WO2014003334A1 - Photovoltaic module cooling device applied to solar energy conversion apparatus - Google Patents
Photovoltaic module cooling device applied to solar energy conversion apparatus Download PDFInfo
- Publication number
- WO2014003334A1 WO2014003334A1 PCT/KR2013/005087 KR2013005087W WO2014003334A1 WO 2014003334 A1 WO2014003334 A1 WO 2014003334A1 KR 2013005087 W KR2013005087 W KR 2013005087W WO 2014003334 A1 WO2014003334 A1 WO 2014003334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photovoltaic module
- heat
- solar energy
- photovoltaic
- light
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 title abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 230000005611 electricity Effects 0.000 claims description 16
- 239000012530 fluid Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000000498 cooling water Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 claims description 3
- 238000005338 heat storage Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 12
- 239000002826 coolant Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 8
- ZMHWQAHZKUPENF-UHFFFAOYSA-N 1,2-dichloro-3-(4-chlorophenyl)benzene Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC(Cl)=C1Cl ZMHWQAHZKUPENF-UHFFFAOYSA-N 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/60—Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
- H10F77/63—Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/60—Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
- H10F77/63—Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling
- H10F77/68—Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling using gaseous or liquid coolants, e.g. air flow ventilation or water circulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/90—Solar heat collectors using working fluids using internal thermosiphonic circulation
- F24S10/95—Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
Definitions
- the present invention relates to a photovoltaic module cooling device applied to a solar energy converter, and more particularly, to a photovoltaic module for converting a part of solar energy into electric energy only, or converting solar energy into complex energy such as electricity and heat energy.
- the present invention relates to a photovoltaic module cooling device applied to a solar energy converter that cools and recovers and utilizes thermal energy generated from a photovoltaic module.
- Fossil fuels are gradually depleted, and research and development of alternative energy technologies that can replace fossil fuels to prevent environmental pollution caused by the use of fossil fuels are being actively conducted.
- solar energy can be continuously supplied from the sun and it is an ideal alternative energy because it does not generate environmental pollutants.
- the technology for the use of such solar energy can be largely divided into a solar light utilization form and a solar heat use form.
- Such a solar power system converts up to 15 energy into electric energy when the total solar energy input to heat conversion efficiency of 12 to 15% is 100.
- the photovoltaic power generation system has a very low electrical conversion efficiency, and when the temperature rises above 40 ° C, the electrical change efficiency decreases rapidly, and above 80 ° C, the possibility of failure of the internal semiconductor and the structure itself is greatly increased. There was a problem.
- MJPV multi-junction type photovoltaic cells
- CPV Concentrated photovoltaic cells
- MJCPV Concentrated photovoltaic cells
- the light converging photovoltaic cell is installed by overlapping cells having different characteristics in order to increase the density of sunlight.
- the condensed photovoltaic cell can produce electrical energy and thermal energy at the same time from the solar energy has an electrical conversion efficiency of up to 40%.
- an object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can produce a combination of electrical and thermal energy from solar energy.
- Another object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can improve the energy conversion efficiency of converting solar energy into electricity and heat energy.
- Still another object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can effectively cool a photovoltaic module and recover and utilize thermal energy generated from the photovoltaic module.
- the present invention is a light collecting unit for collecting solar light, a photovoltaic module for converting the solar light collected by the light collecting unit into electrical and thermal energy and heat exchange with the photovoltaic module
- a photovoltaic module cooling apparatus applied to a solar energy conversion apparatus including a heat exchanger for cooling a photovoltaic module and recovering thermal energy generated by the photovoltaic module, wherein the heat exchanger is provided in contact with the photovoltaic module, and includes a heat pipe and the heat.
- a heat exchanger connected to one side of a pipe to discharge heat transferred from the photovoltaic module, a supply line for supplying cooling water into the heat exchanger, and a discharge line for discharging hot water heated by performing heat exchange in the heat exchanger .
- the heat pipe is provided with a channel (channel) in which a working fluid is filled in an inner space, and a wick structure for circulating the working fluid using a capillary force is provided in the channel.
- the channel is formed in a rectangular shape to facilitate thermal contact with one surface of the printed circuit board of the photovoltaic module, and the wick structure is formed in a rectangular ring or annular ring shape in cross section to provide a passage through which the working fluid moves. It is characterized in that it is provided in (screen), groove (groove) or sintered metal (sintered metal) type.
- the heat exchanger is characterized in that a plurality of heat radiation fins are provided to widen the area for heat exchange with the cooling water.
- the discharge line may be connected to a hot water supply device or a heating device or a heat storage tank for storing thermal energy to perform hot water supply or heating using hot water discharged from the cooler.
- the light collecting part may include a light collecting body configured to parabolic an upper surface to condense sunlight, and the photovoltaic module may extend the parabolic surface to convert the light collected by the light collecting body into electricity and thermal energy. And a plurality of condensed photovoltaic cells arranged linearly on a center line of the virtual cylinder and a plurality of condensed photovoltaic cells mounted on one surface thereof, wherein the printed circuit board is disposed between the plurality of condensed photovoltaic cells and the heat pipe. Characterized by being made of a metal material having a thermal conductivity so that heat exchange is performed smoothly.
- the light collecting unit includes a plurality of light collecting members that point-concentrate sunlight using a principle of a lens or a mirror
- the photovoltaic module includes a plurality of light-collecting photovoltaic cells that convert the light concentrated by the light-converging member into electric and thermal energy.
- a printed circuit board on which one surface of the plurality of light collecting photovoltaic cells is mounted.
- the light collecting member may be a fresnel lens.
- the present invention provides a light collecting unit for collecting solar light, a photovoltaic module for converting the solar light collected by the light collecting unit into electricity and thermal energy and performing a heat exchange with the photovoltaic module to cool the photovoltaic module
- a photovoltaic module cooling apparatus applied to a solar energy converter including a heat exchanger for recovering heat energy generated by a photovoltaic module, wherein the heat exchanger is connected to a heat pipe installed in contact with the photovoltaic module and one side of the heat pipe. It includes a heat radiation fin for dissipating heat transferred from the module by performing heat exchange with the outside air.
- the solar light is collected by using a condenser having a parabolic surface, and the solar energy is converted by using a condensed photovoltaic cell to convert electricity and The effect of producing multiple thermal energy is obtained.
- an effect that the photovoltaic module can be cooled to maintain a predetermined temperature range by installing a heat exchanger on one side of the heat pipe.
- the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, by supplying the cooling water to the heat exchanger, using the heated hot water in the process of heat exchange with the heat exchanger, the heat energy generated in the photovoltaic module effectively recovered The effect can be obtained by using.
- a heat pipe having a wick structure for providing a channel filled with a working fluid in the inner space and circulating the working fluid using capillary force inside the channel is provided. The effect that can effectively transfer the heat generated in the photovoltaic module to the heat exchanger is obtained.
- the photovoltaic module cooling device applied to the solar energy conversion device according to the present invention by performing heat exchange with the photovoltaic module, the heated hot water is supplied to a heating device or a hot water supply device to convert solar energy into thermal energy, thereby total energy.
- the effect that the conversion efficiency can be improved significantly is obtained.
- a photovoltaic module is manufactured by linearly arranging a plurality of condensing photovoltaic cells, thereby using a lens or dish-shaped light collector. The effect that cooling of a photovoltaic module can be performed easily compared with the energy converter which focuses sunlight is obtained.
- the PCB is made of a metallic material with excellent thermal conductivity, or a condensed photovoltaic cell is formed by forming a cut hole so that a part of the cooler is inserted into the PCB of the synthetic resin material By directly contacting with the cooler, the effect of improving the cooling performance and the heat transfer efficiency of the photovoltaic module is obtained.
- the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention as a result of the use of a condensed photovoltaic cell with less damage due to temperature rise and a decrease in energy conversion efficiency compared to a general photovoltaic cell, By maintaining the temperature of hot water high, the effect can be applied effectively to a hot water supply facility and a heating apparatus, and the thermal energy conversion efficiency can be improved.
- FIG. 1 is a block diagram of a solar energy converter to which a photovoltaic module cooling device is applied according to a preferred embodiment of the present invention
- FIG. 2 is a perspective view of the solar energy converter shown in FIG.
- FIG. 3 and 4 is an exemplary view of a solar energy conversion device according to another embodiment of the present invention.
- FIG. 5 is an enlarged view of the photovoltaic module and heat exchanger illustrated in FIG. 2;
- FIG. 6 is a rear view of the photovoltaic module shown in FIG. 3,
- FIG. 7 and 8 are cross-sectional views of the heat pipe shown in FIG.
- FIGS. 9 and 10 are exemplary views showing a photovoltaic module cooling device applied to a solar energy conversion device according to another embodiment of the present invention.
- FIG. 1 is a block diagram of a solar energy converter to which a photovoltaic module cooling device is applied according to a preferred embodiment of the present invention
- FIG. 2 is a perspective view of the solar energy converter shown in FIG. 1.
- 3 and 4 is an exemplary view of a solar energy conversion device according to another embodiment of the present invention.
- FIG. 5 is an enlarged view of the photovoltaic module and heat exchanger illustrated in FIG. 2
- FIG. 6 is a rear view of the photovoltaic module illustrated in FIG. 5
- FIGS. 7 and 8 are cross-sectional views of the heat pipe illustrated in FIG. 5.
- the solar energy converter to which the photovoltaic module cooling device is applied may collect the solar light collected from the light collecting part 10 and the solar light collected from the light collecting part 10. And a heat exchanger 30 that cools the photovoltaic module 20 by recovering heat energy generated by the photovoltaic module 20 by performing heat exchange with the photovoltaic module 20 and the photovoltaic module 20 that convert the thermal energy.
- the light collecting unit 10 the upper surface is formed as a parabolic (parabolic)
- the light collector 11 for pre-condensing sunlight horizontal installation is installed on the top of the light collector 11
- a pair of vertical mounting members 13 which connect both ends of the member 12 and the condenser 11 and both ends of the horizontal mounting member 12, respectively.
- the light collector 11 is formed as a parabolic surface having a concave top surface to pre-collect the sunlight, and serves as a reflector in which the sunlight reflects toward a focal line corresponding to the center line of the virtual cylinder extending the parabolic surface.
- FIGS. 3 and 4 are exemplary views of a solar energy converter according to another embodiment of the present invention.
- the present invention may be modified to point-collect using various types of lenses, such as a fresnel lens 14, or using a dish-shaped light collector. .
- a plurality of Fresnel lens 14 is arranged in series and in parallel, as shown in Figure 3, the photovoltaic module 20 and the heat exchanger 30 also channel corresponding to each row of the Fresnel lens 14 It may be provided.
- the present invention can minimize the installation area of the light collecting unit by focusing sunlight using a plurality of Fresnel lenses.
- the present invention is cheaper than the case of the point condensing using the principle of convex lens or concave mirror or using a dish-shaped light collector, and the parabolic surface to facilitate cooling of the photovoltaic module. It is preferable to precondens sunlight with this formed cylindrical condenser.
- the photovoltaic module 20 is installed under the horizontal mounting member 12 to absorb solar light precondensed by the parabolic surface of the light collector 11 to produce electric and thermal energy. do.
- the photovoltaic module 20 is a printing in which a plurality of condensed photovoltaic cells 21 and a plurality of condensed photovoltaic cells 21 are arranged linearly on a center line of a virtual cylinder precondensed by the condenser 11.
- a printed circuit board (hereinafter, referred to as a PCB) 22 is included.
- a typical photovoltaic cell only absorbs energy for some wavelength range of solar energy delivered in the form of wavelengths.
- the condensed photovoltaic cell 21 absorbs sunlight in a wider wavelength range than a general photovoltaic cell and converts it into electrical and thermal energy, and transfers thermal energy to the heat exchanger 30.
- the light collecting type photovoltaic cell 21 is composed of three or more layers, and a general photovoltaic cell composed of one layer may absorb sunlight in a wavelength range in which energy is not absorbed and convert it into electrical energy.
- the condensed photovoltaic cell 21 can exhibit about 40% electrical conversion efficiency, nearly three times that of a general photovoltaic cell.
- the energy conversion efficiency of the condensed photovoltaic cell 21 is increased by only about 8 to 10% when the temperature is increased by 100 ° C.
- the reduction rate of the energy conversion efficiency due to the temperature increase of the photovoltaic module 20 is very small compared to the general photovoltaic cell. have.
- the present invention can improve the energy conversion efficiency by precondensing sunlight using a light collector and converting the precondensed sunlight into electricity and thermal energy using a condensed photovoltaic cell.
- the PCB 22 serves to electrically connect the plurality of condensed photovoltaic cells 21 arranged in a linear manner.
- the PCB 22 may effectively transfer heat generated from the plurality of light-collecting photovoltaic cells 21 mounted on one surface of the PCB 22 to the heat exchanger 30 coupled to the other surface of the PCB 22.
- the material may be made of metal, such as aluminum or aluminum alloy, which has excellent thermal conductivity.
- an incision hole 23 may be formed by cutting all or a part corresponding to the rear surface of each condensing photovoltaic cell 21 so that heat transfer can be easily performed.
- the insertion hole formed in one surface of the heat pipe 31 of the heat exchanger 30 to be described below is inserted into the cutout 23.
- the present invention when using a PCB made of synthetic resin material, by making a cut-out hole in the portion that does not affect the configuration of the electrical circuit on the PCB by directly contacting the condensing photovoltaic cell and the cooler, cooling performance and thermal energy of the condensing photovoltaic cell It can improve the transmission efficiency.
- the heat exchanger 30 is connected to one side of the heat pipe 31 and the heat pipe 31 installed on the upper portion of the photovoltaic module 20 to transfer heat transferred from the photovoltaic module 20. It includes a heat exchanger (32) for discharging, a supply line (33) for supplying cooling water into the heat exchanger (32) and a discharge line (34) for discharging the heated hot water by performing heat exchange in the heat exchanger (32).
- the heat pipe 31 is made of a metal material having high thermal conductivity so as to receive heat energy from the photovoltaic module 20.
- the heat pipe 31 is provided with a channel (311) is filled with a working fluid in the internal space, as shown in Figure 7 and 8, the working fluid using a capillary force inside the channel 311
- a wick structure 312 is provided for circulating the wick structure.
- the heat pipe 31 is provided with a channel 311 having an external shape having a square or circle shape to facilitate thermal contact with one surface of the PCB 22 of the photovoltaic module 20, and inside the channel 311.
- a wick structure 312 of a screen, groove or sintered metal type having a cross section formed into a rectangular ring or annular ring shape may be provided to provide a passage through which the working fluid moves.
- a vapor channel may be provided in the inner space of the wick structure 312 in which steam of the working fluid is filled.
- the present invention provides a channel filled with a working fluid therein, and heat can be effectively transferred to the heat exchanger using a heat pipe provided with a wick structure for circulating the working fluid using capillary force inside the channel.
- the lower surface of the heat pipe 31 may be formed in a shape corresponding to the incision hole 23 of the PCB 22 made of a synthetic resin material to be inserted into the insertion hole (not shown) inserted into the incision hole 23 may be formed. have.
- the heat pipe 31 is preferably made as large as possible the thermal contact area so that heat transfer with the photovoltaic module can be easily performed.
- the heat exchanger 32 serves to transfer the heat energy transferred through the heat pipe 31 to the coolant.
- the heat exchanger 32 is provided with a plurality of heat dissipation fins 321 to maximize the contact area with the coolant.
- the supply line 33 is connected to a cooling water tank or a cooling water supply pipe (not shown) to supply cooling water to the heat exchanger 32.
- the discharge line 34 is connected to various equipments such as a heating device or a hot water supply device using hot water, such as a heating device or a hot water supply pipe (not shown), or connected to a heat storage tank that stores thermal energy, which is converted by the photovoltaic module 20. It can effectively recover and utilize thermal energy.
- a heating device or a hot water supply device using hot water such as a heating device or a hot water supply pipe (not shown)
- a heat storage tank that stores thermal energy, which is converted by the photovoltaic module 20. It can effectively recover and utilize thermal energy.
- the present invention facilitates cooling of the photovoltaic module by using a heat pipe and a heat exchanger installed in the photovoltaic module by condensing sunlight using a light collector having a parabolic reflecting surface and a photovoltaic module formed in a linear shape.
- a light collector having a parabolic reflecting surface and a photovoltaic module formed in a linear shape.
- the present invention converts solar energy into electrical energy and thermal energy using a photovoltaic module, and supplies the heated hot water by heat exchange with the photovoltaic module, thereby increasing energy utilization.
- the present invention by adjusting the flow rate supplied to the heat exchanger based on the temperature of the photovoltaic module to maintain the temperature of the photovoltaic module in a predetermined temperature range, and at the same time to increase the temperature of the hot water discharged from the heat exchanger compared to the general photovoltaic application
- the thermal energy conversion efficiency can be improved.
- the vertical mounting members 13 are respectively installed on upper and lower ends of the light collector 11 having an upper surface formed as a parabolic surface, and each vertical mounting member 13 is installed. Coupling the horizontal installation member 12 between the upper end.
- a photovoltaic module 20 in which a plurality of light collecting photovoltaic cells 21 is linearly arranged is installed below the horizontal mounting member 12.
- the light collector 11 is preferably installed inclined with the ground so that the parabolic surface facing the sun.
- the horizontal mounting member 12 is removed and the photovoltaic module 20 is directly installed between the pair of vertical mounting members 13. Can be.
- a heat hype 31 is installed on the photovoltaic module 20, and a heat exchanger 32 is connected to one side of the heat pipe 31.
- the assembled solar energy conversion device as described above may be installed on the top of the solar tracking device (not shown in the figure) to rotate the movement according to the tracked position of the sun to continuously absorb the sunlight. .
- the light collecting body 11 When sunlight is incident on the parabolic surface formed on the upper surface of the light collecting body 11, the light collecting body 11 reflects the sun light toward the centerline of the virtual cylinder including the parabolic surface and condenses the light.
- the plurality of condensed photovoltaic cells 21 arranged linearly in the photovoltaic module 20 absorb precondensed sunlight and convert them into electrical and thermal energy.
- the working fluid filled in the heat pipe 31 transfers heat energy generated from the photovoltaic module 20 to the heat exchanger 32, and the heat exchanger 32 exchanges heat with the coolant supplied through the supply line 33. Do this.
- the photovoltaic module 20 maintains a preset temperature range, for example, about 45 to 120 ° C., and the discharge line 33 delivers hot water heated in the heat exchanger 32 to a heating device or a hot water supply device.
- the solar energy converter to which the photovoltaic module cooling device according to the preferred embodiment of the present invention is applied has an improved energy conversion efficiency as compared with the case of using a conventional photovoltaic cell.
- a typical photovoltaic cell installed on a vertical surface of 1 m 2 will produce about 150 W of electricity as it has an electrical conversion efficiency of up to 15%. Can be.
- the solar energy conversion device by installing a light collecting photovoltaic cell having an electrical conversion efficiency of up to 40%, the light condensing to about 400 times using a light collector corresponding to 1/400 of 1m2
- a condensed photovoltaic cell of 25 cm 2, ie, 5 cm in width and length, can be installed to produce about 400 W of electricity.
- the present invention can improve the electricity production by about 2.67 times while reducing the area of the photovoltaic cell to 1/400.
- the present invention can produce about 1,067 times the electricity of a conventional photovoltaic cell using a focusing photovoltaic cell based on the same cell area.
- the present invention may improve efficiency by utilizing solar energy by supplying heated hot water to a heating device or a hot water device by performing heat exchange with a photovoltaic module.
- the present invention is able to perform a normal function even at 45 ⁇ 120 °C temperature higher than the conventional photovoltaic cell by using a condensed photovoltaic cell is advantageous to provide a hot water supply function by supplying hot water at 35 °C or more.
- the present invention can condense sunlight by using a light-collecting body having a parabolic surface, and convert solar energy by using a condensed photovoltaic cell to produce electric and thermal energy in combination.
- the present invention can be effectively used to recover the thermal energy generated in the photovoltaic module while maintaining the photovoltaic module in a preset temperature range using a photovoltaic module cooling device.
- the photovoltaic module is cooled by using a heat exchanger, and the thermal energy generated by the photovoltaic module is recovered and utilized.
- the present invention is not limited thereto.
- FIG. 9 and FIG. 10 are exemplary views showing a photovoltaic module cooling apparatus applied to a solar energy converter according to another embodiment of the present invention.
- the heat exchanger 32 when it is not necessary to recover the thermal energy generated in the photovoltaic module 20, the heat exchanger 32 is used. ) May be removed, and the heat dissipation fin 321 may be directly installed on one side of the heat pipe 31 to perform heat exchange with external air, thereby cooling the photovoltaic module 20.
- the present invention when the heat pipe provided in the heat exchange unit 30 using a heat pipe 35 having a circular cross section, between the photovoltaic module 20 and the heat pipe 35 It can be changed to install a transmission member 36 having a rectangular cross section in the.
- the transmission member 36 is manufactured in the shape of a rod using a metal material having excellent thermal conductivity, such as aluminum or copper, so as to smoothly receive thermal energy from the photovoltaic module 20.
- heat energy generated in the photovoltaic module can be smoothly transferred to the heat pipe using the transfer member.
- the present invention improves energy conversion efficiency by converting solar energy into electricity and heat energy by using a heat exchanger including a photovoltaic module in which a parabolic condenser and a plurality of light collecting photovoltaic cells are linearly arranged, and a heat pipe and a heat exchanger. It is applied to the technique.
- the present invention can be applied to various fields such as green homes, general houses, group residential facilities, public facilities, industrial renewable energy systems, airport facilities, port facilities, and space generators.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
본 발명은 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 관한 것으로, 더욱 상세하게는 태양에너지의 일부를 전기에너지만으로 변환하거나, 태양에너지를 전기 및 열 에너지와 같이 복합 에너지로 변환하는 광전지 모듈을 냉각하고 광전지 모듈에서 발생한 열에너지를 회수하여 활용하는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 관한 것이다.The present invention relates to a photovoltaic module cooling device applied to a solar energy converter, and more particularly, to a photovoltaic module for converting a part of solar energy into electric energy only, or converting solar energy into complex energy such as electricity and heat energy. The present invention relates to a photovoltaic module cooling device applied to a solar energy converter that cools and recovers and utilizes thermal energy generated from a photovoltaic module.
화석연료가 점차 고갈되고, 화석연료 사용으로 인한 환경오염을 방지하기 위해 화석연료를 대체할 수 있는 대체 에너지 기술에 대한 연구 및 개발이 활발하게 진행되고 있다. Fossil fuels are gradually depleted, and research and development of alternative energy technologies that can replace fossil fuels to prevent environmental pollution caused by the use of fossil fuels are being actively conducted.
대체 에너지 중에서 태양에너지는 태양으로부터 지속적으로 공급받을 수 있고, 환경오염물질을 발생시키지 않아 이상적인 대체 에너지라 할 수 있다.Among alternative energy, solar energy can be continuously supplied from the sun and it is an ideal alternative energy because it does not generate environmental pollutants.
이와 같은 태양에너지의 활용에 대한 기술은 크게 태양광 이용 형태와 태양열 이용 형태로 구분될 수 있다. The technology for the use of such solar energy can be largely divided into a solar light utilization form and a solar heat use form.
종래의 태양광 발전 시스템은 전기에너지만을 생산하는 것을 목적으로 함에 따라 결정질계 및 박막계 실리콘과 유기재료 광전지(Photovoltaic cell)를 사용하고 있다. Conventional photovoltaic systems use crystalline and thin film silicon and organic material photovoltaic cells for the purpose of producing only electrical energy.
이러한 태양광 발전 시스템은 전기 변환 효율이 12~15% 정도로 입열되는 총 태양에너지를 100으로 했을 때 최대 15 만큼의 에너지를 전기에너지로 변환한다. Such a solar power system converts up to 15 energy into electric energy when the total solar energy input to heat conversion efficiency of 12 to 15% is 100.
따라서, 종래기술에 따른 태양광 발전 시스템은 전기 변환 효율이 매우 낮고, 온도가 40℃ 이상으로 상승하면 전기 변화 효율이 급격히 감소하여 80℃ 이상에서는 내부 반도체와 구조 자체의 고장 발생 가능성이 크게 상승하는 문제점이 있었다. Therefore, the photovoltaic power generation system according to the prior art has a very low electrical conversion efficiency, and when the temperature rises above 40 ° C, the electrical change efficiency decreases rapidly, and above 80 ° C, the possibility of failure of the internal semiconductor and the structure itself is greatly increased. There was a problem.
그리고 종래의 태양열 이용 온수 급탕 및 발전 시스템은 하절기 잉여 집열로 인한 폐해가 있었다.In addition, the conventional solar hot water hot water supply and power generation system has been harmed by surplus heat collection in summer.
최근에는 태양광과 태양열을 동시에 이용하는 태양에너지를 이용해 전기 및 열 에너지로 변환하는 복합 이용 기술이 개발되고 있다. In recent years, a complex utilization technology has been developed for converting solar and solar energy into electricity and heat energy simultaneously.
이러한 태양에너지 복합 이용기술이 대한민국 특허 공개번호 제10-2004-0081816호(2004년 9월 23일 공개, 이하 '특허문헌 1'이라 함), 대한민국 특허 등록번호 제10-0941926호(2010년 2월 11일 공고, 이하 '특허문헌 2'라 함) 등에 개시되어 있다.Such solar energy use technology is disclosed in Republic of Korea Patent Publication No. 10-2004-0081816 (published September 23, 2004, hereinafter referred to as 'Patent Document 1'), Republic of Korea Patent Registration No. 10-0941926 (2010 2 It is disclosed on May 11, and hereinafter referred to as "Patent Document 2".
한편, 최근에는 종래의 태양광 발전 시스템에 적용되는 광전지에 비해 효율이 높아 집광환경에 유리한 다중접합형(Multi-junction type) 광전지(MJPV 또는 집광형(Concentrated) 광전지(CPV), MJCPV라 함, 이하 '집광형 광전지'라 통칭함)가 개발되고 있다.Recently, multi-junction type photovoltaic cells (MJPV or Concentrated photovoltaic cells (CPV), MJCPV, etc.), which are more efficient than photovoltaic cells applied to conventional solar power generation systems and are advantageous for a condensing environment, Hereafter collectively referred to as a 'condensed photovoltaic cell'.
상기 집광형 광전지는 태양광의 밀도를 높이기 위해 서로 다른 특성의 전지를 중첩해서 설치한다. The light converging photovoltaic cell is installed by overlapping cells having different characteristics in order to increase the density of sunlight.
이러한 집광형 광전지 기술은 미국 특허 공개번호 2008-0251122호(2010년 10월 16일 공개, 대한민국 특허 등록번호 제10-0983232호(2010년 9월 20일 공고), 이하 '특허문헌 3'이라 함) 등에 개시되어 있다. Such condensed photovoltaic technology is disclosed in US Patent Publication No. 2008-0251122 (published October 16, 2010, Korean Patent Registration No. 10-0983232 (published September 20, 2010), hereinafter referred to as 'Patent Document 3'. And the like.
즉, 집광형 광전지는 태양에너지로부터 전기에너지와 열에너지를 동시에 생산할 수 있어 최대 40% 정도의 전기변환효율을 갖는다.That is, the condensed photovoltaic cell can produce electrical energy and thermal energy at the same time from the solar energy has an electrical conversion efficiency of up to 40%.
하지만, 특허문헌 1 및 특허문헌 2를 포함하는 종래의 복합 에너지 생산기술에 특허문헌 3에 기재된 집광형 광전지를 적용하는 기술의 연구 및 개발작업은 아직까지 미진한 상태이다.However, the research and development work of the technology which applies the condensed photovoltaic cell of patent document 3 to the conventional composite energy production technology containing patent document 1 and patent document 2 is still in the incomplete state.
따라서, 태양에너지로부터 전기 및 열에너지를 생산하는 복합 에너지 장치에 집광형 광전지를 적용하여 태양에너지의 에너지 변환 효율을 향상시키는 기술의 개발이 필요한 실정이다.Therefore, it is necessary to develop a technology for improving energy conversion efficiency of solar energy by applying a condensed photovoltaic cell to a complex energy device that produces electricity and thermal energy from solar energy.
특히, 집광형 광전지를 효과적으로 냉각하고 집광형 광전지에서 발생하는 열에너지를 회수하여 활용할 수 있는 방안이 필요하다.In particular, there is a need for a method of effectively cooling the condensed photovoltaic cell and recovering and utilizing thermal energy generated from the condensed photovoltaic cell.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 태양에너지로부터 전기 및 열에너지를 복합적으로 생산할 수 있는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 제공하는 것이다.The present invention is to solve the problems as described above, an object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can produce a combination of electrical and thermal energy from solar energy.
본 발명의 다른 목적은 태양에너지를 전기 및 열에너지로 변환하는 에너지 변환 효율을 향상시킬 수 있는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 제공하는 것이다.Another object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can improve the energy conversion efficiency of converting solar energy into electricity and heat energy.
본 발명의 또 다른 목적은 광전지 모듈을 효과적으로 냉각하고 광전지 모듈에서 발생하는 열에너지를 회수하여 활용할 수 있는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 제공하는 것이다.Still another object of the present invention is to provide a photovoltaic module cooling device applied to a solar energy converter that can effectively cool a photovoltaic module and recover and utilize thermal energy generated from the photovoltaic module.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 태양광을 집광하는 집광부, 상기 집광부에서 집광된 태양광을 전기 및 열에너지로 변환하는 광전지 모듈 및 상기 광전지 모듈과 열교환을 수행하여 광전지 모듈을 냉각하고 광전지 모듈에서 발생하는 열에너지를 회수하는 열교환부를 포함하는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 있어서, 상기 열교환부는 상기 광전지 모듈에 접하여 설치되는 히트파이프, 상기 히트파이프의 일측에 연결되어 상기 광전지 모듈에서 전달되는 열을 방출하는 열교환기, 상기 열교환기 내부로 냉각수를 공급하는 공급라인 및 상기 열교환기에서 열교환을 수행하여 가열된 온수를 배출하는 배출라인을 포함한다.According to a feature of the present invention for achieving the object as described above, the present invention is a light collecting unit for collecting solar light, a photovoltaic module for converting the solar light collected by the light collecting unit into electrical and thermal energy and heat exchange with the photovoltaic module A photovoltaic module cooling apparatus applied to a solar energy conversion apparatus including a heat exchanger for cooling a photovoltaic module and recovering thermal energy generated by the photovoltaic module, wherein the heat exchanger is provided in contact with the photovoltaic module, and includes a heat pipe and the heat. A heat exchanger connected to one side of a pipe to discharge heat transferred from the photovoltaic module, a supply line for supplying cooling water into the heat exchanger, and a discharge line for discharging hot water heated by performing heat exchange in the heat exchanger .
상기 히트파이프에는 내부공간에 작동유체가 충진되는 채널(channel)이 마련되고, 상기 채널 내부에는 모세관력을 이용해 작동유체를 순환시키는 윅 구조물이 구비되는 것을 특징으로 한다.The heat pipe is provided with a channel (channel) in which a working fluid is filled in an inner space, and a wick structure for circulating the working fluid using a capillary force is provided in the channel.
상기 채널은 상기 광전지 모듈의 인쇄회로기판 일면과 열접촉이 용이하도록 외형이 사각 형상으로 형성되고, 상기 윅 구조물은 작동유체가 이동하는 통로를 마련하도록 단면이 사각 링 또는 환형 링 형상으로 형성되는 스크린(screen), 그루브(groove) 또는 소결금속(sintered metal) 타입으로 마련되는 것을 특징으로 하는 한다.The channel is formed in a rectangular shape to facilitate thermal contact with one surface of the printed circuit board of the photovoltaic module, and the wick structure is formed in a rectangular ring or annular ring shape in cross section to provide a passage through which the working fluid moves. It is characterized in that it is provided in (screen), groove (groove) or sintered metal (sintered metal) type.
상기 열교환기의 내부에는 냉각수와 열교환하는 면적을 넓히도록 다수의 방열핀이 구비되는 것을 특징으로 한다.The heat exchanger is characterized in that a plurality of heat radiation fins are provided to widen the area for heat exchange with the cooling water.
상기 배출라인은 상기 냉각기에서 배출되는 온수를 이용해 급탕 또는 난방을 수행하도록 급탕장치나 난방장치와 연결되거나 열에너지를 저장하는 축열조와 연결되는 것을 특징으로 한다.The discharge line may be connected to a hot water supply device or a heating device or a heat storage tank for storing thermal energy to perform hot water supply or heating using hot water discharged from the cooler.
상기 집광부는 상면이 포물면(parabolic)으로 형성되어 태양광을 선집광하는 집광체를 포함하고, 상기 광전지 모듈은 상기 집광체에 의해 선집광된 태양광을 전기 및 열에너지로 변환하도록 상기 포물면을 연장한 가상 원통의 중심선 상에 선형으로 배열된 복수의 집광형 광전지 및 일면에 상기 복수의 집광형 광전지가 장착되는 인쇄회로기판을 포함하며, 상기 인쇄회로기판은 상기 복수의 집광형 광전지와 히트파이프 사이에서 열교환이 원활하게 수행되도록 열전도성을 갖는 금속 재질로 제작되는 것을 특징으로 한다.The light collecting part may include a light collecting body configured to parabolic an upper surface to condense sunlight, and the photovoltaic module may extend the parabolic surface to convert the light collected by the light collecting body into electricity and thermal energy. And a plurality of condensed photovoltaic cells arranged linearly on a center line of the virtual cylinder and a plurality of condensed photovoltaic cells mounted on one surface thereof, wherein the printed circuit board is disposed between the plurality of condensed photovoltaic cells and the heat pipe. Characterized by being made of a metal material having a thermal conductivity so that heat exchange is performed smoothly.
상기 집광부는 렌즈 또는 거울의 원리를 이용해 태양광을 점집광하는 복수의 집광부재를 포함하고, 상기 광전지 모듈은 상기 집광부재에 의해 점집광된 태양광을 전기 및 열에너지로 변환하는 복수의 집광형 광전지 및 일면에 상기 복수의 집광형 광전지가 장착되는 인쇄회로기판을 포함하는 것을 특징으로 한다.The light collecting unit includes a plurality of light collecting members that point-concentrate sunlight using a principle of a lens or a mirror, and the photovoltaic module includes a plurality of light-collecting photovoltaic cells that convert the light concentrated by the light-converging member into electric and thermal energy. And a printed circuit board on which one surface of the plurality of light collecting photovoltaic cells is mounted.
상기 집광부재는 프레넬 렌즈인 것을 특징으로 한다.The light collecting member may be a fresnel lens.
본 발명의 다른 특징에 따르면, 본 발명은 태양광을 집광하는 집광부, 상기 집광부에서 집광된 태양광을 전기 및 열에너지로 변환하는 광전지 모듈 및 상기 광전지 모듈과 열교환을 수행하여 광전지 모듈을 냉각하고 광전지 모듈에서 발생하는 열에너지를 회수하는 열교환부를 포함하는 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 있어서, 상기 열교환부는 상기 광전지 모듈에 접하여 설치되는 히트파이프 및 상기 히트파이프의 일측에 연결되어 상기 광전지 모듈에서 전달되는 열을 외부의 공기와 열교환을 수행하여 방출하는 방열핀을 포함한다.According to another feature of the present invention, the present invention provides a light collecting unit for collecting solar light, a photovoltaic module for converting the solar light collected by the light collecting unit into electricity and thermal energy and performing a heat exchange with the photovoltaic module to cool the photovoltaic module A photovoltaic module cooling apparatus applied to a solar energy converter including a heat exchanger for recovering heat energy generated by a photovoltaic module, wherein the heat exchanger is connected to a heat pipe installed in contact with the photovoltaic module and one side of the heat pipe. It includes a heat radiation fin for dissipating heat transferred from the module by performing heat exchange with the outside air.
상술한 바와 같이, 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 포물면이 형성된 집광체를 이용해 태양광을 선집광하고, 집광형 광전지를 이용해서 태양에너지를 변환해서 전기 및 열에너지를 복합적으로 생산할 수 있다는 효과가 얻어진다. As described above, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, the solar light is collected by using a condenser having a parabolic surface, and the solar energy is converted by using a condensed photovoltaic cell to convert electricity and The effect of producing multiple thermal energy is obtained.
특히, 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 히트파이프의 일측에 열교환기를 설치해서 광전지 모듈을 미리 설정된 온도 범위를 유지하도록 냉각할 수 있다는 효과가 얻어진다. In particular, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, an effect that the photovoltaic module can be cooled to maintain a predetermined temperature range by installing a heat exchanger on one side of the heat pipe.
그리고 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 열교환기에 냉각수를 공급하고, 열교환기와 열교환을 수행하는 과정에서 가열된 온수를 이용함으로써, 광전지 모듈에서 발생하는 열에너지를 효과적으로 회수하여 활용할 수도 있다는 효과가 얻어진다. And according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, by supplying the cooling water to the heat exchanger, using the heated hot water in the process of heat exchange with the heat exchanger, the heat energy generated in the photovoltaic module effectively recovered The effect can be obtained by using.
또한 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 내부공간에 작동유체가 충진되는 채널을 마련하고, 채널 내부에 모세관력을 이용해 작동유체를 순환시키는 윅 구조물이 마련된 히트파이프를 이용해서 광전지 모듈에서 발생한 열을 효과적으로 열교환기로 전달할 수 있다는 효과가 얻어진다.In addition, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, a heat pipe having a wick structure for providing a channel filled with a working fluid in the inner space and circulating the working fluid using capillary force inside the channel is provided. The effect that can effectively transfer the heat generated in the photovoltaic module to the heat exchanger is obtained.
이에 따라, 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 광전지 모듈과 열교환을 수행하여 가열된 온수를 난방장치나 급탕장치로 공급하여 태양에너지를 열에너지로 변환함으로써, 전체 에너지 변환 효율을 현저하게 향상시킬 수도 있다는 효과가 얻어진다. Accordingly, according to the photovoltaic module cooling device applied to the solar energy conversion device according to the present invention, by performing heat exchange with the photovoltaic module, the heated hot water is supplied to a heating device or a hot water supply device to convert solar energy into thermal energy, thereby total energy. The effect that the conversion efficiency can be improved significantly is obtained.
특히, 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 복수의 집광형 광전지를 선형으로 배열해서 광전지 모듈을 제작함에 따라, 렌즈 또는 접시(dish) 형상의 집광체를 이용해서 태양광을 점집광하는 에너지 변환장치에 비해 광전지 모듈의 냉각을 용이하게 수행할 수 있다는 효과가 얻어진다. Particularly, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, a photovoltaic module is manufactured by linearly arranging a plurality of condensing photovoltaic cells, thereby using a lens or dish-shaped light collector. The effect that cooling of a photovoltaic module can be performed easily compared with the energy converter which focuses sunlight is obtained.
또 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, PCB를 열전도성이 우수한 금속 재질로 제작하거나, 합성수지 재질의 PCB에 냉각기의 일부가 삽입되도록 절개공을 형성하여 집광형 광전지와 냉각기를 직접 접촉시킴으로써, 광전지 모듈의 냉각 성능 및 열전달 효율을 향상시킬 수 있다는 효과가 얻어진다.In addition, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, the PCB is made of a metallic material with excellent thermal conductivity, or a condensed photovoltaic cell is formed by forming a cut hole so that a part of the cooler is inserted into the PCB of the synthetic resin material By directly contacting with the cooler, the effect of improving the cooling performance and the heat transfer efficiency of the photovoltaic module is obtained.
또한 본 발명에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치에 의하면, 일반적인 광전지에 비해 온도 상승으로 인한 손상 및 에너지 변환 효율저하가 적은 집광형 광전지를 이용함에 따라, 광전지 모듈 및 냉각기로부터 배출되는 온수의 온도를 높게 유지함으로써, 급탕시설이나 난방장치에 효과적으로 적용할 수 있고, 열에너지 변환 효율을 향상시킬 수 있다는 효과가 얻어진다. In addition, according to the photovoltaic module cooling apparatus applied to the solar energy converter according to the present invention, as a result of the use of a condensed photovoltaic cell with less damage due to temperature rise and a decrease in energy conversion efficiency compared to a general photovoltaic cell, By maintaining the temperature of hot water high, the effect can be applied effectively to a hot water supply facility and a heating apparatus, and the thermal energy conversion efficiency can be improved.
도 1은 본 발명의 바람직한 실시 예에 따른 광전지 모듈 냉각장치가 적용된 태양에너지 변환장치의 블록 구성도, 1 is a block diagram of a solar energy converter to which a photovoltaic module cooling device is applied according to a preferred embodiment of the present invention;
도 2는 도 1에 도시된 태양에너지 변환장치의 사시도, 2 is a perspective view of the solar energy converter shown in FIG.
도 3 및 도 4는 본 발명의 다른 실시 예에 따른 태양에너지 변환장치의 예시도, 3 and 4 is an exemplary view of a solar energy conversion device according to another embodiment of the present invention,
도 5는 도 2에 도시된 광전지 모듈 및 열교환부의 확대도, 5 is an enlarged view of the photovoltaic module and heat exchanger illustrated in FIG. 2;
도 6은 도 3에 도시된 광전지 모듈의 후면, 6 is a rear view of the photovoltaic module shown in FIG. 3,
도 7 및 도 8은 도 5에 도시된 히트파이프의 단면도,7 and 8 are cross-sectional views of the heat pipe shown in FIG.
도 9 및 도 10은 본 발명의 또 다른 실시 예에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 보인 예시도.9 and 10 are exemplary views showing a photovoltaic module cooling device applied to a solar energy conversion device according to another embodiment of the present invention.
이하 본 발명의 바람직한 실시 예에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, a photovoltaic module cooling apparatus applied to a solar energy converter according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시 예에 따른 광전지 모듈 냉각장치가 적용된 태양에너지 변환장치의 블록 구성도이고, 도 2는 도 1에 도시된 태양에너지 변환장치의 사시도이다.FIG. 1 is a block diagram of a solar energy converter to which a photovoltaic module cooling device is applied according to a preferred embodiment of the present invention, and FIG. 2 is a perspective view of the solar energy converter shown in FIG. 1.
도 3 및 도 4는 본 발명의 다른 실시 예에 따른 태양에너지 변환장치의 예시도이다. 3 and 4 is an exemplary view of a solar energy conversion device according to another embodiment of the present invention.
도 5는 도 2에 도시된 광전지 모듈 및 열교환부의 확대도이며, 도 6은 도 5에 도시된 광전지 모듈의 후면이고, 도 7 및 도 8은 도 5에 도시된 히트파이프의 단면도이다.5 is an enlarged view of the photovoltaic module and heat exchanger illustrated in FIG. 2, FIG. 6 is a rear view of the photovoltaic module illustrated in FIG. 5, and FIGS. 7 and 8 are cross-sectional views of the heat pipe illustrated in FIG. 5.
본 발명의 바람직한 실시 예에 따른 광전지 모듈 냉각장치가 적용된 태양에너지 변환장치는 도 1에 도시된 바와 같이, 태양광을 집광하는 집광부(10), 집광부(10)에서 집광된 태양광을 전기 및 열에너지로 변환하는 광전지 모듈(20) 및 광전지 모듈(20)과 열교환을 수행하여 광전지 모듈(20)을 냉각하고 광전지 모듈(20)에서 발생하는 열에너지를 회수하는 열교환부(30)를 포함한다. As shown in FIG. 1, the solar energy converter to which the photovoltaic module cooling device is applied according to an exemplary embodiment of the present invention may collect the solar light collected from the
집광부(10)는 도 1 및 도 2에 도시된 바와 같이, 상면이 포물면(parabolic)으로 형성되어 태양광을 선집광하는 집광체(11), 집광체(11)의 상부에 설치되는 가로 설치부재(12) 및 집광체(11)의 양측단과 가로 설치부재(12)의 양단부를 각각 연결하는 한 쌍의 세로 설치부재(13)를 포함한다.1 and 2, the
집광체(11)는 태양광을 선집광하도록 상면이 오목한 포물면으로 형성되어 태양광이 포물면을 연장한 가상 원통의 중심선에 대응되는 초점선(focal line)을 향해 반사하는 반사체 역할을 한다. The
하지만, 본 발명은 반드시 이에 한정되는 것은 아니다. However, the present invention is not necessarily limited thereto.
예를 들어, 도 3 및 도 4는 본 발명의 다른 실시 예에 따른 태양에너지 변환장치의 예시도이다. For example, FIGS. 3 and 4 are exemplary views of a solar energy converter according to another embodiment of the present invention.
본 발명은 도 3 및 도 4에 도시된 바와 같이, 프레넬 렌즈(fresnel lens)(14)와 같이 다양한 형태의 렌즈를 이용하거나 접시(dish) 형상의 집광체를 이용해 점집광하도록 변경될 수도 있다. 3 and 4, the present invention may be modified to point-collect using various types of lenses, such as a
여기서, 프레넬 렌즈(14)는 도 3에 도시된 바와 같이, 직렬 및 병렬로 다수 개 배치되며, 광전지 모듈(20) 및 열교환부(30)도 프레넬 렌즈(14)의 각 열에 대응되는 수로 구비될 수 있다. Here, a plurality of
이에 따라, 본 발명은 다수의 프레넬 렌즈를 이용해 태양광을 점집광함으로써, 집광부의 설치 면적을 최소화할 수 있다. Accordingly, the present invention can minimize the installation area of the light collecting unit by focusing sunlight using a plurality of Fresnel lenses.
하지만, 본 발명은 볼록렌즈 또는 오목거울의 원리를 이용하거나 접시(dish) 형상의 집광체를 이용해서 점집광하는 경우에 비해 부품 단가가 저렴하고, 광전지 모듈의 냉각을 용이하게 수행할 수 있도록 포물면이 형성된 통 형상의 집광체를 이용해 태양광을 선집광하는 것이 바람직하다. However, the present invention is cheaper than the case of the point condensing using the principle of convex lens or concave mirror or using a dish-shaped light collector, and the parabolic surface to facilitate cooling of the photovoltaic module. It is preferable to precondens sunlight with this formed cylindrical condenser.
광전지 모듈(20)은 도 2 및 도 5에 도시된 바와 같이, 가로 설치부재(12)의 하부에 설치되어 집광체(11)의 포물면에 의해 선집광된 태양광을 흡수하여 전기 및 열에너지를 생산한다. As shown in FIGS. 2 and 5, the
이를 위해, 광전지 모듈(20)은 집광체(11)에 의해 선집광되는 가상 원통의 중심선 상에 선형으로 배열된 복수의 집광형 광전지(21) 및 복수의 집광형 광전지(21)가 장착되는 인쇄회로기판(Printed circuit board, 이하 'PCB'라 함)(22)을 포함한다. For this purpose, the
여기서, 일반적인 광전지는 파장 형태로 전달되는 태양에너지의 일부 파장범위에 대해서만 에너지를 흡수한다. Here, a typical photovoltaic cell only absorbs energy for some wavelength range of solar energy delivered in the form of wavelengths.
반면, 집광형 광전지(21)는 일반적인 광전지보다 넓은 파장 범위의 태양광을 흡수하여 전기 및 열에너지로 변환하며, 열교환부(30)로 열에너지를 전달한다.On the other hand, the condensed
실험결과에 따르면, 집광형 광전지(21)는 3중 이상의 층으로 구성되어 하나의 층으로 이루어진 일반적인 광전지가 에너지를 흡수하지 못하는 파장 범위의 태양광도 흡수하여 전기에너지로 변환할 수 있다. According to the test result, the light collecting type
이에 따라, 집광형 광전지(21)는 일반적인 광전지에 비해 3배에 가까운 약 40%의 전기 변환 효율을 발휘할 수 있다.Accordingly, the condensed
또 집광형 광전지(21)는 온도 100℃ 상승시 약 8~10% 만큼만 에너지 변환 효율이 저하됨에 따라 광전지 모듈(20)의 온도 상승으로 인한 에너지 변환효율의 저하율이 일반적인 광전지에 비해 매우 적은 특성이 있다. In addition, since the energy conversion efficiency of the condensed
이와 같이, 본 발명은 집광체를 이용해 태양광을 선집광하고, 집광형 광전지를 이용해 선집광된 태양광을 전기 및 열에너지로 변환하여 에너지 변환 효율을 향상시킬 수 있다.As described above, the present invention can improve the energy conversion efficiency by precondensing sunlight using a light collector and converting the precondensed sunlight into electricity and thermal energy using a condensed photovoltaic cell.
PCB(22)는 선형으로 배열된 복수의 집광형 광전지(21)를 전기적으로 연결하는 역할을 한다. The
이와 함께, PCB(22)는 PCB(22)의 일면에 장착된 복수의 집광형 광전지(21)에서 발생하는 열을 PCB(22)의 다른 일면에 결합되는 열교환부(30)에 효과적으로 전달할 수 있도록, 열전도 성능이 우수한 알루미늄 재질 또는 알루미늄 합금 재질과 같이 금속 재질로 제작될 수 있다. In addition, the
한편, 에폭시 수지나 유리 에폭시, 베이클라이트 수지, 페놀 수지와 같은 일반적인 합성수지 재질의 PCB를 사용하는 경우, PCB(22)에는 도 4에 도시된 바와 같이, 복수의 집광형 광전기(21)로부터 열교환부(30)로 용이하게 열전달이 될 수 있도록 각 집광형 광전지(21)의 후면에 대응되는 전체 또는 일부분을 절개해서 절개공(23)이 형성될 수 있다. On the other hand, when using a PCB made of a general synthetic resin material such as epoxy resin, glass epoxy, bakelite resin, phenol resin, as shown in Figure 4, the
여기서, 절개공(23)에는 아래에서 설명할 열교환부(30)의 히트파이프(31) 일면에 형성된 삽입돌부가 삽입된다.Here, the insertion hole formed in one surface of the
이와 같이, 본 발명은 합성수지 재질의 PCB를 사용하는 경우, PCB에 전기회로 구성에 영향을 주지 않은 부분에 절개공을 형성해서 집광형 광전지와 냉각기를 직접 접촉시킴으로써, 집광형 광전지의 냉각 성능 및 열에너지의 전달 효율을 향상시킬 수 있다. As described above, the present invention, when using a PCB made of synthetic resin material, by making a cut-out hole in the portion that does not affect the configuration of the electrical circuit on the PCB by directly contacting the condensing photovoltaic cell and the cooler, cooling performance and thermal energy of the condensing photovoltaic cell It can improve the transmission efficiency.
열교환부(30)는 도 5에 도시된 바와 같이, 광전지 모듈(20)의 상부에 설치되는 히트파이프(31), 히트파이프(31)의 일측에 연결되어 광전지 모듈(20)에서 전달되는 열을 방출하는 열교환기(32), 열교환기(32) 내부로 냉각수를 공급하는 공급라인(33) 및 열교환기(32)에서 열교환을 수행하여 가열된 온수를 배출하는 배출라인(34)을 포함한다. As shown in FIG. 5, the
히트파이프(31)는 광전지 모듈(20)로부터 열에너지를 전달받을 수 있도록 열전도성이 높은 금속 재질로 제작된다. The
여기서, 히트파이프(31)에는 도 7 및 도 8에 도시된 바와 같이, 내부공간에 작동유체가 충진되는 채널(channel)(311)이 마련되고, 채널(311) 내부에는 모세관력을 이용해 작동유체를 순환시키기 위한 윅 구조물(wick structure)(312)이 마련된다. Here, the
예를 들어, 히트파이프(31)에는 광전지 모듈(20)의 PCB(22) 일면과 열접촉이 용이하도록 외형이 사각 또는 원 형상을 형성되는 채널(311)이 마련되고, 채널(311) 내부에는 작동유체가 이동하는 통로를 마련하도록 단면이 사각 링 또는 환형 링 형상으로 형성되는 스크린(screen), 그루브(groove) 또는 소결금속(sintered metal) 타입의 윅 구조물(312)이 마련될 수 있다.For example, the
그리고 윅 구조물(312)의 내부 공간에는 작동유체의 증기가 채워지는 증기채널이 마련될 수 있다. In addition, a vapor channel may be provided in the inner space of the
이에 따라, 본 발명은 내부에 작동유체가 충진되는 채널을 마련하고, 채널 내부에 모세관력을 이용해 작동유체를 순환시키는 윅 구조물이 마련된 히트파이프를 이용해서 광전지 모듈에서 발생한 열을 효과적으로 열교환기로 전달할 수 있다.Accordingly, the present invention provides a channel filled with a working fluid therein, and heat can be effectively transferred to the heat exchanger using a heat pipe provided with a wick structure for circulating the working fluid using capillary force inside the channel. have.
이러한 히트파이프(31)의 하면에는 합성수지 재질로 제작된 PCB(22)의 절개공(23)에 대응되는 형상으로 형성되어 절개공(23)에 삽입되는 삽입돌부(도면 미도시)가 형성될 수 있다. The lower surface of the
특히, 히트파이프(31)는 광전지 모듈과의 열전달을 용이하게 수행할 수 있도록 열접촉 면적이 가능한 크게 제작되는 것이 바람직하다.In particular, the
열교환기(32)는 히트파이프(31)를 통해 전달되는 열에너지를 냉각수로 전달하는 역할을 한다.The
이를 위해, 열교환기(32) 내부에는 냉각수와의 접촉면적을 최대화하도록 다수의 방열핀(321)이 구비된다. To this end, the
공급라인(33)은 냉각수 탱크나 냉각수 공급파이프(도면 미도시)와 연결되어 열교환기(32)에 냉각수를 공급한다.The
배출라인(34)은 난방 장치나 온수 공급파이프(도면 미도시)와 같이 온수를 이용하는 난방장치나 급탕장치와 같은 각종 설비와 연결되거나 열에너지를 저장하는 축열조와 연결되어 광전지 모듈(20)에서 변환된 열에너지를 효과적으로 회수해서 활용할 수 있게 한다. The
이와 같이, 본 발명은 포물면 형상의 반사면을 갖는 집광체와 직선 형상으로 형성된 광전지 모듈을 이용하여 태양광을 선집광함에 따라 광전지 모듈에 설치된 히트파이프 및 열교환기를 이용해서 광전지 모듈을 용이하게 냉각할 수 있다.As described above, the present invention facilitates cooling of the photovoltaic module by using a heat pipe and a heat exchanger installed in the photovoltaic module by condensing sunlight using a light collector having a parabolic reflecting surface and a photovoltaic module formed in a linear shape. Can be.
그리고 본 발명은 광전지 모듈을 이용해 태양에너지를 전기에너지와 열에너지로 변환하고, 광전지 모듈과 열교환하여 가열된 온수를 공급하여 난방이나 온수로 사용함에 따라 에너지 활용도를 높일 수 있다. In addition, the present invention converts solar energy into electrical energy and thermal energy using a photovoltaic module, and supplies the heated hot water by heat exchange with the photovoltaic module, thereby increasing energy utilization.
또한 본 발명은 광전지 모듈의 온도에 기초하여 열교환기에 공급되는 유량을 조절해서 광전지 모듈의 온도를 미리 설정된 온도범위로 유지함과 동시에, 열교환기에서 배출되는 온수의 온도를 일반적인 광전지 적용시에 비해 높임으로써 열에너지 변환 효율을 향상시킬 수 있다. In addition, the present invention by adjusting the flow rate supplied to the heat exchanger based on the temperature of the photovoltaic module to maintain the temperature of the photovoltaic module in a predetermined temperature range, and at the same time to increase the temperature of the hot water discharged from the heat exchanger compared to the general photovoltaic application The thermal energy conversion efficiency can be improved.
다음, 본 발명의 바람직한 실시 예에 따른 태양에너지를 활용한 복합 에너지 변환장치의 결합관계를 상세하게 설명한다. Next, the coupling relationship of the complex energy converter using solar energy according to an embodiment of the present invention will be described in detail.
본 발명의 바람직한 실시 예에 따른 태양에너지를 활용한 복합 에너지 변환장치는 상면이 포물면으로 형성되는 집광체(11)의 상하단에 각각 세로 설치부재(13)를 설치하고, 각 세로 설치부재(13) 상단부 사이에 가로 설치부재(12)를 결합한다. In the composite energy conversion apparatus using solar energy according to the preferred embodiment of the present invention, the vertical mounting
그리고 가로 설치부재(12)의 하부에 복수의 집광형 광전지(21)가 선형으로 배열된 광전지 모듈(20)을 설치한다. A
이때, 집광체(11)는 포물면이 태양을 향하도록 지면과 경사지게 설치되는 것이 바람직하다.At this time, the
여기서, 본 발명은 광전지 모듈(20) 자체에 충분한 구조적 강도가 있는 경우, 가로 설치부재(12)를 제거하고, 한 쌍의 세로 설치부재(13) 사이에 광전지 모듈(20)을 직접 설치하도록 변경될 수 있다. Here, in the present invention, when the
이어서, 광전지 모듈(20)의 상부에 히트하이프(31)를 설치하고, 히트파이프(31)의 일측에는 열교환기(32)를 연결한다.Subsequently, a
그리고 열교환기(32)의 일측에 냉각수를 공급하는 공급라인(33)을 연결하며, 열교환기(32)의 타측에는 열교환기(32)와 열교환을 수행하는 과정에서 가열된 냉각수를 배출하는 배출라인(34)을 연결한다. And the
한편, 이와 같이 조립이 완료된 태양에너지 변환장치는 태양광을 지속적으로 흡수할 수 있도록 태양의 위치를 추적하여 추적된 위치에 따라 회전운동하는 태양추적장치(도면 미도시)의 상부에 설치될 수 있다. On the other hand, the assembled solar energy conversion device as described above may be installed on the top of the solar tracking device (not shown in the figure) to rotate the movement according to the tracked position of the sun to continuously absorb the sunlight. .
다음, 본 발명의 바람직한 실시 예에 따른 태양에너지 변환장치 및 그에 적용되는 광전지 모듈의 냉각장치의 작동방법을 상세하게 설명한다. Next, a method of operating a solar energy converter according to a preferred embodiment of the present invention and a cooling device of a photovoltaic module applied thereto will be described in detail.
집광체(11)의 상면에 형성된 포물면에 태양광이 입사되면, 집광체(11)는 포물면을 포함하는 가상 원통의 중심선을 향해 태양광을 반사하여 선집광한다. When sunlight is incident on the parabolic surface formed on the upper surface of the
그러면, 광전지 모듈(20)에 선형으로 배열된 복수의 집광형 광전지(21)는 선집광된 태양광을 흡수하여 전기 및 열에너지로 변환한다. Then, the plurality of condensed
그리고 히트파이프(31) 내부에 충진된 작동유체는 광전지 모듈(20)에서 발생하는 열에너지를 열교환기(32)로 전달하고, 열교환기(32)는 공급라인(33)을 통해 공급된 냉각수와 열교환을 수행한다. The working fluid filled in the
이에 따라, 광전지 모듈(20)은 미리 설정된 온도 범위, 예컨대 약 45 내지 120℃를 유지하게 되고, 배출라인(33)은 열교환기(32)에서 가열된 온수를 난방장치나 급탕장치로 전달한다. Accordingly, the
이와 같은 과정에서 본 발명의 바람직한 실시 예에 따른 광전지 모듈 냉각장치가 적용된 태양에너지 변환장치는 집광형 광전지를 사용함에 따라 일반적인 광전지를 사용하는 경우에 비해 향상된 에너지 변환 효율을 갖게 된다. In this process, the solar energy converter to which the photovoltaic module cooling device according to the preferred embodiment of the present invention is applied has an improved energy conversion efficiency as compared with the case of using a conventional photovoltaic cell.
예를 들어, 날씨가 맑은 상태에서 1㎡의 수직면에 입사되는 태양에너지가 1000W로 가정하면, 1㎡의 수직면에 설치된 일반적인 광전지는 최대 15%의 전기 변환 효율을 가짐에 따라 약 150W의 전기를 생산할 수 있다.For example, assuming that the solar energy incident on a vertical surface of 1 m 2 in sunny weather is 1000 W, a typical photovoltaic cell installed on a vertical surface of 1 m 2 will produce about 150 W of electricity as it has an electrical conversion efficiency of up to 15%. Can be.
반면, 본 발명의 바람직한 실시 예에 따른 태양에너지 변환장치는 최대 40%의 전기 변환 효율을 갖는 집광형 광전지를 설치함에 따라, 집광체를 이용해 약 400배로 집광해서 1㎡의 1/400에 해당하는 25㎠, 즉 가로 및 세로길이가 5㎝의 집광형 광전지를 설치해서 약 400W의 전기를 생산할 수 있다. On the other hand, according to the solar energy conversion device according to the preferred embodiment of the present invention by installing a light collecting photovoltaic cell having an electrical conversion efficiency of up to 40%, the light condensing to about 400 times using a light collector corresponding to 1/400 of 1㎡ A condensed photovoltaic cell of 25 cm 2, ie, 5 cm in width and length, can be installed to produce about 400 W of electricity.
즉, 본 발명은 광전지 셀의 면적을 1/400로 감소시킨 상태에서 전기 생산량을 약 2.67배 향상시킬 수 있다.That is, the present invention can improve the electricity production by about 2.67 times while reducing the area of the photovoltaic cell to 1/400.
또한 본 발명은 동일한 셀 면적을 기준으로 보면, 집광형 광전지를 사용해서 일반적인 광전지에 비해 약 1,067배의 전기를 생산할 수 있다. In addition, the present invention can produce about 1,067 times the electricity of a conventional photovoltaic cell using a focusing photovoltaic cell based on the same cell area.
그리고 본 발명은 광전지 모듈과 열교환을 수행하여 가열된 온수를 난방장치나 온수 장치에 공급하여 사용함에 따라 태양에너지를 활용한 효율성을 향상시킬 수 있다. In addition, the present invention may improve efficiency by utilizing solar energy by supplying heated hot water to a heating device or a hot water device by performing heat exchange with a photovoltaic module.
여기서, 본 발명은 집광형 광전지를 사용함에 따라 일반적인 광전지보다 높은 45~120℃ 온도에서도 정상적인 기능을 수행할 수 있어 주택에 35℃ 이상의 온수를 공급하여 급탕 기능을 제공하는데 유리하다. Here, the present invention is able to perform a normal function even at 45 ~ 120 ℃ temperature higher than the conventional photovoltaic cell by using a condensed photovoltaic cell is advantageous to provide a hot water supply function by supplying hot water at 35 ℃ or more.
상기한 바와 같은 과정을 통하여, 본 발명은 포물면이 형성된 집광체를 이용해 태양광을 선집광하고, 집광형 광전지를 이용해서 태양에너지를 변환해서 전기 및 열에너지를 복합적으로 생산할 수 있다. Through the above-described process, the present invention can condense sunlight by using a light-collecting body having a parabolic surface, and convert solar energy by using a condensed photovoltaic cell to produce electric and thermal energy in combination.
그리고 본 발명은 광전지 모듈 냉각장치를 이용해서 광전지 모듈을 미리 설정된 온도 범위로 유지함과 동시에, 광전지 모듈에서 발생하는 열에너지를 회수하여 효과적으로 활용할 수 있다. In addition, the present invention can be effectively used to recover the thermal energy generated in the photovoltaic module while maintaining the photovoltaic module in a preset temperature range using a photovoltaic module cooling device.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다. As mentioned above, although the invention made by the present inventor was demonstrated concretely according to the said Example, this invention is not limited to the said Example and can be variously changed in the range which does not deviate from the summary.
즉, 상기의 실시 예에서는 열교환부를 이용해서 광전지 모듈을 냉각하고, 광전지 모듈에서 발생하는 열에너지를 회수해서 활용하는 것으로 설명하였지만, 본 발명은 반드시 이에 한정되는 것은 아니다.That is, in the above-described embodiment, the photovoltaic module is cooled by using a heat exchanger, and the thermal energy generated by the photovoltaic module is recovered and utilized. However, the present invention is not limited thereto.
예를 들어, 도 9 및 도 10은 본 발명의 또 다른 실시 예에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치를 보인 예시도이다.For example, FIG. 9 and FIG. 10 are exemplary views showing a photovoltaic module cooling apparatus applied to a solar energy converter according to another embodiment of the present invention.
본 발명의 또 다른 실시 예에 따른 태양에너지 변환장치에 적용되는 광전지 모듈 냉각장치는 도 9에 도시된 바와 같이, 광전지 모듈(20)에서 발생하는 열에너지를 회수할 필요가 없는 경우, 열교환기(32)를 제거하고, 히트파이프(31)의 일측에 방열핀(321)을 직접 설치해서 외부 공기와 열교환을 수행함으로써, 광전지 모듈(20)을 냉각하도록 변경될 수도 있다. In the photovoltaic module cooling apparatus applied to the solar energy converter according to another embodiment of the present invention, as shown in FIG. 9, when it is not necessary to recover the thermal energy generated in the
또한 본 발명은 도 10에 도시된 바와 같이, 열교환부(30)에 마련되는 히트파이프를 단면이 원 형상인 히트파이프(35)를 사용하는 경우, 광전지 모듈(20)과 히트파이프(35) 사이에 단면이 사각 형상인 전달부재(36)를 설치하도록 변경될 수 있다. In addition, the present invention, as shown in Figure 10, when the heat pipe provided in the
여기서, 전달부재(36)는 광전지 모듈(20)로부터 열에너지를 원활하게 전달받을 수 있도록 알루미늄이나 구리와 같이 열전도성이 우수한 금속 재질을 이용해 막대 형상으로 제작된다. Here, the
이에 따라, 본 발명은 단면이 원 형상인 히트파이프를 사용하는 경우에도, 전달부재를 이용해서 광전지 모듈에서 발생하는 열에너지를 원활하게 히트파이프로 전달할 수 있다. Accordingly, in the present invention, even when a heat pipe having a circular cross section is used, heat energy generated in the photovoltaic module can be smoothly transferred to the heat pipe using the transfer member.
본 발명은 포물면이 형성된 집광체와 복수의 집광형 광전지가 선형으로 배열된 광전지 모듈 및 히트파이프와 열교환기를 구비하는 열교환부을 이용해서 태양에너지를 전기 및 열에너지로 복합적으로 변환함으로써, 에너지 변환효율을 향상시키는 기술에 적용된다.The present invention improves energy conversion efficiency by converting solar energy into electricity and heat energy by using a heat exchanger including a photovoltaic module in which a parabolic condenser and a plurality of light collecting photovoltaic cells are linearly arranged, and a heat pipe and a heat exchanger. It is applied to the technique.
이에 따라, 본 발명은 그린홈(green home)을 비롯한 일반 주택, 집단 주거시설, 공공시설 및 산업용 신재생에너지 시스템, 공항시설, 항만시설 및 우주 발전기지 등 다양한 분야에 적용될 수 있다. Accordingly, the present invention can be applied to various fields such as green homes, general houses, group residential facilities, public facilities, industrial renewable energy systems, airport facilities, port facilities, and space generators.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120071211A KR101237306B1 (en) | 2012-06-29 | 2012-06-29 | Concentrated photovoltaic cell module cooler for solar energy conversion apparatus |
KR10-2012-0071211 | 2012-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014003334A1 true WO2014003334A1 (en) | 2014-01-03 |
Family
ID=47900203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/005087 WO2014003334A1 (en) | 2012-06-29 | 2013-06-10 | Photovoltaic module cooling device applied to solar energy conversion apparatus |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101237306B1 (en) |
WO (1) | WO2014003334A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT516241A1 (en) * | 2014-09-04 | 2016-03-15 | Fronius Int Gmbh | Inverter for fluid heating |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107328119A (en) * | 2016-05-01 | 2017-11-07 | 黄建武 | Photovoltaic and photothermal integral device |
CN114428528A (en) * | 2021-12-22 | 2022-05-03 | 北京科诺伟业科技股份有限公司 | Polar region photovoltaic input temperature control circuit |
KR102558614B1 (en) * | 2022-02-24 | 2023-07-21 | 이동후 | Photovoltaic junction box with cooling device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050106164A (en) * | 2004-05-04 | 2005-11-09 | 부경대학교 산학협력단 | Hybrid solar energy apparatus using heat pipe and solar cell module |
KR20080023401A (en) * | 2006-09-11 | 2008-03-14 | 주식회사 일창프리시젼 | High Concentration Solar Cell Radiator |
KR20100073083A (en) * | 2008-12-22 | 2010-07-01 | 삼성전자주식회사 | Photohvoltaic-thermal hybrid apparatus |
KR20100108855A (en) * | 2009-03-30 | 2010-10-08 | 부산대학교 산학협력단 | Complex energy supply systems in solar cell and method of suppling complex energy using the systems |
-
2012
- 2012-06-29 KR KR1020120071211A patent/KR101237306B1/en not_active Expired - Fee Related
-
2013
- 2013-06-10 WO PCT/KR2013/005087 patent/WO2014003334A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050106164A (en) * | 2004-05-04 | 2005-11-09 | 부경대학교 산학협력단 | Hybrid solar energy apparatus using heat pipe and solar cell module |
KR20080023401A (en) * | 2006-09-11 | 2008-03-14 | 주식회사 일창프리시젼 | High Concentration Solar Cell Radiator |
KR20100073083A (en) * | 2008-12-22 | 2010-07-01 | 삼성전자주식회사 | Photohvoltaic-thermal hybrid apparatus |
KR20100108855A (en) * | 2009-03-30 | 2010-10-08 | 부산대학교 산학협력단 | Complex energy supply systems in solar cell and method of suppling complex energy using the systems |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT516241A1 (en) * | 2014-09-04 | 2016-03-15 | Fronius Int Gmbh | Inverter for fluid heating |
AT516241B1 (en) * | 2014-09-04 | 2019-10-15 | Fronius Int Gmbh | Inverter for fluid heating |
Also Published As
Publication number | Publication date |
---|---|
KR101237306B1 (en) | 2013-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100999513B1 (en) | Combined Cycle Power Plant Using Photovoltaic and Solar Heat | |
US20040055631A1 (en) | Hybrid solar energy collector | |
WO2010123210A4 (en) | Photovoltaic module with cooling device and manufacturing method of cooling device | |
KR100999955B1 (en) | Air-collecting Solar Power Generator | |
KR101955774B1 (en) | Apparatus for collecting solar heat with solar photovoltaic and solar heat collection | |
WO2014003334A1 (en) | Photovoltaic module cooling device applied to solar energy conversion apparatus | |
CN105162412A (en) | High-concentration photovoltaic power generation heating supply system | |
CN101644398A (en) | LED lighting device with quick energy storage and heat dissipation functions | |
CN108599720A (en) | A kind of solid matter CPV assembly radiating devices | |
RU2563551C2 (en) | Method and device of thermo-photoelectric converters with micron gap (mptv) of high degree with submicron gap | |
KR20220083351A (en) | Exterior panel module for construction | |
US20130206212A1 (en) | Optical system and method of use | |
CN105450173A (en) | Heat pipe type concentrating photovoltaic cooling heat-collecting apparatus | |
KR101221958B1 (en) | Hybrid energy conversion apparatus utilizing solar energy | |
CN104320074A (en) | Fresnel type concentrating photovoltaic photo-thermal component | |
US20100154865A1 (en) | Photovoltaic-thermal hybrid apparatus | |
WO2012076847A1 (en) | Solar energy apparatus with a combined photovoltaic and thermal power generation system | |
KR101001328B1 (en) | Combined Cycle Power Plant Using Solar Energy | |
CN205249143U (en) | Heat pipe formula spotlight photovoltaic cooling heating device | |
CN114883109B (en) | Photovoltaic combiner box dc-to-ac converter electric capacity heat sink | |
KR101211947B1 (en) | Electro-generation system with function for heating of water using solar cell and thermo-electric device | |
WO2014189172A1 (en) | Solar power generation system | |
WO2023216617A1 (en) | Light splitting, absorbing and heat collecting assembly, photovoltaic combined heat and power supply system, and electric energy storage system | |
WO2020149590A1 (en) | Composite power generation system using solar energy and hydrogen production system comprising same | |
US20130098428A1 (en) | Sunlight complex modules and apparatuses for using solar energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13810015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13810015 Country of ref document: EP Kind code of ref document: A1 |