WO2013152478A1 - 空心管坯水冷铸造方法及装置 - Google Patents
空心管坯水冷铸造方法及装置 Download PDFInfo
- Publication number
- WO2013152478A1 WO2013152478A1 PCT/CN2012/073770 CN2012073770W WO2013152478A1 WO 2013152478 A1 WO2013152478 A1 WO 2013152478A1 CN 2012073770 W CN2012073770 W CN 2012073770W WO 2013152478 A1 WO2013152478 A1 WO 2013152478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- cooling
- cooled
- metal type
- casting
- Prior art date
Links
- 238000005266 casting Methods 0.000 title claims abstract description 196
- 238000001816 cooling Methods 0.000 title claims abstract description 186
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims description 69
- 239000002184 metal Substances 0.000 claims abstract description 289
- 229910052751 metal Inorganic materials 0.000 claims abstract description 289
- 239000000498 cooling water Substances 0.000 claims abstract description 67
- 238000007711 solidification Methods 0.000 claims abstract description 57
- 230000008023 solidification Effects 0.000 claims abstract description 57
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 23
- 239000010959 steel Substances 0.000 claims abstract description 23
- 230000003111 delayed effect Effects 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- 239000011449 brick Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 6
- 239000011819 refractory material Substances 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 5
- 238000001363 water suppression through gradient tailored excitation Methods 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 230000008602 contraction Effects 0.000 claims description 3
- 229910001018 Cast iron Inorganic materials 0.000 claims description 2
- 229910001208 Crucible steel Inorganic materials 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 229910052845 zircon Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000003595 mist Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000005242 forging Methods 0.000 description 6
- 238000005338 heat storage Methods 0.000 description 6
- 238000009749 continuous casting Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009750 centrifugal casting Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/22—Moulds for peculiarly-shaped castings
- B22C9/24—Moulds for peculiarly-shaped castings for hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
Definitions
- the invention relates to a method and a device for casting a hollow tube blank, in particular to a method and a device for water-cooling casting of a hollow tube blank, relating to the preparation of a blank for the technical field of metallurgical tube manufacturing and mechanical ring parts manufacturing; in particular, the invention relates to a super large hollow tube blank The technical field of water-cooled casting. Background technique
- Existing hollow casting technology including centrifugal casting method, static sand core casting method, air-cooled steel sleeve casting method and hollow tube continuous casting method.
- the centrifugal casting method has the advantages of fine outer layer structure of the casting, simple process and high yield of castings, but the inner surface l (the slag inclusion, shrinkage hole and loose layer exist in the T40mm range, so the machine must be used in the cold state after casting)
- the processing method is processed, and the centrifugal equipment has a high investment.
- Fig. 9 is a schematic representation of the static sand.
- the solid phase fraction change CAE simulation result of the solidification process of the casting produced by the core casting method the five stages of £1, b, c, d, and e respectively represent different stages of the casting, in which the light-colored area represents the unsolidified area Al, The outer dark area indicates the solidified layer Bl.
- Fig. 9a is the start of solidification
- Fig. 9b is the initial stage of solidification
- Fig. 9c is the middle stage of solidification
- Fig. 9d is In the late stage of solidification
- Fig. 9e is the end (all solidification)
- the changes of the molten metal (the final solidification zone A1) and the solidified layer B1 are shown by the respective figures.
- Fig. 9c at this stage, the inner surface of the hollow tube is still not solidified (there is a light colored final solidification zone A1), and the molten metal is completely solidified from Fig. 9d to Fig. 9e, that is, the inner surface C of the hollow tube, and the top Area D is the final solidification zone.
- the characteristics of the method are as follows:
- the liquid core is narrow and deep in the late solidification stage, so the shrinkage is easy to occur, and the inner surface of the casting is relatively coarse.
- the inner surface of the sand core is likely to be oxidized during the forging heating process. Loose layers that are difficult to remove, the inner surface needs to be treated first for products with harsher conditions.
- the air-cooled steel core casting method is a method that is adopted at home and abroad, and is relatively mature in the manufacture of short and thick large-sized hollow steel ingots.
- Loose appearance as shown in Figure 10 is a schematic diagram of the solid-state fractional change CAE simulation results of the solidification process of the castings produced by the air-cooled steel core casting method.
- the five stages of £1, b, c, d, and e respectively represent the different stages of the casting.
- the light colored area indicates the unsolidified area A2
- the dark area outside thereof indicates the solidified layer B2. That is, Fig. 10a is the start of solidification, Fig.
- Fig. 10b is the initial stage of solidification
- Fig. 10c is the middle stage of solidification
- Fig. 10d is the late stage of solidification
- Fig. 10e is the end (all solidification)
- the molten metal (the final solidified area A2) and the solidified are shown by the respective figures.
- the casting method of the air-cooled steel core also has the problem of the above-mentioned static sand core casting method, and the liquid core is narrow and deep in the late solidification stage, so that the shrinkage is likely to occur, and the casting may be serious. There will be a second shrinkage hole, and this method needs to make a direct The steel plate in contact with the molten steel is melted together into the casting.
- Hollow tube continuous casting method including vertical hollow tube continuous casting method and horizontal hollow tube continuous casting method, which is characterized by using a water-cooled crystallizer for the outer shape, using a graphite solid rod as the core, and hollowing through continuous drawing and casting.
- the method is limited to the production of small cast pipes with a smaller outer diameter diameter of ⁇ 500 mm and a wall thickness of less than 100 mm, which has high production efficiency and large investment in equipment.
- the water-cooled casting method and device adopts the upper and lower thickness-thickness-thickness metal type, the metal-type inner-thickness thick and thin-thickness thickness coating, and the water-cooling forced sequential cooling technology, by controlling the water cooling sequence (from bottom to top) Advance), to achieve improved order solidification to completely eliminate shrinkage holes, loose and refine the structure.
- the object of the present invention is to provide a method and a device for casting a hollow tube blank, in particular to a method and a device for water-cooling casting of a hollow tube blank, which utilizes a thin and thick thickness-variable metal type, and controls the water cooling sequence (from bottom to top) Advance), to achieve improved order of solidification to completely eliminate shrinkage holes, loose and refine the structure.
- the present invention provides a hollow tube blank water-cooling casting apparatus, comprising: a cylindrical water-cooled outer metal type, a cylindrical water-cooled inner metal type disposed therein, the water-cooled inner and outer metal forms form a ring shape a casting cavity; the top of the water-cooled outer metal type and the water-cooled inner metal type is provided with a riser mold; the water-cooled bottom box is disposed at the lower part of the water-cooled outer metal type and the water-cooled inner metal type, and the molten metal is poured from the water gate through the water-cooled bottom The box enters the cavity; wherein the gate is a tangential cross gate, and the molten metal enters the water-cooled bottom box tangentially from the gate, and the steel liquid is self-driven by the tangential cross-gate outlet speed The lower portion of the cavity is raised in a circumferential rotation manner to obtain a pure casting surface; the longitudinal shape of the water-cooled outer metal type and the water-cooled inner metal type is a thin, tapered, and
- the invention also provides a hollow tube blank water-cooling casting method, which adopts the hollow tube blank water-cooling casting device as described above, comprising: opening a water return pipe connected with a water-cooling coil, a central cooling water pipe and a cooling water coil, and maintaining The water return pipe is unblocked; the molten metal is poured into the U-shaped cavity from the casting pipe connected to the sprue into the sprue, the runner, and the tangent line along the tangent of the water-cooled bottom box, by means of the tangent The driving speed is promoted, so that the molten steel rises in the cavity in a circumferential rotation manner, and is filled with a cavity formed by a thin and thick metal type;
- the molten metal is cooled and solidified by the water-cooled bottom tank, and sequentially passes through the lower part, the middle part and the upper part of the cavity formed by the water-cooled inner and outer metal forms until the riser is completely solidified; the cooling water inlet water gate is closed, and the maintenance is continued.
- the return water pipeline is unblocked, and as the casting continues to cool, the moisture remaining in the pipeline continues to evaporate until it is evaporated to dryness;
- the hollow tube blank water-cooling casting method and device of the present invention has the following features and advantages: 1.
- the tubular profile of the cylindrical water-cooled outer metal type and the cylindrical water-cooled inner metal type of the present invention is selected from the upper and lower thick bands.
- Taper metal type The metal type has a large heat storage capacity below and a small heat storage amount above, so that the metal type is heated by the molten metal and then rapidly heated to a higher temperature, and the cooling strength is rapidly lowered, thereby delaying the solidification, and the order is The purpose of solidification.
- the water-cooled outer metal type and water-cooled inner metal adopt the sectional combination structure to make the mold manufacturing difficult, make the mold height adjustable, and change the height specification to become more flexible.
- the water-cooled inner metal type is formed into a bottom-closed U-shaped structure. After the casting forms the blank shell, the water is directly flowed into the inner cavity.
- the bottom-up sequential cooling method is simpler by controlling the water level.
- the crack problem that may be caused by the solidification shrinkage of the casting is completely solved, and the core can not be opened out of the box.
- the upper and lower thin coating layers are arranged in the metal casting cavity to adjust the heat transfer capacity of the upper and lower metal liquids to the metal type, to delay the solidification time of the upper metal liquid, and to strengthen the upper and lower sequential solidification.
- annular water-cooled bottom box with tangential gate enables the molten metal to rotate into the cavity, so that the metal liquid is more evenly distributed in the circumferential direction, which can greatly reduce the surface defects such as slag inclusions and pores on the surface of the casting. Conducive to improve the surface quality of castings.
- the anti-scouring ability of the mold is greatly improved, the use of the water-cooled annular sleeve in the bottom box and the outer annular cold iron can greatly improve the solidification of the bottom box.
- the cooling capacity avoids the possibility of looseness and shrinkage in the water-cooled bottom box, improves the finished product rate at the bottom of the casting, and reduces unnecessary head loss.
- the use of the heat-insulating refractory cotton layer greatly reduces the heat loss of the riser, improves the feeder feeding capacity, reduces the riser head loss, and improves the casting. Yield rate.
- the hollow tube blank water-cooling casting method and device proposed by the invention can realize the water-cooled casting of the super large hollow tube blank, and the high-quality super-large size and large high-thickness ratio cylindrical casting can be obtained by the sequential cooling and the sequential solidification casting method. It effectively avoids the occurrence of internal shrinkage cavities and loose defects of large, high-thickness cylindrical castings, and improves the yield.
- FIG. 1 is a schematic structural view of an embodiment of a hollow tube blank water-cooling casting apparatus of the present invention
- Figure 2 is a schematic view showing the structure of another embodiment of the hollow tube blank water-cooling casting apparatus of the present invention, wherein the liquid level detecting device is schematically shown;
- FIG. 3A is a schematic view showing a three-dimensional structure of a variable-diameter water-cooled inner metal type of a hollow tube blank water-cooling casting device of the present invention
- FIG. 3B is a structural position of an upper flange, a lower flange and a baffle of a variable-diameter water-cooled inner metal type
- 3C is a schematic structural view of a set of arc-shaped inner metal type units constituting a water-cooled inner metal type
- 4A is a front elevational view showing the water-cooled inner metal type of the hollow tube blank water-cooling casting device of the present invention
- 4B is a left side view of FIG. 4A;
- FIG. 4C is a right side view of FIG. 4A;
- Figure 5 is a cross-sectional view showing the water-cooled bottom box of the hollow tube blank water-cooling casting device of the present invention.
- Figure 6 is a schematic view showing the water-cooled bottom box of the hollow tube blank water-cooling casting device of the present invention.
- Figure 7 is a schematic view (1) of sequential cooling of a hollow shell blank water-cooling casting method according to the present invention, wherein: a, initial cooling; b, medium-term cooling; c, late cooling;
- Figure 8 is a schematic view showing the sequential cooling of the casting of the hollow shell blank water-cooling casting method of the present invention (2), showing the position of the liquid level detecting device during the cooling process, wherein: a, the initial cooling; b, the middle of cooling; c, the late cooling;
- FIG. 9 is a CAE simulation result display diagram of a solid phase fraction change process of a casting using a known static sand core casting method
- FIG. 10 is a CAE simulation result display diagram of solid phase fraction change during solidification of a casting using a known air-cooled steel core casting method
- Figure 11 is a CAE simulation result showing the solid fraction variation of the casting during the solidification process using the water-cooled casting method of the present invention
- Figure 12 is a comparison chart showing the prediction results of the CAE simulation defect of the casting using different casting methods, wherein al and a2 are used
- the casting defect prediction of the known static sand core casting method, bl, b2 is a casting defect prediction using a known air-cooled steel core casting method
- c is a casting defect prediction using the water-cooling casting method of the present invention.
- riser mold 101 riser box 2
- hollow ring sand core 3 water-cooled outer metal type
- annular refractory brick lining 506 annular refractory brick lining 506, sprue 507, sprue 508, scoop
- a hollow tube blank water-cooling casting device of the present invention comprises: a cylindrical water-cooled outer metal type 3, a cylindrical water-cooled inner metal type 4 disposed therein, and the water-cooled inner and outer metal type 4 Between the 3, a ring-shaped casting cavity is formed; the top of the water-cooled outer metal type 3 and the water-cooled inner metal type 4 is provided with a riser mold 1; the water-cooled bottom box 5 is disposed in the water-cooled outer metal type 3 and water-cooled The lower portion of the metal mold 4, the molten metal from the gate 500 enters the cavity through the water-cooled bottom box 5.
- the gate 500 is a tangential gate, metal
- the liquid enters the water-cooled bottom box 5 tangentially from the gate 500, and the molten steel is lifted from the lower side of the cavity in a circumferential rotation manner by the pushing speed of the tangential gate outlet to obtain a pure casting surface.
- the longitudinal shape of the water-cooled outer metal type 3 and the water-cooled inner metal type 4 is a thin, tapered, and tapered metal type, and the relative solidification time of the molten metal above the cavity can be delayed compared to the lower one, so that the molten metal sequence cool down.
- the casting is for example a hollow shell.
- the water-cooled outer metal type 3 is provided with a plurality of sets of water-cooling coils 31, and the water-cooling coils 31 are disposed within a height range of 2/3 from the bottom end of the water-cooled outer metal type 3, and the water inlet pipe The outlet pipes extend to the outside of the water-cooled outer metal mold 3, respectively.
- the heights of the water cooling coils 31 of each group may be set to be equal.
- the height of each group of water cooling coils 31 may be unequal, and the height of each group of water cooling coils 31 may be set according to actual needs.
- the water-cooling coil 31 is disposed adjacent to the inner surface 3 of the water-cooled outer metal type 3 (T80 mm).
- the water-cooled outer metal type and the water-cooled inner metal of the present invention have a thickness of a thinner and a lower thickness, and have a large heat storage amount below and a small heat storage amount on the upper side, so that the metal type is heated by the molten metal and then rapidly heated to a higher temperature.
- the cooling strength is rapidly reduced, thereby delaying the solidification and the purpose of sequential solidification, while the thicker metal type on the one hand maintains a large heat storage capacity and cooling strength, and at the same time creates conditions for the lower buried cooling water pipe.
- a feasible technical solution is that the water-cooled outer metal type 3 is surrounded by a refractory heat insulation layer 10 on the outer surface of the 1/3 height range from the top to the bottom, and the heat insulation layer is made of a heat insulating cotton material, thereby The heat transfer heat loss of the upper part of the water-cooled outer metal type 3 is greatly reduced, and the upper solidification time is greatly prolonged and delayed, which is more favorable for the solidification of the molten metal in the cavity from bottom to top.
- the water-cooled outer metal type 3 and the water-cooled inner metal type 4 are each a segmented combined metal type, respectively composed of 2 to 3 sections, and a male and female mouth is provided between each metal type. Position the natural drop connection.
- the metal with the sectional combination structure reduces the manufacturing difficulty of the mold, and the height of the mold can be adjusted according to the length requirement of the casting 9, so that the height specification of the replacement mold becomes more flexible.
- At least one set of the water-cooling coils 31 is provided in each of the water-cooled outer metal molds 3.
- a set of water-cooled coils 31 are provided in each of the water-cooled outer metal profiles 3.
- a cooling device is further disposed in the water-cooled inner metal type, specifically, a central cooling water pipe 8 extends through the riser mold 1 into the bottom of the water-cooled inner metal mold 4, and the central cooling water pipe 8 is framed on the riser mold 1.
- the central cooling water pipe 8 is disposed on a center line of the water-cooled inner metal mold 4; and is disposed on the central cooling water pipe 8 in the water-cooled inner metal mold 4 along a height
- the multi-layered aerosol nozzles 80 are arranged in the direction, and 4 to 8 nozzles 80 are evenly arranged in the circumferential direction of each layer, and the nozzles 80 of each layer can be sequentially opened from bottom to top, thereby realizing the inner metal type from the bottom. The order on the cooling. After the casting is completed, the inlet and outlet of each group of water-cooling coils 31 and the nozzles 80 of each layer are sequentially opened from bottom to top, and the casting in the cavity is simultaneously cooled externally and internally from bottom to top.
- the cooling water sprayed from the nozzle 80 is heated by the heating of the water-cooled inner metal mold 4, thereby functioning to cool the lower water-cooled inner metal mold 4 and to cool the lower casting.
- the nozzle 80 and the corresponding water-cooling coil 31 are opened layer by layer until the metal solidifies to the lower edge of the riser, the central cooling water pipe is closed, and the water remaining in the inner cavity continues to evaporate until Completely evaporated to dryness.
- the water outlet of the central cooling water pipe 8 is at the bottom of the water pipe.
- each group of water-cooling coils 31 is sequentially opened from the bottom to the top, and the center is opened at the same time.
- the water outlet 81 of the cooling water pipe 8 is injected into the lower portion of the water-cooled inner metal inner cavity 411 at a certain height, and the cooling water heated by the water-cooled inner metal type 4 is heated and evaporated to serve the lower water cooling.
- the inner cavity 411 is composed of an inner wall surface of the water-cooled inner metal mold 4 and a partition 412 provided at the bottom thereof and the upper portion of the water-cooled inner box 5 penetrating the inner hole 5023.
- the liquid level detecting device includes a liquid level gauge 14 and a liquid level gauge float 13 , and the liquid level gauge float 13 is disposed in the water-cooled inner metal type 4, and is connected to the liquid level gauge 14 through the steel wire rope 15 . .
- an upper portion of the central cooling water pipe 8 is provided with a first pulley 17, and a second pulley 16 is disposed outside the metal type, and the wire rope 15 is wound around the first First, the second pulley 17, 16.
- the level gauge float 13 is disposed on the central cooling water pipe 8, and the level gauge float 13 is connected to the liquid level gauge 14 by the wire rope 15.
- the level gauge float 13 rises and falls with the rise and fall of the cooling water level in the water-cooled inner metal mold 4, and drives the liquid level gauge 14 to rise and fall together to indicate the height of the cooling water level in the metal mold 4 in the water-cooled state at any time.
- the water-cooled inner metal type 4 is configured as a variable diameter metal type, and the The variable-diameter water-cooled inner metal type 4 is composed of 2 to 3 knots in the height direction, and a male-female stopper is positioned between each metal type to be naturally placed and connected.
- each of the water-cooled inner metal molds 4 has a plurality of inner metal-type units 406 that are radially separated, and the upper and lower ends of each inner metal-type unit 406 are respectively coupled to the upper flange 401 and The lower flanges 403 are joined to form a complete water-cooled inner metal mold 4, and each of the inner metal mold units 406 is radially movable relative to the upper and lower flanges 401, 403.
- the adjacent upper and lower flanges respectively form a male and female mouth positioning, and the water cooling inner metal type is connected by natural falling.
- the tubular water-cooled inner metal type 4 of the invention can change with the solidification shrinkage of the molten metal, and the diameter changes. When the casting 9 solidifies and contracts, the inner metal type 4 of the variable diameter does not crack the casting, and the casting 9 is solidified and contracted later. The water-cooled inner metal type 4 is not locked, and the casting 9 is easy to be out of the box.
- each of the water-cooled inner metal type 4 is composed of an upper flange 401, a lower flange 403, and 4 to 8 1/4 to 1/8 inner metal type units 406, as shown in FIG. 3 and FIG.
- the water-cooled inner metal type 4 is divided into four equal parts, and is composed of four quarter-circular inner metal type units 406.
- the water-cooled inner metal type 6 can also be equally divided. Or 8 equal parts, the number of aliquots is not limited and can be determined according to the diameter size of the metal type.
- Each inner metal type unit 406 is respectively connected to the upper flange 401 and the lower flange 403 by bolts 405, and the upper flange 401 and the lower flange 403 are radially connected to each other in a radial direction.
- Long bolt holes 404 of the inner metal type unit 406, each of the inner metal type units being respectively connected to the upper and lower flanges by bolts disposed in the long bolt holes, when being contracted by the casting member 9
- the bolt 405 of the connecting flange when sliding can slide radially outward in the long bolt hole 404, the gap S between the adjacent inner metal type units 406 is reduced, and the inner diameter of the metal type 4 in the water cooling becomes small.
- the diameter of the water-cooled inner metal type is realized, the shrinkage crack of the casting can be effectively prevented, and the casting 9 and the inner metal type can be prevented from being locked.
- the inner diameter of the slab is ⁇ 80 ( ⁇ )
- the gap S can be set to 8 l (3 ⁇ 4 nm, a total of 6 gaps S is provided in the circumference.
- the size of the gap S and the The number of the inner metal type units 406 is not particularly limited depending on the size of the casting to be cast.
- the size of the shrink seam 409 matches the size of the gap S to be set.
- the gap S between the adjacent two inner metal type units 406 is filled with a filler 410 which is a shrinkable refractory material, thereby preventing the steel from being drilled into the gap S at the initial stage of casting.
- the shrinkable refractory material may be composed of refractory fiber cotton + refractory clay + graphite.
- the inner wall joints of the adjacent two inner metal type units 406 constituting the water-cooled inner metal type 4 are respectively provided with a baffle 402 having a width larger than the width of the gap S, and each of the baffles 402 and the phase Two adjacent inner metal units 406 are connected and can The contraction of the inner metal type unit 406 slides.
- a lateral long slot may be provided in the baffle 402, and the bolt passes through the long slot to connect the baffle 402 to the metal body, and when the casting member 9 is contracted, the water-cooled inner metal is pressed.
- a high-temperature refractory coating is formed on the inner surface of the water-cooled outer metal mold 3 and the outer surface of the water-cooled inner metal mold 4, and the coating layer is composed of a paint layer and a sand layer;
- the refractory coating is a thick, thin, wedge-shaped thickness coating that forms the cavity coated with the high temperature refractory coating into a generally cylindrical shape.
- the high temperature refractory coating has a thickness ranging from 0 to 20 mm.
- the high temperature refractory coating comprises coating the water-cooled outer metal inner wall surface and the water-cooled inner metal type. a chrome ore layer on the outer wall surface, and a zircon powder coating layer coated on the chrome ore layer.
- the water-cooled bottom box 5 of the hollow tube blank water-cooling casting apparatus of the present invention comprises: an outer box body 501, an inner water-cooling annular sleeve 502 disposed in the outer box body 501, and the outer box A U-shaped cavity 510 is formed between the body 501 and the inner water-cooling annular sleeve 502, and the U-shaped cavity 510 is located under the annular casting cavity formed between the water-cooled outer metal type 3 and the water-cooled inner metal type 4. And connected to it.
- the lower end of the outer casing 501, the inner water-cooling annular sleeve 502 is fixedly connected to the bottom box 504, and the upper end surface of the outer casing 501 is provided with a positioning stop that is in contact with the lower end of the water-cooled outer metal type 3.
- the outer casing 501 includes a cylindrical body, and a scoop portion 508 formed in a tangential direction of the cylindrical outer casing to form a scoop-shaped water-cooled bottom tank.
- the outer casing 501 of the water-cooled bottom tank 5 is made of cast steel or cast iron having a wall thickness of 3 (T100 mm).
- the inner water-cooling annular sleeve 502 is formed by a cylindrical upper ring sleeve 5021 having a smaller diameter and a cylindrical lower ring sleeve 5022 having a larger diameter to form a convex cylinder.
- the inner water-cooling annular sleeve 502 is provided with a cylindrical through-hole 5023, and the outer surface is composed of a small-diameter upper ring sleeve 5021 outer cylindrical surface and a large-diameter lower ring sleeve 5022 upper annular surface to form an L-shaped rotating surface.
- An outer annular cold iron 503 is disposed on the annular surface of the lower ring sleeve 5022, and an inner circumferential surface of the outer annular cold iron 503 and the L-shaped rotating surface constitute the U-shaped cavity 510.
- An annular refractory brick lining 505 is formed on the vertical and bottom surfaces of the U-shaped cavity 510.
- the inner water-cooling annular sleeve 502 is disposed from the L-shaped rotating surface 3 (the cooling water coil 5024 is embedded in the T50mm, and the inlet and outlet of the cooling water coil 5024 are all connected by the through hole 5023 The inner surface is led out to extend outside the water-cooled bottom box 5 through the central through hole of the bottom box 504.
- the scooping portion 508 is provided with a refractory brick tube, the refractory brick tube has a runner 506, one end of the runner 506 extends horizontally to the U-shaped cavity 510, and The tangent crossing 500 is formed, and the other end of the runner 506 forms a sprue 507 vertically upward through a 90° corner brick.
- the outer casing 501 is interposed between the outer annular cold iron 503 and the outer circumferential surface of the lower collar 5022, and the scoop portion 508 is filled with a thermal insulating lining 509.
- one end of the runner 506 extends horizontally, and the outer annular cold iron 503 and the annular refractory brick lining 505 communicate with the U-shaped cavity 510.
- the inner wall of the annular cold iron 503 forms a tangential crossway 500, and the tangential cross gate 500 extends through the annular refractory brick lining 505.
- the riser mold 1 of the present invention comprises: a riser box 101, a hollow annular sand core 2 disposed therein; an inner wall of the riser box 101 is provided with a heat insulating refractory material layer, and the hollow annular sand core 2 The inner wall is provided with a heat insulating refractory cotton layer, and the inner cavity of the hollow annular sand core 2 communicates with the inner cavity 411 of the water-cooled inner metal type 4.
- the method for water-cooling casting of a hollow tube blank of the present invention is to use the above-mentioned hollow tube blank water-cooling casting device, assembled and cast according to a mold, Control and unpack the steps to perform the job.
- the details include: Preparation of the mold: including the shape of the annular water-cooled bottom box, the water-cooled inner and outer metal type cleaning and hanging sand, the riser outer box, the riser sand core shape; drying and the like.
- the following is a description of the hanging sand shape of the water-cooled inner metal type:
- the lower flange 403 of the water-cooled inner metal mold 4 is laid flat on the work frame, and then the inner metal type unit 406 of each 1/4 division is placed at the position corresponding to the lower flange 403, respectively.
- the T-shaped long bolt hole 404 on the blue 403 is aligned with the threaded hole of the inner metal type unit 406, and the fastening bolt 405 and the gasket are put on, and the required initial water-cooled inner metal type diameter is adjusted (guaranteeed concentric with the lower flange 403) ), after the upper flange 401 is installed, the bolts of the upper and lower flanges 401 and 403 are pre-tightened, and the strength is moderate (the excessive force will affect the shrinkage of the casting 9 and the shape of the small structure cannot be guaranteed), and then, the expansion joint is installed.
- the baffle 402 inserts the shrinkable refractory filler 410 into the expansion joint (gap S), and coats the outer surface of the water-cooled inner metal type 4 cylinder with a thick and thin thick-walled high-temperature refractory coating, including Expand the joint, dry it after finishing, and correct the box before pouring. Assembly of the mold:
- the prepared annular water-cooled bottom box 5 is placed on the casting site, the ground is flattened, and the water-cooled pipe is taken in and out of the water pipe; then the lower section, the upper section, and the lower part of the water-cooled inner metal type 4 are placed on the water-cooled bottom box 5 Mouth sand core; flatten the seam with alcohol-based paint, ignite and dry; combine the upper and lower joints of the water-cooled outer metal type 3, flatten the joint with the alcohol-based paint, ignite the whole sling after drying The joint can no longer be misaligned), the medium-cooled inner metal type 4 is slowly assembled to the outer box of the water-cooled bottom box 5; the riser mold 1 is closed; the cast-in-line pipe 7 and the sprue cup 11 are installed; the vacuum cleaner is used to purge The sand grain impurities in the cavity are sucked; the central cooling water pipe 8 in the water-cooled inner metal type 4 is installed; and the inlet and outlet of the central cooling water pipe 8 and the water-cooling coil 31
- the molten metal is introduced into the U-shaped cavity 510 from the casting pipe 7 communicating with the sprue 507 into the sprue 507, the runner 506, and the tangential gate 500 disposed along the tangent of the water-cooled bottom box 5, With the tangential exit speed pushing, the molten steel rises in the cavity in a circumferential rotation manner, and is filled with a thin and thick metal-shaped cavity;
- the tank 5 starts to cool and solidify, and sequentially passes through the lower part, the middle part and the upper part of the cavity formed by the water-cooled inner and outer metal types 4 and 3 until the riser is completely solidified; the cooling water inlet water gate is closed, and the return water line is continuously maintained. Smooth, as the casting 9 continues to cool, the moisture remaining in the pipeline continues to evaporate until it is evaporated to dryness;
- a water-cooling bottom tank 5 is provided with a casting pipe 7, the top of which is provided with a pouring cup 11, the pouring cup 11, the runner 6 of the casting pipe 7, and a water-cooled bottom box The sprue 507 of 5 is connected.
- the qualified molten metal is injected into the U-shaped cavity 510 of the water-cooled bottom box 5 along the tangential line through the runner, the sprue 507 and the runner 506 of the pouring cup 11 and the casting tube 7;
- the molten steel is rotated by the water-cooled bottom box 5 into the bottom, the middle portion and the upper portion of the cavity formed by the water-cooled inner and outer metal molds 4 and 3, and enters the riser mold 1 until the casting is stopped along the riser box 101 along 100 ⁇ .
- the metal liquid surface in the riser of the riser mold 1 is covered with a heat insulating agent 12 which functions as a heat insulating cover.
- a heat insulating agent 12 which functions as a heat insulating cover.
- the molten metal surface in the riser is covered with a heat generating agent, and the heat generating agent 12 is further covered on the heat generating agent.
- the water inlet and the water outlet of the first group of water-cooling coils 31 disposed in the lower part of the water-cooled outer metal mold 3 are opened from the bottom to the bottom, and at the same time,
- the layer opens the nozzle 80 on the cold center but water pipe 8, maintaining the cooling zone inside and outside the casting, and causing the cooling zone to rise synchronously.
- the water inlet and the water outlet of each group of water-cooling coils disposed in the water-cooled outer metal type are sequentially opened from bottom to top, and at the same time, the center is opened. Cooling the water outlet 81 at the bottom of the water pipe 8, and maintaining the water level in the water-cooled inner metal mold 4 at the same height as the first group of water-cooling coils 31 according to the detection result of the liquid level gauge 14; The water cooling coils 31 of each group are opened while maintaining the water level in the metal mold 4 corresponding to the water cooling simultaneously.
- the drawings schematically show changes in the successively cooled castings in the initial stages of cooling when the two central cooling water pipe structures are employed. Specifically, after completing the casting operation, first opening the wide door of the cooling water coil 5024 of the water-cooled bottom box 5, and forcibly cooling the molten metal in the water-cooled bottom box 5; then, opening the water-cooled outer metal type 3, the first group of water-cooling
- the second group, the third water-cooling coil 31, and the corresponding layer nozzles 80 on the central cooling water pipe 8 are gradually opened to maintain the cooling region inside and outside the casting.
- the cooling area is raised synchronously.
- the difference from FIG. 7 is that only the central cooling water pipe 8 is not provided with the nozzle 80, but the bottom is provided with the water outlet 81, and the water-cooled outer metal type 3 is opened first. While the wide door of the water-cooling coil 31 is set, the water outlet 81 of the central cooling water pipe 8 is opened, and the cooling water surface inside the central cooling water pipe 8 is controlled to rise continuously, and the water level in the metal-type 4 in the water-cooled interior is maintained.
- the first set of water pipes is the same height; while the cooling water is injected into the second and third sets of water-cooling coils 31, the water level in the corresponding inner metal type should be kept synchronously to maintain the cooling area inside and outside the casting. And causing the cooling zone to rise synchronously.
- the forced driving casting 9 of the present invention is rapidly cooled and solidified by the bottom box, and sequentially passes through the lower portion, the middle portion, and the upper portion of the cavity until the riser is completely solidified.
- the cooling water inlet water gate is closed, and the return water pipeline is kept open.
- the moisture remaining in the pipeline and the water-cooled metal interior continues to evaporate until steaming. Dry up. Finally, remove the central cooling water pipe.
- the hollow tube blank water-cooling casting method of the invention adopts the bottom casting method, and the self-gate 500 enters the annular cavity along the tangential line, and the metal liquid is lifted in a circumferential rotation manner by the tangential exit speed pushing, so that the molten metal front edge is formed.
- the bubbles and impurities cannot stay on the surface of the casting 9.
- Figure 11 so that the surface quality of the relatively pure casting can be obtained.
- the light colored area indicates the unsolidified area A3, and the outer dark area indicates the solidified layer B3.
- Fig. 11a is the start of solidification
- Fig. 1 ib is the initial stage of solidification
- Fig. 11c is the middle stage of solidification
- Fig. 1 id is the late solidification
- Fig. 1 is the end (all solidification)
- the method is characterized in that: in the late stage of solidification, the liquid core is narrow and wide, and shallow, so that the filling is smooth.
- the solidification of the surface of the mold begins to solidify to form a solidified shell, and the molten metal in the water-cooled bottom tank 5 is forced by the inner water-cooling annular sleeve 502 and the outer annular cold iron 503 in three directions. Cooling preferentially solidifies and pushes the solidification front to move from bottom to top.
- the molten metal located under the water-cooled inner and outer metal type 4 3 is cooled by the thick-walled metal type below, and the subsequent forced water cooling, and the solidification of the molten metal in the water-cooled bottom tank 5 continues to push the solidification front to develop from the bottom to the top; Due to the thinner wall thickness, ie the lower heat storage capacity of the mold, the temperature rises very much after being heated by the molten metal, causing the solidification of the place to stagnate, plus the thick and thin coating layer makes the molten metal The higher the heat transfer resistance to the mold is, the higher the relative solidification time of the molten metal above the metal type is delayed, which constitutes the sequential solidification caused by forced sequential cooling and sequential cooling, up to the riser.
- the outer surface of the molten metal located in the inner part is in contact with the heat insulating refractory material of the riser mold 1 , the inner surface is in contact with the core sand core made of the heat insulating refractory material, and the upper surface is in contact with the heat insulating agent 12, which is excellent.
- the heat preservation environment can maintain the overheating state of the molten metal for a long time until the sequential solidification is pushed to the end of the riser solidification; thus avoiding the occurrence of internal shrinkage cavities and loose defects of the large, high-thickness cylindrical casting, such as As shown in Fig. 11 in Fig.
- the present invention is characterized in that the casting defects are concentrated in the middle of the riser and the wall thickness of the casting, and the defect level is light, and the casting defect can be easily overcome by the subsequent forging operation.
- the invention is particularly suitable for the manufacture of large thick-walled tube blanks having a tube blank thickness of 10 ( ⁇ 600 diameter 80 ( ⁇ 2000 height 2000 ⁇ 6000 mm).
- Fig. 12 is a comparison diagram showing the results of CAE simulation defect prediction of castings by different casting methods, wherein Fig. 12al a2 is a prediction of casting defects using a known static sand core casting method, as shown in the figure, the darker color indicates that the defect F is very Severe, and concentrated on the inner surface; Figure 12bl b2 is a prediction of casting defects using the well-known air-cooled steel core casting method.
- the darker color indicates that the defect F' is severe and is located in the surface layer;
- Figure 12c The casting defect prediction using the water-cooling casting method of the present invention, as shown in the figure, the broken line in the middle of the casting indicates the defect F", the lighter color indicates that the defect is light, and the defect is located in the middle of the wall thickness of the casting, through subsequent forging processing, It is easy to overcome this drawback. Therefore, the method of the present invention greatly reduces casting defects and improves the yield in comparison with the known art.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
一种空心管坯水冷铸造装置,包括:筒状水冷外金属型(3),设置在其内的筒状水冷内金属型(4),水冷内、外金属型之间形成环形的铸件型腔;水冷外金属型和水冷内金属型的顶部设有冒口铸型(1);水冷底箱(5)设置在外金属型和内金属型下部,金属液自浇口(500)经水冷底箱进入型腔;浇口为切线横浇口,金属液由浇口沿切向进入水冷底箱,借助切线横浇口出口速度的推动,使钢液自型腔的下方呈圆周旋转方式上升;水冷外金属型、水冷内金属型的纵断面形状为上薄下厚带锥度的金属型,型腔内上方的金属液相对凝固时间较下方得到推迟,并通过控制冷却水位高度的调整实现金属液自下而上的顺序冷却,提高产品质量。
Description
空心管坯水冷铸造方法及装置 技术领域
本发明是关于一种空心管坯的铸造方法及装置, 尤其是一种空心管坯水冷铸造方法及装置, 涉 及冶金制管、 机械环件制造技术领域的坯料制备; 特别涉及超大型空心管坯水冷铸造的技术领域。 背景技术
随着国民经济发展的需要大型厚壁无缝钢管、 大型厚壁环件 (重型机械轴承圈、 风电托圈、 环 形齿圈等) 需求不断增加, 以往传统工艺通常制造工艺采用铸造大型实心锭 (坯) →通过冲孔→扩 孔→锻轧来实现产品坯料的加工。 近年来随着技术及配套技术的不断革新, 特别是大规格及超大规 格制管、 环形制件出现了一种新的工艺方法: 空心铸锭→空心锻制→成品加工; 该方法生产的产品 质量高 (锻制后) 、 工序短 (简化了冲孔、 穿孔) , 正在得到迅速推广。
现有空心铸造技术: 包括离心铸造法、 静态砂芯铸造法、 空冷钢套芯铸造法以及空心管连续铸 造法。
离心铸造法, 具有铸件外层组织细密, 工艺简便、 铸件收得率高等优点, 但其内表面 l(T40mm 范围内存在夹渣、 缩孔、 疏松层, 因此铸后必须在冷状态下采用机械加工的办法进行处理, 而且离 心设备一次投资高。
静态砂芯铸造法, 投资小工艺简单, 但铸件冷却时, 外表面冷却速度大大快于内表面的冷却速 度, 即铸件的外部较内部凝固得快, 图 9为示意性地表示了采用静态砂芯铸造方法制造的铸件凝固 过程固相分数变化 CAE仿真结果, 以£1、 b、 c、 d、 e五个图分别表示铸件的不同阶段, 图中, 浅色 区域表示未凝固区域 Al, 其外部的深色区域表示已凝固层 Bl。 从图中可以清楚地看到, 采用该方法 制造空心管铸件时, 外表面首先凝固, 内表面最后凝固, 即图 9a为凝固开始, 图 9b为凝固初期, 图 9c为凝固中期, 图 9d为凝固后期, 图 9e为结束(全部凝固), 通过各图表示了金属液 (末凝固区 域 A1)及已凝固层 B1的变化过程。 如图 9c所示, 在此阶段空心管的内表面仍未凝固(存在浅色的末 凝固区域 Al), 由图 9d至图 9e金属液才全部凝固, 即空心管的内表面 C、 以及顶部区域 D为最后凝 固区。 该方法的特点是: 凝固后期液芯较窄、 且深, 因此易出现补缩不畅, 使铸件内表面组织相对 粗大, 靠近砂芯的内表面会存在一层在锻制加热过程中容易氧化难以去除的疏松层, 对于使用条件 稍苛刻的产品也需对内表面先进行一下处理。
空冷钢套芯铸造法, 是目前国内外采用较多的方法, 在短粗的大型空心钢锭制造中较为成熟, 但对于细长筒状的铸管坯制造, 该方法很难避免筒状铸件中心出现疏松, 如图 10所示为采用空冷钢 套芯铸造方法制造的铸件凝固过程固相分数变化 CAE仿真结果示意图, 以£1、 b、 c、 d、 e五个图分 别表示铸件的不同阶段, 图中, 浅色区域表示未凝固区域 A2, 其外部的深色区域表示已凝固层 B2。 即图 10a为凝固开始,图 10b为凝固初期,图 10c为凝固中期,图 10d为凝固后期,图 10e为结束 (全 部凝固), 通过各图表示了金属液 (末凝固区域 A2)及已凝固层 B2的变化过程。 从图中可以清楚地看 到, 采用该空冷钢套芯铸造方法同样存在上述静态砂芯铸造法的问题, 凝固后期液芯较窄、 且深, 因此易出现补缩不畅, 严重时铸件可能会出现二次缩孔, 该方法在每次制造时需要制作一个直接与
钢液接触的钢板一起熔到铸件中。
空心管连续铸造法, 包括垂直型空心管连铸法以及水平空心管连铸法, 其特点是采用一个水冷 结晶器做外型, 用一个石墨实心棒做芯子, 通过连续拉拔铸造实现空心管坯的制备, 由于技术等原 因目前该方法仅限于外圆直径规格较小 Φ 500mm以下、 而且壁厚较薄 100mm以下的小型铸管生产, 其生产效率高、 设备一次投资大。
为寻找一种适合大规格(直径 1000~2000 壁厚 5 300~600 高度 5 2000~6000 厚壁管 坯的制造方法, 本发明人结合多年从事铸造加工的经验, 研制出本发明的空心管坯水冷铸造方法及 装置, 通过采用上薄下厚变厚度金属型, 加上金属型内挂上厚下薄变厚度涂层, 并借助水冷强制顺 序冷却技术, 通过控制水冷顺序 (由下而上逐渐推进) , 达到改善顺序凝固彻底消除缩孔、 疏松细 化组织的目的。 发明内容
本发明的目的是提供一种空心管坯铸造方法及装置,尤其是一种空心管坯水冷铸造方法及装置, 利用上薄下厚变厚度金属型, 并通过控制水冷顺序 (由下而上逐渐推进) , 达到改善顺序凝固彻底 消除缩孔、 疏松细化组织的目的。
为此, 本发明提出一种空心管坯水冷铸造装置, 其包括: 筒状水冷外金属型, 设置在其内的筒 状水冷内金属型, 所述水冷内、 外金属型之间形成环形的铸件型腔; 所述水冷外金属型和水冷内金 属型的顶部设有冒口铸型; 水冷底箱设置在所述水冷外金属型和水冷内金属型下部, 金属液自浇口 经水冷底箱进入所述型腔; 其中, 所述浇口为切线横浇口, 金属液由所述浇口沿切向进入所述水冷 底箱, 借助切线横浇口出口速度的推动, 使钢液自所述型腔的下方呈圆周旋转方式上升, 以得到纯 净的铸件表面; 所述水冷外金属型、 水冷内金属型的纵断面形状为上薄下厚带锥度的金属型, 所述 型腔内上方的金属液相对凝固时间较下方得到推迟, 使金属液顺序冷却。
本发明还提供一种空心管坯水冷铸造方法, 采用如上所述的空心管坯水冷铸造装置, 包括: 打开与水冷盘管、 中心冷却水管、 冷却水盘管相连接的回水管路, 并保持回水管路的畅通; 将金属液由与直浇道相连通的浇铸管进入所述直浇道、 横浇道、 沿水冷底箱的切线设置的切线 横浇口注入 U形腔体内, 借助切线出口速度的推动, 使钢液呈圆周旋转方式在型腔内上升, 充满上 薄下厚的金属型构成的型腔;
打开控制水冷底箱冷却水盘管进水口阔门, 对所述水冷底箱内的金属液实施强制冷却; 然后, 自下而上依次打开控制外水冷金属型内的水冷盘管的进水口阔门, 同时打开控制设置在水冷内金属 型内的中心冷却水管的阔门, 对所述型腔内的铸件进行外、 内同时冷却;
所述金属液由水冷底箱开始冷却凝固, 依次经由水冷内、 外金属型构成的型腔的下部、 中部、 上部, 直至冒口完全凝固; 关闭所述冷却水进水阔门, 继续保持所以回水管路畅通, 随着铸件继续 冷却残存在管路的水分继续蒸发, 直至蒸干为止;
拆除中心冷却水管;
开箱, 对铸件进行清理。
与公知技术相比, 本发明的空心管坯水冷铸造方法及装置具有以下特点及优点: 1、 由于本发明筒状水冷外金属型、 筒状水冷内金属型的纵断面选用上薄下厚带锥度的金属型,
人为使金属型具有了下方大的蓄热量、 上方小的蓄热量, 使得金属型受金属液加热后上方迅速升温 至较高温度随之冷却强度迅速降低, 从而起到推迟凝固作用, 起到顺序凝固的目的。
2、 由于水冷外金属型沿高度方向独立设置了多组冷却水盘管使得金属型强制冷却以及顺序冷 却成为可能, 强制冷却的应用相对加大了自下而上的顺序冷却能力。
3、 由于在水冷外金属型顶端以下高度的 1/3范围内外表面围设有耐火绝热保温棉质绝热层, 大大降低了金属型上部传热热损失, 大大延长和推迟了上方凝固时间, 为顺序凝固创造了更加有力 条件。
4、 水冷外金属型、 水冷内金属采用分节组合结构使模具制造难度降低, 使模具高度可调, 更 换高度规格变得更灵活。
5、 通过在水冷内金属内腔设置带有冷却水喷嘴的中心冷却水管, 使得水冷内金属型强制冷却 成为可能; 水冷喷嘴自下而上顺序打开使水冷内金属型的顺序冷却得以实现。
6、 水冷内金属型制作成底封闭的 U形结构, 铸件形成坯壳后直接向内腔通水, 通过控制水位 高度实现自下而上的顺序冷却方法更为简单。
7、 由于水冷内金属型为可变直径结构, 彻底解决了铸件凝固收缩受阻可能导致的裂纹问题, 芯子抱死开不出箱来等问题。
8、 金属浇铸型腔内设制的上厚下薄涂料层, 起到了调整上下金属液向金属型的传热能力, 推 迟上方金属液凝固时间, 强化上下顺序凝固作用。
9、 具有切线式浇口的环形水冷底箱的使用, 使金属液能旋转进入型腔, 使金属液在圆周方向 分布更加均匀, 可大大降低铸件表面夹渣、 气孔等表面缺陷的产生, 有利于提高铸件表面质量。
10、 通过在水冷底箱的 U形腔体内设置耐火砖内衬, 大大提高了铸型抗冲刷能力, 底箱内水冷 环形套以及外环形冷铁的的使用, 可大大提高底箱凝固期间的冷却能力, 避免水冷底箱部位出现疏 松、 缩孔的可能性, 提高铸件底部的成材率, 降低不必要的切头损耗。
11、 冒口箱、空心环形砂芯构成的冒口铸型中,绝热耐火棉层的使用大大降低了冒口的热损失, 提高了冒口补缩能力, 降低冒口切头损耗, 提高铸件成材率。
本发明提出的空心管坯水冷铸造方法及装置, 能够实现超大空心管坯的水冷铸造, 通过顺序冷 却、 顺序凝固铸造方法能够获得高质量的超大规格、 大的高厚比的筒状铸件, 能有效避免大型、 高 厚比的筒状铸件内部缩孔、 疏松缺陷的发生, 提高了成材率。 附图说明
以下附图仅旨在于对本发明做示意性说明和解释, 并不限定本发明的范围。 其中, 图 1为本发明的空心管坯水冷铸造装置一个实施例的结构示意图;
图 2为本发明的空心管坯水冷铸造装置另一个实施例的结构示意图, 其中, 示意性地表示了液 位检测装置;
图 3 A为本发明的空心管坯水冷铸造装置的可变径水冷内金属型立体结构示意图; 图 3B为可变径水冷内金属型的上法兰、 下法兰和挡板的结构位置;
图 3C为构成一个水冷内金属型的一组圆弧形内金属型单元的结构示意图;
图 4A为本发明的空心管坯水冷铸造装置的水冷内金属型的主视示意图;
图 4B为图 4A的左视示意图;
图 4C为图 4A的右视示意图;
图 5为本发明的空心管坯水冷铸造装置的水冷底箱剖视示意图;
图 6为本发明的空心管坯水冷铸造装置的水冷底箱府视示意图;
图 7为本发明的空心管坯水冷铸造方法铸件顺序冷却示意图(一), 其中: a、 冷却初期; b、 冷 却中期; c、 冷却后期;
图 8为本发明的空心管坯水冷铸造方法铸件顺序冷却示意图(二), 表示了在冷却过程中液位检 测装置的位置, 其中: a、 冷却初期; b、 冷却中期; c、 冷却后期;
图 9为采用公知的静态砂芯铸造方法的铸件凝固过程固相分数变化 CAE仿真结果显示图; 图 10为采用公知的空冷钢套芯铸造方法的铸件凝固过程固相分数变化 CAE仿真结果显示图; 图 11为采用本发明的水冷铸造方法的铸件凝固过程固相分数变化 CAE仿真结果显示图; 图 12是采用不同铸造方法的铸件 CAE仿真缺陷预测结果显示对比图, 其中, al、 a2是采用公 知的静态砂芯铸造方法的铸件缺陷预测, bl、 b2是采用公知的空冷钢套芯铸造方法的铸件缺陷预测, c是采用本发明的水冷铸造方法的铸件缺陷预测。
附图标号:
1、 冒口铸型 101、 冒口箱 2、 空心环形砂芯 3、 水冷外金属型
31、 水冷盘管 4、 水冷内金属型 401、 上法兰 402、 挡板
403、 下法兰 404、 长螺栓孔 405、 螺栓 406、 内金属型单元
407、 螺纹孔 408、 止口 409、 收缩缝 410、 耐火填料
411、 内腔体 412、 隔板 5、 水冷底箱 500、 绕口
501、 外箱体 502、 内水冷环形套 5021、 上环套 5022、 下环套
5023、 贯通内孔 5024、 冷却水盘管 503、 外环形冷铁 504、 底箱板
505、 环形耐火砖内衬 506、 横浇道 507、 直浇道 508、 瓢把部
509、 衬砂 510、 U形腔体 6、 浇道 7、 浇铸管
8、 中心冷却水管 80、 喷嘴 81、 出水口 9、 铸件
10、 耐火绝热层 11、 浇口杯 12、 保温剂 13、 液位计浮漂
14、 液位计 15、 钢丝绳 16、 滑轮 S、 间隙 具体实施方式
为了对本发明的技术特征、 目的和效果有更加清楚的理解, 以下结合附图及较佳实施例, 对本 发明的空心管坯水冷铸造方法及装置的具体实施方式、 结构、 特征及功效, 详细说明如后。 另外, 通过具体实施方式的说明, 当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入具 体的了解, 然而所附图仅是提供参考与说明用, 并非用来对本发明加以限制。
如图 1所示, 本发明的一种空心管坯水冷铸造装置, 包括: 筒状水冷外金属型 3, 设置在其内 的筒状水冷内金属型 4, 所述水冷内、 外金属型 4、 3之间形成环形的铸件型腔; 所述水冷外金属型 3和水冷内金属型 4的顶部设有冒口铸型 1 ;水冷底箱 5设置在所述水冷外金属型 3和水冷内金属型 4下部, 金属液自浇口 500经水冷底箱 5进入所述型腔。 其中, 所述浇口 500为切线横浇口, 金属
液由所述浇口 500沿切向进入所述水冷底箱 5, 借助切线横浇口出口速度的推动, 使钢液自所述型 腔的下方呈圆周旋转方式上升, 以得到纯净的铸件表面。 所述水冷外金属型 3、 水冷内金属型 4的 纵断面形状为上薄下厚带锥度的金属型,所述型腔内上方的金属液相对凝固时间能较下方得到推迟, 使金属液顺序冷却。 所述铸件例如为空心管坯。
进一步地, 所述水冷外金属型 3内设有多组水冷盘管 31, 所述水冷盘管 31设置在自所述水冷 外金属型 3底端向上 2/3的高度范围内, 其进水管、 出水管分别延伸至所述水冷外金属型 3的外部。
为便于设计加工, 可以将每组所述水冷盘管 31的高度设置为相等, 当然, 每组水冷盘管 31的 高度可以不相等, 可以根据实际需要设置每组水冷盘管 31的高度。
优选的方案是, 所述水冷盘管 31设置在靠近所述水冷外金属型 3内表面 3(T80mm处。
本发明的水冷外金属型和水冷内金属的厚度为上薄、 下厚, 具有下方大的蓄热量、 上方小的蓄 热量, 使得金属型受金属液加热后上方迅速升温至较高温度随之冷却强度迅速降低, 从而起到推迟 凝固作用, 起到顺序凝固的目的, 而下部较厚的金属型一方面可维持较大的蓄热量和冷却强度, 同 时给下部埋设冷却水管创造了条件。
此外, 在所述水冷外金属型 3的 2/3高度范围内, 设有 2~5组所述水冷盘管 31。
一个可行的技术方案是, 所述水冷外金属型 3自顶端向下的 1/3高度范围内, 在其外表面围设 有耐火绝热层 10, 该绝热层采用绝热保温棉材质制成, 从而大大降低了水冷外金属型 3上部传热热 损失, 大大延长和推迟了上方凝固时间, 更有利于型腔内的金属液自下而上顺序凝固。
另一个可行的技术方案是, 所述水冷外金属型 3、 水冷内金属型 4均为分节组合式金属型, 分 别由 2~3节构成, 在每节金属型间设有公母止口定位自然落放连接。 采用分节组合结构的金属, 降 低了模具的制造难度, 可根据铸件 9的长度要求调整模具高度, 使更换模具的高度规格变得更灵活。
当采用多节组合式金属型时, 每节所述水冷外金属型 3内均设有至少一组所述水冷盘管 31。在 图 1所示的一个具体实施例中, 每节水冷外金属型 3内均设置了一组水冷盘管 31。
进一步地, 在水冷内金属型内还设有冷却装置, 具体是, 一中心冷却水管 8穿过所述冒口铸型 1伸入所述水冷内金属型 4的底部, 且所述中心冷却水管 8被架固在所述冒口铸型 1上。
在一个优选的技术方案中, 所述中心冷却水管 8设置在所述水冷内金属型 4的中心线上; 且设 置在所述水冷内金属型 4内的所述中心冷却水管 8上, 沿高度方向均布着多层气雾喷嘴 80, 在每层 的圆周方向环设均布着 4~8个喷嘴 80, 能自下而上依次打开每层的喷嘴 80, 从而实现内金属型自下 而上的顺序冷却。 完成浇铸后, 自下而上依次打开每一组水冷盘管 31的进出水口、 每一层的喷嘴 80, 自下而上对型腔内的浇铸进行外部和内部同时冷却。 喷嘴 80喷出的冷却水受到水冷内金属型 4 的加热而蒸发, 从而起到对该下部水冷内金属型 4冷却以及对下方铸件冷却的作用。 随着金属液自 下而上凝固的向上推移, 对应逐层打开喷嘴 80和与其对应的水冷盘管 31, 直到金属凝固至冒口下 沿, 关闭中心冷却水管, 残存内腔的水继续蒸发至完全蒸干。 如图 2所示, 在另一个具体实施例中, 中心冷却水管 8的出水口在水管最下方, 完成浇铸后, 自下而上依次打开每一组水冷盘管 31的进水 口, 同时打开中心冷却水管 8的出水口 81, 冷却水被注入到水冷内金属型 4内腔体 411的下部一定 高度, 受到水冷内金属型 4加热的冷却水被升温、 蒸发, 从而起到对该下部水冷内金属型 4冷却以 及对下方铸件冷却的作用, 随着金属液的自下而上凝固的向上推移, 通过液位检测装置控制内部的 冷却水面不断上升且与注入冷却水的所述水冷盘管 31的同高, 直到金属凝固至冒口下沿, 关闭中心
冷却水管, 残存内腔的水继续蒸发至完全蒸干。 所述内腔体 411由水冷内金属型 4的内壁面和设置 在其底部与水冷底箱 5的贯通内孔 5023上部的隔板 412构成。
其中, 所述液位检测装置包括液位计 14、 液位计浮漂 13, 所述液位计浮漂 13设置在所述水冷 内金属型 4内, 通过钢丝绳 15与所述液位计 14相连接。
如图 2所示, 在一个具体实施例中, 所述中心冷却水管 8的上部设有第一滑轮 17, 在所述金属 型的外部设有第二滑轮 16, 钢丝绳 15绕设在所述第一、 第二滑轮 17、 16。 所述液位计浮漂 13套设 于所述中心冷却水管 8, 通过钢丝绳 15将所述液位计浮漂 13与液位计 14相连接。 所述液位计浮漂 13随着水冷内金属型 4内的冷却水位的升降而升降, 并带动液位计 14一起升降, 以随时指示水冷 内金属型 4内的冷却水位的高度。
请配合参见图 1、 图 3A、 图 3B、 图 3C、 图 4A、 图 4B、 图 4C, 在一个可行的技术方案中, 所述 水冷内金属型 4构成为可变直径金属型,且该可变直径的水冷内金属型 4在高度方向由 2~3节构成, 在每节金属型间设有公母止口定位自然落放连接。
在一个具体实施例中, 每节所述水冷内金属型 4具有沿径向分开的多个内金属型单元 406, 每 个内金属型单元 406的上、 下两端分别与上法兰 401和下法兰 403相连接, 形成一个完整的所述水 冷内金属型 4, 且各所述内金属型单元 406均能相对所述上、 下法兰 401、 403沿径向移动。 其中, 相邻的上、 下法兰分别形成公母止口定位, 通过自然落放将各节水冷内金属型相连接。 本发明的筒 状水冷内金属型 4可随金属液凝固收缩的进行, 直径发生变化, 铸件 9凝固收缩时, 可变化直径的 内金属型 4不会将铸件撑裂, 且铸件 9凝固收缩后期不会使水冷内金属型 4抱死, 铸件 9易于出箱。
具体的是, 每节所述水冷内金属型 4由上法兰 401、 下法兰 403、 以及 4~8个 1/4~1/8的内金 属型单元 406构成, 如图 3、 图 4所示, 在该具体实施例中, 水冷内金属型 4被 4等分, 由 4个 1/4 圆弧形内金属型单元 406组成, 当然, 也可以将所述水冷内金属型 6等分或 8等分, 其等分的数量 不加以限定, 可根据金属型的直径尺寸确定。 每两个相邻的内金属型单元 406之间具有间隙 S, 每 个内金属型单元 406的顶部、 底部与上、 下法兰 401、 403之间具有收缩缝 409。 每个内金属型单元 406通过螺栓 405分别与所述上法兰 401和下法兰 403相连接, 所述上法兰 401和下法兰 403上沿 半径方向设有呈放射状置的连接所述内金属型单元 406的长螺栓孔 404, 每个所述内金属型单元通 过设置在所述长螺栓孔内的螺栓分别与所述上法兰和下法兰相连接, 当受到铸件 9收缩的挤压时连 接法兰的螺栓 405能在长螺栓孔 404内沿径向向外侧滑动, 相邻内金属型单元 406之间的间隙 S被 压减小, 水冷内金属型 4的内径变小, 即实现了水冷内金属型的变径, 能有效地防止铸件产生收缩 裂纹, 并能防止铸件 9与内金属型抱死。 例如, 在一个具体实施例中, 当铸坯内孔径直径为 Φ 80( ίη 时, 该间隙 S可设置为 8~l(¾nm, 圆周共设 6个间隙 S。 该间隙 S的尺寸及所述内金属型单元 406的 设置数量不做具体限定, 根据需要浇铸的铸件尺寸而定。 所述收缩缝 409的尺寸与所设置的间隙 S 的尺寸相匹配。
进一步, 相邻的两个所述内金属型单元 406之间的间隙 S内填充有填料 410, 所述填料 410为 可缩性耐火材料, 从而能防止浇铸初期向所述间隙 S内钻钢。
其中, 所述可缩性耐火材料可以由耐火纤维棉 +耐火粘土 +石墨构成。
此外, 构成所述水冷内金属型 4的相邻的两个内金属型单元 406的内壁接缝处均设有一宽度大 于所述间隙 S宽度的挡板 402, 每个所述挡板 402与相邻的两个内金属型单元 406相连接, 并能随
该内金属型单元 406的收缩进行滑动。 例如, 在所述挡板 402上可以设置横向的长槽孔, 螺栓穿过 该长槽孔将所述挡板 402与金属型本体相连接, 当受到铸件 9收缩的挤压所述水冷内金属型 4的内 径变大, 即金属型本体沿径向向外侧滑动时, 则连接挡板和金属型本体的螺栓则在横向长槽孔内滑 动, 使所述挡板 402能够随金属型本体一起滑动。 一个具体的技术方案是, 在所述水冷外金属型 3 的内表面、 水冷内金属型 4的外表面均设有高温耐火材料涂层, 该涂层由涂料层和砂层构成; 所述 高温耐火材料涂层为上厚下薄的楔形变厚度涂层, 使涂覆了所述高温耐火材料涂层的所述型腔形成 为大致圆柱体。
进一步地, 所述高温耐火材料涂层的厚度范围为 0.广 20mm, 在一个具体实施例中, 所述高温耐 火材料涂层包括涂覆在所述水冷外金属型内壁面和水冷内金属型外壁面的铬矿砂层, 以及涂覆在所 述铬矿砂层上的锆英粉涂料层。
如图 5、 图 6所示, 本发明的空心管坯水冷铸造装置的水冷底箱 5包括: 外箱体 501, 设置在 所述外箱体 501内的内水冷环形套 502, 所述外箱体 501与所述内水冷环形套 502之间形成 U形腔 体 510, 所述 U形腔体 510位于所述水冷外金属型 3和水冷内金属型 4之间形成的环形的铸件型腔 下部, 并与之相连通。 所述外箱体 501、 内水冷环形套 502的下端与底箱板 504固定连接, 所述外 箱体 501的上端面设有与所述水冷外金属型 3的下端相接的定位止口。 所述外箱体 501包括圆柱形 的本体, 以及沿圆柱形外箱体的切线方向形成的瓢把部 508, 构成瓢把形水冷底箱。
其中, 所述水冷底箱 5的外箱体 501由壁厚为 3(Tl00mm的铸钢或铸铁制成。
在一个具体实施例中, 所述内水冷环形套 502由直径较小的圆柱状上环套 5021和直径较大的 圆柱状下环套 5022构成, 形成一凸柱体。 所述内水冷环形套 502内设有圆柱状贯通内孔 5023, 外 表面由小直径的上环套 5021外圆柱面和大直径的下环套 5022上圆环面组成一 L形的回转面, 一外 环形冷铁 503套装设置在所述下环套 5022上圆环面上,该外环形冷铁 503的内周面与所述 L形的回 转面构成所述 U形腔体 510, 在所述 U形腔体 510的竖直面和底面砌筑有环形耐火砖内衬 505。
进一步地, 所述内水冷环形套 502内距所述 L形回转面 3(T50mm处埋设有冷却水盘管 5024, 所 述冷却水盘管 5024的进、 出水口均由所述贯通内孔 5023的内表面引出, 经所述底箱板 504中心透 孔延伸到水冷底箱 5外部。
一个具体的方案是, 所述瓢把部 508内设有耐火砖管, 所述耐火砖管具有横浇道 506, 所述横 浇道 506的一端水平延伸至所述 U形腔体 510, 并构成所述切线横浇口 500, 所述横浇道 506的另 一端通过 90 ° 拐角砖竖直向上形成直浇道 507。
且所述外箱体 501与外环形冷铁 503、 下环套 5022的外周面之间, 以及瓢把部 508内填充有保 温衬砂 509。
如图 5所示,在一个具体实施例中所述横浇道 506的一端水平延伸,贯穿所述外环形冷铁 503、 环形耐火砖内衬 505与 U形腔体 510连通, 在所述外环形冷铁 503的内壁形成切线横浇口 500, 且 所述切线横浇口 500贯穿所述环形耐火砖内衬 505。
本发明的所述冒口铸型 1包括: 冒口箱 101, 设置在其内的空心环形砂芯 2 ; 所述冒口箱 101 的内壁设有保温耐火材料层, 所述空心环形砂芯 2的内壁设有绝热耐火棉层, 且所述空心环形砂芯 2的内腔与水冷内金属型 4的内腔体 411相连通。
本发明的空心管坯水冷铸造方法, 是利用上述的空心管坯水冷铸造装置, 按模具组装、 浇铸、
控制、 开箱的步骤进行作业。 具体包括: 模具的准备: 包括环形水冷底箱的造型、 水冷内外金属型的清理挂砂、 冒口外箱、 冒口砂芯的 造型; 干燥等。 下面仅以水冷内金属型的挂砂造型做一说明:
首先, 将水冷内金属型 4的下法兰 403平放到工作台架上, 然后分别将各 1/4等分的内金属型 单元 406摆放到对应下法兰 403的位置, 将下法兰 403上的 T形长螺栓孔 404与内金属型单元 406 的螺纹孔对正, 穿上紧固螺栓 405及垫片, 调整所需的初始水冷内金属型直径 (保证与下法兰 403 同心) , 安装上法兰 401后对上、 下法兰 401、 403的螺栓进行预紧, 力度要适中 (力过大将影响铸 件 9的收缩, 过小结构形状无法保证) , 然后, 安装膨胀缝的挡板 402, 向膨胀缝(间隙 S)中塞入可 缩性耐火填料 410, 对水冷内金属型 4筒体的外表面按要求挂涂上厚下薄的变厚度高温耐火材料涂 层, 包括膨胀缝部位, 完毕后进行干燥、 修正待浇前合箱。 模具的组装:
首先, 将准备好的环形水冷底箱 5摆放到浇铸场地, 地面铺平着实, 引出水冷管进出水管; 然 后在水冷底箱 5上落放水冷内金属型 4的下节、 上节、 冒口砂芯; 将接缝处用醇基涂料稿修平, 点 燃自干;将水冷外金属型 3的上下节合到一起,将接缝用醇基涂料稿修平, 点燃自干后整体吊装(上 下节不得再发生错动) , 对中水冷内金属型 4缓慢组装到水冷底箱 5外箱子口上; 合上冒口铸型 1 ; 安装直浇铸管 7及浇口杯 11 ; 用吸尘器吹扫并吸去型腔内砂粒杂质; 安装水冷内金属型 4内的中心 冷却水管 8 ; 将中心冷却水管 8、 水冷盘管 31的进、 出水口与冷却水系统相连接。 铸件浇铸、 控制冷却及开箱:
首先, 检査管路是否接好, 打开与水冷盘管 31、 中心冷却水管 8、 冷却水盘管 5024相连接的回 水管路, 并保持回水管路的畅通;
将金属液由与直浇道 507相连通的浇铸管 7进入所述直浇道 507、横浇道 506、沿水冷底箱 5的 切线设置的切线横浇口 500注入 U形腔体 510内, 借助切线出口速度的推动, 使钢液呈圆周旋转方 式在型腔内上升, 充满上薄下厚的金属型构成的型腔;
打开控制水冷底箱 5冷却水盘管 5024的进水口阔门,对所述水冷底箱 5内的金属液实施强制冷 却; 然后, 自下而上依次打开控制水冷外金属型 3内的水冷盘管 31的进水口阔门, 同时打开控制设 置在水冷内金属型 4内的中心冷却水管 8的阔门, 对所述型腔内的铸件进行外、 内同时冷却; 所述金属液由水冷底箱 5开始冷却凝固, 依次经由水冷内、 外金属型 4、 3构成的型腔的下部、 中部、 上部, 直至冒口完全凝固; 关闭所述冷却水进水阔门, 继续保持所以回水管路畅通, 随着铸 件 9继续冷却残存在管路的水分继续蒸发, 直至蒸干为止;
拆除中心冷却水管;
开箱, 对铸件进行清理。
在一个具体实施例中, 在水冷底箱 5上设有浇铸管 7, 该浇铸管 7的顶部设有浇口杯 11, 所述 浇口杯 11、 浇铸管 7的浇道 6与水冷底箱 5的直浇道 507相连通。 根据工艺要求, 将合格的金属液 由经浇口杯 11和浇铸管 7的浇道、直浇道 507、横浇道 506沿切线注入水冷底箱 5的 U形腔体 510 ;
钢液旋转着由水冷底箱 5进入水冷内、 外金属型 4、 3构成的型腔的底部、 中部、 上部, 进入冒口铸 型 1, 直至距冒口箱 101上沿 100瞧停止浇铸。
进一步地, 所述冒口铸型 1的冒口内的金属液面上覆盖有起到绝热覆盖作用的保温剂 12。 为了 进一步提高保温效果, 一个优选的技术方案是, 在冒口内的金属液面上覆盖有发热剂, 在所述发热 剂上进一步覆盖保温剂 12。
如图 1所示, 在一个可行的方案中, 在进行冷却时, 自下而上打开设置在水冷外金属型 3内下 部的第一组水冷盘管 31的进水口、 出水口, 同时, 逐层打开所述冷中心却水管 8上的喷嘴 80, 保 持铸件内、 外的冷却区域相对应, 并使所述冷却区域逐同步上升。
如图 2所示, 在另一个可行的方案中, 在进行冷却时, 自下而上依次打开设置在水冷外金属型 内各组水冷盘管的进水口、 出水口, 同时, 打开所述中心冷却水管 8底部的出水口 81, 并根据液位 计 14的检测结果保持所述水冷内金属型 4内的水位高度与所述第一组水冷盘管 31同高; 随后再自 下而上依次打开各组所述水冷盘管 31, 同时保持对应水冷内金属型 4内的水位同步提高。
如图 7、 图 8所示, 图中分别示意性地表示了采用两种中心冷却水管结构时顺序冷却的铸件在 各冷却初期内的变化。 具体是, 完成浇铸作业后, 首先打开水冷底箱 5的冷却水盘管 5024的阔门, 对水冷底箱 5内的金属液实施强制冷却;然后,打开水冷外金属型 3下部第一组水冷盘管 31的阔门, 在图 7所示的一个实施例中, 同时逐层打开水冷内金属型 4内的中心冷却水管 8的喷嘴 80, 并保持 水冷内金属型 4内喷射的冷却水高度与所述第一组水冷盘管 31相同。 随着金属液的凝固, 逐步打开 第二组、 第三 ......水冷盘管 31, 及中心冷却水管 8上与其相对应的各层喷嘴 80, 以保持铸件内、 外 的冷却区域相对应, 并使所述冷却区域逐同步上升。
在图 8所示的另一个实施例中, 与图 7不同之处仅在于中心冷却水管 8上不设有喷嘴 80, 而是 底部设有出水口 81, 在打开水冷外金属型 3下部第一组水冷盘管 31的阔门的同时, 打开中心冷却 水管 8的出水口 81, 并借助于液位检测装置控制内部的冷却水面不断上升, 保持水冷内金属型 4内 的水位高度与所对应的第一组水管同高;在随后向第二组、第三组水冷盘管 31内注入冷却水的同时, 应保持对应内金属型内水位同步提高, 以保持铸件内、 外的冷却区域相对应, 并使所述冷却区域逐 同步上升。
本发明强制驱动铸件 9由底箱迅速冷却凝固, 依次经型腔的下部、 中部、 上部, 直至冒口完全 凝固。 待铸件 9完全凝固后, 关闭所述冷却水进水阔门, 继续保持所述回水管路畅通, 随着铸件 9 继续冷却, 残存在管路、 水冷内金属型内部的水分继续蒸发, 直至蒸干为止。 最后, 拆除中心冷却 水管。
然后, 进入开箱工序: 首先开去冒口铸型 1的冒口箱 101、 空心环形砂芯 2, 然后开去水冷外金 属型 3, 去掉浇铸管 7, 将浇道 6割除; 将水冷内金属型 4、 铸件 9、 水冷底箱 5—并调至开箱落砂 场地, 脱去底箱板 504、 割去横浇道 506, 拆除外环形冷铁 503、 内水冷环形套 502 ; 逐个拆除水冷 内金属型 4 ; 对铸件 9进行清理、 外观检査, 运至下道工序, 完成整个铸造工序。
本发明的空心管坯水冷铸造方法, 是采用底铸法、 自浇口 500沿切线进入环形腔体下方, 借助 切线出口速度的推动, 使金属液呈圆周旋转方式上升, 使得金属液面前沿形成的气泡、 杂质不能在 铸件 9表面停留, 请配合参见图 11, 因此可以得到比较纯净的铸件表面质量。 进入具有上薄下厚纵 截面结构的水冷外金属型 3、 水冷内金属型 4构成的环形型腔内的金属液, 如图 a、 b、 c、 d所示,
表示了铸件冷却的不同阶段, 图中, 浅色区域表示未凝固区域 A3, 其外部的深色区域表示已凝固层 B3。 即图 11a为凝固开始, 图 l ib为凝固初期, 图 11c为凝固中期, 图 l id为凝固后期, 图 l ie为 结束 (全部凝固), 通过各图表示了金属液 (末凝固区域 A3)及已凝固层 B3的变化过程。 本方法的特 点是: 凝固后期液芯下窄上宽、 且浅, 因此补缩通畅。 采用本发明的方法时, 首先受到铸型表面的 冷却开始凝固形成凝固坯壳, 位于水冷底箱 5 内的金属液受到内水冷环形套 502、 外环形冷铁 503 构成的 3个方向上的强制冷却优先凝固, 并推动凝固前沿由下向上推移。 位于水冷内、 外金属型 4 3下方的金属液受下方厚壁金属型冷却, 以及后续强制水冷的作用, 承接水冷底箱 5 内金属液的凝 固继续推动凝固前沿由下向上发展; 上方的金属型由于较薄的壁厚即较低的铸型蓄热能力, 在受到 金属液加热后很快温度极具上升, 致使该处的凝固停滞, 再加上上厚下薄的涂料层使得金属液向铸 型的热传输阻力越靠上越大, 致使金属型上方的金属液相对凝固时间较下方得到推迟, 即构成了强 制顺序冷却和顺序冷却引发的顺序凝固, 直至冒口。 位于冒内的金属液外表面与冒口铸型 1的保温 绝热耐火材料相接触、内表面与保温绝热耐火材料制成的芯部砂芯接触、上表面与保温剂 12相接触, 具有极佳的保温环境, 因此可以较长时间的维持金属液的过热状态, 直至顺序凝固推到冒口凝固结 束; 因此避免了该大型、 高厚比的筒状铸件内部缩孔、 疏松缺陷的发生, 如图 11中的图 e所示, 本 发明的特点是铸造缺陷集中在冒口和铸件壁厚的中部, 且缺陷级别较轻, 通过后续的锻造作业能够 较为容易地克服该铸造缺陷。 本发明特别适用于管坯厚度 10(Γ600 直径 80(Γ2000 高度 2000^6000mm的大型厚壁管坯的制造。
图 12是采用不同铸造方法的铸件 CAE仿真缺陷预测结果显示对比图, 其中, 图 12al a2是采 用公知的静态砂芯铸造方法的铸件缺陷预测, 如图所示, 颜色较深处表示缺陷 F很严重, 且集中在 内表面; 图 12bl b2是采用公知的空冷钢套芯铸造方法的铸件缺陷预测, 如图所示, 颜色较深处表 示缺陷 F'严重, 且位于表层以里; 图 12c是采用本发明的水冷铸造方法的铸件缺陷预测, 如图所示, 铸件中部的虚线表示缺陷 F" , 其颜色较浅表示缺陷轻, 且该缺陷位于铸件壁厚的中部, 通过后续 的锻造加工, 易于克服该缺陷。 因此, 本发明的方法与公知技术相比大大降低了铸造缺陷, 提高了 成材率。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术 人员, 在不脱离本发明的构思和原则的前提下所作的等同变化与修改, 均应属于本发明保护的范围。 而且需要说明的是, 本发明的各组成部分并不仅限于上述整体应用, 本发明的说明书中描述的各技 术特征可以根据实际需要选择一项单独采用或选择多项组合起来使用, 因此, 本发明理所当然地涵 盖了与本案发明点有关的其它组合及具体应用。
Claims
1、 一种空心管坯水冷铸造装置, 其特征在于, 所述铸造装置包括: 筒状水冷外金属型, 设置 在其内的筒状水冷内金属型, 所述水冷内、 外金属型之间形成环形的铸件型腔; 所述水冷外金属型 和水冷内金属型的顶部设有冒口铸型; 水冷底箱设置在所述水冷外金属型和水冷内金属型下部, 金 属液自浇口经水冷底箱进入所述型腔; 其中, 所述浇口为切线横浇口, 金属液由所述浇口沿切向进 入所述水冷底箱, 借助切线横浇口出口速度的推动, 使钢液自所述型腔的下方呈圆周旋转方式上升, 以得到纯净的铸件表面; 所述水冷外金属型、 水冷内金属型的纵断面形状为上薄下厚带锥度的金属 型, 所述型腔内上方的金属液相对凝固时间较下方得到推迟, 使金属液顺序冷却。
2、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷外金属型内设有多组 水冷盘管, 所述水冷盘管设置在自所述水冷外金属型底端向上 2/3的高度范围内, 其进水管、 出水 管分别延伸至所述水冷外金属型的外部。
3、 如权利要求 2所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷盘管设置在靠近所述 水冷外金属型内表面 3(T80mm处。
4、 如权利要求 2所述的空心管坯水冷铸造装置, 其特征在于, 在所述水冷外金属型的 2/3高 度范围内, 设有 2~5组所述水冷盘管。
5、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷外金属型自顶端向下 的 1/3高度范围内, 在其外表面围设有耐火绝热层。
6、 如权利要求 1至 5任一项所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷外金属型、 水冷内金属型均为分节组合式金属型, 沿高度方向分别由 2~3节构成, 相邻的两节金属型之间通过 公母止口定位自然落放连接。
7、 如权利要求 6所述的空心管坯水冷铸造装置, 其特征在于, 每节所述水冷外金属型内均设 有至少一组所述水冷盘管。
8、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于, 一中心冷却水管穿过所述冒口 铸型伸入所述水冷内金属型的底部, 且所述中心冷却水管被架固在所述冒口铸型上。
9、 如权利要求 8所述的空心管坯水冷铸造装置, 其特征在于, 所述中心冷却水管设置在所述 水冷内金属型的中心线上; 且设置在所述水冷内金属型内的所述中心冷却水管上, 沿高度方向均布 着多层气雾喷嘴, 在每层的圆周方向环设均布着 4 个喷嘴, 能自下而上依次打开每层的喷嘴, 从 而实现内金属型自下而上的顺序冷却。
10、 如权利要求 8所述的空心管坯水冷铸造装置, 其特征在于, 所述中心冷却水管的底部设有 出水口。
11、 如权利要求 10所述的空心管坯水冷铸造装置, 其特征在于, 所述空心管坯水冷铸造装置进 一步还包括液位检测装置, 所述液位检测装置的包括液位计、 液位计浮漂, 所述液位计浮漂设置在 所述水冷内金属型内, 通过钢丝绳与所述液位计相连接。
12、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷内金属型为可变直径 金属型, 且该水冷内金属型在高度方向由 2~3节构成, 相邻的两节金属型之间通过公母止口定位自 然落放连接。
13、 如权利要求 12所述的空心管坯水冷铸造装置, 其特征在于, 每节所述水冷内金属型具有 沿径向分开的多个内金属型单元, 每个内金属型单元的上、 下两端分别与上法兰和下法兰相连接, 形成一个完整的所述水冷内金属型, 且各所述内金属型单元均能相对所述上、 下法兰沿径向移动。
14、 如权利要求 13所述的空心管坯水冷铸造装置, 其特征在于, 每节所述水冷内金属型由上 法兰、 下法兰、 以及 4~8个内金属型单元构成, 每两个相邻的内金属型单元之间具有间隙; 所述上 法兰和下法兰上沿半径方向设有呈放射状置的连接所述内金属型单元的长螺栓孔, 每个所述内金属 型单元通过设置在所述长螺栓孔内的螺栓分别与所述上法兰和下法兰相连接, 当受到铸件收缩的挤 压时连接法兰的螺栓能沿长螺栓孔滑动, 相邻内金属型单元之间的间隙被压减小, 实现变径、 以防 止铸件收缩裂纹、 防止铸件与内金属型抱死。
15、 如权利要求 14所述的空心管坯水冷铸造装置, 其特征在于, 相邻的两个所述内金属型单元 之间的间隙内填充有填料, 所述填料为可缩性耐火材料, 以防止浇铸初期向所述间隙内钻钢。
16、 如权利要求 14或 15所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷内金属型的内 壁接缝处均设有一宽度大于所述间隙宽度的挡板,每个所述挡板与相邻的两个内金属型单元相连接, 并能随该金属型本体的收缩进行滑动。
17、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于: 所述水冷外金属型内表面、 水 冷内金属型外表面均设有高温耐火材料涂层;所述高温耐火材料涂层为上厚下薄的楔形变厚度涂层, 使涂覆了所述涂料层的所述型腔形成为大致圆柱体。
18、 如权利要求 17所述的空心管坯水冷铸造装置, 其特征在于, 所述高温耐火材料涂层的厚 度范围为 0.广 20mm, 由涂料层和砂层构成。
19、 如权利要求 18所述的空心管坯水冷铸造装置, 其特征在于, 所述高温耐火材料涂层包括 涂覆在所述水冷外金属型内壁面和水冷内金属型外壁面的铬矿砂层, 以及涂覆在所述铬矿砂层上的 锆英粉涂料层。
20、 如权利要求 1所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷底箱包括: 外箱体, 设置在所述外箱体内的内水冷环形套, 所述外箱体与所述内水冷环形套之间形成与所述型腔相连通 的 U形腔体; 所述外箱体、 内水冷环形套的下端与底箱板固定连接, 所述外箱体的上端面设有与所 述水冷外金属型的下端相接的定位止口; 所述外箱体包括圆柱形的本体, 以及沿圆柱形外箱体的切 线方向形成的瓢把部, 构成瓢把形水冷底箱。
21、 如权利要求 20所述的空心管坯水冷铸造装置, 其特征在于, 所述水冷底箱的外箱体由壁 厚为 3(Tl00mm的铸钢或铸铁制成。
22、 如权利要求 20所述的空心管坯水冷铸造装置, 其特征在于, 所述内水冷环形套由直径较 小的圆柱状上环套和直径较大的圆柱状下环套构成, 形成一凸柱体; 所述内水冷环形套内设有圆柱 状贯通内孔, 外表面由小直径的上环套外圆柱面和大直径的下环套上圆环面组成一 L形的回转面, 一环形冷铁套装设置在所述下环套上圆环面上, 该环形冷铁的内周面与所述 L形的回转面构成所述 U形腔体, 在所述 U形腔体的竖直面和底面砌筑有耐火砖内衬。
23、 如权利要求 22所述的空心管坯水冷铸造装置, 其特征在于, 所述内水冷环形套内距所述 L 形回转面 3(T50mm处埋设有冷却水盘管, 所述冷却水盘管的进、 出水口均由所述贯通内孔的内表面 引出, 经所述底箱板中心透孔延伸到所述水冷底箱外部。
24、 如权利要求 20所述的空心管坯水冷铸造装置, 其特征在于, 所述瓢把部内设有耐火砖管, 所述耐火砖管具有横浇道, 所述横浇道的一端水平延伸至所述 U形腔体, 并构成所述切线横浇口, 所述横浇道的另一端通过 90° 拐角砖竖直向上形成直浇道。
25、 如权利要求 22所述的空心管坯水冷铸造装置, 其特征在于, 所述瓢把部内设有耐火砖管, 所述耐火砖管具有横浇道, 所述横浇道的一端水平延伸, 贯穿所述外环形冷铁、环形耐火砖内衬与
U形腔体连通,并构成所述切线横浇口,所述横浇道的另一端通过 90 ° 拐角砖竖直向上形成直浇道。
26、 如权利要求 20所述的空心管坯水冷铸造装置, 其特征在于, 所述冒口铸型包括: 冒口箱, 设置在其内的空心环形砂芯; 所述冒口箱的内壁设有保温耐火材料层, 所述空心环形砂芯的内壁设 有绝热耐火棉层, 且所述空心环形砂芯的内腔与水冷内金属型的内腔相连通。
27、 一种空心管坯水冷铸造方法, 采用如权利要求 1至 26所述的空心管坯水冷铸造装置, 包 括:
打开与水冷盘管、 中心冷却水管、 冷却水盘管相连接的回水管路, 并保持回水管路的畅通; 将金属液由与直浇道相连通的浇铸管进入所述直浇道、 横浇道、 沿水冷底箱的切线设置的切线 横浇口注入 U形腔体内, 借助切线出口速度的推动, 使钢液呈圆周旋转方式在型腔内上升, 充满上 薄下厚的金属型构成的型腔;
打开控制水冷底箱冷却水盘管进水口阔门, 对所述水冷底箱内的金属液实施强制冷却; 然后, 自下而上依次打开控制外水冷金属型内的水冷盘管的进水口阔门, 同时打开控制设置在水冷内金属 型内的中心冷却水管的阔门, 对所述型腔内的铸件进行外、 内同时冷却;
所述金属液由水冷底箱开始冷却凝固, 依次经由水冷内、 外金属型构成的型腔的下部、 中部、 上部, 直至冒口完全凝固; 关闭所述冷却水进水阔门, 继续保持所以回水管路畅通, 随着铸件继续 冷却残存在管路的水分继续蒸发, 直至蒸干为止;
拆除中心冷却水管;
开箱, 对铸件进行清理。
28、 如权利要求 27所述的空心管坯水冷铸造方法, 其特征在于, 所述金属液沿横浇道经切线横 浇口旋转着由水冷底箱的切线注入所述型腔的底部、 中部、 上部, 以及冒口铸型, 直至距冒口箱上 沿 100mm停止浇铸; 完成浇注后, 在所述冒口铸型的冒口内的金属液面上覆盖发热剂, 所述发热剂 上进一步覆盖保温剂。
29、 如权利要求 27所述的空心管坯水冷铸造方法, 其特征在于, 在进行冷却时, 自下而上依次 打开设置在水冷外金属型内各组水冷盘管的进水口, 同时, 逐层打开所述中心冷却水管上的喷嘴, 保持铸件内、 外的冷却区域相对应, 并使所述冷却区域逐同步上升。
30、 如权利要求 27所述的空心管坯水冷铸造方法, 其特征在于, 在进行冷却时, 自下而上依次 打开设置在水冷外金属型内各组水冷盘管的进水口, 同时, 打开所述中心冷却水管底部的出水口, 并根据液位计的检测结果保持所述水冷内金属型内的水位高度与注入了冷却水的所述水冷盘管同 高, 且水位同步提高。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/073770 WO2013152478A1 (zh) | 2012-04-11 | 2012-04-11 | 空心管坯水冷铸造方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/073770 WO2013152478A1 (zh) | 2012-04-11 | 2012-04-11 | 空心管坯水冷铸造方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013152478A1 true WO2013152478A1 (zh) | 2013-10-17 |
Family
ID=49326994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073770 WO2013152478A1 (zh) | 2012-04-11 | 2012-04-11 | 空心管坯水冷铸造方法及装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013152478A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59104249A (ja) * | 1982-12-06 | 1984-06-16 | Kawasaki Steel Corp | 中空鋼塊の鋳造方法 |
CN1067194A (zh) * | 1991-05-26 | 1992-12-23 | 四川省资阳县塑料建材厂 | 水冷金属型铸造方法及其设备 |
CN1597180A (zh) * | 2004-08-02 | 2005-03-23 | 中国科学院金属研究所 | 铸钢支承辊整体铸造方法 |
CN1943917A (zh) * | 2006-10-18 | 2007-04-11 | 中国科学院金属研究所 | 大型铸钢支承辊制备工艺 |
CN102626771A (zh) * | 2012-04-11 | 2012-08-08 | 中冶京诚工程技术有限公司 | 空心管坯水冷铸造方法及装置 |
CN202517011U (zh) * | 2012-04-11 | 2012-11-07 | 中冶京诚工程技术有限公司 | 空心管坯水冷铸造装置 |
-
2012
- 2012-04-11 WO PCT/CN2012/073770 patent/WO2013152478A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59104249A (ja) * | 1982-12-06 | 1984-06-16 | Kawasaki Steel Corp | 中空鋼塊の鋳造方法 |
CN1067194A (zh) * | 1991-05-26 | 1992-12-23 | 四川省资阳县塑料建材厂 | 水冷金属型铸造方法及其设备 |
CN1597180A (zh) * | 2004-08-02 | 2005-03-23 | 中国科学院金属研究所 | 铸钢支承辊整体铸造方法 |
CN1943917A (zh) * | 2006-10-18 | 2007-04-11 | 中国科学院金属研究所 | 大型铸钢支承辊制备工艺 |
CN102626771A (zh) * | 2012-04-11 | 2012-08-08 | 中冶京诚工程技术有限公司 | 空心管坯水冷铸造方法及装置 |
CN202517011U (zh) * | 2012-04-11 | 2012-11-07 | 中冶京诚工程技术有限公司 | 空心管坯水冷铸造装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102626771B (zh) | 空心管坯水冷铸造方法及装置 | |
CN202517011U (zh) | 空心管坯水冷铸造装置 | |
CN105598394B (zh) | 一种高碳钢薄壁环形铸件的浇注冷却系统及冷却方法 | |
CN104070145A (zh) | 一种大高径比圆形铸坯的制造工装和高效制备方法 | |
CN109663892B (zh) | 一种大型铸锭或铸坯的渐进凝固成型装置 | |
CN102886501B (zh) | 一种宽厚板轧机用宽厚板坯高效制备工装和制备方法 | |
CN102773427B (zh) | 大断面圆坯的连续铸造装置及其铸造方法 | |
WO2015089959A1 (zh) | 空心铸铁管材及其垂直连铸方法和专用设备 | |
CN104259413A (zh) | 一种生产大规格椭圆坯的连铸系统及连铸工艺 | |
CN101402134A (zh) | 离心铸造冷型气、雾冷却系统和方法 | |
CN109261916B (zh) | 一种金属半连续铸造结晶器熔池搅拌装置及方法 | |
CN102773428A (zh) | 大断面连铸坯的铸造装置及其铸造方法 | |
CN102773430B (zh) | 大断面空心管坯连续铸造装置及其铸造方法 | |
CN102672121B (zh) | 一种立式管坯连铸的生产方法 | |
CN103014366B (zh) | 一种大型电渣重熔钢锭强化冷却装置及方法 | |
CN101885045A (zh) | 一种立式可变速连续离心铸造机 | |
WO2013152478A1 (zh) | 空心管坯水冷铸造方法及装置 | |
CN209363579U (zh) | 一种金属半连续铸造结晶器熔池搅拌装置 | |
CN101298092B (zh) | 一种可动芯低偏析大型空心钢锭的制造方法 | |
CN103128268B (zh) | 用于大型特厚板坯的中低温打箱的方法 | |
CN202571213U (zh) | 大断面圆坯的连续铸造装置 | |
CN201320599Y (zh) | 离心铸造冷型气、雾冷却系统 | |
CN202655586U (zh) | 大断面空心管坯连续铸造装置 | |
CN109108256A (zh) | 一种连续覆材复合铸坯及其铸造装置、方法 | |
CN112404376B (zh) | 一种真空感应熔炼炉生产特种合金板坯的模具及其使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12874019 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12874019 Country of ref document: EP Kind code of ref document: A1 |