WO2013185506A1 - 一种铜铟镓硒薄膜太阳能电池的制备方法 - Google Patents
一种铜铟镓硒薄膜太阳能电池的制备方法 Download PDFInfo
- Publication number
- WO2013185506A1 WO2013185506A1 PCT/CN2013/074072 CN2013074072W WO2013185506A1 WO 2013185506 A1 WO2013185506 A1 WO 2013185506A1 CN 2013074072 W CN2013074072 W CN 2013074072W WO 2013185506 A1 WO2013185506 A1 WO 2013185506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- sputtering
- power density
- layer
- indium gallium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000010409 thin film Substances 0.000 title claims abstract description 16
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 title abstract description 6
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000000137 annealing Methods 0.000 claims abstract description 9
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000011787 zinc oxide Substances 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims description 24
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 claims description 22
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 21
- 239000006096 absorbing agent Substances 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000005477 sputtering target Methods 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims 2
- 239000002250 absorbent Substances 0.000 claims 2
- 238000010521 absorption reaction Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000004073 vulcanization Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- -1 copper indium gallium selenide compound Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/128—Annealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3492—Variation of parameters during sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/167—Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/126—Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1694—Thin semiconductor films on metallic or insulating substrates the films including Group I-III-VI materials, e.g. CIS or CIGS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to the field of solar cells, and more particularly to a method for preparing a copper indium gallium selenide thin film solar cell absorber layer.
- the copper indium gallium selenide compound has a chalcopyrite structure and can be prepared as a material for solar power generation on a soft or rigid substrate, and the copper indium gallium selenide thin film solar cell thus produced has the advantages of high stability and low cost.
- the energy available on the earth is becoming shorter and shorter, and it is an indisputable fact that petrochemical energy will emit carbon and sulfur oxides during use, causing air pollution and aggravating the global warming effect of the earth. . Therefore, the development of pollution-free renewable energy is one of the top research projects in the world.
- Solar energy is a non-polluting source of energy and one of the best choices for renewable energy.
- the development of solar energy is primarily the development of materials that produce high efficiency conversion of solar energy into electrical energy.
- the copper indium gallium selenide compound material is a compound semiconductor material having a chalcopyrite structure, which is a direct band gap material, can absorb sunlight having a large wavelength range, and has self-modulating self-composition to form a pn junction, and is recognized.
- One of the best materials for the absorption layer of solar cells such as copper indium gallium diselenide (Cu(InGa) Se 2 ), referred to as CIGS, is the semiconductor material with the highest light absorption capability. Due to the high light absorption rate of CIGS, the thickness of the CIGS absorber layer can be 1 ⁇ 2 ⁇ . Generally, the cost of CIGS material is only 0.03 US dollars/watt, which is very competitive. It is expected that solar power generation can be the same or even lower than traditional fossil fuel power generation. Therefore, how to prepare a low-cost, high-efficiency copper indium gallium selenide solar thin film battery is one of the most worthy research topics.
- the theory shows that a single bandgap solar cell can not make the maximum use of solar energy, that is, the photon energy is too small to generate electron-hole pairs, and the photon with too much energy can only excite an electron-hole pair, excess energy. It can only be converted into heat that is not conducive to the efficiency of solar cells. Therefore, from the perspective of improving the efficiency of solar cells, it is hoped that solar cells will be very A multi-band gap is used to absorb as much solar energy as possible, and the tunable characteristics of the band gap of CIGS compounds can precisely realize this idea.
- the content ratio of Ga can be adjusted in the preparation of the CIGS film. Increasing the proportion of Ga, the forbidden band gap of CIGS compounds will increase.
- selenization method (2) lamination method, (3) multi-source (two or three source) evaporation method, (4) sputtering method requires vulcanization of CIGS film in a certain process or Selenization treatment, by Sulphurization or selenization treatment, S and Se atoms can be reacted with Cu-In-Ga by diffusion to form CuInGaSe compound, which is called vulcanization or selenization.
- the above various processes are relatively difficult to implement in one step.
- the three-stage co-evaporation method developed by the NREL laboratory in the United States realizes that the above-mentioned band gap gradient A or V-shaped band gap gradient is involved in the evaporation reaction in three different elements, and the process is very complicated and requires precise control in real time. Can be achieved.
- this method can prepare a solar thin film battery with high conversion efficiency, it is disadvantageous for low-cost, large-area, and large-scale production.
- the invention provides a method for preparing a copper indium gallium selenide thin film solar cell, comprising: a) preparing a molybdenum back electrode on a substrate;
- the high power density of sputtering on the target 1 is set to continuously decrease in operation, and in the state where the target 1 and the target 2 are co-sputtered, when the power density of the sputtering of the target 1 is continuously decreased
- the power density of the sputtering of the target 2 is continuously increased, and finally the power density of the sputtering of the target 1 is reduced to 0.3 W/cm 2 to 1 W/cm 2 .
- the copper indium gallium selenide absorber layer is annealed in a vacuum chamber in a rapid heating manner, the temperature is 400 ° C to 600 ° C, and the annealing time is 55 to 90 seconds;
- intrinsic zinc oxide high-resistance layer e was prepared in the In 2 Se 3 or ZnS buffer layer having a thickness of 0.1 to 0.5 microns;
- the thickness of the indium oxide tin oxide film is 0.3 to 0.8 ⁇ m
- the thickness of the copper indium gallium selenide absorber layer is from 1. 5 microns to 2 microns.
- step b) the working pressure in the sputtering chamber is 1 X 10 - 4 Torr, and the temperature of the substrate is maintained at any temperature between 350 ° C and 450 ° C.
- the vacuum magnetron sputtering method is adopted, the In 2 Se 3 or ZnS alloy target is used, and the working pressure of the vacuum magnetron sputtering is 1-5 X 10 - 3 Torr and the Ar gas is introduced.
- the temperature of the substrate was kept at room temperature.
- step e in performing step e), the vacuum by RF magnetron sputtering, the target intrinsic zinc oxide, RF magnetron sputtering vacuum working pressure of 1-5 X 10- 3 Torr, the operating frequency of 400K ⁇ 2 wish z, and pass Ar gas, the temperature of the substrate is kept at room temperature.
- the target is indium tin oxide In 2 0 3 : Sn0 2 , In 2 0 3 : Sn0 2 mass ratio is 9 : 1
- the working pressure of vacuum DC magnetron sputtering is 1_5 X 10- 3 Torr, and Ar gas is fed mixed with 2-5% 02, the temperature of the substrate is kept at room temperature.
- the selenization-free process and the cadmium-free In 2 Se 3 or ZnS buffer layer can not only avoid the toxic gases of H 2 Se and H 2 S, but also use cadmium-free compounds, which is environmentally friendly and Reduce costs, and make the production process equipment simple, energy consumption, short production cycle and other advantages.
- the present invention has the following advantages: All the processes of the present invention are dry process processes, and the process does not use chemical solvents and solutions. Preparation of absorption layer of solar cell A stable crystalline absorption layer can be obtained in one step, eliminating the need for an industrial process for selenization or vulcanization of the absorption layer, which greatly shortens the production cycle, reduces production equipment, and avoids environmental pollution and potential during production. Danger. The process steps of the present invention are simplified, energy consumption is small, and thus the production cost is reduced.
- FIG. 1 is a flow chart of a method for preparing an absorption layer of a copper indium gallium selenide thin film solar cell of the present invention
- Figure 2 is a graph of secondary ion mass spectrometry (SIMS) analysis of a solar cell absorber layer prepared in accordance with the method of the present invention.
- SIMS secondary ion mass spectrometry
- Fig. 1 is a flow chart showing a method for preparing an absorption layer of a copper indium gallium selenide thin film solar cell of the present invention, as shown in the figure:
- the back electrode was first prepared on the substrate.
- the substrate may be selected from a soda lime glass or a stainless steel sheet, and a l-3 mm thick soda lime glass or a 0.2 mm thick stainless steel sheet is generally used.
- a 0.8 ⁇ m thick molybdenum (Mo) metal was deposited as a back electrode by magnetron sputtering.
- the invention adopts dual-target co-sputtering to prepare an absorption layer, and the target is a CuIn x G - x Se 2 alloy target.
- the power density of sputtering the target 1 and the target 2 is designed to be:
- the power density of the sputtering of the target 2 is continuously increased, and the power density of the sputtering of the target 1 is reduced to 0.3 W/cm 2 to 1 W/cm.
- the thickness of the copper indium gallium selenide absorber layer is 1. 5 microns to 2 microns.
- the working pressure in the sputtering chamber is 1 X 10 - 4 Torr, and the temperature of the substrate is maintained at any temperature between 350 ° C and 450 ° C.
- the Ga in the copper indium gallium selenide absorption layer is concentrated A gradient is formed which has the highest concentration on the side of the absorption layer in contact with the ⁇ back electrode and the lowest concentration on the opposite side of the absorption layer.
- the copper indium gallium selenide absorber layer is annealed in a vacuum chamber at a temperature of 400 ° C to 600 ° C and an annealing time of 55 to 90 seconds. No gas is required to pass through during the annealing process.
- the annealed copper indium gallium selenide absorber layer has a chalcopyrite structure, and local ion diffusion is carried out by thermal energy to improve the crystallization state and improve the photovoltaic power generation efficiency of the main absorption layer of the solar cell.
- the In 2 Se 3 or ZnS buffer layer is sputter deposited by a vacuum magnetron sputtering method using an In 2 Se 3 or ZnS alloy target, and the working pressure of the vacuum magnetron sputtering is 1 -5 X 10 - 3 Torr and Ar gas was introduced, and the temperature of the substrate was kept at room temperature.
- the In 2 Se 3 or ZnS buffer layer is deposited to a thickness of 80 to 120 nm.
- an intrinsic zinc oxide high-resistance layer is prepared on the buffer layer:
- the target is intrinsic zinc oxide (ZnO) by radio frequency vacuum magnetron sputtering, and the working pressure of the RF vacuum magnetron sputtering is 1-5 X 10 — 3 Torr, operating frequency is 400K ⁇ 2MHz, and Ar gas is introduced, and the temperature of the substrate is kept at room temperature. 5 ⁇
- the thickness of the present invention is 0. 1 to 0. 5 microns.
- a low-impedance layer of indium tin oxide (In 2 0 3 : Sn0 2 ) film is prepared on the intrinsic zinc oxide high-resistance layer: the target is indium tin oxide (In 2 0 3 : by vacuum DC magnetron sputtering).
- the mass ratio of Sn0 2 ), In 2 0 3 : Sn0 2 is 9 : 1, and the working pressure of vacuum DC magnetron sputtering is 1-5 X 10 - 3 Torr, and the pass is 2% to 5% 0 2
- the Ar gas, the substrate temperature is kept at room temperature.
- the thickness of the layer is 0.3 to 0.3 ⁇ m.
- A1 electrode was prepared by sputtering method using A1 target, and finally a copper indium gallium selenide thin film solar cell with a concentration gradient of Ga was obtained.
- Figure 2 is a graph of secondary ion mass spectrometry (SIMS) analysis of a solar cell absorber layer prepared in accordance with the method of the present invention.
- the concentration of Ga was highest on the side of the Mo back electrode and then decreased toward the surface of the CIGS film, indicating a band gap having a gradient distribution.
- the present invention has the following advantages: All the processes of the present invention are dry process processes, and the process does not use chemical solvents and solutions.
- the absorption layer of the solar cell can be obtained in one step to obtain a stable crystalline absorption layer, eliminating the need for a process of selenization or vulcanization of the absorption layer, which greatly shortens the production cycle, reduces the production equipment, and avoids the production process. Environmental pollution and potential dangers.
- the process steps of the invention are simplified, energy consumption /1, thus reducing production costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种铜铟镓硒薄膜太阳能电池的制备方法,其包括:a)在衬底上制备钼背电极;b)在该钼背电极上制备铜铟镓硒吸收层;c)进行退火处理;d)在铜铟镓硒吸收层上制备In2Se3或ZnS缓冲层;e)在所述In2Se3或ZnS缓冲层上制备本征氧化锌高阻抗层;f)在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层;g)在氧化铟锡薄膜低阻抗层上制备铝电极。
Description
一种铜铟镓硒薄膜太阳能电池的制备方法 技术领域:
本发明涉及太阳能电池领域, 更具体的, 涉及一种铜铟镓硒薄膜太 阳能电池吸收层的制备方法。
背景技术:
众所周知, 铜铟镓硒化合物具有黄铜矿结构, 可以制备在软性或刚 性的衬底上作为太阳能发电的材料, 由此制成的铜铟镓硒薄膜太阳能电 池具有高稳定、 低成本的优点。 目前地球上可利用的能源日趋短少, 而 石化能源在使用过程中会排放碳、 硫的氧化物造成空气污染并且加剧地 球的温室效应, 使地球的环境恶化气候异常, 这已经是不争的事实了。 因此开发无污染的可再生能源是当前世界各国的首要科研项目之一。 而 太阳能是无污染的能源, 是可再生能源的最佳选择之一。 太阳能的开发 利用首要的是开发可以产生将太阳能高效率转换成电能的材料。
铜铟镓硒化合物材料是具有黄铜矿结构的化合物半导体材料, 其为 直接带隙材料, 能吸收波长范围较大的太阳光, 且具有自调变自身组成 以形成 p-n结的特性, 是公认的作为太阳能电池吸收层的最佳材料之一, 例如铜铟镓二硒 (Cu (InGa) Se2), 简称 CIGS, 为目前具有最高光吸收能 力的半导体材料。 由于 CIGS的高光吸收率优势, 使得 CIGS吸收层的厚 度在 1~2μιη即可, 以一般粗略估算, 在量产制造时, CIGS材料的费用 只需要 0. 03美元 /瓦, 因此极具竞争优势, 有望使太阳能发电可以与传 统的石化燃料发电成本相同甚至更低。 因此如何制备低成本、 高效率的 铜铟镓硒太阳能薄膜电池, 是目前最值得开发研究的课题之一。
CIGS薄膜太阳能电池有两个优点: 1 是光电转换层可以很薄, 为几 微米; 二是其带隙 (禁带宽度)可以通过 Ga (镓)在铜铟镓硒化合物的比例 含量来调控。 根据现有技术, Ga和 In的比例与带隙 (Eg) 存在如下的关 系, Eg (eV) =l. 02+ 0. 67y +0. l ly (y-l) , 其中 y=In/ (Ga+In) 的原子 含量比例。 理论说明, 单一带隙的太阳能电池不能最大限度的利用太阳 能, 也就是光子能量太小的产生不了电子-空穴对, 能量太大的光子也只 能激发一个电子-空穴对, 多余的能量只能转化成不利于太阳能电池效率 的热而已。 因此从提高太阳电池效率的角度考虑, 希望太阳能电池有很
多的带隙以尽量吸收更多的太阳能, 而 CIGS化合物的带隙的可调特性恰 恰可以实现如此的设想。 在制备 CIGS薄膜时可以调节 Ga的含量比例。 增加 Ga的比例, CIGS化合物的禁带带隙会升高。
现有文献中已记载制备 CIGS薄膜的方法主要有: (1)硒化法, (2)叠 层法, (3)多源 (二或三源) 蒸发法, (4)溅射法, (5)沉积法, (6)喷涂 法, (7)旋涂法, (8)真空加热合成法等。 而这(1)硒化法, (2)叠层法, (3)多源(二或三源)蒸发法, (4)溅射法皆在某个工艺流程中需要对 CIGS 薄膜进行硫化或硒化处理, 通过硫化或硒化处理可以使 S、 Se原子经扩 散作用与 Cu-In-Ga 进行反应以生成 CuInGaSe 化合物, 此过程称为硫 化或硒化。
硒化制备具有黄铜矿结构的薄膜太阳能电池的方法存在着一些缺点 例如生产周期长、 耗能多、 消耗 Se多、 Se的蒸汽有剧毒及 Se的分布不 均匀, Se存在梯度等等。
另外对于调控 Ga的梯度分布工艺, 上述的各种工艺方法比较难以一 步到位的实现。 例如美国的 NREL实验室开发的三阶段共蒸发法, 其实现 Ga呈上述的带隙梯度 A或 V字形带隙梯度是在三个阶段不同的元素参与 蒸发反应, 工艺非常复杂且需要实时控制精准方能实现。 此种方法虽然 可以制备高转换效率的太阳能薄膜电池, 但是不利于低成本、 大面积、 规模化的生产。
发明内容
本发明提供一种铜铟镓硒薄膜太阳能电池的制备方法, 其包括: a) 在衬底上制备钼背电极;
b )在该钼背电极上制备铜铟镓硒吸收层: 利用真空磁控溅射法, 采 用 CuInxG -xSe2合金靶进行溅射,设 x=0的 CuGaSe2合金靶为靶 1,设 x=0. 8 至 0. 6的 CuInxGai-xSe2合金靶为靶 2,首先以高功率密度 4W/cm2至 8W/cm2 之间的任意高功率密度对靶 1先溅射 2至 4分钟, 接着再对靶 1和靶 2 进行共溅射, 此时对靶 2进行溅射的初始功率密度为 0. 3W/cm2至 lW/cm2 之间任意的低功率密度, 而对靶 1 进行溅射的高功率密度设置成在工作 中连续递减, 在对靶 1和靶 2进行共溅射的状态下, 当对靶 1进行溅射 的功率密度连续递减时, 与此同时对靶 2进行溅射的功率密度则为连续 递增, 最后直至对靶 1 进行溅射的功率密度递减至 0. 3W/cm2至 lW/cm2
之间的任意低功率密度, 对靶 2 进行溅射的功率密度递增至 4W/cm2 至 8W/cm2之间的任意高功率密度,执行共溅射的时间为 30-60分钟,使得铜 铟镓硒吸收层中的 Ga浓度形成梯度, 其在该吸收层与 Mo背电极接触的 一侧的浓度最高, 在该吸收层的相对另一侧的浓度最低;
C )进行退火处理: 在真空室内以快速加热方式对铜铟镓硒吸收层进 行退火处理, 其温度为 400°C至 600°C, 退火时间为 55至 90秒;
d ) 在铜铟镓硒吸收层上制备 In2Se3或 ZnS缓冲层, 其厚度为 80至 120纳米;
e ) 在所述 In2Se3或 ZnS缓冲层上制备本征氧化锌高阻抗层, 其厚度 为 0. 1至 0. 5微米;
f )在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层, 其厚 度为 0. 3至 0. 8微米;
g ) 在氧化铟锡薄膜低阻抗层上制备铝电极。
其中: 所述铜铟镓硒吸收层的厚度为 1. 5微米至 2微米。
其中: 在执行步骤 b ) 中, 溅射腔体内的工作压力为 1 X 10— 4Torr, 衬底的温度保持在 350°C至 450°C之间的任意温度。
其中: 在执行步骤 d)中, 利用真空磁控溅射法, 采用 In2Se3或 ZnS 合金靶, 真空磁控溅射的工作压力为 1-5 X 10— 3 Torr并通入 Ar气体, 衬 底的温度保持在室温。
其中: 在执行步骤 e ) 中, 利用射频真空磁控溅射法, 靶材为本征氧 化锌, 射频真空磁控溅射的工作压力为 1-5 X 10— 3Torr, 工作频率为 400K~2願 z, 并通入 Ar气体, 衬底的温度保持在室温。
其中: 利用真空直流磁控溅射法, 靶材为氧化铟锡 In203 : Sn02, In203 : Sn02的质量比为 9 : 1, 真空直流磁控溅射的工作压力为 1_5 X 10— 3Torr, 并通入掺有 2%至 5%02的 Ar气体, 衬底的温度保持室温。
根据本发明的方法, 无硒化工艺流程及无镉的 In2Se3或 ZnS缓冲层, 不但可以避免 H2Se、 H2S的有毒气体, 并且使用无镉的化合物, 既符合环 保又可降低成本, 并且使得生产工艺设备简单能源消耗小, 生产周期短 等优势。
本发明与现有技术相比有以下优点: 本发明所有的工艺皆为干式工 艺流程, 工艺过程不使用化学溶剂与溶液。 太阳能电池的吸收层制备采
用一步操作即可得到稳定结晶的吸收层, 不再需要对吸收层进行硒化或 硫化的工业程序, 大大缩短了生产周期, 减少了生产设备, 也避免了生 产过程中的环境污染和潜在的危险。 本发明的工艺步骤简化, 能源消耗 小, 因此降低了生产成本。
附图说明
图 1 是本发明的制备铜铟镓硒薄膜太阳能电池吸收层的方法的流程 图;
图 2 是对根据本发明的方法制备的太阳能电池吸收层所做的二次离 子质谱 (SIMS) 分析曲线图。
具体实施方式
图 1 是本发明的制备铜铟镓硒薄膜太阳能电池吸收层的方法的流程 图, 如图所示:
首先在衬底上制备背电极。 所述衬底可以选择钠钙玻璃或者不锈钢 薄片, 一般选用 l-3mm厚的钠钙玻璃或者 0. 2mm厚不锈钢薄片。 采用磁 控溅射法沉积 0. 8微米厚的钼 (Mo) 金属作为背电极。
接着在背电极上制备吸收层: 本发明采用双靶共溅射来制备吸收层, 该靶为 CuInxG -xSe2合金靶, 为了说明方便, 可以设 x=0的 CuGaSe2合金 靶为靶 1, 设 x=0. 8 至 0. 6 的 CuInxGai—xSe2合金靶为靶 2, 例如 Cu (In。.7GaQ.3) Se2合金靶 2。 首先以高功率密度 4W/cm2至 8W/cm2之间的任 意高功率密度对靶 1先溅射 2至 4分钟, 接着再对靶 1和靶 2进行共溅 射, 此时对靶 2进行溅射的初始功率密度为 0. 3W/cm2至 lW/cm2之间任意 的低功率密度, 而对靶 1 进行溅射的高功率密度设置成在工作中连续递 减。 由于此时对靶 1和靶 2进行共溅射, 而且为了确保铜铟镓硒吸收层 中的 Ga浓度形成梯度, 将对靶 1和靶 2进行溅射的功率密度设计成为: 当对靶 1进行溅射的功率密度连续递减时, 与此同时对靶 2进行溅射的 功率密度则为连续递增, 最后直至对靶 1 进行溅射的功率密度递减至 0. 3W/cm2 至 lW/cm2之间的任意低功率密度, 对靶 2进行溅射的功率密度 递增至 4W/cm2至 8W/cm2之间的任意高功率密度。执行共溅射的时间为 30 至 60分钟,使得在钼背电极上沉积铜铟镓硒吸收层的厚度为 1. 5微米至 2微米。溅射腔体内的工作压力为 1 X 10— 4Torr, 衬底的温度保持在 350°C 至 450°C之间的任意温度。 根据该工艺, 使得铜铟镓硒吸收层中的 Ga浓
度形成梯度, 其在该吸收层与 Μθ背电极接触的一侧的浓度最高, 在该吸 收层的相对另一侧的浓度最低。
随后进行退火处理: 在真空室内以快速加热方式对铜铟镓硒吸收层 进行退火处理, 其温度为 400°C至 600°C, 退火时间为 55至 90秒。 在 退火过程中不需要通入任何气体。 经过退火处理的铜铟镓硒吸收层具有 黄铜矿结构, 并通过热能进行局部离子扩散, 提高结晶状态, 提高太阳 能电池主吸收层的光伏发电效率。
再接着在吸收层上制备缓冲层:利用真空磁控溅射法,采用 In2Se3或 ZnS合金靶, 溅射沉积 In2Se3或 ZnS缓冲层, 真空磁控溅射的工作压力 为 1-5 X 10— 3 Torr并通入 Ar气体, 衬底的温度保持在室温。 所述 In2Se3 或 ZnS缓冲层的沉积厚度为 80至 120纳米。
再接着在缓冲层上制备本征氧化锌高阻抗层: 利用射频真空磁控溅 射法, 靶材为本征氧化锌 (ZnO) , 射频真空磁控溅射的工作压力为 1-5 X 10— 3 Torr, 工作频率为 400K~2MHz, 并通入 Ar气体, 衬底的温度保持 在室温。 所述本征氧化锌高阻抗层的沉积厚度为 0. 1至 0. 5微米。
再接着在本征氧化锌高阻抗层上制备氧化铟锡 (In203 : Sn02) 薄膜低 阻抗层: 利用真空直流磁控溅射法, 靶材为氧化铟锡 (In203 : Sn02 ), In203 : Sn02的质量比为 9 : 1, 真空直流磁控溅射的工作压力为 1-5 X 10— 3 Torr, 并通入掺有 2%至 5% 02的 Ar气体, 衬底的温度保持室温。 所述氧 化铟锡薄膜低阻抗层的沉积厚度为 0. 3至 0. 8微米。
最后在氧化铟锡薄膜低阻抗层上制备铝电极: 利用 A1靶材, 通过溅 射法制备 A1 电极, 最终得到具有 Ga的浓度梯度的铜铟镓硒薄膜太阳能 电池。
图 2 是对根据本发明的方法制备的太阳能电池吸收层所做的二次离 子质谱 (SIMS) 分析曲线图。 Ga的浓度在 Mo背电极侧最高, 然后到 CIGS 薄膜表面递减, 表明具有梯度分布的禁带宽度。
本发明与现有技术相比有以下优点: 本发明所有的工艺皆为干式工 艺流程, 工艺过程不使用化学溶剂与溶液。 太阳能电池的吸收层制备采 用一步操作即可得到稳定结晶的吸收层, 不再需要对吸收层进行硒化或 硫化的工艺程序, 大大缩短了生产周期, 减少了生产设备, 也避免了生 产过程中的环境污染和潜在的危险。 本发明的工艺步骤简化, 能源消耗
/1、 因此降低了生产成本。
Claims
1. 一种铜铟镓硒薄膜太阳能电池的制备方法, 其包括:
a) 在衬底上制备钼背电极;
b )在该钼背电极上制备铜铟镓硒吸收层: 利用真空磁控溅射法, 采 用 CuInxG -xSe2合金靶进行溅射,设 x=0的 CuGaSe2合金靶为靶 1,设 x=0. 8 至 0. 6的 CuInxGai—xSe2合金靶为靶 2,首先以高功率密度 4W/cm2至 8W/cm2 之间的任意高功率密度对靶 1先溅射 2至 4分钟, 接着再对靶 1和靶 2 进行共溅射, 此时对靶 2进行溅射的初始功率密度为 0. 3W/cm2至 lW/cm2 之间任意的低功率密度, 而对靶 1 进行溅射的高功率密度设置成在工作 中连续递减, 在对靶 1和靶 2进行共溅射的状态下, 当对靶 1进行溅射 的功率密度连续递减时, 与此同时对靶 2进行溅射的功率密度则为连续 递增, 最后直至对靶 1 进行溅射的功率密度递减至 0. 3W/cm2至 lW/cm2 之间的任意低功率密度, 对靶 2 进行溅射的功率密度递增至 4W/cm2 至 8W/cm2之间的任意高功率密度,执行共溅射的时间为 30至 60分钟,使得 铜铟镓硒吸收层中的 Ga浓度形成梯度, 其在该吸收层与 Mo背电极接触 的一侧的浓度最高, 在该吸收层的相对另一侧的浓度最低;
c )进行退火处理: 在真空室内以快速加热方式对铜铟镓硒吸收层进 行退火处理, 其温度为 400°C至 600°C, 退火时间为 55至 90秒;
d ) 在铜铟镓硒吸收层上制备 In2Se3或 ZnS缓冲层, 其厚度为 80至
120纳米;
e ) 在所述 In2Se3或 ZnS缓冲层上制备本征氧化锌高阻抗层, 其厚度 为 0. 1至 0. 5微米;
f )在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层, 其厚 度为 0. 3至 0. 8微米;
g ) 在氧化铟锡薄膜低阻抗层上制备铝电极。
2. 如权利要求 1所述的制备方法, 其特征在于: 所述铜铟镓硒吸收 层的厚度为 1. 5微米至 2微米。
3. 如权利要求 1所述的制备方法, 其特征在于: 在执行步骤 b ) 中, 溅射腔体内的工作压力为 1 X 10— 4 Torr,衬底的温度保持在 350°C至 450°C 之间的任意温度。
4. 如权利要求 1所述的制备方法, 其特征在于: 在执行步骤 d) 中, 利用真空磁控溅射法, 采用 In2Se3或 ZnS合金靶, 真空磁控溅射的工作 压力为 1-5X10— 3 Torr 并通入 Ar气体, 衬底的温度保持在室温。
5. 如权利要求 1所述的制备方法, 其特征在于: 在执行步骤 e) 中, 利用射频真空磁控溅射法, 靶材为本征氧化锌, 射频真空磁控溅射的工 作压力为 1-5X10— 3Torr, 工作频率为 400K~2MHz, 并通入 Ar气体, 衬底 的温度保持在室温。
6. 如权利要求 1所述的制备方法, 其特征在于: 利用真空直流磁控 溅射法, 靶材为氧化铟锡 In203:Sn02, In203:Sn02的质量比为 9: 1, 真空直 流磁控溅射的工作压力为 1-5X 10— 3Torr, 并通入掺有 2%至 5%02的 Ar气 体, 衬底的温度保持室温。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13804992.9A EP2860768B1 (en) | 2012-06-11 | 2013-04-11 | Method for preparing copper indium gallium diselenide thin-film solar cell |
US14/153,026 US8969124B2 (en) | 2012-06-11 | 2014-01-11 | Method for fabricating Cu—In—Ga—Se film solar cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210192751.9A CN102694077B (zh) | 2012-06-11 | 2012-06-11 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
CN201210192751.9 | 2012-06-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/153,026 Continuation US8969124B2 (en) | 2012-06-11 | 2014-01-11 | Method for fabricating Cu—In—Ga—Se film solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013185506A1 true WO2013185506A1 (zh) | 2013-12-19 |
Family
ID=46859423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/074072 WO2013185506A1 (zh) | 2012-06-11 | 2013-04-11 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8969124B2 (zh) |
EP (1) | EP2860768B1 (zh) |
CN (1) | CN102694077B (zh) |
WO (1) | WO2013185506A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102694077B (zh) * | 2012-06-11 | 2014-08-06 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
CN102751388B (zh) * | 2012-07-18 | 2015-03-11 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
US9520507B2 (en) | 2014-12-22 | 2016-12-13 | Sunpower Corporation | Solar cells with improved lifetime, passivation and/or efficiency |
CN105355718A (zh) * | 2015-11-20 | 2016-02-24 | 中国电子科技集团公司第十八研究所 | 一种铜铟镓硒太阳电池窗口层的制备方法 |
CN105826424B (zh) * | 2015-12-24 | 2017-12-22 | 云南师范大学 | 一种铜锌锡硫薄膜的制备方法 |
CN108179387A (zh) * | 2017-12-28 | 2018-06-19 | 清远先导材料有限公司 | 一种铜铟镓硒基系列靶材的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101728461A (zh) * | 2009-11-06 | 2010-06-09 | 清华大学 | 一种制备薄膜太阳能电池吸收层的方法 |
CN101814553A (zh) * | 2010-03-05 | 2010-08-25 | 中国科学院上海硅酸盐研究所 | 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层 |
CN102054897A (zh) * | 2009-10-27 | 2011-05-11 | 成都先锋材料有限公司 | 多元素合金单一靶材制备薄膜太阳能电池的方法 |
CN102290339A (zh) * | 2011-10-07 | 2011-12-21 | 南昌航空大学 | 铜铟镓硒靶材连续溅射制备cigs太阳电池吸收层的新工艺 |
CN102694077A (zh) * | 2012-06-11 | 2012-09-26 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5477088A (en) * | 1993-05-12 | 1995-12-19 | Rockett; Angus A. | Multi-phase back contacts for CIS solar cells |
JP4288641B2 (ja) * | 2000-08-17 | 2009-07-01 | 本田技研工業株式会社 | 化合物半導体成膜装置 |
AU2003275239A1 (en) * | 2002-09-30 | 2004-04-23 | Miasole | Manufacturing apparatus and method for large-scale production of thin-film solar cells |
US20100059385A1 (en) * | 2008-09-06 | 2010-03-11 | Delin Li | Methods for fabricating thin film solar cells |
US20130230933A1 (en) * | 2008-09-06 | 2013-09-05 | Soltrium Technology, Ltd. Shenzhen | Methods for fabricating thin film solar cells |
US8894826B2 (en) * | 2009-09-24 | 2014-11-25 | Jesse A. Frantz | Copper indium gallium selenide (CIGS) thin films with composition controlled by co-sputtering |
US8546176B2 (en) * | 2010-04-22 | 2013-10-01 | Tsmc Solid State Lighting Ltd. | Forming chalcogenide semiconductor absorbers |
CN101838788A (zh) * | 2010-05-06 | 2010-09-22 | 深圳丹邦投资集团有限公司 | 一种原位生长Cu2SixSn1-xS3光伏薄膜的方法 |
US20120132281A1 (en) * | 2010-11-26 | 2012-05-31 | Nexpower Technology Corporation | Thin-film solar cell and manufacturing method thereof |
CN102306666B (zh) * | 2011-09-28 | 2013-04-24 | 中国建材国际工程集团有限公司 | 一种具有梯度能带的铜铟镓硒太阳能电池及其制备方法 |
US20130164885A1 (en) * | 2011-12-21 | 2013-06-27 | Intermolecular, Inc. | Absorbers For High-Efficiency Thin-Film PV |
US8586457B1 (en) * | 2012-05-17 | 2013-11-19 | Intermolecular, Inc. | Method of fabricating high efficiency CIGS solar cells |
CN102751388B (zh) * | 2012-07-18 | 2015-03-11 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
US20140113403A1 (en) * | 2012-08-27 | 2014-04-24 | Intermolecular Inc. | High efficiency CZTSe by a two-step approach |
-
2012
- 2012-06-11 CN CN201210192751.9A patent/CN102694077B/zh active Active
-
2013
- 2013-04-11 WO PCT/CN2013/074072 patent/WO2013185506A1/zh active Application Filing
- 2013-04-11 EP EP13804992.9A patent/EP2860768B1/en active Active
-
2014
- 2014-01-11 US US14/153,026 patent/US8969124B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102054897A (zh) * | 2009-10-27 | 2011-05-11 | 成都先锋材料有限公司 | 多元素合金单一靶材制备薄膜太阳能电池的方法 |
CN101728461A (zh) * | 2009-11-06 | 2010-06-09 | 清华大学 | 一种制备薄膜太阳能电池吸收层的方法 |
CN101814553A (zh) * | 2010-03-05 | 2010-08-25 | 中国科学院上海硅酸盐研究所 | 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层 |
CN102290339A (zh) * | 2011-10-07 | 2011-12-21 | 南昌航空大学 | 铜铟镓硒靶材连续溅射制备cigs太阳电池吸收层的新工艺 |
CN102694077A (zh) * | 2012-06-11 | 2012-09-26 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2860768A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2860768B1 (en) | 2017-06-07 |
US8969124B2 (en) | 2015-03-03 |
US20150017755A1 (en) | 2015-01-15 |
CN102694077A (zh) | 2012-09-26 |
EP2860768A4 (en) | 2016-02-17 |
EP2860768A1 (en) | 2015-04-15 |
CN102694077B (zh) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102751388B (zh) | 一种铜铟镓硒薄膜太阳能电池的制备方法 | |
CN103074583B (zh) | 一种cigs薄膜电池的激光沉积制备工艺 | |
CN1719625A (zh) | 铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法 | |
CN102051603B (zh) | 一种等离子体辅助硒硫化处理装置及工艺 | |
CN101814553A (zh) | 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层 | |
CN106531826A (zh) | 铜锢稼硒薄膜太阳能电池的制备方法 | |
WO2013185506A1 (zh) | 一种铜铟镓硒薄膜太阳能电池的制备方法 | |
CN102610673A (zh) | 一种铜锌锡硫化合物薄膜太阳能电池及其制备方法 | |
CN102154622A (zh) | 用作太阳能电池光吸收层的铜铟镓硒薄膜的制备方法 | |
KR20120080045A (ko) | 태양전지의 제조방법 | |
CN103474511B (zh) | 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池 | |
KR101734362B1 (ko) | Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법 | |
CN103474514B (zh) | 铜铟镓硒太阳能电池的制备方法 | |
KR101504343B1 (ko) | 화합물 반도체 태양전지의 제조방법 | |
CN105047736B (zh) | 一种铜铟镓硒薄膜太阳电池无镉缓冲层材料的制备方法 | |
CN108389934A (zh) | 一种运用一步溅射法制备铜铟镓硒太阳电池的方法 | |
CN111029439B (zh) | 一种无硒化制备铜铟镓硒薄膜太阳能电池的方法 | |
CN103258896A (zh) | 柔性cigs薄膜太阳电池吸收层制备工艺 | |
CN102723399B (zh) | 一种Cu(InAl)Se2薄膜的化学制备工艺 | |
CN103094372B (zh) | 太阳能电池及其制造方法 | |
KR102212042B1 (ko) | 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법 | |
KR20140026678A (ko) | 급속 열처리 공정을 사용한 cigs 박막의 제조방법 | |
CN105870254B (zh) | 一种双靶直流共溅射制备铜铟镓硒吸收层的方法 | |
CN105932093A (zh) | 一种高质量cigs薄膜太阳能电池吸收层的制备方法 | |
KR20150136721A (ko) | 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13804992 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013804992 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013804992 Country of ref document: EP |