WO2013137435A1 - 蛍光体、蛍光体の製造方法および発光装置 - Google Patents
蛍光体、蛍光体の製造方法および発光装置 Download PDFInfo
- Publication number
- WO2013137435A1 WO2013137435A1 PCT/JP2013/057406 JP2013057406W WO2013137435A1 WO 2013137435 A1 WO2013137435 A1 WO 2013137435A1 JP 2013057406 W JP2013057406 W JP 2013057406W WO 2013137435 A1 WO2013137435 A1 WO 2013137435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- light
- light emitting
- emitting device
- raw material
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 240
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000002245 particle Substances 0.000 claims abstract description 71
- 239000000203 mixture Substances 0.000 claims abstract description 53
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 13
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims description 59
- 239000002994 raw material Substances 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000000034 method Methods 0.000 description 26
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000011261 inert gas Substances 0.000 description 11
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000006750 UV protection Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
Definitions
- Embodiments of the present invention relate to a phosphor that emits red light, a method for manufacturing the phosphor, and a light-emitting device.
- the phosphor powder is used, for example, in a light-emitting device such as a light-emitting diode (LED).
- the light emitting device includes, for example, a semiconductor light emitting element that is arranged on a substrate and emits light of a predetermined color, and a phosphor that emits visible light when excited by light such as ultraviolet light and blue light emitted from the semiconductor light emitting element.
- the semiconductor light emitting element of the light emitting device for example, GaN, InGaN, AlGaN, InGaAlP or the like is used.
- the phosphor of the phosphor powder include a blue phosphor, a green phosphor, and a yellow phosphor that are excited by light emitted from the semiconductor light emitting element and emit blue light, green light, yellow light, and red light, respectively.
- a phosphor, a red phosphor or the like is used.
- the light emitting device can adjust the color of the emitted light by including various phosphor powders such as a green phosphor in the sealing resin. That is, by using a combination of a semiconductor light emitting element and a phosphor powder that absorbs light emitted from the semiconductor light emitting element and emits light in a predetermined wavelength region, the light emitted from the semiconductor light emitting element and the phosphor powder are used. It becomes possible to emit light in the visible light region and white light by the action of the light emitted from.
- a phosphor a phosphor having a europium activated sialon (Si—Al—O—N) structure containing strontium (Sr sialon phosphor) is known.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a phosphor having a Sr sialon structure with high luminous efficiency, a method for producing the phosphor, and a light emitting device.
- the luminance of the light emitting device using the Sr sialon phosphor is high if the shape of the particles of the Sr sialon phosphor having a specific composition is made more spherical. It was completed by finding out.
- Wadell's sphericity ( ⁇ ) is known as an index for determining whether or not the particle shape is close to a sphere.
- Sr sialon phosphors usually belong to a low symmetry crystal system called orthorhombic system.
- the shape of the particles of the Sr sialon phosphor generally has a particle shape different from a spherical shape, such as a plate shape or a column shape.
- the particle shape was 0.55 or less when evaluated by Wadell's sphericity ( ⁇ ), and was a shape far from the sphere.
- a light emitting device comprising a combination of a semiconductor light emitting element and a phosphor
- light emitted from the phosphor that has emitted light after the light emitted from the semiconductor light emitting element is reflected on the phosphor surface or absorbed by the phosphor.
- Is reflected on the surface of another phosphor and light is extracted to the outside while repeating multiple reflections.
- light energy loss occurs.
- a spherical particle having a small surface area would be suitable as the particle shape of the phosphor.
- the present inventors sought to spheroidize the particle shape of the Sr sialon phosphor. As a result, it has been found that the sphericity of the phosphor particles can be improved if the process conditions for producing the phosphor are specified conditions. Then, it has been found that the luminance level is greatly improved according to the light emitting device using the phosphor having improved sphericity.
- the phosphor of the embodiment solves the above-described problems, and the following general formula (1) [Chemical 1] General formula: (Sr 1-x , Eu x ) ⁇ Si ⁇ Al ⁇ O ⁇ N ⁇ (1) (Wherein x is 0 ⁇ x ⁇ 1, ⁇ is 0 ⁇ ⁇ 3, and ⁇ , ⁇ , ⁇ , and ⁇ are values converted when ⁇ is 2, 5 ⁇ ⁇ ⁇ 9, 1 ⁇ ⁇ ⁇ 5, 0 ⁇ ⁇ ⁇ 1.5, 10 ⁇ ⁇ ⁇ 20)
- a phosphor comprising a europium-activated sialon crystal having a basic composition represented by the formula: wherein the phosphor has a sphericity of particles of 0.60 or more, and ultraviolet light, purple light or blue light. It emits red light when excited by.
- the phosphor manufacturing method of the embodiment solves the above-described problems, and is a phosphor manufacturing method for manufacturing the phosphor, in which a phosphor raw material mixture that is a raw material of the phosphor is ZrO. includes 2 and at least one compound of HfO 2 0.1 ⁇ 5 wt%, the of the phosphor powder obtained by firing the raw material mixture of the phosphor, in part by integrating sequentially from smaller particles particle size It has the classification process which removes a certain small particle part in the range of 20 mass% or less of the said fluorescent substance powder by classification.
- the light-emitting device of the embodiment solves the above-described problem.
- a substrate, a semiconductor light-emitting element that is disposed on the substrate and emits ultraviolet light, violet light, or blue light, and the semiconductor light-emitting element A phosphor that is formed so as to cover a light emitting surface and includes a phosphor that emits visible light when excited by light emitted from the semiconductor light emitting element, and the phosphor is any one of claims 1 to 5.
- the phosphor of the term is included.
- the Sr sialon structure phosphor and the light emitting device of the present invention have high luminous efficiency.
- the method for producing a phosphor of the present invention can efficiently produce a phosphor having a Sr sialon structure and a light emitting device with high luminous efficiency.
- the phosphor, the method for producing the phosphor, and the light emitting device of the embodiment will be described.
- the phosphor of the embodiment is a red phosphor that emits red light when excited by ultraviolet light, violet light, or blue light.
- the red phosphor of the present invention has the following general formula (1) [Chemical 2] General formula: (Sr 1-x , Eu x ) ⁇ Si ⁇ Al ⁇ O ⁇ N ⁇ (1) (Wherein x is 0 ⁇ x ⁇ 1, ⁇ is 0 ⁇ ⁇ 3, and ⁇ , ⁇ , ⁇ , and ⁇ are values converted when ⁇ is 2, 5 ⁇ ⁇ ⁇ 9, 1 ⁇ ⁇ ⁇ 5, 0 ⁇ ⁇ ⁇ 1.5, 10 ⁇ ⁇ ⁇ 20) It is the fluorescent substance which consists of a europium activated sialon crystal
- crystallization which has the basic composition represented by these.
- the phosphor of the present invention emits red light when excited by ultraviolet light, violet light, or blue light.
- the phosphor emitting red light is also referred to as “Sr sialon red phosphor”.
- the phosphor of the present invention has a sphericity of particles of 0.60 or more.
- the europium activated sialon crystal having the basic composition represented by the general formula (1) is an orthorhombic single crystal.
- the Sr sialon red phosphor a crystal composed of one europium activated sialon crystal having the basic composition represented by the general formula (1), or two or more of these europium activated sialon crystals are aggregated. This is an aggregate of crystal bodies.
- Sr sialon red phosphor takes the form of single crystal powder.
- the Sr sialon red phosphor powder has an average particle size of usually 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 80 ⁇ m, more preferably 8 ⁇ m to 80 ⁇ m, and more preferably 8 ⁇ m to 40 ⁇ m.
- the average particle diameter is a value measured by the Coulter counter method, it means the median D 50 of the cumulative volume distribution.
- the shape of the powder particles is usually different from a spherical shape such as a plate shape or a column shape.
- the Sr sialon red phosphor is an aggregate of crystals obtained by aggregating two or more of the europium activated sialon crystals
- the Sr sialon red phosphor is separated for each europium activated sialon crystal by crushing. It is possible.
- x is a number that satisfies 0 ⁇ x ⁇ 1, preferably 0.025 ⁇ x ⁇ 0.5, and more preferably 0.25 ⁇ x ⁇ 0.5.
- the fired body obtained in the firing step is not a phosphor, and when x is 1, the luminous efficiency of the Sr sialon red phosphor is lowered.
- x is preferably a number satisfying 0.025 ⁇ x ⁇ 0.5, and more preferably a number satisfying 0.25 ⁇ x ⁇ 0.5, even if 0 ⁇ x ⁇ 1.
- the total subscript (1-x) ⁇ of Sr is a number satisfying 0 ⁇ (1-x) ⁇ ⁇ 3.
- the overall subscript x ⁇ of Eu is a number satisfying 0 ⁇ x ⁇ ⁇ 3. That is, in the general formula (1), the total subscripts of Sr and Eu are numbers exceeding 0 and less than 3, respectively.
- the total amount of Sr and Eu is represented by ⁇ .
- ⁇ the total amount of Sr and Eu.
- ⁇ , ⁇ , ⁇ and ⁇ are numerical values converted when ⁇ is 2.
- ⁇ , which is a subscript of Si is a number satisfying 5 ⁇ ⁇ ⁇ 9 when the numerical value converted when ⁇ is 2.
- ⁇ , which is a subscript of Al is a number satisfying 1 ⁇ ⁇ ⁇ 5 as a numerical value converted when ⁇ is 2.
- ⁇ , which is a subscript of O is a number satisfying 0 ⁇ ⁇ ⁇ 1.5 as a numerical value converted when ⁇ is 2.
- ⁇ , which is a subscript of N is a number satisfying 10 ⁇ ⁇ ⁇ 20 when ⁇ is 2.
- the composition of the phosphor obtained by firing is an orthorhombic system represented by the general formula (1).
- the Sr sialon red phosphor may be different.
- the Sr sialon red phosphor of the present invention has a sphericity of 0.60 or more.
- the sphericity means Wadell's sphericity ( ⁇ ).
- a sphericity of 0.60 or more is preferable because the luminance level of the Sr sialon red phosphor is high.
- the Sr sialon red phosphor is manufactured, for example, by the following method.
- Examples of the Sr sialon red phosphor represented by the general formula (1) include strontium carbonate SrCO 3 , aluminum nitride AlN, silicon nitride Si 3 N 4 , europium oxide Eu 2 O 3 , and oxides of non-Eu rare earth elements.
- the phosphor raw material mixture is prepared by dry-mixing the raw materials, and the phosphor raw material mixture is fired in a nitrogen atmosphere.
- the phosphor raw material mixture includes a high melting point oxide such as ZrO 2 and HfO 2 .
- the phosphor raw material mixture contains 0.1% of at least one compound of ZrO 2 and HfO 2 when the phosphor raw material mixture containing at least one compound of ZrO 2 and HfO 2 is 100% by mass. To 5% by mass, preferably 0.3 to 4% by mass, more preferably 0.3 to 3% by mass.
- the total amount of both is set within the range of the above blending amount.
- the phosphor raw material mixture contains at least one compound of ZrO 2 and HfO 2 because the sphericity of the red phosphor powder is increased.
- the blending amount of at least one compound of ZrO 2 and HfO 2 exceeds 5% by mass, the luminance of the phosphor tends to be lowered.
- ZrO 2 and HfO 2 are preferably powders.
- the phosphor raw material mixture may contain, as a flux agent, an alkali metal or alkaline earth metal fluoride such as potassium fluoride which is a reaction accelerator, strontium chloride SrCl 2 or the like.
- an alkali metal or alkaline earth metal fluoride such as potassium fluoride which is a reaction accelerator, strontium chloride SrCl 2 or the like.
- Fluorescent material mixture is filled in a refractory crucible.
- a refractory crucible for example, a boron nitride crucible, a carbon crucible or the like is used.
- the phosphor raw material mixture filled in the refractory crucible is fired.
- the baking apparatus an apparatus is used in which the composition and pressure of the internal baking atmosphere in which the refractory crucible is arranged, the baking temperature and the baking time are maintained under predetermined conditions.
- an electric furnace is used as such a baking apparatus.
- An inert gas is used as the firing atmosphere.
- the inert gas for example, N 2 gas, Ar gas, a mixed gas of N 2 and H 2 or the like is used.
- N 2 in the firing atmosphere has a function of eliminating an appropriate amount of oxygen O from the phosphor raw material mixture when the phosphor powder is fired from the phosphor raw material mixture.
- Ar in the firing atmosphere has an action of not supplying excess oxygen O to the phosphor raw material mixture when the phosphor powder is fired from the phosphor raw material mixture.
- H 2 in the firing atmosphere acts as a reducing agent when the phosphor powder is fired from the phosphor raw material mixture, and more oxygen O is lost from the phosphor raw material mixture than N 2 .
- the firing time can be shortened compared to the case where H 2 is not contained in the inert gas.
- the content of H 2 in the inert gas is too large, the composition of the obtained phosphor powder tends to be different from the Sr sialon red phosphor represented by the general formula (1). There is a possibility that the emission intensity of the light becomes weak.
- N 2: H 2 Inert gas, if a mixed gas of N 2 gas or N 2 and H 2, the molar ratio of N 2 and H 2 in the inert gas, N 2: H 2 is usually 10: 0 To 1: 9, preferably 8: 2 to 2: 8, more preferably 6: 4 to 4: 6.
- the molar ratio of N 2 to H 2 in the inert gas is within the above range, that is, usually 10: 0 to 1: 9, a high-quality single crystal with few crystal structure defects in a short time firing
- the phosphor powder can be obtained.
- the molar ratio of N 2 and H 2 in the inert gas, the N 2 and H 2 which is continuously fed into the chamber of the calciner, the ratio of the flow rate of N 2 and H 2 are in the ratio
- the above ratio that is, usually 10: 0 to 1: 9, can be obtained by continuously supplying the mixed gas and exhausting the mixed gas in the chamber.
- An inert gas that is a firing atmosphere is preferably distributed so as to form an air flow in a chamber of a firing apparatus because firing is performed uniformly.
- the pressure of the inert gas that is the firing atmosphere is usually 0.1 MPa (approximately 1 atm) to 1.0 MPa (approximately 10 atm), preferably 0.4 MPa to 0.8 MPa.
- the composition of the phosphor powder obtained after firing is represented by the general formula (1) as compared with the phosphor raw material mixture charged in the crucible before firing. It is easy to differ from a red phosphor, and for this reason, the emission intensity of the phosphor powder may be weakened.
- the firing conditions are not particularly changed even when the pressure is 1.0 MPa or less, which is not preferable because energy is wasted.
- the firing temperature is usually 1400 ° C to 2000 ° C, preferably 1750 ° C to 1950 ° C, more preferably 1800 ° C to 1900 ° C.
- the firing temperature is in the range of 1400 ° C. to 2000 ° C., a high-quality single crystal phosphor powder with few crystal structure defects can be obtained by firing in a short time.
- the phosphor powder obtained may be excited by ultraviolet light, violet light or blue light, and the color of the emitted light may not be a desired color. That is, when it is desired to manufacture the Sr sialon red phosphor represented by the general formula (1), there is a possibility that the color of light emitted by being excited by ultraviolet light, violet light, or blue light becomes a color other than red. is there.
- the firing time is usually 0.5 hours to 20 hours, preferably 1 hour to 10 hours, more preferably 1 hour to 5 hours, more preferably 1.5 hours to 2.5 hours.
- the composition of the obtained phosphor powder tends to be different from that of the Sr sialon red phosphor represented by the general formula (1). There exists a possibility that the emitted light intensity of powder may become weak.
- the firing time is preferably a short time within a range of 0.5 to 20 hours when the firing temperature is high, and a long time within a range of 0.5 to 20 hours when the firing temperature is low. It is preferable that
- a fired body made of phosphor powder is generated.
- the fired body is usually in the form of a weak and solid lump.
- a phosphor powder is obtained.
- the phosphor powder obtained by crushing becomes a powder of Sr sialon red phosphor represented by the general formula (1).
- the Sr sialon red phosphor obtained through the process as described above has a plate shape or columnar shape, and is different from a spherical shape.
- the present inventors greatly affect the particle shape by adding a small amount of a high melting point oxide such as ZrO 2 or HfO 2 to the phosphor raw material mixture. I found out.
- the long axis of the columnar particles of the Sr sialon red phosphor is shortened, resulting in a more spherical shape such as a cubic shape. I found it.
- the Sr sialon red phosphor is improved in the Wadell sphericity of particles from about 0.4 to 0.5 to about 0.5 to 0.55.
- the Wadell sphericity ( ⁇ ) is obtained by the following method.
- the particle size distribution of the powdered phosphor is measured by the Coulter counter method.
- Ni is the number frequency at a certain particle size Di.
- the Coulter counter method is a method of defining the particle size from the voltage change according to the volume of the particle
- the particle size Di is the diameter of a spherical particle having the same volume as the actual particle defined by the voltage change.
- the specific surface area (S) of the powder phosphor is calculated using the number frequency Ni and the particle size Di.
- the specific surface area is a value obtained by dividing the surface area of the powder by its weight, and is defined as the surface area per unit weight.
- the weight of the particle having the particle diameter Di is (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ (where ⁇ is the density of the powder).
- the weight of the powder is represented by the following formula (A2) in which this weight is added to each particle size. [Equation 2] ⁇ ⁇ (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ (A2) Further, the surface area of the particles having the particle diameter Di is 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni.
- the specific surface area (S) of the powder phosphor is represented by the following formula (A3).
- the Wadell sphericity ( ⁇ ) can be obtained by the following formula (A5) by comparing the specific surface area calculated from the particle size distribution with the specific surface area calculated from the particle diameter of the aeration method.
- the particle size of the particle size distribution is usually expressed as a particle size range.
- the particle size Di is set to an intermediate value of the particle size range, and the particle size range is set to every 0.2 ⁇ m in order to improve accuracy.
- the particle size distribution is plotted on log-normal probability paper, it can be approximated by two straight lines. Therefore, the number frequency data for every 0.2 ⁇ m can be easily obtained from the two normal probability distributions.
- the Wadell sphericity of the phosphor powder is improved to 0.60 or more by performing a classification step of classifying and removing these small particles.
- a small particle portion which is a portion integrated in order from a particle having a small particle diameter, among the phosphor powders obtained by firing the phosphor raw material mixture is classified into 20% by mass of the phosphor powder. It is the process of removing in the following ranges.
- a classification method for example, a method using a mesh or a method in which a phosphor is dispersed and left in water and a small particle is removed from a sedimentation difference in particle diameter can be used.
- the amount of small particles removed by such classification is 20% by mass or less with respect to the amount of phosphor before classification.
- Table 1 shows an example of the relationship between the change in the sphericity of the phosphor powder and the luminance of the light emitting device of the present invention.
- a phosphor having a composition of Sr 1.6 Eu 0.4 Si 7 Al 3 ON 13 was used as the phosphor.
- Table 1 shows that there is a correlation between the sphericity and the light emission luminance. And it turns out that the brightness
- the light emitting device is a light emitting device using the Sr sialon red phosphor represented by the general formula (1).
- the light-emitting device is formed on a substrate, a semiconductor light-emitting element that is disposed on the substrate, emits ultraviolet light, violet light, or blue light, and covers a light-emitting surface of the semiconductor light-emitting element.
- a light emitting unit including a phosphor that emits visible light when excited by light emitted from the light emitting element, and the phosphor is a light emitting device including a Sr sialon red phosphor represented by the general formula (1). As a result, the light emitting device emits red light.
- the light emitting device includes a green phosphor such as a blue phosphor and an Sr sialon green phosphor having an Sr sialon structure in addition to the Sr sialon red phosphor in the light emitting portion
- the phosphors of the respective colors A white light emitting device that emits white light from the emitting surface of the light emitting device by mixing light of each color such as red light, blue light, and green light emitted from the light emitting device.
- the light emitting device may include a Sr sialon red phosphor and a Sr sialon green phosphor represented by the general formula (1) as the phosphor.
- a Sr sialon red phosphor and Sr sialon green phosphor represented by the general formula (1) as the phosphor.
- substrate for example, ceramics such as alumina and aluminum nitride (AlN), glass epoxy resin, and the like are used. It is preferable that the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
- AlN aluminum nitride
- the substrate is an alumina plate or an aluminum nitride plate because the thermal conductivity is high and the temperature rise of the LED light source can be suppressed.
- the semiconductor light emitting element is disposed on the substrate.
- a semiconductor light emitting element that emits ultraviolet light, violet light, or blue light is used.
- ultraviolet light, violet light or blue light means light having a peak wavelength in the wavelength range of ultraviolet light, violet light or blue light.
- the ultraviolet light, violet light, or blue light is preferably light having a peak wavelength in the range of 370 nm to 470 nm.
- Examples of the semiconductor light emitting device that emits ultraviolet light, violet light, or blue light include ultraviolet light emitting diodes, violet light emitting diodes, blue light emitting diodes, ultraviolet laser diodes, purple laser diodes, and blue laser diodes.
- the semiconductor light emitting element is a laser diode
- the peak wavelength means a peak oscillation wavelength.
- the light emitting part includes a phosphor that is excited by ultraviolet light, violet light, or blue light, which is emitted light from the semiconductor light emitting element, and emits visible light in the transparent resin cured product, and the light emitting surface of the semiconductor light emitting element It is formed so that it may coat
- the phosphor used in the light emitting part includes at least the above Sr sialon red phosphor.
- the phosphor may contain Sr sialon green phosphor.
- the phosphor used in the light emitting unit may include the above Sr sialon red phosphor and a phosphor other than the Sr sialon red phosphor.
- a phosphor other than the Sr sialon red phosphor for example, a red phosphor, a blue phosphor, a green phosphor, a yellow phosphor, a purple phosphor, an orange phosphor, and the like can be used.
- the phosphor a powdery one is usually used.
- the phosphor is contained in the cured transparent resin. Usually, the phosphor is dispersed in a cured transparent resin.
- the transparent resin cured product used for the light emitting part is obtained by curing a transparent resin, that is, a highly transparent resin.
- a transparent resin for example, a silicone resin or an epoxy resin is used. Silicone resins are preferred because they have higher UV resistance than epoxy resins. Among silicone resins, dimethyl silicone resin is more preferable because of its high UV resistance.
- the light emitting part is preferably composed of 20 to 1000 parts by mass of the transparent resin cured product with respect to 100 parts by mass of the phosphor. When the ratio of the transparent resin cured product to the phosphor is within this range, the light emission intensity of the light emitting part is high.
- the film thickness of the light emitting part is usually 80 ⁇ m or more and 800 ⁇ m or less, preferably 150 ⁇ m or more and 600 ⁇ m or less.
- the film thickness of the light emitting portion is not less than 80 ⁇ m and not more than 800 ⁇ m, practical brightness can be ensured with a small amount of leakage of ultraviolet light, violet light, or blue light emitted from the semiconductor light emitting element.
- the film thickness of the light emitting part is 150 ⁇ m or more and 600 ⁇ m or less, light emitted from the light emitting part can be brightened.
- the light emitting unit first mixes a transparent resin and a phosphor to prepare a phosphor slurry in which the phosphor is dispersed in the transparent resin, and then applies the phosphor slurry to the semiconductor light emitting device and the inner surface of the globe. It is obtained by curing.
- the light emitting portion When the phosphor slurry is applied to the semiconductor light emitting element, the light emitting portion is in contact with and covered with the semiconductor light emitting element. Further, when the phosphor slurry is applied to the inner surface of the globe, the light emitting portion is formed on the inner surface of the globe while being separated from the semiconductor light emitting element.
- a light emitting device in which the light emitting portion is formed on the inner surface of the globe is referred to as a remote phosphor type LED light emitting device.
- the phosphor slurry can be cured by heating to 100 ° C. to 160 ° C., for example.
- FIG. 1 is an example of an emission spectrum of the light emitting device.
- a violet LED that emits violet light having a peak wavelength of 400 nm is used as a semiconductor light emitting device, and a phosphor has a basic composition represented by Sr 1.6 Eu 0.4 Si 7 Al 3 ON 13. It is an emission spectrum of a red light emitting device at 25 ° C. using only Sr sialon red phosphor.
- the purple LED has a forward voltage drop Vf of 3.190 V and a forward current If of 20 mA.
- the red light emitting device using the Sr sialon red phosphor represented by the general formula (1) as the phosphor has a high emission intensity even when short-wave excitation light such as violet light is used. .
- Example 1 (Production of red phosphor) First, 312 g of SrCO 3 , 162 g of AlN, 432 g of Si 3 N 4 , 93 g of Eu 2 O 3 , and 5 g of ZrO 2 were weighed, and an appropriate amount of a fluxing agent was added thereto, followed by dry mixing to obtain a phosphor raw material A mixture was prepared. Thereafter, the phosphor raw material mixture was filled in a boron nitride crucible. When a boron nitride crucible filled with the phosphor raw material mixture was baked in an electric furnace at 1850 ° C.
- the baked powder after classification was filtered, dried, and then sieved with a nylon mesh having an opening of 45 microns, whereby the baked powder of the present invention was obtained.
- the calcined powder was analyzed, it was a single crystal Sr sialon red phosphor having the composition shown in Table 2.
- a light emitting device was manufactured using the obtained Sr sialon red phosphor.
- Comparative Example 1 is a phosphor produced in the same manner as Example 1 except that ZrO 2 that is a high melting point oxide is not blended in the phosphor raw material mixture and the classification step is not performed. Table 2 shows the measurement results of sphericity and luminous efficiency.
- Example 1 A phosphor was produced in the same manner as in Example 1 except that ZrO 2 which is a high melting point oxide was not blended in the phosphor raw material mixture and the classification step was not performed.
- ZrO 2 which is a high melting point oxide was not blended in the phosphor raw material mixture and the classification step was not performed.
- the sphericity and the light emission efficiency of the light emitting device using the same were measured in the same manner as in Example 1.
- Table 2 shows the measurement results of sphericity and luminous efficiency.
- Examples 2 to 10, Comparative Examples 2 to 10 (Production of red phosphor)
- the blending amount of the high melting point oxides such as ZrO 2 and HfO 2 in the phosphor raw material mixture is changed as shown in Table 2 to obtain a calcined powder having the basic composition shown in Table 2, and the classification process of the calcined powder is shown.
- a red phosphor was prepared in the same manner as in Example 1 except that the process was performed as shown in Example 2 (Examples 2 to 10).
- a phosphor was produced in the same manner as in Examples 2 to 10 except that a high melting point oxide such as ZrO 2 and HfO 2 was not added to the phosphor raw material mixture and no classification step was performed (Comparative Example). 2-10).
- Example 2 shows the measurement results of sphericity and luminous efficiency.
- the luminous efficiencies of Examples 2 to 10 are the same as those of Comparative Examples produced in the same manner except that no high melting point oxide such as ZrO 2 and HfO 2 is blended in the phosphor raw material mixture and no classification step is performed. It is shown as a relative value (%) where the efficiency (lm / W) is 100. Specifically, the luminous efficiencies of Examples 2 to 10 are shown as relative values (%) where the luminous efficiency (lm / W) of Comparative Examples 2 to 10 is 100, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
従来、蛍光体としては、ストロンチウムを含むユーロピウム付活サイアロン(Si-Al-O-N)構造の蛍光体(Srサイアロン蛍光体)が知られている。
本発明は、上記事情に鑑みてなされたものであり、発光効率が高いSrサイアロン構造の蛍光体、蛍光体の製造方法、および発光装置を提供することを目的とする。
[数1]
ψ=(粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積) (A1)
通常、ある体積を持った粒子においては、球形の形状を持った粒子の表面積がもっとも小さい値となる。従ってWadellの球形度(ψ)は通常の粒子では1以下であり、粒子形状が球形に近づくほど1に近づいていく。
しかし、こうした光の反射現象が生じると、光のエネルギーロスが生じる。このため、コンピュータシミュレーション等によれば、蛍光体の粒子形状として、表面積が小さい球形のものが適していると予想されていた。
[化1]
一般式:(Sr1-x,Eux)αSiβAlγOδNω (1)
(式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが2のときに換算した数値が、5≦β≦9、1≦γ≦5、0≦δ≦1.5、10≦ω≦20を満足する数である)
で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体であって、前記蛍光体は、粒子の球形度が0.60以上の値を有し、紫外光、紫色光または青色光で励起されることにより赤色発光することを特徴とする。
本発明の蛍光体の製造方法は、発光効率が高いSrサイアロン構造の蛍光体および発光装置を効率よく製造することができる。
本発明の赤色蛍光体は、下記一般式(1)
[化2]
一般式:(Sr1-x,Eux)αSiβAlγOδNω (1)
(式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが2のときに換算した数値が、5≦β≦9、1≦γ≦5、0≦δ≦1.5、10≦ω≦20を満足する数である)
で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体である。また、本発明の蛍光体は、紫外光、紫色光または青色光で励起されることにより赤色発光する。この赤色発光する蛍光体を、以下、「Srサイアロン赤色蛍光体」ともいう。さらに、本発明の蛍光体は、粒子の球形度が0.60以上である。
一般式(1)で表される基本組成を有するユーロピウム付活サイアロン結晶体は、斜方晶の単結晶である。
一方、Srサイアロン赤色蛍光体は、一般式(1)で表される基本組成を有するユーロピウム付活サイアロン結晶体の1個からなる結晶体、またはこのユーロピウム付活サイアロン結晶体の2個以上が凝集してなる結晶体の集合体である。
このSrサイアロン赤色蛍光体の粉末は、平均粒径が、通常1μm以上100μm以下、好ましくは5μm以上80μm以下、さらに好ましくは8μm以上80μm以下、より好ましくは8μm以上40μm以下である。ここで、平均粒径とは、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。その粉末粒子の形状は通常板状または柱状といった球形とは異なるものである。
xが0であると焼成工程で得られる焼成体が蛍光体にならず、xが1であるとSrサイアロン赤色蛍光体の発光効率が低くなる。
このため、xは0<x<1のうちでも、0.025≦x≦0.5を満足する数が好ましく、0.25≦x≦0.5を満足する数がさらに好ましい。
一般式(1)において、Siの添え字であるβは、αが2のときに換算した数値が5≦β≦9を満足する数である。
一般式(1)において、Alの添え字であるγは、αが2のときに換算した数値が1≦γ≦5を満足する数である。
一般式(1)において、Oの添え字であるδは、αが2のときに換算した数値が0≦δ≦1.5を満足する数である。
一般式(1)において、Nの添え字であるωは、αが2のときに換算した数値が10≦ω≦20を満足する数である。
球形度が0.60以上であると、Srサイアロン赤色蛍光体の輝度レベルが高いため好ましい。
一般式(1)で表されるSrサイアロン赤色蛍光体は、たとえば、炭酸ストロンチウムSrCO3、窒化アルミニウムAlN、窒化珪素Si3N4、酸化ユーロピウムEu2O3、および非Eu希土類元素の酸化物等の各原料を乾式混合して蛍光体原料混合物を調製し、この蛍光体原料混合物を窒素雰囲気中で焼成することにより作製することができる。
蛍光体原料混合物が、ZrO2およびHfO2の両方を含むときは、両方の合計量が上記配合量の範囲内になるようにする。
蛍光体原料混合物が、ZrO2およびHfO2の少なくとも1つの化合物を含むと、赤色蛍光体粉末の球形度が高くなるため好ましい。
ZrO2およびHfO2の少なくとも1つの化合物の配合量が、5質量%を超えると、蛍光体の輝度が低下しやすい。ZrO2およびHfO2は、粉末であると好ましい。
焼成雰囲気としては、不活性ガスが用いられる。不活性ガスとしては、たとえば、N2ガス、Arガス、N2とH2との混合ガス等が用いられる。
焼成雰囲気である不活性ガスの圧力は、通常0.1MPa(略1atm)~1.0MPa(略10atm)、好ましくは0.4MPa~0.8MPaである。
焼成温度が1400℃~2000℃の範囲内にあると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
焼成時間は、通常0.5時間~20時間、好ましくは1時間~10時間、さらに好ましくは1時間~5時間、より好ましくは1.5時間~2.5時間である。
これらの個数頻度Niおよび粒径Diを用いて粉末蛍光体の比表面積(S)を計算する。比表面積は粉体の表面積をその重量で割った値であり、単位重量当たりの表面積として定義される。
粒径Di持った粒子の重量は、(4π/3)×(Di/2)3×Ni×ρ(ここでρは粉体の密度である)である。粉体の重量は、この重量を各粒径に対し足し合わせた下記式(A2)で表される。
[数2]
Σ{(4π/3)×(Di/2)3×Ni×ρ} (A2)
また、粒径Di持った粒子の表面積は4π×(Di/2)2×Niである。しかし、実際の粒子形状は球形ではないため、実際の比表面積はWadell球形度(Ψ)で割った値{4π×(Di/2)2×Ni}/Ψを各粒径に対し足し合わせたものとなる。
従って、粉末蛍光体の比表面積(S)は、下記式(A3)で表される。
[数3]
S=[Σ{4π×(Di/2)2×Ni}/Ψ]/[Σ{(4π/3)×(Di/2)3×Ni×ρ}]
=(6/ρ/Ψ)×{Σ(Di2×Ni)}/{Σ(Di3×Ni)} (A3)
実際にはWadell球形度(Ψ)が各粒径に対し少し異なる値になることも考えられるが、粉体全体として球形からのずれとして平均的な値であると解釈することができる。
[数4]
S=6/ρ/d (A4)
[数5]
Ψ=d×{Σ(Di2×Ni)}/{Σ(Di3×Ni)} (A5)
分級工程は、蛍光体原料混合物を焼成して得られた蛍光体粉末のうちの、粒径が小さい粒子から順番に積算した部分である小粒子部分を、分級により前記蛍光体粉末の20質量%以下の範囲で除去する工程である。
分級方法としては、たとえば、メッシュを用いる方法や、水中に蛍光体を分散、静置し、粒子径での沈降差から小粒子を取り除く方法を用いることができる。こうした分級により取り除かれる小粒子の量は、分級前の蛍光体量に対して、20質量%以下である。
発光装置は、上記の一般式(1)で表されるSrサイアロン赤色蛍光体を用いる発光装置である。
具体的には、発光装置は、基板と、この基板上に配置され、紫外光、紫色光または青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、蛍光体は、一般式(1)で表されるSrサイアロン赤色蛍光体を含む発光装置である。これにより、発光装置は赤色光を出射する。
基板としては、たとえば、アルミナ、窒化アルミニウム(AlN)等のセラミックス、ガラスエポキシ樹脂等が用いられる。基板がアルミナ板や窒化アルミニウム板であると、熱伝導性が高く、LED光源の温度上昇を抑制することができるため好ましい。
半導体発光素子は、基板上に配置される。
半導体発光素子としては、紫外光、紫色光または青色光を出射する半導体発光素子が用いられる。ここで、紫外光、紫色光または青色光とは、紫外光、紫色光または青色光の波長域内にピーク波長を有する光を意味する。紫外光、紫色光または青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
発光部は、半導体発光素子からの出射光である紫外光、紫色光または青色光により励起されて可視光を出射する蛍光体を透明樹脂硬化物中に含むものであり、半導体発光素子の発光面を被覆するように形成される。
発光部において、蛍光体は透明樹脂硬化物中に含まれる。通常、蛍光体は透明樹脂硬化物中に分散される。
蛍光体スラリーは、たとえば、100℃~160℃に加熱することにより硬化させることができる。
具体的には、半導体発光素子としてピーク波長が400nmの紫色光を出射する紫色LEDを用いるとともに、蛍光体としてSr1.6Eu0.4Si7Al3ON13で表される基本組成を有するSrサイアロン赤色蛍光体のみを用いた、25℃での赤色発光装置の発光スペクトルである。
なお、紫色LEDは、順方向降下電圧Vfが3.190V、順方向電流Ifが20mAである。
(赤色蛍光体の作製)
はじめに、SrCO3を312g、AlNを162g、Si3N4を432g、Eu2O3を93g、およびZrO2を5g、それぞれ秤量し、これらにフラックス剤を適量加え、乾式混合して蛍光体原料混合物を調製した。その後、この蛍光体原料混合物を窒化ホウ素るつぼに充填した。
蛍光体原料混合物が充填された窒化ホウ素るつぼを、電気炉内で、0.7MPa(略7気圧)の窒素雰囲気中、1850℃で2時間焼成したところ、るつぼ中に焼成粉末の塊が得られた。
この塊を解砕した後、焼成粉末に焼成粉末の質量の10倍量の純水を加えて10分間攪拌し、ろ過して焼成粉末を得た。この焼成粉末の洗浄操作をさらに4回繰り返し、合計5回洗浄した。
<分級工程>
次に、洗浄と同様に焼成粉末の質量の10倍量の純水を加えて10分間攪拌したのち、攪拌を停止し、一定時間放置した後上澄みを小粒子蛍光体とともに排出することにより分級を行った。分級はその操作を3回行った。分級後の焼成粉末をろ過し、乾燥した後、目開き45ミクロンのナイロンメッシュで篩別したところ、本発明の焼成粉末が得られた。
この焼成粉末を分析したところ、表2に示す組成からなる単結晶のSrサイアロン赤色蛍光体であった。
得られたSrサイアロン赤色蛍光体を用いて発光装置を作製した。
得られたSrサイアロン赤色蛍光体について球形度を測定し、このSrサイアロン赤色蛍光体を使用した発光装置の発光効率を測定した。発光効率は、室温(25℃)で測定したものであり、後述する比較例1の室温での発光効率(lm/W)を100とする相対値(%)として示す。
なお、比較例1は、蛍光体原料混合物に高融点酸化物であるZrO2を配合しないとともに分級工程を行わないこと以外は、実施例1と同様にして作製した蛍光体である。
球形度、発光効率の測定結果を表2に示す。
蛍光体原料混合物に高融点酸化物であるZrO2を配合しないとともに分級工程を行わないこと以外は、実施例1と同様にして蛍光体を作製した。
得られた赤色蛍光体に対し、実施例1と同様にして、球形度、それを使用した発光装置の発光効率を測定した。球形度、発光効率の測定結果を表2に示す。
(赤色蛍光体の作製)
蛍光体原料混合物中のZrO2およびHfO2等の高融点酸化物の配合量を表2に示すように変えて、表2に示す基本組成の焼成粉末を得るとともに、焼成粉末の分級工程を表2に示すように行った以外は、実施例1と同様にして、赤色蛍光体を作製した(実施例2~10)。
蛍光体原料混合物にZrO2およびHfO2等の高融点酸化物を配合しないとともに分級工程を行わないこと以外は、実施例2~10の各実施例と同様にして蛍光体を作製した(比較例2~10)。
得られた赤色蛍光体(実施例2~10、比較例2~10)に対し、実施例1と同様にして、球形度、それを使用した発光装置の発光効率を測定した。球形度、発光効率の測定結果を表2に示す。
なお、実施例2~10の発光効率は、蛍光体原料混合物にZrO2およびHfO2等の高融点酸化物を配合しないとともに分級工程を行わないこと以外は、同様にして作製した比較例の発光効率(lm/W)を100とする相対値(%)として示す。
具体的には、実施例2~10の発光効率は、それぞれ、比較例2~10の発光効率(lm/W)を100とする相対値(%)として示す。
Claims (8)
- 下記一般式(1)
[化1]
一般式:(Sr1-x,Eux)αSiβAlγOδNω (1)
(式中、xは0<x<1、αは0<α≦3であり、β、γ、δおよびωはαが2のときに換算した数値が、5≦β≦9、1≦γ≦5、0≦δ≦1.5、10≦ω≦20を満足する数である)
で表される基本組成を有するユーロピウム付活サイアロン結晶体からなる蛍光体であって、
前記蛍光体は、粒子の球形度が0.60以上の値を有し、
紫外光、紫色光または青色光で励起されることにより赤色発光することを特徴とする蛍光体。 - 前記蛍光体は、斜方晶系に属することを特徴とする請求項1に記載の蛍光体。
- 前記紫外光、紫色光または青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることを特徴とする請求項1または2に記載の蛍光体。
- 平均粒径が5μm以上80μm以下であることを特徴とする請求項1~3のいずれか1項に記載の蛍光体。
- 発光ピーク波長が550nm以上650nm以下であることを特徴とする請求項1~4のいずれか1項に記載の蛍光体。
- 請求項1~5のいずれか1項に記載された蛍光体を製造する蛍光体の製造方法であって、
蛍光体の原料である蛍光体原料混合物が、ZrO2およびHfO2の少なくとも1つの化合物を0.1~5質量%含み、
前記蛍光体原料混合物を焼成して得られた蛍光体粉末のうちの、粒径が小さい粒子から順番に積算した部分である小粒子部分を、分級により前記蛍光体粉末の20質量%以下の範囲で除去する分級工程を有することを特徴とする蛍光体の製造方法。 - 基板と、
この基板上に配置され、紫外光、紫色光または青色光を出射する半導体発光素子と、
この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部と、を備え、
前記蛍光体は、請求項1~5のいずれか1項の蛍光体を含むことを特徴とする発光装置。 - 前記半導体発光素子は370nm以上470nm以下の範囲内にピーク波長を有する光を出射する発光ダイオードまたはレーザダイオードであることを特徴とする請求項7に記載の発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147022229A KR20140121432A (ko) | 2012-03-16 | 2013-03-15 | 형광체, 형광체의 제조 방법 및 발광 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-060086 | 2012-03-16 | ||
JP2012060086 | 2012-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137435A1 true WO2013137435A1 (ja) | 2013-09-19 |
Family
ID=49161331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057406 WO2013137435A1 (ja) | 2012-03-16 | 2013-03-15 | 蛍光体、蛍光体の製造方法および発光装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013137435A1 (ja) |
KR (1) | KR20140121432A (ja) |
WO (1) | WO2013137435A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051457A1 (ja) * | 2015-09-24 | 2017-03-30 | 株式会社 東芝 | 蛍光体、その製造方法、およびその蛍光体を用いた発光装置 |
US9890328B2 (en) | 2014-12-12 | 2018-02-13 | General Electric Company | Phosphor compositions and lighting apparatus thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002194347A (ja) * | 2000-12-22 | 2002-07-10 | Toshiba Corp | 蛍光体,その製造方法および発光デバイス |
JP2006052337A (ja) * | 2004-08-12 | 2006-02-23 | Fujikura Ltd | サイアロン蛍光体およびその製造方法 |
WO2007105631A1 (ja) * | 2006-03-10 | 2007-09-20 | Kabushiki Kaisha Toshiba | 蛍光体および発光装置 |
JP2007332324A (ja) * | 2006-06-19 | 2007-12-27 | Denki Kagaku Kogyo Kk | サイアロン蛍光体とその製造方法、およびそれを用いた発光素子 |
JP2010106127A (ja) * | 2008-10-29 | 2010-05-13 | Toshiba Corp | 赤色蛍光体およびそれを用いた発光装置 |
WO2010098141A1 (ja) * | 2009-02-26 | 2010-09-02 | 日亜化学工業株式会社 | 蛍光体及びその製造方法並びにこれを用いた発光装置 |
JP2011184577A (ja) * | 2010-03-09 | 2011-09-22 | Toshiba Corp | 蛍光体、蛍光体の製造方法、発光装置及び発光モジュール |
-
2013
- 2013-03-15 WO PCT/JP2013/057406 patent/WO2013137435A1/ja active Application Filing
- 2013-03-15 KR KR1020147022229A patent/KR20140121432A/ko not_active Ceased
- 2013-03-15 JP JP2014505022A patent/JPWO2013137435A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002194347A (ja) * | 2000-12-22 | 2002-07-10 | Toshiba Corp | 蛍光体,その製造方法および発光デバイス |
JP2006052337A (ja) * | 2004-08-12 | 2006-02-23 | Fujikura Ltd | サイアロン蛍光体およびその製造方法 |
WO2007105631A1 (ja) * | 2006-03-10 | 2007-09-20 | Kabushiki Kaisha Toshiba | 蛍光体および発光装置 |
JP2007332324A (ja) * | 2006-06-19 | 2007-12-27 | Denki Kagaku Kogyo Kk | サイアロン蛍光体とその製造方法、およびそれを用いた発光素子 |
JP2010106127A (ja) * | 2008-10-29 | 2010-05-13 | Toshiba Corp | 赤色蛍光体およびそれを用いた発光装置 |
WO2010098141A1 (ja) * | 2009-02-26 | 2010-09-02 | 日亜化学工業株式会社 | 蛍光体及びその製造方法並びにこれを用いた発光装置 |
JP2011184577A (ja) * | 2010-03-09 | 2011-09-22 | Toshiba Corp | 蛍光体、蛍光体の製造方法、発光装置及び発光モジュール |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9890328B2 (en) | 2014-12-12 | 2018-02-13 | General Electric Company | Phosphor compositions and lighting apparatus thereof |
WO2017051457A1 (ja) * | 2015-09-24 | 2017-03-30 | 株式会社 東芝 | 蛍光体、その製造方法、およびその蛍光体を用いた発光装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013137435A1 (ja) | 2015-08-03 |
KR20140121432A (ko) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI404792B (zh) | A phosphor and a method for manufacturing the same, and a light-emitting device using the same | |
JPWO2015001860A1 (ja) | 蛍光体及び発光装置 | |
KR101476561B1 (ko) | 형광체 및 발광 장치 | |
CN104204134B (zh) | 荧光体、荧光体的制造方法及发光装置 | |
CN107636113B (zh) | 荧光体及其制造方法、以及led灯 | |
JP2010196049A (ja) | 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置 | |
WO2013137435A1 (ja) | 蛍光体、蛍光体の製造方法および発光装置 | |
WO2013137434A1 (ja) | 蛍光体、蛍光体の製造方法および発光装置 | |
JP5702568B2 (ja) | 蛍光体の製造方法および発光装置 | |
JP5955835B2 (ja) | 蛍光体および発光装置 | |
JP6273464B2 (ja) | 赤色蛍光体材料および発光装置 | |
JP5730084B2 (ja) | ユーロピウム付活ストロンチウムサイアロン蛍光体およびその製造方法、ならびに発光装置 | |
JP2020096175A (ja) | 発光装置、照明装置、画像表示装置および窒化物蛍光体 | |
JP5702569B2 (ja) | 蛍光体の製造方法および発光装置 | |
JP6286676B2 (ja) | 赤色蛍光体材料および発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147022229 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014505022 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13761207 Country of ref document: EP Kind code of ref document: A1 |