WO2013164966A1 - ガスタービン燃焼器のパージ方法及びパージ装置 - Google Patents
ガスタービン燃焼器のパージ方法及びパージ装置 Download PDFInfo
- Publication number
- WO2013164966A1 WO2013164966A1 PCT/JP2013/062007 JP2013062007W WO2013164966A1 WO 2013164966 A1 WO2013164966 A1 WO 2013164966A1 JP 2013062007 W JP2013062007 W JP 2013062007W WO 2013164966 A1 WO2013164966 A1 WO 2013164966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- purge
- fuel
- gas
- water
- oil fuel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/232—Fuel valves; Draining valves or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
Definitions
- the present invention relates to a purge method and a purge apparatus for a dual type gas turbine combustor provided with a nozzle capable of switching an injected fuel between oil fuel and gas fuel.
- this high-viscosity substance is highly viscous, even if the purge with water or gas is repeated immediately after switching from oil-fired operation to gas-fired operation, the high-viscosity substance is completely removed from the oil fuel line. It is difficult.
- gas-fired operation is performed in this state, the high-viscosity material that has been exposed to a high-temperature environment for a long time is dried to become a solidified product (or semi-solidified product), and switched to oil-fired operation again.
- a problem of fuel injection from the nozzle occurs, which causes a deviation from the management range of the exhaust gas environmental regulation value.
- the present invention has been made in view of the above circumstances, and in the case of using a dual-type gas turbine combustor, the purge of the gas turbine combustor that can effectively prevent deviation from the management range of the exhaust gas environmental regulation value It is an object to provide a method and a purge device.
- a purge method for a gas turbine combustor according to the present invention is a nozzle that communicates with an oil fuel line through which oil fuel flows and a gas fuel line through which gas fuel flows, and that can switch the injected fuel between the oil fuel and the gas fuel.
- a purge method for a gas turbine combustor comprising: a first purge step of purging the oil fuel line using at least water immediately after switching of the injected fuel from the oil fuel to the gas fuel; and And a second purge step of purging the oil fuel line using at least water immediately before switching of the injected fuel from the gas fuel to the oil fuel.
- the second purge step that is, immediately before the switching of the injected fuel from the gas fuel to the oil fuel
- the small amount of the high-viscosity substance is further exposed to a high-temperature environment by gas-fired operation for a long time and dried. Advances to a solidified product (or semi-solidified product).
- the oil fuel line is at a temperature higher than the boiling point of water because the oil fuel that takes away the heat held by the oil fuel line has not flowed for a long time after switching to the gas-fired operation.
- the first purge step unlike the second purge step, generation of water vapor from the above-described purge water or hydrolysis of solidified product (or semi-solidified product) due to contact with high temperature water or water vapor is not performed. It seems to have hardly happened.
- the second purge step may be performed before switching the injected fuel from the gas fuel to the oil fuel in response to a preparation signal for switching the injected fuel from the gas fuel to the oil fuel.
- the second purge step is performed at an appropriate timing immediately before the switching of the injected fuel from the gas fuel to the oil fuel to remove the residual oil (solidified or semi-solidified) in the oil fuel line, and then the oiling operation Can start. Therefore, deviation from the management range of the exhaust gas environmental regulation value can be effectively prevented.
- the second purge step after performing water purge for flowing water to the oil fuel line, performing gas purge for flowing gas to the oil fuel line, The gas purge may be completed before switching the injected fuel from the gas fuel to the oil fuel.
- the water purge and the gas purge are performed in this order in the second purge step, so that the residual oil (solidified or semi-solidified) in the oil fuel line is removed by the water purge, and then water remaining in the oil fuel line ( Water used for purging the residual oil and contaminated with the residual oil) can be discharged by gas purging.
- the nozzle communicates with a pilot oil fuel line and a pilot gas fuel line, and a pilot nozzle capable of switching an injected fuel between the oil fuel and the gas fuel;
- a plurality of main nozzles provided so as to surround the pilot nozzle, communicating with the main oil fuel line and the main gas fuel line, and capable of switching the injected fuel between the oil fuel and the gas fuel,
- the oil fuel line that is purged using at least water in the first purge step and the second purge step is the main oil fuel line that communicates with each main nozzle, and in the second purge step, Gas that flows water through the main oil fuel line after purging water through the main oil fuel line Performs over di-, the pilot oil fuel line, when the gas fuel is selected as the injected fuel may be performed only sequentially gas purge flowing gas.
- the pilot nozzle Since the pilot nozzle is surrounded by a plurality of main nozzles, the pilot nozzle tends to be hotter than the main nozzle, and coking of residual oil is particularly likely to occur. Therefore, for the pilot nozzle, coking of residual oil is prevented by continuously performing the gas purge during the gas burning operation. Of course, if the gas purge is continuously performed, the gas supply amount necessary for performing the purge increases, but since only one pilot nozzle is provided, the increase in the gas supply amount is acceptable. On the other hand, since there are a plurality of main nozzles, if a continuous gas purge is performed for the main nozzles as well, the required gas supply amount becomes enormous, and the energy consumption of the compressor for supplying the purge gas is reduced.
- the main nozzle which is less likely to cause coking at a lower temperature than the pilot nozzle, can be intermittently purged by the first purge step and the second purge step without performing continuous gas purge.
- the pilot nozzle and the main nozzle can be effectively purged while suppressing an increase in the gas supply amount.
- the main nozzles are classified into a plurality of groups, and the water purge in the second purge step is started at different timings for each group in the main oil fuel line communicating with the main nozzles belonging to each group. Also good. Purge water has a significant impact on combustion stability. In particular, stable combustion tends to be hindered immediately after the start of water purge, where the injection of purge water from the main nozzle via the main oil fuel line suddenly starts. Therefore, as described above, the water purge in the second purge step is not started for all the main oil fuel lines at the same time, but the start timing of the water purge is made different for each group of main nozzles, thereby improving the combustion stability. It becomes easy to maintain.
- the water amount of the water purge may be increased stepwise for the main oil fuel lines communicating with the main nozzles belonging to each group.
- the amount of water in the water purge for the main oil fuel line is increased stepwise, thereby making it easier to maintain stable combustion immediately after the start of the water purge.
- a pilot ratio that is a ratio of a fuel flow rate injected from the pilot nozzle to a total fuel flow rate while water is flowing through the oil fuel line for the purge in the first purge step and the second purge step. May be temporarily increased.
- the ratio (pilot ratio) of the fuel injection amount from the pilot nozzle that diffuses and burns the fuel to the total fuel flow rate is temporarily By increasing, it becomes easy to maintain the combustion stability during the water purge.
- the amount of water flowing to the oil fuel line for the purging is less than a misfire limit value according to the output of the gas turbine. It may be determined. There is a misfire limit value that can maintain stable combustion without causing misfire, and the misfire limit value depends on the output of the gas turbine. Therefore, by setting the amount of water to be flowed by water purging below the misfire limit value according to the output of the gas turbine, an appropriate amount of water purging water is selected according to the output of the gas turbine within a range that does not inhibit stable combustion. Thus, it is possible to more reliably remove the residual oil from the oil fuel line.
- Water flow with water purge from the viewpoint of achieving both the removal of the residual oil and maintaining stable combustion, for example, 0.5F th or 0.98F th less when the misfire limit was F th (preferably 0.8f th it may be set within a range of more than 0.95F th less).
- a purge apparatus for a gas turbine combustor communicates with an oil fuel line through which oil fuel flows and a gas fuel line through which gas fuel flows, and is a nozzle capable of switching injected fuel between the oil fuel and the gas fuel.
- a purge device for a gas turbine combustor comprising: a water tank in which purge water is stored; a purge water supply path for communicating the water tank with the oil fuel line; and a purge water supply path And a controller for controlling the opening and closing of the purge water supply valve, wherein the controller supplies the gas fuel to the gas fuel in response to a switching signal of the injected fuel from the oil fuel to the gas fuel.
- the purge water supply valve is opened and water from the water tank to the oil fuel line is opened so that the first purge of the oil fuel line is performed immediately after switching of the injected fuel. And the purge water supply valve is opened immediately before switching the injected fuel from the gas fuel to the oil fuel in response to a preparation signal for switching the injected fuel from the gas fuel to the oil fuel.
- the second purge is performed by flowing water from the water tank to the fuel line.
- the first purge is performed immediately after the fuel switching to the gas fuel in response to the switching signal of the injected fuel from the oil fuel to the gas fuel, thereby remaining in the oil fuel line. Most of the liquid oil fuel is removed. Further, by performing the second purge immediately before the fuel switching to the oil fuel in response to the preparation signal for the switching of the injected fuel from the gas fuel to the oil fuel, it is not completely removed even if the first purge is performed.
- the solidified product (or semi-solidified product) generated when the oil fuel is exposed to a high temperature environment for a long time by gas-fired operation can be discharged.
- the purge water (or water vapor), which has been heated to receive the heat held by the oil fuel line, comes into contact with the high-viscosity substance that has changed into a solidified product (or semi-solidified product).
- Or semi-solidified product is hydrolyzed, and it is considered that separation and discharge of the solidified product (or semi-solidified product) from the oil fuel line are promoted.
- the combination of the first purge step performed immediately after the fuel switching to the gas fuel and the second purge step performed immediately before the fuel switching to the oil fuel enables the removal of residual oil from the oil fuel line. It is possible to reliably carry out and effectively prevent deviation from the exhaust gas environmental regulation value management range.
- FIG. 1 is a diagram showing a configuration example of a dual-type gas turbine combustor.
- a gas turbine combustor 1 (hereinafter simply referred to as “combustor 1”) has a plurality of (for example, eight) main nozzles around one pilot nozzle 2 as a center. 4 is arranged.
- the combustor 1 may be a multi-can type provided with a plurality (for example, 20) of each gas turbine, or may be a single can type provided with only one for each gas turbine.
- pilot oil fuel 10 and the pilot gas fuel 12 is selectively supplied to the tip of the pilot nozzle 2 via the pilot oil fuel line 14 and the pilot gas fuel line 16.
- the pilot oil fuel line 14 and the pilot gas fuel line 16 referred to here are an external flow path provided outside the pilot nozzle 2 and communicating with the fuel supply device, and provided inside the pilot nozzle 2 for injection.
- the entire fuel supply flow path including the internal flow path (oil fuel distribution flow path) leading to the ports 3A and 3B is indicated.
- the pilot oil fuel 10 passes through the pilot oil fuel line 14 and the tip of the pilot nozzle 2 It is injected from the injection port 3A provided in the.
- the pilot gas fuel 12 passes through a pilot gas fuel line 16 provided around the pilot oil fuel line 14 and is injected from an injection port 3B provided at the tip of the pilot nozzle 2.
- the pilot oil fuel 10 or pilot gas fuel 12 injected from the injection ports 3A and 3B of the pilot nozzle 2 is burned using combustion air to form a diffusion flame on the downstream side of the injection ports 3A and 3B.
- the high-temperature combustion gas from the diffusion flame serves as a flame holding point for a premixed flame by the main nozzle 4 described later.
- pilot nozzle 2 since the pilot nozzle 2 contributes to the improvement of the stability of the premixed flame, if the ratio (pilot ratio) of the fuel injected from the pilot nozzle 2 to the total fuel flow rate is increased, the combustion stability of the combustor 1 as a whole is increased. Will improve.
- One of the main oil fuel 20 and the main gas fuel 22 is selectively supplied to the tip of each main nozzle 4 via the main oil fuel line 24 and the main gas fuel line 26.
- the main oil fuel line 24 and the main gas fuel line 26 referred to here are an external flow path provided outside the main nozzle 4 and communicating with the fuel supply device, and provided inside the main nozzle 4 for injection.
- the entire fuel supply flow path including the internal flow path (oil fuel distribution flow path) leading to the ports 5A and 5B is indicated.
- the main oil fuel 20 passes through the main oil fuel line 24 and the oil reservoir 25. Injected from the injection port 5A provided at the tip of the main nozzle 4.
- the main gas fuel 22 passes through the main gas fuel line 26 including the gas reservoir 27 and is injected from an injection port 5B provided at the tip of the main nozzle 4.
- the main oil fuel 20 or the main gas fuel 22 injected from the injection ports 5A and 5B of the main nozzle 4 is premixed with combustion air (main air) to become a premixed gas.
- This premixed gas is ignited and combusted by the high-temperature combustion gas from the diffusion flame formed downstream of the injection ports 3A and 3B of the pilot nozzle 2 to form a premixed flame.
- the main nozzle 4 burns premixed gas and forms a premixed flame, it can suppress a local temperature rise and can reduce NOx.
- FIG. 2 is a diagram illustrating an overall configuration example of the purge device of the combustor 1.
- the purge device 30 includes a water tank 32, a purge water supply path 36 (36A, 36B), a purge water supply valve 37 (37A, 37B), an air tank 34, a purge air supply path 38 (38P, 38A, 38B)
- the purge air supply valve 39 (39P, 39A, 39B) and the controller 40 are provided.
- the plurality of main nozzles 4 are classified into a group A and a group B, and the details will be described later with reference to FIG. 3, but the start timing of the water purge is different among the groups.
- a main nozzle belonging to group A is referred to as a main nozzle 4A, and a purge water supply path, a purge water supply valve, a purge air supply path, and a purge air supply valve related to the main nozzle 4A are respectively denoted by reference numerals 36A, 37A, 38A, 39A is attached.
- a main nozzle belonging to group B is referred to as a main nozzle 4B, and a purge water supply path, a purge water supply valve, a purge air supply path, and a purge air supply valve related to the main nozzle 4B are denoted by reference numerals 36B and 37B, respectively. , 38B, 39B.
- the purge air supply path and the purge air supply valve related to the pilot nozzle 2 are denoted by reference numerals 38P and 39P, respectively.
- Purge water is stored in the water tank 32, and the water tank 32 communicates with the main oil fuel lines 24 of the main nozzles 4A and 4B via the purge water supply passages 36 (36A and 36B). ing. Further, purge water supply valves 37A and 37B corresponding to the main nozzles 4A and 4B are provided in the purge water supply paths 36A and 36B, respectively. The purge water supply valves 37A and 37B are controlled to be opened and closed by the controller 40.
- the air tank 34 stores purge air, and the air tank 34 communicates with the oil fuel lines 14 and 24 of the nozzles 2, 4 ⁇ / b> A, and 4 ⁇ / b> B via the purge air supply path 38 (38 ⁇ / b> P, 38 ⁇ / b> A, 38 ⁇ / b> B). It is supposed to be. Further, purge air supply valves 39P, 39A, 39B corresponding to the nozzles 2, 4A, 4B are provided in the purge air supply paths 38P, 38A, 38B, respectively. The purge air supply valves 39P, 39A, and 39B are controlled to be opened and closed by the controller 40.
- FIG. 3 is a timing chart of water purge and air purge by the purge device 30.
- the operating state of the combustor 1 is switched from oil burning to gas burning, and a signal SG 1 notifying the fuel switching from the oil fuel 10, 20 to the gas fuel 12, 22 is sent to the controller 40. Is input.
- the controller 40 controls the opening and closing of the valves 37A, 37B, 39A, 39B in response to the fuel switching signal SG1, and immediately after the fuel switching to the main gas fuel 22 (time t 1 to t 3 ), the main nozzles 4A, 4B.
- a first purge is performed for.
- the first purge refers to a purge process including at least a water purge, and may be a combination of a water purge and an air purge.
- the air purge 52 may be performed after the water purge 50 is performed a plurality of times (in the example of FIG. 3, three times).
- the mixed liquid of purge water and residual oil (water contaminated with the residual oil after the main oil fuel line 24 is washed) is removed from the main oil fuel line.
- the mixed liquid of purge water and residual oil water contaminated with the residual oil after the main oil fuel line 24 is washed
- the purge water supply valve (37A, 37B) is opened under the control of the controller 40 during the water purge 50, and the purge water from the water tank 32 is opened. Is supplied to the main oil fuel line 24, and the residual oil in the main oil fuel line 24 is discharged by the purge water.
- the purge air supply valves (39A, 39B) are opened under the control of the controller 40, and the purge air from the air tank 34 is supplied to the main oil fuel line 24, and the main oil fuel line The mixture of purge water and residual oil in 24 is discharged by purge air.
- the water purge 50 may be started at a different timing for each of the groups A and B from the viewpoint of maintaining combustion stability. For example, as shown in FIG. 3, to start the water purging 50 for each of the main oil fuel line 24 communicating with each of the main nozzles 4A belonging to group A at time t 1, communicating with each main nozzle 4B belonging to the group B each the water purging 50 to the main oil fuel line 24 may be started at time t 2. As described above, the water purge 50 in the first purge is not started for all the main oil fuel lines 24 at the same time, but the start timing (t 1 , t 2) of the water purge 50 for each of the groups A and B of the main nozzle 4.
- the start of the first water purge among the plurality of water purges 50 is started. If only the timing is different between the groups A and B, it is possible to contribute to the maintenance of combustion stability. Accordingly, the start timing of the subsequent water purge may be the same for each of the groups A and B. Alternatively, from the viewpoint of simplification of the control logic, in order to make the timing chart of each water purge 50 for each of the groups A and B common as shown in FIG. The water purge start timing may be different between the groups A and B.
- the amount of water in each water purge 50 may be increased stepwise (in the example shown in FIG. 3, two steps).
- the amount of water purge supplied to the main oil fuel line 24 is increased stepwise, so that it becomes easier to maintain stable combustion immediately after the start of the water purge 50.
- the start of the first water purge among the plurality of water purges 50 is started.
- the amount of purge water at the start of the subsequent water purge 50 does not necessarily need to be increased stepwise.
- the amount of purge water may be increased stepwise even at the start of the water purge.
- the controller 40 controls the opening degree of the flow rate adjusting valves provided in the pilot gas fuel line 16 and the main gas fuel line 26, respectively, and fuel injection from the pilot nozzle 2 that diffuses and burns fuel during the water purge 50 is performed.
- the ratio of the amount to the total fuel flow rate (pilot ratio) may be temporarily increased. Thereby, it becomes easy to maintain the combustion stability during the execution of the water purge 50.
- the pilot ratio when the water purge 50 is not being performed may be used as the base value, and 1 to 5% of the pilot value may be added to the base value.
- the amount Y of the purge water flowing in the main oil fuel line 24 during the implementation of the water purge 50 may be determined in the following misfire limit value F th depending on the gas turbine output X.
- Fth a misfire limit value capable of maintaining stable combustion without causing misfire
- the appropriate amount of water purge 50 can be selected according to X to remove the residual oil from the main oil fuel line 24 more reliably.
- the amount of water flowing in the water purge 50 from the viewpoint of achieving both the removal of stable combustion maintaining the residual oil, for example, 0.5F th or 0.98F th less (preferably 0.8f th or 0.95F th less ) May be set within the range.
- an additional third purge is performed manually or at an arbitrary timing from time t 3 to t 4 separately from the second purge described later. It may be done automatically. For example, in the period from time t 3 to t 4, a third purge having the same content as the first purge may be additionally performed every time a predetermined time elapses.
- the predetermined time has passed by the controller 40 in response to a signal input to the controller 40 each time the valve 37A, 37B, 39A, 39B close control to, each of the main nozzles 4A during the period from the instant t 3 ⁇ t 4, A third purge may be performed for 4B.
- the preparation signal SG2 fuel switching is input to the controller 40 at time t 4, the controller 40, the valve 37A in response to the signal SG2, 37B, 39A, 39B close control to, the main gas fuel 22
- the second purge is performed on each of the main nozzles 4A and 4B immediately before switching of the injected fuel to the main oil fuel 20 (time t 4 to t 6 ).
- the second purge refers to a purge process including at least a water purge, and may be a combination of a water purge and an air purge. Further, from the viewpoint of simplifying the control logic, the second purge may have the same content as the first purge.
- the air purge 62 may be performed after the water purge 60 is performed a plurality of times (three times in the example of FIG. 3) as the second purge.
- the air purge 62 By performing the air purge 62 after the water purge 60 in this way, residual oil (solidified or semi-solidified) in the main oil fuel line 24 is removed by the water purge 60 and then remains in the main oil fuel line 24. Water (water used for purging residual oil and water contaminated with residual oil) can be discharged by air purge 62.
- the purge water supply valves 37A and 37B are opened under the control of the controller 40 during the execution of the water purge 60, and the purge water from the water tank 32 is main.
- the oil is supplied to the oil fuel line 24, and the residual oil in the main oil fuel line 24 is discharged by the purge water.
- the purge air supply valves 39A and 39B are opened under the control of the controller 40, and the purge air from the air tank 34 is supplied to the main oil fuel line 24.
- the purge water and the residual oil mixture are discharged by the purge air.
- the water purge 60 may be started at a different timing for each of the groups A and B from the viewpoint of maintaining combustion stability. For example, as shown in FIG. 3, to start the water purging 60 for each of the main oil fuel line 24 communicating with each of the main nozzles 4A belonging to group A at time t 4, communicating with each main nozzle 4B belonging to the group B each the water purging 60 to the main oil fuel line 24 may be started at time t 5.
- the water purge 60 in the second purge is not started for all the main oil fuel lines 24 all at once, but the start timing (t 4 , t 5) of the water purge 60 for each of the groups A and B of the main nozzle 4.
- the start timing of the subsequent water purge may be the same for each of the groups A and B.
- the start timing of the first water purge not only the start timing of the first water purge but also the timing chart of each water purge 60 for each of the groups A and B can be shared. Subsequent water purge start timings may be different between the groups A and B.
- the amount of water in each water purge 60 may be increased stepwise (in the example shown in FIG. 3, two steps).
- the amount of water purge water supplied to the main oil fuel line 24 is increased stepwise, thereby making it easier to maintain stable combustion immediately after the start of the water purge 60.
- the combustion stability is most likely to deteriorate immediately after the start of the first water purge 60. Increasing the amount of purge water step by step can contribute to maintaining combustion stability.
- the amount of purge water at the start of the subsequent water purge 60 does not necessarily need to be increased stepwise.
- the purge water amount may be increased stepwise at the start of the subsequent water purge.
- controller 40 may control the opening of the flow rate adjusting valves provided in the pilot gas fuel line 16 and the main gas fuel line 26, respectively, and temporarily increase the pilot ratio during the water purge 60. Thereby, it becomes easy to maintain the combustion stability during the execution of the water purge 60.
- the pilot ratio when the water purge 60 is not performed may be used as the base value, and 1 to 5% of the pilot ratio may be added to the base value as the pilot ratio.
- the amount Y of purge water that flows to the main oil fuel line 24 when the water purge 60 in the second purge is performed is the misfire limit value F according to the gas turbine output X.
- water flowing in the water purge 60, maintaining stability of the combustion and from the viewpoint of achieving both the removal of the residual oil 0.5F th or 0.98F th less (preferably 0.8f th or 0.95F th less) It may be set within the range.
- the pilot nozzle 2 may be continuously purged with air during the gas-fired operation (time t 1 to t 7 ). This is because the pilot nozzle 2 is surrounded by a plurality of main nozzles 4A and 4B, and therefore tends to be hotter than the main nozzles 4A and 4B, and coking of residual oil is particularly likely to occur.
- the air purge 54 By continuously performing the air purge 54 during the gas burning operation, coking of residual oil in the pilot oil fuel line 14 can be effectively prevented.
- FIG. 5 is a flowchart showing the procedure of the combustor purge method in the present embodiment. This flowchart shows the procedure of the purge method from when the combustor 1 is performing the oil-fired operation to when the combustor 1 is switched to the gas-fired operation and back to the oil-fired operation again. Yes.
- step S2 it is determined whether or not the switching signal SG1 from the oil burning operation to the gas burning operation of the combustor 1 is input to the controller 40 (step S2). This step S2 is repeated until the switching signal SG1 is input to the controller 40.
- the process proceeds to step S4, and the valves 37A, 37B, 39A, 39B are controlled to be opened and closed under the control of the controller 40, and the main gas fuel is supplied.
- the first purge is performed for each of the main nozzles 4A and 4B.
- the valve 39P is controlled to open and close under the control of the controller 40, and the air purge 54 is started (step S6).
- step S8 it is determined whether or not a preparation signal SG2 for switching from the gas-fired operation to the oil-fired operation of the combustor 1 is input to the controller 40 (step S8). This step S8 is repeated until the preparation signal SG2 is input to the controller 40.
- the process proceeds to step S10, and the valves 37A, 37B, 39A, 39B are controlled to be opened and closed under the control of the controller 40, and the main gas fuel is supplied.
- the second purge is performed on each of the main nozzles 4A and 4B immediately before the switching of the injected fuel from 22 to the main oil fuel 20 (time t 4 to t 6 in the example of FIG. 3).
- step S12 it is determined whether or not the switching signal SG3 from the gas burning operation to the oil burning operation of the combustor 1 is input to the controller 40 (step S12). This step S12 is repeated until the switching signal SG3 is input to the controller 40.
- the switching signal SG3 is input to the controller 40 (YES determination in step S12)
- the air purge 54 for the pilot oil fuel line 14 started in step S6 is ended (step S14).
- the first purge is performed immediately after the switching of the injected fuel from the main oil fuel 20 to the main gas fuel 22 (time t 1 to t 3 ), whereby the main oil fuel line Most of the liquid oil fuel remaining in 24 is removed.
- it is practically difficult to remove all the oil fuel only by the first purge For example, the oil fuel remains in the main oil fuel line 24 at a part of the flow stagnation.
- the oil fuel that could not be removed by the first purge and remained slightly in the main oil fuel line 24 was exposed to a high temperature environment immediately after switching to the gas-fired operation, and changed to a small amount of high-viscosity material.
- the purge first purge
- the second purge that is, immediately before the switching of the injected fuel from the main gas fuel 22 to the main oil fuel 20
- the small amount of the high-viscosity substance is further kept in a high-temperature environment for a long time ( It is exposed to exposure (typically several days to several weeks), and drying progresses to form a solidified product (or semi-solidified product).
- the main oil fuel line 24 has a temperature higher than the boiling point of water because the main oil fuel 20 that takes away the heat held by the main oil fuel line 24 does not flow for a long time after switching to the gas-fired operation.
- the product (or semi-solidified product) is hydrolyzed and the separation and discharge of the solidified product (or semi-solidified product) from the main oil fuel line 24 are promoted.
- the residual oil from the main oil fuel line 24 is reliably removed, and the exhaust gas environmental regulation value deviates from the management range. Can be effectively prevented. Note that at the time when the first purge is performed (that is, immediately after the switching of the injected fuel from the main oil fuel 20 to the main gas fuel 22), the main oil fuel 20 is flowing through the main oil fuel line 24 until just before the main purge.
- the main oil fuel line 24 Since heat transfer from the oil fuel line 24 to the main oil fuel 20 has occurred, the main oil fuel line 24 is not so hot. Therefore, in the first purge, unlike the second purge, the generation of water vapor from the purge water and the hydrolysis of the solidified product (or semi-solidified product) due to contact with high-temperature water or water vapor are rare. I don't think I'm up.
- problems such as blockage of the nozzles 4A and 4B and deviation from the required value of the fuel injection amount due to residual oil can be avoided, so that cleaning is basically performed with the nozzle removed from the combustor 1. You don't have to do it. Therefore, it is possible to prevent the loss of power generation opportunities due to the operation stop of the gas turbine during nozzle cleaning. Further, assuming that it is desired to operate the gas turbine during nozzle cleaning, it is basically unnecessary to prepare a spare nozzle.
- the specific contents of the first purge and the second purge for the main nozzles 4A and 4B are shown in FIG. 3, but immediately after switching of the injected fuel from the oil fuel to the gas fuel.
- the first purge using at least water and the second purging step using at least water immediately before switching the injected fuel from gas fuel to oil fuel are performed on the oil fuel line of any nozzle, the first purge is performed.
- the specific contents of the second purge are not particularly limited. For example, the flow rate of the purge water or purge air of the water purges 50 and 60 and the air purges 52 and 62, the pressure of the purge water or purge air, the purge time, the number of purges, etc.
- the cleaning effect by the purge can be enjoyed to the maximum. You may adjust suitably.
- the example in which the first purge and the second purge include the air purges 52 and 62 has been described.
- any type of gas other than air for example, nitrogen gas
- an inert gas such as argon gas
- Specific implementation conditions of the gas purge may be the same as the air purges 52 and 62.
- the combustor 1 includes the pilot nozzle 2 and the main nozzles 4A and 4B.
- the configuration of the combustor 1 is not limited to this example.
- the combustor 1 may have only one type of nozzle.
- at the time of purging the nozzle at least water is used immediately after switching of the injected fuel from oil fuel to gas fuel.
- the first purge and the second purge step using at least water immediately before switching of the injected fuel from the gas fuel to the oil fuel may be performed.
- Example In order to examine the influence of the purge method of the combustor according to the above-described embodiment on the exhaust gas environmental regulation value, the following experiment was performed. That is, with respect to the gas turbine provided with the dual-type combustor 1, three types of purge treatments of Example, Comparative Example 1 and Comparative Example 2 are performed, the components in the exhaust gas are analyzed, and the exhaust gas at the reference O2 concentration of 15% is analyzed. The CO concentration [ppm] was determined. Details of each purge method are as follows. Since there are variations in the analysis results of the exhaust gas CO concentration, the operation of analyzing the exhaust gas CO concentration after performing the purge process under the conditions of the example and the comparative examples 1 and 2 is repeated a plurality of times, Data on the analysis results was collected.
- the conditions of the purge process in the examples and comparative examples 1 and 2 are as follows.
- both the first purge and the second purge shown in FIG. 3 were performed.
- the first purge was performed on each of the main nozzles 4A and 4B immediately after switching of the injected fuel from the main oil fuel 20 to the main gas fuel 22 (time t 1 to t 3 ).
- the second purge was performed for each of the main nozzles 4A and 4B immediately before the change of the injected fuel from the main gas fuel 22 to the main oil fuel 20 (time t 4 to t 6 ).
- time t 4 to t 6 As shown in the example of FIG.
- the first purge and the second purge are such that the water purges 50 and 60 are performed three times and then the air purges 52 and 62 are performed once.
- Each of the water purges 50 and 60 had a purge water flow rate of 24,000 lb / h and a water purge time of 10 minutes.
- Comparative Example 1 only the first purge shown in FIG. 3 was performed. The specific contents of the first purge are the same as in the embodiment.
- Comparative Example 2 only the second purge shown in FIG. 3 was performed. The specific contents of the second purge are the same as in the embodiment.
- FIG. 6 is a graph showing the analysis results of the exhaust gas CO concentration with respect to Examples and Comparative Examples 1 and 2. As is clear from this graph, in the example in which both the first purge and the second purge were performed, the exhaust gas CO concentration never exceeded the upper limit of the control range, whereas the first purge and the second purge. In Comparative Examples 1 and 2 in which only one of them was performed, the variation in the exhaust gas CO concentration was large, and it never fell within the control range.
- the first purge step performed immediately after the fuel switch to the gas fuel and the second purge step performed immediately before the fuel switch to the oil fuel are combined as in the above embodiment, so that the residual from the oil fuel line can be obtained. It was confirmed that oil can be removed reliably and deviation from the management range of exhaust gas environmental regulation values can be effectively prevented.
- Comparative Example 1 In Comparative Example 1 in which only the first purge was performed, the variation in the exhaust gas CO concentration was large, and it was never within the control range. This is because the residual oil could be completely removed from the oil fuel line by the first purge alone. This is probably because troubles such as nozzle blockage and deviation from the required fuel injection amount occurred in the combustor.
- Comparative Example 2 in which only the second purge was performed, the variation in the exhaust gas CO concentration was large and never once fell within the control range because it remained in the oil fuel line when switching from the oil-fired operation to the gas-fired operation. The large amount of oil fuel is exposed to the high temperature environment during gas-fired operation for a long time, causing coking, and sticking to the inner wall surface of the oil fuel line progresses. This is probably because the kimono) could not be completely removed, and problems such as nozzle clogging and deviation from the required fuel injection amount occurred in the combustor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feeding And Controlling Fuel (AREA)
Abstract
Description
このパージ技術によって、油焚きでの運転からガス焚きでの運転に切り替えた直後にパージを行うことで、油燃料系統内に残留した液状の油燃料(コーキングが起きる前の残留油)をパージにより強制的に排出して、残留油のコーキングに起因した上記不具合(ノズル閉塞や燃料噴射量の要求値からのズレ)を防止できると考えられていた。
すなわち、油焚きでの運転からガス焚きでの運転に切り替えた直後のパージによって大部分の液状油燃料を油燃料ラインから排出できたとしても、油燃料ライン(油溜りも含む)のうち流れの淀み部分には液状の油燃料が少なからず残留する。そして、流路内に僅かに残留した燃料油が存在すると、ガス焚きでの運転時の高温環境下に曝され、ガス焚きへの運転に切り替えた直後から残留油が高粘度物質(例えば酸化、劣化、重合、乾燥、炭化等が進行してゲル状になった物質)へと変化していく。この高粘度物質は粘性が高いため、仮に油焚きでの運転からガス焚きでの運転に切り替えた直後に水又は気体を用いたパージを繰り返しても油燃料ラインから高粘度物質を完全に除去することは困難である。そして、この状態でガス焚き運転が行われると、高温環境下に長時間曝された高粘度物質が乾燥して固化物(又は半固化物)となり、油焚きでの運転に再び切り換えられたときに、ノズルからの燃料噴射の不具合が発生し、排ガス環境規制値の管理範囲からの逸脱の原因となる。
一方、第2パージステップが行われる時点(すなわち、ガス燃料から油燃料への噴射燃料の切換え直前)では、上記少量の高粘度物質はさらにガス焚き運転による高温環境下に長時間曝されて乾燥が進行して固化物(又は半固化物)になっている。また、この時点では、油燃料ラインは、ガス焚き運転への切換え後から油燃料ラインが保有する熱を奪う油燃料が長らく流れていないため、水の沸点以上の高温になっている。この状態で第2パージステップが開始されると、第2パージステップの初期段階において、高温の油燃料ラインに導入されたパージ用の水の一部が蒸発して水蒸気が発生する。この水蒸気によって、固化物(又は半固化物)となった少量の高粘度物質が油燃料ラインの流路内壁面から浮き上がり剥離され、その後に導入されるパージ用の水とともに油燃料ラインから排出される。このとき、油燃料ラインが保有する熱を受け取って高温になったパージ用の水(又は水蒸気)が、固化物(又は半固化物)に変化している高粘度物質と接触して固化物(又は半固化物)の加水分解が起こり、固化物(又は半固化物)の油燃料ラインからの剥離及び排出が促進されると考えられる。
このように、パージメカニズムが異なる2種類の第1パージステップと第2パージステップを組み合わせることで、油燃料ラインからの残留油の除去を確実に行って、排ガス環境規制値の管理範囲からの逸脱を効果的に防止することができる。
なお、第1パージステップが行われる時点(すなわち、油燃料からガス燃料への噴射燃料の切換え直後)では、油燃料ラインには油燃料が直前まで流通しており油燃料ラインから油燃料への伝熱が起きていたため、油燃料ラインはそれほど高温になっていない。そのため、第1パージステップにおいては、第2パージステップとは異なり、上述したパージ用の水からの水蒸気の発生や高温の水又は水蒸気との接触による固化物(又は半固化物)の加水分解は殆んど起きていないと考えられる。
これにより、ガス燃料から油燃料への噴射燃料の切換え直前の適切なタイミングで第2パージステップを行って、油燃料ラインの残留油(固化物又は半固化物)を除去したうえで油焚き運転を開始することができる。よって、排ガス環境規制値の管理範囲からの逸脱を効果的に防止することができる。
このように第2パージステップにおいて水パージ、気体パージの順に行うことで、水パージによって油燃料ライン内の残留油(固化物又は半固化物)を除去した後、油燃料ラインに残存する水(残留油のパージに用いられ、残留油で汚れた水)を気体パージによって排出することができる。しかも、ガス燃料から油燃料への噴射燃料の切換え前に水パージ及び気体パージを完了させることで、油燃料ラインにパージ用の水が残留していない状態で油焚き運転を開始することができる。よって、油焚き運転の初期段階に油燃料ラインに溜まっていた水(残留油のパージに用いられた水)が一挙に噴射されて安定な燃焼が阻害される事態を防止できる。
パイロットノズルは、周囲が複数本のメインノズルで囲まれているためメインノズルよりも高温になる傾向があり、特に残留油のコーキングが起きやすい。そこで、パイロットノズルについては、ガス焚き運転中、気体パージを連続的に行うことで残留油のコーキングが防止される。もちろん、連続的に気体パージを行うと、パージを行うために必要な気体供給量が増加するが、パイロットノズルは一本のみであるから、気体供給量の増加は許容できる程度である。一方、メインノズルは複数本設けられているから、仮にメインノズルについても連続的な気体パージを行うと、必要な気体供給量は莫大となり、パージ用の気体を供給するためのコンプレッサの消費エネルギーが増大するだけでなく、場合によってはパージ専用のコンプレッサを設置する必要が生じる。そこで、上述のように、パイロットノズルに比べて低温でコーキングが起こりにくいメインノズルについては連続的な気体パージを行わずに、第1パージステップ及び第2パージステップによる間欠的なパージを行うことで、気体供給量の増加を抑制しながらパイロットノズル及びメインノズルのパージを効果的に行うことができる。
パージ用の水は、少なからず燃焼安定性に影響を与える。特に、メイン油燃料ラインを介したメインノズルからのパージ用の水の噴射が突然に始まる水パージ開始直後は安定な燃焼が阻害されやすい。そこで、上述のように、第2パージステップにおける水パージを全てのメイン油燃料ラインについて一斉に開始するのではなく、メインノズルのグループごとに水パージの開始タイミングを異ならせることによって、燃焼安定性を維持しやすくなる。
このように、第2パージステップにおける水パージの開始時、メイン油燃料ラインについて水パージの水量を段階的に増大させることで、水パージ開始直後における安定な燃焼をより一層維持しやすくなる。
このように、燃焼安定性に影響を及ぼす可能性がある水パージを行っている間、燃料を拡散燃焼させるパイロットノズルからの燃料噴射量の全燃料流量に占める割合(パイロット比)を一時的に増大させることで、水パージ実施中の燃焼安定性を維持しやすくなる。
水パージで流す水量には、失火を招くことなく安定燃焼を維持できる失火限界値が存在し、この失火限界値はガスタービンの出力に依存する。そこで、ガスタービンの出力に応じて、水パージで流す水量を失火限界値以下に設定することで、安定燃焼を阻害しない範囲内でガスタービンの出力に応じて適切な水パージの水量を選択して、油燃料ラインからの残留油の除去をより確実に行うことができる。水パージで流す水量は、安定燃焼の維持と残留油の除去を両立する観点から、例えば、失火限界値をFthとしたとき0.5Fth以上0.98Fth以下(好ましくは0.8Fth以上0.95Fth以下)の範囲内で設定してもよい。
このように、パージメカニズムが異なる2種類の第1パージと第2パージを組み合わせることで、油燃料ラインからの残留油の除去を確実に行って、排ガス環境規制値の管理範囲からの逸脱を効果的に防止することができる。
パイロットノズル2の噴射口3A,3Bから噴射されたパイロット油燃料10又はパイロットガス燃料12は、燃焼用空気を用いて燃焼されて噴射口3A,3Bの下流側に拡散火炎を形成する。そして、この拡散火炎からの高温燃焼ガスは、後述のメインノズル4による予混合火炎の保炎点としての役割を果たす。このように、パイロットノズル2は予混合火炎の安定性向上に寄与するから、パイロットノズル2からの噴射燃料の全燃料流量に対する比(パイロット比)を大きくすると、燃焼器1全体としての燃焼安定性が向上する。
メインノズル4の噴射口5A,5Bから噴射されたメイン油燃料20又はメインガス燃料22は、燃焼用空気(メイン空気)と予め混合されて予混合気となる。この予混合気は、パイロットノズル2の噴射口3A,3Bの下流側に形成される拡散火炎からの高温燃焼ガスによって着火燃焼され、予混合火炎を形成する。なお、メインノズル4は、予混合気を燃焼させて予混合火炎を形成するものであるため、局所的な温度上昇を抑制してNOxを低減することができる。
同図に示すように、パージ装置30は、水タンク32、パージ水供給路36(36A,36B)、パージ水供給バルブ37(37A,37B)、空気タンク34、パージ空気供給路38(38P,38A,38B)パージ空気供給バルブ39(39P,39A,39B)及びコントローラ40を備えている。
なお、ここでは、複数のメインノズル4はグループAとグループBとに分類されており、詳細は図3を用いて後述するが、グループ間において水パージの開始タイミングを異ならしめている。グループAに属するメインノズルをメインノズル4Aと称し、メインノズル4Aに関連するパージ水供給路、パージ水供給バルブ、パージ空気供給路及びパージ空気供給バルブには、それぞれ、符号36A,37A,38A,39Aを付している。同様に、グループBに属するメインノズルをメインノズル4Bと称し、メインノズル4Bに関連するパージ水供給路、パージ水供給バルブ、パージ空気供給路及びパージ空気供給バルブには、それぞれ、符号36B,37B,38B,39Bを付している。さらに、パイロットノズル2に関連するパージ空気供給路及びパージ空気供給バルブには、それぞれ、符号38P,39Pを付している。
ここで、第1パージとは、少なくとも水パージを含むパージ処理をいい、水パージと空気パージとを組み合わせたものであってもよい。例えば、図3に示すように、第1パージとして、水パージ50を複数回(図3の例では3回)行った後、空気パージ52を行ってもよい。このように水パージ50の後に空気パージ52を行うことで、パージ水と残留油との混合液(メイン油燃料ライン24の洗浄を行った後の残留油で汚れた水)をメイン油燃料ライン24から排出して、燃焼器1のガス焚き運転中において混合液の水分が蒸発して多量の固化物がメイン油燃料ライン24に残ることを防止できる。
このように、第1パージにおける水パージ50を全てのメイン油燃料ライン24について一斉に開始するのではなく、メインノズル4のグループA,Bごとに水パージ50の開始タイミング(t1,t2)を異ならせることによって、水パージ50の開始直後における燃焼安定性を維持しやすくなる。
なお、第1パージにおいて水パージ50を複数回実施する場合、燃焼安定性の低下は最初の水パージ50の開始直後に最も起こりやすいから、複数回の水パージ50のうち最初の水パージの開始タイミングのみ各グループA,B間で異ならせれば、燃焼安定性の維持に寄与できる。したがって、それ以降の水パージの開始タイミングは各グループA,Bについて同一であってもよい。あるいは、制御ロジックの簡素化の観点から、図3に示すように各グループA,Bについての毎回の水パージ50のタイミングチャートを共通化すべく、最初の水パージの開始タイミングだけでなく、それ以降の水パージの開始タイミングも各グループA,B間で異ならせてもよい。
なお、第1パージにおいて水パージ50を複数回実施する場合、燃焼安定性の低下は最初の水パージ50の開始直後に最も起こりやすいから、複数回の水パージ50のうち最初の水パージの開始時のみ段階的にパージ水量を増大させれば、燃焼安定性の維持に寄与できる。したがって、それ以降の水パージ50の開始時におけるパージ水量は必ずしも段階的に増大させる必要はない。あるいは、制御ロジックの簡素化の観点から、図3に示すように各グループA,Bについての毎回の水パージ50のタイミングチャートを共通化すべく、最初の水パージの開始時だけでなく、それ以降の水パージの開始時においてもパージ水量を段階的に増大させてもよい。
水パージ50で流す水量には、失火を招くことなく安定燃焼を維持できる失火限界値Fthが存在し、この失火限界値Fthはガスタービンの出力Xに依存する。すなわち、図4に示すように、失火限界値はFth=f(X)で表される。そこで、ガスタービンの出力Xに応じて、水パージ50で流す水量を失火限界値Fth以下(図4における許容エリア内)に設定することで、安定燃焼を阻害しない範囲内でガスタービンの出力Xに応じて適切な水パージ50の水量を選択して、メイン油燃料ライン24からの残留油の除去をより確実に行うことができる。なお、水パージ50で流す水量は、安定燃焼の維持と残留油の除去を両立する観点から、例えば、0.5Fth以上0.98Fth以下(好ましくは0.8Fth以上0.95Fth以下)の範囲内で設定してもよい。
ここで、第2パージとは、少なくとも水パージを含むパージ処理をいい、水パージと空気パージとを組み合わせたものであってもよい。また、制御ロジックの簡素化の観点から、第2パージを第1パージと同一内容としてもよい。
このように、第2パージにおける水パージ60を全てのメイン油燃料ライン24について一斉に開始するのではなく、メインノズル4のグループA,Bごとに水パージ60の開始タイミング(t4,t5)を異ならせることによって、水パージ60の開始直後における燃焼安定性を維持しやすくなる。
なお、第2パージにおいて水パージ60を複数回実施する場合、燃焼安定性の低下は最初の水パージ60の開始直後に最も起こりやすいから、複数回の水パージ60のうち最初の水パージの開始タイミングのみ各グループA,B間で異ならせれば、燃焼安定性の維持に寄与できる。したがって、それ以降の水パージの開始タイミングは各グループA,Bについて同一であってもよい。あるいは、制御ロジックの簡素化の観点から、図3に示すように、各グループA,Bについての毎回の水パージ60のタイミングチャートを共通化すべく、最初の水パージの開始タイミングだけでなく、それ以降の水パージの開始タイミングも各グループA,B間で異ならせてもよい。
なお、第1パージにおいて水パージ60を複数回実施する場合、燃焼安定性の低下は最初の水パージ60の開始直後に最も起こりやすいから、複数回の水パージ60のうち最初の水パージの開始時のみ段階的にパージ水量を増大させれば、燃焼安定性の維持に寄与できる。したがって、それ以降の水パージ60の開始時におけるパージ水量は必ずしも段階的に増大させる必要はない。あるいは、制御ロジックの簡素化の観点から、図3に示すように、各グループA,Bについての毎回の水パージ60のタイミングチャートを共通化すべく、最初の水パージの開始時だけでなく、それ以降の水パージの開始時においてもパージ水量を段階的に増大させてもよい。
そして、時刻t7においてガス燃料(12,22)から油燃料(10,20)への燃料切換えを知らせる信号SG3がコントローラ40に入力されると、パイロット油燃料ライン14に対する空気パージ54は終了される。
一方、第2パージが行われる時点(すなわち、メインガス燃料22からメイン油燃料20への噴射燃料の切換え直前)では、上記少量の高粘度物質はさらにガス焚き運転による高温環境下に長時間(典型的には数日~数週間)曝されて乾燥が進行して固化物(又は半固化物)になっている。また、この時点では、メイン油燃料ライン24は、ガス焚き運転への切換え後からメイン油燃料ライン24が保有する熱を奪うメイン油燃料20が長らく流れていないため、水の沸点以上の高温になっている。この状態で第2パージが開始されると、第2パージの初期段階(時刻t4付近)において、高温のメイン油燃料ライン24に導入されたパージ用の水の一部が蒸発して水蒸気が発生する。この水蒸気によって、固化物(又は半固化物)となった少量の高粘度物質がメイン油燃料ライン24の流路内壁面から浮き上がり剥離され、その後に導入されるパージ用の水とともにメイン油燃料ライン24から排出される。このとき、メイン油燃料ライン24が保有する熱を受け取って高温になったパージ用の水(又は水蒸気)が、固化物(又は半固化物)に変化している高粘度物質と接触して固化物(又は半固化物)の加水分解が起こり、固化物(又は半固化物)のメイン油燃料ライン24からの剥離及び排出が促進されると考えられる。
このように、パージメカニズムが異なる2種類の第1パージと第2パージを組み合わせることで、メイン油燃料ライン24からの残留油の除去を確実に行って、排ガス環境規制値の管理範囲からの逸脱を効果的に防止することができる。
なお、第1パージが行われる時点(すなわち、メイン油燃料20からメインガス燃料22への噴射燃料の切換え直後)では、メイン油燃料ライン24にはメイン油燃料20が直前まで流通しておりメイン油燃料ライン24からメイン油燃料20への伝熱が起きていたため、メイン油燃料ライン24はそれほど高温になっていない。そのため、第1パージにおいては、第2パージとは異なり、上述したパージ用の水からの水蒸気の発生や高温の水又は水蒸気との接触による固化物(又は半固化物)の加水分解は殆んど起きていないと考えられる。
また、上述の実施形態において、第1パージ及び第2パージが空気パージ52,62を含む例について説明したが、空気パージ52,62に替えて、空気以外の任意の種類の気体(例えば窒素ガスやアルゴンガス等の不活性ガス)を各メインノズル4A,4Bに流す気体パージを行ってもよい。気体パージの具体的な実施条件は、空気パージ52,62と同様であってもよい。
上述の実施形態に係る燃焼器のパージ方法が排ガス環境規制値に与える影響について検討するために、次のような実験を行った。すなわち、デュアル式の燃焼器1を備えたガスタービンについて、実施例、比較例1及び比較例2の3種類のパージ処理を実施し、排ガス中の成分を分析し、基準O2濃度15%における排ガスCO濃度[ppm]を求めた。各パージ方法の詳細は次のとおりである。排ガスCO濃度の分析結果にはバラツキが存在するため、実施例並びに比較例1及び2の条件にてパージ処理を行った後に排ガスCO濃度を分析するという操作を複数回繰り返して、排ガスCO濃度の分析結果に関するデータを収集した。
実施例では、図3に示す第1パージ及び第2パージの両方を実施した。具体的には、メイン油燃料20からメインガス燃料22への噴射燃料の切換え直後(時刻t1~t3)に各メインノズル4A,4Bについて第1パージを行った。また、メインガス燃料22からメイン油燃料20への噴射燃料の切換え直前(時刻t4~t6)に各メインノズル4A,4Bについて第2パージを実施した。なお、第1パージ及び第2パージは、いずれも、図3の例に示すように、水パージ50,60を3回行った後、空気パージ52,62を一回行うという内容とした。また、各水パージ50,60は、パージ水流量は24,000lb/hであり、水パージ時間は10分とした。
比較例1では、図3に示す第1パージのみを実施した。第1パージの具体的な内容は実施例と同様である。また比較例2では、図3に示す第2パージのみを実施した。第2パージの具体的な内容は実施例と同様である。
また、第2パージのみを行った比較例2において排ガスCO濃度のバラツキが大きく、一度も管理範囲内に収まらなかったのは、油焚き運転からガス焚き運転に切り換えた際に油燃料ラインに残留した多量の油燃料がガス焚き運転中の高温環境下に長時間曝されてコーキングを起こして油燃料ラインの流路内壁面への固着が進行しており、第2パージのみでは残留油(固着物)を完全に除去できず、ノズルの閉塞や燃料噴射量の要求値からのズレ等の不具合が燃焼器に生じたためと考えられる。
Claims (9)
- 油燃料が流れる油燃料ラインおよびガス燃料が流れるガス燃料ラインに連通し、前記油燃料と前記ガス燃料との間で噴射燃料を切換え可能なノズルを備えたガスタービン燃焼器のパージ方法であって、
前記油燃料から前記ガス燃料への噴射燃料の切換え直後に、少なくとも水を用いて前記油燃料ラインのパージを行う第1パージステップと、
前記ガス燃料から前記油燃料への噴射燃料の切換え直前に、少なくとも水を用いて前記油燃料ラインのパージを行う第2パージステップとを備えることを特徴とするガスタービン燃焼器のパージ方法。 - 前記第2パージステップは、前記ガス燃料から前記油燃料への噴射燃料の切換えの準備信号に応答して、前記ガス燃料から前記油燃料への噴射燃料の切換え前に行われることを特徴とする請求項1に記載のガスタービン燃焼器のパージ方法。
- 前記第2パージステップでは、前記油燃料ラインに水を流す水パージを行った後、前記油燃料ラインに気体を流す気体パージを行うとともに、
前記水パージ及び前記気体パージは、前記ガス燃料から前記油燃料への噴射燃料の切換え前に完了させることを特徴とする請求項1又は2に記載のガスタービン燃焼器のパージ方法。 - 前記ノズルは、パイロット油燃料ラインおよびパイロットガス燃料ラインに連通し、前記油燃料と前記ガス燃料との間で噴射燃料が切換え可能な一本のパイロットノズルと、該パイロットノズルを囲むように設けられ、メイン油燃料ラインおよびメインガス燃料ラインに連通し、前記油燃料と前記ガス燃料との間で噴射燃料が切換え可能な複数本のメインノズルとを含み、
前記第1パージステップ及び前記第2パージステップにおいて前記少なくとも水を用いたパージが行われる前記油燃料ラインは、各メインノズルと連通する前記メイン油燃料ラインであり、
前記第2パージステップでは、前記メイン油燃料ラインに水を流す水パージを行った後、前記メイン油燃料ラインに気体を流す気体パージを行うとともに、
前記パイロット油燃料ラインは、前記噴射燃料として前記ガス燃料が選択されているとき、連続的に気体を流す気体パージのみが行われることを特徴とする請求項1乃至3のいずれか一項に記載のガスタービン燃焼器のパージ方法。 - 前記メインノズルは複数のグループに分類されており、
前記第2パージステップにおける前記水パージは、各グループに属するメインノズルに連通するメイン油燃料ラインについて、グループごとに異なるタイミングで開始されることを特徴とする請求項4に記載のガスタービン燃焼器のパージ方法。 - 前記第2パージステップにおける前記水パージの開始時、各グループに属するメインノズルに連通するメイン油燃料ラインについて、前記水パージの水量を段階的に増大させることを特徴とする請求項5に記載のガスタービン燃焼器のパージ方法。
- 前記第1パージステップ及び前記第2パージステップにおいて前記パージのために前記油燃料ラインに水を流している間、前記パイロットノズルから噴射される燃料流量の全燃料流量に対する比であるパイロット比を一時的に増大させることを特徴とする請求項4乃至6のいずれか一項に記載のガスタービン燃焼器のパージ方法。
- 前記第1パージステップ及び前記第2パージステップにおいて、前記パージのために前記油燃料ラインに流す水量は、ガスタービンの出力に応じて失火限界値以下に決定されることを特徴とする請求項1乃至7のいずれか一項に記載のガスタービン燃焼器のパージ方法。
- 油燃料が流れる油燃料ラインおよびガス燃料が流れるガス燃料ラインに連通し、前記油燃料と前記ガス燃料との間で噴射燃料を切換え可能なノズルを備えたガスタービン燃焼器のパージ装置であって、
パージ用の水が貯留された水タンクと、
前記水タンクを前記油燃料ラインに連通させるパージ水供給路と、
前記パージ水供給路に設けられたパージ水供給バルブと、
前記パージ水供給バルブを開閉制御するコントローラとを備え、
前記コントローラは、
前記油燃料から前記ガス燃料への噴射燃料の切換え信号に応答して、前記ガス燃料への噴射燃料の切換え直後に前記油燃料ラインの第1パージが行われるように、前記パージ水供給バルブを開いて前記油燃料ラインに前記水タンクから水を流すとともに、
前記ガス燃料から前記油燃料への噴射燃料の切換えの準備信号に応答して、前記ガス燃料から前記油燃料への噴射燃料の切換え直前に、前記パージ水供給バルブを開いて前記油燃料ラインに前記水タンクから水を流して第2パージを行うことを特徴とするガスタービン燃焼器のパージ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112013002290.7T DE112013002290T5 (de) | 2012-05-02 | 2013-04-24 | Spülverfahren und Spüleinheit für Gasturbinenbrennkammer |
KR1020147026939A KR101606310B1 (ko) | 2012-05-02 | 2013-04-24 | 가스 터빈 연소기의 퍼지 방법 및 퍼지 장치 |
CN201380011041.4A CN104136744B (zh) | 2012-05-02 | 2013-04-24 | 燃气涡轮燃烧器的净化方法及净化装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-105016 | 2012-05-02 | ||
JP2012105016A JP5946690B2 (ja) | 2012-05-02 | 2012-05-02 | ガスタービン燃焼器のパージ方法及びパージ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013164966A1 true WO2013164966A1 (ja) | 2013-11-07 |
Family
ID=49511506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062007 WO2013164966A1 (ja) | 2012-05-02 | 2013-04-24 | ガスタービン燃焼器のパージ方法及びパージ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9447730B2 (ja) |
JP (1) | JP5946690B2 (ja) |
KR (1) | KR101606310B1 (ja) |
CN (1) | CN104136744B (ja) |
DE (1) | DE112013002290T5 (ja) |
WO (1) | WO2013164966A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114810358A (zh) * | 2022-04-25 | 2022-07-29 | 中国船舶重工集团公司第七0三研究所 | 燃气轮机低排放双燃料系统及其控制方法 |
CN114837823A (zh) * | 2022-04-25 | 2022-08-02 | 中国船舶重工集团公司第七0三研究所 | 一种基于双燃料控制系统的燃气轮机启动逻辑方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20111576A1 (it) * | 2011-09-02 | 2013-03-03 | Alstom Technology Ltd | Metodo per commutare un dispositivo di combustione |
US10012148B2 (en) * | 2014-05-23 | 2018-07-03 | General Electric Company | Method of purging a combustor |
US10378448B2 (en) | 2014-06-03 | 2019-08-13 | Mitsubishi Hitachi Power Systems, Ltd. | Method for purging fuel channel, purging device for executing said method, and gas turbine installation provided with said device |
FR3030628B1 (fr) * | 2014-12-23 | 2017-02-03 | Ge Energy Products France Snc | Installation et procede d'alimentation d'une chambre de combustion, notamment d'une turbine a gaz, a injection d'eau dans une cavite d'un circuit de purge |
EP3073198B1 (en) | 2015-03-27 | 2019-12-25 | Ansaldo Energia Switzerland AG | Integrated dual fuel delivery system |
WO2017116266A1 (en) * | 2015-12-30 | 2017-07-06 | General Electric Company | Liquid fuel nozzles for dual fuel combustors |
US20170218790A1 (en) * | 2016-02-01 | 2017-08-03 | General Electric Company | Systems and Methods of Predicting Physical Parameters for a Combustion Fuel System |
US10371048B2 (en) * | 2016-02-22 | 2019-08-06 | Mitsubishi Hitachi Power Systems, Ltd. | Combustor and gas turbine |
JP6779097B2 (ja) * | 2016-10-24 | 2020-11-04 | 三菱パワー株式会社 | ガスタービン燃焼器及びその運転方法 |
US20190063328A1 (en) * | 2017-08-29 | 2019-02-28 | General Electric Company | Gas turbomachine fuel system, control system and related gas turbomachine |
US11486303B2 (en) * | 2019-05-15 | 2022-11-01 | Pratt & Whitney Canada Corp. | System and method for purging a fuel manifold of a gas turbine engine using a pump |
CN112460635B (zh) * | 2020-10-27 | 2022-06-21 | 中国船舶重工集团公司第七0三研究所 | 一种双燃料燃气轮机引气吹扫方法 |
CN112460637A (zh) * | 2020-10-27 | 2021-03-09 | 中国船舶重工集团公司第七0三研究所 | 一种双燃料燃气轮机引气吹扫系统 |
US11306661B1 (en) * | 2020-12-04 | 2022-04-19 | General Electric Company | Methods and apparatus to operate a gas turbine engine with hydrogen gas |
FR3118791B1 (fr) * | 2021-01-14 | 2023-07-14 | Safran Aircraft Engines | Système et procédé d’alimentation en carburant d’une chambre de combustion dans un turbomoteur d’aéronef |
US11808219B2 (en) | 2021-04-12 | 2023-11-07 | Pratt & Whitney Canada Corp. | Fuel systems and methods for purging |
DE102023201244A1 (de) * | 2023-02-14 | 2024-08-14 | Rolls-Royce Deutschland Ltd & Co Kg | Pilotierungsanordnung, düsenvorrichtung, gasturbinenanordnung und verfahren |
DE102023203942A1 (de) * | 2023-04-27 | 2024-10-31 | Rolls-Royce Deutschland Ltd & Co Kg | Pilotierungsanordnung für eine düsenvorrichtung sowie düsenvorrichtung und gasturbinenanordnung mit einer pilotierungsanordnung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001059427A (ja) * | 1999-06-15 | 2001-03-06 | Mitsubishi Heavy Ind Ltd | ガスタービン燃焼器の油ノズルパージ方法 |
WO2011026982A1 (en) * | 2009-09-07 | 2011-03-10 | Alstom Technology Ltd | Method for switching over a gas turbine burner operation from liquid to gas fuel and vice-versa |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9025778D0 (en) | 1990-11-27 | 1991-01-09 | Rolls Royce Plc | Improvements in or relating to gas generators |
US5784875A (en) * | 1995-11-27 | 1998-07-28 | Innovative Control Systems, Inc. | Water injection into a gas turbine using purge air |
US6145294A (en) * | 1998-04-09 | 2000-11-14 | General Electric Co. | Liquid fuel and water injection purge system for a gas turbine |
JPH11350978A (ja) * | 1998-06-08 | 1999-12-21 | Mitsubishi Heavy Ind Ltd | 燃料ノズルパージ装置 |
EP0952317A3 (en) * | 1998-04-21 | 2002-04-17 | Mitsubishi Heavy Industries, Ltd. | Purging system for a gas turbine fuel supply |
EP1199442A3 (en) | 1998-05-08 | 2003-01-22 | Mitsubishi Heavy Industries, Ltd. | Gas turbine fuel oil purge system |
US6438963B1 (en) * | 2000-08-31 | 2002-08-27 | General Electric Company | Liquid fuel and water injection purge systems and method for a gas turbine having a three-way purge valve |
JP4130909B2 (ja) | 2003-09-26 | 2008-08-13 | 株式会社日立製作所 | 2重燃料焚きガスタービン燃料供給系 |
US7104070B2 (en) * | 2004-03-04 | 2006-09-12 | General Electric Company | Liquid fuel nozzle apparatus with passive water injection purge |
JP4775643B2 (ja) * | 2006-06-06 | 2011-09-21 | 株式会社Ihi | ガスタービンの燃料切替装置及び方法 |
US7950238B2 (en) | 2006-10-26 | 2011-05-31 | General Electric Company | Method for detecting onset of uncontrolled fuel in a gas turbine combustor |
US9243804B2 (en) * | 2011-10-24 | 2016-01-26 | General Electric Company | System for turbine combustor fuel mixing |
US8973366B2 (en) * | 2011-10-24 | 2015-03-10 | General Electric Company | Integrated fuel and water mixing assembly for use in conjunction with a combustor |
-
2012
- 2012-05-02 JP JP2012105016A patent/JP5946690B2/ja active Active
-
2013
- 2013-01-31 US US13/755,447 patent/US9447730B2/en active Active
- 2013-04-24 WO PCT/JP2013/062007 patent/WO2013164966A1/ja active Application Filing
- 2013-04-24 KR KR1020147026939A patent/KR101606310B1/ko active Active
- 2013-04-24 DE DE112013002290.7T patent/DE112013002290T5/de active Pending
- 2013-04-24 CN CN201380011041.4A patent/CN104136744B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001059427A (ja) * | 1999-06-15 | 2001-03-06 | Mitsubishi Heavy Ind Ltd | ガスタービン燃焼器の油ノズルパージ方法 |
WO2011026982A1 (en) * | 2009-09-07 | 2011-03-10 | Alstom Technology Ltd | Method for switching over a gas turbine burner operation from liquid to gas fuel and vice-versa |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114810358A (zh) * | 2022-04-25 | 2022-07-29 | 中国船舶重工集团公司第七0三研究所 | 燃气轮机低排放双燃料系统及其控制方法 |
CN114837823A (zh) * | 2022-04-25 | 2022-08-02 | 中国船舶重工集团公司第七0三研究所 | 一种基于双燃料控制系统的燃气轮机启动逻辑方法 |
CN114837823B (zh) * | 2022-04-25 | 2023-10-03 | 中国船舶重工集团公司第七0三研究所 | 一种基于双燃料控制系统的燃气轮机启动逻辑方法 |
CN114810358B (zh) * | 2022-04-25 | 2024-02-20 | 中国船舶重工集团公司第七0三研究所 | 燃气轮机低排放双燃料系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US9447730B2 (en) | 2016-09-20 |
KR20140124864A (ko) | 2014-10-27 |
CN104136744A (zh) | 2014-11-05 |
JP2013231415A (ja) | 2013-11-14 |
DE112013002290T5 (de) | 2015-02-05 |
CN104136744B (zh) | 2016-06-08 |
KR101606310B1 (ko) | 2016-03-24 |
JP5946690B2 (ja) | 2016-07-06 |
US20130291547A1 (en) | 2013-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5946690B2 (ja) | ガスタービン燃焼器のパージ方法及びパージ装置 | |
RU2674836C1 (ru) | Камера сгорания газовой турбины и способ её эксплуатации | |
EP2634395B1 (en) | Gas turbine | |
JP6190670B2 (ja) | ガスタービン燃焼システム | |
US8340886B2 (en) | System and method for transitioning between fuel supplies for a combustion system | |
JP4979615B2 (ja) | 燃焼器及び燃焼器の燃料供給方法 | |
JP5993282B2 (ja) | ガスタービンエンジンのためのガス燃料回路をパージするためのシステム | |
US20120167547A1 (en) | Combustion turbine purge system and method of assembling same | |
TWI880740B (zh) | 發電設備 | |
JP2009197800A (ja) | 排気ガスの温度を制御するための排気ガス温度調節デバイス及びシステムを有する発電システム | |
US9303562B2 (en) | Methods and systems for operating gas turbine engines | |
CN104379905A (zh) | 用于连续燃气涡轮的局部负载co减小操作的方法 | |
JP7381659B2 (ja) | ガスタービン設備 | |
JP6050148B2 (ja) | 液体燃料作動からガス燃料作動に燃焼器を作動する方法 | |
JPH0979044A (ja) | ガスタービンノズルパージ方法 | |
JP3807272B2 (ja) | 改質燃料焚きガスタービン及びその燃料系統パージ方法 | |
JP3035097B2 (ja) | 液体燃料バーナ装置 | |
JP7035828B2 (ja) | 燃焼装置 | |
KR0143379B1 (ko) | 기름연소 버너의 퍼지 매체 공급시스템 | |
KR20060070744A (ko) | 배기 재연 버너 | |
JP5404533B2 (ja) | 蓄熱燃焼式熱処理炉の燃焼制御方法 | |
JPS63204019A (ja) | バ−ナ消火パ−ジ方法 | |
JPS61128023A (ja) | バ−ナ装置の残油燃焼方法 | |
JPS61128025A (ja) | バ−ナパ−ジの制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13784881 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147026939 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112013002290 Country of ref document: DE Ref document number: 1120130022907 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13784881 Country of ref document: EP Kind code of ref document: A1 |