[go: up one dir, main page]

WO2013140552A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2013140552A1
WO2013140552A1 PCT/JP2012/057200 JP2012057200W WO2013140552A1 WO 2013140552 A1 WO2013140552 A1 WO 2013140552A1 JP 2012057200 W JP2012057200 W JP 2012057200W WO 2013140552 A1 WO2013140552 A1 WO 2013140552A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
tab
electrode
solar cell
cell module
Prior art date
Application number
PCT/JP2012/057200
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 吉嶺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/057200 priority Critical patent/WO2013140552A1/en
Publication of WO2013140552A1 publication Critical patent/WO2013140552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • solar cells examples include single crystal solar cells, polycrystalline solar cells, amorphous solar cells, and the like, or combinations thereof. Usually, a plurality of solar cells are connected in series or in parallel and used as a solar cell module.
  • FIG. 12 shows a configuration of a conventional solar cell module 100.
  • the solar cell module 100 has a structure in which a plurality of solar cells 10 are connected by tabs 12.
  • the tab 12 connects the first electrode 14 of the solar battery cell 10 and the second electrode 16 of the adjacent solar battery cell 10.
  • the tab 12 has a bent portion 12 a provided with a step corresponding to the thickness of the solar battery cell 10.
  • the peripheral edge portion of the solar cell 10 and the tab 12 are brought into contact with each other and pressed (in the direction of the arrow in the figure), and the solar cell.
  • the cell 10 may be broken.
  • the space between the solar cells 10 is narrowed, the contact between the peripheral portion of the solar cell 10 and the tab 12 occurs, and the solar cell 10 may be damaged. is there.
  • One aspect of the present invention includes a plurality of solar cells including a photoelectric conversion unit, and a tab for electrically connecting the plurality of solar cells, and the photoelectric conversion unit and the tab are provided at the periphery of the solar cell.
  • a solar cell module in which a buffer material having a lower hardness than the photoelectric conversion portion is provided.
  • the present invention it is possible to suppress the occurrence of cracking of the solar battery cell and improve the reliability of the solar battery module.
  • the solar cell module 200 in the embodiment of the present invention includes a solar cell 20, a tab 22, a buffer material 24, a first protection member 26, and a second protection.
  • the member 28 and the filler 30 are included.
  • FIG. 1 is a plan view of the solar cell module 200 viewed from the light receiving surface side
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG.
  • the “light receiving surface” is one of the main surfaces of the solar battery cell 20 and means a surface on which light from the outside is mainly incident. For example, 50% to 100% of the light incident on the solar battery cell 20 enters from the light receiving surface side.
  • the “back surface” is one of the main surfaces of the solar battery cell 20 and means a surface opposite to the light receiving surface.
  • the solar battery cell 20 receives light such as sunlight to generate carriers (electrons and holes), a first electrode 20b provided on the light receiving surface of the photoelectric conversion unit 20a, And a second electrode 20c provided on the back surface of the photoelectric conversion unit 20a.
  • the first electrode 20 b and the second electrode 20 c include fingers provided in a comb shape so as to intersect the extending direction of the tab 22 and bus bars connecting the fingers.
  • the bus bars are electrodes that connect the fingers, and are arranged in parallel to each other at a predetermined interval so as to cover the tabs 22.
  • the fingers and bus bars are formed, for example, by screen-printing a conductive paste in which a conductive filler such as silver (Ag) is dispersed in a binder resin in a desired pattern on a transparent conductive layer.
  • a metal film such as a silver (Ag) thin film may be formed on substantially the entire back surface of the photoelectric conversion unit 20a to form the second electrode 20c.
  • carriers generated by the photoelectric conversion unit 20 a are collected by the first electrode 20 b and the second electrode 20 c.
  • the photoelectric conversion unit 20a includes a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the photoelectric conversion unit 20a is not particularly limited, but in the present embodiment, it will be described as a structure having a heterojunction of an n-type single crystal silicon substrate and amorphous silicon.
  • the photoelectric conversion unit 20a includes, for example, an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on a light-receiving surface of an n-type single crystal silicon substrate, indium oxide or the like.
  • the transparent conductive layers made of a photoconductive oxide are stacked in this order.
  • an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated in this order.
  • the adjacent solar battery cells 20 are connected by a tab 22.
  • a metal foil such as copper can be used.
  • the tab 22 connects the first electrode 20b of the solar battery cell 20 and the second electrode 20c of the adjacent solar battery cell 20.
  • the tab 22 is bonded to, for example, the bus bar of the first electrode 20b of one solar battery cell 20 and the bus bar of the second electrode 20c of the other solar battery cell 20 by an adhesive layer.
  • the adhesive layer for example, a conductive adhesive film in which conductive particles are dispersed in a thermosetting adhesive layer containing an adhesive resin material such as an epoxy resin, an acrylic resin, or a urethane resin can be used.
  • the conductive adhesive film may use an anisotropic conductive adhesive layer having high conductivity in the in-plane direction of the solar battery cell 20 and low conductivity in the film thickness direction.
  • a paste containing no conductive particles may be used for a thermosetting adhesive layer made of an adhesive resin material such as an epoxy resin, an acrylic resin, or a urethane resin.
  • the tab 22 has a bent portion 22 a provided with a step corresponding to the thickness of the solar battery cell 20.
  • the bent portion 22a has a structural escape corresponding to the thickness of the solar battery cell 20 in order to connect the first electrode 20b and the second electrode 20c so that the adjacent solar battery cells 20 are arranged in the same plane. It is provided to be formed.
  • the first protective member 26 is a member provided to protect the light receiving surface side of the solar battery cell 20. Since the 1st protection member 26 is provided in the light-receiving surface side of the photovoltaic cell 20, it is comprised from the transparent member which permeate
  • the second protection member 28 is a member provided to protect the back side of the solar battery cell 20. As the second protective member 28, a glass plate, a resin plate, a resin film, or the like can be used as in the first protective member 26.
  • the second protective member 28 may be an opaque plate or film.
  • a laminated film such as a resin film having an aluminum foil or the like inside may be used.
  • the first protective member 26 and the second protective member 28 are bonded to the first electrode 20 b and the second electrode 20 c of the solar battery cell 20 using the filler 30, respectively.
  • a buffer material 24 is provided between the tab 20 and the peripheral edge of the solar cell 20. It is preferable that the buffer material 24 is provided between the photoelectric conversion unit 20 a and the tab 22 in a region where the first electrode 20 b and the second electrode 20 c are not provided in the peripheral portion of the solar battery cell 20.
  • the buffer material 24 is provided in order to buffer the force applied to the solar battery cell 20 when the tab 22 contacts the solar battery cell 20 at the peripheral edge of the solar battery cell 20. Therefore, it is preferable that the buffer material 24 is made of a material having a hardness lower than that of the photoelectric conversion unit 20a of the solar battery cell 20, that is, softer than the photoelectric conversion unit 20a.
  • the buffer material 24 is preferably a resin material such as an epoxy resin, an acrylic resin, or a urethane resin.
  • a resin material such as an epoxy resin, an acrylic resin, or a urethane resin.
  • an adhesive layer used for adhering the first electrode 20 b or the second electrode 20 c and the tab 22 may be used as the buffer material 24.
  • the thickness of the buffer material 24 is preferably 5 ⁇ m or more and 100 ⁇ m or less. By setting it as such a film thickness, the pressure which the photovoltaic cell 20 receives from the tab 22 can be relieve
  • the buffer material 24 is preferably provided so as not to protrude from the region covered with the tab 22 of the main surface (light receiving surface and back surface) of the solar battery cell 20.
  • the buffer material 24 so as not to protrude from the tab 22, it is possible to prevent the light incident on the photoelectric conversion unit 20 a from being blocked by the buffer material 24, and to suppress a decrease in power generation efficiency in the solar battery cell 20. be able to.
  • the buffer material 24 is provided so as to protrude from the region covered with the tab 22, it is preferable to use a transparent material that transmits light in a wavelength band used for photoelectric conversion in the solar battery cell 20. Thereby, it can prevent that the light which injects into the photoelectric conversion part 20a by the buffer material 24 is shielded.
  • the buffer material 24 on the back surface side may protrude from the region covered with the tab 22.
  • the cushioning material 24 may be disposed over the entire width direction of the tab 22 (direction perpendicular to the extending direction), or the cushioning material 24 may be disposed only in a part of the tab 22 in the width direction.
  • the tab 22 By providing the buffer material 24 over the entire width of the tab 22, the tab 22 can be prevented from coming into direct contact with the solar battery cell 20 at any location in the width direction of the tab 22.
  • the force applied to 20 can be reliably relaxed.
  • the buffer material 24 is provided only in a part of the tab 22 in the width direction, the amount of the material used for the buffer material 24 can be reduced.
  • the cushioning material 24 extends from the surface covered by the tab 22 at the peripheral edge of the solar cell 20 to the main surface on the opposite side of the solar cell 20 through the side surface of the solar cell 20. It may be provided so as to cover the part. However, as shown in FIG. 2, the cushioning material 24 is provided from the main surface side covered by the tab 22 at the peripheral edge portion of the solar battery cell 20 to the end side surface, and the sun facing the region where the cushioning material 24 is provided. It is preferable that it is not provided in the region of the main surface on the opposite side of the battery cell 20.
  • the amount of the material used for the buffer material 24 can be reduced.
  • An area covered by the tab 22 is an area where the tab 22 and the solar battery cell 20 may be in contact with each other. Therefore, it is possible to substantially avoid the tab 22 from coming into direct contact with the solar battery cell 20 by providing the buffer material 24 at least in the region. As a result, the effect of buffering the force applied to the solar battery cell 20 from the tab 22 is maintained, and damage to the solar battery cell 20 can be prevented.
  • the buffer material 24 may be provided from a position away from the first electrode 20b (or the second electrode 20c), or as shown in FIGS. 4 and 5, the first electrode 20b.
  • the buffer material 24 may be provided from a position in contact with (or the second electrode 20c).
  • the cushioning material 24 By providing the cushioning material 24 from a position away from the first electrode 20b (or the second electrode 20c), the amount of material used for the cushioning material 24 can be reduced. On the other hand, by providing the buffer material 24 from the position in contact with the first electrode 20b (or the second electrode 20c), the sun is surely spread from the position in contact with the first electrode 20b (or the second electrode 20c) to the entire end portion. The battery cell 20 can be protected.
  • the buffer material 24 may have a shape along the shape of the end portion of the solar battery cell 20 as shown in FIGS. 2 to 5, or may have a fillet shape as shown in FIGS. .
  • the fillet shape indicates a rounded shape.
  • the fillet shape has a curvature larger than the curvature of the corner formed by the main surface (light receiving surface or back surface) and the end surface of the solar battery cell 20. It means that it has a shape.
  • the tab 22 comes into contact with the cushioning material 24 in a wider area, and the pressure transmitted from the tab 22 to the solar battery cell 20 via the cushioning material 24 is increased. It can be dispersed more widely. Therefore, the solar battery cell 20 can be more reliably protected.
  • the solar battery cell 20 can be formed by applying a conventional forming method, and therefore, the forming method of the tab 22 and the buffer material 24 which are characteristic parts will be described.
  • the buffer material 24 is formed of a material that becomes the buffer material 24 such as a resin. Apply to the area to be applied.
  • a conductive adhesive film serving as an adhesive layer is disposed on the bus bar of the first electrode 20b and the second electrode 20c, and the tab 22 is bonded to the bus bar.
  • FIG.8 (c) it seals with the 1st protection member 26, the 2nd protection member 28, and the filler 30.
  • a resin paste 32 as an adhesive layer for adhering the tab 22 is disposed on the first electrode 20b and the second electrode 20c, and as shown in FIG.
  • the resin paste 32 may protrude from the peripheral portion of the solar battery cell 20 and the portion may be used as the buffer material 24.
  • the resin paste 32 may be an insulating adhesive layer that does not contain a conductive material. In this case, when the tab 22 is pressure-bonded to the first electrode 20b and the second electrode 20c, the resin paste 32 protrudes from the side surfaces of the first electrode 20b and the second electrode 20c.
  • the tab 22 is in direct contact with and electrically connected to the first electrode 20b and the second electrode 20c. And as shown in FIG.9 (c), it seals with the 1st protection member 26, the 2nd protection member 28, and the filler 30.
  • FIG.9 (c) shows that the tab 22 is in direct contact with and electrically connected to the first electrode 20b and the second electrode 20c. And as shown in FIG.9 (c), it seals with the 1st protection member 26, the 2nd protection member 28, and the filler 30.
  • the conductive adhesive film 34 is pasted from the first electrode 20b and the second electrode 20c to the periphery of the solar battery cell 20, and the tab 22 is attached to the first electrode 20b. It is good also as a process crimped
  • the conductive adhesive film 34 at the peripheral edge of the solar battery cell 20 functions as the buffer material 24.
  • the conductive adhesive film to be the buffer material 24 in the final structure may be in a state of hanging from the end of the solar battery cell 20.
  • the solar cell module 200 of the present embodiment by providing the buffer material 24, the occurrence of cracks and the like of the solar cells 20 is suppressed, and the reliability of the solar cell module 200 is improved. Can do.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell module that is provided with a plurality of solar cells, each of which comprises a photoelectric conversion unit, and a tab which electrically connects the plurality of solar cells. In the peripheral portion of each solar cell, a buffering material, which has a lower hardness than the photoelectric conversion unit, is arranged between the photoelectric conversion unit and the tab.

Description

太陽電池モジュールSolar cell module

 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.

 太陽電池には、単結晶型太陽電池、多結晶型太陽電池、アモルファス型太陽電池等、又はこれらを組み合わせたものが挙げられる。通常、複数の太陽電池を直列又は並列に接続して太陽電池モジュールとして使用される。 Examples of solar cells include single crystal solar cells, polycrystalline solar cells, amorphous solar cells, and the like, or combinations thereof. Usually, a plurality of solar cells are connected in series or in parallel and used as a solar cell module.

 図12の断面図は、従来の太陽電池モジュール100の構成を示す。太陽電池モジュール100は、複数の太陽電池セル10がタブ12により接続された構造を有する。タブ12は、太陽電池セル10の第1電極14と隣り合う太陽電池セル10の第2電極16とを接続する。ここで、タブ12は、太陽電池セル10の厚さ分だけ段差が設けられた屈曲部12aを有する。 12 shows a configuration of a conventional solar cell module 100. FIG. The solar cell module 100 has a structure in which a plurality of solar cells 10 are connected by tabs 12. The tab 12 connects the first electrode 14 of the solar battery cell 10 and the second electrode 16 of the adjacent solar battery cell 10. Here, the tab 12 has a bent portion 12 a provided with a step corresponding to the thickness of the solar battery cell 10.

 ところで、太陽電池モジュール100を使用する際に、図13の拡大断面図に示すように、太陽電池セル10の周縁部とタブ12とが接触して押され(図中、矢印方向)、太陽電池セル10が割れてしまうおそれがある。例えば、太陽電池モジュール100に熱サイクルが加わった際に、太陽電池セル10間が狭まり、太陽電池セル10の周縁部とタブ12との接触が生じ、太陽電池セル10が破損してしまうおそれがある。 By the way, when using the solar cell module 100, as shown in the enlarged sectional view of FIG. 13, the peripheral edge portion of the solar cell 10 and the tab 12 are brought into contact with each other and pressed (in the direction of the arrow in the figure), and the solar cell. The cell 10 may be broken. For example, when a thermal cycle is applied to the solar cell module 100, the space between the solar cells 10 is narrowed, the contact between the peripheral portion of the solar cell 10 and the tab 12 occurs, and the solar cell 10 may be damaged. is there.

 本発明の1つの態様は、光電変換部を含む複数の太陽電池セルと、複数の太陽電池セルを電気的に接続するタブと、を備え、太陽電池セルの周縁部において、光電変換部とタブとの間に光電変換部より硬度の低い緩衝材が設けられている太陽電池モジュールである。 One aspect of the present invention includes a plurality of solar cells including a photoelectric conversion unit, and a tab for electrically connecting the plurality of solar cells, and the photoelectric conversion unit and the tab are provided at the periphery of the solar cell. Is a solar cell module in which a buffer material having a lower hardness than the photoelectric conversion portion is provided.

 本発明によれば、太陽電池セルの割れ等の発生を抑制し、太陽電池モジュールの信頼性を向上させることができる。 According to the present invention, it is possible to suppress the occurrence of cracking of the solar battery cell and improve the reliability of the solar battery module.

本発明の実施の形態における太陽電池モジュールの構成を示す平面図である。It is a top view which shows the structure of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの製造方法を示す図である。It is a figure which shows the manufacturing method of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの製造方法の別例を示す図である。It is a figure which shows another example of the manufacturing method of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの製造方法の別例を示す図である。It is a figure which shows another example of the manufacturing method of the solar cell module in embodiment of this invention. 本発明の実施の形態における太陽電池モジュールの別例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the solar cell module in embodiment of this invention. 従来の太陽電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional solar cell module. 従来の太陽電池の課題を説明する図である。It is a figure explaining the subject of the conventional solar cell.

<太陽電池モジュールの構成>
 本発明の実施の形態における太陽電池モジュール200は、図1の平面図及び図2の断面図に示すように、太陽電池セル20、タブ22、緩衝材24、第1保護部材26、第2保護部材28及び充填材30を含んで構成される。図1は、受光面側からみた太陽電池モジュール200の平面図であり、図2は、図1のラインA-Aに沿った断面模式図である。
<Configuration of solar cell module>
As shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2, the solar cell module 200 in the embodiment of the present invention includes a solar cell 20, a tab 22, a buffer material 24, a first protection member 26, and a second protection. The member 28 and the filler 30 are included. FIG. 1 is a plan view of the solar cell module 200 viewed from the light receiving surface side, and FIG. 2 is a schematic cross-sectional view taken along line AA in FIG.

 以下の説明において、「受光面」とは、太陽電池セル20の主面の一つであり、外部からの光が主に入射する面を意味する。例えば、太陽電池セル20に入射する光のうち50%~100%が受光面側から入射する。「裏面」とは、太陽電池セル20の主面の一つであり、受光面と反対側の面を意味する。 In the following description, the “light receiving surface” is one of the main surfaces of the solar battery cell 20 and means a surface on which light from the outside is mainly incident. For example, 50% to 100% of the light incident on the solar battery cell 20 enters from the light receiving surface side. The “back surface” is one of the main surfaces of the solar battery cell 20 and means a surface opposite to the light receiving surface.

 太陽電池セル20は、太陽光等の光を受光することでキャリア(電子及び正孔)を生成する光電変換部20aと、光電変換部20aの受光面上に設けられた第1電極20bと、光電変換部20aの裏面上に設けられた第2電極20cとを備える。第1電極20b及び第2電極20cは、図1に示すように、タブ22の延設方向と交差するように櫛状に設けられたフィンガー及びそれを接続するバスバーを備える。バスバーは、フィンガーを接続する電極であり、タブ22に被われるように所定の間隔をあけて互いに平行に配置される。フィンガー及びバスバーは、例えば、バインダー樹脂中に銀(Ag)等の導電性フィラーが分散した導電性ペーストを透明導電層上に所望のパターンでスクリーン印刷して形成される。太陽電池セル20の裏面側からの光の入射がない場合、光電変換部20aの裏面の略全面上に銀(Ag)薄膜等の金属膜を形成して第2電極20cとしてもよい。太陽電池セル20では、光電変換部20aで生成されたキャリアが第1電極20b及び第2電極20cにより収集される。 The solar battery cell 20 receives light such as sunlight to generate carriers (electrons and holes), a first electrode 20b provided on the light receiving surface of the photoelectric conversion unit 20a, And a second electrode 20c provided on the back surface of the photoelectric conversion unit 20a. As shown in FIG. 1, the first electrode 20 b and the second electrode 20 c include fingers provided in a comb shape so as to intersect the extending direction of the tab 22 and bus bars connecting the fingers. The bus bars are electrodes that connect the fingers, and are arranged in parallel to each other at a predetermined interval so as to cover the tabs 22. The fingers and bus bars are formed, for example, by screen-printing a conductive paste in which a conductive filler such as silver (Ag) is dispersed in a binder resin in a desired pattern on a transparent conductive layer. When no light is incident from the back surface side of the solar battery cell 20, a metal film such as a silver (Ag) thin film may be formed on substantially the entire back surface of the photoelectric conversion unit 20a to form the second electrode 20c. In the solar battery cell 20, carriers generated by the photoelectric conversion unit 20 a are collected by the first electrode 20 b and the second electrode 20 c.

 光電変換部20aは、例えば、結晶系シリコン、ガリウム砒素(GaAs)又はインジウム燐(InP)等の半導体材料からなる基板を有する。光電変換部20aの構造は、特に限定されないが、本実施形態では、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を有する構造であるとして説明する。光電変換部20aは、例えば、n型単結晶シリコン基板の受光面上に、i型非晶質シリコン層、ボロン(B)等がドープされたp型非晶質シリコン層、酸化インジウム等の透光性導電酸化物からなる透明導電層の順番で積層されている。また、基板の裏面上に、i型非晶質シリコン層、リン(P)等がドープされたn型非晶質シリコン層、透明導電層の順番で積層されている。 The photoelectric conversion unit 20a includes a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP). The structure of the photoelectric conversion unit 20a is not particularly limited, but in the present embodiment, it will be described as a structure having a heterojunction of an n-type single crystal silicon substrate and amorphous silicon. The photoelectric conversion unit 20a includes, for example, an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on a light-receiving surface of an n-type single crystal silicon substrate, indium oxide or the like. The transparent conductive layers made of a photoconductive oxide are stacked in this order. On the back surface of the substrate, an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated in this order.

 太陽電池モジュール200において隣り合う太陽電池セル20間はタブ22によって接続される。タブ22としては、例えば、銅等の金属箔を用いることができる。タブ22は、太陽電池セル20の第1電極20bと、隣り合う太陽電池セル20の第2電極20cとを接続する。タブ22は、例えば、一方の太陽電池セル20の第1電極20bのバスバーと他方の太陽電池セル20の第2電極20cのバスバーとに接着層により接着される。接着層としては、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂等の接着性の樹脂材料を含む熱硬化型の接着層に導電性粒子を分散させた導電性接着フィルムとすることができる。導電性接着フィルムは、太陽電池セル20の面内方向に導電性が高く、膜厚方向に導電性が低い異方導電性接着層を用いてもよい。また、エポキシ樹脂やアクリル樹脂、ウレタン樹脂等の接着性の樹脂材料からなる熱硬化型の接着層に導電性粒子を含まないペーストを用いてもよい。 In the solar battery module 200, the adjacent solar battery cells 20 are connected by a tab 22. As the tab 22, for example, a metal foil such as copper can be used. The tab 22 connects the first electrode 20b of the solar battery cell 20 and the second electrode 20c of the adjacent solar battery cell 20. The tab 22 is bonded to, for example, the bus bar of the first electrode 20b of one solar battery cell 20 and the bus bar of the second electrode 20c of the other solar battery cell 20 by an adhesive layer. As the adhesive layer, for example, a conductive adhesive film in which conductive particles are dispersed in a thermosetting adhesive layer containing an adhesive resin material such as an epoxy resin, an acrylic resin, or a urethane resin can be used. The conductive adhesive film may use an anisotropic conductive adhesive layer having high conductivity in the in-plane direction of the solar battery cell 20 and low conductivity in the film thickness direction. Alternatively, a paste containing no conductive particles may be used for a thermosetting adhesive layer made of an adhesive resin material such as an epoxy resin, an acrylic resin, or a urethane resin.

 タブ22は、太陽電池セル20の厚さ分だけ段差が設けられた屈曲部22aを有する。屈曲部22aは、隣り合う太陽電池セル20が同一平面内に配置されるように第1電極20bと第2電極20cとを接続するために太陽電池セル20の厚さ分だけ構造的な逃げが形成されるように設けられる。 The tab 22 has a bent portion 22 a provided with a step corresponding to the thickness of the solar battery cell 20. The bent portion 22a has a structural escape corresponding to the thickness of the solar battery cell 20 in order to connect the first electrode 20b and the second electrode 20c so that the adjacent solar battery cells 20 are arranged in the same plane. It is provided to be formed.

 第1保護部材26は、太陽電池セル20の受光面側を保護するために設けられる部材である。第1保護部材26は、太陽電池セル20の受光面側に設けられるので、太陽電池セル20において光電変換に利用される波長帯域の光を透過する透明な部材から構成される。第1保護部材26としては、例えば、ガラス板、樹脂板、樹脂フィルム等の透光性を有する部材を用いることができる。第2保護部材28は、太陽電池セル20の裏面側を保護するために設けられる部材である。第2保護部材28としては、第1保護部材26と同様に、ガラス板、樹脂板、樹脂フィルム等を用いることができる。太陽電池セル20の裏面側からの光の入射がない場合、第2保護部材28は、不透明な板体やフィルムとしてもよい。この場合、第2保護部材28としては、例えば、アルミ箔等を内部に有する樹脂フィルム等の積層フィルムを用いてもよい。第1保護部材26及び第2保護部材28は、充填材30を用いて太陽電池セル20の第1電極20b及び第2電極20cとそれぞれ接着される。 The first protective member 26 is a member provided to protect the light receiving surface side of the solar battery cell 20. Since the 1st protection member 26 is provided in the light-receiving surface side of the photovoltaic cell 20, it is comprised from the transparent member which permeate | transmits the light of the wavelength band utilized for photoelectric conversion in the photovoltaic cell 20. FIG. As the 1st protection member 26, the member which has translucency, such as a glass plate, a resin plate, a resin film, can be used, for example. The second protection member 28 is a member provided to protect the back side of the solar battery cell 20. As the second protective member 28, a glass plate, a resin plate, a resin film, or the like can be used as in the first protective member 26. When no light is incident from the back side of the solar battery cell 20, the second protective member 28 may be an opaque plate or film. In this case, as the second protective member 28, for example, a laminated film such as a resin film having an aluminum foil or the like inside may be used. The first protective member 26 and the second protective member 28 are bonded to the first electrode 20 b and the second electrode 20 c of the solar battery cell 20 using the filler 30, respectively.

 本実施の形態における太陽電池モジュール200では、図2に示すように、太陽電池セル20の周縁部においてタブ22との間に緩衝材24が設けられる。緩衝材24は、太陽電池セル20の周縁部の第1電極20b及び第2電極20cが設けられていない領域において光電変換部20aとタブ22との間に設けられることが好適である。 In the solar cell module 200 according to the present embodiment, as shown in FIG. 2, a buffer material 24 is provided between the tab 20 and the peripheral edge of the solar cell 20. It is preferable that the buffer material 24 is provided between the photoelectric conversion unit 20 a and the tab 22 in a region where the first electrode 20 b and the second electrode 20 c are not provided in the peripheral portion of the solar battery cell 20.

 緩衝材24は、太陽電池セル20の周縁部においてタブ22が太陽電池セル20に接触することによって太陽電池セル20に加わる力を緩衝させるために設けられる。したがって、緩衝材24は、太陽電池セル20の光電変換部20aよりも硬度が低い、すなわち光電変換部20aよりも柔らかい材質で構成することが好ましい。 The buffer material 24 is provided in order to buffer the force applied to the solar battery cell 20 when the tab 22 contacts the solar battery cell 20 at the peripheral edge of the solar battery cell 20. Therefore, it is preferable that the buffer material 24 is made of a material having a hardness lower than that of the photoelectric conversion unit 20a of the solar battery cell 20, that is, softer than the photoelectric conversion unit 20a.

 緩衝材24は、エポキシ樹脂やアクリル樹脂、ウレタン樹脂等の樹脂材とすることが好適である。例えば、第1電極20bや第2電極20cとタブ22とを接着するために用いられる接着層を緩衝材24として流用してもよい。 The buffer material 24 is preferably a resin material such as an epoxy resin, an acrylic resin, or a urethane resin. For example, an adhesive layer used for adhering the first electrode 20 b or the second electrode 20 c and the tab 22 may be used as the buffer material 24.

 緩衝材24の厚さは、5μm以上100μm以下とすることが好適である。このような膜厚とすることによって、太陽電池セル20がタブ22から受ける圧力を適切に緩和することができる。 The thickness of the buffer material 24 is preferably 5 μm or more and 100 μm or less. By setting it as such a film thickness, the pressure which the photovoltaic cell 20 receives from the tab 22 can be relieve | moderated appropriately.

 緩衝材24は、太陽電池セル20の主面(受光面及び裏面)のタブ22で被われる領域からはみ出さないように設けることが好適である。緩衝材24をタブ22からはみ出さないように設けることによって、緩衝材24によって光電変換部20aに入射する光が遮られることを防ぐことができ、太陽電池セル20における発電効率の低下を抑制することができる。なお、緩衝材24がタブ22で被われる領域からはみ出して設けられる場合には、太陽電池セル20において光電変換に利用される波長帯域の光を透過する透明な材料とすることが好適である。これにより、緩衝材24によって光電変換部20aに入射する光が遮蔽されることを防ぐことができる。また、裏面からの光の入射がない場合には、裏面側の緩衝材24はタブ22で被われる領域からはみ出してもよい。 The buffer material 24 is preferably provided so as not to protrude from the region covered with the tab 22 of the main surface (light receiving surface and back surface) of the solar battery cell 20. By providing the buffer material 24 so as not to protrude from the tab 22, it is possible to prevent the light incident on the photoelectric conversion unit 20 a from being blocked by the buffer material 24, and to suppress a decrease in power generation efficiency in the solar battery cell 20. be able to. When the buffer material 24 is provided so as to protrude from the region covered with the tab 22, it is preferable to use a transparent material that transmits light in a wavelength band used for photoelectric conversion in the solar battery cell 20. Thereby, it can prevent that the light which injects into the photoelectric conversion part 20a by the buffer material 24 is shielded. In addition, when there is no light incident from the back surface, the buffer material 24 on the back surface side may protrude from the region covered with the tab 22.

 タブ22の幅方向(延設方向に直交する方向)の全体に亘って緩衝材24を配置してもよいし、タブ22の幅方向の一部のみに緩衝材24を配置してもよい。タブ22の幅全体に亘って緩衝材24を設けることによって、タブ22の幅方向のいずれの箇所においてもタブ22が太陽電池セル20に直接接することを防ぐことができ、タブ22から太陽電池セル20に加わる力を確実に緩和させることができる。一方、タブ22の幅方向の一部のみに緩衝材24を設けた場合、緩衝材24の材料の使用量を低減することができる。 The cushioning material 24 may be disposed over the entire width direction of the tab 22 (direction perpendicular to the extending direction), or the cushioning material 24 may be disposed only in a part of the tab 22 in the width direction. By providing the buffer material 24 over the entire width of the tab 22, the tab 22 can be prevented from coming into direct contact with the solar battery cell 20 at any location in the width direction of the tab 22. The force applied to 20 can be reliably relaxed. On the other hand, when the buffer material 24 is provided only in a part of the tab 22 in the width direction, the amount of the material used for the buffer material 24 can be reduced.

 緩衝材24は、図3に示すように、太陽電池セル20の周縁部においてタブ22によって被われる側の面から太陽電池セル20の側面を通って太陽電池セル20の反対側の主面まで端部を被うように設けられてもよい。ただし、図2に示すように、太陽電池セル20の周縁部におけるタブ22によって被われる主面側から端部側面に亘って緩衝材24を設け、緩衝材24が設けられた領域に対向する太陽電池セル20の反対側の主面の領域には設けられていないことが好適である。 As shown in FIG. 3, the cushioning material 24 extends from the surface covered by the tab 22 at the peripheral edge of the solar cell 20 to the main surface on the opposite side of the solar cell 20 through the side surface of the solar cell 20. It may be provided so as to cover the part. However, as shown in FIG. 2, the cushioning material 24 is provided from the main surface side covered by the tab 22 at the peripheral edge portion of the solar battery cell 20 to the end side surface, and the sun facing the region where the cushioning material 24 is provided. It is preferable that it is not provided in the region of the main surface on the opposite side of the battery cell 20.

 図2のように緩衝材24を設けることによって、緩衝材24の材料の使用量を低減することができる。タブ22によって被われる領域が実質的にタブ22と太陽電池セル20とが接触する可能性がある領域である。したがって、少なくともその領域に緩衝材24を設けることによって実質的にタブ22が太陽電池セル20に直接接触することを避けることができる。その結果、タブ22から太陽電池セル20に加わる力を緩衝させる効果は維持され、太陽電池セル20の破損等を防止することができる。 As shown in FIG. 2, by providing the buffer material 24, the amount of the material used for the buffer material 24 can be reduced. An area covered by the tab 22 is an area where the tab 22 and the solar battery cell 20 may be in contact with each other. Therefore, it is possible to substantially avoid the tab 22 from coming into direct contact with the solar battery cell 20 by providing the buffer material 24 at least in the region. As a result, the effect of buffering the force applied to the solar battery cell 20 from the tab 22 is maintained, and damage to the solar battery cell 20 can be prevented.

 図2及び図3に示すように、第1電極20b(又は第2電極20c)から離れた位置から緩衝材24を設けてもよいし、図4及び図5に示すように、第1電極20b(又は第2電極20c)に接する位置から緩衝材24を設けてもよい。 As shown in FIGS. 2 and 3, the buffer material 24 may be provided from a position away from the first electrode 20b (or the second electrode 20c), or as shown in FIGS. 4 and 5, the first electrode 20b. The buffer material 24 may be provided from a position in contact with (or the second electrode 20c).

 第1電極20b(又は第2電極20c)から離れた位置から緩衝材24を設けることによって、緩衝材24の材料の使用量を低減することができる。一方、第1電極20b(又は第2電極20c)に接する位置から緩衝材24を設けることによって、第1電極20b(又は第2電極20c)に接する位置から端部の全域に亘って確実に太陽電池セル20を保護することができる。 By providing the cushioning material 24 from a position away from the first electrode 20b (or the second electrode 20c), the amount of material used for the cushioning material 24 can be reduced. On the other hand, by providing the buffer material 24 from the position in contact with the first electrode 20b (or the second electrode 20c), the sun is surely spread from the position in contact with the first electrode 20b (or the second electrode 20c) to the entire end portion. The battery cell 20 can be protected.

 緩衝材24は、図2~図5に示すように太陽電池セル20の端部の形状に沿った形状としてもよいが、図6及び図7に示すように、フィレット形状を有するものとしてもよい。ここで、フィレット形状とは、丸みを帯びた形状のことを示し、本実施の形態では太陽電池セル20の主面(受光面又は裏面)と端面とが形成する隅の曲率よりも大きな曲率を有する形状のことを意味する。 The buffer material 24 may have a shape along the shape of the end portion of the solar battery cell 20 as shown in FIGS. 2 to 5, or may have a fillet shape as shown in FIGS. . Here, the fillet shape indicates a rounded shape. In the present embodiment, the fillet shape has a curvature larger than the curvature of the corner formed by the main surface (light receiving surface or back surface) and the end surface of the solar battery cell 20. It means that it has a shape.

 このように、緩衝材24をフィレット形状とすることによって、タブ22は緩衝材24とより広い領域で接触することになり、緩衝材24を介してタブ22から太陽電池セル20へと伝わる圧力をより広範囲に分散させることができる。したがって、太陽電池セル20をより確実に保護することができる。 Thus, by making the cushioning material 24 into a fillet shape, the tab 22 comes into contact with the cushioning material 24 in a wider area, and the pressure transmitted from the tab 22 to the solar battery cell 20 via the cushioning material 24 is increased. It can be dispersed more widely. Therefore, the solar battery cell 20 can be more reliably protected.

<太陽電池モジュールの形成方法>
 以下、太陽電池モジュール200の形成方法について説明する。太陽電池モジュール200では、太陽電池セル20は従来の形成方法を適用して形成することができるので、特徴部分であるタブ22及び緩衝材24の形成方法について説明する。
<Method for forming solar cell module>
Hereinafter, a method for forming the solar cell module 200 will be described. In the solar battery module 200, the solar battery cell 20 can be formed by applying a conventional forming method, and therefore, the forming method of the tab 22 and the buffer material 24 which are characteristic parts will be described.

 図8(a)に示すように、太陽電池セル20に第1電極20b及び第2電極20cを形成後、タブ22を形成する前に樹脂等の緩衝材24となる材料を緩衝材24が形成される領域に塗布する。その後、図8(b)に示すように、第1電極20b及び第2電極20cのバスバー上に接着層となる導電性接着フィルムを配し、タブ22をバスバーに接着する。そして、図8(c)に示すように、第1保護部材26、第2保護部材28及び充填材30により封止する。 As shown in FIG. 8A, after the first electrode 20b and the second electrode 20c are formed on the solar battery cell 20, before the tab 22 is formed, the buffer material 24 is formed of a material that becomes the buffer material 24 such as a resin. Apply to the area to be applied. Thereafter, as shown in FIG. 8B, a conductive adhesive film serving as an adhesive layer is disposed on the bus bar of the first electrode 20b and the second electrode 20c, and the tab 22 is bonded to the bus bar. And as shown in FIG.8 (c), it seals with the 1st protection member 26, the 2nd protection member 28, and the filler 30. FIG.

 図9(a)に示すように、第1電極20b及び第2電極20c上にタブ22を接着する接着層としての樹脂ペースト32を配し、図9(b)に示すように、タブ22を第1電極20b及び第2電極20cに圧着する際に太陽電池セル20の周縁部へ樹脂ペースト32をはみ出させ、その部分を緩衝材24としてもよい。樹脂ペースト32は導電材料を含まない絶縁性の接着層であっても良い。この場合には、タブ22を第1電極20b及び第2電極20cに圧着する際に第1電極20b及び第2電極20cの側面へ樹脂ペースト32をはみ出させる。これによって、タブ22は、第1電極20b及び第2電極20cと直接接触し、電気的に接続されている。そして、図9(c)に示すように、第1保護部材26、第2保護部材28及び充填材30により封止する。 As shown in FIG. 9A, a resin paste 32 as an adhesive layer for adhering the tab 22 is disposed on the first electrode 20b and the second electrode 20c, and as shown in FIG. When press-bonding to the first electrode 20b and the second electrode 20c, the resin paste 32 may protrude from the peripheral portion of the solar battery cell 20 and the portion may be used as the buffer material 24. The resin paste 32 may be an insulating adhesive layer that does not contain a conductive material. In this case, when the tab 22 is pressure-bonded to the first electrode 20b and the second electrode 20c, the resin paste 32 protrudes from the side surfaces of the first electrode 20b and the second electrode 20c. As a result, the tab 22 is in direct contact with and electrically connected to the first electrode 20b and the second electrode 20c. And as shown in FIG.9 (c), it seals with the 1st protection member 26, the 2nd protection member 28, and the filler 30. FIG.

 導電性接着フィルムを使用する場合、図10に示すように、第1電極20b及び第2電極20c上から太陽電池セル20の周縁部へ亘って導電性接着フィルム34を貼付し、タブ22を第1電極20b及び第2電極20c上に圧着する工程としてもよい。この場合、図11に示すように、太陽電池セル20の周縁部における導電性接着フィルム34が緩衝材24として機能する。このとき、最終的な構造において緩衝材24となる導電性接着フィルムが太陽電池セル20の端部から垂れ下がった状態であってもよい。 When the conductive adhesive film is used, as shown in FIG. 10, the conductive adhesive film 34 is pasted from the first electrode 20b and the second electrode 20c to the periphery of the solar battery cell 20, and the tab 22 is attached to the first electrode 20b. It is good also as a process crimped | bonded on the 1st electrode 20b and the 2nd electrode 20c. In this case, as shown in FIG. 11, the conductive adhesive film 34 at the peripheral edge of the solar battery cell 20 functions as the buffer material 24. At this time, the conductive adhesive film to be the buffer material 24 in the final structure may be in a state of hanging from the end of the solar battery cell 20.

 以上のように、本実施の形態の太陽電池モジュール200によれば、緩衝材24を設けることにより、太陽電池セル20の割れ等の発生を抑制し、太陽電池モジュール200の信頼性を向上させることができる。 As described above, according to the solar cell module 200 of the present embodiment, by providing the buffer material 24, the occurrence of cracks and the like of the solar cells 20 is suppressed, and the reliability of the solar cell module 200 is improved. Can do.

 10 太陽電池セル、12 タブ、12a 屈曲部、14 第1電極、16 第2電極、20 太陽電池セル、20a 光電変換部、20b 第1電極、20c 第2電極、22 タブ、22a 屈曲部、24 緩衝材、26 第1保護部材、28 第2保護部材、30 充填材、32 樹脂ペースト、34 導電性接着フィルム、100,200 太陽電池モジュール。 10 solar cell, 12 tab, 12a bent portion, 14 first electrode, 16 second electrode, 20 solar cell, 20a photoelectric conversion portion, 20b first electrode, 20c second electrode, 22 tab, 22a bent portion, 24 Buffer material, 26 1st protective member, 28 2nd protective member, 30 filler, 32 resin paste, 34 conductive adhesive film, 100,200 solar cell module.

Claims (4)

 光電変換部を含む複数の太陽電池セルと、
 前記複数の太陽電池セルを電気的に接続するタブと、
を備え、
 前記太陽電池セルの周縁部において、前記光電変換部と前記タブとの間に前記光電変換部より硬度の低い緩衝材が設けられている、太陽電池モジュール。
A plurality of solar cells including a photoelectric conversion unit;
A tab for electrically connecting the plurality of solar cells;
With
The solar cell module in which the buffer material whose hardness is lower than the said photoelectric conversion part is provided between the said photoelectric conversion part and the said tab in the peripheral part of the said photovoltaic cell.
 請求項1に記載の太陽電池モジュールであって、
 前記太陽電池セルの一方の主面側に前記緩衝材が設けられ、前記太陽電池セルの他方の主面側における前記緩衝材が設けられた領域に対向する領域には前記緩衝材が設けられていない、太陽電池モジュール。
The solar cell module according to claim 1,
The buffer material is provided on one main surface side of the solar battery cell, and the buffer material is provided in a region facing the region provided with the buffer material on the other main surface side of the solar battery cell. Not a solar cell module.
 請求項1又は2に記載の太陽電池モジュールであって、
 前記緩衝材は、前記太陽電池セルに形成された電極上から連続的に設けられている、太陽電池モジュール。
The solar cell module according to claim 1 or 2,
The said buffer material is a solar cell module provided continuously from on the electrode formed in the said photovoltaic cell.
 請求項1~3のいずれか1項に記載の太陽電池モジュールであって、
 前記緩衝材は、フィレット形状を有する、太陽電池モジュール。
The solar cell module according to any one of claims 1 to 3,
The buffer material is a solar cell module having a fillet shape.
PCT/JP2012/057200 2012-03-21 2012-03-21 Solar cell module WO2013140552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057200 WO2013140552A1 (en) 2012-03-21 2012-03-21 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057200 WO2013140552A1 (en) 2012-03-21 2012-03-21 Solar cell module

Publications (1)

Publication Number Publication Date
WO2013140552A1 true WO2013140552A1 (en) 2013-09-26

Family

ID=49222046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057200 WO2013140552A1 (en) 2012-03-21 2012-03-21 Solar cell module

Country Status (1)

Country Link
WO (1) WO2013140552A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175520A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Solar battery module and manufacturing method for the same
WO2014208312A1 (en) * 2013-06-28 2014-12-31 三洋電機株式会社 Solar battery cell module and method of manufacturing same
WO2015064696A1 (en) * 2013-10-30 2015-05-07 京セラ株式会社 Solar cell and solar cell module
WO2020189240A1 (en) * 2019-03-20 2020-09-24 株式会社カネカ Solar battery module and manufacturing method for solar battery module
CN112216752A (en) * 2019-07-09 2021-01-12 苏州阿特斯阳光电力科技有限公司 Method for manufacturing photovoltaic module
JP2021111736A (en) * 2020-01-15 2021-08-02 株式会社カネカ Solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293671A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Solar cell device
JPH11186572A (en) * 1997-12-22 1999-07-09 Canon Inc Photovoltaic element module
JP2003069055A (en) * 2001-06-13 2003-03-07 Sharp Corp Solar cell and method of manufacturing the same
JP2004111952A (en) * 2002-08-29 2004-04-08 Nippon Sheet Glass Co Ltd Laminated glass and its manufacturing method
JP2005129773A (en) * 2003-10-24 2005-05-19 Kyocera Corp Solar cell module and wiring for connecting solar cell elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293671A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Solar cell device
JPH11186572A (en) * 1997-12-22 1999-07-09 Canon Inc Photovoltaic element module
JP2003069055A (en) * 2001-06-13 2003-03-07 Sharp Corp Solar cell and method of manufacturing the same
JP2004111952A (en) * 2002-08-29 2004-04-08 Nippon Sheet Glass Co Ltd Laminated glass and its manufacturing method
JP2005129773A (en) * 2003-10-24 2005-05-19 Kyocera Corp Solar cell module and wiring for connecting solar cell elements

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175520A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Solar battery module and manufacturing method for the same
WO2014208312A1 (en) * 2013-06-28 2014-12-31 三洋電機株式会社 Solar battery cell module and method of manufacturing same
JPWO2014208312A1 (en) * 2013-06-28 2017-02-23 パナソニックIpマネジメント株式会社 Solar cell module and manufacturing method thereof
WO2015064696A1 (en) * 2013-10-30 2015-05-07 京セラ株式会社 Solar cell and solar cell module
JPWO2015064696A1 (en) * 2013-10-30 2017-03-09 京セラ株式会社 Solar cell and solar cell module
US9608140B2 (en) 2013-10-30 2017-03-28 Kyocera Corporation Solar cell and solar cell module
WO2020189240A1 (en) * 2019-03-20 2020-09-24 株式会社カネカ Solar battery module and manufacturing method for solar battery module
JP7471273B2 (en) 2019-03-20 2024-04-19 株式会社カネカ Solar cell module and method for manufacturing the solar cell module
CN112216752A (en) * 2019-07-09 2021-01-12 苏州阿特斯阳光电力科技有限公司 Method for manufacturing photovoltaic module
JP2021111736A (en) * 2020-01-15 2021-08-02 株式会社カネカ Solar cell module
JP7483382B2 (en) 2020-01-15 2024-05-15 株式会社カネカ Solar Cell Module

Similar Documents

Publication Publication Date Title
US10593820B2 (en) Solar cell module and method for manufacturing same
JP4294048B2 (en) Solar cell module
JP5687506B2 (en) Solar cell and solar cell module
JP5874011B2 (en) Solar cell and solar cell module
JPWO2013161069A1 (en) Solar cell module and method for manufacturing solar cell module
JP6624418B2 (en) Solar cell module
JP2008034592A (en) Photovoltaic element and manufacturing method thereof
WO2016157684A1 (en) Solar cell module
WO2013140552A1 (en) Solar cell module
JP6925434B2 (en) Solar cell module
CN103597609B (en) Solar module and manufacture method thereof
JP5999570B2 (en) Solar cell module and method for manufacturing solar cell module
JP6249368B2 (en) Solar cell module and method for manufacturing solar cell module
CN108780822B (en) solar cell module
JP6032572B2 (en) Solar cell module and method for manufacturing solar cell module
JP5906422B2 (en) Solar cell and solar cell module
WO2013161069A1 (en) Solar cell module and method for producing solar cell module
US9853170B2 (en) Solar cell module manufacturing method
WO2013140614A1 (en) Solar cell module
WO2014155415A1 (en) Solar cell module
JPWO2013114555A1 (en) Solar cell module and method for manufacturing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP