[go: up one dir, main page]

WO2013183755A1 - Fabric for protective clothing, and arc-resistant protective clothing - Google Patents

Fabric for protective clothing, and arc-resistant protective clothing Download PDF

Info

Publication number
WO2013183755A1
WO2013183755A1 PCT/JP2013/065803 JP2013065803W WO2013183755A1 WO 2013183755 A1 WO2013183755 A1 WO 2013183755A1 JP 2013065803 W JP2013065803 W JP 2013065803W WO 2013183755 A1 WO2013183755 A1 WO 2013183755A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
fabric
fiber
protective clothing
flame retardant
Prior art date
Application number
PCT/JP2013/065803
Other languages
French (fr)
Japanese (ja)
Inventor
康規 田中
石田 昌弘
直樹 新清
裕康 羽木
敦史 溝渕
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013183755A1 publication Critical patent/WO2013183755A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the present invention relates to a protective clothing fabric and an arc resistant protective clothing.
  • Garments that provide 40-75% by weight modacrylic fiber, 1-40% by weight aramid fiber, and 10-40% by weight cotton fiber are known as garments that provide arc protection and flame resistance (see FIG. For example, see Patent Document 1).
  • Patent Document 1 no examination has been made on the fiber ablation phenomenon, and it is considered that there is room for improvement in terms of arc resistance.
  • the specific garment described in Patent Document 1 uses 20% by weight or more of aramid fibers, which is an obstacle to the low-cost supply of work clothes for arc protection.
  • An object of the present invention is to provide a fabric for protective clothing having excellent arc resistance, flame retardancy, and workability, and an arc resistant protective clothing comprising the fabric.
  • Another object of the present invention is to provide a fabric for protective clothing having excellent arc resistance, flame retardancy, and workability, and having a green color suitable for dyeing, and an arc resistant clothing comprising the fabric.
  • the present inventors have focused on the ablation phenomenon of fibers, contain a fusible fiber, and do not melt the dough after being irradiated with an arc, and carbonize in the form as it is.
  • the present inventors have found that a cloth for protective clothing having excellent arc resistance and flame retardancy can be obtained even when thin, by using the cloth characterized in that it is thin.
  • the present invention relates to an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that the acrylic fiber And the fusible flame retardant fiber (B-1) contains 3 wt% or more and less than 15 wt% based on the weight of the cloth.
  • the fusible flame retardant fiber (B-1) is one or more fibers selected from the group consisting of phenolic fibers, flame retardant vinylon fibers, melamine fibers, flame resistant fibers, and polytetrafluoroethylene fibers. It is preferable.
  • the acrylic fiber (A) is contained in an amount of 30% by weight or more based on the weight of the fabric.
  • the non-melting non-flame retardant fiber (D) is contained in an amount of 15 to 40% by weight, more preferably 25 to 40% by weight based on the weight of the fabric.
  • the acrylic fiber (A) is preferably a copolymer obtained by copolymerizing 40 to 70% by weight of acrylonitrile and 30 to 60% by weight of other components.
  • the other component is preferably a halogen-containing vinyl monomer and / or a halogen-containing vinylidene monomer.
  • the antimony oxide is preferably at least one compound selected from the group consisting of antimony trioxide, antimony tetroxide, and antimony pentoxide.
  • the ATPV value per unit weight measured by the following test method is preferably 1.2 or more.
  • ⁇ Measurement method of ATPV value per unit basis weight> According to ASTM F1959 / F1959M-06ae1 (Standard Test for Determinating the Arc Rating of Materials for Closing), fabric weight per unit (oz / yd 2 ) and ATPV (cal / cm 2 ) were measured and measured. Then, the ATPV value per unit basis weight is calculated.
  • the present invention also relates to an acrylic fiber (A) containing at least 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an ablation fiber (B) (however, the acrylic fiber is not included), non- It is related with the cloth for protective clothing characterized by including a fusible flame-retardant fiber (C) and a non-flammable non-flame-retardant fiber (D).
  • A acrylic fiber
  • B ablation fiber
  • non- It is related with the cloth for protective clothing characterized by including a fusible flame-retardant fiber (C) and a non-flammable non-flame-retardant fiber (D).
  • the fusible fiber (B) is a phenol fiber.
  • the blending ratio of the non-melting flame retardant fiber (C) is preferably 0.1 to 50% by weight based on the total weight of the acrylic fiber (A) and the fusible fiber (B).
  • the weight ratio ((B) / (A)) of the fusible fiber (B) and the acrylic fiber (A) is preferably 0.1 to 1.5.
  • the present invention relates to an arc-resistant protective clothing comprising the protective clothing fabric.
  • the protective clothing fabric of the present invention comprises an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that acrylic The flame-retardant flame retardant fiber (B-1) contains 3% by weight or more and less than 15% by weight based on the weight of the fabric. It is capable of exhibiting flammability and has a green color suitable for dyeing.
  • the protective clothing fabric of the present invention comprises an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that acrylic The fusible flame retardant fiber (B-1) is contained in an amount of 3% by weight or more and less than 15% by weight based on the weight of the fabric.
  • the present invention has been made paying attention to the fiber ablation phenomenon.
  • fiber ablation is that the fiber in contact with the arc melts and evaporates.
  • the fabric of the present invention contains the acrylic fiber (A), which is such a fusible fiber, and the fusible flame retardant fiber (B-1).
  • A acrylic fiber
  • B-1 fusible flame retardant fiber
  • the fabric of the present invention can further contain non-melting flame retardant fibers (C), and from the viewpoint of comfort and the like, non-melting non-flame retardant fibers (D) can be added.
  • the non-ablative refractory fiber (D) is a non-flame retardant fiber, but it should be combined with an acrylic fiber (A) that releases a fire-extinguishing gas upon flame contact or a fusible flame retardant fiber (B-1) Thus, the flame is suppressed from being applied to the fabric.
  • the present invention relates to an acrylic fiber (A) containing at least 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an ablation fiber (B) (however, the acrylic fiber is not included), non-
  • the present invention also relates to a protective clothing fabric characterized by including a fusible flame retardant fiber (C) and a non-flamed flame retardant fiber (D).
  • the fusible fiber means that when a fiber sample is irradiated with a heat flow rate of 550 kW / m 2 for 20 seconds, the surface temperature of the fiber rises and reaches the boiling point or the pyrolysis temperature of the fiber material, and the surface is open. It is defined to be in a phase state (decomposed gas).
  • the fiber sample uses a tablet molding machine (for diameter 10 mm) (manufactured by JASCO Corporation) for 0.20 g of fiber material, and is 55 to 65 MPa using an electric hydraulic pump. It is a sample that was pressed for 60 to 180 seconds under pressure and formed into a tablet shape with a diameter of 11 ⁇ 1 mm and a thickness of 3.5 ⁇ 1 mm.
  • the weight of the fiber is 157 g when irradiated with Inductively Coupled Thermal Plasma (ICTP) (plasma input power: 8.54 kW) corresponding to a heat flux of about 550 kW / m 2 for 20 seconds.
  • ICTP Inductively Coupled Thermal Plasma
  • Those that decrease by more than / m 2 are defined as ablation fibers, and those that decrease by less than 157 g / m 2 are defined as non-aeration fibers.
  • an apparatus capable of irradiating ICTP with the heat flux equivalent to about 550 kW / m 2 an apparatus having a high frequency induction thermal plasma generation unit can be exemplified.
  • Such an apparatus capable of irradiating ICTP can more easily evaluate the arc resistance by irradiating a test object with ICTP instead of arc plasma.
  • An example of such an apparatus will be described in more detail with reference to FIG.
  • the apparatus 5 capable of irradiating ICTP has a high frequency induction thermal plasma generation unit 10, which includes a gas inflow portion 11, a first tube portion 13 connected to the gas inflow portion 11, And an induction coil 15 wound around the outside of the first tube portion 13.
  • a high-frequency current is supplied to the induction coil 15 in a state where the gas flowing in from the gas inflow portion 11 is included in the first tube portion 13, the thermal plasma 12 can be generated in the first tube portion 13.
  • the first tube portion 13 is constituted by a double tube structure of a cylindrical quartz tube having an inner diameter of 70 mm ⁇ , an outer diameter of 95 mm ⁇ , and a length of 330 mm. By allowing cold water to pass through the gap portion 17, the first tube portion 13 is cooled from the heating by the plasma.
  • the first tube portion 13 has an induction coil 15 wound on the outside for 8 turns.
  • an alternating magnetic field is generated in the first cylindrical portion 13 in the axial direction.
  • the magnetic field induces an alternating electric field in the radial direction inside the first cylindrical portion 13.
  • Sheath gas Ar Plasma input power: 8.54 kW (heat flux equivalent to about 550 kW / m 2 ) Sheath gas flow rate: 30 slpm Pressure in the first tube portion 13: atmospheric pressure (760 Torr)
  • a second cylindrical portion 20 is formed below the high frequency induction thermal plasma generating portion 10.
  • the 2nd cylinder part 20 has the insertion part 27 for inserting the window part 25 for observing an inside from the outside, and the to-be-tested object installation stand 23 inside from the outer side.
  • the test object mounting table 23 is set at a position 200 mm below the induction coil 15 and directly below the first tube portion 13.
  • the test object mounting table 23 is not particularly limited as long as it can fix the test object 40 at a predetermined position during measurement.
  • test object 40 to be measured is as follows.
  • the slide portion 45 of the test object installation base 23 is fixed to the base 28, and the insertion port 27 is shielded by the base 28.
  • a water cooling mechanism 29 is provided behind the base 28 (on the side opposite to the test object mounting table 23), and the test object mounting table 23 can be cooled.
  • the test object mounting table 23 can be made of stainless steel, and the test object mounting table 23 is cooled by a water cooling mechanism 29 so that it can withstand heating by thermal plasma irradiation.
  • the device 5 can be used together with the photographing unit 30 and the analysis processing unit 33 as necessary.
  • the photographing unit 30 is a high-speed color video camera (VW-6000, manufactured by Keyence Corporation), and the analysis processing unit 33 is a spectrometer (high-speed multichannel spectrometer PMA-20, manufactured by Hamamatsu Photonics Co., Ltd.) can do.
  • the composition of the acrylic fiber (A) is not particularly limited as long as it contains 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber. % Of acrylonitrile and a copolymer obtained by copolymerizing 30 to 60% by weight of other components, and fibers containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber are preferably used. be able to. By setting the blending amount of acrylonitrile within the above range, it is preferable from the viewpoint of heat resistance and flame retardancy of the fabric.
  • Examples of the other components include halogen-containing vinyl monomers and sulfonic acid group-containing monomers.
  • halogen-containing vinyl monomer examples include vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, and one or more of these are used.
  • the blending amount of the halogen-containing vinyl monomer is not particularly limited, but is preferably 30 to 60% by weight in the acrylic fiber from the viewpoint of flame retardancy and heat resistance.
  • sulfonic acid group-containing monomer examples include methacryl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and salts thereof. One or more of these may be used. Is used.
  • the salt examples include, but are not limited to, sodium salt, potassium salt, ammonium salt and the like.
  • the sulfonic acid group-containing monomer is used as necessary, and the blending amount thereof is preferably 0 to 3% by weight in the acrylic fiber. If it exceeds 3% by weight, the spinnability during the production of the acrylic fiber tends to decrease.
  • antimony oxide contained in the acrylic fiber (A) examples include antimony trioxide, antimony tetraoxide, and antimony pentoxide. Among these, antimony trioxide is preferable.
  • the content of antimony oxide is 8% by weight or more with respect to the resin weight of the acrylic fiber (A), preferably 9% by weight or more, more preferably 10% by weight or more, and 11% by weight or more. More preferably, it is particularly preferably 20% by weight or more.
  • the upper limit of the content of antimony oxide is not particularly limited, but is preferably 33% by weight or less, for example. If it exceeds 33% by weight, the spinnability during the production of the acrylic fiber tends to decrease.
  • acrylic fiber (A) examples include Protex (registered trademark) M type and C type manufactured by Kaneka Corporation.
  • the blending ratio of the acrylic fiber (A) is not particularly limited, but is preferably 30% by weight or more based on the weight of the fabric, more preferably 40 to 65% by weight, and 45 to 60% by weight. % Is more preferable, and 50 to 55% by weight is particularly preferable.
  • acrylic fibers (A1) other than acrylic fibers (A) can also be included.
  • the acrylic fiber (A1) include an acrylic fiber containing less than 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an acrylic fiber not containing antimony oxide, and the like.
  • the blending amount of the acrylic fiber (A1) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 20% by weight or less based on the weight of the fabric.
  • the fusible flame retardant fiber (B-1) does not contain an acrylic fiber such as the acrylic fiber (A).
  • an acrylic fiber such as the acrylic fiber (A).
  • acrylic fiber for example, phenolic fiber, polytetrafluoroethylene (PTFE) fiber, melamine fiber And flame retardant vinylon fiber, flame resistant fiber and the like.
  • phenol-based fibers and flame-resistant fibers are preferable from the viewpoint of achieving both arc resistance and flame resistance.
  • the flame retardancy is defined in the JIS L1091E method (oxygen index method test), and a fiber having a LOI of 26 or more is referred to as a flame retardant fiber, and a fiber having a LOI of less than 26 is referred to as a non-flame retardant fiber.
  • the LOI of the fibers described in this specification is shown in Table 2.
  • phenol fiber examples include Kynol (registered trademark) (manufactured by Gunei Chemical Industry Co., Ltd.).
  • flame resistant fiber examples include Pyromex (manufactured by Toho Tenax Co., Ltd.).
  • the blending ratio of the fusible flame retardant fiber (B-1) is not particularly limited, but it is based on the weight of the fabric from the viewpoint of achieving both arc resistance, carbonization of the fabric, and flame retardancy.
  • the content is preferably 1 to 50% by weight, more preferably 1 to 30% by weight, still more preferably 1 to 20% by weight, and 3% by weight to 15% by weight from the viewpoint of excellent green color. % Is more preferable, and 5 to 12% by weight is particularly preferable.
  • fusible non-flame retardant fibers such as nylon fibers and rayon fibers can be included.
  • polyhexamethylene adipamide (nylon 66) fiber is preferable from the viewpoint of heat resistance and fiber strength.
  • the fusible flame retardant fiber (B-1) and the fusible non-flame retardant fiber (B-2) may be collectively referred to as the fusible fiber (B).
  • the additive amount of the emissive fiber (B) include the same additive amount as that of the fusible flame retardant fiber (B-1).
  • non-melting flame retardant fiber (C) examples include p-aramid fiber and flame retardant polyester fiber, and these can be used alone or in combination of two or more.
  • Examples of p-aramid that can be used in the present invention include Twaron (registered trademark, manufactured by Teijin Ltd.) and Kevlar (registered trademark, manufactured by DuPont).
  • Examples of the copolymer of p-aramid and diaminophenylene-terephthalamide include Technora (registered trademark, manufactured by Teijin Limited).
  • the blending ratio of the non-absorptive flame retardant fiber (C) is preferably 30% by weight or less based on the weight of the fabric from the viewpoint of achieving both arc resistance, carbonization of the fabric, and flame retardancy. It is more preferably 1 to 30% by weight, further preferably 1 to 20% by weight, and particularly preferably 1 to 10% by weight.
  • the blending ratio of the non-melting flame retardant fiber (C) is preferably 50% by weight or less based on the total weight of the acrylic fiber (A) and the fusible flame retardant fiber (B-1).
  • the content is more preferably 0.1 to 50% by weight, further preferably 5 to 30% by weight, and particularly preferably 5 to 20% by weight. By setting it as such a mixture ratio, it is preferable from a viewpoint of arc resistance and a flame retardance.
  • non-melting non-flame retardant fiber (D) examples include cotton, polyester fiber and the like, and these can be used alone or in combination of two or more. Among these, cotton is preferable.
  • the blending amount of the non-melting non-flame retardant fiber (D) is preferably 40% by weight or less, more preferably 1 to 40% by weight, still more preferably 15 to 40% by weight, Particularly preferred is ⁇ 40% by weight. Within the above range, it is preferable in terms of flame retardancy and comfort (such as comfort).
  • the fabric of the present invention may be composed of one type of yarn or may be composed of a plurality of yarns.
  • the yarn constituting the fabric of the present invention can be produced by a known spinning method. Examples of the spinning method include a ring spinning method and an air spinning method, but are not necessarily limited thereto.
  • the cloth of the present invention can be produced by a known cloth making method using the above-described yarn.
  • Examples of the form of the fabric include, but are not limited to, a woven fabric, a knitted fabric, and a nonwoven fabric. Further, the woven fabric may be woven, and the knitted fabric may be knitted.
  • the structure of the woven fabric is not particularly limited, and may be a Mihara texture such as plain weave, twill weave, and satin weave, or a patterned fabric using a special loom such as jacquard.
  • the structure of the knitted fabric is not particularly limited, and may be any of a round knitting, a flat knitting, and a warp knitting. Examples of the form of the nonwoven fabric include wet papermaking nonwoven fabric, carded nonwoven fabric, airlaid nonwoven fabric, thermal bond nonwoven fabric, chemically bonded nonwoven fabric, needle punched nonwoven fabric, hydroentangled nonwoven fabric, and stitchbonded nonwoven fabric.
  • Fabric having a basis weight of the present invention (unit: oz / yd 2, the weight of the fabric per unit area (1 square yard) (ounces)) is 3 preferably ⁇ 10oz / yd 2, more preferably 4 ⁇ 8oz / yd 2 4 to 6 oz / yd 2 is more preferable.
  • the fabric of the present invention is extremely thin and excellent in workability as compared with the conventional arc resistant fabric, and even such a thin fabric is excellent in arc resistance and flame retardancy.
  • the fabric of the present invention preferably has an ATPV value per unit weight measured by the following test method of 1.2 or more.
  • the upper limit of the ATPV (arc thermal performance value) value is not particularly limited, and the higher the value, the more preferable a thin fabric having arc resistance can be obtained.
  • ⁇ Measurement method of ATPV value per unit basis weight> According to ASTM F1959 / F1959M-06ae1 (Standard Test for Determinating the Arc Rating of Materials for Closing), fabric weight per unit (oz / yd 2 ) and ATPV (cal / cm 2 ) were measured and measured. Then, the ATPV value per unit basis weight is calculated.
  • the fabric of the present invention has excellent arc resistance and flame retardancy although it is thinner than conventional arc resistant fabrics.
  • the fabric of the present invention has a green color suitable for dyeing.
  • the arc-proof protective clothing of the present invention can be manufactured by a known method using the fabric.
  • the arc-resistant protective clothing of the present invention can be used as a single-layer protective clothing using the fabric of the present invention in a single layer, or can be used as a multilayer protective clothing using the fabric of the present invention in two or more multilayers. Of course, it may be formed as a multilayer protective clothing by forming a multilayer with other fabrics.
  • the arc-resistant protective clothing of the present invention is not only arc-resistant, but also excellent in flame retardancy and workability, and can be used even when working in an environment involving the risk of arc flash.
  • work clothes with high visibility can be provided, and work clothes with excellent wearing feeling can be provided.
  • even if washing is repeated the arc resistance and flame retardancy are maintained.
  • Example 1 An acrylic resin in which 20% by weight of antimony trioxide is added to a copolymer obtained by polymerizing a composition comprising 50% by weight of acrylonitrile, 49% by weight of vinylidene chloride and 1% by weight of sodium styrenesulfonate.
  • Acrylic fiber (LOI: 34) Kyn: Phenolic fiber (manufactured by Gunei Chemical Industry Co., Ltd., Kynol (registered trademark), LOI: 32) Pyr: Flame resistant fiber (Toho Tenax Co., Ltd., Pyromex, LOI: 55) Ray: Rayon fiber (LOI: 18) Ny66: Nylon 66 (LOI: 21) Twa: Para-aramid fiber (manufactured by Teijin Limited, Twaron (registered trademark), LOI: 29) TCS: Flame-retardant polyester fiber (Trevila CS, Trevira CS, LOI: 28) Cot: Cotton (LOI: 18) PET: Polyester fiber (LOI: 21)
  • the obtained specimen is set in the apparatus 5 shown in FIG. 1 and irradiated with thermal plasma having a thermal flux equivalent to 550 kW / m 2 for 20 seconds under the following irradiation conditions, and the weight of the fiber is reduced by 157 g / m 2 or more.
  • the fiber was designated as a fusible fiber, and the fiber that decreased by less than 157 g / m 2 was designated as a non-melting fiber.
  • the measurement results are shown in Table 2 below. Table 2 also describes the ablation measurement results and LOI values for the fibers described in this specification other than those used in the examples.
  • Sheath gas Ar Plasma input power: 8.54 kW (heat flux equivalent to about 550 kW / m 2 ) Sheath gas flow rate: 30 slpm Pressure in the first tube portion 13: atmospheric pressure (760 Torr)
  • Carbonization length was measured according to ASTM D6413-08 Standard Test Method for Frame Resistance of Textiles (Vertical Test). The carbonization length is preferably less than 6 inches. The evaluation results are shown in Table 1.
  • ⁇ Raw color> The fabrics obtained in Examples and Comparative Examples were visually observed and evaluated according to the following evaluation criteria.
  • delta The raw machine color is comparatively thin and it is possible to dye to a desired color to some extent.
  • X The raw machine color is dark and it is difficult to dye to a desired color.
  • the hue of the fabric can be quantitatively evaluated by showing the result of color measurement using a spectrocolorimeter CM-2600d (manufactured by Konica Minolta) in the Hunter Lab color system.
  • Device 10 High-frequency induction thermal plasma generation unit 11: Gas inflow unit 12: Thermal plasma 13: First tube unit 15: Inductive coil 17: Crevice unit 20: Second tube unit 23: Test object installation table 25: Window Section 27: Insertion slot 28: Base 29: Water cooling mechanism 30: Imaging section 33: Analysis processing section 40: Test object 45: Slide section

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

The present invention addresses the problem of providing a fabric for protective clothing having excellent arc resistance, flame retardation, and workability; and arc-resistant protective clothing containing the fabric. The present invention pertains to a fabric for protective clothing, characterized in comprising: acrylic fibers (A) containing 8 wt% or more of antimony oxide per the weight of acrylic fiber resin; and ablative flame retardant fibers (B-1) (which do not contain acrylic fibers); the content of ablative flame retardant fibers (B-1) being 3 wt% or more and less than 15 wt%, based on the fabric weight.

Description

防護服用布帛、及び耐アーク防護服Protective clothing fabric and arc-resistant protective clothing
 本発明は、防護服用布帛、及び耐アーク防護服に関する。 The present invention relates to a protective clothing fabric and an arc resistant protective clothing.
 近年、アークフラッシュによる事故が数多く報告されており、アークフラッシュの危険性を防ぐための対策が検討されている。その一つとして、NFPA(National Fire Protection Association、全米防火協会)が導入したNFPA 70Eという基準があり、アークフラッシュに暴露される防護服に必要な性能についても規定されている。電気整備士、消防士等の電気アークに実際に曝される危険性がある環境下で作業するものが着用する防護服等には、前記基準を充足する高い耐アーク性が要求される。 Recently, many accidents due to arc flash have been reported, and measures to prevent the danger of arc flash are being studied. One of them is the standard NFPA 70E introduced by NFPA (National Fire Protection Association), which also defines the performance required for protective clothing exposed to arc flash. High arc resistance that satisfies the above-mentioned standards is required for protective clothing and the like worn by those working in an environment where there is a risk of being actually exposed to an electric arc, such as an electric mechanic or a firefighter.
 アークからの防護及び防炎性を提供する衣服として、40~75重量%のモダクリル繊維、1~40重量%のアラミド繊維、及び10~40重量%の綿繊維を含む衣類が知られている(例えば、特許文献1参照)。しかしながら、特許文献1においては、繊維の溶発現象については何ら検討がなされていないものであり、耐アーク性の点では改良の余地があるものと考えられる。さらに、特許文献1に記載されている具体的な衣類は、20重量%以上のアラミド繊維が用いられているものであり、アーク防護用作業服の安価供給の障害となるものであった。 Garments that provide 40-75% by weight modacrylic fiber, 1-40% by weight aramid fiber, and 10-40% by weight cotton fiber are known as garments that provide arc protection and flame resistance (see FIG. For example, see Patent Document 1). However, in Patent Document 1, no examination has been made on the fiber ablation phenomenon, and it is considered that there is room for improvement in terms of arc resistance. Furthermore, the specific garment described in Patent Document 1 uses 20% by weight or more of aramid fibers, which is an obstacle to the low-cost supply of work clothes for arc protection.
 また、約40~65重量%のアンチモン含有モダクリル繊維又は難燃アクリル繊維、約10~50重量%の綿又は難燃化処理された綿、約25重量%以下のナイロン、約3重量%を超えて約10重量%に満たないp-アラミド繊維を含む繊維からなる難燃性布帛が知られている(例えば、特許文献2参照)。しかしながら、特許文献2においても、繊維の溶発現象については何ら検討がなされていないものであり、さらに、特許文献2では、アーク防護性を高めるためには目付けを大きくする必要があり、作業性に劣るものであった。 Also, about 40 to 65% by weight of antimony-containing modacrylic fiber or flame-retardant acrylic fiber, about 10 to 50% by weight of cotton or flame-treated cotton, about 25% or less of nylon, more than about 3% by weight For example, a flame-retardant fabric made of fibers containing less than about 10% by weight of p-aramid fibers is known (see, for example, Patent Document 2). However, in Patent Document 2, no examination has been made on the fiber ablation phenomenon. Further, in Patent Document 2, it is necessary to increase the basis weight in order to improve arc protection, and workability is improved. It was inferior to.
 従って、十分な耐アーク性、難燃性を有し、かつ、作業性に優れる防護服用布帛は知られていないのが現状である。 Therefore, there is currently no known protective clothing fabric having sufficient arc resistance and flame retardancy and excellent workability.
 また、近年、防護服用布帛においても、前記耐アーク性、難燃性、作業性といった諸特性に加え、様々な色に染色する等のデザイン性も重要な要素の一つとなっている。しかしながら、布帛本来の色が濃い場合には所望の色に染めることができない、という問題もあった。そこで、防護服用布帛には、上記耐アーク性、難燃性、作業性と供に、染色に適した生機色合いを有することも望まれていた。 Also, in recent years, design properties such as dyeing in various colors have become one of the important factors in the fabrics for protective clothing, in addition to the characteristics such as arc resistance, flame retardancy, and workability. However, when the original color of the fabric is dark, there is also a problem that the desired color cannot be dyed. Therefore, it has also been desired that the protective clothing fabric has a green color suitable for dyeing in addition to the arc resistance, flame retardancy, and workability.
特表2007-529649号公報JP-T-2007-529649 米国特許出願公開第2006/0292953号明細書US Patent Application Publication No. 2006/0292953
 本発明は、耐アーク性、難燃性、作業性に優れる防護服用布帛、及び当該布帛を含んでなる耐アーク防護服を提供することを課題とする。また、本発明は、耐アーク性、難燃性、作業性に優れ、さらに、染色に適した生機色合いを有する防護服用布帛、及び当該布帛を含んでなる耐アーク防護服を提供することも課題とする。 An object of the present invention is to provide a fabric for protective clothing having excellent arc resistance, flame retardancy, and workability, and an arc resistant protective clothing comprising the fabric. Another object of the present invention is to provide a fabric for protective clothing having excellent arc resistance, flame retardancy, and workability, and having a green color suitable for dyeing, and an arc resistant clothing comprising the fabric. And
 本発明者らは、上記課題に鑑みて検討の結果、繊維の溶発現象に着目し、溶発性繊維を含み、かつ、アークが照射された後に生地が溶融せず、そのままの形態で炭化することを特徴とする布帛とすることで、薄くても優れた耐アーク性と難燃性を有する防護服用布帛とすることができることを見出し、本発明に至った。 As a result of investigations in view of the above problems, the present inventors have focused on the ablation phenomenon of fibers, contain a fusible fiber, and do not melt the dough after being irradiated with an arc, and carbonize in the form as it is. The present inventors have found that a cloth for protective clothing having excellent arc resistance and flame retardancy can be obtained even when thin, by using the cloth characterized in that it is thin.
 すなわち、本発明は、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、及び、溶発性難燃繊維(B-1)(但し、アクリル系繊維は含まない)を含み、前記溶発性難燃繊維(B-1)が、布帛重量を基準として3重量%以上15重量%未満含むことを特徴とする防護服用布帛に関する。 That is, the present invention relates to an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that the acrylic fiber And the fusible flame retardant fiber (B-1) contains 3 wt% or more and less than 15 wt% based on the weight of the cloth.
 前記溶発性難燃繊維(B-1)が、フェノール系繊維、難燃ビニロン繊維、メラミン繊維、耐炎繊維、及び、ポリテトラフルオロエチレン繊維からなる群から選択される1種以上の繊維であることが好ましい。 The fusible flame retardant fiber (B-1) is one or more fibers selected from the group consisting of phenolic fibers, flame retardant vinylon fibers, melamine fibers, flame resistant fibers, and polytetrafluoroethylene fibers. It is preferable.
 アクリル系繊維(A)を、布帛重量を基準として30重量%以上含むことが好ましい。 It is preferable that the acrylic fiber (A) is contained in an amount of 30% by weight or more based on the weight of the fabric.
 さらに、非溶発性非難燃繊維(D)を、布帛重量を基準として15~40重量%含むことが好ましく、25~40重量%含むことがさらに好ましい。 Furthermore, it is preferable that the non-melting non-flame retardant fiber (D) is contained in an amount of 15 to 40% by weight, more preferably 25 to 40% by weight based on the weight of the fabric.
 アクリル系繊維(A)が、40~70重量%のアクリロニトリルと30~60重量%の他の成分を共重合して得られる共重合体であることが好ましい。 The acrylic fiber (A) is preferably a copolymer obtained by copolymerizing 40 to 70% by weight of acrylonitrile and 30 to 60% by weight of other components.
 前記他の成分が、ハロゲン含有ビニル単量体及び/又はハロゲン含有ビニリデン単量体であることが好ましい。 The other component is preferably a halogen-containing vinyl monomer and / or a halogen-containing vinylidene monomer.
 前記酸化アンチモンが、三酸化アンチモン、四酸化アンチモン、及び、五酸化アンチモンからなる群から選択される1種以上の化合物であることが好ましい。 The antimony oxide is preferably at least one compound selected from the group consisting of antimony trioxide, antimony tetroxide, and antimony pentoxide.
 下記試験方法により測定した、単位目付当たりのATPV値が1.2以上であることが好ましい。
<単位目付当たりのATPV値の測定方法>
 ASTM F1959/F1959M-06ae1(Standard Test for Determining the Arc Rating of Materials for Clothing)に従い、布帛の目付(oz/yd)及びATPV(cal/cm)を求め、測定されたATPV値を目付で除して単位目付当たりのATPV値を算出する。
The ATPV value per unit weight measured by the following test method is preferably 1.2 or more.
<Measurement method of ATPV value per unit basis weight>
According to ASTM F1959 / F1959M-06ae1 (Standard Test for Determinating the Arc Rating of Materials for Closing), fabric weight per unit (oz / yd 2 ) and ATPV (cal / cm 2 ) were measured and measured. Then, the ATPV value per unit basis weight is calculated.
 また、本発明は、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、溶発性繊維(B)(但し、アクリル系繊維は含まない)、非溶発性難燃繊維(C)、及び、非溶発性非難燃繊維(D)を含むことを特徴とする防護服用布帛に関する。 The present invention also relates to an acrylic fiber (A) containing at least 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an ablation fiber (B) (however, the acrylic fiber is not included), non- It is related with the cloth for protective clothing characterized by including a fusible flame-retardant fiber (C) and a non-flammable non-flame-retardant fiber (D).
 溶発性繊維(B)が、フェノール系繊維であることが好ましい。 It is preferable that the fusible fiber (B) is a phenol fiber.
 非溶発性難燃繊維(C)の配合割合が、アクリル系繊維(A)と溶発性繊維(B)の合計重量を基準として0.1~50重量%であることが好ましい。 The blending ratio of the non-melting flame retardant fiber (C) is preferably 0.1 to 50% by weight based on the total weight of the acrylic fiber (A) and the fusible fiber (B).
 溶発性繊維(B)とアクリル系繊維(A)の重量比((B)/(A))が、0.1~1.5であることが好ましい。 The weight ratio ((B) / (A)) of the fusible fiber (B) and the acrylic fiber (A) is preferably 0.1 to 1.5.
 さらに、本発明は、前記防護服用布帛を含んでなる耐アーク防護服に関する。 Furthermore, the present invention relates to an arc-resistant protective clothing comprising the protective clothing fabric.
 本発明の防護服用布帛は、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、及び、溶発性難燃繊維(B-1)(但し、アクリル系繊維は含まない)を含み、前記溶発性難燃繊維(B-1)が、布帛重量を基準として3重量%以上15重量%未満含むことで、薄くても優れた耐アーク性及び難燃性を発揮することができるものであり、かつ、染色に適した生機色合いを有する。 The protective clothing fabric of the present invention comprises an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that acrylic The flame-retardant flame retardant fiber (B-1) contains 3% by weight or more and less than 15% by weight based on the weight of the fabric. It is capable of exhibiting flammability and has a green color suitable for dyeing.
耐アーク性測定用の装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the apparatus for arc resistance measurement.
 本発明の防護服用布帛は、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、及び、溶発性難燃繊維(B-1)(但し、アクリル系繊維は含まない)を含み、前記溶発性難燃繊維(B-1)が、布帛重量を基準として3重量%以上15重量%未満含むことを特徴とするものである。 The protective clothing fabric of the present invention comprises an acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber, and a fusible flame retardant fiber (B-1) (provided that acrylic The fusible flame retardant fiber (B-1) is contained in an amount of 3% by weight or more and less than 15% by weight based on the weight of the fabric.
 本発明は、繊維の溶発現象に着目してなされたものである。ここで、繊維の溶発(アブレーション)とは、アークに接触した繊維が溶けて蒸発することである。本発明の布帛は、このような溶発性繊維であるアクリル系繊維(A)と溶発性難燃繊維(B-1)を含むことで、アークが接触した際に、繊維の溶発現象によってアーク温度を低下でき、薄くても優れた耐アーク性を発揮できるものである。 The present invention has been made paying attention to the fiber ablation phenomenon. Here, fiber ablation (ablation) is that the fiber in contact with the arc melts and evaporates. The fabric of the present invention contains the acrylic fiber (A), which is such a fusible fiber, and the fusible flame retardant fiber (B-1). The arc temperature can be lowered by this, and even if it is thin, excellent arc resistance can be exhibited.
 また、本発明の布帛は、さらに、非溶発性難燃繊維(C)を含むことができ、着心地等の観点からは、非溶発性非難燃繊維(D)を添加することできる。前記非溶発性非難繊維(D)は、非難燃繊維であるが、接炎時に消火性のガスを放出するアクリル系繊維(A)や溶発性難燃繊維(B-1)と組み合わせることで、布帛への着炎が抑制される。 Further, the fabric of the present invention can further contain non-melting flame retardant fibers (C), and from the viewpoint of comfort and the like, non-melting non-flame retardant fibers (D) can be added. The non-ablative refractory fiber (D) is a non-flame retardant fiber, but it should be combined with an acrylic fiber (A) that releases a fire-extinguishing gas upon flame contact or a fusible flame retardant fiber (B-1) Thus, the flame is suppressed from being applied to the fabric.
 つまり、本発明においては、これらのアクリル系繊維(A)や溶発性難燃繊維(B-1)を用いることではじめて、薄くても優れた耐アーク性及び難燃性を発揮できるものであり、アークが照射された後に、生地が溶融せず、そのままの形態で炭化する布帛が得られるものである。 In other words, in the present invention, only by using these acrylic fibers (A) and the fusible flame retardant fibers (B-1), excellent arc resistance and flame resistance can be exhibited even if they are thin. In addition, after the arc is irradiated, the fabric is not melted, and a fabric that is carbonized as it is can be obtained.
 さらに、本発明は、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、溶発性繊維(B)(但し、アクリル系繊維は含まない)、非溶発性難燃繊維(C)、及び、非溶発性非難燃繊維(D)を含むことを特徴とする防護服用布帛にも関するものである。 Furthermore, the present invention relates to an acrylic fiber (A) containing at least 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an ablation fiber (B) (however, the acrylic fiber is not included), non- The present invention also relates to a protective clothing fabric characterized by including a fusible flame retardant fiber (C) and a non-flamed flame retardant fiber (D).
 本明細書において、溶発性繊維とは、繊維サンプルに550kW/mの熱流速を20秒照射した際、繊維の表面温度が上昇し繊維素材の沸点又は熱分解温度に達し、表面が気相状態(分解ガス)になるものと定義されるものである。前記繊維サンプルとは、後述する通り、0.20gの繊維材に対して、錠剤成形器(直径10mm用)(日本分光(株)製)を使用し、電動油圧ポンプを用いて55~65MPaの圧力下で60~180秒加圧し、直径11±1mm、厚さ3.5±1mmの錠剤形状に成形したサンプルのことである。本発明においては、熱流束が約550kW/mに相当する高周波誘導熱プラズマ(Inductively Coupled Thermal Plasma;ICTP)(プラズマ入力電力:8.54kW)を20秒間照射した場合に、繊維の重量が157g/m以上減少するものを溶発性繊維と定義し、157g/m未満減少するものを非溶発性繊維と定義する。 In the present specification, the fusible fiber means that when a fiber sample is irradiated with a heat flow rate of 550 kW / m 2 for 20 seconds, the surface temperature of the fiber rises and reaches the boiling point or the pyrolysis temperature of the fiber material, and the surface is open. It is defined to be in a phase state (decomposed gas). As described later, the fiber sample uses a tablet molding machine (for diameter 10 mm) (manufactured by JASCO Corporation) for 0.20 g of fiber material, and is 55 to 65 MPa using an electric hydraulic pump. It is a sample that was pressed for 60 to 180 seconds under pressure and formed into a tablet shape with a diameter of 11 ± 1 mm and a thickness of 3.5 ± 1 mm. In the present invention, the weight of the fiber is 157 g when irradiated with Inductively Coupled Thermal Plasma (ICTP) (plasma input power: 8.54 kW) corresponding to a heat flux of about 550 kW / m 2 for 20 seconds. Those that decrease by more than / m 2 are defined as ablation fibers, and those that decrease by less than 157 g / m 2 are defined as non-aeration fibers.
 上記熱流束が約550kW/mに相当するICTPを照射することができる装置としては、高周波誘導熱プラズマ発生部を有する装置を挙げることができる。このようなICTPを照射することができる装置は、アークプラズマに代えて、ICTPを被検物に照射することで、耐アーク性をより簡便に評価できる。このような装置の一例を、図1を用いてより詳細に説明する。 As an apparatus capable of irradiating ICTP with the heat flux equivalent to about 550 kW / m 2 , an apparatus having a high frequency induction thermal plasma generation unit can be exemplified. Such an apparatus capable of irradiating ICTP can more easily evaluate the arc resistance by irradiating a test object with ICTP instead of arc plasma. An example of such an apparatus will be described in more detail with reference to FIG.
 ICTPを照射することができる装置5は、高周波誘導熱プラズマ発生部10を有し、高周波誘導熱プラズマ発生部10は、ガス流入部11、ガス流入部11に連絡された第1筒部13、及び第1筒部13の外側に巻かれた誘導コイル15を有する。ガス流入部11から流入されたガスを第1筒部13内に含めた状態で、誘導コイル15に高周波電流を供給すると、第1筒部13内に熱プラズマ12を発生させることができる。 The apparatus 5 capable of irradiating ICTP has a high frequency induction thermal plasma generation unit 10, which includes a gas inflow portion 11, a first tube portion 13 connected to the gas inflow portion 11, And an induction coil 15 wound around the outside of the first tube portion 13. When a high-frequency current is supplied to the induction coil 15 in a state where the gas flowing in from the gas inflow portion 11 is included in the first tube portion 13, the thermal plasma 12 can be generated in the first tube portion 13.
 第1筒部13は、内径70mmφ、外径95mmφ、長さ330mmの円筒形石英管の二重管構造で構成される。隙間部17に冷水を通じさせることで、プラズマによる加熱から第1筒部13を冷却する。 The first tube portion 13 is constituted by a double tube structure of a cylindrical quartz tube having an inner diameter of 70 mmφ, an outer diameter of 95 mmφ, and a length of 330 mm. By allowing cold water to pass through the gap portion 17, the first tube portion 13 is cooled from the heating by the plasma.
 第1筒部13は、外側に誘導コイル15が8ターン巻かれている。誘導コイル15に高周波電流を供給することで、第1筒部13内部に軸方向に交番磁界が生じる。そして、この磁界によって、第1筒部13内部には径方向に交番電界が誘導される。この状態でガス流入部11より所定のシースガスを流入させると、第1筒部13内において同ガスが励起・電離し、熱プラズマが発生する。本発明における測定方法では、以下の照射条件を採用する。 The first tube portion 13 has an induction coil 15 wound on the outside for 8 turns. By supplying a high-frequency current to the induction coil 15, an alternating magnetic field is generated in the first cylindrical portion 13 in the axial direction. The magnetic field induces an alternating electric field in the radial direction inside the first cylindrical portion 13. When a predetermined sheath gas is caused to flow from the gas inflow portion 11 in this state, the same gas is excited and ionized in the first tube portion 13 to generate thermal plasma. In the measurement method in the present invention, the following irradiation conditions are employed.
 <照射条件>
 シースガス:Ar
 プラズマ入力電力:8.54kW(熱流束は約550kW/m相当)
 シースガス流量:30slpm
 第1筒部13内の圧力:大気圧(760Torr)
<Irradiation conditions>
Sheath gas: Ar
Plasma input power: 8.54 kW (heat flux equivalent to about 550 kW / m 2 )
Sheath gas flow rate: 30 slpm
Pressure in the first tube portion 13: atmospheric pressure (760 Torr)
 また、前記高周波誘導熱プラズマ発生部10の下方には、第2筒部20が形成されている。第2筒部20は、外から内部を観察するための窓部25、被検物設置台23を外側より内側に挿入させるための挿入口27を有している。被検物設置台23は、誘導コイル15の下方200mmの位置であって、第1筒部13の直下にセットする。また、被検物設置台23は、特に限定されるものではなく、被検物40を測定中において所定の位置に固定できるものであればよい。 Further, a second cylindrical portion 20 is formed below the high frequency induction thermal plasma generating portion 10. The 2nd cylinder part 20 has the insertion part 27 for inserting the window part 25 for observing an inside from the outside, and the to-be-tested object installation stand 23 inside from the outer side. The test object mounting table 23 is set at a position 200 mm below the induction coil 15 and directly below the first tube portion 13. In addition, the test object mounting table 23 is not particularly limited as long as it can fix the test object 40 at a predetermined position during measurement.
 また、測定の供される被検物40は、以下の通りである。 Further, the test object 40 to be measured is as follows.
 (被検物)
 0.20gの繊維材に対して、錠剤成形器(直径10mm用)(日本分光(株)製)を使用し、電動油圧ポンプを用いて55~65MPaの圧力下で60~180秒加圧し、直径11±1mm、厚さ3.5±1mmの錠剤形状に成形したものを用いる。また、布帛を測定する場合は、布帛そのものを被検物として用いることができる。
(Subject)
Using a tablet molding machine (for diameter 10 mm) (manufactured by JASCO Corporation) against 0.20 g of fiber material, pressurizing for 60 to 180 seconds under a pressure of 55 to 65 MPa using an electric hydraulic pump, The one formed into a tablet shape having a diameter of 11 ± 1 mm and a thickness of 3.5 ± 1 mm is used. Moreover, when measuring a fabric, the fabric itself can be used as a test object.
 なお、図1では、被検物設置台23のスライド部45は、基台28に固定されており、この基台28によって挿入口27が遮蔽されている。なお、基台28の後方(被検物設置台23と反対側)には水冷機構29が設けられており、被検物設置台23の冷却が可能な構成である。被検物設置台23はステンレス製とすることができ、被検物設置台23は、水冷機構29により冷却されることで、熱プラズマ照射による加熱に耐え得る構造となっている。 In FIG. 1, the slide portion 45 of the test object installation base 23 is fixed to the base 28, and the insertion port 27 is shielded by the base 28. Note that a water cooling mechanism 29 is provided behind the base 28 (on the side opposite to the test object mounting table 23), and the test object mounting table 23 can be cooled. The test object mounting table 23 can be made of stainless steel, and the test object mounting table 23 is cooled by a water cooling mechanism 29 so that it can withstand heating by thermal plasma irradiation.
 また、前記装置5は、図1に示すように、適宜必要により、撮影部30、分析処理部33と供に用いることができる。撮影部30としては、高速度カラービデオカメラ(VW-6000、キーエンス(株)製)、分析処理部33としては、分光器(高速マルチチャンネル分光器PMA-20、浜松ホトニクス(株)製)とすることができる。 Further, as shown in FIG. 1, the device 5 can be used together with the photographing unit 30 and the analysis processing unit 33 as necessary. The photographing unit 30 is a high-speed color video camera (VW-6000, manufactured by Keyence Corporation), and the analysis processing unit 33 is a spectrometer (high-speed multichannel spectrometer PMA-20, manufactured by Hamamatsu Photonics Co., Ltd.) can do.
 前記アクリル系繊維(A)としては、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するものであればその組成は特に限定されるものではないが、例えば、40~70重量%のアクリロニトリルと30~60重量%の他の成分を共重合して得られる共重合体であって、アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有する繊維を好適に用いることができる。アクリロニトリルの配合量を前記範囲内にすることで、布帛の耐熱性、難燃性の点から好ましい。 The composition of the acrylic fiber (A) is not particularly limited as long as it contains 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber. % Of acrylonitrile and a copolymer obtained by copolymerizing 30 to 60% by weight of other components, and fibers containing 8% by weight or more of antimony oxide based on the resin weight of the acrylic fiber are preferably used. be able to. By setting the blending amount of acrylonitrile within the above range, it is preferable from the viewpoint of heat resistance and flame retardancy of the fabric.
 前記他の成分としては、ハロゲン含有ビニル系単量体、スルホン酸基含有単量体等を挙げることができる。 Examples of the other components include halogen-containing vinyl monomers and sulfonic acid group-containing monomers.
 ハロゲン含有ビニル系単量体としては、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデンなどが挙げられ、これらの1種または2種以上が用いられる。ハロゲン含有ビニル系単量体の配合量としては、特に限定されるものではないが、アクリル系繊維中30~60重量%であることが、難燃性、耐熱性の観点から好ましい。 Examples of the halogen-containing vinyl monomer include vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, and one or more of these are used. The blending amount of the halogen-containing vinyl monomer is not particularly limited, but is preferably 30 to 60% by weight in the acrylic fiber from the viewpoint of flame retardancy and heat resistance.
 スルホン酸基含有単量体としては、メタクリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、及びそれらの塩などが挙げられ、これらの1種または2種以上が用いられる。塩としては、例えば、ナトリウム塩、カリウム塩、アンモニウム塩などを挙げることができるが、これらに限定されるものではない。スルホン酸基含有単量体は、必要に応じて使用され、その配合量としては、アクリル系繊維中0~3重量%であることが好ましい。3重量%を超えると上記アクリル系繊維の製造時の紡糸性が低下する傾向がある。 Examples of the sulfonic acid group-containing monomer include methacryl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and salts thereof. One or more of these may be used. Is used. Examples of the salt include, but are not limited to, sodium salt, potassium salt, ammonium salt and the like. The sulfonic acid group-containing monomer is used as necessary, and the blending amount thereof is preferably 0 to 3% by weight in the acrylic fiber. If it exceeds 3% by weight, the spinnability during the production of the acrylic fiber tends to decrease.
 アクリル系繊維(A)に含まれる酸化アンチモンとしては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等を挙げることができるが、これらの中でも三酸化アンチモンが好ましい。酸化アンチモンの含有量は、アクリル系繊維(A)の樹脂重量に対し8重量%以上であり、9重量%以上であることが好ましく、10重量%以上であることがより好ましく、11重量%以上であることがさらに好ましく、20重量%以上であることが特に好ましい。また、酸化アンチモンの含有量の上限値は特に限定されるものではないが、例えば、33重量%以下であることが好ましい。33重量%を超えると上記アクリル系繊維の製造時の紡糸性が低下する傾向がある。 Examples of the antimony oxide contained in the acrylic fiber (A) include antimony trioxide, antimony tetraoxide, and antimony pentoxide. Among these, antimony trioxide is preferable. The content of antimony oxide is 8% by weight or more with respect to the resin weight of the acrylic fiber (A), preferably 9% by weight or more, more preferably 10% by weight or more, and 11% by weight or more. More preferably, it is particularly preferably 20% by weight or more. Moreover, the upper limit of the content of antimony oxide is not particularly limited, but is preferably 33% by weight or less, for example. If it exceeds 33% by weight, the spinnability during the production of the acrylic fiber tends to decrease.
 本発明において好適に用いることのできるアクリル系繊維(A)として、例えば、(株)カネカ製のプロテックス(登録商標)MタイプやCタイプ等を挙げることができる。 Examples of the acrylic fiber (A) that can be suitably used in the present invention include Protex (registered trademark) M type and C type manufactured by Kaneka Corporation.
 アクリル系繊維(A)の配合割合は、特に限定されるものではないが、布帛重量を基準として30重量%以上含むことが好ましく、40~65重量%であることがより好ましく、45~60重量%であることがさらに好ましく、50~55重量%であることが特に好ましい。アクリル系繊維(A)の配合量を前記範囲にすることで、布帛の風合いと消火性能を両立させることができるため好ましい。 The blending ratio of the acrylic fiber (A) is not particularly limited, but is preferably 30% by weight or more based on the weight of the fabric, more preferably 40 to 65% by weight, and 45 to 60% by weight. % Is more preferable, and 50 to 55% by weight is particularly preferable. By making the compounding quantity of an acrylic fiber (A) into the said range, since the texture of a fabric and fire extinguishing performance can be made compatible, it is preferable.
 また、本発明においては、アクリル系繊維(A)以外のアクリル系繊維(A1)を含むこともできる。アクリル系繊維(A1)としては、例えば、アクリル系繊維の樹脂重量に対し8重量%未満の酸化アンチモンを含有するアクリル系繊維や、酸化アンチモン非含有のアクリル系繊維等を挙げることができる。アクリル系繊維(A1)の配合量としては、本発明の効果を損なわない範囲であれば特に限定されるものはないが、布帛重量を基準として20重量%以下であることが好ましい。 In the present invention, acrylic fibers (A1) other than acrylic fibers (A) can also be included. Examples of the acrylic fiber (A1) include an acrylic fiber containing less than 8% by weight of antimony oxide based on the resin weight of the acrylic fiber, an acrylic fiber not containing antimony oxide, and the like. The blending amount of the acrylic fiber (A1) is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 20% by weight or less based on the weight of the fabric.
 溶発性難燃繊維(B-1)としては、上記アクリル系繊維(A)等のアクリル系繊維を含まないものであり、例えば、フェノール系繊維、ポリテトラフルオロエチレン(PTFE)繊維、メラミン繊維、難燃ビニロン繊維、耐炎繊維等を挙げることができる。これらの中でも、耐アーク性と難燃性の両立の点から、フェノール系繊維、耐炎繊維が好ましい。 The fusible flame retardant fiber (B-1) does not contain an acrylic fiber such as the acrylic fiber (A). For example, phenolic fiber, polytetrafluoroethylene (PTFE) fiber, melamine fiber And flame retardant vinylon fiber, flame resistant fiber and the like. Among these, phenol-based fibers and flame-resistant fibers are preferable from the viewpoint of achieving both arc resistance and flame resistance.
 本明細書において、難燃性とは、JIS L1091E法(酸素指数法試験)において定義されるものであり、LOI26以上の繊維を難燃繊維、LOI26未満の繊維を非難燃繊維という。本明細書中に記載の繊維のLOIについては、表2に示す。 In this specification, the flame retardancy is defined in the JIS L1091E method (oxygen index method test), and a fiber having a LOI of 26 or more is referred to as a flame retardant fiber, and a fiber having a LOI of less than 26 is referred to as a non-flame retardant fiber. The LOI of the fibers described in this specification is shown in Table 2.
 フェノール系繊維としては、例えば、カイノール(Kynol)(登録商標)(群栄化学工業(株)製)等を挙げることができる。耐炎繊維としては、例えば、パイロメックス(東邦テナックス(株)製)等を挙げることができる。 Examples of the phenol fiber include Kynol (registered trademark) (manufactured by Gunei Chemical Industry Co., Ltd.). Examples of the flame resistant fiber include Pyromex (manufactured by Toho Tenax Co., Ltd.).
 溶発性難燃繊維(B-1)の配合割合は、特に限定されるものではないが、耐アーク性、生地の炭化性、及び、難燃性の両立の観点から、布帛重量を基準として1~50重量%含むことが好ましく、1~30重量%であることがより好ましく、1~20重量%であることがさらに好ましく、さらに、生機色合いが優れる観点からは、3重量%以上15重量%未満であることがさらに好ましく、5~12重量%であることが特に好ましい。 The blending ratio of the fusible flame retardant fiber (B-1) is not particularly limited, but it is based on the weight of the fabric from the viewpoint of achieving both arc resistance, carbonization of the fabric, and flame retardancy. The content is preferably 1 to 50% by weight, more preferably 1 to 30% by weight, still more preferably 1 to 20% by weight, and 3% by weight to 15% by weight from the viewpoint of excellent green color. % Is more preferable, and 5 to 12% by weight is particularly preferable.
 また、本発明においては、ナイロン繊維、レーヨン繊維等の溶発性非難燃繊維(B-2)を含むことができる。これらの中でも、耐熱性と繊維強度の点から、ポリヘキサメチレンアジパミド(ナイロン66)繊維が好ましい。 In the present invention, fusible non-flame retardant fibers (B-2) such as nylon fibers and rayon fibers can be included. Among these, polyhexamethylene adipamide (nylon 66) fiber is preferable from the viewpoint of heat resistance and fiber strength.
 本発明においては、前記溶発性難燃繊維(B-1)と前記溶発性非難燃繊維(B-2)とを総称して、溶発性繊維(B)と呼ぶこともあり、溶発性繊維(B)の添加量としては、前記溶発性難燃繊維(B-1)と同様の添加量を挙げることができる。 In the present invention, the fusible flame retardant fiber (B-1) and the fusible non-flame retardant fiber (B-2) may be collectively referred to as the fusible fiber (B). Examples of the additive amount of the emissive fiber (B) include the same additive amount as that of the fusible flame retardant fiber (B-1).
 溶発性繊維(B)とアクリル系繊維(A)の重量比は、耐アーク性と難燃性の両立の観点から、(B)/(A)=0.1~1.5であることが好ましく、0.1~1.0であることがより好ましく、0.1~0.5であることがさらに好ましく、0.1~0.3であることがさらに好ましく、0.1~0.25であることがさらに好ましく、0.1~0.2であることが特に好ましい。また、溶発性繊維(B)が溶発性難燃繊維(B-1)の場合であっても、前記同様の範囲が好ましい。 The weight ratio of the fusible fiber (B) and the acrylic fiber (A) is (B) / (A) = 0.1 to 1.5 from the viewpoint of achieving both arc resistance and flame retardancy. It is preferably 0.1 to 1.0, more preferably 0.1 to 0.5, still more preferably 0.1 to 0.3, and 0.1 to 0. Is more preferably 0.125, and particularly preferably 0.1 to 0.2. Further, even when the fusible fiber (B) is the fusible flame retardant fiber (B-1), the same range as described above is preferable.
 非溶発性難燃繊維(C)としては、p-アラミド繊維、難燃ポリエステル繊維等を挙げることができ、これらを1種単独で又は2種以上を用いることができる。 Examples of the non-melting flame retardant fiber (C) include p-aramid fiber and flame retardant polyester fiber, and these can be used alone or in combination of two or more.
 本発明に用いることのできるp-アラミドとしては、トワロン(登録商標、帝人(株)製)やケブラー(登録商標、デュポン社製)を挙げることができる。p-アラミドにジアミノフェニレン-テラフタルアミドを共重合したものとしては、テクノーラ(登録商標、帝人(株)製)を挙げることができる。 Examples of p-aramid that can be used in the present invention include Twaron (registered trademark, manufactured by Teijin Ltd.) and Kevlar (registered trademark, manufactured by DuPont). Examples of the copolymer of p-aramid and diaminophenylene-terephthalamide include Technora (registered trademark, manufactured by Teijin Limited).
 非溶発性難燃繊維(C)の配合割合としては、耐アーク性、生地の炭化性、及び、難燃性の両立の観点から、布帛重量を基準として30重量%以下であることが好ましく、1~30重量%であることがより好ましく、1~20重量%であることがさらに好ましく、1~10重量%であることが特に好ましい。 The blending ratio of the non-absorptive flame retardant fiber (C) is preferably 30% by weight or less based on the weight of the fabric from the viewpoint of achieving both arc resistance, carbonization of the fabric, and flame retardancy. It is more preferably 1 to 30% by weight, further preferably 1 to 20% by weight, and particularly preferably 1 to 10% by weight.
 また、非溶発性難燃繊維(C)の配合割合が、アクリル系繊維(A)と溶発性難燃繊維(B-1)の合計重量を基準として50重量%以下であることが好ましく、0.1~50重量%であることがより好ましく、5~30重量%であることがさらに好ましく、5~20重量%であることが特に好ましい。このような配合割合とすることで、耐アーク性と難燃性の観点から好ましい。 Further, the blending ratio of the non-melting flame retardant fiber (C) is preferably 50% by weight or less based on the total weight of the acrylic fiber (A) and the fusible flame retardant fiber (B-1). The content is more preferably 0.1 to 50% by weight, further preferably 5 to 30% by weight, and particularly preferably 5 to 20% by weight. By setting it as such a mixture ratio, it is preferable from a viewpoint of arc resistance and a flame retardance.
 非溶発性非難燃繊維(D)としては、木綿、ポリエステル繊維等を挙げることができ、これらを1種単独で又は2種以上を用いることができる。これらの中でも、木綿が好ましい。 Examples of the non-melting non-flame retardant fiber (D) include cotton, polyester fiber and the like, and these can be used alone or in combination of two or more. Among these, cotton is preferable.
 非溶発性非難燃繊維(D)の配合量は、40重量%以下であることが好ましく、1~40重量%であることがより好ましく、15~40重量%であることがさらに好ましく、25~40重量%であることが特に好ましい。前記範囲内にすることで、難燃性と快適性(着心地等)の点から好ましい。 The blending amount of the non-melting non-flame retardant fiber (D) is preferably 40% by weight or less, more preferably 1 to 40% by weight, still more preferably 15 to 40% by weight, Particularly preferred is ˜40% by weight. Within the above range, it is preferable in terms of flame retardancy and comfort (such as comfort).
 本発明の布帛は、1種類の糸で構成されていてもよく、複数の糸で構成されていても良い。本発明の布帛を構成する糸は公知の紡績方法で製造することができる。紡績方法として、リング紡績法、及び空気紡績法等を挙げることができるが必ずしもこれらに限定されるものではない。 The fabric of the present invention may be composed of one type of yarn or may be composed of a plurality of yarns. The yarn constituting the fabric of the present invention can be produced by a known spinning method. Examples of the spinning method include a ring spinning method and an air spinning method, but are not necessarily limited thereto.
 本発明の布帛は上記の糸を用いて公知の製布方法で製造することができる。布帛の形態としては、織物、編物、不織布等を挙げることができるが、これらに限定されるものではない。また、織物は交織させてもよく、編物は交編させてもよい。 The cloth of the present invention can be produced by a known cloth making method using the above-described yarn. Examples of the form of the fabric include, but are not limited to, a woven fabric, a knitted fabric, and a nonwoven fabric. Further, the woven fabric may be woven, and the knitted fabric may be knitted.
 織物の組織については、特に限定されず、平織、綾織、朱子織などの三原組織でもよく、ジャガードなどの特殊織機を用いた柄織物でもよい。また、上記編物の組織も、特に限定されず、丸編、横編、経編のいずれでもよい。上記不織布の形態としては、湿式抄造不織布、カード不織布、エアレイ不織布、サーマルボンド不織布、化学的接着不織布、ニードルパンチ不織布、水流交絡不織布、ステッチボンド不織布等が挙げられる。 The structure of the woven fabric is not particularly limited, and may be a Mihara texture such as plain weave, twill weave, and satin weave, or a patterned fabric using a special loom such as jacquard. The structure of the knitted fabric is not particularly limited, and may be any of a round knitting, a flat knitting, and a warp knitting. Examples of the form of the nonwoven fabric include wet papermaking nonwoven fabric, carded nonwoven fabric, airlaid nonwoven fabric, thermal bond nonwoven fabric, chemically bonded nonwoven fabric, needle punched nonwoven fabric, hydroentangled nonwoven fabric, and stitchbonded nonwoven fabric.
 本発明の布帛の目付(単位:oz/yd、単位面積(1平方ヤード)当りの布帛の重量(オンス))は、3~10oz/ydが好ましく、4~8oz/ydがより好ましく、4~6oz/ydがさらに好ましい。本発明の布帛は、従来の耐アーク布帛に比べると非常に薄く作業性に優れるものであり、このような薄い布帛であっても、耐アーク性や難燃性に優れるものである。 Fabric having a basis weight of the present invention (unit: oz / yd 2, the weight of the fabric per unit area (1 square yard) (ounces)) is 3 preferably ~ 10oz / yd 2, more preferably 4 ~ 8oz / yd 2 4 to 6 oz / yd 2 is more preferable. The fabric of the present invention is extremely thin and excellent in workability as compared with the conventional arc resistant fabric, and even such a thin fabric is excellent in arc resistance and flame retardancy.
 本発明の布帛は、下記試験方法により測定した、単位目付当たりのATPV値が1.2以上であることが好ましい。また、ATPV(arc thermal performance value、アーク熱性能値)値の上限値は特に限定がなく、高ければ高い程、耐アーク性を有する薄い布帛が得られるため好ましい。
<単位目付当たりのATPV値の測定方法>
 ASTM F1959/F1959M-06ae1(Standard Test for Determining the Arc Rating of Materials for Clothing)に従い、布帛の目付(oz/yd)及びATPV(cal/cm)を求め、測定されたATPV値を目付で除して単位目付当たりのATPV値を算出する。
The fabric of the present invention preferably has an ATPV value per unit weight measured by the following test method of 1.2 or more. Further, the upper limit of the ATPV (arc thermal performance value) value is not particularly limited, and the higher the value, the more preferable a thin fabric having arc resistance can be obtained.
<Measurement method of ATPV value per unit basis weight>
According to ASTM F1959 / F1959M-06ae1 (Standard Test for Determinating the Arc Rating of Materials for Closing), fabric weight per unit (oz / yd 2 ) and ATPV (cal / cm 2 ) were measured and measured. Then, the ATPV value per unit basis weight is calculated.
 本発明の布帛は、従来の耐アーク性布帛と比較して薄いにも関わらず、優れた耐アーク性や難燃性を有するものである。また、本発明の布帛は、染色に適した生機色合いを有する。 The fabric of the present invention has excellent arc resistance and flame retardancy although it is thinner than conventional arc resistant fabrics. The fabric of the present invention has a green color suitable for dyeing.
 本発明の耐アーク防護服は、前記布帛を用いて公知の方法で製造することができる。本発明の耐アーク防護服は、本発明の布帛を単層で用いて単層の防護服として用いることができるし、本発明の布帛を2以上の多層で用いて多層の防護服として用いることもできるし、もちろん他の布帛と多層を形成したもので多層の防護服として用いてもよい。 The arc-proof protective clothing of the present invention can be manufactured by a known method using the fabric. The arc-resistant protective clothing of the present invention can be used as a single-layer protective clothing using the fabric of the present invention in a single layer, or can be used as a multilayer protective clothing using the fabric of the present invention in two or more multilayers. Of course, it may be formed as a multilayer protective clothing by forming a multilayer with other fabrics.
 本発明の耐アーク防護服は、耐アーク性を有するだけでなく、難燃性、作業性に優れており、アークフラッシュの危険性を伴う環境下で作業する場合においても用いることができる。また、視認性の高い作業服を提供しうるし、着用感に優れた作業服を提供することができる。さらに、洗濯を繰り返しても、その耐アーク性、難燃性が維持される。 The arc-resistant protective clothing of the present invention is not only arc-resistant, but also excellent in flame retardancy and workability, and can be used even when working in an environment involving the risk of arc flash. In addition, work clothes with high visibility can be provided, and work clothes with excellent wearing feeling can be provided. Furthermore, even if washing is repeated, the arc resistance and flame retardancy are maintained.
 以下に実施例及び比較例を挙げて更に説明するが、本発明は、これらの実施例のみに限定されるものではない。
(実施例1)
 アクリロニトリル50重量%と塩化ビニリデン49重量%およびスチレンスルホン酸ナトリウム1重量%からなる組成物を重合して得られる共重合体に共重合体の樹脂重量に対し三酸化アンチモン20重量%を添加したアクリル系繊維(表1中のAc1)を50重量%、フェノール系繊維(群栄化学工業(株)製、カイノール(登録商標)、表1中のKyn)を10重量%、パラ系アラミド繊維(帝人(株)製、トワロン(登録商標)、表1中のTwa)を5重量%、木綿(表1中のCot)を35重量%、を混合し、通常の紡績方法で紡績及び撚糸し、紡績糸(番手:20、単糸)を得た。得られた紡績糸を使用して布帛(天竺編み)を作製した。
(実施例2~4、比較例1~6)
 表1に示す原綿構成で混合した以外は、実施例1と同様に布帛を作製した。
The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
Example 1
An acrylic resin in which 20% by weight of antimony trioxide is added to a copolymer obtained by polymerizing a composition comprising 50% by weight of acrylonitrile, 49% by weight of vinylidene chloride and 1% by weight of sodium styrenesulfonate. Fiber (Ac1 in Table 1) 50% by weight, phenol fiber (Gunei Chemical Industry Co., Ltd., Kynol (registered trademark), Kyn in Table 1) 10% by weight, para-aramid fiber (Teijin) Co., Ltd., Twaron (registered trademark), 5% by weight of Twa in Table 1 and 35% by weight of cotton (Cot in Table 1) are mixed, and are spun and twisted by a usual spinning method. A yarn (count: 20, single yarn) was obtained. Using the obtained spun yarn, a fabric (stencil knitting) was produced.
(Examples 2 to 4, Comparative Examples 1 to 6)
A fabric was produced in the same manner as in Example 1 except that the raw cotton composition shown in Table 1 was mixed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す記号は、以下の通りである。
Ac1:アクリロニトリル50重量%と塩化ビニリデン49重量%およびスチレンスルホン酸ナトリウム1重量%からなる組成物を重合して得られる共重合体に共重合体の樹脂重量に対し三酸化アンチモン20重量%を添加したアクリル系繊維(LOI:34)
Ac2:アクリロニトリル50重量%と塩化ビニリデン49重量%およびスチレンスルホン酸ナトリウム1重量%からなる組成物を重合して得られる共重合体に共重合体の樹脂重量に対し三酸化アンチモン10重量%を添加したアクリル系繊維(LOI:34)
Kyn:フェノール系繊維(群栄化学工業(株)製、カイノール(登録商標)、LOI:32)
Pyr:耐炎繊維(東邦テナックス(株)製、パイロメックス、LOI:55)
Ray:レーヨン繊維(LOI:18)
Ny66:ナイロン66(LOI:21)
Twa:パラ系アラミド繊維(帝人(株)製、トワロン(登録商標)、LOI:29)
TCS:難燃ポリエステル繊維(トレビラ社製、トレビラCS、LOI:28)
Cot:木綿(LOI:18)
PET:ポリエステル繊維(LOI:21)
The symbols shown in Table 1 are as follows.
Ac1: 20% by weight of antimony trioxide is added to a copolymer obtained by polymerizing a composition comprising 50% by weight of acrylonitrile, 49% by weight of vinylidene chloride and 1% by weight of sodium styrenesulfonate, based on the resin weight of the copolymer. Acrylic fiber (LOI: 34)
Ac2: 10% by weight of antimony trioxide is added to the copolymer obtained by polymerizing a composition comprising 50% by weight of acrylonitrile, 49% by weight of vinylidene chloride and 1% by weight of sodium styrenesulfonate, based on the resin weight of the copolymer. Acrylic fiber (LOI: 34)
Kyn: Phenolic fiber (manufactured by Gunei Chemical Industry Co., Ltd., Kynol (registered trademark), LOI: 32)
Pyr: Flame resistant fiber (Toho Tenax Co., Ltd., Pyromex, LOI: 55)
Ray: Rayon fiber (LOI: 18)
Ny66: Nylon 66 (LOI: 21)
Twa: Para-aramid fiber (manufactured by Teijin Limited, Twaron (registered trademark), LOI: 29)
TCS: Flame-retardant polyester fiber (Trevila CS, Trevira CS, LOI: 28)
Cot: Cotton (LOI: 18)
PET: Polyester fiber (LOI: 21)
 実施例及び比較例で得られた布帛について、以下の評価を行った。
<溶発性測定>
 実施例で用いた各種繊維0.20gを、錠剤成形器(直径10mm用)(日本分光(株)製)を使用し、電動油圧ポンプを用いて55~65MPaの圧力下で60~180秒加圧し、直径11±1mm、厚さ3.5±1mmの錠剤形状に成形したもの被検体とした。
The following evaluation was performed about the fabric obtained by the Example and the comparative example.
<Measurement of ablation>
0.20 g of various fibers used in the examples were applied for 60 to 180 seconds under a pressure of 55 to 65 MPa using an electric hydraulic pump using a tablet molding machine (for diameter 10 mm) (manufactured by JASCO Corporation). The specimen was molded into a tablet shape having a diameter of 11 ± 1 mm and a thickness of 3.5 ± 1 mm.
 得られた被検体を、図1に示す装置5にセットし、下記照射条件により熱流束が550kW/m相当である熱プラズマを20秒間照射し、繊維の重量が157g/m以上減少するものを溶発性繊維とし、157g/m未満減少するものを非溶発性繊維とした。測定結果を以下の表2に示す。また、表2には、実施例で用いた以外の、本明細書に記載の繊維についても溶発性測定結果や、LOI値についても記載する。
(照射条件)
 シースガス:Ar
 プラズマ入力電力:8.54kW(熱流束は約550kW/m相当)
 シースガス流量:30slpm
 第1筒部13内の圧力:大気圧(760Torr)
The obtained specimen is set in the apparatus 5 shown in FIG. 1 and irradiated with thermal plasma having a thermal flux equivalent to 550 kW / m 2 for 20 seconds under the following irradiation conditions, and the weight of the fiber is reduced by 157 g / m 2 or more. The fiber was designated as a fusible fiber, and the fiber that decreased by less than 157 g / m 2 was designated as a non-melting fiber. The measurement results are shown in Table 2 below. Table 2 also describes the ablation measurement results and LOI values for the fibers described in this specification other than those used in the examples.
(Irradiation conditions)
Sheath gas: Ar
Plasma input power: 8.54 kW (heat flux equivalent to about 550 kW / m 2 )
Sheath gas flow rate: 30 slpm
Pressure in the first tube portion 13: atmospheric pressure (760 Torr)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、Ac1、Ac2、Kyn、Vin、Bas、Pyr、Toy、Ray、Ny66は、溶発性繊維であり、Twa、TCS、Cot、PETは、非溶発性繊維である。 As is clear from Table 2, Ac1, Ac2, Kyn, Vin, Bas, Pyr, Toy, Ray, Ny66 are ablation fibers, and Twa, TCS, Cot, and PET are non-ablative fibers. .
<アーク試験>
 ASTM F1959/F1959M-06ae1(Standard Test Method for Determining the Arc Rating of Materials for Clothing)に基づいたアーク試験(以下、単に「アーク試験」と記す)に従い、目付(oz/yd)及びATPV(cal/cm)を求めた。これらの値から、単位目付あたりのATPVである比ATPV((cal・yd)/(cm・oz))を算出した。評価結果を表1に示す。
<Arc test>
ASTM F1959 / F1959M-06ae1 (Standard Test Method for Determining the Arc Rating of Materials for Clothing) on the basis of the arc test (hereinafter simply referred to as "arc test") in accordance with a basis weight (oz / yd 2) and ATPV (cal / cm 2 ). From these values, the ratio ATPV ((cal · yd 2 ) / (cm 2 · oz)), which is an ATPV per unit basis weight, was calculated. The evaluation results are shown in Table 1.
<難燃性>
 ASTM D6413-08 Standard Test Method for Flame Resistance of Textiles(Vertical Test)に準拠して、炭化長を測定した。炭化長が、6インチ未満が好ましい。評価結果を表1に示す。
<Flame retardance>
Carbonization length was measured according to ASTM D6413-08 Standard Test Method for Frame Resistance of Textiles (Vertical Test). The carbonization length is preferably less than 6 inches. The evaluation results are shown in Table 1.
<生機色合い>
 実施例及び比較例で得られた布帛を目視で観察し、以下の評価基準で評価した。
 ○:生機色合いが薄く、所望の色に染色することが可能である。
 △:生機色合いが比較的薄く、所望の色に染色することがある程度可能である。
 ×:生機色合いが濃く、所望の色に染色することが困難である。
 また、同様に布帛の色相は、分光測色計CM-2600d(コニカミノルタ製)を使用して測色した結果を、ハンターLab表色系で示すことで、定量的に評価することが出来る。
<Raw color>
The fabrics obtained in Examples and Comparative Examples were visually observed and evaluated according to the following evaluation criteria.
○: The raw machine color is thin, and it can be dyed to a desired color.
(Triangle | delta): The raw machine color is comparatively thin and it is possible to dye to a desired color to some extent.
X: The raw machine color is dark and it is difficult to dye to a desired color.
Similarly, the hue of the fabric can be quantitatively evaluated by showing the result of color measurement using a spectrocolorimeter CM-2600d (manufactured by Konica Minolta) in the Hunter Lab color system.
     5   : 装置
    10   : 高周波誘導熱プラズマ発生部
    11   : ガス流入部
    12   : 熱プラズマ
    13   : 第1筒部
    15   : 誘導コイル
    17   : 隙間部
    20   : 第2筒部
    23   : 被検物設置台
    25   : 窓部
    27   : 挿入口
    28   : 基台
    29   : 水冷機構
    30   : 撮影部
    33   : 分析処理部
    40   : 被検物
    45   : スライド部
5: Device 10: High-frequency induction thermal plasma generation unit 11: Gas inflow unit 12: Thermal plasma 13: First tube unit 15: Inductive coil 17: Crevice unit 20: Second tube unit 23: Test object installation table 25: Window Section 27: Insertion slot 28: Base 29: Water cooling mechanism 30: Imaging section 33: Analysis processing section 40: Test object 45: Slide section

Claims (9)

  1. アクリル系繊維の樹脂重量に対し8重量%以上の酸化アンチモンを含有するアクリル系繊維(A)、及び、溶発性難燃繊維(B-1)(但し、アクリル系繊維は含まない)を含み、
    前記溶発性難燃繊維(B-1)が、布帛重量を基準として3重量%以上15重量%未満含むことを特徴とする防護服用布帛。
    Including acrylic fiber (A) containing 8% by weight or more of antimony oxide based on the resin weight of acrylic fiber, and fusible flame retardant fiber (B-1) (however, acrylic fiber is not included) ,
    A fabric for protective clothing, wherein the fusible flame retardant fiber (B-1) is contained in an amount of 3% by weight to less than 15% by weight based on the weight of the fabric.
  2. 前記溶発性難燃繊維(B-1)が、フェノール系繊維、難燃ビニロン繊維、メラミン繊維、耐炎繊維、及び、ポリテトラフルオロエチレン繊維からなる群から選択される1種以上の繊維であることを特徴とする請求項1に記載の防護服用布帛。 The fusible flame retardant fiber (B-1) is one or more fibers selected from the group consisting of phenol fiber, flame retardant vinylon fiber, melamine fiber, flame resistant fiber, and polytetrafluoroethylene fiber. The fabric for protective clothing according to claim 1.
  3. アクリル系繊維(A)を、布帛重量を基準として30重量%以上含むことを特徴とする請求項1又は2に記載の防護服用布帛。 The fabric for protective clothing according to claim 1 or 2, comprising acrylic fiber (A) in an amount of 30% by weight or more based on the weight of the fabric.
  4. さらに、非溶発性非難燃繊維(D)を、布帛重量を基準として15~40重量%含むことを特徴とする請求項1~3のいずれかに記載の防護服用布帛。 The fabric for protective clothing according to any one of claims 1 to 3, further comprising 15 to 40% by weight of the non-melting non-flame retardant fiber (D) based on the weight of the fabric.
  5. アクリル系繊維(A)が、40~70重量%のアクリロニトリルと30~60重量%の他の成分を共重合して得られる共重合体であることを特徴とする請求項1~4のいずれかに記載の防護服用布帛。 5. The acrylic fiber (A) is a copolymer obtained by copolymerizing 40 to 70% by weight of acrylonitrile and 30 to 60% by weight of other components. The fabric for protective clothing described in 1.
  6. 前記他の成分が、ハロゲン含有ビニル単量体及び/又はハロゲン含有ビニリデン単量体であることを特徴とする請求項5に記載の防護服用布帛。 6. The protective clothing fabric according to claim 5, wherein the other component is a halogen-containing vinyl monomer and / or a halogen-containing vinylidene monomer.
  7. 前記酸化アンチモンが、三酸化アンチモン、四酸化アンチモン、及び、五酸化アンチモンからなる群から選択される1種以上の化合物であることを特徴とする請求項1~6のいずれかに記載の防護服用布帛。 The protective clothing according to any one of claims 1 to 6, wherein the antimony oxide is one or more compounds selected from the group consisting of antimony trioxide, antimony tetraoxide, and antimony pentoxide. Fabric.
  8. 下記試験方法により測定した、単位目付当たりのATPV値が1.2以上であることを特徴とする請求項1~7のいずれかに記載の防護服用布帛。
    <単位目付当たりのATPV値の測定方法>
     ASTM F1959/F1959M-06ae1(Standard Test for Determining the Arc Rating of Materials for Clothing)に従い、布帛の目付(oz/yd)及びATPV(cal/cm)を求め、測定されたATPV値を目付で除して単位目付当たりのATPV値を算出する。
    The protective clothing fabric according to any one of claims 1 to 7, wherein an ATPV value per unit weight measured by the following test method is 1.2 or more.
    <Measurement method of ATPV value per unit basis weight>
    According to ASTM F1959 / F1959M-06ae1 (Standard Test for Determinating the Arc Rating of Materials for Closing), fabric weight per unit (oz / yd 2 ) and ATPV (cal / cm 2 ) were measured and measured. Then, the ATPV value per unit basis weight is calculated.
  9. 請求項1~8いずれかに記載の防護服用布帛を含んでなることを特徴とする耐アーク防護服。 An arc-resistant protective clothing comprising the protective clothing fabric according to any one of claims 1 to 8.
PCT/JP2013/065803 2012-06-08 2013-06-07 Fabric for protective clothing, and arc-resistant protective clothing WO2013183755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012130981 2012-06-08
JP2012-130981 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183755A1 true WO2013183755A1 (en) 2013-12-12

Family

ID=49712141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065803 WO2013183755A1 (en) 2012-06-08 2013-06-07 Fabric for protective clothing, and arc-resistant protective clothing

Country Status (2)

Country Link
TW (1) TWI616568B (en)
WO (1) WO2013183755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762723A (en) * 2015-03-27 2015-07-08 陕西锦澜科技有限公司 Three-component flame retardant anti-static fabric and preparation method thereof
TWI619263B (en) * 2015-04-08 2018-03-21 弗里松股份有限公司 Photovoltaic equipment and method for assembling photovoltaic equipment
CN114854187A (en) * 2022-04-01 2022-08-05 万华化学集团股份有限公司 Flame-retardant polycarbonate composition and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199150A (en) * 1998-11-06 2000-07-18 Gun Ei Chem Ind Co Ltd Woven cloth
WO2004097088A1 (en) * 2003-04-28 2004-11-11 Kaneka Corporation Flame-retardant fiber composite and fabric produced therefrom
JP2007529649A (en) * 2004-03-18 2007-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Modacrylic / cotton / aramid fiber blends for arc protection and flame protection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118238B2 (en) * 2002-03-25 2008-07-16 株式会社カネカ Interwoven fabric with flame retardancy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199150A (en) * 1998-11-06 2000-07-18 Gun Ei Chem Ind Co Ltd Woven cloth
WO2004097088A1 (en) * 2003-04-28 2004-11-11 Kaneka Corporation Flame-retardant fiber composite and fabric produced therefrom
JP2007529649A (en) * 2004-03-18 2007-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Modacrylic / cotton / aramid fiber blends for arc protection and flame protection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762723A (en) * 2015-03-27 2015-07-08 陕西锦澜科技有限公司 Three-component flame retardant anti-static fabric and preparation method thereof
TWI619263B (en) * 2015-04-08 2018-03-21 弗里松股份有限公司 Photovoltaic equipment and method for assembling photovoltaic equipment
CN114854187A (en) * 2022-04-01 2022-08-05 万华化学集团股份有限公司 Flame-retardant polycarbonate composition and preparation method thereof
CN114854187B (en) * 2022-04-01 2023-10-20 万华化学集团股份有限公司 Flame-retardant polycarbonate composition and preparation method thereof

Also Published As

Publication number Publication date
TWI616568B (en) 2018-03-01
TW201402895A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
AU2011245379B2 (en) Fiber blends for garments with high thermal, abrasion resistance, and moisture management properties
KR101760145B1 (en) Limited-antimony-content and antimony-free modacrlic / aramid blends for improved flash fire and arc protection
KR101722795B1 (en) Crystallized meta-aramid blends for improved flash fire and superior arc protection
TWI631249B (en) Cloth and fiber products
RU2552248C2 (en) Yarn and fabrics of fibre mixture containing oxidized polymer fibres
KR102041835B1 (en) Fiber blends, yarns, fabrics, and garments for arc and flame protection
CN103622186B (en) Flame resistant fabric and garments made therefrom
EP1725704B1 (en) Modacrylic/cotton/aramid fiber blends for arc and flame protection
JP5463356B2 (en) Crystallized meta-aramid blends to improve flash fire and arc protection
US20140187113A1 (en) Fiber blends for dual hazard and comfort properties
JP5979796B2 (en) High moisture content yarn, fabric and clothes with excellent arc protection
CN109788819B (en) Flame retardant fabrics of fibers containing energy absorbing and/or reflecting additives
US20130212790A1 (en) Flame resistant blends
JP2013540915A (en) Arc-resistant garment containing multilayer fabric laminate and method of making the same
JP2022167898A (en) Carbon containing fiber blend containing aramid and modacrylic fiber
WO2013183755A1 (en) Fabric for protective clothing, and arc-resistant protective clothing
US11473224B1 (en) Fire resistant fabric and process to produce same
EP3245320A1 (en) Flame resistant fabric
JP2020105639A (en) Stretch fabric and textile product using the same
JP7488107B2 (en) Fabrics and textile products
JP2018071012A (en) Flame-retardant fabric, method for producing the same, laminated fabric structure, and fireproof clothing
JP4447476B2 (en) Woven knitted fabric with improved washing durability
WO2025074831A1 (en) Woven fabric and protective clothing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP