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
- Lane 3 is a phospholipid extracted into an organic phase from a ⁇ reaction solution> in which PL (A) is allowed to act on PlsEtn (Chemical Formula 4).
- Lane 4 is a phospholipid extracted from the ⁇ reaction solution> in which PLB was allowed to act on PlsEtn (chemical formula 4) to the organic phase.
- Lane 5 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PLA2 II L is allowed to act on PlsEtn (Chemical Formula 4).
- Lane 6 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn (Chemical Formula 4).
- Lane 7 is a phospholipid extracted from the ⁇ reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase.
- Example 8 Product when PL (A) is allowed to act on Pls
- PlsEtn Chemical Formula 4
- Example 9 Relationship between the amount of PL (A) enzyme and the effect on Pls]
- Lanes 1 to 8 in FIG. 10 are as follows.
- Lane 1 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PL (A) is allowed to act on PlsEtn at 0.5 U / mL.
- Lane 2 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PL (A) was allowed to act at 0.05 U / mL on PlsEtn.
- Lane 3 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.02 U / mL.
- Lane 4 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.01 U / mL.
- Lane 5 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PLsEtn at 0.0067 U / mL.
- Lane 6 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.005 U / mL.
- Lane 7 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was not allowed to act on lyPlsEtn (0 U / mL).
- Lane 8 is a phospholipid extracted from the ⁇ reaction solution> in which PL (A) was not allowed to act on Pls (0 U / mL) to the organic phase.
- Example 10-1 Relationship between pH and effect of PL (A) on PlsEtn] ⁇ Reaction solution> 50 mM each buffer 2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7)) 0 or 0.5 U / mL PL (A) ⁇ Reaction solution> containing citrate-NaOH buffer (pH 4, 5, 6), potassium phosphate buffer pH 7, Tris-hydrochloric acid buffer (pH 8, 9), glycine-NaOH buffer pH 10 as each buffer solution Prepared.
- Lanes 1 to 18 in FIG. 11 are as follows.
- Lane 4 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was not allowed to act on PlsEtn in ⁇ reaction solution> of potassium phosphate buffer pH 7.
- Lane 8 is a phospholipid extracted from the ⁇ reaction solution> in which PL (A) was not allowed to act on PlsEtn in the ⁇ reaction solution> in glycine-NaOH buffer pH 10 (0 U / mL).
- Lanes 9 to 11 are phospholipids extracted in the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn in ⁇ reaction solution> of citrate-NaOH buffer pH 4, 5, 6 in order. .
- Lane 12 is a phospholipid extracted into an organic phase from a ⁇ reaction solution> obtained by allowing PL (A) to act on PlsEtn in a ⁇ reaction solution> in a potassium phosphate buffer pH 7.
- Lanes 13 to 15 are phospholipids extracted in the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn in ⁇ reaction solution> of Tris-HCl buffer pH 7.5, 8, 9 in order. is there.
- Lane 16 is phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was allowed to act on PlsEtn in ⁇ reaction solution> of glycine-NaOH buffer pH 10.
- Lane 17 is a phospholipid extracted from the ⁇ reaction solution> in which the PL (A) was not allowed to act on lyPlsEtn in the ⁇ reaction solution> in Tris-HCl buffer pH 7.5 (0 U / mL).
- Lane 18 is a phospholipid extracted from the ⁇ reaction solution> in which PL (A) was not allowed to act on PlsEtn in ⁇ reaction solution> in Tris-HCl buffer pH 7.5 (0 U / mL) to the organic phase.
- FIG. 11 shows that PL (A) can hydrolyze PlsEtn to lyPls in the pH range of 4 to 10 under the conditions of this example. And it turned out that the effect
- Peroxidase was purchased from SIGMA as product number P8375.
- GPPC Glycerophylcholine phosphatase
- LyPlsase was produced as a recombinant Escherichia coli from rats by the method described in The journal of biochemical chemistry, 2011, 286, 24916-24930.
- DA67 was purchased from Wako Pure Chemical Industries, Ltd. as part number 046-22341.
- ⁇ Measurement> Measurement was performed using a Hitachi 7080 automatic analyzer. The amount of the sample was 12 ⁇ L, the amount of ⁇ Reaction Solution 1> was 180 ⁇ L, the amount of ⁇ Reaction Solution 2> was 45 ⁇ L, the reaction temperature was 37 ° C., and the absorbance difference at 660 nm (subwavelength 750 nm) was measured as a one-point end assay.
- FIG. 12 shows a calibration curve of a sample prepared by adding PlsEtn (Chemical Formula 4) to a 10% dodecyl maltoside aqueous solution at 0 to 200 ⁇ M.
- Example 12 Preparation method of Streptomyces avermitilis JCM 5070-derived PL (A)]
- Example 12-1 Separation of chromosomal DNA of Streptomyces avermitilis JCM 5070
- Streptomyces avermitilis JCM 5070 was used in 5 mL of LB medium and cultured at 28 ° C. for 2 days for collection. Next, this bacterial cell was suspended in 250 ⁇ L of PIA buffer of QIAprep Miniprep (QIAGEN), 250 ⁇ L of P2 buffer was added, and the mixture was stirred 5 times to obtain template chromosomal DNA.
- QIAprep Miniprep QIAGEN
- Example 12-2 Preparation of recombinant plasmid containing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
- a sense primer “primer S” (SEQ ID NO: 7) was synthesized as an oligo for PCR, and “primer AS” (SEQ ID NO: 8) was synthesized as an antisense primer.
- PCR reaction conditions are as follows.
- Step 1 98 ° C., 2 minutes
- Step 2 98 ° C., 15 seconds
- Step 3 72 ° C., 15 seconds
- Step 4 74 ° C., 60 seconds
- Step 5 74 ° C., 4 minutes.
- a specific amplification product of about 810 bp was obtained by this PCR. This amplified fragment was digested with NdeI and EcoRI and inserted into the NdeI-EcoRI sites of expression vectors pET21a (+) and pET24a (+) to obtain a recombinant plasmid.
- Example 13-3 Preparation of recombinant Escherichia coli expressing a Streptomyces avermitilis JCM 5070-derived PL (A) gene
- the recombinant plasmid obtained in Example 12-2 was transformed into E. coli BL21 (DE3) to obtain recombinant E. coli.
- Example 13-4 Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
- Recombinant E. coli obtained in Example 13-3 was mixed with 50 ⁇ g / mL ampicillin (in the case of E. coli transformed with pET21a (+)) or 30 ⁇ g / mL kanamycin (in the case of E. coli transformed with pET24a (+)).
- the culture was carried out at 34 ° C. for 24 hours in 100 mL of Overnight Express TB medium (manufactured by Novagen).
- the obtained culture solution was centrifuged to recover the cells.
- the cells were suspended in 20 mM Tris-HCl buffer (pH 7.5), sonicated, and the centrifuged supernatant was used in Example 14 as it was (about 0.1 U / mL). Centrifugal supernatant obtained by culturing untransformed E. coli (no antibiotics added) and sonication was used as a negative control.
- Example 14 Action of Streptomyces avermitilis JCM 5070-derived PL (A) on PlsEtn (in the absence of calcium ions)]
- PlsEtn chemical formula 4
- Culture solubilized centrifuge supernatant ⁇ Reaction solution> is reacted at 25 ° C. or 30 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) is added in the same amount as ⁇ Reaction solution>.
- the phospholipid extracted into the organic phase was used as a TLC sample.
- Lanes 1 to 8 in FIG. 13 are as follows.
- Lane 1 is a phospholipid extracted into an organic phase from ⁇ reaction solution> in which PL (A) was not allowed to act on PlsEtn (Chemical Formula 4).
- Lane 2 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) was not allowed to act on lyPlsEtn (Chemical Formula 7).
- Lane 3 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) derived from E. coli transformed with pET21a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 25 ° C.
- Lane 4 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) derived from E. coli transformed with pET24a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 25 ° C.
- Lane 5 is a phospholipid extracted from the ⁇ reaction solution> in which a negative control was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase at 25 ° C.
- Lane 6 is a phospholipid extracted into an organic phase from a ⁇ reaction solution> in which PL (A) derived from Escherichia coli transformed with pET21a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 30 ° C.
- Lane 7 is a phospholipid extracted into the organic phase from ⁇ reaction solution> in which PL (A) derived from E. coli transformed with pET24a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 30 ° C.
- Lane 8 is a phospholipid extracted at 30 ° C. into the organic phase from the ⁇ reaction solution> in which negative control was allowed to act on PlsEtn (Chemical Formula 4).
- Streptomyces avermitilis JCM 5070-derived PL acts on PlsEtn (Chemical Formula 4) in the absence of calcium ions.
- the present invention can provide a method for hydrolyzing plasmalogen to lysoplasmalogen, a method for measuring plasmalogen, a composition for hydrolysis and / or measurement, and a method for producing phospholipase.
- NITE BP-1014 Accession Number: NITE BP-1014 Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD) Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan Date of deposit: January 26, 2011. [Streptomyces sp.
- NA684 (Accession number: NITE BP-1015)] Accession Number: NITE BP-1015 Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD) Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan Date of deposit: January 26, 2011.
- NPMD National Institute for Product Evaluation Technology Patent Microorganism Depositary
- SEQ ID NO: 1 Full length of amino acid sequence of PL (A)
- SEQ ID NO: 2 Full length of amino acid sequence of other PL (A)
- SEQ ID NO: 3 Base sequence of PL (A) gene
- SEQ ID NO: 4 Other PL (A) Base sequence of gene
- SEQ ID NO: 5 Primer S Sequence number 6: Primer AS SEQ ID NO: 7: other primer
- S SEQ ID NO: 8 other primer AS SEQ ID NO: 9: Partial amino acid sequence of PL (A)
- SEQ ID NO: 10 Partial amino acid sequence of other PL (A)
- SEQ ID NO: 11 Base sequence encoding the amino acid sequence of SEQ ID NO: 9 : Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 9
- SEQ ID NO: 13 Base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10
- SEQ ID NO: 14 Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10 Base sequence
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Endocrinology (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Provided is a novel method for hydrolyzing plasmalogen.
Plasmalogen is hydrolyzed into lysoplasmalogen using a phospholipase having at least the properties (a) to (c) mentioned below: (a) the specific activity of the phospholipase for ethanolamine-type plasmalogen (C18, 20:4) is 0.66 ± 0.2 U/mg; (b) the molecular weight of the phospholipase ranges from 25 to 30 kDa as measured by an SDS-PAGE method; and (c) the phospholipase is derived from an actinomycete belonging to the genus Streptomyces.
Description
本発明は、新規な作用を有するホスホリパーゼを用いてプラスマローゲンをリゾプラスマローゲンに加水分解する方法、また上記のホスホリパーゼを用いてプラスマローゲンを測定する方法、また上記のホスホリパーゼを含有する加水分解用又は測定用の組成物、また上記のホスホリパーゼを製造する方法に関する。本発明が利用可能な技術分野は、例えばプラスマローゲン及び/又はリゾプラスマローゲンが関連する疾病等の診断技術、プラスマローゲン及び/又はリゾプラスマローゲンを含有する食料・食品の生産技術などである。
The present invention relates to a method for hydrolyzing plasmalogen to lysoplasmalogen using a phospholipase having a novel action, a method for measuring plasmalogen using the above-mentioned phospholipase, and a method for hydrolysis containing the above-mentioned phospholipase or It is related with the composition for a measurement, and the method of manufacturing said phospholipase. The technical fields in which the present invention can be used include, for example, diagnostic techniques for diseases associated with plasmalogen and / or lysoplasmalogen, and production techniques for foods and foods containing plasmalogen and / or lysoplasmalogen.
公知のホスホリパーゼA2(EC 3.1.1.4)は、カルシウムイオンの存在下、リン脂質のsn-2位を加水分解してリゾリン脂質とする作用を示す分子量14~18.5kDaの酵素である(非特許文献1)。
The known phospholipase A2 (EC 3.1.1.4) is an enzyme having a molecular weight of 14 to 18.5 kDa that exhibits the action of hydrolyzing the sn-2 position of phospholipid to form lysophospholipid in the presence of calcium ions. Yes (Non-Patent Document 1).
プラスマローゲンはリン脂質の1つであるので、プラスマローゲンのsn-2位を加水分解してリゾプラスマローゲンとする作用を有する酵素は、ホスホリパーゼA2であると考えられてきた(非特許文献2)。
Since plasmalogen is one of phospholipids, it has been considered that an enzyme having an action of hydrolyzing the sn-2 position of plasmalogen to form lysoplasmalogen is phospholipase A2 (Non-patent Document 2). .
リン脂質のsn-2位を加水分解してリゾリン脂質とする作用を有するその他の公知の酵素としてホスホリパーゼA1(EC 3.1.1.32)がある。ホスホリパーゼA1はリン脂質のsn-1位を加水分解してリゾリン脂質とする作用が主であるが、sn-2位を加水分解してリゾリン脂質とする作用も有する(非特許文献1)。微生物由来のホスホリパーゼA1として、作用にカルシウムイオンが必要であるホスホリパーゼA1(非特許文献3)と、作用がカルシウムイオンで活性化されるホスホリパーゼA1(非特許文献4)とが公知である。微生物由来のホスホリパーゼA1のSDS-PAGE法による分子量は35kDaであると報告されている(非特許文献4)。
There is phospholipase A1 (EC 3.1.1.32) as another known enzyme having an action of hydrolyzing the sn-2 position of phospholipid to form lysophospholipid. Phospholipase A1 mainly has the action of hydrolyzing the sn-1 position of phospholipids to give lysophospholipids, but also has the action of hydrolyzing the sn-2 position to make lysophospholipids (Non-patent Document 1). As phospholipase A1 derived from microorganisms, phospholipase A1 (non-patent document 3), which requires calcium ions for its action, and phospholipase A1 (non-patent document 4), whose action is activated by calcium ions, are known. It has been reported that the molecular weight of microorganism-derived phospholipase A1 by the SDS-PAGE method is 35 kDa (Non-patent Document 4).
本発明の解決課題は、ホスホリパーゼを用いてプラスマローゲンをリゾプラスマローゲンに加水分解する方法、ホスホリパーゼを用いてプラスマローゲンを測定する方法、ホスホリパーゼを含有する組成物、ホスホリパーゼを製造する方法を提供することである。
The problem to be solved by the present invention is to provide a method for hydrolyzing plasmalogen to lysoplasmalogen using phospholipase, a method for measuring plasmalogen using phospholipase, a composition containing phospholipase, and a method for producing phospholipase. It is.
本発明者らは、非特許文献2の情報に従い、ホスホリパーゼA2の作用によりプラスマローゲンをリゾプラスマローゲンへ加水分解することを試みた。ところが、ホスホリパーゼA2は、カルシウムイオンの存在下でも、効率よくプラスマローゲンをリゾプラスマローゲンへ加水分解する作用を有しない場合があるという、従来の常識とは異なる知見を本発明者らは見出した。
The present inventors tried to hydrolyze plasmalogen into lysoplasmalogen by the action of phospholipase A2 according to the information in Non-Patent Document 2. However, the present inventors have found that phospholipase A2 does not have an action of efficiently hydrolyzing plasmalogen to lysoplasmalogen even in the presence of calcium ions, which is different from conventional common knowledge.
次に本発明者らは、日本農芸化学会2011年度大会(講演番号:2C10a05)において、ホスホリパーゼA1とホスホリパーゼA2の作用を併せもつと報告され、かつSDS-PAGE法による分子量が約40kDaであるStreptomyces sp.NA684由来ホスホリパーゼ(本明細書ではPLBという場合がある)の作用によるプラスマローゲンのリゾプラスマローゲンへの加水分解を試みた。
Next, the present inventors have reported at the 2011 Annual Meeting of the Japanese Society of Agricultural Chemistry (lecture number: 2C10a05) that the action of phospholipase A1 and phospholipase A2 is combined, and the molecular weight by the SDS-PAGE method is about 40 kDa. sp. An attempt was made to hydrolyze plasmalogen to lysoplasmalogen by the action of NA684-derived phospholipase (sometimes referred to herein as PLB).
ところが、PLBは、カルシウムイオンの存在下でも、効率よくプラスマローゲンを脂肪酸とリゾプラスマローゲンに加水分解する作用を有しない場合があることを見出した。
However, it has been found that PLB may not have an action of efficiently hydrolyzing plasmalogen into a fatty acid and lysoplasmalogen even in the presence of calcium ions.
そこで、本発明者らは、ホスホリパーゼA1とホスホリパーゼA2の作用を併せもつが、ホスホリパーゼA1の作用の方がホスホリパーゼA2の作用より強いホスホリパーゼの作用によるプラスマローゲンのリゾプラスマローゲンへの加水分解を試みた。その結果、このホスホリパーゼは効率よくプラスマローゲンをリゾプラスマローゲンに加水分解する作用を有するという、従来の常識からは予見不可能であった知見を本発明者らは見出した。さらにこのホスホリパーゼが、
(i)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%であり、
(ii)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%であり、
(iii)SDS-PAGE法による分子量が約25~30kDaの範囲である、
という点で公知のホスホリパーゼA1及びホスホリパーゼA2とは明確に異なることを見出した。 Therefore, the present inventors tried to hydrolyze plasmalogen to lysoplasmalogen by the action of phospholipase A1, which has both actions of phospholipase A1 and phospholipase A2, but the action of phospholipase A1 is stronger than that of phospholipase A2. . As a result, the present inventors have found that this phospholipase has an action of efficiently hydrolyzing plasmalogen into lysoplasmalogen, which was not foreseeable from conventional common sense. Furthermore, this phospholipase
(I) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine,
(Ii) in the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine;
(Iii) the molecular weight by SDS-PAGE method is in the range of about 25-30 kDa,
In this respect, it was found that the known phospholipase A1 and phospholipase A2 are clearly different.
(i)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%であり、
(ii)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%であり、
(iii)SDS-PAGE法による分子量が約25~30kDaの範囲である、
という点で公知のホスホリパーゼA1及びホスホリパーゼA2とは明確に異なることを見出した。 Therefore, the present inventors tried to hydrolyze plasmalogen to lysoplasmalogen by the action of phospholipase A1, which has both actions of phospholipase A1 and phospholipase A2, but the action of phospholipase A1 is stronger than that of phospholipase A2. . As a result, the present inventors have found that this phospholipase has an action of efficiently hydrolyzing plasmalogen into lysoplasmalogen, which was not foreseeable from conventional common sense. Furthermore, this phospholipase
(I) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine,
(Ii) in the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine;
(Iii) the molecular weight by SDS-PAGE method is in the range of about 25-30 kDa,
In this respect, it was found that the known phospholipase A1 and phospholipase A2 are clearly different.
このようにして本発明者らは、上記のホスホリパーゼを用いてプラスマローゲンをリゾプラスマローゲンに加水分解する新規な方法と、上記のホスホリパーゼを用いてプラスマローゲンを測定する新規な方法とを見出し、さらに上記のホスホリパーゼを含有する組成物と上記のホスホリパーゼを製造する方法とを創出して本発明を完成した。
Thus, the present inventors have found a novel method for hydrolyzing plasmalogen to lysoplasmalogen using the above phospholipase, and a novel method for measuring plasmalogen using the above phospholipase, and The present invention was completed by creating a composition containing the above phospholipase and a method for producing the above phospholipase.
本発明によれば、効率よくプラスマローゲンをリゾプラスマローゲンに加水分解することができる。
According to the present invention, plasmalogen can be efficiently hydrolyzed to lysoplasmalogen.
本発明について、以下具体的に説明する。
The present invention will be specifically described below.
本発明は、ホスホリパーゼを用いてプラスマローゲンをリゾプラスマローゲンに加水分解する方法、ホスホリパーゼを用いて試料中の未知濃度のプラスマローゲンの含有量を測定する方法、ホスホリパーゼを含有する組成物、ホスホリパーゼを製造する方法である。
The present invention relates to a method of hydrolyzing plasmalogen to lysoplasmalogen using phospholipase, a method of measuring the content of plasmalogen at an unknown concentration in a sample using phospholipase, a composition containing phospholipase, and a phospholipase It is a method to do.
本発明のプラスマローゲン(plasmalogen、Plsと略す場合がある)は、公知のPlsを含む。本発明の好ましいPlsは、グリセロリン脂質のうち、sn-1(C1)位に脂肪酸がビニルエーテル結合したアルケニルアシル型グリセロリン脂質(アルケニルアシル型エーテルリン脂質)であり、以下の(化1)で表される。
The plasmalogen (sometimes abbreviated as plasmalogen, Pls) of the present invention includes known Pls. Preferred Pls of the present invention is an alkenyl acyl type glycerophospholipid (alkenyl acyl type ether phospholipid) in which fatty acid is vinyl ether-bonded at the sn-1 (C1) position among glycerophospholipids, and is represented by the following (Chemical Formula 1). The
(式中、R1及びR2は、それぞれ独立して、低級若しくは高級アルキル基又はアルケニル基であり、Xは、水素、コリン、エタノールアミン、セリン、イノシトール、エタノール又はこれらの誘導体である)
本発明においては特に上記式中、Xがコリン又はエタノールアミンであるPlsが好ましい。本明細書中において、上記式中、Xがコリンの場合をコリン型プラスマローゲン(PlsChoと略す場合がある)といい、Xがエタノールアミンの場合をエタノールアミン型プラスマローゲン(PlsEtnと略す場合がある)という。本明細書中において単にPlsと記載した場合は、少なくともPlsChoとPlsEtnを含み、本発明においてはPlsEtnが好ましい。 (Wherein R 1 and R 2 are each independently a lower or higher alkyl group or an alkenyl group, and X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof)
In the present invention, Pls in which X is choline or ethanolamine in the above formula is particularly preferable. In the present specification, in the above formula, the case where X is choline is referred to as choline-type plasmalogen (sometimes abbreviated as PlsCho), and the case where X is ethanolamine is sometimes referred to as ethanolamine-type plasmalogen (PlsEtn). ). In the present specification, the simple description of Pls includes at least PlsCho and PlsEtn, and PlsEtn is preferred in the present invention.
本発明においては特に上記式中、Xがコリン又はエタノールアミンであるPlsが好ましい。本明細書中において、上記式中、Xがコリンの場合をコリン型プラスマローゲン(PlsChoと略す場合がある)といい、Xがエタノールアミンの場合をエタノールアミン型プラスマローゲン(PlsEtnと略す場合がある)という。本明細書中において単にPlsと記載した場合は、少なくともPlsChoとPlsEtnを含み、本発明においてはPlsEtnが好ましい。 (Wherein R 1 and R 2 are each independently a lower or higher alkyl group or an alkenyl group, and X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof)
In the present invention, Pls in which X is choline or ethanolamine in the above formula is particularly preferable. In the present specification, in the above formula, the case where X is choline is referred to as choline-type plasmalogen (sometimes abbreviated as PlsCho), and the case where X is ethanolamine is sometimes referred to as ethanolamine-type plasmalogen (PlsEtn). ). In the present specification, the simple description of Pls includes at least PlsCho and PlsEtn, and PlsEtn is preferred in the present invention.
本発明のリゾプラスマローゲン(lysoplasmalogen、lyPlsと略す場合がある)は、公知のlyPlsを含む。本発明において好ましいlyPlsは、グリセロリン脂質のうち、sn-1位に脂肪酸がビニルエーテル結合したアルケニルアシル型グリセロリン脂質(アルケニルアシル型エーテルリン脂質)であり、以下の(化2)で表される。
The lysoplasmagen of the present invention (sometimes abbreviated as lysoplasmagen, lyPls) includes known lyPls. A preferred lyPls in the present invention is an alkenyl acyl type glycerophospholipid (alkenyl acyl type ether phospholipid) in which a fatty acid is vinyl ether-bonded at the sn-1 position among glycerophospholipids, and is represented by the following (Chemical Formula 2).
(式中、R1は、低級若しくは高級アルキル基又はアルケニル基であり、Xは、水素、コリン、エタノールアミン、セリン、イノシトール、エタノール又はこれらの誘導体である)
本発明においては特に上記式中、Xがコリン又はエタノールアミンであるlyPlsが好ましい。本明細書中において、上記式中、Xがコリンの場合をコリン型リゾプラスマローゲン(lyPlsChoと略す場合がある)といい、Xがエタノールアミンの場合をエタノールアミン型リゾプラスマローゲン(lyPlsEtnと略す場合がある)という。本明細書中において単にlyPlsと記載した場合は、少なくともlyPlsChoとlyPlsEtnを含み、本発明においてはlyPlsEtnが好ましい。 (Wherein R 1 is a lower or higher alkyl group or an alkenyl group, and X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof)
In the present invention, lyPls in which X is choline or ethanolamine in the above formula is particularly preferable. In the present specification, in the above formula, the case where X is choline is referred to as choline-type lysoplasmalogen (sometimes abbreviated as lyPlsCho), and the case where X is ethanolamine is referred to as ethanolamine-type lysoplasmalogen (lyPlsEtn). There is). In the present specification, the simple description of lyPls includes at least lyPlsCho and lyPlsEtn, and lyPlsEtn is preferred in the present invention.
本発明においては特に上記式中、Xがコリン又はエタノールアミンであるlyPlsが好ましい。本明細書中において、上記式中、Xがコリンの場合をコリン型リゾプラスマローゲン(lyPlsChoと略す場合がある)といい、Xがエタノールアミンの場合をエタノールアミン型リゾプラスマローゲン(lyPlsEtnと略す場合がある)という。本明細書中において単にlyPlsと記載した場合は、少なくともlyPlsChoとlyPlsEtnを含み、本発明においてはlyPlsEtnが好ましい。 (Wherein R 1 is a lower or higher alkyl group or an alkenyl group, and X is hydrogen, choline, ethanolamine, serine, inositol, ethanol, or a derivative thereof)
In the present invention, lyPls in which X is choline or ethanolamine in the above formula is particularly preferable. In the present specification, in the above formula, the case where X is choline is referred to as choline-type lysoplasmalogen (sometimes abbreviated as lyPlsCho), and the case where X is ethanolamine is referred to as ethanolamine-type lysoplasmalogen (lyPlsEtn). There is). In the present specification, the simple description of lyPls includes at least lyPlsCho and lyPlsEtn, and lyPlsEtn is preferred in the present invention.
本発明においてPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法に用いるホスホリパーゼ(phospholipase)は、以下に示す特性や性質のいずれかを有するものであることが好ましい。すなわち、ホスホリパーゼは、リン脂質を脂肪酸とその他の親油性物質に加水分解する作用(性質)、具体的にはリン脂質のsn-1位のアシル基を加水分解する作用(ホスホリパーゼA1(Phospholipase A1))、リン脂質のsn-2位のアシル基を加水分解する作用(ホスホリパーゼA2(Phospholipase A2))、リン脂質のsn-1位及びsn-2位のアシル基を加水分解する作用、リゾリン脂質のsn-1位又はsn-2位のアシル基を加水分解する作用(ホスホリパーゼB(Phospholipase B))の作用のうちのいずれか1つ以上の作用を有するものであることが好ましく、その他の特性や性質の有無は特に限定されない。また本願明細書に記載の特性や性質のうち、任意の1つ又は2つ以上を備えていればさらに好ましい。さらに好ましくは、後述する特性(a)から(c)までを、特に好ましくは(a)から(e)までを、さらに好ましくは(a)から(m)までを有することであり、そのようなホスホリパーゼを、本明細書ではPL(A)という場合がある。
In the present invention, the phospholipase used for the method of hydrolyzing Pls to lyPls and / or the method of measuring Pls preferably has any of the following characteristics and properties. In other words, phospholipase has an action (property) to hydrolyze phospholipids into fatty acids and other lipophilic substances, specifically, an action to hydrolyze an acyl group at the sn-1 position of phospholipid (phospholipase A1). ), The action of hydrolyzing the acyl group at the sn-2 position of the phospholipid (phospholipase A2 (phospholipase A2)), the action of hydrolyzing the acyl group at the sn-1 position and the sn-2 position of the phospholipid, It preferably has one or more of the actions of hydrolyzing the acyl group at the sn-1 position or sn-2 position (phospholipase B). The presence or absence of the property is not particularly limited. Further, it is more preferable that any one or more of the characteristics and properties described in the present specification are provided. More preferably, it has characteristics (a) to (c) described below, particularly preferably (a) to (e), and more preferably (a) to (m). The phospholipase is sometimes referred to herein as PL (A).
なお、本発明において実験方法は、例えば「蛋白質・酵素の基礎実験法、改訂第2版、堀尾武一、1994年南光堂」、「バイオ実験で失敗しない!検出と定量のコツ、編集森山達哉、羊土社、2005年」、「バイオ実験イラストレイテッド〈5〉タンパクなんてこわくない、西山敬人、秀潤社、2003年第1版第5刷」や、市販のキットなどに添付された手順書などに従えば実施できるものであるが、測定値は測定の条件や使用機器の精度などによりその値は変化し得る。
In the present invention, the experimental method is, for example, “Protein / Enzyme Experimental Method, Revised 2nd Edition, Takeichi Horio, 1994 Nankodo”, “Does not fail in bio-experiments! Tips for detection and quantification, edited by Tatsuya Moriyama , Yodosha, 2005 "," Bio-Experiment Illustrated <5> Protein is not annoying, Takato Nishiyama, Shujunsha, 2003 1st Edition 5th Edition "and commercial kits Although it can be carried out by following the procedure manual, the measured value can change depending on the measurement conditions and the accuracy of the equipment used.
(a)PlsEtn(C18、20:4)に対する比活性が0.66±0.2U/mgである。
(A) Specific activity with respect to PlsEtn (C18, 20: 4) is 0.66 ± 0.2 U / mg.
ここで、「PlsEtn(C18、20:4)」とは、sn-1位の脂肪酸の炭素数が18、sn-2位の脂肪酸の炭素数が20で二重結合の数が4であるPlsEtnを意味する。そのようなPlsEtnの一例として、1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanolamineが挙げられる(化3)。このPlsEtnは、例えばAvanti Polar Lipids、Inc.より、品番852469として購入できる。
Here, “PlsEtn (C18, 20: 4)” means PlsEtn in which the fatty acid at the sn-1 position has 18 carbon atoms, the fatty acid at the sn-2 position has 20 carbon atoms, and the number of double bonds is 4. Means. An example of such PlsEtn is 1- (1Z-octadedecyl) -2-arachidonoyl-sn-glycero-3-phosphoethanolamine (Chemical Formula 3). This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 852469.
ここで、「比活性(U/mg)」は、活性(U/mL)とタンパク濃度(mg/mL)を測定し、以下の(数1)で算出する。
Here, “specific activity (U / mg)” is calculated by the following (Equation 1) by measuring activity (U / mL) and protein concentration (mg / mL).
活性(U/mL)は以下の方法で測定することができる。
Activity (U / mL) can be measured by the following method.
<第一反応試薬混合液>
80mM トリス-塩酸緩衝液pH8.0
50mM 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM PlsEtn(C18、20:4)
<第二反応試薬混合液>
40mM PIPES-NaOH緩衝液pH7.5
0.06% 4-AA
0.04% フェノール
4.5U/mL peroxidase
30U/mL Acyl-CoA Oxidase
0.2% トリトンX-100
20mM ATP
0.1mM FAD
Acyl-CoA Synthetase(EC 6.2.1.3)及びAcyl-CoA Oxidase(EC 1.3.3.6)は旭化成ファーマ株式会社から入手することができる(品番はそれぞれT-16及びT17)。 <First reaction reagent mixture>
80 mM Tris-HCl buffer pH 8.0
50mM calcium chloride 4 mM ATP
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM PlsEtn (C18, 20: 4)
<Second reaction reagent mixture>
40 mM PIPES-NaOH buffer pH 7.5
0.06% 4-AA
0.04% Phenol 4.5U / mL peroxidase
30U / mL Acyl-CoA Oxidase
0.2% Triton X-100
20 mM ATP
0.1 mM FAD
Acyl-CoA Synthetase (EC 6.2.1.3) and Acyl-CoA Oxidase (EC 1.3.3.6) can be obtained from Asahi Kasei Pharma Corporation (part numbers are T-16 and T17, respectively) .
80mM トリス-塩酸緩衝液pH8.0
50mM 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM PlsEtn(C18、20:4)
<第二反応試薬混合液>
40mM PIPES-NaOH緩衝液pH7.5
0.06% 4-AA
0.04% フェノール
4.5U/mL peroxidase
30U/mL Acyl-CoA Oxidase
0.2% トリトンX-100
20mM ATP
0.1mM FAD
Acyl-CoA Synthetase(EC 6.2.1.3)及びAcyl-CoA Oxidase(EC 1.3.3.6)は旭化成ファーマ株式会社から入手することができる(品番はそれぞれT-16及びT17)。 <First reaction reagent mixture>
80 mM Tris-HCl buffer pH 8.0
50
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM PlsEtn (C18, 20: 4)
<Second reaction reagent mixture>
40 mM PIPES-NaOH buffer pH 7.5
0.06% 4-AA
0.04% Phenol 4.5U / mL peroxidase
30U / mL Acyl-CoA Oxidase
0.2% Triton X-100
20 mM ATP
0.1 mM FAD
Acyl-CoA Synthetase (EC 6.2.1.3) and Acyl-CoA Oxidase (EC 1.3.3.6) can be obtained from Asahi Kasei Pharma Corporation (part numbers are T-16 and T17, respectively) .
<反応停止液>
0.5% SDS(ドデシル硫酸ナトリウム)を含む0.1M EDTA溶液pH8.0
<PL(A)溶解希釈用液>
0.05%BSAを含む10mMトリス-塩酸緩衝液pH8.0
<測定操作法>
(1)小試験管に第一反応試薬混合液0.50mLずつを正確に分注し、37℃で予備加温する。 <Reaction stop solution>
0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate)
<PL (A) Dissolution Solution>
10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA
<Measurement operation method>
(1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
0.5% SDS(ドデシル硫酸ナトリウム)を含む0.1M EDTA溶液pH8.0
<PL(A)溶解希釈用液>
0.05%BSAを含む10mMトリス-塩酸緩衝液pH8.0
<測定操作法>
(1)小試験管に第一反応試薬混合液0.50mLずつを正確に分注し、37℃で予備加温する。 <Reaction stop solution>
0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate)
<PL (A) Dissolution Solution>
10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA
<Measurement operation method>
(1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
(2)5分経過後、適切な濃度に酵素溶解希釈緩衝液で希釈したPL(A)を50μL正確に加えて混和し、37℃で第一反応を開始する。盲検は酵素試料液の代わりに酵素溶解希釈緩衝液50μLを加える。
(2) After 5 minutes, 50 μL of PL (A) diluted with an enzyme lysis dilution buffer to an appropriate concentration is accurately added and mixed, and the first reaction is started at 37 ° C. In the blind test, 50 μL of enzyme lysis dilution buffer is added instead of the enzyme sample solution.
(3)10分経過後、20mM N-エチルマレイミド(NEM)溶液0.50mLを加えて混和し、15秒後に第二反応試薬混合液0.50mLを加えて混和し、37℃で第二反応を開始する。
(3) After 10 minutes, 0.50 mL of 20 mM N-ethylmaleimide (NEM) solution was added and mixed. After 15 seconds, 0.50 mL of the second reaction reagent mixture was added and mixed, and the second reaction was performed at 37 ° C. To start.
(4)5分経過後、反応停止液1.50mLを加えて混和し、反応を停止する。
(4) After 5 minutes, add 1.50 mL of the reaction stop solution and mix to stop the reaction.
(5)500nmにおける吸光度を測定する。求められた吸光度を試料液についてはAs、盲検液についてはAbとする。吸光度範囲はΔA=(As-Ab)≦0.25Absとする。
(5) The absorbance at 500 nm is measured. The obtained absorbance is As for the sample solution and Ab for the blind solution. The absorbance range is ΔA = (As−Ab) ≦ 0.25 Abs.
<計算>
以下の(数2)に従い活性を計算する。なお、1ユニット(U)とは、上記の条件下、PL(A)がPlsEtn(C18、20:4)を加水分解する作用をして脂肪酸を1分間に1μmol生成する酵素量とする。 <Calculation>
The activity is calculated according to the following (Equation 2). One unit (U) is defined as the amount of enzyme that PL (A) hydrolyzes PlsEtn (C18, 20: 4) and produces 1 μmol of fatty acid per minute under the above conditions.
以下の(数2)に従い活性を計算する。なお、1ユニット(U)とは、上記の条件下、PL(A)がPlsEtn(C18、20:4)を加水分解する作用をして脂肪酸を1分間に1μmol生成する酵素量とする。 <Calculation>
The activity is calculated according to the following (Equation 2). One unit (U) is defined as the amount of enzyme that PL (A) hydrolyzes PlsEtn (C18, 20: 4) and produces 1 μmol of fatty acid per minute under the above conditions.
タンパク濃度(mg/mL)は、例えば紫外吸収法、Bradford法、Lowry法、BCA法などで測定すればよいが、手軽であるので紫外吸収法が好ましい。
The protein concentration (mg / mL) may be measured by, for example, an ultraviolet absorption method, a Bradford method, a Lowry method, a BCA method or the like, but the ultraviolet absorption method is preferable because it is easy.
本発明においてPL(A)のPlsEtn(C18、20:4)に対する比活性は、存在すればよいので下限は設けないが、あえて設けるとすると0.1U/mgであり、0.2U/mgでもよく、0.3U/mgでもよく、0.4U/mgでもよいが、0.46U/mgが最も好ましい。本発明においてPL(A)のPlsEtn(C18、20:4)に対する比活性は、高いほど好ましいので上限は設けないが、あえて設けるとすると200U/mgであり、100U/mgでもよく、50U/mgでもよく、10U/mgでもよく、5U/mgでもよく、2U/mgでもよく、1U/mgでもよく、0.86U/mgが最も好ましい。
In the present invention, the specific activity of PL (A) with respect to PlsEtn (C18, 20: 4) only needs to be present, so there is no lower limit, but if it is provided, it is 0.1 U / mg, even 0.2 U / mg. It may be 0.3 U / mg or 0.4 U / mg, but 0.46 U / mg is most preferable. In the present invention, the specific activity of PL (A) with respect to PlsEtn (C18, 20: 4) is preferably as high as possible, so there is no upper limit, but if it is provided, it is 200 U / mg, may be 100 U / mg, and may be 50 U / mg. It may be 10 U / mg, 5 U / mg, 2 U / mg, 1 U / mg, and most preferably 0.86 U / mg.
(b)SDS-PAGE法による分子量が約25~30kDaの範囲である。
(B) The molecular weight determined by SDS-PAGE is in the range of about 25-30 kDa.
本発明におけるSDS-PAGE(Poly-Acrylamide Gel Electrophoresis)法による分子量測定とは、ドデシル硫酸ナトリウム(Sodium dodecyl sulfate(SDS))により変性(SDS-タンパク質複合体を形成させる)したタンパク質(ポリペプチド)に、アクリルアミドを重合させたゲル中で電圧を付加し、その移動度によってそれぞれのポリペプチドが分離できることを利用する分子量の測定方法である。
The molecular weight measurement by SDS-PAGE (Poly-Acrylamide Gel Electrophoresis) method in the present invention refers to a protein (polypeptide) that has been denatured (forms an SDS-protein complex) by sodium dodecyl sulfate (SDS). The molecular weight measurement method utilizes the fact that each polypeptide can be separated according to its mobility by applying a voltage in a gel polymerized with acrylamide.
なお、SDS-PAGE法による分子量測定においては、使用する分子量マーカーの種類や数、ポリアクリルアミドゲルのポリアクリルアミド含有率、大きさ、製法など、泳動bufferの種類、pH、濃度、電圧を付加する際の、温度、電流、時間など、ポリペプチドの染色方法、脱色方法など、によって測定値が誤差を含み得る。
In addition, in the molecular weight measurement by SDS-PAGE method, when adding the type, number, pH, concentration, and voltage of the electrophoresis buffer such as the type and number of molecular weight markers to be used, polyacrylamide content of polyacrylamide gel, size, manufacturing method, etc. The measured value may contain an error depending on the method of staining, decoloring, etc. of the polypeptide, such as temperature, current, and time.
本発明においてホスホリパーゼのSDS-PAGE法による分子量は約25~30kDaの範囲であれば限定されないが、下限は約25kDaであり、26kDaであれば好ましく、27kDaであればさらに好ましい。上限は約30kDaであり、29kDaであれば好ましく、28kDaであればさらに好ましい。
In the present invention, the molecular weight of the phospholipase by SDS-PAGE is not limited as long as it is in the range of about 25 to 30 kDa, but the lower limit is about 25 kDa, preferably 26 kDa, and more preferably 27 kDa. The upper limit is about 30 kDa, preferably 29 kDa, and more preferably 28 kDa.
(c)Streptomyces属に属する放線菌由来である。
(C) It is derived from actinomycetes belonging to the genus Streptomyces.
(f)Streptomyces albidoflavus由来である。
(F) Derived from Streptomyces albidoflavus.
(g)Streptomyces avermitilis由来である。
(G) Derived from Streptomyces avermitilis.
本発明においてホスホリパーゼの由来は、Streptomyces属に属する微生物(放線菌)であればよいが、Streptomyces albidoflavus又はStreptomyces avermitilis由来のホスホリパーゼであれば好ましく、Streptomyces albidoflavus NA297(受託番号:NITE BP-1014)又はStreptomyces avermitilis JCM 5070(=DSM 46492)由来であれば最も好ましい。
In the present invention, the phospholipase may be derived from a microorganism belonging to the genus Streptomyces (actinomycetes), but is preferably a phospholipase derived from Streptomyces albidoflavus or Streptomyces avermitilis; Most preferably, it is derived from avermitilis JCM 5070 (= DSM 46492).
例えば土壌、湖沼、海、生物の表面や体腔内などから分離した菌株が、Streptomyces属に属する微生物であるかどうかは、例えば「Bergey’s Manual 第2版(2001年)」、「微生物の分類・同定実験法―分子遺伝学・分子生物学的手法を中心に(Springer Lab Manual)シュプリンガー・フェアラーク東京、2001年9月」などに記載の方法、市販の細菌同定検査用製品(例えばBIOMERIEUX社)を使用する方法、「株式会社テクノスルガ・ラボ(静岡県静岡市)」などに委託する方法などにより同定すればよい。
For example, whether or not a strain isolated from soil, lakes, seas, the surface of a living organism or inside a body cavity is a microorganism belonging to the genus Streptomyces, for example, “Bergey's Manual 2nd edition (2001)”, “Classification of microorganisms”・ Methods of identification experiment-Focusing on molecular genetics and molecular biology (Springer Lab Manual) Springer Fairlark Tokyo, September 2001 ", etc., commercially available bacteria identification test products (for example, BIOMERIEUX) ), A method entrusted to “Techno Suruga Lab Co., Ltd. (Shizuoka City, Shizuoka City)” and the like.
さらにそれらの菌株が、Streptomyces albidoflavus又はStreptomyces avermitilisであるかどうかは、「Stackebrandt E.、Ebers J.: Taxonomic parameters revisited: tarnished gold standards, Microbiology today, nov, 152-155頁、2006年」に記載の方法などで判断すればよい。すなわち、DNA-DNAハイブリダイゼーションで70%以上の相同性がある、又は16S rRNAが98.5%以上同一であれば同族同種と判断できる。好ましくはDNA-DNAハイブリダイゼーションで70%以上の相同性があれば同族同種と判断する。
Furthermore, whether or not those strains are Streptomyces albidoflavus or Streptomyces avermitilis, "Stackebrandt E., Ebers J .: Taxonomic parameters revised: tert. It may be determined by a method or the like. That is, if DNA-DNA hybridization has 70% or more homology, or 16S rRNA is 98.5% or more identical, it can be judged as a cognate homolog. Preferably, if homology of 70% or more is found in DNA-DNA hybridization, it is judged as a cognate homolog.
(d)カルシウムイオン非存在下、PlsEtn(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(D) In the absence of calcium ions, the relative activity with respect to PlsEtn (C18, 18: 1) is 19 ± 5% with respect to dipalmitoylphosphocholine.
ここで「PlsEtn(C18、18:1)」とは、sn-1位の脂肪酸の炭素数が18、sn-2位の脂肪酸の炭素数が18で二重結合の数が1であるPlsEtnを意味する。そのようなPlsEtnの一例として、1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamineが挙げられる(化4)。このPlsEtnは、例えばAvanti Polar Lipids、Inc.より、品番852758として購入できる。
Here, “PlsEtn (C18, 18: 1)” means PlsEtn in which the fatty acid at the sn-1 position has 18 carbon atoms, the fatty acid at the sn-2 position has 18 carbon atoms, and the number of double bonds is 1. means. An example of such PlsEtn is 1- (1Z-octadecenyl) -2-oleoyl-sn-glycero-3-phosphoethanolamine (Chemical Formula 4). This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 852758.
ここで、「ジパルミトイルホスホコリン(DPPC)」とは、sn-1位の脂肪酸の炭素数が16、sn-2位の脂肪酸の炭素数が16であるホスファチジルコリンである。そのようなホスファチジルコリンの一例として、1,2-dipalmitoyl-sn-glycero-3-phosphocholineが挙げられる(化5)。このPlsEtnは、例えばAvanti Polar Lipids、Inc.より、品番850355として購入できる。
Here, “dipalmitoylphosphocholine (DPPC)” is phosphatidylcholine in which the fatty acid at the sn-1 position has 16 carbon atoms and the fatty acid at the sn-2 position has 16 carbon atoms. An example of such phosphatidylcholine is 1,2-dipalmitoyyl-sn-glycero-3-phosphocholine (Chemical Formula 5). This PlsEtn is, for example, Avanti Polar Lipids, Inc. Can be purchased as part number 850355.
ここで、相対活性とは、PlsEtn(C18、18:1)とDPPCに対するPL(A)の反応速度(加水分解速度(作用する速度))の相対値(%)を意味し、以下の(数3)で表される。
Here, the relative activity means the relative value (%) of the reaction rate (hydrolysis rate (acting rate)) of PL (A) to PlsEtn (C18, 18: 1) and DPPC. 3).
本発明におけるPlsEtn(C18、18:1)の、DPPCに対する相対活性(%)は19±5%であるが、9%以上でもよく、11%以上でもよく、12%以上でもよく、13%以上でもよく、14%以上でもよく、15%以上であれば好ましく、16%以上であればさらに好ましい。相対活性は高いほどよいことはいうまでもないので上限は特に設けないが、上限を設けるとすれば100%以下であり、80%以下でもよく、60%以下でもよく、40%以下でもよく、30%以下でもよく、24%以下でもよく、21%以下でも好ましく、19%以下でもよい。
The relative activity (%) of PlsEtn (C18, 18: 1) in the present invention with respect to DPPC is 19 ± 5%, but it may be 9% or more, 11% or more, 12% or more, or 13% or more. It may be 14% or more, preferably 15% or more, and more preferably 16% or more. Needless to say, the higher the relative activity, the better, so the upper limit is not particularly set. However, if the upper limit is set, it is 100% or less, 80% or less, 60% or less, or 40% or less, It may be 30% or less, may be 24% or less, may be 21% or less, and may be 19% or less.
(e)カルシウムイオン非存在下、PlsEtn(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。
(E) In the absence of calcium ions, the relative activity against PlsEtn (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine.
ここで、「1-パルミトイル-2-オレオイル-ホスホコリン(POPC)」とは、sn-1位の脂肪酸の炭素数が16、sn-2位の脂肪酸の炭素数が18で二重結合の数が1であるホスファチジルコリンである。そのようなホスファチジルコリンの一例として、1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholineが挙げられる(化6)。このPOPCは、例えばAvanti Polar Lipids、Inc.より、品番850457として購入できる。
Here, “1-palmitoyl-2-oleoyl-phosphocholine (POPC)” means that the number of carbon atoms of the fatty acid at the sn-1 position is 16, the number of carbon atoms of the fatty acid at the sn-2 position is 18, and the number of double bonds Is phosphatidylcholine in which 1. An example of such phosphatidylcholine is 1-palmitoyyl-2-oleoyl-sn-glycero-3-phosphocholine (Chemical Formula 6). This POPC is available, for example, from Avanti Polar Lipids, Inc. Can be purchased as part number 850457.
ここで、相対活性とは、PlsEtn(C18、20:4)とPOPCに対するPL(A)の反応速度(加水分解速度(作用する速度))の相対値(%)を意味し、以下の(数4)で表される。
Here, the relative activity means the relative value (%) of the reaction rate (hydrolysis rate (rate of action)) of PL (A) to PlsEtn (C18, 20: 4) and POPC. 4).
本発明におけるPlsEtn(C18、20:4)の、POPCに対する相対活性(%)は29±13%であるが、16%以上であれば好ましく、20%以上であればさらに好ましい。相対活性は高いほどよいことはいうまでもないので上限は特に設けないが、上限を設けるとすれば42%以下であり、35%以下でも好ましく、30%以下でもよい。
In the present invention, PlsEtn (C18, 20: 4) has a relative activity (%) to POPC of 29 ± 13%, preferably 16% or more, and more preferably 20% or more. It goes without saying that the higher the relative activity, the better. Therefore, the upper limit is not particularly set. However, if the upper limit is set, it is 42% or less, preferably 35% or less, and may be 30% or less.
上述の(d)及び(e)におけるカルシウムイオンの由来は、そのカウンターイオン(対イオン)により限定されないが、例えば塩化物、臭化物、硫酸塩、酢酸塩、硝酸塩などが挙げられる。
The origin of the calcium ion in the above (d) and (e) is not limited by the counter ion (counter ion), and examples thereof include chloride, bromide, sulfate, acetate, nitrate and the like.
本発明における「非存在」とは、カルシウムイオンを意図的に存在させないことを意味する。また、PlsをlyPlsに加水分解する組成物中の、水、pH緩衝剤、Pls、本発明におけるホスホリパーゼや容器などにもカルシウムイオンを意図的に含有させないことを意味する。すなわち、PlsをlyPlsに加水分解する組成物中に、本発明者らの過失無くカルシウムイオンが存在する場合も本発明における「非存在」に含まれる。そのようなPlsをlyPlsに加水分解する組成物中のカルシウムイオンの濃度は、10μM以下であればよく、1μM以下であれば好ましく、0.1μM以下であればさらに好ましく、0μMが最も好ましい。
In the present invention, “non-existence” means that calcium ions are not intentionally present. In addition, it means that water, pH buffer, Pls, phospholipase and container in the present invention in the composition for hydrolyzing Pls to lyPls do not intentionally contain calcium ions. That is, the case where calcium ions are present in the composition for hydrolyzing Pls to lyPls without our fault is also included in the “absence” in the present invention. The concentration of calcium ions in the composition for hydrolyzing Pls to lyPls may be 10 μM or less, preferably 1 μM or less, more preferably 0.1 μM or less, and most preferably 0 μM.
(h)配列番号1に記載のアミノ酸配列を有する。
(H) having the amino acid sequence set forth in SEQ ID NO: 1.
(i)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、PlsをlyPlsに加水分解する作用を有する。
(I) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and has an action of hydrolyzing Pls to lyPls.
(j)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、PlsをlyPlsに加水分解する作用を有する。
(J) having an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing Pls to lyPls.
(k)配列番号2に記載のアミノ酸配列を有する。
(K) having the amino acid sequence set forth in SEQ ID NO: 2.
(l)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、PlsをlyPlsに加水分解する作用を有する。
(L) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 2, and has an action of hydrolyzing Pls to lyPls.
(m)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、PlsをlyPlsに加水分解する作用を有する。
(M) having an amino acid sequence in which one or more amino acids are mutated, deleted, or added in the amino acid sequence shown in SEQ ID NO: 2, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing Pls to lyPls.
すなわち、本発明のPL(A)は、例えば配列番号1又は配列番号2に記載のアミノ酸配列からなり、またその他に配列番号1又は配列番号2に記載のアミノ酸配列と実質的に均等なアミノ酸配列や、触媒作用に関与しない一部のアミノ酸を変異させ、又は各種のアミノ酸残基が付加されたアミノ酸配列からなり、またこのアミノ酸配列は配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を含む、PlsをlyPlsに加水分解する作用を有するホスホリパーゼを用いることができる。そのようなアミノ酸配列の好ましい相同性は50%以上であり、60%であれば好ましく、70%以上であればさらに好ましく、80%以上であれば特に好ましく、最も好ましくは90%以上である。
That is, PL (A) of the present invention consists of the amino acid sequence described in SEQ ID NO: 1 or SEQ ID NO: 2, for example, and in addition, an amino acid sequence substantially equivalent to the amino acid sequence described in SEQ ID NO: 1 or SEQ ID NO: 2 Or consisting of an amino acid sequence in which some amino acids not involved in catalysis are mutated or various amino acid residues are added, and this amino acid sequence is the amino acid sequence shown in SEQ ID NO: 9 and SEQ ID NO: 10 A phospholipase containing an amino acid sequence and having an action of hydrolyzing Pls to lyPls can be used. The preferred homology of such amino acid sequences is 50% or more, preferably 60%, more preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more.
本発明のPL(A)のN末端側及び/又はC末端側にチオレドキシン酵素など機能性酵素やその他のアミノ酸配列からなる部分を付加したり、融合酵素としたりすることも好ましく、その付加する部分により精製や確認などをすることのできるタグと呼ばれる部分を融合させ、場合によっては、そのタグ部分を削除しても、場合によってはその全部又は一部が残る場合も例示される。例えば、本発明のPL(A)を菌体外やペリプラズムへ輸送するための約20個のシグナルペプチドや、効率的な精製を行うための4~10個のHisの付加でもよいし、それらを直列して付加してもよい。また、それらのアミノ酸配列の間などに数個のプロテアーゼ認識アミノ酸配列を配置して付加することもできる。上述の付加の例と同様に、欠失、又は置換を行うことができ、例えば、本発明のPL(A)の本質的な機能とは無関係の数個のアミノ酸からなるドメインが存在する場合や、配列番号1に記載のアミノ酸配列中の複数個のアミノ酸からなるギャップが存在する場合、それらの欠失を組み合わせることもできる。また、欠失、置換若しくは付加を適宜組み合わせることも可能である。その付加アミノ酸残基としてはシグナルペプチド、TEE配列、Sタグ、又はHisタグなどが挙げられる。配列番号1又は配列番号2に記載のアミノ酸を欠失する場合は、例えば、N末端側のMet又はC末端側のLysから順に削除する例が挙げられる。配列番号1に記載のアミノ酸配列において、N末端のMetの欠失や、N末端がアシル基やアルキル基などによる修飾を受けるなどの翻訳後修飾されたホスホリパーゼも本発明のPL(A)である。また、本発明のPL(A)を公知の方法で無水コハク酸やPEGなどにより化学修飾して、本発明のPL(A)の至適pHや安定性などの性質を利用しやすいように変化させることも可能である。本発明のPL(A)の好ましいアミノ酸配列は配列番号1又は配列番号2に記載のアミノ酸配列である。
It is also preferable to add a functional enzyme such as thioredoxin enzyme or other amino acid sequence to the N-terminal side and / or C-terminal side of PL (A) of the present invention, or to make a fusion enzyme, and the part to be added Examples include a case where a portion called a tag that can be purified or confirmed by fusing is fused, and in some cases, even if the tag portion is deleted, all or a part of the portion remains. For example, about 20 signal peptides for transporting the PL (A) of the present invention to the outside of a cell or the periplasm, or addition of 4 to 10 His for efficient purification may be used. They may be added in series. In addition, several protease recognition amino acid sequences can be arranged and added between these amino acid sequences. Similar to the addition example described above, deletion or substitution can be performed, for example, when there is a domain consisting of several amino acids unrelated to the essential function of PL (A) of the present invention, or When there is a gap consisting of a plurality of amino acids in the amino acid sequence shown in SEQ ID NO: 1, those deletions can be combined. It is also possible to combine deletion, substitution or addition as appropriate. Examples of the additional amino acid residue include a signal peptide, a TEE sequence, an S tag, or a His tag. When the amino acid described in SEQ ID NO: 1 or SEQ ID NO: 2 is deleted, for example, an example in which Met on the N-terminal side or Lys on the C-terminal side is deleted in order. In the amino acid sequence shown in SEQ ID NO: 1, phospholipase modified after translation, such as deletion of Met at the N-terminus or modification of the N-terminus with an acyl group or an alkyl group is also PL (A) of the present invention. . Also, the PL (A) of the present invention is chemically modified with succinic anhydride, PEG or the like by a known method, and changes are made so that the properties such as optimum pH and stability of the PL (A) of the present invention can be easily used. It is also possible to make it. A preferred amino acid sequence of PL (A) of the present invention is the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
配列番号1の場合、本発明のPL(A)の分子量は27199であり、配列番号2の場合、本発明のPL(A)の分子量は27565と推定される。分子量は上述のタグ部分の付加や一部のアミノ酸の欠失などにより変化する。
In the case of SEQ ID NO: 1, the molecular weight of PL (A) of the present invention is 27199, and in the case of SEQ ID NO: 2, the molecular weight of PL (A) of the present invention is estimated to be 27565. The molecular weight changes due to the addition of the tag portion described above or the deletion of some amino acids.
本発明のPL(A)の塩基配列が必要となるのであれば、上述の配列番号1又は配列番号2に記載のアミノ酸配列、配列番号1又は配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、PL(A)をコードする塩基配列を用いればよい。本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法に用いるホスホリパーゼの好ましい塩基配列は配列番号3又は配列番号4に記載の塩基配列であり、それぞれ配列番号1又は配列番号2に記載のアミノ酸配列をコードしている。
If the base sequence of PL (A) of the present invention is required, one or a plurality of amino acid sequences described in SEQ ID NO: 1 or SEQ ID NO: 2 and amino acid sequences described in SEQ ID NO: 1 or SEQ ID NO: 2 are used. A base sequence encoding PL (A) may be used. A preferred base sequence of the phospholipase used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is the base sequence set forth in SEQ ID NO: 3 or SEQ ID NO: 4, and SEQ ID NO: 1 or SEQ ID NO: 2, respectively. Is encoded.
配列番号9及び配列番号10に記載のアミノ酸配列をコードする塩基配列は、配列番号9及び配列番号10に記載のアミノ酸配列をコードする任意の塩基配列を遺伝子暗号表から選択すればよく、好ましい塩基配列は、配列番号9に記載のアミノ酸配列をコードする塩基配列は配列番号11又は配列番号12に記載の塩基配列であり、配列番号10に記載のアミノ酸配列をコードする塩基配列は配列番号13又は配列番号14に記載の塩基配列である。
As the base sequence encoding the amino acid sequence shown in SEQ ID NO: 9 and SEQ ID NO: 10, any base sequence encoding the amino acid sequence shown in SEQ ID NO: 9 and SEQ ID NO: 10 may be selected from the genetic code table. The base sequence encoding the amino acid sequence shown in SEQ ID NO: 9 is the base sequence shown in SEQ ID NO: 11 or SEQ ID NO: 12, and the base sequence encoding the amino acid sequence shown in SEQ ID NO: 10 is SEQ ID NO: 13 or This is the base sequence set forth in SEQ ID NO: 14.
本発明のPlsは試料中のPlsであれば好ましい。本発明のPlsの由来は特に限定されないが、試料中のPlsであれば好ましい。試料としては、血漿、血清、尿、研究用試料などを挙げることができ、Plsを含有すると予想される全血、血漿、血清、血球、髄液、リンパ液、尿などを含む生体試料や研究用試料及びそれらの抽出物などを挙げることができ、それらの試料は、Plsを含有すると予想される試料であれば好ましい。その他の試料としては、例えば、ホヤ、オキアミ、貝、などの生物からの抽出物、海水、天然水、果汁、飲料、廃液などが挙げられる。そのような試料中のPlsには、例えば(化3)や(化4)のようなPlsが含まれると予想されるし、その他のPlsも複数種類混合していると考えられる。
The Pls of the present invention is preferably Pls in the sample. The origin of Pls of the present invention is not particularly limited, but Pls in the sample is preferable. Samples may include plasma, serum, urine, research samples, and biological samples including whole blood, plasma, serum, blood cells, spinal fluid, lymph fluid, urine, etc. that are expected to contain Pls Samples and extracts thereof can be mentioned, and these samples are preferably samples that are expected to contain Pls. Examples of other samples include extracts from organisms such as sea squirts, krill, and shellfish, seawater, natural water, fruit juice, beverages, and waste liquids. Pls in such a sample is expected to contain Pls such as (Chemical Formula 3) and (Chemical Formula 4), for example, and other Pls are also considered to be mixed.
Plsが試料中に含まれている可能性の有無の判断には、本発明の測定方法を実施する前にPlsが試料中に含まれている可能性の有無が判断できる場合を含み(例えば通常ヒト血中にはPlsは含まれている(Plasmalogens in human serum positively correlate with high- density lipoprotein and decrease with aging.Maebaら、J Atheroscler Thromb.2007年14巻1号12-18頁。))、HPLC(特開2007-33410号公報)やLC-MS(特開2011-136926号公報)などの従来技術により可能性の有無を判断してもよい。
The determination of the possibility of Pls being included in the sample includes the case where the presence or absence of the possibility of Pls being included in the sample can be determined before the measurement method of the present invention is performed (for example, normal Human blood contains Pls (Plasmalogens in human serum positively correlated with high-density lipoprotein and decree with aging. Maeba et al., P. 14th-Mal. The presence or absence of the possibility may be determined by a conventional technique such as JP-A-2007-33410 and LC-MS (JP-A-2011-136926).
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法において使用するPL(A)の量は、PlsをlyPlsに加水分解できれば、及び/又はPlsを測定できれば特に限定されず、試料に含まれるPlsの存在量、目的とするPlsを加水分解する程度、使用する装置、PL(A)の純度、及び/又は経済的な事情などに応じて好ましい結果が得られるように決定し得る。さらにpH緩衝剤、金属イオン、界面活性剤を使用する場合、その種類と量についても同様である。
The amount of PL (A) used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is not particularly limited as long as Pls can be hydrolyzed to lyPls and / or Pls can be measured. It is determined so that favorable results can be obtained according to the amount of Pls contained in the sample, the degree of hydrolysis of the target Pls, the equipment used, the purity of PL (A), and / or economic circumstances. obtain. Furthermore, when using a pH buffer, a metal ion, and a surfactant, the same applies to the type and amount thereof.
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法において使用するPL(A)の量は、例えば、試料に含まれるPlsの存在量が2μmol以下で、その全てを37℃、10分間で加水分解する条件の場合、下限が0.05mU以上、好ましくは0.1mU以上、さらに好ましくは0.5mU以上、ホスホリパーゼ量が多いほど加水分解の効率がよいことは明らかであるので上限は特に設けないが、例えば経済的な理由などで上限を設けるならば10U以下、好ましくは5U以下、さらに好ましくは1U以下である。
The amount of PL (A) used in the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls is, for example, that the amount of Pls contained in the sample is 2 μmol or less, and all of them is 37 ° C. In the case of the conditions for hydrolysis in 10 minutes, the lower limit is 0.05 mU or more, preferably 0.1 mU or more, more preferably 0.5 mU or more, and it is clear that the larger the amount of phospholipase, the better the hydrolysis efficiency. An upper limit is not particularly provided, but if an upper limit is provided for economic reasons, for example, it is 10 U or less, preferably 5 U or less, more preferably 1 U or less.
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法は、液体中、気相、又は固相などやそれぞれの臨界面で実施すればよいが、液体中で実施することが好ましい。液体には水溶液、有機溶媒などが考えられ、本発明の測定方法を水溶液中で実施することが好ましいが、適宜の有機溶媒を含有した水性媒体でもよく、そのような場合は適宜のpH緩衝剤を用いることが好ましい。pH緩衝剤を使用する場合、その種類は目的のpHを保つことができ、PlsをlyPlsに加水分解できれば、及び/又はPlsを測定できれば特に限定されないが、グッドのpH緩衝液、Tris/HCl緩衝液、リン酸カリウム緩衝液、酢酸/NaOH緩衝液、クエン酸/NaOH緩衝液が例示できる。本発明を実施する際のpHは、PlsをlyPlsに加水分解できれば、及び/又はPlsを測定できれば特に限定されないが、下限としてpH4以上、好ましくはpH5以上、さらに好ましくはpH6以上が例示され、上限としてはpH11以下、好ましくはpH10.5以下、さらに好ましくはpH10以下が例示される。pH緩衝剤の濃度は目的のpHを保つことができ、PlsをlyPlsに加水分解できれば、及び/又はPlsを測定できれば特に限定されないが、下限として3mM以上、好ましくは5mM以上、さらに好ましくは10mM以上が例示され、上限としては500mM以下、好ましくは200mM以下、さらに好ましくは100mM以下が例示される。
The method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls may be performed in a liquid, a gas phase, a solid phase, or the like or on each critical surface, but may be performed in a liquid. preferable. The liquid may be an aqueous solution, an organic solvent, etc., and the measurement method of the present invention is preferably carried out in an aqueous solution. However, an aqueous medium containing an appropriate organic solvent may be used, and in such a case, an appropriate pH buffering agent may be used. Is preferably used. When a pH buffer is used, the type of the pH buffer is not particularly limited as long as the target pH can be maintained, and Pls can be hydrolyzed to lyPls and / or Pls can be measured. Good pH buffer, Tris / HCl buffer Liquid, potassium phosphate buffer, acetic acid / NaOH buffer, citric acid / NaOH buffer. The pH for carrying out the present invention is not particularly limited as long as Pls can be hydrolyzed to lyPls and / or Pls can be measured, but the lower limit is pH 4 or more, preferably pH 5 or more, more preferably pH 6 or more, and the upper limit. The pH is 11 or less, preferably 10.5 or less, more preferably 10 or less. The concentration of the pH buffer is not particularly limited as long as the target pH can be maintained and Pls can be hydrolyzed to lyPls and / or Pls can be measured, but the lower limit is 3 mM or more, preferably 5 mM or more, more preferably 10 mM or more. The upper limit is 500 mM or less, preferably 200 mM or less, more preferably 100 mM or less.
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法のその他の好ましい態様として、例えばゾル・ゲル法を用いて酵素(PL(A)等)を固定化したりセンサーを作製したりすることが挙げられる。ゾル・ゲルとするためには、例えば、寒天などの多糖類を利用すればよい。ゾル・ゲルと乳濁液を区別する場合は、乳濁液として実施してもよい。乳濁液とするためには、例えば、有機溶媒などを利用すればよいし、両親媒性物質を利用すればミセルとしても実施できる。いずれの場合も、pH緩衝剤を用いる場合は上記と同様である。
As another preferred embodiment of the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls, for example, an enzyme (PL (A), etc.) is immobilized using a sol-gel method or a sensor is prepared. Can be mentioned. In order to obtain a sol-gel, for example, a polysaccharide such as agar may be used. When the sol-gel and the emulsion are distinguished, the emulsion may be implemented as an emulsion. In order to obtain an emulsion, for example, an organic solvent or the like may be used, and if an amphiphilic substance is used, micelles can be used. In any case, when a pH buffer is used, it is the same as described above.
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法において、反応時間は、試料中のPlsをlyPlsに加水分解できれば、及び/又はPlsを測定できれば特に限定されないが、それぞれ、下限が15秒以上、好ましくは1分以上、さらに好ましくは3分以上である。上限は特に設けないが、好ましくは30分以下、さらに好ましくは15分以下、特に好ましくは10分以下である。
In the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls, the reaction time is not particularly limited as long as Pls in a sample can be hydrolyzed to lyPls and / or Pls can be measured. The lower limit is 15 seconds or longer, preferably 1 minute or longer, more preferably 3 minutes or longer. Although there is no particular upper limit, it is preferably 30 minutes or less, more preferably 15 minutes or less, and particularly preferably 10 minutes or less.
本発明のPlsをlyPlsに加水分解する方法及び/又はPlsを測定する方法において、温度は、試料中のPlsをlyPlsに加水分解できる温度、及び/又はPlsを測定できる温度であれば特に限定されないが、使用するホスホリパーゼの作用温度の範囲内が好ましく、下限は10℃以上、好ましくは20℃以上、さらに好ましくは25℃以上、上限は70℃以下、好ましくは60℃以下、さらに好ましくは50℃以下である。
In the method of hydrolyzing Pls of the present invention to lyPls and / or the method of measuring Pls, the temperature is not particularly limited as long as it is a temperature at which Pls in a sample can be hydrolyzed to lyPls and / or a temperature at which Pls can be measured. However, it is preferably within the range of the working temperature of the phospholipase used, the lower limit is 10 ° C. or higher, preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and the upper limit is 70 ° C. or lower, preferably 60 ° C. or lower, more preferably 50 ° C. It is as follows.
本発明のPlsを測定する方法は、本明細書に記載の特性や性質を有するPL(A)を用いてPlsをlyPlsに加水分解する方法を含む。すなわち、本発明のPlsを測定する方法は、
<工程1>本明細書に記載の特性や性質を有するホスホリパーゼ(PL(A))を用いてPlsをlyPlsに加水分解する工程、
を含む。 The method for measuring Pls of the present invention includes a method of hydrolyzing Pls to lyPls using PL (A) having the characteristics and properties described herein. That is, the method for measuring Pls of the present invention is as follows.
<Step 1> A step of hydrolyzing Pls to lyPls using phospholipase (PL (A)) having the properties and properties described in the present specification,
including.
<工程1>本明細書に記載の特性や性質を有するホスホリパーゼ(PL(A))を用いてPlsをlyPlsに加水分解する工程、
を含む。 The method for measuring Pls of the present invention includes a method of hydrolyzing Pls to lyPls using PL (A) having the characteristics and properties described herein. That is, the method for measuring Pls of the present invention is as follows.
<
including.
本発明のPlsを測定する方法は、さらに<工程1>とは別異のlyPlsを測定するための公知の工程を含んでもよい。そのような工程の例は、
<工程2-1>lysoplasmalogenase(EC 3.3.2.2; EC 3.3.2.5、alkenyl hydrolase、(Biochimica et Biophysica Acta、1437巻、1999年、142~156頁、The journal of biological chemistry、286巻、24916~24930頁、2011年)「lyPls ase」と略す場合がある)を用いる方法、
<工程2-2>薄層クロマトグラフィー(TLC)などを用いる方法、
<工程2-3>Lysophospholipase D(Autotaxin,The journal of biological chemistry、277巻、2002年、39436-39442頁)を用いる方法、
<工程2-4>HPLCを使用する方法(特開2007-33410号公報)、
<工程2-5>LC-MS(特開2011-136926号公報)を使用する方法、
などが挙げられる。 The method for measuring Pls of the present invention may further include a known step for measuring lyPls different from <Step 1>. An example of such a process is
<Step 2-1> lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5, alkenyl hydrolase, (Biochimica et Biophysica Acta, 1437, 1999, pages 142 to 156, The journal of pharmacology) chemistry, 286, 24916-24930, 2011), which may be abbreviated as “lyPls as”),
<Step 2-2> A method using thin layer chromatography (TLC), etc.
<Step 2-3> Method using Lysophospholipase D (Autotaxin, The journal of biological chemistry, Vol. 277, 2002, pages 39436-39442),
<Step 2-4> Method using HPLC (Japanese Patent Application Laid-Open No. 2007-33410),
<Step 2-5> Method using LC-MS (Japanese Patent Laid-Open No. 2011-136926),
Etc.
<工程2-1>lysoplasmalogenase(EC 3.3.2.2; EC 3.3.2.5、alkenyl hydrolase、(Biochimica et Biophysica Acta、1437巻、1999年、142~156頁、The journal of biological chemistry、286巻、24916~24930頁、2011年)「lyPls ase」と略す場合がある)を用いる方法、
<工程2-2>薄層クロマトグラフィー(TLC)などを用いる方法、
<工程2-3>Lysophospholipase D(Autotaxin,The journal of biological chemistry、277巻、2002年、39436-39442頁)を用いる方法、
<工程2-4>HPLCを使用する方法(特開2007-33410号公報)、
<工程2-5>LC-MS(特開2011-136926号公報)を使用する方法、
などが挙げられる。 The method for measuring Pls of the present invention may further include a known step for measuring lyPls different from <
<Step 2-1> lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5, alkenyl hydrolase, (Biochimica et Biophysica Acta, 1437, 1999, pages 142 to 156, The journal of pharmacology) chemistry, 286, 24916-24930, 2011), which may be abbreviated as “lyPls as”),
<Step 2-2> A method using thin layer chromatography (TLC), etc.
<Step 2-3> Method using Lysophospholipase D (Autotaxin, The journal of biological chemistry, Vol. 277, 2002, pages 39436-39442),
<Step 2-4> Method using HPLC (Japanese Patent Application Laid-Open No. 2007-33410),
<Step 2-5> Method using LC-MS (Japanese Patent Laid-Open No. 2011-136926),
Etc.
試料中にPls以外の物質が混在してもそれを消去することなくPlsを正確に測定できるという観点からは<工程2-1>が好ましい。測定に必要な材料が安価で手軽に入手でき、当業者なら容易に実施できるという観点からは<工程2-2>が好ましい。<工程2-3>は<工程2-1>に比較して使用する酵素の種類がひとつ少ないという観点で好ましい。正確に定量できるという観点からは<工程2-4>が好ましい。Plsの分子種(「化1」のR1)も特定できるという観点からは<工程2-5>が好ましい。
<Step 2-1> is preferable from the viewpoint that Pls can be accurately measured without erasing even if a substance other than Pls is mixed in the sample. <Step 2-2> is preferable from the viewpoint that materials necessary for measurement are inexpensive and easily available and can be easily implemented by those skilled in the art. <Step 2-3> is preferable from the viewpoint that one kind of enzyme is used as compared with <Step 2-1>. <Step 2-4> is preferable from the viewpoint of accurate quantification. <Step 2-5> is preferable from the viewpoint that the molecular species of Pls (R 1 of “Chemical Formula 1”) can also be specified.
<工程1>と<工程2-1>を含む本発明のPlsを測定する方法のうち、PlsEtnを測定する方法を図1に簡略して示した。ここで使用するlyPls aseは、「Biochimica et Biophysica Acta、1437巻、1999年、142~156頁」又は「The journal of biological chemistry、286巻、24916~24930頁、2011年」に記載の方法で製造できるラット由来のlyPls aseを使用する。また、Glycerophosphorylcholine phosphatase(GPCP、EC 3.1.4.2)は旭化成ファーマ株式会社から購入できる(品番T-33)。Ethanolamine oxidaseをBioscience, Biotechnology, and Biochemistry 2008年、72巻、2732-2738頁の方法で製造し、特許第4244168号公報に記載の方法で定量すればよい。なお、PlsChoを測定する場合は、上記のEthanolamine oxidaseの代わりに、Choline Oxidaseを旭化成ファーマ株式会社から購入し(品番T-05)、特開昭58-28283号公報に記載の方法で定量すればよい。
Among the methods for measuring Pls of the present invention including <Step 1> and <Step 2-1>, a method for measuring PlsEtn is shown in a simplified manner in FIG. The lyPls as used here is described in “Biochimica et Biophysica Acta, 1437, 1999, pages 142 to 156” or “The journal of biologics, 286, 24916 to 24930, 2011”. Use rat-derived lyPls as. Glycerophylphospholine phosphatase (GPCP, EC 3.1.4.2) can be purchased from Asahi Kasei Pharma Corporation (product number T-33). Ethanolamine oxidase may be produced by the method of Bioscience, Biotechnology, and Biochemistry 2008, Vol. 72, pages 2732-2738, and quantified by the method described in Japanese Patent No. 4244168. In addition, when measuring PlsCho, instead of the above-mentioned Ethanolamine oxidase, Choline Oxidase is purchased from Asahi Kasei Pharma Corporation (product number T-05) and quantified by the method described in JP-A-58-28283. Good.
H2O2はPeroxidase(POD、EC 1.11.1.7)、後述するフェノール誘導体、アニリン誘導体、トルイジン誘導体などのトリンダー試薬の色原体、4-アミノアンチピリン若しくは3-メチル-2-ベンゾチアゾリノンヒドラゾンなどのカップラーを使用するなど公知の方法で定量できる。H2O2は蛍光法や電極法でも分析することができる。蛍光法には、酸化によって蛍光を発する化合物、例えばホモバニリン酸、4-ヒドロキシフェニル酢酸、チラミン、パラクレゾール、ジアセチルフルオレスシン誘導体などを、化学発光法には、触媒としてルミノール、ルシゲニン、イソルミノール、ピロガロールなどを用いることができる。
H 2 O 2 is Peroxidase (POD, EC 1.11.1. 7), a chromogen of a Trinder reagent such as a phenol derivative, an aniline derivative or a toluidine derivative described later, 4-aminoantipyrine or 3-methyl-2-benzo. It can be quantified by a known method such as using a coupler such as thiazolinone hydrazone. H 2 O 2 can also be analyzed by a fluorescence method or an electrode method. In the fluorescence method, compounds that emit fluorescence upon oxidation, such as homovanillic acid, 4-hydroxyphenylacetic acid, tyramine, paracresol, diacetylfluorescin derivatives, and the like, and in the chemiluminescence method, luminol, lucigenin, isoluminol, Pyrogallol can be used.
H2O2を電極で測定する場合、電極にはH2O2との間で電子を授受することのできる材料である限り特に制限されないが、例えば白金、金、銀などが挙げられ電極測定方法としてはアンペロメトリー、ポテンショメトリー、クーロメトリーなどの公知の方法を用いることができ、さらにオキシダーゼ又は基質と電極との間の反応に電子伝達体を介在させ、得られる酸化、還元電流あるいはその電気量を測定してもよい。電子伝達体としては電子伝達機能を有する任意の物質が使用可能であり、例えばフェロセン誘導体、キノン誘導体などの物質が挙げられる。またオキシダーゼ反応により生成するH2O2と電極の間に電子伝達体を介在させて得られる酸化、還元電流又はその電気量を測定してもよい。本発明において分析用試薬には必要に応じて緩衝液、酵素の安定化剤、防腐剤などを適宜使用する。
When measuring H 2 O 2 with an electrode, the electrode is not particularly limited as long as it is a material that can exchange electrons with H 2 O 2. For example, platinum, gold, silver and the like can be used to measure electrodes. As a method, a known method such as amperometry, potentiometry, coulometry, etc. can be used. Further, an electron carrier is interposed in the reaction between the oxidase or substrate and the electrode, and the resulting oxidation, reduction current or electric current thereof is obtained. The amount may be measured. Any substance having an electron transfer function can be used as the electron carrier, and examples thereof include substances such as ferrocene derivatives and quinone derivatives. The oxide obtained by interposing an electron carrier between the H 2 O 2 and the electrode generated by oxidase reaction, may measure the reduction current or the electrical quantity. In the present invention, buffers, enzyme stabilizers, preservatives, and the like are appropriately used as analytical reagents as necessary.
<工程2-1>において使用するlyPls aseの酵素の量は、Biochimica et Biophysica Acta、1437巻、1999年、142~156頁の記載と同じく、4.2U/mLである。
The amount of lyPlsase enzyme used in <Step 2-1> is 4.2 U / mL as described in Biochimica et Biophysica Acta, Volume 1437, 1999, pages 142-156.
<工程2-1>において使用するlyPls aseは、The journal of biological chemistry、286巻、24916~24930頁、2011年」に「Tmem86b(発明者註:lyPls aseの遺伝子) has only been identified in vertebrates, including humans, mice, rats, cows, dogs, and zebrafish.」と記載されているので、ヒト、マウス、ラット、牛、犬、セブラフィッシュ由来を使用する。
The lyPls ase used in <Step 2-1> is “Tmem86b (inventor 註: gene of lyPls ase), foundlybesided in The journal of biologic chemistry, 286, 24916-24930, 2011”. "Including humans, rice, rats, cows, dogs, and zebrafish.", human, mouse, rat, cow, dog, and sebrafish are used.
<工程2-2>のTLCは、例えば「バイオ実験で失敗しない!検出と定量のコツ、編集森山達哉、羊土社、2005年」に記載された公知の方法を適宜組み合わせて実施すればよく、検出方法としてはUVランプや呈色による方法が挙げられ、呈色剤としてはアニス-硫酸、リンモリブデン酸、ヨウ素、ニンヒドリン溶液、カメレオン溶液、2,4-Dinitrophenylhydrazine溶液、ブロモクレゾールグリーン溶液、Dragendorff試薬などの公知の試薬を目的、試料、使用する装置などに応じて好ましい結果が得られるように決定し得る。
The TLC of <Step 2-2> may be performed by appropriately combining known methods described in, for example, “No failure in bio-experiments! Tips for detection and quantification, Tatsuya Moriyama, Yodosha, 2005”. Examples of the detection method include a UV lamp and a coloration method. Examples of the colorant include anis-sulfuric acid, phosphomolybdic acid, iodine, ninhydrin solution, chameleon solution, 2,4-dinitrophenylhydrazine solution, bromocresol green solution, and Dragendorfff. A known reagent such as a reagent can be determined so as to obtain a preferable result according to the purpose, sample, apparatus used, and the like.
<工程1>と<工程2-3>を含む本発明のPlsを測定する方法のうち、PlsEtnを測定する方法を図2に簡略して示した。ここで使用するLysophospholipase Dは、例えば「The journal of biological chemistry、277巻、39436~39442頁、2002年」に記載のヒト由来の酵素を使用することができる。Ethanolamine oxidaseとPlsChoを測定する場合については、<工程2-1>の場合と同様である。<工程2-3>において使用するLysophospholipase Dの酵素の量は、<工程2-1>の場合と同様である。
Of the methods for measuring Pls of the present invention including <Step 1> and <Step 2-3>, a method for measuring PlsEtn is shown in a simplified manner in FIG. As the Lysophospholipase D used here, for example, a human-derived enzyme described in “The journal of biochemical chemistry, 277, 39436-39442, 2002” can be used. The case of measuring Ethanolamine oxidase and PlsCho is the same as in the case of <Step 2-1>. The amount of Lysophospholipase D enzyme used in <Step 2-3> is the same as in <Step 2-1>.
<工程1>と<工程2-1>、<工程2-2>又は<工程2-3>はそれぞれ別異の反応槽(相)で実施できるが、同一反応槽(相)で実施することが好ましい。また、<工程1>と<工程2-1>、<工程2-2>又は<工程2-3>は、不連続に実施できるが、連続して実施することが好ましい。また、<工程1>と<工程2-1>、<工程2-2>又は<工程2-3>は、<工程1>の次に<工程1>と<工程2-1>、<工程2-2>又は<工程2-3>を行ってもよく、<工程1>と<工程2-1>、<工程2-2>又は<工程2-3>を同時に行ってもよい。<工程1>と<工程2-4>又は<工程2-5>は通常<工程1>、<工程2-4>又は<工程2-5>の順で行われる。これらの反応槽(相)や実施の順序は、目的、試料、使用する装置などに応じて好ましい結果が得られるように決定し得る。
<Step 1> and <Step 2-1>, <Step 2-2> or <Step 2-3> can be carried out in different reaction vessels (phases), but in the same reaction vessel (phase). Is preferred. <Step 1> and <Step 2-1>, <Step 2-2> or <Step 2-3> can be performed discontinuously, but are preferably performed continuously. <Step 1> and <Step 2-1>, <Step 2-2> or <Step 2-3> are followed by <Step 1>, <Step 1>, <Step 2-1>, and <Step 2-2 or <Step 2-3> may be performed, and <Step 1> and <Step 2-1>, <Step 2-2> or <Step 2-3> may be performed simultaneously. <Step 1> and <Step 2-4> or <Step 2-5> are usually performed in the order of <Step 1>, <Step 2-4> or <Step 2-5>. These reaction vessels (phases) and the order of execution can be determined so as to obtain preferable results according to the purpose, sample, apparatus used, and the like.
<工程2-1>及び<工程2-3>のpH、反応時間、反応温度などの態様は<工程1>と同様であるが、<工程1>と<工程2-1>又は<工程2-2>のpH、反応時間、反応温度などの態様は必ずしも<工程1>と均一でなくてもよく、本明細書に記載の範囲で<工程1>と不均でもよい。
The aspects of pH, reaction time, reaction temperature, etc. in <Step 2-1> and <Step 2-3> are the same as in <Step 1>, but <Step 1> and <Step 2-1> or <Step 2> The aspect of -2> such as pH, reaction time, reaction temperature and the like is not necessarily uniform with <Step 1>, and may be uneven with <Step 1> within the range described in this specification.
本発明の特性や性質を有するPlsをlyPlsに加水分解するためのPL(A)及び/又はPlsを測定するためのPL(A)は、PlsをlyPlsに加水分解するための組成物及び/又はPlsを測定するための組成物となり得る。
PL (A) for hydrolyzing Pls having the characteristics and properties of the present invention to lyPls and / or PL (A) for measuring Pls is a composition for hydrolyzing Pls to lyPls and / or It can be a composition for measuring Pls.
本発明の組成物は下記の(I)の成分を含む組成物(ホスホリパーゼ含有組成物)であればよいが、本発明の特性や性質を有する(I)であれば好ましい。また本発明の組成物は(I)、(V)及び(IV)の成分を含む組成物でもよいが、(I)~(IV)の成分を含む組成物がさらに好ましい。組成物はPlsをlyPlsに加水分解するための組成物、Plsを測定するための組成物、PlsをlyPlsに加水分解してPlsを測定するための組成物のいずれであってもよい。
The composition of the present invention may be a composition (phospholipase-containing composition) containing the following component (I), but (I) having the characteristics and properties of the present invention is preferable. The composition of the present invention may be a composition containing the components (I), (V) and (IV), but a composition containing the components (I) to (IV) is more preferred. The composition may be any of a composition for hydrolyzing Pls to lyPls, a composition for measuring Pls, and a composition for hydrolyzing Pls to lyPls and measuring Pls.
(I)PL(A)
(II)公知のlyPls ase
(III)GPCP
(IV)Ethanolamine oxidase
(V)Lysophospholipase D
これらの組成物は必要に応じて、Peroxidase、Catalase(EC 1.11.1.6)、フェノール誘導体、アニリン誘導体、トルイジン誘導体などのトリンダー試薬の色原体、4-アミノアンチピリン(4-AA)若しくは3-メチル-2-ベンゾチアゾリノンヒドラゾンなどのカップラーを含有してもよい。 (I) PL (A)
(II) Known lyPls as
(III) GPCP
(IV) Ethanolamine oxidase
(V) Lysophospholipase D
If necessary, these compositions may be used as peroxidase, catalase (EC 1.11.1.6), chromogens of Trinder reagents such as phenol derivatives, aniline derivatives, toluidine derivatives, 4-aminoantipyrine (4-AA). Alternatively, a coupler such as 3-methyl-2-benzothiazolinone hydrazone may be contained.
(II)公知のlyPls ase
(III)GPCP
(IV)Ethanolamine oxidase
(V)Lysophospholipase D
これらの組成物は必要に応じて、Peroxidase、Catalase(EC 1.11.1.6)、フェノール誘導体、アニリン誘導体、トルイジン誘導体などのトリンダー試薬の色原体、4-アミノアンチピリン(4-AA)若しくは3-メチル-2-ベンゾチアゾリノンヒドラゾンなどのカップラーを含有してもよい。 (I) PL (A)
(II) Known lyPls as
(III) GPCP
(IV) Ethanolamine oxidase
(V) Lysophospholipase D
If necessary, these compositions may be used as peroxidase, catalase (EC 1.11.1.6), chromogens of Trinder reagents such as phenol derivatives, aniline derivatives, toluidine derivatives, 4-aminoantipyrine (4-AA). Alternatively, a coupler such as 3-methyl-2-benzothiazolinone hydrazone may be contained.
トリンダー型試薬の色原体としては、フェノール誘導体、アニリン誘導体、トルイジン誘導体などが使用可能であり、具体例としてN,Nジメチルアニリン、N,Nジエチルアニリン、2,4ジクロロフェノール、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3、5-ジメトキシアニリン(DAOS)、N-エチル-N-スルホプロピル- 3, 5ジメチルアニリン(MAPS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3- スルホプロピル)-m-トルイジン(TOOS)(以上同人化学研究所社製)などが挙げられる。また過酸化水素はパーオキシダーゼ存在下ロイコ型試薬を用いて発色することができる。この試薬の具体例としては、o-ジアニシジン、o-トリジン、3,3ジアミノベンジジン、3,3,5,5-テトラメチルベンジジン(以上同人化学研究所社製)、N-(カルボキシメチルアミノカルボニル)-4,4-ビス(ジメチルアミノ)ビフェニルアミン(DA64)、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジン(DA67)(以上和光純薬社製)などが挙げられる。
As the chromogen of the Trinder type reagent, phenol derivatives, aniline derivatives, toluidine derivatives and the like can be used. Specific examples include N, N dimethylaniline, N, N diethylaniline, 2,4 dichlorophenol, N-ethyl- N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N-sulfopropyl-3,5 dimethylaniline (MAPS), N-ethyl-N- (2- Hydroxy-3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine (TOOS) (manufactured by Doujin Chemical Laboratory) Etc. Hydrogen peroxide can be colored using a leuco reagent in the presence of peroxidase. Specific examples of this reagent include o-dianisidine, o-tolidine, 3,3 diaminobenzidine, 3,3,5,5-tetramethylbenzidine (manufactured by Dojindo Laboratories), N- (carboxymethylaminocarbonyl). ) -4,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) phenothiazine (DA67) (manufactured by Wako Pure Chemical Industries, Ltd.) It is done.
本発明のPlsをlyPlsに加水分解するための組成物及び/又はPlsを測定するための組成物は、カルシウムイオンを含有しなくてもよい。組成物が水溶液の場合、経時的に空気中の二酸化炭素が組成物に溶解する場合がある。この際、組成物にカルシウムイオンが含有すると、カルシウムイオンは炭酸カルシウムとなり析出して組成物が白濁する場合があるが、本発明のPlsをlyPlsに加水分解するための組成物及びPlsを測定するための組成物は、カルシウムイオンを含有しなくてもよいので、このような経時変化が起きにくいという利点がある。
The composition for hydrolyzing Pls of the present invention to lyPls and / or the composition for measuring Pls may not contain calcium ions. When the composition is an aqueous solution, carbon dioxide in the air may dissolve in the composition over time. At this time, if calcium ions are contained in the composition, the calcium ions may be precipitated as calcium carbonate and the composition may become cloudy. However, the composition and Pls for hydrolyzing Pls of the present invention to lyPls are measured. The composition for this purpose does not need to contain calcium ions, and therefore has an advantage that such a change with time does not easily occur.
さらに本発明の組成物は、上記成分のうち(I)及び(II)、(III)及び(IV)は、(V)と測定直前に合一されて本発明の組成物となることが好ましい。すなわち、測定時には必要な全ての成分を有する本発明の組成物とするにあたり、その測定以前においては、少なくとも(I)、(II)、(III)及び(IV)と、(V)は分離されていることが好ましい。好ましい形態は、3試薬に分けておき、第一試薬は(I)及び(II)を含み、第二試薬は(III)及び(IV)を含み、第三試薬は(V)を含む。これらを測定直前に合一して組成物とする場合、合一する順序は任意であり、ひとつずつ合一してもよく同時に合一してもよい。最も好ましい形態は、2試薬に分けておき、第一試薬は(I)、(II)、(III)及び(IV)を含み、第二試薬は(V)を含む。測定直前まで、第一試薬と第二試薬は別々の試薬としておく。これらを測定直前に合一して組成物とする。
Further, in the composition of the present invention, among the above components, (I) and (II), (III) and (IV) are preferably combined with (V) immediately before measurement to become the composition of the present invention. . That is, in order to obtain the composition of the present invention having all the components necessary for measurement, at least (I), (II), (III) and (IV) and (V) are separated before the measurement. It is preferable. A preferable form is divided into three reagents, the first reagent contains (I) and (II), the second reagent contains (III) and (IV), and the third reagent contains (V). When these are united immediately before the measurement to obtain a composition, the uniting order is arbitrary, and may be united one by one or may be united at the same time. The most preferred form is divided into two reagents, the first reagent contains (I), (II), (III) and (IV), and the second reagent contains (V). The first reagent and the second reagent are kept separate until just before the measurement. These are united immediately before the measurement to obtain a composition.
本発明の組成物に含まれる(I)~(V)の成分の有効量、すなわち、組成物がPlsをlyPlsに加水分解するための組成物及び/又はPlsを測定するための組成物となり得るために有効な添加量及びpH緩衝剤の条件などは、上記の本発明の測定方法と同様である。
An effective amount of the components (I) to (V) contained in the composition of the present invention, that is, the composition can be a composition for hydrolyzing Pls to lyPls and / or a composition for measuring Pls. Therefore, the effective addition amount and pH buffering agent conditions are the same as those in the measurement method of the present invention.
本発明の組成物は適宜pH緩衝剤を含むことも好ましい。さらに少なくとも既知量のPlsを含んでなるキャリブレーション試薬を含むことも好ましい。
The composition of the present invention preferably contains a pH buffer as appropriate. It is also preferable to include a calibration reagent comprising at least a known amount of Pls.
本発明においてキャリブレーション試薬は、少なくとも既知量のPlsを含む試薬がよいが、好ましくはpH緩衝剤、アジ化ナトリウムや抗生物質などの防腐剤、糖などの安定化剤を含む試薬である。pH緩衝剤を含む場合、種類や濃度などの条件などは本発明の測定方法と同様である。アジ化ナトリウムや抗生物質などを含む場合、種類や濃度は防腐効果があれば限定されないが、例えばアジ化ナトリウムの場合、下限は0.005%以上、好ましくは0.01%以上、さらに好ましくは0.03%以上、上限は1%以下、好ましくは0.5%以下、さらに好ましくは0.1%以下である。例えば抗生物質の場合、下限は5μg/mL以上、好ましくは10μg/mL以上、さらに好ましくは30μg/mL以上、上限は100μg/mL以下、好ましくは75μg/mL以下、さらに好ましくは60μg/mL以下である。安定化剤を含む場合、種類や濃度などの条件などは上記のホスホリパーゼの安定化剤と同様である。キャリブレーション方法は、一点検量の他、多点検量(折れ線やスプライン)や多点検量の直線回帰などが選択できる。
In the present invention, the calibration reagent is preferably a reagent containing at least a known amount of Pls, but is preferably a reagent containing a pH buffer, a preservative such as sodium azide and antibiotics, and a stabilizer such as sugar. When a pH buffering agent is included, conditions such as the type and concentration are the same as in the measurement method of the present invention. When sodium azide or antibiotics are included, the type and concentration are not limited as long as they have a preservative effect. For example, in the case of sodium azide, the lower limit is 0.005% or more, preferably 0.01% or more, more preferably It is 0.03% or more, and the upper limit is 1% or less, preferably 0.5% or less, and more preferably 0.1% or less. For example, in the case of antibiotics, the lower limit is 5 μg / mL or more, preferably 10 μg / mL or more, more preferably 30 μg / mL or more, and the upper limit is 100 μg / mL or less, preferably 75 μg / mL or less, more preferably 60 μg / mL or less. is there. When a stabilizer is included, conditions such as the type and concentration are the same as those of the above-described phospholipase stabilizer. As the calibration method, a single inspection quantity, a multi-inspection quantity (a broken line or a spline), a linear regression of the multi-inspection quantity, and the like can be selected.
既知量は特に限定されず、試料中のPlsを正確に測定するために選択すればよい。また、複数のキャリブレーション試薬を使用する場合のキャリブレーション試薬の既知量も同様である。例えばPlsの場合、下限は0.00μM以上、好ましくは10μM以上、さらに好ましくは50μM以上、上限は500μM以下、好ましくは200μM以下、さらに好ましくは150μM以下である。
The known amount is not particularly limited, and may be selected in order to accurately measure Pls in the sample. The same applies to the known amount of calibration reagent when a plurality of calibration reagents are used. For example, in the case of Pls, the lower limit is 0.00 μM or more, preferably 10 μM or more, more preferably 50 μM or more, and the upper limit is 500 μM or less, preferably 200 μM or less, more preferably 150 μM or less.
本発明のPls測定用の組成物及びキャリブレーション試薬は、液状品、液状品の凍結物、液状品の凍結乾燥品、又は液状品の乾燥品(加熱乾燥及び/又は風乾及び/又は減圧乾燥などによる)として提供できる。液状品の凍結物が好ましく、液状品の凍結乾燥品がさらに好ましく、液状品が最も好ましい。別の態様として、液状品の凍結物が好ましい場合もある。さらに別の態様としては、液状品の凍結乾燥が好ましい場合もある。本発明のPlsをlyPlsに加水分解するための組成物及び/又はPlsを測定するための組成物は、一試薬の組成物としてもよいが、通常は上記のように二試薬以上に分離するのが好ましい。また、試薬の品質向上などを目的としてNaClやKClなどの塩、TX-100やTween20などの界面活性剤、及び/又はアジ化ナトリウムや抗生物質など防腐剤を混合してもよい。また、例えば、POC(point of care)のキャピラリーへの使用、又は酵素センサーとしての使用の場合、各成分の濃度は通常よりも濃い濃度が好ましく、例えば、固定化したり、紙や膜に染み込ませたり、ゲル・ゾル状組成物としたりして使用することが好ましい。塩を混合する場合、種類や濃度は限定されないが、通常は5~200mMの範囲であり、界面活性剤を混合する場合、種類や濃度は限定されないが、通常は0.001%~2%であり、防腐剤を混合する場合は上記キャリブレーション試薬の場合と同様である。
The composition and calibration reagent for Pls measurement of the present invention are liquid products, frozen products of liquid products, freeze-dried products of liquid products, or dried products of liquid products (heat-dried and / or air-dried and / or dried under reduced pressure, etc.) According to). Liquid frozen products are preferred, liquid freeze-dried products are more preferred, and liquid products are most preferred. In another embodiment, a frozen liquid product may be preferable. As yet another aspect, lyophilization of a liquid product may be preferred. The composition for hydrolyzing Pls of the present invention to lyPls and / or the composition for measuring Pls may be a composition of one reagent, but usually it is separated into two or more reagents as described above. Is preferred. For the purpose of improving reagent quality, salts such as NaCl and KCl, surfactants such as TX-100 and Tween 20, and / or preservatives such as sodium azide and antibiotics may be mixed. For example, when using POC (point of care) in capillaries or as an enzyme sensor, the concentration of each component is preferably higher than usual. For example, it may be fixed or soaked in paper or a film. Or a gel-sol composition. When mixing a salt, the type and concentration are not limited, but it is usually in the range of 5 to 200 mM, and when mixing a surfactant, the type and concentration are not limited, but usually 0.001% to 2%. Yes, when the preservative is mixed, it is the same as the case of the calibration reagent.
本発明のホスホリパーゼの製造方法は、下記<1>から<3>までのいずれかのホスホリパーゼを製造する方法であって、ホスホリパーゼをコードする塩基配列に基づきホスホリパーゼを形成する工程と、ホスホリパーゼを取得する工程を含むホスホリパーゼの製造方法を含む。
The method for producing a phospholipase of the present invention is a method for producing any one of the following <1> to <3>, wherein a step of forming a phospholipase based on a nucleotide sequence encoding phospholipase and a phospholipase are obtained. A process for producing a phospholipase comprising a step.
<1>配列番号2に記載のアミノ酸配列からなり、PlsをlyPlsに加水分解する作用を有する。
<1> Consists of the amino acid sequence set forth in SEQ ID NO: 2 and has an action of hydrolyzing Pls to lyPls.
<2>配列番号2に記載のアミノ酸配列において、1つ又は複数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、アミノ酸配列は配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を含む、PlsをlyPlsに加水分解する作用を有する。
<2> The amino acid sequence described in SEQ ID NO: 2 consists of an amino acid sequence in which one or more amino acids are deleted, substituted or added, and the amino acid sequence is described in SEQ ID NO: 9 and SEQ ID NO: 10 It has the effect | action which hydrolyzes Pls to lyPls including the amino acid sequence of.
<3>下記の(a)~(d)の特性を有する。
<3> It has the following characteristics (a) to (d).
(a)カルシウムイオン非存在下、PlsEtn(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(A) In the absence of calcium ions, the relative activity against PlsEtn (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine.
(b)カルシウムイオン非存在下、PlsEtn(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。
(B) In the absence of calcium ions, the relative activity to PlsEtn (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine.
(c)SDS-PAGE法による分子量が約25~30kDaの範囲である。
(C) The molecular weight determined by SDS-PAGE is in the range of about 25-30 kDa.
(d)Streptomyces属に属する放線菌由来である。
(D) It is derived from actinomycetes belonging to the genus Streptomyces.
ここで、PlsをlyPlsに加水分解する作用及び(a)~(d)の特性については上述と同様である。すなわち、上記ホスホリパーゼの製造方法は、本発明のPL(A)の製造方法である。また、配列番号2、配列番号9及び配列番号10に記載のアミノ酸配列については上述と同様である。配列番号2、配列番号9及び配列番号10に記載のアミノ酸配列をコードする塩基配列と、好ましい塩基配列である配列番号4、配列番号11、配列番号12、配列番号13及び配列番号14に記載の塩基配列についても上述と同様である。
Here, the action of hydrolyzing Pls to lyPls and the characteristics (a) to (d) are the same as described above. That is, the method for producing phospholipase is the method for producing PL (A) of the present invention. The amino acid sequences described in SEQ ID NO: 2, SEQ ID NO: 9 and SEQ ID NO: 10 are the same as described above. The nucleotide sequences encoding the amino acid sequences described in SEQ ID NO: 2, SEQ ID NO: 9 and SEQ ID NO: 10, and preferred nucleotide sequences SEQ ID NO: 4, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13 and SEQ ID NO: 14 The base sequence is the same as described above.
このような本発明のPL(A)を製造するに際しては、PL(A)をコードする塩基配列に基づきPL(A)を形成する工程を用いることができる。この工程としては、PL(A)をコードする塩基配列を含む無細胞蛋白質合成系、好ましくはPL(A)をコードする塩基配列を含む細胞を用いる工程、又は天然のPL(A)を形成する微生物などPL(A)をコードする塩基配列を有する微生物を用いる工程、又はPL(A)をコードする塩基配列を導入した形質転換体を用いる工程等がそれぞれ例示される。
In producing such PL (A) of the present invention, a step of forming PL (A) based on the base sequence encoding PL (A) can be used. As this step, a cell-free protein synthesis system containing a base sequence encoding PL (A), preferably a step using cells containing a base sequence encoding PL (A), or natural PL (A) is formed. Examples include a step of using a microorganism having a base sequence encoding PL (A) such as a microorganism, a step of using a transformant into which a base sequence encoding PL (A) is introduced, and the like.
典型的な本発明のPL(A)の製造方法としては、PL(A)を形成する天然の微生物を用いてPL(A)を形成する例が挙げられるが、本発明のPL(A)を調製できる天然の微生物としては、好ましくはStreptomyces属に属する放線菌、さらに好ましくはStreptomyces avermitilis、最も好ましくはStreptomyces avermitilis JCM 5070(=DSM 46492)が例示できる。これらの微生物の取得、同定及び判断方法については上述の通りである。
As a typical method for producing PL (A) of the present invention, there is an example in which PL (A) is formed using a natural microorganism that forms PL (A). Examples of natural microorganisms that can be prepared include actinomycetes belonging to the genus Streptomyces, more preferably Streptomyces avermitilis, most preferably Streptomyces avermitilis JCM 5070 (= DSM 46492). The method for obtaining, identifying and judging these microorganisms is as described above.
本発明のPL(A)を形成する天然の微生物は、さらにNTG等の薬剤、紫外線、及び/又は放射線で処理した変異株となすこともできる。変異株によって、本発明のPL(A)の生産性を向上することや、本発明のPL(A)の変異体を形成させることが可能であり、安定性、生産性、反応性等が優れた性質を有する変異体を形成することも可能である。本発明のPL(A)をコードする塩基配列を含む細胞を用いる工程を採用する場合には、上述の塩基配列をベクターに挿入して宿主微生物に導入させて形質転換体を作成し、その形質転換体を用いて蛋白質を形成させる工程が例示される。本発明のPL(A)をコードする塩基配列を導入した形質転換体は、塩基配列が挿入されたベクターである組換体ファージ又は組換体プラスミドを宿主に導入した細胞、又は微生物を含む。本発明のPL(A)をコードする塩基配列は、一部又は全てを合成して使用することができ、好ましくは本発明のPL(A)を、コードする塩基配列を遺伝子供与体から取得して使用する。遺伝子供与体としては、Streptomyces属に属する放線菌、さらに好ましくはStreptomyces avermitilis、最も好ましくはStreptomyces avermitilis JCM 5070(=DSM 46492)が例示できる。
The natural microorganism that forms the PL (A) of the present invention can be a mutant strain further treated with a drug such as NTG, ultraviolet rays, and / or radiation. The mutant strain can improve the productivity of the PL (A) of the present invention and can form a mutant of the PL (A) of the present invention, and is excellent in stability, productivity, reactivity and the like. It is also possible to form mutants having different properties. In the case of employing a process using cells containing a base sequence encoding PL (A) of the present invention, a transformant is prepared by inserting the above base sequence into a vector and introducing it into a host microorganism. The process of forming a protein using a converter is illustrated. The transformant introduced with the base sequence encoding PL (A) of the present invention includes cells or microorganisms into which a recombinant phage or recombinant plasmid, which is a vector having the base sequence inserted, is introduced into a host. The base sequence encoding PL (A) of the present invention can be used by synthesizing a part or all of the base sequence. Preferably, the base sequence encoding PL (A) of the present invention is obtained from a gene donor. To use. Examples of gene donors include actinomycetes belonging to the genus Streptomyces, more preferably Streptomyces avermitilis, most preferably Streptomyces avermitilis JCM 5070 (= DSM 46492).
本発明のPL(A)をコードする塩基配列を挿入するベクターとしては、宿主微生物体内で自律的に増殖しうるファージ又はプラスミドのうち遺伝子組換用として構築されたものが適しており、ファージベクターとしては、例えば、大腸菌に属する微生物を宿主とする場合にはλgt・λC、λgt・λB等が使用できる。また、プラスミドベクターとしては、例えば、大腸菌を宿主とする場合には、Novagen社のpETベクター、又はpBR322、pBR325、pACYC184、pUC系、バチラス・サチリスを宿主とする場合にはpWH1520、pUB110、pKH300PLK、放線菌を宿主とする場合にはpIJ680、pIJ702、酵母、特にサッカロマイセス・セレビジアエを宿主とする場合にはYRp7、pYC1、YEp13等が使用できる。本発明においては大腸菌及び放線菌を宿主とするプラスミドベクターが好ましい。プロモーターは宿主中で発現できるものであれば特に限定されるものではない。
As a vector for inserting a base sequence encoding PL (A) of the present invention, a phage or plasmid constructed for gene recombination among phages or plasmids that can autonomously grow in the host microorganism is suitable. For example, when a microorganism belonging to E. coli is used as a host, λgt · λC, λgt · λB, and the like can be used. As plasmid vectors, for example, when Escherichia coli is used as a host, Novagen's pET vector, or pBR322, pBR325, pACYC184, pUC system, and Bacillus subtilis as hosts, pWH1520, pUB110, pKH300PLK, When actinomycetes are used as hosts, pIJ680 and pIJ702 can be used. When yeasts, particularly Saccharomyces cerevisiae, are used as hosts, YRp7, pYC1, YEp13 and the like can be used. In the present invention, plasmid vectors using Escherichia coli and actinomycetes as hosts are preferred. The promoter is not particularly limited as long as it can be expressed in the host.
このようなベクターを、本発明のPL(A)をコードする塩基配列の切断に使用した制限酵素により生成する塩基配列の末端と、同じ末端を生成する制限酵素により切断してベクター断片を作成し、本発明のPL(A)をコードする塩基配列の断片とベクター断片とを、DNAリガーゼにより常法に従って結合させて本発明のPL(A)をコードする塩基配列を目的のベクターに挿入して、組換体ファージ又は組換体プラスミドとなす。組換体プラスミドを導入する宿主としては、組換体プラスミドが安定かつ自律的に増殖可能な細胞、又は微生物であればよく、大腸菌B株、K株、C株やそれらの溶原菌が利用できる。また、宿主微生物がバチラス属に属する微生物の場合、バチラス・サチリス、バチラス・メガテリウム等、放線菌に属する微生物の場合、ストレプトマイセス・リビダンス TK24等、サッカロマイセス・セルビシエに属する微生物の場合、サッカロマイセス・セルビシエ INVSC1等が使用できる。本発明においては大腸菌又は放線菌を宿主微生物とすることが好ましい。
A vector fragment is prepared by cleaving such a vector with a restriction enzyme that produces the same end as the end of the base sequence generated by the restriction enzyme used to cleave the base sequence encoding PL (A) of the present invention. The base sequence fragment encoding the PL (A) of the present invention is ligated with a fragment of the base sequence encoding the PL (A) of the present invention by DNA ligase according to a conventional method, and the base sequence encoding the PL (A) of the present invention is inserted into the target vector. Recombinant phage or recombinant plasmid. The host into which the recombinant plasmid is introduced may be any cell or microorganism that can stably and autonomously propagate the recombinant plasmid, and Escherichia coli B strain, K strain, C strain and lysogens thereof can be used. In addition, when the host microorganism is a microorganism belonging to the genus Bacillus, Bacillus subtilis, Bacillus megaterium, etc., a microorganism belonging to actinomycetes, Streptomyces lividans TK24, etc., a microorganism belonging to Saccharomyces cerevisiae, Saccharomyces cerevisiae INVSC1 etc. can be used. In the present invention, it is preferable to use Escherichia coli or actinomycetes as a host microorganism.
本発明のPL(A)は、PL(A)をコードする塩基配列を導入した形質転換体、又はPL(A)をコードする塩基配列を有する微生物を培養することで形成してもよい。
The PL (A) of the present invention may be formed by culturing a transformant introduced with a base sequence encoding PL (A) or a microorganism having a base sequence encoding PL (A).
このような微生物から、本発明のPL(A)を得る場合は、例えば「Catalogue of Strains、fifth edition、1993年、Deutsche SammLung von Mikroorganismen und Zellkulturen GmbH」や「Catalogue of BACTERIA & BACTERIOPHAGES、18th edition、1992年、American Type Culture Collection」などに記載の方法で、それらの微生物を培養し、それらの培養液や菌体内から例えば「蛋白質・酵素の基礎実験法(改訂第2版、堀尾武一、1994年南光堂参照)」などに記載の方法で精製又は精製することなく得ることができるが、好ましくは精製して得る。すなわち、本発明のPL(A)は、上記のように形成された本発明のPL(A)を取得する工程を含む方法によって製造できるが、簡便には殺菌、非殺菌を問わず菌体を含む細胞等のままであってもよく、培養不純物や細胞破砕物等を軽く除いた不純物が残存したままのPL(A)とすることも好ましい。さらに本発明の蛋白質の粗蛋白質は、目的や用途等場合によっては実質的に不純物を包含しないようにすることも好ましいが、通常は、例えば50%以上、70%以上、95%以上の各種の純度にすることが例示される。純度はSDS-PAGEやHPLC等の公知の方法で確認すればよい。
In order to obtain the PL (A) of the present invention from such a microorganism, for example, “Catalogue of Strains, fifth edition, 1993, Deutsche SammLung von Mikroorganisundund Zellkulturen GMBER” The microorganisms were cultured by the method described in the American Type Culture Collection, etc., and for example, “Protein / Enzyme Basic Experiment (Revised 2nd Edition, Takeichi Horio, 1994) Can be obtained without purification or purification by the method described in `` Nankodo ''). Properly it can be purified. That is, the PL (A) of the present invention can be produced by a method including the step of obtaining the PL (A) of the present invention formed as described above. It is also preferable to use PL (A) in which impurities such as cultured impurities and cell debris are lightly removed remain. Furthermore, it is preferable that the crude protein of the protein of the present invention does not substantially contain impurities depending on the purpose and application, but usually, for example, 50% or more, 70% or more, 95% or more of various kinds It is exemplified to make it pure. The purity may be confirmed by a known method such as SDS-PAGE or HPLC.
本発明のPL(A)は、PL(A)を形成する天然の微生物や、PL(A)をコードする塩基配列を導入した形質転換体の微生物等を培養し、培養物からPL(A)を取得することによって製造することができる。まず、微生物等を栄養培地で培養して菌体内又は培養液中にPL(A)を形成させ、菌体内に形成される場合には培養終了後、得られた培養物を濾過又は遠心分離等の手段により菌体を採集する。次いで、この菌体を機械的方法又はリゾチーム等の酵素的方法で破壊し、また、必要に応じてEDTA、及び/又は適当な界面活性剤等を添加してPL(A)を濃縮するか濃縮することなく、アセトン、メタノール、エタノール等の有機溶媒による分別沈殿法、硫酸アンモニウム、食塩等による塩析法等を適用して本発明のPL(A)を沈殿させ回収する。この沈殿物を必要に応じて透析、等電点沈殿を行った後、ゲル濾過、アフィニティークロマトグラフィー等の吸着クロマトグラフィー、イオン交換クロマトグラフィーや疎水的クロマトグラフィーにより処理して、本発明のPL(A)を得ることができる。また、これらの方法を適宜組み合わせて行うことができる。また、本発明のPL(A)が培養液中に形成される場合には、培養物を濾過又は遠心分離等の手段により菌体を除去し、培養液について、前記菌体内に形成される場合と同様の処理を行えばよい。
PL (A) of the present invention is obtained by culturing natural microorganisms that form PL (A), microorganisms of transformants into which a base sequence encoding PL (A) has been introduced, and the like. Can be manufactured. First, microorganisms and the like are cultured in a nutrient medium to form PL (A) in the microbial cells or in the culture solution, and when formed in the microbial cells, the obtained culture is filtered or centrifuged after completion of the culture. Bacteria are collected by the means described above. Next, this bacterial cell is destroyed by a mechanical method or an enzymatic method such as lysozyme, and EDTA and / or an appropriate surfactant is added as necessary to concentrate or concentrate PL (A). Without application, the PL (A) of the present invention is precipitated and recovered by applying a fractional precipitation method using an organic solvent such as acetone, methanol, ethanol or the like, a salting out method using ammonium sulfate, sodium chloride, or the like. The precipitate is subjected to dialysis and isoelectric precipitation, if necessary, and then subjected to gel filtration, adsorption chromatography such as affinity chromatography, ion exchange chromatography or hydrophobic chromatography to obtain the PL ( A) can be obtained. Moreover, it can carry out combining these methods suitably. Further, when the PL (A) of the present invention is formed in a culture solution, the cells are removed by means of filtration or centrifugation, and the culture solution is formed in the cells. The same processing may be performed.
これらの方法によって得られる本発明のPL(A)は安定化剤として、各種の塩類、糖類、蛋白質、脂質、界面活性剤等を加え、あるいは加えることなく、限外濾過濃縮、凍結乾燥等の方法により、液状又は固形の本発明のPL(A)を得ることができ、また、適宜凍結乾燥を行ってもよく、この場合安定化剤としてサッカロース、マンニトール、食塩、アルブミン等を0.5~10%程度添加してもよい。
The PL (A) of the present invention obtained by these methods can be used as a stabilizer, such as ultrafiltration concentration, lyophilization, etc., with or without various salts, saccharides, proteins, lipids, surfactants and the like. According to the method, the liquid or solid PL (A) of the present invention can be obtained, and may be freeze-dried as appropriate. In this case, 0.5 to 0.5% of saccharose, mannitol, sodium chloride, albumin or the like is used as a stabilizer. About 10% may be added.
配列番号4に記載の塩基配列は、Nat.Biotechnol.21巻,526-531頁、2003年で明らかにされていたが、塩基配列がコードする蛋白質の性質はこれまでに解明されておらず、単にhydrolaseとして予想されていた。すなわち、配列番号4に記載の塩基配列がコードする配列番号2に記載のアミノ酸配列からなる蛋白質が、PlsをlyPlsへ加水分解する作用を有することなど(本発明のPL(A)としての性質を有することは従来全く知られていなかった。
The base sequence described in SEQ ID NO: 4 is Nat. Biotechnol. 21, 526-531, 2003, but the nature of the protein encoded by the base sequence has not been elucidated so far and was simply expected as a hydrolase. That is, the protein consisting of the amino acid sequence shown in SEQ ID NO: 2 encoded by the base sequence shown in SEQ ID NO: 4 has an action of hydrolyzing Pls to lyPls (the property of the present invention as PL (A)) It has never been known before.
以下、本発明を実施例などに基づいて説明するが、本発明の範囲は以下の実施例などに限定して解釈されない。なお、以下に記述した技術は、例えばマニアティスらの方法(Maniatis,T.,et al.Molecular Cloning.Cold Spring Harbor Laboratory 1982年、1989年)や本明細書に記載の(非)特許文献、市販の各種酵素、又はキット類に添付された手順に従えば実施できるものである。
Hereinafter, the present invention will be described based on examples and the like, but the scope of the present invention is not construed as being limited to the following examples. The technique described below is, for example, the method of Maniatis et al. (Maniatis, T., et al. Molecular Cloning. Cold Spring Harbor Laboratory (1982, 1989), (non-) patent literature described in this specification, It can be carried out by following the procedures attached to various commercially available enzymes or kits.
本実施例にて使用したホスホリパーゼA2は次の通りである。
The phospholipase A2 used in this example is as follows.
PLA2 II L(Lot 1001A、旭化成ファーマ株式会社、Streptomyces avermitilis由来、品番T-194)。PLA2ナガセ(製造番号7907851、ナガセケムテックス株式会社、Streptomyces avermitilis由来)。LIPOMOD 699L(Batch No.90825437、Biocatalyst、豚の膵臓由来、品番L699L)。
PLA2 II L (Lot 1001A, Asahi Kasei Pharma Corporation, derived from Streptomyces avermitilis, product number T-194). PLA2 Nagase (manufacturing number 7907851, derived from Nagase ChemteX Corporation, Streptomyces avermitilis). LIPOMOD 699L (Batch No. 90825437, Biocatalyst, derived from porcine pancreas, product number L699L).
本実施例にて使用した試薬類は、特に断らない限り、和光純薬工業株式会社製、シグマアルドリッチ社製、タカラバイオ株式会社製などであり、市販で容易に入手できるものを使用した。
Unless otherwise specified, the reagents used in this example are those manufactured by Wako Pure Chemical Industries, Ltd., Sigma Aldrich, Takara Bio, etc., and those that are readily available in the market are used.
以下に示した測定値などは測定の条件、使用機器の精度、試薬のメーカーや純度などによりその値は変化し得る。
Measured values shown below may vary depending on measurement conditions, accuracy of equipment used, reagent manufacturer and purity.
[実施例1:活性測定方法]
各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、及びLIPOMOD 699L)の活性測定方法を図1に簡略して示した。Acyl-CoA Synthetase(EC 6.2.1.3)及びAcyl-CoA Oxidase(EC 1.3.3.6)は旭化成ファーマ株式会社から入手した(品番はそれぞれT-16及びT17)。 [Example 1: Activity measurement method]
A method for measuring the activity of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L) is simply shown in FIG. Acyl-CoA Synthetase (EC 6.2.1.3) and Acyl-CoA Oxidase (EC 1.3.3.6) were obtained from Asahi Kasei Pharma Corporation (product numbers T-16 and T17, respectively).
各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、及びLIPOMOD 699L)の活性測定方法を図1に簡略して示した。Acyl-CoA Synthetase(EC 6.2.1.3)及びAcyl-CoA Oxidase(EC 1.3.3.6)は旭化成ファーマ株式会社から入手した(品番はそれぞれT-16及びT17)。 [Example 1: Activity measurement method]
A method for measuring the activity of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L) is simply shown in FIG. Acyl-CoA Synthetase (EC 6.2.1.3) and Acyl-CoA Oxidase (EC 1.3.3.6) were obtained from Asahi Kasei Pharma Corporation (product numbers T-16 and T17, respectively).
<第一反応試薬混合液>
80mM トリス-塩酸緩衝液pH8.0
50mM(0mM(*)) 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM ジパルミトイルホスホコリン(DPPC)
(*)他の実施例では0mMの場合もある。 <First reaction reagent mixture>
80 mM Tris-HCl buffer pH 8.0
50 mM (0 mM (*))Calcium chloride 4 mM ATP
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM dipalmitoylphosphocholine (DPPC)
(*) In other examples, it may be 0 mM.
80mM トリス-塩酸緩衝液pH8.0
50mM(0mM(*)) 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM ジパルミトイルホスホコリン(DPPC)
(*)他の実施例では0mMの場合もある。 <First reaction reagent mixture>
80 mM Tris-HCl buffer pH 8.0
50 mM (0 mM (*))
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM dipalmitoylphosphocholine (DPPC)
(*) In other examples, it may be 0 mM.
<第二反応試薬混合液>
40mM PIPES-NaOH緩衝液pH7.5
0.06% 4-AA
0.04% フェノール
4.5U/mL peroxidase
30U/mL Acyl-CoA Oxidase
0.2% トリトンX-100
20mM ATP
0.1mM FAD
<反応停止液>
0.5% SDS(ドデシル硫酸ナトリウム)を含む0.1M EDTA溶液pH8.0
<酵素溶解希釈用液>
0.05%BSAを含む10mMトリス-塩酸緩衝液pH8.0
<測定操作法>
(1)小試験管に第一反応試薬混合液0.50mLずつを正確に分注し、37℃で予備加温する。 <Second reaction reagent mixture>
40 mM PIPES-NaOH buffer pH 7.5
0.06% 4-AA
0.04% Phenol 4.5U / mL peroxidase
30U / mL Acyl-CoA Oxidase
0.2% Triton X-100
20 mM ATP
0.1 mM FAD
<Reaction stop solution>
0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate)
<Enzyme dissolution dilution>
10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA
<Measurement operation method>
(1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
40mM PIPES-NaOH緩衝液pH7.5
0.06% 4-AA
0.04% フェノール
4.5U/mL peroxidase
30U/mL Acyl-CoA Oxidase
0.2% トリトンX-100
20mM ATP
0.1mM FAD
<反応停止液>
0.5% SDS(ドデシル硫酸ナトリウム)を含む0.1M EDTA溶液pH8.0
<酵素溶解希釈用液>
0.05%BSAを含む10mMトリス-塩酸緩衝液pH8.0
<測定操作法>
(1)小試験管に第一反応試薬混合液0.50mLずつを正確に分注し、37℃で予備加温する。 <Second reaction reagent mixture>
40 mM PIPES-NaOH buffer pH 7.5
0.06% 4-AA
0.04% Phenol 4.5U / mL peroxidase
30U / mL Acyl-CoA Oxidase
0.2% Triton X-100
20 mM ATP
0.1 mM FAD
<Reaction stop solution>
0.1M EDTA solution pH 8.0 containing 0.5% SDS (sodium dodecyl sulfate)
<Enzyme dissolution dilution>
10 mM Tris-HCl buffer pH 8.0 containing 0.05% BSA
<Measurement operation method>
(1) 0.50 mL of the first reaction reagent mixture is accurately dispensed into a small test tube and pre-warmed at 37 ° C.
(2)5分経過後、適切な濃度に酵素溶解希釈緩衝液で希釈した酵素試料液(PL(A)、PLB、PLA2 II L、PLA2ナガセ又はLIPOMOD 699L)50μLを正確に加えて混和し、37℃で第一反応を開始する。盲検は酵素試料液の代わりに酵素溶解希釈緩衝液50μLを加える。
(2) After 5 minutes, 50 μL of an enzyme sample solution (PL (A), PLB, PLA2 II L, PLA2 Nagase or LIPOMOD 699 L) diluted with an enzyme dissolution dilution buffer to an appropriate concentration was accurately added and mixed, Start the first reaction at 37 ° C. In the blind test, 50 μL of enzyme lysis dilution buffer is added instead of the enzyme sample solution.
(3)10分経過後、20mM NEM溶液0.50mLを加えて混和し、15秒後に第二反応試薬混合液0.50mLを加えて混和し、37℃で第二反応を開始する。
(3) After 10 minutes, 0.50 mL of 20 mM NEM solution is added and mixed. After 15 seconds, 0.50 mL of the second reaction reagent mixed solution is added and mixed, and the second reaction is started at 37 ° C.
(4)5分経過後、反応停止液1.50mLを加えて混和し、反応を停止する。
(4) After 5 minutes, add 1.50 mL of the reaction stop solution and mix to stop the reaction.
(5)500nmにおける吸光度を測定する。求められた吸光度を試料液についてはAs、盲検液についてはAbとする。吸光度範囲は△A=(As-Ab)≦0.25Absとする。
(5) The absorbance at 500 nm is measured. The obtained absorbance is As for the sample solution and Ab for the blind solution. The absorbance range is ΔA = (As−Ab) ≦ 0.25 Abs.
<計算>
以下の(式5)に従い活性を計算する。なお、1ユニット(U)とは、本実施例の条件下、各ホスホリパーゼが基質(実施例1においてはDPPC)を加水分解する作用をして脂肪酸を1分間に1μmol生成する反応速度とした。 <Calculation>
Activity is calculated according to (Equation 5) below. One unit (U) was defined as a reaction rate at which each phospholipase hydrolyzes a substrate (DPPC in Example 1) to produce 1 μmol of fatty acid per minute under the conditions of this example.
以下の(式5)に従い活性を計算する。なお、1ユニット(U)とは、本実施例の条件下、各ホスホリパーゼが基質(実施例1においてはDPPC)を加水分解する作用をして脂肪酸を1分間に1μmol生成する反応速度とした。 <Calculation>
Activity is calculated according to (Equation 5) below. One unit (U) was defined as a reaction rate at which each phospholipase hydrolyzes a substrate (DPPC in Example 1) to produce 1 μmol of fatty acid per minute under the conditions of this example.
<結果>
図1で示したように、本実施例の活性測定方法は各ホスホリパーゼの作用により生成した脂肪酸を測定する方法である。したがって、本実施例の活性測定方法でPL(A)の活性が測定できたことは、PL(A)は他のPLA2と同様に、DPPCに作用して少なくとも脂肪酸を生成していることを示している。 <Result>
As shown in FIG. 1, the activity measurement method of this example is a method for measuring fatty acids produced by the action of each phospholipase. Therefore, the activity of PL (A) could be measured by the activity measurement method of this example, indicating that PL (A) acts on DPPC to produce at least fatty acids, like other PLA2. ing.
図1で示したように、本実施例の活性測定方法は各ホスホリパーゼの作用により生成した脂肪酸を測定する方法である。したがって、本実施例の活性測定方法でPL(A)の活性が測定できたことは、PL(A)は他のPLA2と同様に、DPPCに作用して少なくとも脂肪酸を生成していることを示している。 <Result>
As shown in FIG. 1, the activity measurement method of this example is a method for measuring fatty acids produced by the action of each phospholipase. Therefore, the activity of PL (A) could be measured by the activity measurement method of this example, indicating that PL (A) acts on DPPC to produce at least fatty acids, like other PLA2. ing.
実施例1にて測定した各ホスホリパーゼの活性を表1に示した。
The activity of each phospholipase measured in Example 1 is shown in Table 1.
本実施例では表1の各ホスホリパーゼを適宜希釈して用いた。すなわち、各ホスホリパーゼの表示活性は本実施例では採用しなかった。
In this example, each phospholipase shown in Table 1 was appropriately diluted and used. That is, the display activity of each phospholipase was not employed in this example.
[参考例1:Streptomyces albidoflavus由来PL(A)の調製方法]
[参考例1-1:Streptomyces albidoflavus NA297の染色体DNAの分離]
Streptomycesa albidoflavus NA297をYEME培地(0.3%酵母エキス、0.5%ペプトン、0.3%麦芽エキス、1%グルコース、34%シュークロース、5mM MgCl2、0.5%グリシン)50mLを用いて28℃で4日間培養し集菌した。次いで、この菌体を75mM NaCl、25mM EDTA、20mMトリス-塩酸緩衝液(pH7.5)及び1mg/mlリゾチームからなる溶液5mLに懸濁し、37℃で一晩処理した。これに10%(w/v) SDSを750μL、proteinase Kを5mg添加し55℃で2時間処理した。この溶液にクロロホルム7.5mLを加えて攪拌し、遠心分離により水相5mLを分取した。この水相に3mLのイソプロパノールを添加混合してDNA画分を回収し、10mM 卜リス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液500μLに溶解した。これにRNaseAを20μg/mLとなるように加え、37℃で1時間処理した後、0.8MのNaClを含む13%PEG溶液を500μL加え攪拌し、遠心分離により、水相を500μL分取した。これにフェノール/クロロホルム混合液500μLを加えて攪拌し、遠心分離により、水相を500μL分取した。この水相に3M 酢酸ナトリウム(pH5.2) 50μL及びエタノール1mLを添加混合しDNAを回収した。このDNAを70%(v/v)エタノールに10分間浸漬した後、10mM トリス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液200μLに溶解し、鋳型染色体DNAとした。 [Reference Example 1: Preparation of Streptomyces albidoflavus-derived PL (A)]
[Reference Example 1-1: Isolation of Chromosomal DNA of Streptomyces albidoflavus NA297]
Streptomyces albidoflavus NA297 with 50 mL of YEME medium (0.3% yeast extract, 0.5% peptone, 0.3% malt extract, 1% glucose, 34% sucrose, 5 mM MgCl 2 , 0.5% glycine) The cells were cultured at 28 ° C. for 4 days and collected. Next, the cells were suspended in 5 mL of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / ml lysozyme, and treated overnight at 37 ° C. To this, 750 μL of 10% (w / v) SDS and 5 mg of proteinase K were added and treated at 55 ° C. for 2 hours. To this solution, 7.5 mL of chloroform was added and stirred, and 5 mL of the aqueous phase was collected by centrifugation. To this aqueous phase, 3 mL of isopropanol was added and mixed to collect the DNA fraction, which was dissolved in 500 μL of a solution composed of 10 mM squirrel-hydrochloric acid buffer (pH 8.0) and 1 mM EDTA. RNase A was added to this so that it might become 20 micrograms / mL, and after processing at 37 degreeC for 1 hour, 500 microliters of 13% PEG solutions containing 0.8M NaCl were added and stirred, and 500 microliters of water phases were fractionated by centrifugation. . To this was added 500 μL of a phenol / chloroform mixed solution and stirred, and 500 μL of the aqueous phase was collected by centrifugation. To this aqueous phase, 50 μL of 3M sodium acetate (pH 5.2) and 1 mL of ethanol were added and mixed to recover DNA. This DNA was immersed in 70% (v / v) ethanol for 10 minutes and then dissolved in 200 μL of a solution consisting of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA to obtain template chromosome DNA.
[参考例1-1:Streptomyces albidoflavus NA297の染色体DNAの分離]
Streptomycesa albidoflavus NA297をYEME培地(0.3%酵母エキス、0.5%ペプトン、0.3%麦芽エキス、1%グルコース、34%シュークロース、5mM MgCl2、0.5%グリシン)50mLを用いて28℃で4日間培養し集菌した。次いで、この菌体を75mM NaCl、25mM EDTA、20mMトリス-塩酸緩衝液(pH7.5)及び1mg/mlリゾチームからなる溶液5mLに懸濁し、37℃で一晩処理した。これに10%(w/v) SDSを750μL、proteinase Kを5mg添加し55℃で2時間処理した。この溶液にクロロホルム7.5mLを加えて攪拌し、遠心分離により水相5mLを分取した。この水相に3mLのイソプロパノールを添加混合してDNA画分を回収し、10mM 卜リス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液500μLに溶解した。これにRNaseAを20μg/mLとなるように加え、37℃で1時間処理した後、0.8MのNaClを含む13%PEG溶液を500μL加え攪拌し、遠心分離により、水相を500μL分取した。これにフェノール/クロロホルム混合液500μLを加えて攪拌し、遠心分離により、水相を500μL分取した。この水相に3M 酢酸ナトリウム(pH5.2) 50μL及びエタノール1mLを添加混合しDNAを回収した。このDNAを70%(v/v)エタノールに10分間浸漬した後、10mM トリス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液200μLに溶解し、鋳型染色体DNAとした。 [Reference Example 1: Preparation of Streptomyces albidoflavus-derived PL (A)]
[Reference Example 1-1: Isolation of Chromosomal DNA of Streptomyces albidoflavus NA297]
Streptomyces albidoflavus NA297 with 50 mL of YEME medium (0.3% yeast extract, 0.5% peptone, 0.3% malt extract, 1% glucose, 34% sucrose, 5 mM MgCl 2 , 0.5% glycine) The cells were cultured at 28 ° C. for 4 days and collected. Next, the cells were suspended in 5 mL of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / ml lysozyme, and treated overnight at 37 ° C. To this, 750 μL of 10% (w / v) SDS and 5 mg of proteinase K were added and treated at 55 ° C. for 2 hours. To this solution, 7.5 mL of chloroform was added and stirred, and 5 mL of the aqueous phase was collected by centrifugation. To this aqueous phase, 3 mL of isopropanol was added and mixed to collect the DNA fraction, which was dissolved in 500 μL of a solution composed of 10 mM squirrel-hydrochloric acid buffer (pH 8.0) and 1 mM EDTA. RNase A was added to this so that it might become 20 micrograms / mL, and after processing at 37 degreeC for 1 hour, 500 microliters of 13% PEG solutions containing 0.8M NaCl were added and stirred, and 500 microliters of water phases were fractionated by centrifugation. . To this was added 500 μL of a phenol / chloroform mixed solution and stirred, and 500 μL of the aqueous phase was collected by centrifugation. To this aqueous phase, 50 μL of 3M sodium acetate (pH 5.2) and 1 mL of ethanol were added and mixed to recover DNA. This DNA was immersed in 70% (v / v) ethanol for 10 minutes and then dissolved in 200 μL of a solution consisting of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA to obtain template chromosome DNA.
[参考例1-2:Streptomyces albidoflavus NA297PL(A)遺伝子を含む組換えプラスミドの作製]
PCR用のオリゴとして、センスプライマー「primer S」(配列番号5)及びアンチセンスプライマーとして「primer AS」(配列番号6)を合成した。参考例1-1で得た鋳型染色体DNA 50ng、10×PCR Buffer 2.5μL、プライマー各1200nM、dNTPs各0.3mM、MgCl2、1.2mM、DMSO 4%、KOD DNA Polymerase 1.25ユニット、蒸留水を全量25μLとなるように添加した。PCR反応条件は次のとおりである。 [Reference Example 1-2: Preparation of recombinant plasmid containing Streptomyces albidoflavus NA297PL (A) gene]
A sense primer “primer S” (SEQ ID NO: 5) was synthesized as an oligo for PCR, and “primer AS” (SEQ ID NO: 6) was synthesized as an antisense primer. Templatechromosomal DNA 50 ng obtained in Reference Example 1-1, 10 × PCR Buffer 2.5 μL, each primer 1200 nM, dNTPs 0.3 mM each, MgCl 2 , 1.2 mM, DMSO 4%, KOD DNA Polymerase 1.25 units, Distilled water was added to a total volume of 25 μL. PCR reaction conditions are as follows.
PCR用のオリゴとして、センスプライマー「primer S」(配列番号5)及びアンチセンスプライマーとして「primer AS」(配列番号6)を合成した。参考例1-1で得た鋳型染色体DNA 50ng、10×PCR Buffer 2.5μL、プライマー各1200nM、dNTPs各0.3mM、MgCl2、1.2mM、DMSO 4%、KOD DNA Polymerase 1.25ユニット、蒸留水を全量25μLとなるように添加した。PCR反応条件は次のとおりである。 [Reference Example 1-2: Preparation of recombinant plasmid containing Streptomyces albidoflavus NA297PL (A) gene]
A sense primer “primer S” (SEQ ID NO: 5) was synthesized as an oligo for PCR, and “primer AS” (SEQ ID NO: 6) was synthesized as an antisense primer. Template
ステップ1:98℃、2分;
ステップ2:98℃、15秒;
ステップ3:72℃、15秒;
ステップ4:74℃、60秒;
ステップ2からステップ4を30サイクル繰り返す;
ステップ5:74℃、4分。 Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 15 seconds;
Step 4: 74 ° C., 60 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 4 minutes.
ステップ2:98℃、15秒;
ステップ3:72℃、15秒;
ステップ4:74℃、60秒;
ステップ2からステップ4を30サイクル繰り返す;
ステップ5:74℃、4分。 Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 15 seconds;
Step 4: 74 ° C., 60 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 4 minutes.
このPCRにより約900bpの特異的な増幅産物が得られた。増幅産物中の689AGATCT694配列は、Kunkel法(Kunkel,T.A.(1985)Rapid and efficient site-specific mutagenesis without phenotypic selection.Proceedings of the National Academy of Science of the USA,82巻、488-492頁)により689AAATCT694とした。
A specific amplification product of about 900 bp was obtained by this PCR. The 689 AGATCT 694 sequence in the amplified product is the Kunkel method (Kunkel, T.A. (1985) Rapid and effective site-specific mutations with the phenotype of the United States of America. Page) 689 AAATCT 694 .
この増幅された断片をNheIとBglIIで消化し、発現ベクターである放線菌プラスミド(pMD20-Tベクター(TaKaRa製))のNheI-BglII部位に挿入して、組換えプラスミドを得た。
The amplified fragment was digested with NheI and BglII, and inserted into the NheI-BglII site of the actinomycete plasmid (pMD20-T vector (manufactured by TaKaRa)) as an expression vector to obtain a recombinant plasmid.
[参考例1-3:Streptomyces albidoflavus NA297由来PL(A)遺伝子を発現する組換え放線菌の作製]
参考例1-2で得た組換えプラスミドを用いて、「PRACTICAL STREPTOMY CES GENETICS(Kieserら、John Innes Foundation、2000年)」に記載の方法に従い、プロトプラスト化された放線菌Streptomyces lividans)1326を形質転換し、組換え放線菌を得た。 [Reference Example 1-3: Production of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297]
Using the recombinant plasmid obtained in Reference Example 1-2, the protoplast actinomycete Streptomyces lividans) 1326 was transformed according to the method described in “PRACTICAL STREPTOMY CES GENETICS (Kieser et al., John Inns Foundation, 2000)”. The recombinant actinomycetes were obtained after conversion.
参考例1-2で得た組換えプラスミドを用いて、「PRACTICAL STREPTOMY CES GENETICS(Kieserら、John Innes Foundation、2000年)」に記載の方法に従い、プロトプラスト化された放線菌Streptomyces lividans)1326を形質転換し、組換え放線菌を得た。 [Reference Example 1-3: Production of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297]
Using the recombinant plasmid obtained in Reference Example 1-2, the protoplast actinomycete Streptomyces lividans) 1326 was transformed according to the method described in “PRACTICAL STREPTOMY CES GENETICS (Kieser et al., John Inns Foundation, 2000)”. The recombinant actinomycetes were obtained after conversion.
[参考例1-4:Streptomyces albidoflavus NA297由来PL(A)遺伝子を発現する組換え放線菌の培養]
参考例1-3で得た組換え放線菌を、12μg/mLのチオストレプトンを含む100mL×4本のトリプチックソイ培地(ペクトン・ディッキンソン社製)で培養した。得られた培養液340mLから遠心分離(15000rpm、5分、4℃)にて上清を回収し、硫酸アンモニウム分画にて、沈殿を回収した。回収した沈殿を20mM 卜リス-塩酸緩衝液(pH8.0)に溶解し、20mM トリス-塩酸緩衝液(pH8.0)を外液として透析して酵素溶液を得た。得られたPL(A)の濃度は約2.5U/mLで、適宜10-kDa centrifugal filter device(ミリポア社製)などで濃縮して実施例1~実施例11で本発明のPL(A)として使用した。 [Reference Example 1-4: Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297]
The recombinant actinomycetes obtained in Reference Example 1-3 were cultured in 100 mL × 4 tryptic soy media (Pecton Dickinson) containing 12 μg / mL thiostrepton. The supernatant was recovered from the obtained culture solution (340 mL) by centrifugation (15000 rpm, 5 minutes, 4 ° C.), and the precipitate was recovered by ammonium sulfate fractionation. The collected precipitate was dissolved in 20 mM squirrel-hydrochloric acid buffer (pH 8.0) and dialyzed with 20 mM Tris-hydrochloric acid buffer (pH 8.0) as an external solution to obtain an enzyme solution. The concentration of the obtained PL (A) was about 2.5 U / mL, and it was appropriately concentrated with 10-kDa centrifugal filter device (Millipore) or the like, and the PL (A) of the present invention was used in Examples 1 to 11. Used as.
参考例1-3で得た組換え放線菌を、12μg/mLのチオストレプトンを含む100mL×4本のトリプチックソイ培地(ペクトン・ディッキンソン社製)で培養した。得られた培養液340mLから遠心分離(15000rpm、5分、4℃)にて上清を回収し、硫酸アンモニウム分画にて、沈殿を回収した。回収した沈殿を20mM 卜リス-塩酸緩衝液(pH8.0)に溶解し、20mM トリス-塩酸緩衝液(pH8.0)を外液として透析して酵素溶液を得た。得られたPL(A)の濃度は約2.5U/mLで、適宜10-kDa centrifugal filter device(ミリポア社製)などで濃縮して実施例1~実施例11で本発明のPL(A)として使用した。 [Reference Example 1-4: Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces albidoflavus NA297]
The recombinant actinomycetes obtained in Reference Example 1-3 were cultured in 100 mL × 4 tryptic soy media (Pecton Dickinson) containing 12 μg / mL thiostrepton. The supernatant was recovered from the obtained culture solution (340 mL) by centrifugation (15000 rpm, 5 minutes, 4 ° C.), and the precipitate was recovered by ammonium sulfate fractionation. The collected precipitate was dissolved in 20 mM squirrel-hydrochloric acid buffer (pH 8.0) and dialyzed with 20 mM Tris-hydrochloric acid buffer (pH 8.0) as an external solution to obtain an enzyme solution. The concentration of the obtained PL (A) was about 2.5 U / mL, and it was appropriately concentrated with 10-kDa centrifugal filter device (Millipore) or the like, and the PL (A) of the present invention was used in Examples 1 to 11. Used as.
[参考例2:PLBの調製方法]
日本農芸化学会2011年度大会の講演番号:2C10a05(2011年3月23日9:44~)、Streptomyces sp. NA684由来新規ホスホリパーゼBの大量発現とその特性解析(松本優作、杉森大助(福島大院・理工))によって公開された方法で調製して実施例で使用した。 [Reference Example 2: Method for preparing PLB]
Lecture number of the 2011 Annual Meeting of the Japanese Society for Agricultural Chemistry: 2C10a05 (March 23, 2011 9: 44-), Streptomyces sp. A large amount of NA684-derived novel phospholipase B was expressed and analyzed by a method published by Yusaku Matsumoto and Daisuke Sugimori (Fukushima Univ., Riko) and used in the examples.
日本農芸化学会2011年度大会の講演番号:2C10a05(2011年3月23日9:44~)、Streptomyces sp. NA684由来新規ホスホリパーゼBの大量発現とその特性解析(松本優作、杉森大助(福島大院・理工))によって公開された方法で調製して実施例で使用した。 [Reference Example 2: Method for preparing PLB]
Lecture number of the 2011 Annual Meeting of the Japanese Society for Agricultural Chemistry: 2C10a05 (March 23, 2011 9: 44-), Streptomyces sp. A large amount of NA684-derived novel phospholipase B was expressed and analyzed by a method published by Yusaku Matsumoto and Daisuke Sugimori (Fukushima Univ., Riko) and used in the examples.
(a)培養
NB培地「1%ペプトン(べクトン・ディンキンソン社製)、1%肉エキス(極東製薬工業(株)製)、0.5% 塩化ナトリウム(和光純薬工業(株)製)、pH7.2」300mLを調製し、500mL容三角フラスコに100mlずつ分注して、さらに1%大豆レシチンと0.1%ツィーン(Tween)80を添加した後、121℃で15分間蒸気殺菌を行った。予め平板培地に生育したストレプトマイセス・エスピー(Streptomyces sp.)NA684のコロニーを適当量とり、トリプチックソイ培地(べクトン・ディンキンソン社製)5mLを入れたφ18試験管(18×180mm)に接種し、28℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mlずつ接種し、28℃で108時間振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 (A) Culture NB medium “1% peptone (Becton Dinkinson), 1% meat extract (Kyokuto Pharmaceutical Co., Ltd.), 0.5% sodium chloride (Wako Pure Chemical Industries, Ltd.) , PH 7.2 ", 300 mL, dispense 100 ml into a 500 mL Erlenmeyer flask, add 1% soybean lecithin and 0.1% Tween 80, and steam sterilize at 121 ° C for 15 minutes. went. A suitable amount of a colony of Streptomyces sp. NA684 previously grown on a plate medium was taken and put in a φ18 test tube (18 × 180 mm) containing 5 mL of tryptic soy medium (Becton Dinkinson). Inoculated and cultured with shaking at 28 ° C. until good growth was obtained. 1 ml of this culture solution was inoculated into 100 mL of the previously sterilized medium and cultured with shaking at 28 ° C. for 108 hours. The supernatant was recovered from this culture using a centrifuge.
NB培地「1%ペプトン(べクトン・ディンキンソン社製)、1%肉エキス(極東製薬工業(株)製)、0.5% 塩化ナトリウム(和光純薬工業(株)製)、pH7.2」300mLを調製し、500mL容三角フラスコに100mlずつ分注して、さらに1%大豆レシチンと0.1%ツィーン(Tween)80を添加した後、121℃で15分間蒸気殺菌を行った。予め平板培地に生育したストレプトマイセス・エスピー(Streptomyces sp.)NA684のコロニーを適当量とり、トリプチックソイ培地(べクトン・ディンキンソン社製)5mLを入れたφ18試験管(18×180mm)に接種し、28℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mlずつ接種し、28℃で108時間振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 (A) Culture NB medium “1% peptone (Becton Dinkinson), 1% meat extract (Kyokuto Pharmaceutical Co., Ltd.), 0.5% sodium chloride (Wako Pure Chemical Industries, Ltd.) , PH 7.2 ", 300 mL, dispense 100 ml into a 500 mL Erlenmeyer flask, add 1% soybean lecithin and 0.1
(b)硫安分画
上記(a)で回収した培養上清に、80%(w/v)飽和となるように硫酸アンモニウムを添加し、生じた沈殿を遠心分離(10,000rpm、30分、4℃)により回収した。この沈殿を可溶化し、20mMトリス-塩酸緩衝液(pH9.0)で透析し、粗酵素液を得た。 (B) Ammonium sulfate fraction To the culture supernatant collected in (a) above, ammonium sulfate was added so as to be 80% (w / v) saturated, and the resulting precipitate was centrifuged (10,000 rpm, 30 minutes, 4 minutes). C). This precipitate was solubilized and dialyzed against 20 mM Tris-HCl buffer (pH 9.0) to obtain a crude enzyme solution.
上記(a)で回収した培養上清に、80%(w/v)飽和となるように硫酸アンモニウムを添加し、生じた沈殿を遠心分離(10,000rpm、30分、4℃)により回収した。この沈殿を可溶化し、20mMトリス-塩酸緩衝液(pH9.0)で透析し、粗酵素液を得た。 (B) Ammonium sulfate fraction To the culture supernatant collected in (a) above, ammonium sulfate was added so as to be 80% (w / v) saturated, and the resulting precipitate was centrifuged (10,000 rpm, 30 minutes, 4 minutes). C). This precipitate was solubilized and dialyzed against 20 mM Tris-HCl buffer (pH 9.0) to obtain a crude enzyme solution.
(c)DEAE-Toyopearlカラムクロマトグラフィー
上記(b)で得られた粗酵素液を、20mM トリス-塩酸緩衝液(pH9.0)で予め平衡化した「DEAE-Toyopearl650Mカラム」(内径26mm、高さ55mm、東ソー社製)にアプライした。同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (C) DEAE-Toyopearl column chromatography The “DEAE-Toyopearl 650M column” (inner diameter: 26 mm, height) obtained by previously equilibrating the crude enzyme solution obtained in (b) above with 20 mM Tris-HCl buffer (pH 9.0). 55 mm, manufactured by Tosoh Corporation). After washing the column with the same buffer, the active fraction was eluted with a linear gradient of sodium chloride (from 0 M to 1 M).
上記(b)で得られた粗酵素液を、20mM トリス-塩酸緩衝液(pH9.0)で予め平衡化した「DEAE-Toyopearl650Mカラム」(内径26mm、高さ55mm、東ソー社製)にアプライした。同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (C) DEAE-Toyopearl column chromatography The “DEAE-Toyopearl 650M column” (inner diameter: 26 mm, height) obtained by previously equilibrating the crude enzyme solution obtained in (b) above with 20 mM Tris-HCl buffer (pH 9.0). 55 mm, manufactured by Tosoh Corporation). After washing the column with the same buffer, the active fraction was eluted with a linear gradient of sodium chloride (from 0 M to 1 M).
(d)HiTrap Qカラムクロマトグラフィー
上記(c)で得られた活性画分を集め、Viva spin(ザルトリウス社製)を用い濃縮脱塩した。これに、20mMトリス-塩酸緩衝液(pH9.0)を加えた。これを、20mMトリス-塩酸緩衝液(pH9.0)で予め平衡化した「HiTrap Q」(5ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (D) HiTrap Q column chromatography The active fractions obtained in (c) above were collected and concentrated and desalted using Viva spin (manufactured by Sartorius). To this, 20 mM Tris-HCl buffer (pH 9.0) was added. This was applied to a “HiTrap Q” (5 ml) column (manufactured by GE Healthcare Bioscience) previously equilibrated with 20 mM Tris-HCl buffer (pH 9.0), and the column was washed with the same buffer. The active fraction was eluted with a linear gradient of sodium chloride (0M to 1M).
上記(c)で得られた活性画分を集め、Viva spin(ザルトリウス社製)を用い濃縮脱塩した。これに、20mMトリス-塩酸緩衝液(pH9.0)を加えた。これを、20mMトリス-塩酸緩衝液(pH9.0)で予め平衡化した「HiTrap Q」(5ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (D) HiTrap Q column chromatography The active fractions obtained in (c) above were collected and concentrated and desalted using Viva spin (manufactured by Sartorius). To this, 20 mM Tris-HCl buffer (pH 9.0) was added. This was applied to a “HiTrap Q” (5 ml) column (manufactured by GE Healthcare Bioscience) previously equilibrated with 20 mM Tris-HCl buffer (pH 9.0), and the column was washed with the same buffer. The active fraction was eluted with a linear gradient of sodium chloride (0M to 1M).
(e)RESOURCE PHEカラムクロマトグラフィー
上記(d)で得られた活性画分を集め、Viva spinを用い濃縮脱塩した。これに、1M硫酸アンモニウムを含む20mMトリス-塩酸緩衝液(pH8.0)を加えた。1M硫酸アンモニウムを含む20mMトリス-塩酸緩衝液(pH8.0)で予め平衡化した「RESOURCE PHE」(1ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、硫酸アンモニウム(1Mから0Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (E) RESOURCE PHE column chromatography The active fractions obtained in (d) above were collected and concentrated and desalted using Viva spin. To this, 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate was added. After applying to a “RESOURCE PHE” (1 ml) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate, the column was washed with the same buffer. The active fraction was eluted with a linear gradient of ammonium sulfate (1M to 0M).
上記(d)で得られた活性画分を集め、Viva spinを用い濃縮脱塩した。これに、1M硫酸アンモニウムを含む20mMトリス-塩酸緩衝液(pH8.0)を加えた。1M硫酸アンモニウムを含む20mMトリス-塩酸緩衝液(pH8.0)で予め平衡化した「RESOURCE PHE」(1ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、硫酸アンモニウム(1Mから0Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (E) RESOURCE PHE column chromatography The active fractions obtained in (d) above were collected and concentrated and desalted using Viva spin. To this, 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate was added. After applying to a “RESOURCE PHE” (1 ml) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate, the column was washed with the same buffer. The active fraction was eluted with a linear gradient of ammonium sulfate (1M to 0M).
(f)Mono Sカラムクロマトグラフィー
上記(e)で得られた活性画分を集め、Viva spinを用い濃縮脱塩した。これに、20mMメス-水酸化ナトリウム緩衝液(pH6.0)を加えた。20mMメス-水酸化ナトリウム緩衝液(pH6.0)で予め平衡化した「Mono S」(1ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから0.5Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (F) Mono S column chromatography The active fractions obtained in (e) above were collected and concentrated and desalted using Viva spin. To this, 20 mM female-sodium hydroxide buffer (pH 6.0) was added. This was applied to a “Mono S” (1 ml) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM female-sodium hydroxide buffer (pH 6.0), and the column was washed with the same buffer. The active fraction was eluted with a linear gradient of sodium (0M to 0.5M).
上記(e)で得られた活性画分を集め、Viva spinを用い濃縮脱塩した。これに、20mMメス-水酸化ナトリウム緩衝液(pH6.0)を加えた。20mMメス-水酸化ナトリウム緩衝液(pH6.0)で予め平衡化した「Mono S」(1ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから0.5Mまで)のリニアグラジェントにより、活性画分を溶出させた。 (F) Mono S column chromatography The active fractions obtained in (e) above were collected and concentrated and desalted using Viva spin. To this, 20 mM female-sodium hydroxide buffer (pH 6.0) was added. This was applied to a “Mono S” (1 ml) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM female-sodium hydroxide buffer (pH 6.0), and the column was washed with the same buffer. The active fraction was eluted with a linear gradient of sodium (0M to 0.5M).
(g)SDS-PAGE
上記(e)で溶出した活性画分を集めてSDS-PAGE(12%(w/v)ポリアクリルアミドゲル)により解析した。 (G) SDS-PAGE
The active fractions eluted in (e) above were collected and analyzed by SDS-PAGE (12% (w / v) polyacrylamide gel).
上記(e)で溶出した活性画分を集めてSDS-PAGE(12%(w/v)ポリアクリルアミドゲル)により解析した。 (G) SDS-PAGE
The active fractions eluted in (e) above were collected and analyzed by SDS-PAGE (12% (w / v) polyacrylamide gel).
以上のようにして、ストレプトマイセス・エスピー(Streptomycessp.)NA684株より、電気泳動的に単一に精製された酵素を得た。
As described above, electrophoretically purified enzyme was obtained from Streptomycessp. NA684 strain.
[実施例2:PL(A)の基質特異性1]
本実施例では、ホスファチジルコリンのsn-1位とsn-2位に対するPL(A)の反応速度(加水分解速度)を比較した。 [Example 2:Substrate specificity 1 of PL (A)]
In this example, the reaction rate (hydrolysis rate) of PL (A) with respect to the sn-1 and sn-2 positions of phosphatidylcholine was compared.
本実施例では、ホスファチジルコリンのsn-1位とsn-2位に対するPL(A)の反応速度(加水分解速度)を比較した。 [Example 2:
In this example, the reaction rate (hydrolysis rate) of PL (A) with respect to the sn-1 and sn-2 positions of phosphatidylcholine was compared.
<反応液>
100mM Tris-塩酸緩衝液(pH7.2)
0.50% ホスファチジルコリン(ナカライテスク、品番20342-52)
25mM EDTA
1% トリトンX-100
0.9mU/mL PL(A)
反応は37℃で行った。反応開始0、5、10、20、30分後に<反応液>を50μLずつ取り出して、この<反応液>にCHCl3:CH3OH(体積比2:1)の溶液を50μL加えて混合し反応を停止した。有機相に抽出されたリゾリン脂質の量をHPLCで測定した。 <Reaction solution>
100 mM Tris-HCl buffer (pH 7.2)
0.50% Phosphatidylcholine (Nacalai Tesque, product number 20342-52)
25 mM EDTA
1% Triton X-100
0.9mU / mL PL (A)
The reaction was carried out at 37 ° C. At 0, 5, 10, 20, and 30 minutes after the start of the reaction, 50 μL of the <reaction solution> was taken out, and 50 μL of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to this <reaction solution> and mixed. The reaction was stopped. The amount of lysophospholipid extracted into the organic phase was measured by HPLC.
100mM Tris-塩酸緩衝液(pH7.2)
0.50% ホスファチジルコリン(ナカライテスク、品番20342-52)
25mM EDTA
1% トリトンX-100
0.9mU/mL PL(A)
反応は37℃で行った。反応開始0、5、10、20、30分後に<反応液>を50μLずつ取り出して、この<反応液>にCHCl3:CH3OH(体積比2:1)の溶液を50μL加えて混合し反応を停止した。有機相に抽出されたリゾリン脂質の量をHPLCで測定した。 <Reaction solution>
100 mM Tris-HCl buffer (pH 7.2)
0.50% Phosphatidylcholine (Nacalai Tesque, product number 20342-52)
25 mM EDTA
1% Triton X-100
0.9mU / mL PL (A)
The reaction was carried out at 37 ° C. At 0, 5, 10, 20, and 30 minutes after the start of the reaction, 50 μL of the <reaction solution> was taken out, and 50 μL of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to this <reaction solution> and mixed. The reaction was stopped. The amount of lysophospholipid extracted into the organic phase was measured by HPLC.
<HPLC条件>
Systech社、Alltima Silica 3μm、100mm×4.6mm
溶離液A:CHCl3/MeOH/H2O(80/18/2)
溶離液B:CHCl3/MeOH/H2O(60/34/6)
グラジエント:0min、100%Aから15minで100%Bのリニアグラジエント
検出器:ELSD
流速:1 ml/min
カラム温度:25℃
<結果>
37℃、20分間の加水分解反応で、収率約16.5%でリゾリン脂質を得ることができた。その内訳は、2-アシル-sn-グリセロ-3-ホスホコリン(2-Acyl-sn-glycero-3-phosphocholine)が約8割、1-アシル-sn-グリセ口-3-ホスホコリン(1-AcyL-sn-glycero-3-phosphocholine)が約2割であり、その比率は少なくとも反応開始後5分から30分の間は一定であった(図4)。 <HPLC conditions>
Systech,Alltima Silica 3 μm, 100 mm × 4.6 mm
Eluent A: CHCl 3 / MeOH / H 2 O (80/18/2)
Eluent B: CHCl 3 / MeOH / H 2 O (60/34/6)
Gradient: 0 min, 100% A to 15 min linear gradient of 100% B Detector: ELSD
Flow rate: 1 ml / min
Column temperature: 25 ° C
<Result>
In the hydrolysis reaction at 37 ° C. for 20 minutes, lysophospholipids could be obtained with a yield of about 16.5%. The breakdown is about 80% of 2-acyl-sn-glycero-3-phosphocholine (1-Acyl-sn-glycero-3-phosphocholine), 1-acyl-sn-glycose-3-phosphocholine (1-AcyL- sn-glycero-3-phosphocholine) was about 20%, and the ratio was constant for at least 5 to 30 minutes after the start of the reaction (FIG. 4).
Systech社、Alltima Silica 3μm、100mm×4.6mm
溶離液A:CHCl3/MeOH/H2O(80/18/2)
溶離液B:CHCl3/MeOH/H2O(60/34/6)
グラジエント:0min、100%Aから15minで100%Bのリニアグラジエント
検出器:ELSD
流速:1 ml/min
カラム温度:25℃
<結果>
37℃、20分間の加水分解反応で、収率約16.5%でリゾリン脂質を得ることができた。その内訳は、2-アシル-sn-グリセロ-3-ホスホコリン(2-Acyl-sn-glycero-3-phosphocholine)が約8割、1-アシル-sn-グリセ口-3-ホスホコリン(1-AcyL-sn-glycero-3-phosphocholine)が約2割であり、その比率は少なくとも反応開始後5分から30分の間は一定であった(図4)。 <HPLC conditions>
Systech,
Eluent A: CHCl 3 / MeOH / H 2 O (80/18/2)
Eluent B: CHCl 3 / MeOH / H 2 O (60/34/6)
Gradient: 0 min, 100% A to 15 min linear gradient of 100% B Detector: ELSD
Flow rate: 1 ml / min
Column temperature: 25 ° C
<Result>
In the hydrolysis reaction at 37 ° C. for 20 minutes, lysophospholipids could be obtained with a yield of about 16.5%. The breakdown is about 80% of 2-acyl-sn-glycero-3-phosphocholine (1-Acyl-sn-glycero-3-phosphocholine), 1-acyl-sn-glycose-3-phosphocholine (1-AcyL- sn-glycero-3-phosphocholine) was about 20%, and the ratio was constant for at least 5 to 30 minutes after the start of the reaction (FIG. 4).
したがって、ホスファチジルコリンのsn-1位とsn-2位に対するPL(A)の反応速度比は約4:1であることが示された。
Therefore, it was shown that the reaction rate ratio of PL (A) to the sn-1 and sn-2 positions of phosphatidylcholine was about 4: 1.
[実施例3:PL(A)の基質特異性2と比活性]
本実施例では、PlsEtn(C18、18:1)とDPPCに対するPL(A)の反応速度(加水分解速度)を比較し、比活性を測定した。 [Example 3:Substrate specificity 2 and specific activity of PL (A)]
In this example, PlsEtn (C18, 18: 1) was compared with the reaction rate (hydrolysis rate) of PL (A) against DPPC, and the specific activity was measured.
本実施例では、PlsEtn(C18、18:1)とDPPCに対するPL(A)の反応速度(加水分解速度)を比較し、比活性を測定した。 [Example 3:
In this example, PlsEtn (C18, 18: 1) was compared with the reaction rate (hydrolysis rate) of PL (A) against DPPC, and the specific activity was measured.
<第一反応試薬混合液2>
80mM トリス-塩酸緩衝液pH8.0
5又は0mM 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM PlsEtn(C18、18:1)
まず実施例1の方法でPL(A)の活性を測定した。次に0mM塩化カルシウム(カルシウムイオン非存在)の<第一反応試薬混合液>を調製し、実施例1の方法でPL(A)の活性を測定した。次に<第一反応試薬混合液>の代わりに<第一反応試薬混合液2>を用いて、それ以外は実施例1の方法と同様にしてPL(A)の活性を測定した。最後に0mM塩化カルシウム(カルシウムイオン非存在)の<第一反応試薬混合液2>を用いて、それ以外は実施例1の方法と同様にしてPL(A)の活性を測定した。そして相対活性を(式3)で計算した。n=5で実施した。 <Firstreaction reagent mixture 2>
80 mM Tris-HCl buffer pH 8.0
5 or 0mM calcium chloride 4 mM ATP
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM PlsEtn (C18, 18: 1)
First, the activity of PL (A) was measured by the method of Example 1. Next, a <first reaction reagent mixed solution> of 0 mM calcium chloride (no calcium ion) was prepared, and the activity of PL (A) was measured by the method of Example 1. Next, the activity of PL (A) was measured in the same manner as in Example 1 except that <firstreaction reagent mixture 2> was used instead of <first reaction reagent mixture>. Finally, the activity of PL (A) was measured in the same manner as in Example 1 except that <First Reaction Reagent Mixture 2> containing 0 mM calcium chloride (no calcium ion) was used. The relative activity was calculated by (Equation 3). n = 5.
80mM トリス-塩酸緩衝液pH8.0
5又は0mM 塩化カルシウム
4mM ATP
4mM CoA
1.06U/mL Acyl-CoA Synthetase
2mM PlsEtn(C18、18:1)
まず実施例1の方法でPL(A)の活性を測定した。次に0mM塩化カルシウム(カルシウムイオン非存在)の<第一反応試薬混合液>を調製し、実施例1の方法でPL(A)の活性を測定した。次に<第一反応試薬混合液>の代わりに<第一反応試薬混合液2>を用いて、それ以外は実施例1の方法と同様にしてPL(A)の活性を測定した。最後に0mM塩化カルシウム(カルシウムイオン非存在)の<第一反応試薬混合液2>を用いて、それ以外は実施例1の方法と同様にしてPL(A)の活性を測定した。そして相対活性を(式3)で計算した。n=5で実施した。 <First
80 mM Tris-HCl buffer pH 8.0
5 or 0
4 mM CoA
1.06U / mL Acyl-CoA Synthetase
2 mM PlsEtn (C18, 18: 1)
First, the activity of PL (A) was measured by the method of Example 1. Next, a <first reaction reagent mixed solution> of 0 mM calcium chloride (no calcium ion) was prepared, and the activity of PL (A) was measured by the method of Example 1. Next, the activity of PL (A) was measured in the same manner as in Example 1 except that <first
<結果>
<Result>
表2で示したように、PlsEtn(C18、18:1)に対するPL(A)の相対活性はDPPCに対して19±5%(平均±SD)であった。
As shown in Table 2, the relative activity of PL (A) with respect to PlsEtn (C18, 18: 1) was 19 ± 5% (average ± SD) with respect to DPPC.
[実施例4:PL(A)の基質特異性3]
本実施例では、PlsEtn(C18、20:4)とPOPCに対するPL(A)の反応速度(加水分解速度)を比較した。 [Example 4:Substrate specificity 3 of PL (A)]
In this example, the reaction rate (hydrolysis rate) of PL (A) against PlsEtn (C18, 20: 4) and POPC was compared.
本実施例では、PlsEtn(C18、20:4)とPOPCに対するPL(A)の反応速度(加水分解速度)を比較した。 [Example 4:
In this example, the reaction rate (hydrolysis rate) of PL (A) against PlsEtn (C18, 20: 4) and POPC was compared.
<反応液1>
120mM Tris-塩酸緩衝液(pH7.2)
2.5% PlsEtn(C18、20:4)
1mM EDTA
1% トリトンX-100
<反応液2>
120mM Tris-塩酸緩衝液(pH7.2)
2.5% POPC
1mM EDTA
1% トリトンX-100
50℃にした100μLの<反応液1>及び<反応液2>に、5mU/mLのPL(A)を5μL添加して反応を開始した。反応開始後5分後に、<反応液1>及び<反応液2>を煮沸して反応を停止した。<反応液1>及び<反応液2>に含まれる遊離脂肪酸の生成量を、遊離脂肪酸測定キットである「NEFA Cテストワコー」(和光純薬工業社製)で測定した。相対活性は(式4)で計算した。n=5で実施した。 <Reaction liquid 1>
120 mM Tris-HCl buffer (pH 7.2)
2.5% PlsEtn (C18, 20: 4)
1 mM EDTA
1% Triton X-100
<Reaction liquid 2>
120 mM Tris-HCl buffer (pH 7.2)
2.5% POPC
1 mM EDTA
1% Triton X-100
5 μL of 5 mU / mL PL (A) was added to 100 μL of <Reaction Solution 1> and <Reaction Solution 2> at 50 ° C. to initiate the reaction. Five minutes after the start of the reaction, <Reaction Solution 1> and <Reaction Solution 2> were boiled to stop the reaction. The amount of free fatty acid contained in <Reaction Solution 1> and <Reaction Solution 2> was measured with “NEFA C Test Wako” (manufactured by Wako Pure Chemical Industries, Ltd.) which is a free fatty acid measurement kit. The relative activity was calculated by (Equation 4). n = 5.
120mM Tris-塩酸緩衝液(pH7.2)
2.5% PlsEtn(C18、20:4)
1mM EDTA
1% トリトンX-100
<反応液2>
120mM Tris-塩酸緩衝液(pH7.2)
2.5% POPC
1mM EDTA
1% トリトンX-100
50℃にした100μLの<反応液1>及び<反応液2>に、5mU/mLのPL(A)を5μL添加して反応を開始した。反応開始後5分後に、<反応液1>及び<反応液2>を煮沸して反応を停止した。<反応液1>及び<反応液2>に含まれる遊離脂肪酸の生成量を、遊離脂肪酸測定キットである「NEFA Cテストワコー」(和光純薬工業社製)で測定した。相対活性は(式4)で計算した。n=5で実施した。 <
120 mM Tris-HCl buffer (pH 7.2)
2.5% PlsEtn (C18, 20: 4)
1 mM EDTA
1% Triton X-100
<
120 mM Tris-HCl buffer (pH 7.2)
2.5% POPC
1 mM EDTA
1% Triton X-100
5 μL of 5 mU / mL PL (A) was added to 100 μL of <
<結果>
PL(A)はPlsEtn(C18、20:4)に作用して脂肪酸を生成していることが明らかになった。また、本発明のPL(A)のPlsEtn(C18、20:4)に対する相対活性は、POPCに対して、29±13%(平均±SD)であった。 <Result>
It was revealed that PL (A) acts on PlsEtn (C18, 20: 4) to produce fatty acids. Further, the relative activity of PL (A) of the present invention with respect to PlsEtn (C18, 20: 4) was 29 ± 13% (mean ± SD) with respect to POPC.
PL(A)はPlsEtn(C18、20:4)に作用して脂肪酸を生成していることが明らかになった。また、本発明のPL(A)のPlsEtn(C18、20:4)に対する相対活性は、POPCに対して、29±13%(平均±SD)であった。 <Result>
It was revealed that PL (A) acts on PlsEtn (C18, 20: 4) to produce fatty acids. Further, the relative activity of PL (A) of the present invention with respect to PlsEtn (C18, 20: 4) was 29 ± 13% (mean ± SD) with respect to POPC.
[実施例5:各ホスホリパーゼのSDS-PAGE法による分子量測定]
<SDS-PAGEサンプルバッファー>
125mM Tris-塩酸緩衝液(pH6.8)
4(W/V)% SDS
10(W/V)% シュークロース
0.01(W/V)% ブロモフェノールブルー
10(W/V)% 2-メルカプトエタノール
<泳動buffer>
3g/L Tris
14.4g/L Glycine
1g/L SDS
各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、及びLIPOMOD 699L))溶液を280nmにおける吸光度が約1.0になるように蒸留水で希釈し、各ホスホリパーゼ水溶液とした。次に各ホスホリパーゼ水溶液20μLと<SDS-PAGEサンプルバッファー>を20μLとを混合して、99℃で20分間加熱して変性した。変性した各ホスホリパーゼを室温まで冷却して、10μLをSDS-PAGE法により分子量測定した。分子量マーカーはSDS-PAGEスタンダードBroad range(Bio RAD、品番161-0317)を使用した。ポリアクリルアミドゲルはe-PAGEL(アトー株式会社、品番E-T15S)を使用した。泳動bufferは上記の通りである。泳動は室温、定電流(20mA)にて約60分間行った。ポリペプチドの染色はEz Stain Aqua(アトー株式会社、品番AE-1340)を使用した。脱色は純水を使用した。 [Example 5: Molecular weight measurement of each phospholipase by SDS-PAGE method]
<SDS-PAGE sample buffer>
125 mM Tris-HCl buffer (pH 6.8)
4 (W / V)% SDS
10 (W / V)% Sucrose 0.01 (W / V)% Bromophenol Blue 10 (W / V)% 2-Mercaptoethanol <Migration buffer>
3g / L Tris
14.4 g / L Glycine
1g / L SDS
Each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L) solution was diluted with distilled water so that the absorbance at 280 nm was about 1.0 to obtain each phospholipase aqueous solution. Next, 20 μL of each phospholipase aqueous solution and 20 μL of <SDS-PAGE sample buffer> were mixed and denatured by heating at 99 ° C. for 20 minutes. Each denatured phospholipase was cooled to room temperature, and 10 μL was measured for molecular weight by SDS-PAGE. As a molecular weight marker, SDS-PAGE standard Broad range (Bio RAD, product number 161-0317) was used. As the polyacrylamide gel, e-PAGEEL (Ato Corporation, product number E-T15S) was used. The electrophoresis buffer is as described above. Electrophoresis was performed at room temperature and constant current (20 mA) for about 60 minutes. Ez Stain Aqua (Ato Co., product number AE-1340) was used for polypeptide staining. Pure water was used for decolorization.
<SDS-PAGEサンプルバッファー>
125mM Tris-塩酸緩衝液(pH6.8)
4(W/V)% SDS
10(W/V)% シュークロース
0.01(W/V)% ブロモフェノールブルー
10(W/V)% 2-メルカプトエタノール
<泳動buffer>
3g/L Tris
14.4g/L Glycine
1g/L SDS
各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、及びLIPOMOD 699L))溶液を280nmにおける吸光度が約1.0になるように蒸留水で希釈し、各ホスホリパーゼ水溶液とした。次に各ホスホリパーゼ水溶液20μLと<SDS-PAGEサンプルバッファー>を20μLとを混合して、99℃で20分間加熱して変性した。変性した各ホスホリパーゼを室温まで冷却して、10μLをSDS-PAGE法により分子量測定した。分子量マーカーはSDS-PAGEスタンダードBroad range(Bio RAD、品番161-0317)を使用した。ポリアクリルアミドゲルはe-PAGEL(アトー株式会社、品番E-T15S)を使用した。泳動bufferは上記の通りである。泳動は室温、定電流(20mA)にて約60分間行った。ポリペプチドの染色はEz Stain Aqua(アトー株式会社、品番AE-1340)を使用した。脱色は純水を使用した。 [Example 5: Molecular weight measurement of each phospholipase by SDS-PAGE method]
<SDS-PAGE sample buffer>
125 mM Tris-HCl buffer (pH 6.8)
4 (W / V)% SDS
10 (W / V)% Sucrose 0.01 (W / V)% Bromophenol Blue 10 (W / V)% 2-Mercaptoethanol <Migration buffer>
3g / L Tris
14.4 g / L Glycine
1g / L SDS
Each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, and LIPOMOD 699L) solution was diluted with distilled water so that the absorbance at 280 nm was about 1.0 to obtain each phospholipase aqueous solution. Next, 20 μL of each phospholipase aqueous solution and 20 μL of <SDS-PAGE sample buffer> were mixed and denatured by heating at 99 ° C. for 20 minutes. Each denatured phospholipase was cooled to room temperature, and 10 μL was measured for molecular weight by SDS-PAGE. As a molecular weight marker, SDS-PAGE standard Broad range (Bio RAD, product number 161-0317) was used. As the polyacrylamide gel, e-PAGEEL (Ato Corporation, product number E-T15S) was used. The electrophoresis buffer is as described above. Electrophoresis was performed at room temperature and constant current (20 mA) for about 60 minutes. Ez Stain Aqua (Ato Co., product number AE-1340) was used for polypeptide staining. Pure water was used for decolorization.
<結果>
図5のレーン1と7はマーカーである。レーン2~6は各ホスホリパーゼで、SDS- PAGE法による分子量は、
レーン2 PL(A) 約25~30kDaの範囲
レーン3 PLB 約43~45kDaの範囲
レーン4 PLA2 II L 約12~14kDaの範囲
レーン5 PLA2ナガセ 約12~14kDaの範囲
レーン6 LIPOMOD 699L 約12~14kDaの範囲
となった。 <Result>
Lanes 1 and 7 in FIG. 5 are markers. Lanes 2 to 6 are phospholipases, and the molecular weight by SDS-PAGE method is
Lane 2 PL (A) Range of about 25-30 kDa Lane 3 PLB Range of about 43-45 kDa Lane 4 PLA2 II L Range of about 12-14 kDa Lane 5 PLA2 Nagase Range of about 12-14 kDa Lane 6 LIPOMOD 699L About 12-14 kDa It became the range.
図5のレーン1と7はマーカーである。レーン2~6は各ホスホリパーゼで、SDS- PAGE法による分子量は、
レーン2 PL(A) 約25~30kDaの範囲
レーン3 PLB 約43~45kDaの範囲
レーン4 PLA2 II L 約12~14kDaの範囲
レーン5 PLA2ナガセ 約12~14kDaの範囲
レーン6 LIPOMOD 699L 約12~14kDaの範囲
となった。 <Result>
PLA2 II L、PLA2ナガセ及びPLIPOMOD 699LのSDS-PAGE法による分子量は公知のホスホリパーゼA2と同様であった。一方、PL(A)のSDS-PAGE法による分子量は約25~30kDaの範囲であり、ホスホリパーゼA1及びホスホリパーゼA2とは明確に異なっていた。
The molecular weight of PLA2 II L, PLA2 Nagase and PLIPMOD 699L by SDS-PAGE was the same as that of the known phospholipase A2. On the other hand, the molecular weight of PL (A) by SDS-PAGE was in the range of about 25-30 kDa, which was clearly different from phospholipase A1 and phospholipase A2.
[実施例6-1:PlsEtnに対する各ホスホリパーゼの作用(カルシウムイオンの存在下)]
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のブタ脳から抽出したPlsEtnに対する作用をカルシウムイオンの存在下比較した。 [Example 6-1: Action of each phospholipase on PlsEtn (in the presence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn extracted from pig brain were compared in the presence of calcium ions.
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のブタ脳から抽出したPlsEtnに対する作用をカルシウムイオンの存在下比較した。 [Example 6-1: Action of each phospholipase on PlsEtn (in the presence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn extracted from pig brain were compared in the presence of calcium ions.
なお、ブタ脳から抽出したPlsEtn(Brain,Porcine、Avanti Polar Lipids、Inc.、品番840022)は、天然物であるので(化3)や(化4)を含む複数のPlsEtnが混在していると考えられる。すなわち、各ホスホリパーゼにより作用されやすい分子種のPlsEtnと作用されにくい分子種のPlsEtnが混在していると考えられる。
Note that PlsEtn (Brain, Porcine, Avanti Polar Lipids, Inc., part number 840022) extracted from pig brain is a natural product and a plurality of PlsEtns including (Chemical Formula 3) and (Chemical Formula 4) are mixed. Conceivable. That is, it is considered that PlsEtn, a molecular species that is easily acted by each phospholipase, and PlsEtn, a molecular species that is difficult to act.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM ブタ脳から抽出したPlsEtn(又はlyPls(化7))
2mM CaCl2
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と等量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
PlsEtn extracted from 2 mM pig brain (or lyPls)
2 mM CaCl 2
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, an equal amount of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to the <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
10mM トリス-塩酸緩衝液pH7.5
2mM ブタ脳から抽出したPlsEtn(又はlyPls(化7))
2mM CaCl2
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と等量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
PlsEtn extracted from 2 mM pig brain (or lyPls)
2 mM CaCl 2
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, an equal amount of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to the <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
<TLCの方法>
薄層クロマトグラフィー(TLC、TLC silica gel 60、MERCK社)に3μLスポットし、展開溶媒(クロロホルム:メタノール:蒸留水=65:25:4)で約2~3時間展開した。展開したTLCにニンヒドリンスプレー(和光純薬工業株式会社、品番145-08601)を適量噴霧して100℃で約15~30秒間乾熱オーブンで熱してlyPlsEtnやPlsEtnを検出した。なお、他の実施例におけるTLCの条件も本実施例と同様である。 <Method of TLC>
3 μL was spotted on thin layer chromatography (TLC,TLC silica gel 60, MERCK) and developed with a developing solvent (chloroform: methanol: distilled water = 65: 25: 4) for about 2 to 3 hours. A suitable amount of ninhydrin spray (Wako Pure Chemical Industries, Ltd., product number 145-08601) was sprayed on the developed TLC and heated in a dry heat oven at 100 ° C. for about 15 to 30 seconds to detect lyPlsEtn and PlsEtn. The TLC conditions in other examples are the same as those in this example.
薄層クロマトグラフィー(TLC、TLC silica gel 60、MERCK社)に3μLスポットし、展開溶媒(クロロホルム:メタノール:蒸留水=65:25:4)で約2~3時間展開した。展開したTLCにニンヒドリンスプレー(和光純薬工業株式会社、品番145-08601)を適量噴霧して100℃で約15~30秒間乾熱オーブンで熱してlyPlsEtnやPlsEtnを検出した。なお、他の実施例におけるTLCの条件も本実施例と同様である。 <Method of TLC>
3 μL was spotted on thin layer chromatography (TLC,
ここで、lyPlsEtnの標品として使用した1-O-1’-(Z)-octadecenyl-2-hydroxy-sn-glycero-3-phosphoethanolamine((化7)Avanti Polar Lipids、Inc.品番852471)である。
Here, it is 1-O-1 ′-(Z) -octadecenyl-2-hydroxy-sn-glycero-3-phosphoethanolamine ((chemical formula 7) Avanti Polar Lipids, Inc. product number 852471) used as a preparation of lyPlsEtn. .
<結果>
図6のレーン1~7は次の通りである。 <Result>
Lanes 1 to 7 in FIG. 6 are as follows.
図6のレーン1~7は次の通りである。 <Result>
レーン1はブタ脳から抽出したPlsEtnに各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted into the organic phase from <reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn extracted from pig brain.
レーン2はlyPlsEtn(化7)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted from the <reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
レーン3はPL(A)をブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn extracted from pig brain.
レーン4はPLBをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted into the organic phase from the <reaction solution> in which PLB was allowed to act on PlsEtn extracted from pig brain.
レーン5はPLA2 II Lをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 5 is a phospholipid extracted in the organic phase from the <reaction solution> in which PLA2 II L is allowed to act on PlsEtn extracted from pig brain.
レーン6はPLA2ナガセをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is a phospholipid extracted into the organic phase from <reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn extracted from pig brain.
レーン7はLIPOMOD 699Lをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 7 is a phospholipid extracted from the <reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn extracted from pig brain to the organic phase.
TLCのスポットを、デンシトメーターで定量した結果を表3に示した。
The results of quantifying TLC spots with a densitometer are shown in Table 3.
ブタ脳から抽出したPlsEtnが消失し、lyPlsEtn(レーン2)と同じ位置に移動度が変化する作用を強く示したのはレーン3(PL(A))であった。レーン6(PLA2ナガセ)とレーン7(LIPOMOD 699L)も同様の作用を示したが、その程度はPL(A)より弱かった。
It was Lane 3 (PL (A)) that showed that PlsEtn extracted from pig brain disappeared and the mobility changed to the same position as lyPlsEtn (Lane 2). Lane 6 (PLA2 Nagase) and Lane 7 (LIPOMOD 699L) showed the same effect, but the degree was weaker than that of PL (A).
[実施例6-2:各ホスホリパーゼのPlsEtnへの作用(カルシウムイオンの存在下)]
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のPlsEtn(化1)に対する作用を、カルシウムイオンの存在下、比較した。 [Example 6-2: Action of each phospholipase on PlsEtn (in the presence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 1) were compared in the presence of calcium ions.
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のPlsEtn(化1)に対する作用を、カルシウムイオンの存在下、比較した。 [Example 6-2: Action of each phospholipase on PlsEtn (in the presence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 1) were compared in the presence of calcium ions.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化1)(又はlyPls(化7))
2mM CaCl2
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical Formula 1) (or lyPls (Chemical Formula 7))
2 mM CaCl 2
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample.
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化1)(又はlyPls(化7))
2mM CaCl2
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical Formula 1) (or lyPls (Chemical Formula 7))
2 mM CaCl 2
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample.
<結果>
図7のレーン1~7は次の通りである。 <Result>
Lanes 1 to 7 in FIG. 7 are as follows.
図7のレーン1~7は次の通りである。 <Result>
レーン1はPlsEtn(化4)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted from an organic phase from <reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn (Chemical Formula 4).
レーン2はlyPlsEtn(化7)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted from the <reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
レーン3はPL(A)をPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is a phospholipid extracted into an organic phase from a <reaction solution> in which PL (A) is allowed to act on PlsEtn (Chemical Formula 4).
レーン4はPLBをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted from the <reaction solution> in which PLB was allowed to act on PlsEtn (chemical formula 4) to the organic phase.
レーン5はPLA2 II LをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 5 is a phospholipid extracted into an organic phase from <reaction solution> in which PLA2 II L is allowed to act on PlsEtn (Chemical Formula 4).
レーン6はPLA2ナガセをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is a phospholipid extracted into an organic phase from <reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn (Chemical Formula 4).
レーン7はLIPOMOD 699LをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 7 is a phospholipid extracted from the <reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase.
TLCのスポットを、デンシトメーターで定量した結果を表4に示した。
The results of quantifying TLC spots with a densitometer are shown in Table 4.
PlsEtn(化4)が消失し、lyPlsEtn(化7)と同じ位置に移動度が変化する作用を強く示したのはレーン3(PL(A))であった。レーン6(PLA2ナガセ)とレーン7(LIPOMOD 699L)も同様の作用を示したが、その程度はPL(A)より弱かった。
It was Lane 3 (PL (A)) that PlsEtn (Chemical Formula 4) disappeared and the mobility changed to the same position as lyPlsEtn (Chemical Formula 7). Lane 6 (PLA2 Nagase) and Lane 7 (LIPOMOD 699L) showed the same effect, but the degree was weaker than that of PL (A).
[実施例7-1:各ホスホリパーゼのPlsへの作用(カルシウムイオンの非存在下)]
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のブタ脳から抽出したPlsEtnに対する作用をカルシウムイオンの非存在下比較した。 [Example 7-1: Action of each phospholipase on Pls (in the absence of calcium ion)]
In this example, the effect of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn extracted from pig brain was compared in the absence of calcium ions.
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のブタ脳から抽出したPlsEtnに対する作用をカルシウムイオンの非存在下比較した。 [Example 7-1: Action of each phospholipase on Pls (in the absence of calcium ion)]
In this example, the effect of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn extracted from pig brain was compared in the absence of calcium ions.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM ブタ脳から抽出したEtnPls(又はlyPls(化7))
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
EtnPls extracted from 2 mM pig brain (or lyPls)
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
10mM トリス-塩酸緩衝液pH7.5
2mM ブタ脳から抽出したEtnPls(又はlyPls(化7))
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
EtnPls extracted from 2 mM pig brain (or lyPls)
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
<結果>
図8のレーン1~7は次の通りである。 <Result>
Lanes 1 to 7 in FIG. 8 are as follows.
図8のレーン1~7は次の通りである。 <Result>
レーン1はブタ脳から抽出したPlsEtnに各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted into the organic phase from <reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn extracted from pig brain.
レーン2はlyPlsEtn(化7)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted from the <reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
レーン3はPL(A)をブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn extracted from pig brain.
レーン4はPLBをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted into the organic phase from the <reaction solution> in which PLB was allowed to act on PlsEtn extracted from pig brain.
レーン5はPLA2 II Lをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 5 is a phospholipid extracted in the organic phase from the <reaction solution> in which PLA2 II L is allowed to act on PlsEtn extracted from pig brain.
レーン6はPLA2ナガセをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is a phospholipid extracted into the organic phase from <reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn extracted from pig brain.
レーン7はLIPOMOD 699Lをブタ脳から抽出したPlsEtnに作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 7 is a phospholipid extracted from the <reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn extracted from pig brain to the organic phase.
TLCのスポットを、デンシトメーターで定量した結果を表5に示した。
The results of quantifying TLC spots with a densitometer are shown in Table 5.
PL(A)はカルシウムの非存在下においてもブタ脳から抽出したPlsEtnが消失し、lyPlsEtn(化7)と同じ位置に移動度が変化する作用を強く示した(レーン3)。
PL (A) strongly showed the effect that PlsEtn extracted from pig brain disappeared even in the absence of calcium, and the mobility changed to the same position as lyPlsEtn (Chemical Formula 7) (lane 3).
[実施例7-2:各ホスホリパーゼのPlsEtnへの作用(カルシウムイオンの非存在下)]
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のPlsEtn(化4)に対する作用を、カルシウムイオンの存在下、比較した。 [Example 7-2: Action of each phospholipase on PlsEtn (in the absence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 4) were compared in the presence of calcium ions.
本実施例では、各ホスホリパーゼ(PL(A)、PLB、PLA2 II L、PLA2ナガセ、LIPOMOD 699L)のPlsEtn(化4)に対する作用を、カルシウムイオンの存在下、比較した。 [Example 7-2: Action of each phospholipase on PlsEtn (in the absence of calcium ion)]
In this example, the effects of each phospholipase (PL (A), PLB, PLA2 II L, PLA2 Nagase, LIPOMOD 699L) on PlsEtn (Chemical Formula 4) were compared in the presence of calcium ions.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
10U/mL 各ホスホリパーゼ
<反応液>を37℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。盲検は各ホスホリパーゼを<反応液>に加えなかった。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
10 U / mL Each phospholipase <reaction solution> was reacted at 37 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added in the same amount as <reaction solution> and mixed to react. Stopped. The phospholipid extracted into the organic phase was used as a TLC sample. In the blind test, each phospholipase was not added to the <reaction solution>.
<結果>
図9のレーン1~7は次の通りである。 <Result>
Lanes 1 to 7 in FIG. 9 are as follows.
図9のレーン1~7は次の通りである。 <Result>
レーン1はPlsEtn(化4)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted from an organic phase from <reaction solution> (blind) in which each phospholipase was not allowed to act on PlsEtn (Chemical Formula 4).
レーン2はlyPlsEtn(化7)に各ホスホリパーゼを作用させなかった<反応液>(盲検)から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted from the <reaction solution> (blind) in which the phospholipase was not allowed to act on lyPlsEtn (Chemical Formula 7) to the organic phase.
レーン3はPL(A)をPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is a phospholipid extracted into an organic phase from a <reaction solution> in which PL (A) is allowed to act on PlsEtn (Chemical Formula 4).
レーン4はPLBをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted from the <reaction solution> in which PLB was allowed to act on PlsEtn (chemical formula 4) to the organic phase.
レーン5はPLA2 II LをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 5 is a phospholipid extracted into an organic phase from <reaction solution> in which PLA2 II L is allowed to act on PlsEtn (Chemical Formula 4).
レーン6はPLA2ナガセをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is a phospholipid extracted into an organic phase from <reaction solution> in which PLA2 Nagase was allowed to act on PlsEtn (Chemical Formula 4).
レーン7はLIPOMOD 699LをPlsEtn(化4)に作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 7 is a phospholipid extracted from the <reaction solution> in which LIPOMOD 699L was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase.
TLCのスポットを、デンシトメーターで定量した結果を表6に示した。
The results of quantifying TLC spots with a densitometer are shown in Table 6.
カルシウムの非存在下においてもPlsEtn(化4)が消失し、lyPlsEtn(化7)と同じ位置に移動度が変化する作用を強く示したのはレーン3(PL(A))であった。レーン7(LIPOMOD 699L)も同様の作用を示したが、その程度はPL(A)より弱かった。
In the absence of calcium, PlsEtn (Chemical Formula 4) disappeared, and it was Lane 3 (PL (A)) that strongly showed the action of changing mobility at the same position as lyPlsEtn (Chemical Formula 7). Lane 7 (LIPOMOD 699L) also showed the same effect, but the degree was weaker than that of PL (A).
[実施例8:PL(A)をPlsへ作用させたときの生成物]
実施例6-2及び実施例7-2において、PL(A)をPlsEtn(化4)に作用させたときの生成物(すなわち図7及び図9の矢印の物質)をLC/MSによって確認した。 [Example 8: Product when PL (A) is allowed to act on Pls]
In Example 6-2 and Example 7-2, the product when PL (A) was allowed to act on PlsEtn (Chemical Formula 4) (ie, the substance indicated by the arrows in FIGS. 7 and 9) was confirmed by LC / MS. .
実施例6-2及び実施例7-2において、PL(A)をPlsEtn(化4)に作用させたときの生成物(すなわち図7及び図9の矢印の物質)をLC/MSによって確認した。 [Example 8: Product when PL (A) is allowed to act on Pls]
In Example 6-2 and Example 7-2, the product when PL (A) was allowed to act on PlsEtn (Chemical Formula 4) (ie, the substance indicated by the arrows in FIGS. 7 and 9) was confirmed by LC / MS. .
<LCの条件>
装置 Waters,UPLC
カラム Waters、ACQUITY UPLC HSS C18 1.8μm
(2.1mmI.D.×50mm)
カラム温度 40℃
検出 220nm
移動相 A=水(0.1% HCOOH) B=イソプロピルアルコール
グラジェント 0分 A 80% B 20%
10分 A 0% B 100%
13分 A 0% B 100%
13.1分 A 80% B 20%
15分 A 80% B 20%
注入量 1μL
<MSの条件>
装置 Waters,Synapt G2
イオン化 ESI+
スキャンレンジ m/z 100~1500
<結果>
MSではPlsEtn(化4)と考えられるイオンが1種類(m/z 730.55)、lyPlsEtn(化7)と考えられるイオンが1種類(m/z 466.31)検出され、標品のPlsEtn(化4)及びlyPlsEtn(化7)と一致した。したがって、PL(A)をPlsEtn(化4)に作用させたときの生成物はlyPlsEtn(化7)であることを確認した。 <LC conditions>
Equipment Waters, UPLC
Column Waters, ACQUITY UPLC HSS C18 1.8 μm
(2.1 mm ID x 50 mm)
Column temperature 40 ° C
Detection 220nm
Mobile phase A = water (0.1% HCOOH) B =isopropyl alcohol gradient 0 min A 80% B 20%
10 minutes A 0% B 100%
13 minutes A 0% B 100%
13.1 minutes A 80% B 20%
15 minutes A 80% B 20%
Injection volume 1μL
<Conditions for MS>
Equipment Waters, Synapt G2
Ionization ESI +
Scan range m / z 100-1500
<Result>
In MS, one kind of ion considered to be PlsEtn (Chemical Formula 4) (m / z 730.55) and one type of ion considered to be lyPlsEtn (Chemical Formula 7) (m / z 466.31) are detected, and the standard PlsEtn is detected. Consistent with (Chemical Formula 4) and lyPlsEtn (Chemical Formula 7). Therefore, it was confirmed that the product of PL (A) acting on PlsEtn (Chemical Formula 4) was lyPlsEtn (Chemical Formula 7).
装置 Waters,UPLC
カラム Waters、ACQUITY UPLC HSS C18 1.8μm
(2.1mmI.D.×50mm)
カラム温度 40℃
検出 220nm
移動相 A=水(0.1% HCOOH) B=イソプロピルアルコール
グラジェント 0分 A 80% B 20%
10分 A 0% B 100%
13分 A 0% B 100%
13.1分 A 80% B 20%
15分 A 80% B 20%
注入量 1μL
<MSの条件>
装置 Waters,Synapt G2
イオン化 ESI+
スキャンレンジ m/z 100~1500
<結果>
MSではPlsEtn(化4)と考えられるイオンが1種類(m/z 730.55)、lyPlsEtn(化7)と考えられるイオンが1種類(m/z 466.31)検出され、標品のPlsEtn(化4)及びlyPlsEtn(化7)と一致した。したがって、PL(A)をPlsEtn(化4)に作用させたときの生成物はlyPlsEtn(化7)であることを確認した。 <LC conditions>
Equipment Waters, UPLC
Column Waters, ACQUITY UPLC HSS C18 1.8 μm
(2.1 mm ID x 50 mm)
Detection 220nm
Mobile phase A = water (0.1% HCOOH) B =
10 minutes A 0
13 minutes A 0
13.1 minutes A 80
15 minutes A 80
Injection volume 1μL
<Conditions for MS>
Equipment Waters, Synapt G2
Ionization ESI +
Scan range m / z 100-1500
<Result>
In MS, one kind of ion considered to be PlsEtn (Chemical Formula 4) (m / z 730.55) and one type of ion considered to be lyPlsEtn (Chemical Formula 7) (m / z 466.31) are detected, and the standard PlsEtn is detected. Consistent with (Chemical Formula 4) and lyPlsEtn (Chemical Formula 7). Therefore, it was confirmed that the product of PL (A) acting on PlsEtn (Chemical Formula 4) was lyPlsEtn (Chemical Formula 7).
[実施例9:PL(A)酵素量とPlsへの作用の関係]
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
0~0.5U/mL PL(A)
0、0.005、0.0067、0.01、0.02、0.05、0.5U/mLのPL(A)を含む<反応液>を各1mL調製した。これらの<反応液>を37℃で10分間反応した後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と1mL加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 [Example 9: Relationship between the amount of PL (A) enzyme and the effect on Pls]
<Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
0 ~ 0.5U / mL PL (A)
1 mL each of <reaction solution> containing 0, 0.005, 0.0067, 0.01, 0.02, 0.05, and 0.5 U / mL PL (A) was prepared. After reacting these <reaction liquid> at 37 ° C. for 10 minutes, 1 mL of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to and mixed with the <reaction liquid> to stop the reaction. The phospholipid extracted into the organic phase was used as a TLC sample.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
0~0.5U/mL PL(A)
0、0.005、0.0067、0.01、0.02、0.05、0.5U/mLのPL(A)を含む<反応液>を各1mL調製した。これらの<反応液>を37℃で10分間反応した後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と1mL加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 [Example 9: Relationship between the amount of PL (A) enzyme and the effect on Pls]
<Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
0 ~ 0.5U / mL PL (A)
1 mL each of <reaction solution> containing 0, 0.005, 0.0067, 0.01, 0.02, 0.05, and 0.5 U / mL PL (A) was prepared. After reacting these <reaction liquid> at 37 ° C. for 10 minutes, 1 mL of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added to and mixed with the <reaction liquid> to stop the reaction. The phospholipid extracted into the organic phase was used as a TLC sample.
<結果>
図10のレーン1~8は次の通りである。 <Result>
Lanes 1 to 8 in FIG. 10 are as follows.
図10のレーン1~8は次の通りである。 <Result>
レーン1はPlsEtnにPL(A)を0.5U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted into an organic phase from <reaction solution> in which PL (A) is allowed to act on PlsEtn at 0.5 U / mL.
レーン2はPlsEtnにPL(A)を0.05U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted into an organic phase from <reaction solution> in which PL (A) was allowed to act at 0.05 U / mL on PlsEtn.
レーン3はPlsEtnにPL(A)を0.02U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.02 U / mL.
レーン4はPlsEtnにPL(A)を0.01U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.01 U / mL.
レーン5はPlsEtnにPL(A)を0.0067U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 5 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PLsEtn at 0.0067 U / mL.
レーン6はPlsEtnにPL(A)を0.005U/mL作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn at 0.005 U / mL.
レーン7はlyPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
Lane 7 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was not allowed to act on lyPlsEtn (0 U / mL).
レーン8はPlsにPL(A)を作用させなかった(0U/mL)<反応液>からから有機相に抽出したリン脂質である。
Lane 8 is a phospholipid extracted from the <reaction solution> in which PL (A) was not allowed to act on Pls (0 U / mL) to the organic phase.
本実施例から、少なくとも0.5U/mLのPL(A)が2mMのPlsEtnを37℃、10分間でlyPlsに加水分解できることが分かった。すなわち、少なくとも0.5mUのPL(A)が2μmolのPlsEtnを37℃、10分間でlyPlsに加水分解できることが分かった。
From this example, it was found that at least 0.5 U / mL PL (A) can hydrolyze 2 mM PlsEtn to lyPls at 37 ° C. for 10 minutes. That is, it was found that at least 0.5 mU of PL (A) can hydrolyze 2 μmol of PlsEtn to lyPls at 37 ° C. for 10 minutes.
[実施例10-1:pHとPL(A)のPlsEtnへの作用の関係]
<反応液>
50mM 各緩衝液
2mM PlsEtn(化4)(又はlyPls(化7))
0又は0.5U/mL PL(A)
各緩衝液として、クエン酸-NaOH緩衝液(pH4、5、6)、リン酸カリウム緩衝液pH7、トリス-塩酸緩衝液(pH8、9)、グリシン-NaOH緩衝液pH10を含む<反応液>を調製した。これらの<反応液>を室温で10分間反応した後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と1mL加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 [Example 10-1: Relationship between pH and effect of PL (A) on PlsEtn]
<Reaction solution>
50 mM eachbuffer 2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
0 or 0.5 U / mL PL (A)
<Reaction solution> containing citrate-NaOH buffer ( pH 4, 5, 6), potassium phosphate buffer pH 7, Tris-hydrochloric acid buffer (pH 8, 9), glycine-NaOH buffer pH 10 as each buffer solution Prepared. After reacting these <reaction liquid> at room temperature for 10 minutes, 1 mL of a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) was added and mixed with the <reaction liquid> to stop the reaction. The phospholipid extracted into the organic phase was used as a TLC sample.
<反応液>
50mM 各緩衝液
2mM PlsEtn(化4)(又はlyPls(化7))
0又は0.5U/mL PL(A)
各緩衝液として、クエン酸-NaOH緩衝液(pH4、5、6)、リン酸カリウム緩衝液pH7、トリス-塩酸緩衝液(pH8、9)、グリシン-NaOH緩衝液pH10を含む<反応液>を調製した。これらの<反応液>を室温で10分間反応した後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と1mL加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 [Example 10-1: Relationship between pH and effect of PL (A) on PlsEtn]
<Reaction solution>
50 mM each
0 or 0.5 U / mL PL (A)
<Reaction solution> containing citrate-NaOH buffer (
<結果>
図11のレーン1~18は次の通りである。 <Result>
Lanes 1 to 18 in FIG. 11 are as follows.
図11のレーン1~18は次の通りである。 <Result>
レーン1~3は、順に、クエン酸-NaOH緩衝液pH4、5、6の<反応液>中のPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
In lanes 1 to 3, PL (A) was not allowed to act on PlsEtn in the <reaction solution> of the citrate- NaOH buffer pH 4, 5, 6 in order (0 U / mL) from the <reaction solution> to the organic phase. Extracted phospholipid.
レーン4は、リン酸カリウム緩衝液pH7の<反応液>中のPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
Lane 4 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was not allowed to act on PlsEtn in <reaction solution> of potassium phosphate buffer pH 7.
レーン5~7は、順に、トリス-塩酸緩衝液pH7.5、8、9の<反応液>中のPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
In lanes 5 to 7, PL (A) was not allowed to act on PlsEtn in <reaction solution> in Tris-HCl buffer pH 7.5, 8, 9 in order (0 U / mL) from <reaction solution> to the organic phase It is a phospholipid extracted.
レーン8は、グリシン-NaOH緩衝液pH10の<反応液>中のPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
Lane 8 is a phospholipid extracted from the <reaction solution> in which PL (A) was not allowed to act on PlsEtn in the <reaction solution> in glycine-NaOH buffer pH 10 (0 U / mL).
レーン9~11は、順に、クエン酸-NaOH緩衝液pH4、5、6の<反応液>中のPlsEtnにPL(A)を作用させた<反応液>から有機相に抽出したリン脂質である。
Lanes 9 to 11 are phospholipids extracted in the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn in <reaction solution> of citrate- NaOH buffer pH 4, 5, 6 in order. .
レーン12は、リン酸カリウム緩衝液pH7の<反応液>中のPlsEtnにPL(A)を作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 12 is a phospholipid extracted into an organic phase from a <reaction solution> obtained by allowing PL (A) to act on PlsEtn in a <reaction solution> in a potassium phosphate buffer pH 7.
レーン13~15は、順に、トリス-塩酸緩衝液pH7.5、8、9の<反応液>中のPlsEtnにPL(A)を作用させた<反応液>から有機相に抽出したリン脂質である。
Lanes 13 to 15 are phospholipids extracted in the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn in <reaction solution> of Tris-HCl buffer pH 7.5, 8, 9 in order. is there.
レーン16は、グリシン-NaOH緩衝液pH10の<反応液>中のPlsEtnにPL(A)を作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 16 is phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was allowed to act on PlsEtn in <reaction solution> of glycine-NaOH buffer pH 10.
レーン17は、トリス-塩酸緩衝液pH7.5の<反応液>中のlyPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
Lane 17 is a phospholipid extracted from the <reaction solution> in which the PL (A) was not allowed to act on lyPlsEtn in the <reaction solution> in Tris-HCl buffer pH 7.5 (0 U / mL).
レーン18は、トリス-塩酸緩衝液pH7.5の<反応液>中のPlsEtnにPL(A)を作用させなかった(0U/mL)<反応液>から有機相に抽出したリン脂質である。
Lane 18 is a phospholipid extracted from the <reaction solution> in which PL (A) was not allowed to act on PlsEtn in <reaction solution> in Tris-HCl buffer pH 7.5 (0 U / mL) to the organic phase.
図11から、本実施例の条件下、pH4~10の範囲でPL(A)はPlsEtnをlyPlsに加水分解できることが分かった。そしてその作用はpHが高いほど強いことが分かった。なお、レーン1から8で明らかなように、PlsEtnはpH変化により自発的にlyPlsに変化することはなかった。
FIG. 11 shows that PL (A) can hydrolyze PlsEtn to lyPls in the pH range of 4 to 10 under the conditions of this example. And it turned out that the effect | action is so strong that pH is high. As is clear from lanes 1 to 8, PlsEtn did not spontaneously change to lyPls due to pH change.
[実施例11:試料中のPls測定]
試料中のPls測定は図1の方法で測定した。 [Example 11: Pls measurement in sample]
Pls in the sample was measured by the method shown in FIG.
試料中のPls測定は図1の方法で測定した。 [Example 11: Pls measurement in sample]
Pls in the sample was measured by the method shown in FIG.
<反応液1>
50mM BES-NaOH pH7.5
10U/mL Peroxidase
50U/mL Ethanolamine oxidase
5U/mL GPCP
1U/mL PL(A)
<反応液2>
50mM BES-NaOH pH7.5
4.2U/mL lyPls ase
12μM DA67
ここで、PeroxidaseはSIGMAより品番P8375として購入した。Ethanolamine oxidaseはBioscience, Biotechnology, and Biochemistry 2008年、72巻、2732-2738頁の方法で製造した。GPCP(Glycerophosphorylcholine phosphatase)は旭化成ファーマ株式会社より品番T-33として入手した。lyPls aseはThe journal of biological chemistry、2011年、286巻、24916~24930頁に記載の方法でラット由来のlyPls aseを大腸菌組換体として製造した。DA67は和光純薬工業株式会社より品番046-22341として購入した。 <Reaction liquid 1>
50 mM BES-NaOH pH 7.5
10U / mL Peroxidase
50U / mL Ethanolamine oxidase
5U / mL GPCP
1U / mL PL (A)
<Reaction liquid 2>
50 mM BES-NaOH pH 7.5
4.2 U / mL lyPls as
12 μM DA67
Here, Peroxidase was purchased from SIGMA as product number P8375. Ethanolamine oxidase was produced by the method of Bioscience, Biotechnology, and Biochemistry 2008, 72, 2732-2738. GPPC (Glycerophylcholine phosphatase) was obtained as part number T-33 from Asahi Kasei Pharma Corporation. LyPlsase was produced as a recombinant Escherichia coli from rats by the method described in The journal of biochemical chemistry, 2011, 286, 24916-24930. DA67 was purchased from Wako Pure Chemical Industries, Ltd. as part number 046-22341.
50mM BES-NaOH pH7.5
10U/mL Peroxidase
50U/mL Ethanolamine oxidase
5U/mL GPCP
1U/mL PL(A)
<反応液2>
50mM BES-NaOH pH7.5
4.2U/mL lyPls ase
12μM DA67
ここで、PeroxidaseはSIGMAより品番P8375として購入した。Ethanolamine oxidaseはBioscience, Biotechnology, and Biochemistry 2008年、72巻、2732-2738頁の方法で製造した。GPCP(Glycerophosphorylcholine phosphatase)は旭化成ファーマ株式会社より品番T-33として入手した。lyPls aseはThe journal of biological chemistry、2011年、286巻、24916~24930頁に記載の方法でラット由来のlyPls aseを大腸菌組換体として製造した。DA67は和光純薬工業株式会社より品番046-22341として購入した。 <
50 mM BES-NaOH pH 7.5
10U / mL Peroxidase
50U / mL Ethanolamine oxidase
5U / mL GPCP
1U / mL PL (A)
<
50 mM BES-NaOH pH 7.5
4.2 U / mL lyPls as
12 μM DA67
Here, Peroxidase was purchased from SIGMA as product number P8375. Ethanolamine oxidase was produced by the method of Bioscience, Biotechnology, and Biochemistry 2008, 72, 2732-2738. GPPC (Glycerophylcholine phosphatase) was obtained as part number T-33 from Asahi Kasei Pharma Corporation. LyPlsase was produced as a recombinant Escherichia coli from rats by the method described in The journal of biochemical chemistry, 2011, 286, 24916-24930. DA67 was purchased from Wako Pure Chemical Industries, Ltd. as part number 046-22341.
<試料>
10%ドデシルマルトシド水溶液(同仁化学研究所、品番347-06163)にPlsEtn(化4)を0~200μMになるように添加して調製した。 <Sample>
PlsEtn (chemical formula 4) was added to a 10% aqueous solution of dodecyl maltoside (Dojindo Laboratories, product number 347-06163) so as to be 0 to 200 μM.
10%ドデシルマルトシド水溶液(同仁化学研究所、品番347-06163)にPlsEtn(化4)を0~200μMになるように添加して調製した。 <Sample>
PlsEtn (chemical formula 4) was added to a 10% aqueous solution of dodecyl maltoside (Dojindo Laboratories, product number 347-06163) so as to be 0 to 200 μM.
<測定>
日立7080形自動分析機を使用して測定した。サンプル量は12μL、<反応液1>の量は180μL、<反応液2>の量は45μL、反応温度は37℃、1ポイントエンドアッセイとして660nm(副波長750nm)の吸光度差を測定した。 <Measurement>
Measurement was performed using a Hitachi 7080 automatic analyzer. The amount of the sample was 12 μL, the amount of <Reaction Solution 1> was 180 μL, the amount of <Reaction Solution 2> was 45 μL, the reaction temperature was 37 ° C., and the absorbance difference at 660 nm (subwavelength 750 nm) was measured as a one-point end assay.
日立7080形自動分析機を使用して測定した。サンプル量は12μL、<反応液1>の量は180μL、<反応液2>の量は45μL、反応温度は37℃、1ポイントエンドアッセイとして660nm(副波長750nm)の吸光度差を測定した。 <Measurement>
Measurement was performed using a Hitachi 7080 automatic analyzer. The amount of the sample was 12 μL, the amount of <
<結果>
図12は10%ドデシルマルトシド水溶液にPlsEtn(化4)を0~200μMになるように添加して調製した試料の検量線を示す。検量線は相関式Y=2.2724X-52.962で表され、R2=0.9991であった。試料中のPlsEtnが本実施例にて測定できたことが示された。なお、切片が-53となったのは、<反応液1>及び<反応液2>が着色・懸濁しているためである。 <Result>
FIG. 12 shows a calibration curve of a sample prepared by adding PlsEtn (Chemical Formula 4) to a 10% dodecyl maltoside aqueous solution at 0 to 200 μM. The calibration curve was represented by the correlation formula Y = 2.724X-52.962, and R 2 = 0.99991. It was shown that PlsEtn in the sample could be measured in this example. The section became −53 because <Reaction Solution 1> and <Reaction Solution 2> were colored and suspended.
図12は10%ドデシルマルトシド水溶液にPlsEtn(化4)を0~200μMになるように添加して調製した試料の検量線を示す。検量線は相関式Y=2.2724X-52.962で表され、R2=0.9991であった。試料中のPlsEtnが本実施例にて測定できたことが示された。なお、切片が-53となったのは、<反応液1>及び<反応液2>が着色・懸濁しているためである。 <Result>
FIG. 12 shows a calibration curve of a sample prepared by adding PlsEtn (Chemical Formula 4) to a 10% dodecyl maltoside aqueous solution at 0 to 200 μM. The calibration curve was represented by the correlation formula Y = 2.724X-52.962, and R 2 = 0.99991. It was shown that PlsEtn in the sample could be measured in this example. The section became −53 because <
[実施例12:Streptomyces avermitilis JCM 5070由来PL(A)の調製方法]
[実施例12-1:Streptomyces avermitilis JCM 5070の染色体DNAの分離]
Streptomycesa avermitilis JCM 5070を5mLのLB培地で用いて28℃で2日間培養し集菌した。次いで、この菌体をQIAprep Miniprep(QIAGEN社)のP1 buffer 250μLで懸濁し、250μLのP2 bufferを加えて5回転等攪拌して鋳型染色体DNAとした。 [Example 12: Preparation method of Streptomyces avermitilis JCM 5070-derived PL (A)]
[Example 12-1: Separation of chromosomal DNA of Streptomyces avermitilis JCM 5070]
Streptomyces avermitilis JCM 5070 was used in 5 mL of LB medium and cultured at 28 ° C. for 2 days for collection. Next, this bacterial cell was suspended in 250 μL of PIA buffer of QIAprep Miniprep (QIAGEN), 250 μL of P2 buffer was added, and the mixture was stirred 5 times to obtain template chromosomal DNA.
[実施例12-1:Streptomyces avermitilis JCM 5070の染色体DNAの分離]
Streptomycesa avermitilis JCM 5070を5mLのLB培地で用いて28℃で2日間培養し集菌した。次いで、この菌体をQIAprep Miniprep(QIAGEN社)のP1 buffer 250μLで懸濁し、250μLのP2 bufferを加えて5回転等攪拌して鋳型染色体DNAとした。 [Example 12: Preparation method of Streptomyces avermitilis JCM 5070-derived PL (A)]
[Example 12-1: Separation of chromosomal DNA of Streptomyces avermitilis JCM 5070]
Streptomyces avermitilis JCM 5070 was used in 5 mL of LB medium and cultured at 28 ° C. for 2 days for collection. Next, this bacterial cell was suspended in 250 μL of PIA buffer of QIAprep Miniprep (QIAGEN), 250 μL of P2 buffer was added, and the mixture was stirred 5 times to obtain template chromosomal DNA.
[実施例12-2:Streptomycesa avermitilis JCM 5070由来PL(A)遺伝子を含む組換えプラスミドの作製]
PCR用のオリゴとして、センスプライマー「primer S」(配列番号7)及びアンチセンスプライマーとして「primer AS」(配列番号8)を合成した。実施例12-1で得た鋳型染色体DNA 50ng、10×PCR Buffer 2.5μL、プライマー各1200nM、dNTPs各0.3mM、MgCl2、1.2mM、DMSO 4%、KOD DNA Polymerase 1.25ユニット、蒸留水を全量25μLとなるように添加した。PCR反応条件は次のとおりである。 [Example 12-2: Preparation of recombinant plasmid containing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
A sense primer “primer S” (SEQ ID NO: 7) was synthesized as an oligo for PCR, and “primer AS” (SEQ ID NO: 8) was synthesized as an antisense primer. Templatechromosomal DNA 50 ng obtained in Example 12-1, 10 × PCR Buffer 2.5 μL, each primer 1200 nM, dNTPs 0.3 mM each, MgCl 2 , 1.2 mM, DMSO 4%, KOD DNA Polymerase 1.25 units, Distilled water was added to a total volume of 25 μL. PCR reaction conditions are as follows.
PCR用のオリゴとして、センスプライマー「primer S」(配列番号7)及びアンチセンスプライマーとして「primer AS」(配列番号8)を合成した。実施例12-1で得た鋳型染色体DNA 50ng、10×PCR Buffer 2.5μL、プライマー各1200nM、dNTPs各0.3mM、MgCl2、1.2mM、DMSO 4%、KOD DNA Polymerase 1.25ユニット、蒸留水を全量25μLとなるように添加した。PCR反応条件は次のとおりである。 [Example 12-2: Preparation of recombinant plasmid containing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
A sense primer “primer S” (SEQ ID NO: 7) was synthesized as an oligo for PCR, and “primer AS” (SEQ ID NO: 8) was synthesized as an antisense primer. Template
ステップ1:98℃、2分;
ステップ2:98℃、15秒;
ステップ3:72℃、15秒;
ステップ4:74℃、60秒;
ステップ2からステップ4を30サイクル繰り返す;
ステップ5:74℃、4分。 Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 15 seconds;
Step 4: 74 ° C., 60 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 4 minutes.
ステップ2:98℃、15秒;
ステップ3:72℃、15秒;
ステップ4:74℃、60秒;
ステップ2からステップ4を30サイクル繰り返す;
ステップ5:74℃、4分。 Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 15 seconds;
Step 4: 74 ° C., 60 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 4 minutes.
このPCRにより約810bpの特異的な増幅産物が得られた。この増幅された断片をNdeIとEcoRIで消化し、発現ベクターであるpET21a(+)及びpET24a(+)のNdeI-EcoRI部位に挿入して、組換えプラスミドを得た。
A specific amplification product of about 810 bp was obtained by this PCR. This amplified fragment was digested with NdeI and EcoRI and inserted into the NdeI-EcoRI sites of expression vectors pET21a (+) and pET24a (+) to obtain a recombinant plasmid.
[実施例13-3:Streptomycesa avermitilis JCM 5070由来PL(A)遺伝子を発現する組換え大腸菌の作製]
実施例12-2で得た組換えプラスミドを大腸菌BL21(DE3)に形質転換し、組換え大腸菌を得た。 [Example 13-3: Preparation of recombinant Escherichia coli expressing a Streptomyces avermitilis JCM 5070-derived PL (A) gene]
The recombinant plasmid obtained in Example 12-2 was transformed into E. coli BL21 (DE3) to obtain recombinant E. coli.
実施例12-2で得た組換えプラスミドを大腸菌BL21(DE3)に形質転換し、組換え大腸菌を得た。 [Example 13-3: Preparation of recombinant Escherichia coli expressing a Streptomyces avermitilis JCM 5070-derived PL (A) gene]
The recombinant plasmid obtained in Example 12-2 was transformed into E. coli BL21 (DE3) to obtain recombinant E. coli.
[実施例13-4:Streptomycesa avermitilis JCM 5070由来PL(A)遺伝子を発現する組換え放線菌の培養]
実施例13-3で得た組換え大腸菌を、50μg/mLのアンピシリン(pET21a(+)を形質転換した大腸菌の場合)又は30μg/mLのカナマイシン(pET24a(+)を形質転換した大腸菌の場合)を含む100mLのOvernight Express TB培地(Novagen社製)で、34℃、24時間培養した。得られた培養液を遠心分離して菌体を回収した。菌体は20mMトリス-塩酸緩衝液(pH7.5)で懸濁した後、超音波破砕し、遠心上清をそのまま実施例14で使用した(約0.1U/mL)。形質転換していない大腸菌を培養(抗生物質は加えない)・超音波破砕して得た遠心上清をネガティブコントロールとした。 [Example 13-4: Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
Recombinant E. coli obtained in Example 13-3 was mixed with 50 μg / mL ampicillin (in the case of E. coli transformed with pET21a (+)) or 30 μg / mL kanamycin (in the case of E. coli transformed with pET24a (+)). The culture was carried out at 34 ° C. for 24 hours in 100 mL of Overnight Express TB medium (manufactured by Novagen). The obtained culture solution was centrifuged to recover the cells. The cells were suspended in 20 mM Tris-HCl buffer (pH 7.5), sonicated, and the centrifuged supernatant was used in Example 14 as it was (about 0.1 U / mL). Centrifugal supernatant obtained by culturing untransformed E. coli (no antibiotics added) and sonication was used as a negative control.
実施例13-3で得た組換え大腸菌を、50μg/mLのアンピシリン(pET21a(+)を形質転換した大腸菌の場合)又は30μg/mLのカナマイシン(pET24a(+)を形質転換した大腸菌の場合)を含む100mLのOvernight Express TB培地(Novagen社製)で、34℃、24時間培養した。得られた培養液を遠心分離して菌体を回収した。菌体は20mMトリス-塩酸緩衝液(pH7.5)で懸濁した後、超音波破砕し、遠心上清をそのまま実施例14で使用した(約0.1U/mL)。形質転換していない大腸菌を培養(抗生物質は加えない)・超音波破砕して得た遠心上清をネガティブコントロールとした。 [Example 13-4: Culture of recombinant actinomycetes expressing PL (A) gene derived from Streptomyces avermitilis JCM 5070]
Recombinant E. coli obtained in Example 13-3 was mixed with 50 μg / mL ampicillin (in the case of E. coli transformed with pET21a (+)) or 30 μg / mL kanamycin (in the case of E. coli transformed with pET24a (+)). The culture was carried out at 34 ° C. for 24 hours in 100 mL of Overnight Express TB medium (manufactured by Novagen). The obtained culture solution was centrifuged to recover the cells. The cells were suspended in 20 mM Tris-HCl buffer (pH 7.5), sonicated, and the centrifuged supernatant was used in Example 14 as it was (about 0.1 U / mL). Centrifugal supernatant obtained by culturing untransformed E. coli (no antibiotics added) and sonication was used as a negative control.
[実施例14:Streptomycesa avermitilis JCM 5070由来PL(A)のPlsEtnへの作用(カルシウムイオンの非存在下)]
本実施例では、Streptomycesa avermitilis JCM 5070由来PL(A)が、カルシウムイオンの非存在下、PlsEtn(化4)に作用することをTLCで確認した。 [Example 14: Action of Streptomyces avermitilis JCM 5070-derived PL (A) on PlsEtn (in the absence of calcium ions)]
In this example, it was confirmed by TLC that Streptomyces avermitilis JCM 5070-derived PL (A) acts on PlsEtn (chemical formula 4) in the absence of calcium ions.
本実施例では、Streptomycesa avermitilis JCM 5070由来PL(A)が、カルシウムイオンの非存在下、PlsEtn(化4)に作用することをTLCで確認した。 [Example 14: Action of Streptomyces avermitilis JCM 5070-derived PL (A) on PlsEtn (in the absence of calcium ions)]
In this example, it was confirmed by TLC that Streptomyces avermitilis JCM 5070-derived PL (A) acts on PlsEtn (chemical formula 4) in the absence of calcium ions.
<反応液>
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
培養可溶化遠心上清
<反応液>を25℃又は30℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
Culture solubilized centrifuge supernatant <Reaction solution> is reacted at 25 ° C. or 30 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) is added in the same amount as <Reaction solution>. The reaction was stopped by mixing. The phospholipid extracted into the organic phase was used as a TLC sample.
10mM トリス-塩酸緩衝液pH7.5
2mM PlsEtn(化4)(又はlyPls(化7))
培養可溶化遠心上清
<反応液>を25℃又は30℃で反応し、反応開始10分後にCHCl3:CH3OH(体積比2:1)の溶液を<反応液>と同じ量加えて混合し反応を停止した。有機相に抽出されたリン脂質をTLCのサンプルとした。 <Reaction solution>
10 mM Tris-HCl buffer pH 7.5
2 mM PlsEtn (Chemical formula 4) (or lyPls (Chemical formula 7))
Culture solubilized centrifuge supernatant <Reaction solution> is reacted at 25 ° C. or 30 ° C., and 10 minutes after the start of the reaction, a solution of CHCl 3 : CH 3 OH (volume ratio 2: 1) is added in the same amount as <Reaction solution>. The reaction was stopped by mixing. The phospholipid extracted into the organic phase was used as a TLC sample.
<結果>
図13のレーン1~8は次の通りである。 <Result>
Lanes 1 to 8 in FIG. 13 are as follows.
図13のレーン1~8は次の通りである。 <Result>
レーン1はPlsEtn(化4)にPL(A)を作用させなかった<反応液>から有機相に抽出したリン脂質である。
Lane 1 is a phospholipid extracted into an organic phase from <reaction solution> in which PL (A) was not allowed to act on PlsEtn (Chemical Formula 4).
レーン2はlyPlsEtn(化7)にPL(A)を作用させなかった<反応液>から有機相に抽出したリン脂質である。
Lane 2 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) was not allowed to act on lyPlsEtn (Chemical Formula 7).
レーン3はpET21a(+)を形質転換した大腸菌由来のPL(A)をPlsEtn(化4)に25℃で作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 3 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) derived from E. coli transformed with pET21a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 25 ° C.
レーン4はpET24a(+)を形質転換した大腸菌由来のPL(A)をPlsEtn(化4)に25℃で作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 4 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) derived from E. coli transformed with pET24a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 25 ° C.
レーン5はネガティブコントロールをPlsEtn(化4)に作用させた<反応液>から有機相に25℃で抽出したリン脂質である。
Lane 5 is a phospholipid extracted from the <reaction solution> in which a negative control was allowed to act on PlsEtn (Chemical Formula 4) to the organic phase at 25 ° C.
レーン6はpET21a(+)を形質転換した大腸菌由来のPL(A)をPlsEtn(化4)に30℃で作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 6 is a phospholipid extracted into an organic phase from a <reaction solution> in which PL (A) derived from Escherichia coli transformed with pET21a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 30 ° C.
レーン7はpET24a(+)を形質転換した大腸菌由来のPL(A)をPlsEtn(化4)に30℃で作用させた<反応液>から有機相に抽出したリン脂質である。
Lane 7 is a phospholipid extracted into the organic phase from <reaction solution> in which PL (A) derived from E. coli transformed with pET24a (+) was allowed to act on PlsEtn (Chemical Formula 4) at 30 ° C.
レーン8はネガティブコントロールをPlsEtn(化4)に作用させた<反応液>から有機相に30℃で抽出したリン脂質である。
Lane 8 is a phospholipid extracted at 30 ° C. into the organic phase from the <reaction solution> in which negative control was allowed to act on PlsEtn (Chemical Formula 4).
TLCのスポットを、デンシトメーターで定量した結果を表7に示した。
The results of quantifying TLC spots with a densitometer are shown in Table 7.
Streptomycesa avermitilis JCM 5070由来PL(A)が、カルシウムイオンの非存在下、PlsEtn(化4)に作用することが確認できた。
It was confirmed that Streptomyces avermitilis JCM 5070-derived PL (A) acts on PlsEtn (Chemical Formula 4) in the absence of calcium ions.
本発明により、プラスマローゲンをリゾプラスマローゲンに加水分解する方法、プラスマローゲンを測定する方法、加水分解用及び/又は測定用の組成物、ホスホリパーゼの製造方法を提供できる。
The present invention can provide a method for hydrolyzing plasmalogen to lysoplasmalogen, a method for measuring plasmalogen, a composition for hydrolysis and / or measurement, and a method for producing phospholipase.
[Streptomyces albidoflavus NA297(受託番号:NITE BP-1014)]
受託番号:NITE BP-1014
寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
寄託の日付:2011年1月26日。
[Streptomyces sp. NA684(受託番号:NITE BP-1015)]
受託番号:NITE BP-1015
寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
寄託の日付:2011年1月26日。 [Streptomyces albidoflavus NA297 (Accession number: NITE BP-1014)]
Accession Number: NITE BP-1014
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: January 26, 2011.
[Streptomyces sp. NA684 (Accession number: NITE BP-1015)]
Accession Number: NITE BP-1015
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: January 26, 2011.
受託番号:NITE BP-1014
寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
寄託の日付:2011年1月26日。
[Streptomyces sp. NA684(受託番号:NITE BP-1015)]
受託番号:NITE BP-1015
寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
寄託の日付:2011年1月26日。 [Streptomyces albidoflavus NA297 (Accession number: NITE BP-1014)]
Accession Number: NITE BP-1014
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: January 26, 2011.
[Streptomyces sp. NA684 (Accession number: NITE BP-1015)]
Accession Number: NITE BP-1015
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: January 26, 2011.
配列番号1:PL(A)のアミノ酸配列の全長
配列番号2:他のPL(A)のアミノ酸配列の全長
配列番号3:PL(A)遺伝子の塩基配列
配列番号4:他のPL(A)遺伝子の塩基配列
配列番号5:プライマーS
配列番号6:プライマーAS
配列番号7:他のプライマーS
配列番号8:他のプライマーAS
配列番号9:PL(A)のアミノ酸配列の一部
配列番号10:他のPL(A)のアミノ酸配列の一部
配列番号11:配列番号9に記載のアミノ酸配列をコードする塩基配列
配列番号12:配列番号9に記載のアミノ酸配列をコードする他の塩基配列
配列番号13:配列番号10に記載のアミノ酸配列をコードする塩基配列
配列番号14:配列番号10に記載のアミノ酸配列をコードする他の塩基配列 SEQ ID NO: 1: Full length of amino acid sequence of PL (A) SEQ ID NO: 2: Full length of amino acid sequence of other PL (A) SEQ ID NO: 3: Base sequence of PL (A) gene SEQ ID NO: 4: Other PL (A) Base sequence of gene SEQ ID NO: 5: Primer S
Sequence number 6: Primer AS
SEQ ID NO: 7: other primer S
SEQ ID NO: 8: other primer AS
SEQ ID NO: 9: Partial amino acid sequence of PL (A) SEQ ID NO: 10: Partial amino acid sequence of other PL (A) SEQ ID NO: 11: Base sequence encoding the amino acid sequence of SEQ ID NO: 9 : Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 9 SEQ ID NO: 13: Base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10 SEQ ID NO: 14: Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10 Base sequence
配列番号2:他のPL(A)のアミノ酸配列の全長
配列番号3:PL(A)遺伝子の塩基配列
配列番号4:他のPL(A)遺伝子の塩基配列
配列番号5:プライマーS
配列番号6:プライマーAS
配列番号7:他のプライマーS
配列番号8:他のプライマーAS
配列番号9:PL(A)のアミノ酸配列の一部
配列番号10:他のPL(A)のアミノ酸配列の一部
配列番号11:配列番号9に記載のアミノ酸配列をコードする塩基配列
配列番号12:配列番号9に記載のアミノ酸配列をコードする他の塩基配列
配列番号13:配列番号10に記載のアミノ酸配列をコードする塩基配列
配列番号14:配列番号10に記載のアミノ酸配列をコードする他の塩基配列 SEQ ID NO: 1: Full length of amino acid sequence of PL (A) SEQ ID NO: 2: Full length of amino acid sequence of other PL (A) SEQ ID NO: 3: Base sequence of PL (A) gene SEQ ID NO: 4: Other PL (A) Base sequence of gene SEQ ID NO: 5: Primer S
Sequence number 6: Primer AS
SEQ ID NO: 7: other primer S
SEQ ID NO: 8: other primer AS
SEQ ID NO: 9: Partial amino acid sequence of PL (A) SEQ ID NO: 10: Partial amino acid sequence of other PL (A) SEQ ID NO: 11: Base sequence encoding the amino acid sequence of SEQ ID NO: 9 : Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 9 SEQ ID NO: 13: Base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10 SEQ ID NO: 14: Other base sequence encoding the amino acid sequence set forth in SEQ ID NO: 10 Base sequence
Claims (31)
- 少なくとも下記(a)から(c)までの特性を有するホスホリパーゼを用いてプラスマローゲンをリゾプラスマローゲンに加水分解することを特徴とするプラスマローゲンの加水分解方法。
(a)エタノールアミン型プラスマローゲン(C18、20:4)に対する比活性が0.66±0.2U/mgである。
(b)SDS-PAGE法による分子量が25~30kDaの範囲である。
(c)Streptomyces属に属する放線菌由来である。 A method for hydrolyzing a plasmalogen, comprising hydrolyzing a plasmalogen to a lysoplasmalogen using a phospholipase having at least the following characteristics (a) to (c):
(A) Specific activity with respect to ethanolamine type plasmalogen (C18, 20: 4) is 0.66 ± 0.2 U / mg.
(B) The molecular weight by SDS-PAGE is in the range of 25-30 kDa.
(C) It is derived from actinomycetes belonging to the genus Streptomyces. - 前記ホスホリパーゼが、さらに下記(d)及び(e)の特性を有することを特徴とする請求項1に記載のプラスマローゲンの加水分解方法。
(d)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(e)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。 The method for hydrolyzing plasmalogen according to claim 1, wherein the phospholipase further has the following properties (d) and (e).
(D) In the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine.
(E) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine. - 前記ホスホリパーゼが、さらに下記(f)の特性を有することを特徴とする請求項1又は2に記載のプラスマローゲンの加水分解方法。
(f)Streptomyces albidoflavus由来である。 The method for hydrolyzing a plasmalogen according to claim 1 or 2, wherein the phospholipase further has the following property (f).
(F) It is derived from Streptomyces albidoflavus. - 前記ホスホリパーゼが、さらに下記(g)の特性を有することを特徴とする請求項1又は2に記載のプラスマローゲンの加水分解方法。
(g)Streptomyces avermitilis由来である。 The method for hydrolyzing a plasmalogen according to claim 1 or 2, wherein the phospholipase further has the following property (g).
(G) It is derived from Streptomyces avermitilis. - 前記ホスホリパーゼが、さらに下記(h)から(j)までのいずれかの特性を有することを特徴とする請求項1、2、3のいずれか一項に記載のプラスマローゲンの加水分解方法。
(h)配列番号1に記載のアミノ酸配列を有する。
(i)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(j)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The method for hydrolyzing a plasmalogen according to any one of claims 1, 2, and 3, wherein the phospholipase further has any of the following properties (h) to (j).
(H) having the amino acid sequence set forth in SEQ ID NO: 1.
(I) It has an amino acid sequence in which one or a plurality of amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and has an action of hydrolyzing plasmalogen to lysoplasmalogen.
(J) having an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - 前記ホスホリパーゼが、さらに下記(k)から(m)までのいずれかの特性を有することを特徴とする請求項1、2、4のいずれか一項に記載のプラスマローゲンの加水分解方法。
(k)配列番号2に記載のアミノ酸配列を有する。
(l)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(m)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The method for hydrolyzing a plasmalogen according to any one of claims 1, 2, and 4, wherein the phospholipase further has any of the following properties (k) to (m).
(K) having the amino acid sequence set forth in SEQ ID NO: 2.
(L) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 2 and has an action of hydrolyzing plasmalogen into lysoplasmalogen.
(M) having an amino acid sequence in which one or more amino acids are mutated, deleted, or added in the amino acid sequence shown in SEQ ID NO: 2, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - 前記プラスマローゲンがエタノールアミン型プラスマローゲンであり、前記リゾプラスマローゲンがエタノールアミン型リゾプラスマローゲンであることを特徴とする請求項1から6までのいずれか一項に記載のプラスマローゲンの加水分解方法。 The method for hydrolyzing a plasmalogen according to any one of claims 1 to 6, wherein the plasmalogen is an ethanolamine type plasmalogen, and the lysoplasmalogen is an ethanolamine type lysoplasmalogen. .
- 前記プラスマローゲンが試料中のプラスマローゲンであることを特徴とする請求項1から7までのいずれか一項に記載のプラスマローゲンの加水分解方法。 The method for hydrolyzing plasmalogen according to any one of claims 1 to 7, wherein the plasmalogen is a plasmalogen in a sample.
- 少なくとも下記(a)から(c)までの特性を有するホスホリパーゼを用いてプラスマローゲンを測定することを特徴とするプラスマローゲンの測定方法。
(a)エタノールアミン型プラスマローゲン(C18、20:4)に対する比活性が0.66±0.2U/mgである。
(b)SDS-PAGE法による分子量が25~30kDaの範囲である。
(c)Streptomyces属に属する放線菌由来である。 A method for measuring plasmalogen, comprising measuring plasmalogen using a phospholipase having at least the following characteristics (a) to (c):
(A) Specific activity with respect to ethanolamine type plasmalogen (C18, 20: 4) is 0.66 ± 0.2 U / mg.
(B) The molecular weight by SDS-PAGE is in the range of 25-30 kDa.
(C) It is derived from actinomycetes belonging to the genus Streptomyces. - 前記ホスホリパーゼが、さらに下記(d)及び(e)の特性を有することを特徴とする請求項9に記載のプラスマローゲンの測定方法。
(d)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(e)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。 The method for measuring plasmalogen according to claim 9, wherein the phospholipase further has the following properties (d) and (e).
(D) In the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine.
(E) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine. - 前記ホスホリパーゼが、さらに下記(f)の特性を有することを特徴とする請求項9又は10に記載のプラスマローゲンの測定方法。
(f)Streptomyces albidoflavus由来である。 The method for measuring plasmalogen according to claim 9 or 10, wherein the phospholipase further has the following property (f).
(F) It is derived from Streptomyces albidoflavus. - 前記ホスホリパーゼが、さらに下記(g)の特性を有することを特徴とする請求項9又は10に記載のプラスマローゲンの測定方法。
(g)Streptomyces avermitilis由来である。 The method for measuring plasmalogen according to claim 9 or 10, wherein the phospholipase further has the following property (g).
(G) It is derived from Streptomyces avermitilis. - 前記ホスホリパーゼが、さらに下記(h)から(j)までのいずれかの特性を有することを特徴とする請求項9、10、11のいずれか一項に記載のプラスマローゲンの測定方法。
(h)配列番号1に記載のアミノ酸配列を有する。
(i)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(j)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The method for measuring plasmalogen according to any one of claims 9, 10, and 11, wherein the phospholipase further has any of the following properties (h) to (j).
(H) having the amino acid sequence set forth in SEQ ID NO: 1.
(I) It has an amino acid sequence in which one or a plurality of amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and has an action of hydrolyzing plasmalogen to lysoplasmalogen.
(J) having an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - 前記ホスホリパーゼが、さらに下記(k)から(m)までのいずれかの特性を有することを特徴とする請求項9、10、12のいずれか一項に記載のプラスマローゲンの測定方法。
(k)配列番号2に記載のアミノ酸配列を有する。
(l)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(m)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The method for measuring plasmalogen according to any one of claims 9, 10, and 12, wherein the phospholipase further has any of the following properties (k) to (m).
(K) having the amino acid sequence set forth in SEQ ID NO: 2.
(L) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 2 and has an action of hydrolyzing plasmalogen into lysoplasmalogen.
(M) having an amino acid sequence in which one or more amino acids are mutated, deleted, or added in the amino acid sequence shown in SEQ ID NO: 2, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - 前記プラスマローゲンがエタノールアミン型プラスマローゲンであり、前記リゾプラスマローゲンがエタノールアミン型リゾプラスマローゲンであることを特徴とする請求項9から14までのいずれか一項に記載のプラスマローゲンの測定方法。 The method for measuring plasmalogen according to any one of claims 9 to 14, wherein the plasmalogen is an ethanolamine type plasmalogen, and the lysoplasmalogen is an ethanolamine type lysoplasmalogen.
- 前記プラスマローゲンが試料中のプラスマローゲンであることを特徴とする請求項9から15までのいずれか一項に記載のプラスマローゲンの測定方法。 The plasmalogen measuring method according to any one of claims 9 to 15, wherein the plasmalogen is a plasmalogen in a sample.
- 少なくとも下記(a)から(c)までの特性を有するホスホリパーゼを含有する組成物であることを特徴とするホスホリパーゼ含有組成物。
(a)エタノールアミン型プラスマローゲン(C18、20:4)に対する比活性が0.66±0.2U/mgである。
(b)SDS-PAGE法による分子量が25~30kDaの範囲である。
(c)Streptomyces属に属する放線菌由来である。 A phospholipase-containing composition comprising a phospholipase having at least the following properties (a) to (c):
(A) Specific activity with respect to ethanolamine type plasmalogen (C18, 20: 4) is 0.66 ± 0.2 U / mg.
(B) The molecular weight by SDS-PAGE is in the range of 25-30 kDa.
(C) It is derived from actinomycetes belonging to the genus Streptomyces. - 前記ホスホリパーゼが、さらに下記(d)及び(e)の特性を有することを特徴とする請求項17に記載のホスホリパーゼ含有組成物。
(d)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(e)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。 The phospholipase-containing composition according to claim 17, wherein the phospholipase further has the following properties (d) and (e):
(D) In the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine.
(E) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine. - 前記ホスホリパーゼが、さらに下記(f)の特性を有することを特徴とする請求項17又は18に記載のホスホリパーゼ含有組成物。
(f)Streptomyces albidoflavus由来である。 The phospholipase-containing composition according to claim 17 or 18, wherein the phospholipase further has the following property (f).
(F) It is derived from Streptomyces albidoflavus. - 前記ホスホリパーゼが、さらに下記(g)の特性を有することを特徴とする請求項17又は18に記載のホスホリパーゼ含有組成物。
(g)Streptomyces avermitilis由来である。 The phospholipase-containing composition according to claim 17 or 18, wherein the phospholipase further has the following property (g):
(G) It is derived from Streptomyces avermitilis. - 前記ホスホリパーゼが、さらに下記(h)から(j)までのいずれかの特性を有することを特徴とする請求項17、18、19のいずれか一項に記載のホスホリパーゼ含有組成物。
(h)配列番号1に記載のアミノ酸配列を有する。
(i)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(j)配列番号1に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The phospholipase-containing composition according to any one of claims 17, 18, and 19, wherein the phospholipase further has any of the following properties (h) to (j):
(H) having the amino acid sequence set forth in SEQ ID NO: 1.
(I) It has an amino acid sequence in which one or a plurality of amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and has an action of hydrolyzing plasmalogen to lysoplasmalogen.
(J) having an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 1, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - 前記ホスホリパーゼが、さらに下記(k)から(m)までのいずれかの特性を有することを特徴とする請求項17、18、20のいずれか一項に記載のホスホリパーゼ含有組成物。
(k)配列番号2に記載のアミノ酸配列を有する。
(l)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
(m)配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が変異、欠損又は付加されたアミノ酸配列を有し、さらに配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。 The phospholipase-containing composition according to any one of claims 17, 18, and 20, wherein the phospholipase further has any of the following properties (k) to (m):
(K) having the amino acid sequence set forth in SEQ ID NO: 2.
(L) It has an amino acid sequence in which one or more amino acids are mutated, deleted or added in the amino acid sequence shown in SEQ ID NO: 2 and has an action of hydrolyzing plasmalogen into lysoplasmalogen.
(M) having an amino acid sequence in which one or more amino acids are mutated, deleted, or added in the amino acid sequence shown in SEQ ID NO: 2, and further the amino acid sequence shown in SEQ ID NO: 9 and the amino acid sequence shown in SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen. - プラスマローゲンをリゾプラスマローゲンに加水分解するための組成物であることを特徴とする請求項17から22までのいずれか一項に記載のホスホリパーゼ含有組成物。 23. The phospholipase-containing composition according to any one of claims 17 to 22, wherein the composition is a composition for hydrolyzing plasmalogen to lysoplasmalogen.
- プラスマローゲンを測定するための組成物であることを特徴とする請求項17から23までのいずれか一項に記載のホスホリパーゼ含有組成物。 The phospholipase-containing composition according to any one of claims 17 to 23, which is a composition for measuring plasmalogen.
- 前記プラスマローゲンがエタノールアミン型プラスマローゲンであり、前記リゾプラスマローゲンがエタノールアミン型リゾプラスマローゲンであることを特徴とする請求項17から24までのいずれか一項に記載のホスホリパーゼ含有組成物。 25. The phospholipase-containing composition according to any one of claims 17 to 24, wherein the plasmalogen is an ethanolamine type plasmalogen, and the lysoplasmalogen is an ethanolamine type lysoplasmalogen.
- 前記プラスマローゲンが試料中のプラスマローゲンであることを特徴とする請求項17から25までのいずれか一項に記載のホスホリパーゼ含有組成物。 The phospholipase-containing composition according to any one of claims 17 to 25, wherein the plasmalogen is a plasmalogen in a sample.
- 下記<1>から<3>までのいずれかのホスホリパーゼを製造する方法であって、前記ホスホリパーゼをコードする塩基配列に基づき前記ホスホリパーゼを形成する工程と、前記ホスホリパーゼを取得する工程とを含むことを特徴とするホスホリパーゼの製造方法。
<1>配列番号2に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
<2>配列番号2に記載のアミノ酸配列において1つ又は複数のアミノ酸が欠失、置換又は付加されたアミノ酸配列を有し、配列番号9に記載のアミノ酸配列及び配列番号10に記載のアミノ酸配列を有し、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有する。
<3>下記(a)から(d)までの特性を有する。
(a)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、18:1)に対する相対活性が、ジパルミトイルホスホコリンに対して、19±5%である。
(b)カルシウムイオン非存在下、エタノールアミン型プラスマローゲン(C18、20:4)に対する相対活性が、1-パルミトイル-2-オレオイル-ホスホコリンに対して、29±13%である。
(c)SDS-PAGE法による分子量が25~30kDaの範囲である。
(d)Streptomyces属に属する放線菌由来である。 A method for producing any one of the following phospholipases from <1> to <3>, comprising a step of forming the phospholipase based on a base sequence encoding the phospholipase, and a step of obtaining the phospholipase. A method for producing a characteristic phospholipase.
<1> It has the amino acid sequence set forth in SEQ ID NO: 2 and has an action of hydrolyzing plasmalogen to lysoplasmalogen.
<2> The amino acid sequence of SEQ ID NO: 2 has an amino acid sequence in which one or more amino acids are deleted, substituted or added, and the amino acid sequence of SEQ ID NO: 9 and the amino acid sequence of SEQ ID NO: 10 And has an action of hydrolyzing plasmalogen to lysoplasmalogen.
<3> It has the following characteristics (a) to (d).
(A) In the absence of calcium ions, the relative activity to ethanolamine-type plasmalogen (C18, 18: 1) is 19 ± 5% relative to dipalmitoylphosphocholine.
(B) In the absence of calcium ions, the relative activity against ethanolamine-type plasmalogen (C18, 20: 4) is 29 ± 13% relative to 1-palmitoyl-2-oleoyl-phosphocholine.
(C) The molecular weight determined by SDS-PAGE is in the range of 25-30 kDa.
(D) It is derived from actinomycetes belonging to the genus Streptomyces. - 前記ホスホリパーゼを形成する工程において、Streptomyces属に属し、かつ、プラスマローゲンをリゾプラスマローゲンに加水分解する作用を有するホスホリパーゼを産生する微生物を用いることを特徴とする請求項27に記載のホスホリパーゼの製造方法。 The method for producing a phospholipase according to claim 27, wherein in the step of forming the phospholipase, a microorganism that produces a phospholipase belonging to the genus Streptomyces and having an action of hydrolyzing a plasmalogen to a lysoplasmalogen is used. .
- 取得したホスホリパーゼを精製する工程をさらに含むことを特徴とする請求項27又は28に記載のホスホリパーゼの製造方法。 The method for producing a phospholipase according to claim 27 or 28, further comprising a step of purifying the obtained phospholipase.
- 前記ホスホリパーゼをコードする塩基配列が、配列番号4に示す塩基配列であることを特徴とする請求項27から29までのいずれか一項に記載のホスホリパーゼの製造方法。 The method for producing phospholipase according to any one of claims 27 to 29, wherein the base sequence encoding the phospholipase is the base sequence shown in SEQ ID NO: 4.
- 前記ホスホリパーゼが、Streptomyces avermitilis由来であることを特徴とする請求項27から30までのいずれか一項に記載のホスホリパーゼの製造方法。 The method for producing phospholipase according to any one of claims 27 to 30, wherein the phospholipase is derived from Streptomyces avermitilis.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014525575A JP5926801B2 (en) | 2012-07-17 | 2012-07-17 | Plasmalogen hydrolysis method, plasmalogen measurement method |
PCT/JP2012/068073 WO2014013538A1 (en) | 2012-07-17 | 2012-07-17 | Method for hydrolyzing plasmalogen, method for measuring plasmalogen, phospholipase-containing composition, and method for producing phospholipase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/068073 WO2014013538A1 (en) | 2012-07-17 | 2012-07-17 | Method for hydrolyzing plasmalogen, method for measuring plasmalogen, phospholipase-containing composition, and method for producing phospholipase |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014013538A1 true WO2014013538A1 (en) | 2014-01-23 |
Family
ID=49948394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/068073 WO2014013538A1 (en) | 2012-07-17 | 2012-07-17 | Method for hydrolyzing plasmalogen, method for measuring plasmalogen, phospholipase-containing composition, and method for producing phospholipase |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5926801B2 (en) |
WO (1) | WO2014013538A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016045112A (en) * | 2014-08-25 | 2016-04-04 | 株式会社 レオロジー機能食品研究所 | Method for quantifying ether phospholipids |
JP2016111929A (en) * | 2014-12-11 | 2016-06-23 | 株式会社 レオロジー機能食品研究所 | Method for quantifying plasmalogen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007033410A (en) * | 2005-07-29 | 2007-02-08 | Teikyo Univ | Disease testing method |
JP2008506381A (en) * | 2004-07-16 | 2008-03-06 | ダニスコ エイ/エス | Method for enzymatic degumming of edible oil |
JP2010516271A (en) * | 2007-01-25 | 2010-05-20 | ダニスコ エイ/エス | Production of lipid acyltransferase from transformed Bacillus licheniformis cells |
-
2012
- 2012-07-17 WO PCT/JP2012/068073 patent/WO2014013538A1/en active Application Filing
- 2012-07-17 JP JP2014525575A patent/JP5926801B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506381A (en) * | 2004-07-16 | 2008-03-06 | ダニスコ エイ/エス | Method for enzymatic degumming of edible oil |
JP2007033410A (en) * | 2005-07-29 | 2007-02-08 | Teikyo Univ | Disease testing method |
JP2010516271A (en) * | 2007-01-25 | 2010-05-20 | ダニスコ エイ/エス | Production of lipid acyltransferase from transformed Bacillus licheniformis cells |
Non-Patent Citations (11)
Title |
---|
DAISUKE SUGIMORI ET AL.: "Purification, characterization, and gene cloning of Streptomyces albidoflavus, Idenshi Cloning", DAI 63 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 25 August 2011 (2011-08-25), JAPAN, pages 132 * |
DATABASE GENBANK 23 March 2010 (2010-03-23), "secreted hydrolase [Streptomyces albus J1074]", retrieved from http://www.ncbi.nlm.nih.gov/ protein/EFE80399 accession no. FE80399 * |
FU J ET AL.: "A novel cold-adapted phospholipase A(l) from Serratia sp. xjFl: Gene cloning, expression and characterization", ENZYME MICROB. TECHNOL., vol. 42, no. 2, 2008, pages 187 - 194, XP022387264 * |
IKEDA H ET AL.: "Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis", NAT. BIOTECHNOL., vol. 21, no. 5, 2003, pages 526 - 531, XP009063574, doi:10.1038/nbt820 * |
KIM JK ET AL.: "Concentration of bovine plasmalogen using phospholipase Al in two-phase system", BIOTECHNOLOGY TECHNIQUES, vol. 13, 1999, pages 589 - 593 * |
KOTA KANO ET AL.: "Screening and Purification of metal ion independent Phospholipase A from Streptomyces sp.", DAI 62 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 25 September 2010 (2010-09-25), pages 30 * |
MAWATARI S ET AL.: "Simultaneous preparation of purified plasmalogens and sphingomyelin in human erythrocytes with phospholipase Al from Aspergillus orizae.", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 73, no. 12, 2009, pages 2621 - 2625 * |
NAGAN N ET AL.: "Plasmalogens: biosynthesis and functions", PROG. LIPID RES., vol. 40, no. 3, 2001, pages 199 - 229, XP007909018, doi:10.1016/S0163-7827(01)00003-0 * |
SCANDELLA CJ ET AL.: "A membrane-bound phospholipase Al purified from Escherichia coli", BIOCHEMISTRY, vol. 10, no. 24, 1971, pages 4447 - 4456 * |
WOLF RA ET AL.: "Semi-synthetic approach for the preparation of homogeneous plasmenylethanolamine utilizing phospholipase D from Streptomyces chromofuscus", J. LIPID RES., vol. 26, no. 5, 1985, pages 629 - 633 * |
YUSAKU MATSUKI ET AL.: "Streptomyces sp. NA684 Yurai Shinki Phospholipase B no Tairyo Hatsugen to sono Tokusei Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2012 NENDO TAIKAI KOEN YOSHISHU, 5 March 2012 (2012-03-05), Retrieved from the Internet <URL:http://www.jsbba.or.jp/MeetingofJSBBA/meetingofjsbba.html> [retrieved on 20120821] * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016045112A (en) * | 2014-08-25 | 2016-04-04 | 株式会社 レオロジー機能食品研究所 | Method for quantifying ether phospholipids |
JP2016111929A (en) * | 2014-12-11 | 2016-06-23 | 株式会社 レオロジー機能食品研究所 | Method for quantifying plasmalogen |
Also Published As
Publication number | Publication date |
---|---|
JP5926801B2 (en) | 2016-05-25 |
JPWO2014013538A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kobayashi et al. | Escherichia coli phage‐shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes | |
Ishmukhametov et al. | Ultrafast purification and reconstitution of His-tagged cysteine-less Escherichia coli F1Fo ATP synthase | |
JP6185466B2 (en) | Cognitive function testing method and kit | |
US20150031059A1 (en) | Novel glucose dehydrogenase | |
Jeon et al. | Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane | |
JPWO2008108385A1 (en) | Method for measuring glycated hexapeptide | |
EP4163354A2 (en) | Polypeptides having phospholipase c activity and polynucleotides encoding same | |
Dheeman et al. | Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis | |
EP1813680B1 (en) | Compositions for lipase activity determination and method of determining activity | |
CN109563536B (en) | Determination of Lp-PLA2 Activity | |
JP5926801B2 (en) | Plasmalogen hydrolysis method, plasmalogen measurement method | |
JP7533918B2 (en) | Method for quantifying phospholipase D and ethanolamine-type plasmalogen | |
Matsumoto et al. | Substrate recognition mechanism of Streptomyces phospholipase D and enzymatic measurement of plasmalogen | |
WO2022050387A1 (en) | Novel enzyme specific to phosphatidylglycerol | |
JP5875139B2 (en) | Method for producing sphingomyelinase-containing composition | |
Ishchuk et al. | Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene | |
JP6144967B2 (en) | Ethanolamine oxidase | |
JP7436981B2 (en) | Polypeptide with improved cholesterol esterase activity | |
JP5993229B2 (en) | Method for solubilizing cholesterol esterase | |
Sugimori et al. | Purification, characterization, molecular cloning, and extracellular production of a novel bacterial glycerophosphocholine cholinephosphodiesterase from Streptomyces sanglieri | |
Urafuji et al. | Yor022c protein is a phospholipase A1 that localizes to the mitochondrial matrix | |
Cieśliński et al. | An MTA phosphorylase gene discovered in the metagenomic library derived from Antarctic top soil during screening for lipolytic active clones confers strong pink fluorescence in the presence of rhodamine B | |
Kim et al. | Purification and Biochemical Properties of Extracellular Phospholipase $ A_1 $ from Serratia sp. MK1 | |
EP2784160B1 (en) | Novel gene derived from mud flat metagenome and novel protein obtained therefrom showing coactivity of phospholipase and lipase | |
JP2007174951A (en) | Composition and method for lipase activity assay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12881210 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014525575 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12881210 Country of ref document: EP Kind code of ref document: A1 |