WO2013189264A1 - 一种拉丝过程中光纤涂料温度自动控制的方法及装置 - Google Patents
一种拉丝过程中光纤涂料温度自动控制的方法及装置 Download PDFInfo
- Publication number
- WO2013189264A1 WO2013189264A1 PCT/CN2013/077327 CN2013077327W WO2013189264A1 WO 2013189264 A1 WO2013189264 A1 WO 2013189264A1 CN 2013077327 W CN2013077327 W CN 2013077327W WO 2013189264 A1 WO2013189264 A1 WO 2013189264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- coating
- heater
- fiber
- optical fiber
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000013307 optical fiber Substances 0.000 title claims abstract description 27
- 238000005491 wire drawing Methods 0.000 title claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 61
- 238000010438 heat treatment Methods 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 239000003973 paint Substances 0.000 claims description 9
- 238000005485 electric heating Methods 0.000 claims description 4
- 238000004886 process control Methods 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 abstract description 6
- 238000003754 machining Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012681 fiber drawing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
Definitions
- the invention relates to a method and a device for online temperature control of a fiber coating for a wet-on-wet coating process, and belongs to the technical field of optical fiber processing.
- the fiber coating layer is one of the two most important materials that make up the fiber. Its main functions include mechanical protection of the bare fiber, maintaining fiber strength, resisting environmental erosion, and maintaining and improving fiber bending performance. Therefore, the quality of fiber coating will directly affect the quality and performance of the fiber.
- the surface of the glass fiber is coated with two coating layers. The thickness and proportion distribution of the two coating layers will affect the performance of the fiber to a large extent, such as peeling force, microbending performance, environment. Test performance, etc. Therefore, the thickness and ratio of the two coating layers need to be controlled within a reasonable range.
- the wet-on-wet fiber coating process in the fiber coating process has the following characteristics: (1) Since the two coating chambers are directly adjacent, the same water (or oil) bath cavity is usually used to apply the coating cup. Heating, but not separately heating the two coating chambers. According to the corresponding research, for the wet-on-wet coating process, the viscosity difference between the two coatings in the drawing process should be controlled within a certain reasonable range; (2) in the drawing process, because the two layers of coating are separately coated and coated The application method is different, so the diameter of the mold hole coated by the second layer coating is generally large. Such a design tends to cause a large coating diameter at the low speed stage at the beginning of drawing, and the optical fiber is scrapped.
- the drawing speed of optical fibers is getting faster and faster, and is currently more than 1,500 m/min. Under this circumstance, it is more and more difficult to meet the demand for coating of high-speed drawing by the conventional fixed-temperature heating method, and the coating quality of the optical fiber is difficult to be ensured.
- the wet-on-wet coating process is considered to be suitable for high-speed wire drawing, but the process and equipment need to be improved to achieve good fiber coating quality.
- the technical problem to be solved by the present invention is to provide a method and a device for automatically controlling the temperature of the fiber coating material in the drawing process in view of the deficiencies of the prior art mentioned above, so as to realize the automatic change of the coating temperature with the drawing speed during the fiber drawing process, thereby achieving the coating temperature (or The viscosity is well matched to the drawing speed to ensure the quality of the coating on the surface of the fiber.
- the technical proposal of the automatic control method for the temperature of the optical fiber coating of the invention comprises: an optical fiber applicator, the coating chamber of the optical fiber applicator is connected to the material tank through the feeding pipeline, and is characterized in that a controllable heater is arranged outside the feeding pipeline Heating the paint in the feed pipe and setting a process control unit.
- the process control unit compares the sampled wire speed sensing signal with the feed pipe temperature sensing signal with a preset parameter value to control the heater. The heating process is controlled to achieve automatic control and adjustment of the coating temperature in the fiber applicator.
- the processing control unit is a PLC unit, and the PLC unit is provided with a program corresponding to the drawing speed and the feeding pipeline temperature, and the heating of the controllable heater is automatically adjusted according to the change of the drawing speed by the PLC program control.
- the controllable heater automatically adjusts the temperature of the feed pipe to a range of 25 to 100 ° C; the feed pipe is a metal pipe.
- the heating mode of the controllable heater is an electric heating mode, a liquid medium heating mode or a gas medium heating mode.
- the fiber applicator is provided with one or more paint chambers, each of which is respectively connected to the feed pipe, and at least one feed pipe is provided with a controllable heater, at least one The paint in the material pipe is heated.
- y is the feed pipe temperature setting of the PLC
- x is the drawing speed
- a is a constant, ranging from 0.1 to 0.6
- b is a constant, ranging from 0.1 to 4
- c is a constant, ranging from 20 to 40.
- the technical proposal of the automatic control device for the temperature of the optical fiber coating of the invention comprises: an optical fiber applicator, the coating chamber of the optical fiber applicator is connected to the material tank through the feeding pipeline, and is characterized in that a controllable heater is arranged outside the feeding pipeline
- the PLC unit is set, and the input end of the PLC unit is connected with the wire drawing speed sensor and the feed pipe temperature sensor respectively, and the output end of the PLC unit is connected with the temperature control circuit of the controllable heater.
- the wire drawing speed sensor is disposed on the traction wheel at the drawing output end; and the feed pipe temperature sensor is disposed on the feeding pipe near the fiber applicator.
- controllable heater is an electric heater, and the electric heater is composed of a heating wire wrapped around the feed pipe.
- the controllable heater is a liquid or gas medium heater
- the liquid or gas medium heater is composed of an annular heating tank covering the feed pipe and a circulating heater connected thereto, and the annular heating tank
- the circulating heater is filled with a liquid or gaseous medium.
- the beneficial effects of the invention are as follows: 1.
- the temperature of the controllable heater is automatically adjusted by the PLC according to the drawing speed, so that the coating temperature is automatically adjusted according to the drawing speed, and the coating viscosity and the drawing speed are well matched, such automatic adjusting coating
- the viscosity of the coating in each coating chamber can be arbitrarily adjusted, so that the thickness ratio and diameter of each coating layer of the optical fiber can be conveniently adjusted, and the two-layer coating cannot be freely adjusted during the wet-to-wet coating process.
- the problem of layer thickness and ratio and can reduce and avoid fiber scrap caused by coating overflow, coating diameter exceeding, coating unevenness and corrugation of coating interface. Thereby, the quality of the surface coating layer of the optical fiber is ensured and improved, and the yield of the optical fiber processing is improved.
- the structure is simple, easy to implement and promote, improve the automation level of fiber processing equipment.
- Figure 1 is a schematic view showing the structure of an embodiment of the apparatus of the present invention.
- FIG. 2 is a schematic structural view of another embodiment of the apparatus of the present invention.
- Embodiment 1 is shown in FIG. 1 and is an electric heating method including an optical fiber applicator 4, and the optical fiber applicator coating chamber is connected to the material tank through a feeding pipe, and the optical fiber applicator is provided with upper and lower sides.
- Two coating chambers wherein the upper coating chamber is in communication with the upper feeding conduit 5, the upper feeding conduit may or may not have a controllable heater, and the lower coating chamber is in communication with the lower feeding conduit 2, outside the lower feeding conduit
- the surface is wound with one or more layers of electric heating wires to form a controllable heater 6.
- the temperature of the lower feeding pipe is measured by the temperature sensor 3, and the temperature of the heating wire is adjusted by the temperature setting value of the PLC unit connected thereto.
- the temperature set value is set according to Equation 1, and the drawing speed sensing signal of the PLC unit is collected by the traction wheel.
- a valve 1 is connected in series in the feed pipe, and the discharge port of the feed pipe is connected with the fiber applicator 4.
- the paint in the feed pipe is heated by the heating wire 6 wound on the surface thereof, due to the heating pipe immediately adjacent In the fiber applicator 4, the heated paint enters the fiber applicator with minimal temperature loss, so the viscosity of the coating material in the coating cup can be adjusted by the pipe temperature.
- the coating valve 1 Before the start of drawing, the coating valve 1 is in the closed state. Since the speed is zero, the resistance wire does not heat the feeding pipe; when the drawing starts, the valve automatically opens, the paint starts to flow, and the heating wire is gradually heated according to the setting of the PLC.
- the pipe temperature cannot be set too high at low speed, otherwise too much outer diameter of the fiber will be discarded; when the drawing speed is increased, in order to match the viscosity of the two layers of coating material, Increasing the outer diameter of the fiber, the temperature of the coating pipe will increase according to the set value of the PLC; when the speed is reduced, the heating wire will reduce the heating power or not, so that the pipe temperature is naturally cooled to the target value; when the drawing ends, the valve Automatically shut off, the heating wire stops heating, and the paint inside the pipe is naturally cooled to normal temperature.
- the upper feed conduit 5 of the first layer of paint does not require heating.
- the initial speed of pipe heating is generally 300 ⁇ 400m/min.
- Embodiment 2 is a liquid or gas medium heating mode as shown in FIG. 2, which differs from the previous embodiment in that the controllable heater 6 is a liquid or gas medium heater, the liquid or gaseous medium.
- the heater is composed of an annular heating tank covering the lower feed pipe 2 and a circulating heater 7 connected thereto.
- the annular heating tank and the circulating heater are filled with a liquid or gaseous medium, and the circulating heater is heated by a liquid or gaseous medium.
- the heating of the feed pipe heats the coating until the temperature of the coating is close to the temperature of the liquid or gaseous medium; the temperature sensor of the embodiment is installed in the liquid or gas medium chamber of the circulating heater, and the temperature of the liquid or gaseous medium is used as the feed.
- the temperature of the pipe is sensed to the PLC unit.
- the other structure is the same as the previous embodiment.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
一种拉丝过程中光纤涂料温度自动控制方法及装置,包括有光纤涂覆器(4),光纤涂覆器(4)涂料腔通过进料管道与料罐相连通,其特征在于在进料管道外安设可控加热器(6),对进料管道内的涂料进行加温,同时设置处理控制单元,处理控制单元通过采集拉丝速度传感信号和进料管道温度传感信号与预设的参数数值相比较,对可控加热器(6)的加热过程进行控制,从而实现对光纤涂覆器(4)中的涂料温度的自动控制和调节过程。该自动控制方法及装置能使光纤拉丝过程中涂料温度随拉丝速度自动变化,从而达到涂料温度或粘度与拉丝速度的良好匹配,使光纤表面涂覆层的质量得到保证,提高光纤加工的成品率。
Description
本发明涉及一种针对湿对湿(wet-on-wet)涂敷工艺对光纤涂料进行在线温度控制的方法及装置,属于光纤加工技术领域。
光纤涂敷层是组成光纤的两种最重要的材料组成之一,它的主要功能包括对裸光纤进行机械保护,保持光纤强度,抵抗环境侵蚀以及保持和改善光纤弯曲性能等。所以,光纤涂敷质量的好坏将直接影响到光纤的质量和性能。对于常规通信光纤而言,玻璃光纤表面涂敷有两层涂敷层,两层涂敷层的厚度及比例分配会较大程度上影响到光纤的使用性能,如剥离力,微弯性能,环境测试性能等。因此,两层涂敷层的厚度和比例需要控制在一个合理的范围内。
在光纤涂料涂覆工艺中湿对湿光纤涂敷工艺具有以下特点:(1)由于两层涂敷腔体直接相邻,所以通常采用同一个水(或油)浴腔体对涂敷杯进行加热,而不能单独对两层涂敷腔体的进行加热。而根据相应的研究,对于湿对湿涂敷工艺,拉丝过程中两层涂料的粘度差应该控制在一定的合理范围内;(2)在拉丝过程中,由于两层涂料分开涂敷,且涂敷方式不一样,所以第二层涂料涂敷的模具孔直径一般都很大,这样的设计在拉丝开始的低速阶段容易产生涂敷直径偏大而使光纤报废。
随着光纤制造技术的发展,光纤的拉丝速度越来越快,目前普遍在1500米/分钟以上。在这种情况下,采用传统的固定温度加热方法越来越难以满足高速拉丝对涂料涂覆的需求,光纤的涂覆质量难以得到保证。湿对湿涂敷工艺被认为是适合高速拉丝的涂敷方式,但需对该工艺及设备进行改进,以获得良好的光纤涂敷质量。
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种拉丝过程光纤涂料温度自动控制方法及装置,实现光纤拉丝过程中涂料温度随拉丝速度自动变化,从而达到涂料温度(或粘度)与拉丝速度的良好匹配,使光纤表面涂覆层的质量得到保证。
本发明光纤涂料温度自动控制方法的技术方案为:包括有光纤涂覆器,光纤涂覆器涂料腔通过进料管道与料罐相连通,其特征在于在进料管道外安设可控加热器,对进料管道内的涂料进行加温,同时设置处理控制单元,处理控制单元通过采集拉丝速度传感信号和进料管道温度传感信号与预设的参数数值相比较,对可控加热器的加热过程进行控制,从而实现对光纤涂覆器中的涂料温度的自动控制和调节过程。
按上述方案,所述的处理控制单元为PLC单元,PLC单元设置有拉丝速度与进料管道温度对应关系程序,通过PLC程序控制实现可控加热器的加热随拉丝速度的变化而自动调节。
按上述方案,所述的可控加热器对进料管道温度的自动调节范围为25~100℃;所述的进料管道为金属管道。
按上述方案,所述的可控加热器的加热方式为电加热方式、液体介质加热方式或气体介质加热方式。
按上述方案,所述的光纤涂覆器设置有一个或多个涂料腔,每个涂料腔分别连接进料管道,至少在一根进料管道上安设可控加热器,对至少一根进料管道内的涂料进行加温。
按上述方案,PLC程序中进料管道温度设定和拉丝速度的关系公式为:
y = a[(x-300)/100]2 + b(x-300)/100 + c
式中:y为PLC的进料管道温度设定;x为拉丝速度;a为常数,范围为0.1至0.6;b为常数,范围为0.1至4;c为常数,范围为20至40。
本发明光纤涂料温度自动控制装置的技术方案为:包括有光纤涂覆器,光纤涂覆器涂料腔通过进料管道与料罐相连通,其特征在于在进料管道外安设可控加热器,同时设置PLC单元,PLC单元输入端与拉丝速度传感器和进料管道温度传感器分别相接,PLC单元输出端与可控加热器的温度控制电路联接。
按上述方案,所述的拉丝速度传感器设置在拉丝输出端的牵引轮上;所述的进料管道温度传感器设置在靠近光纤涂覆器的进料管道上。
按上述方案,所述的可控加热器为电加热器,所述的电加热器由包绕进料管道的电热丝构成。
按上述方案,所述的可控加热器为液体或气体介质加热器,所述的液体或气体介质加热器由包覆进料管道的环形加热槽和与其相连的循环加热器构成,环形加热槽和循环加热器中充注液体或气体介质。
本发明的有益效果在于:1、通过PLC实现可控加热器温度随拉丝速度而自动调节,从而实现涂料温度随拉丝速度而自动调节,达到涂料粘度与拉丝速度的良好匹配,这样的自动调节涂料温度的方式在光纤拉丝过程中不仅可以任意调节各涂料腔中涂料的粘度,从而达到方便调整光纤各涂覆层的厚度比例和直径,解决湿对湿涂敷过程中不能自由调节两层涂敷层厚度和比例的问题,而且可以减少和避免涂料溢出、涂覆直径超标、涂覆不均匀和涂覆界面出现波纹等引起的光纤报废。从而使光纤表面涂覆层的质量得到保证和提高,提高光纤加工的成品率。2、结构简单,便于实施和推广,提高了光纤加工设备的自动化水平。
图1为本发明装置一个实施例的结构示意图。
图2为本发明装置另一个实施例的结构示意图。
具体实施方式
以下结合附图进一步说明本发明的实施例。
实施例1如图1所示,为电加热方式,包括有光纤涂覆器4,光纤涂覆器涂料腔通过进料管道与料罐相连通,所述的光纤涂覆器设置有上、下两个涂料腔,其中上涂料腔与上进料管道5相连通,上进料管道可设或不设可控加热器,下涂料腔与下进料管道2相连通,下进料管道的外表面缠绕一层或多层电热丝,构成可控加热器6,下进料管道的温度采用温度传感器3进行测量,同时电热丝的温度通过与其联接的PLC单元的温度设定值进行调节,其温度设定值根据公式1进行设定,PLC单元的拉丝速度传感信号通过牵引轮采集。在进料管道中串接有阀1,进料管道的出料口与光纤涂覆器4连通,拉丝过程中,进料管道内的涂料被缠绕其表面的电热丝6加热,由于加热管道紧邻光纤涂敷器4,加热后的涂料进入光纤涂覆器只有极少的的温度损失,所以其涂敷杯内涂敷料的粘度可以通过管道温度进行调节。
在拉丝开始前,涂敷料阀1处于关闭状态,由于速度为零电阻丝没有对进料管道进行加热;当拉丝开始后,阀自动打开,涂料开始流动,电热丝根据PLC的设定逐渐进行加热,由于低速下光纤外径一般都比较大,所以低速时管道温度不能设定太高,否则会造成太多光纤外径超标报废;当拉丝速度升高时,为了匹配两层涂敷料的粘度和增加光纤外径,涂敷料管道温度会根据PLC的设定值升高;当速度降低时,电热丝会降低加热功率或不进行加热,使管道温度自然冷却到目标值;当拉丝结束时,阀自动关闭,电热丝停止加热,管道内的涂料自然冷却至常温。一般情况下,第一层涂料的上进料管道5不需要进行加热。管道加热的起始速度一般为300~400m/min。
实施例2如图2所示,液体或气体介质加热方式,它与上一个实施例的不同之处在于所述的可控加热器6为液体或气体介质加热器,所述的液体或气体介质加热器由包覆下进料管道2的环形加热槽和与其相连的循环加热器7构成,环形加热槽和循环加热器中充注液体或气体介质,循环加热器通过对液体或气体介质加热对进料管道加热使涂料升温,直至涂料温度与液体或气体介质的温度接近;本实施例的温度传感器安设在循环加热器的液体或气体介质腔中,将液体或气体介质的温度作为进料管道的温度传感给PLC单元。其它结构与上一个实施例相同。
Claims (10)
1.一种拉丝过程光纤涂料温度自动控制方法,包括有光纤涂覆器,光纤涂覆器涂料腔通过进料管道与料罐相连通,其特征在于在进料管道外安设可控加热器,对进料管道内的涂料进行加温,同时设置处理控制单元,处理控制单元通过采集拉丝速度传感信号和进料管道温度传感信号与预设的参数数值相比较,对可控加热器的加热过程进行控制,从而实现对光纤涂覆器中的涂料温度的自动控制和调节过程。
2.按权利要求1所述的拉丝过程光纤涂料温度自动控制方法,其特征在于所述的处理控制单元为PLC单元,PLC单元设置有拉丝速度与进料管道温度对应关系程序,通过PLC程序控制实现可控加热器的加热随拉丝速度的变化而自动调节。
3.按权利要求1或2所述的拉丝过程光纤涂料温度自动控制方法,其特征在于所述的可控加热器对进料管道温度的自动调节范围为25-100℃。
4.按权利要求3所述的拉丝过程光纤涂料温度自动控制方法,其特征在于所述的可控加热器的加热方式为电加热方式、液体介质加热方式或气体介质加热方式。
5.按权利要求1或2所述的拉丝过程光纤涂料温度自动控制方法,其特征在于所述的光纤涂覆器设置有一个或多个涂料腔,每个涂料腔分别连接进料管道,至少在一根进料管道上安设可控加热器,对至少一根进料管道内的涂料进行加温。
6.按权利要求2所述的拉丝过程光纤涂料温度自动控制方法,其特征在于PLC程序中进料管道温度设定和拉丝速度的关系公式为:
y = a[(x-300)/100]2 + b(x-300)/100 + c,
式中:y为PLC的进料管道温度设定;x为拉丝速度;a为常数,范围为0.1至0.6;b为常数,范围为0.1至4;c为常数,范围为20至40。
7.一种拉丝过程光纤涂料温度自动控制装置,包括有光纤涂覆器,光纤涂覆器涂料腔通过进料管道与料罐相连通,其特征在于在进料管道外安设可控加热器,同时设置PLC单元,PLC单元输入端与拉丝速度传感器和进料管道温度传感器分别相接,PLC单元输出端与可控加热器的温度控制电路联接。
8.按权利要求7所述的拉丝过程光纤涂料温度自动控制装置,其特征在于所述的拉丝速度传感器设置在拉丝输出端的牵引轮上;所述的进料管道温度传感器设置在靠近光纤涂覆器的进料管道上。
9.按权利要求7或8所述的拉丝过程光纤涂料温度自动控制装置,其特征在于所述的可控加热器为电加热器,所述的电加热器由包绕进料管道的电热丝构成。
10.按权利要求7或8所述的拉丝过程光纤涂料温度自动控制装置,其特征在于所述的可控加热器为液体或气体介质加热器,所述的液体或气体介质加热器由包覆进料管道的环形加热槽和与其相连的循环加热器构成,环形加热槽和循环加热器中充注液体或气体介质。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AP2015008192A AP2015008192A0 (en) | 2012-06-18 | 2013-06-17 | Method and device for automatically controlling temperature of optical fiber coatings in wiredrawingprocess |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210200664.3 | 2012-06-18 | ||
CN201210200664.3A CN102718414B (zh) | 2012-06-18 | 2012-06-18 | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013189264A1 true WO2013189264A1 (zh) | 2013-12-27 |
Family
ID=46944321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/077327 WO2013189264A1 (zh) | 2012-06-18 | 2013-06-17 | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102718414B (zh) |
AP (1) | AP2015008192A0 (zh) |
WO (1) | WO2013189264A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104503517A (zh) * | 2014-11-27 | 2015-04-08 | 宝钢工程技术集团有限公司 | 一种冷轧彩涂涂料粘度自动控制系统 |
CN115321840A (zh) * | 2022-09-01 | 2022-11-11 | 长飞光纤光缆股份有限公司 | 一种用于光纤的热熔胶涂覆系统 |
CN116514413A (zh) * | 2023-05-22 | 2023-08-01 | 上海昱品通信科技股份有限公司 | 一种用于光纤拉丝的开式湿对湿涂覆装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102759910B (zh) * | 2012-06-18 | 2014-08-20 | 长飞光纤光缆股份有限公司 | 一种光纤涂料温度自动控制方法及装置 |
CN102718414B (zh) * | 2012-06-18 | 2015-03-04 | 长飞光纤光缆股份有限公司 | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 |
CN102976609B (zh) * | 2012-11-19 | 2015-10-14 | 中天科技光纤有限公司 | 一种拉丝冷却管冷却氦气流量自动控制装置 |
CN104019371B (zh) * | 2014-04-10 | 2016-08-17 | 上海金自天正信息技术有限公司 | 涂料系统 |
CN108103590A (zh) * | 2018-01-26 | 2018-06-01 | 江苏南方光纤科技有限公司 | 涂料离线供料系统 |
CN114028972A (zh) * | 2021-11-09 | 2022-02-11 | 中寓(上海)建筑科技有限公司 | 基于深度学习的艺术涂料成型机器人 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85105620A (zh) * | 1984-06-21 | 1987-01-21 | 标准电话和电报公共有限公司 | 光纤制造 |
CN1169542A (zh) * | 1996-04-23 | 1998-01-07 | 康宁股份有限公司 | 形成光纤涂覆层的装置和方法 |
JP2004067429A (ja) * | 2002-08-05 | 2004-03-04 | Furukawa Electric Co Ltd:The | 光ファイバの製造方法 |
CN101072732A (zh) * | 2004-11-26 | 2007-11-14 | 株式会社神户制钢所 | 光纤拉制装置 |
CN101544465A (zh) * | 2008-03-24 | 2009-09-30 | 古河电气工业株式会社 | 光纤制造方法 |
CN102718414A (zh) * | 2012-06-18 | 2012-10-10 | 长飞光纤光缆有限公司 | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 |
-
2012
- 2012-06-18 CN CN201210200664.3A patent/CN102718414B/zh active Active
-
2013
- 2013-06-17 AP AP2015008192A patent/AP2015008192A0/xx unknown
- 2013-06-17 WO PCT/CN2013/077327 patent/WO2013189264A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85105620A (zh) * | 1984-06-21 | 1987-01-21 | 标准电话和电报公共有限公司 | 光纤制造 |
CN1169542A (zh) * | 1996-04-23 | 1998-01-07 | 康宁股份有限公司 | 形成光纤涂覆层的装置和方法 |
JP2004067429A (ja) * | 2002-08-05 | 2004-03-04 | Furukawa Electric Co Ltd:The | 光ファイバの製造方法 |
CN101072732A (zh) * | 2004-11-26 | 2007-11-14 | 株式会社神户制钢所 | 光纤拉制装置 |
CN101544465A (zh) * | 2008-03-24 | 2009-09-30 | 古河电气工业株式会社 | 光纤制造方法 |
CN102718414A (zh) * | 2012-06-18 | 2012-10-10 | 长飞光纤光缆有限公司 | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104503517A (zh) * | 2014-11-27 | 2015-04-08 | 宝钢工程技术集团有限公司 | 一种冷轧彩涂涂料粘度自动控制系统 |
CN115321840A (zh) * | 2022-09-01 | 2022-11-11 | 长飞光纤光缆股份有限公司 | 一种用于光纤的热熔胶涂覆系统 |
CN115321840B (zh) * | 2022-09-01 | 2023-11-28 | 长飞光纤光缆股份有限公司 | 一种用于光纤的热熔胶涂覆系统 |
CN116514413A (zh) * | 2023-05-22 | 2023-08-01 | 上海昱品通信科技股份有限公司 | 一种用于光纤拉丝的开式湿对湿涂覆装置 |
CN116514413B (zh) * | 2023-05-22 | 2023-12-05 | 上海昱品通信科技股份有限公司 | 一种用于光纤拉丝的开式湿对湿涂覆装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102718414B (zh) | 2015-03-04 |
CN102718414A (zh) | 2012-10-10 |
AP2015008192A0 (en) | 2015-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013189264A1 (zh) | 一种拉丝过程中光纤涂料温度自动控制的方法及装置 | |
WO2013189262A1 (zh) | 一种光纤涂料温度自动控制方法及装置 | |
CN104211295B (zh) | 一种光纤拉丝装置及其拉丝方法 | |
CN103018821B (zh) | 一种小弯曲半径保偏光纤及其制造方法 | |
WO2008046039A3 (en) | Thermal deposition surface treatment method, system and product | |
EP4219418A1 (en) | Optical fiber drawing furnace, optical fiber preparation apparatus, optical fiber preparation method, and small-diameter optical fiber | |
CN104597560A (zh) | 一种气吹微缆用小外径低损耗光纤及其制造方法 | |
CN104844017B (zh) | 一种自动控制光纤涂覆直径的方法、系统及光纤拉丝装置 | |
CN104516075A (zh) | 一种具有低摩擦系数的新型全干式气吹微缆 | |
US6010741A (en) | Apparatus and method for controlling the coating thickness of an optical glass fiber | |
CN107045170A (zh) | 松套管挤出装置 | |
EP0004183B1 (en) | Method and apparatus for drawing optical fibres by means of a double crucible | |
CN102206040B (zh) | 一种光纤预制棒的水平延伸装置及其方法 | |
CN209685614U (zh) | 一种光纤拉丝树脂涂覆的涂料模座系统 | |
CN102517645B (zh) | 桑蚕茧煮茧机调整部水温的控制方法和装置 | |
CN204347288U (zh) | 一种气吹微缆用小外径低损耗光纤 | |
CN103542515B (zh) | 一种具有不同功率电加热器的智能温控电热水器 | |
CN205861955U (zh) | 一种光纤带盘式绞笼的光纤油膏填充机构 | |
CN205398465U (zh) | 一种光纤在线金属涂覆装置 | |
CN107984722A (zh) | 聚合物光纤制造设备,聚合物光缆及其制造设备、方法 | |
IT8224974A1 (it) | Dispositivo di raffreddamento per apparecchiature di trafilatura di fibre di vetro | |
WO2018160418A1 (en) | Method and system for controlling air flow through an annealing furnace during optical fiber production | |
OA17187A (en) | Method and device for automatically controlling temperature of optical fiber coatings in wiredrawing process. | |
CN208745131U (zh) | 一种pe钢丝管生产线用自动调温烘箱装置 | |
CN208343400U (zh) | 一种改进的塑料管材挤出涂覆机头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13806244 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201406377 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13806244 Country of ref document: EP Kind code of ref document: A1 |