[go: up one dir, main page]

WO2013137010A1 - Novel bacillus microbes and use of same - Google Patents

Novel bacillus microbes and use of same Download PDF

Info

Publication number
WO2013137010A1
WO2013137010A1 PCT/JP2013/055504 JP2013055504W WO2013137010A1 WO 2013137010 A1 WO2013137010 A1 WO 2013137010A1 JP 2013055504 W JP2013055504 W JP 2013055504W WO 2013137010 A1 WO2013137010 A1 WO 2013137010A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
waste water
water
strain
bacillus
Prior art date
Application number
PCT/JP2013/055504
Other languages
French (fr)
Japanese (ja)
Inventor
世一 大林
良造 栗田
中山 浩二
英夫 橋本
Original Assignee
日之出産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日之出産業株式会社 filed Critical 日之出産業株式会社
Priority to JP2014504790A priority Critical patent/JP6105553B2/en
Publication of WO2013137010A1 publication Critical patent/WO2013137010A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Definitions

  • the present invention relates to a novel Bacillus microorganism and its use, and more specifically, suppresses excess sludge generated by waste water treatment by the activated sludge method, and efficiently treats oil and fat waste water by symbiosis with fungi.
  • the present invention relates to a novel Bacillus microorganism, an aerobic sludge treatment method and a wastewater treatment apparatus using the microorganism, and the like.
  • Typical sewage sludge treatment and disposal status is 9% regeneration rate, 86% intermediate treatment rate, 5% final disposal rate, intermediate treatment is mostly concentrated, dehydrated and incinerated, and much energy is added It will be. Since sludge often contains water with a water content of 60 to 90%, disposal of the treatment involves a large energy cost.
  • Non-Patent Document 1 techniques for sludge volume reduction include a chemical volume reduction method, a physicochemical volume reduction method, a biological volume reduction method and the like.
  • chemical reduction methods include the ozone method of degrading cell walls by the oxidizing power of ozone, the enzyme method of solubilizing cell walls by enzymes such as cellulase, protease and amylase, and the alkali using protein denaturation by alkali There is a law etc.
  • the ozone method has problems such as high initial cost and the enzymatic method has high running cost.
  • biological volume reduction methods include auto-oxidation and food chain methods.
  • other microorganisms are used as an organic energy source in the situation where microorganisms constituting sludge do not supply organic energy from the outside, and they are decomposed into water and carbon dioxide gas with the passage of time.
  • the food chain method is a method of reducing the volume and creating a food chain system of bacteria ⁇ protozoan ⁇ metazoan.
  • the self-oxidation method has problems with installing a volume-saving tank for one week's worth of sludge and running costs such as maintaining the temperature at 60 ° C, and the food chain method uses bacteria, protozoa and metazoans in an open air system. The issue is the accumulation of technical know-how to breed.
  • Patent Document 1 a method of adding a hyperthermic microorganism as in Patent Document 1 or a biological treatment process by aeration in the presence of an aerobic microorganism under alkaline conditions as in Patent Document 2
  • a sludge treatment method is also proposed to be returned to Japan.
  • Patent Document 3 proposes a method of reducing the volume of sludge with a novel microorganism having sludge decomposability that can be grown under conditions of high alkalinity and high temperature. These techniques have high temperature and alkalinity, and the use of alkali agents and neutralizing agents, and high initial cost and running cost in the treatment of non-productivity sludge which use energy to make high temperature every day is a problem Become.
  • the drainage of ice cream for producing drainage with a high oil content, mayonnaise manufacturing plant, and the drainage of a restaurant using these or a shop for producing delicatess has a high oil content as well.
  • these fats or oils are vegetable or animal, it is difficult to treat the waste water with high fat content as it is, and waste water from which fats and oils have been physically and chemically removed in advance is waste water such as activated sludge method It must be sent to the treatment process.
  • the fat and oil containing waste water of 200 to 500 mg / L as N-hexane extract is treated by installing a fat and oil separation tank, and when it exceeds 500 mg / L, a pressurized floatation tank is used. It is desirable to install to remove fats and oils and to process after reducing N-hexane extract.
  • Treatment of fat and oil-containing wastewater involves running costs such as the initial cost of installation of such facilities and the disposal cost of fats and oils that are raised, and there is also an offensive odor for storage in summer, so microbial treatment is eagerly desired There is.
  • Patent Document 4 is an invention of biological wastewater treatment which is easy to use because the range of growth pH of fat utilization yeast is wide and bacterial contamination does not have to be suppressed with a chlorinating agent. There was an issue that took time.
  • the present invention was made from the above point of view, and improved the treatment of waste water, that is, found a microorganism capable of efficiently treating waste water, and using this, it was used to reduce excess sludge in waste water treatment and fats and oils in waste water. It is an object of the present invention to provide a technology that enables the reduction of the
  • the present inventor focused attention on microorganisms belonging to the genus Bacillus that secrete various enzymes, and searched for those that secrete decomposing enzymes effective for treating oil-containing waste water. We have found that wild strains of the genus Bacillus secrete lipids and enzymes that degrade bacterial cell walls. In addition, in order to strengthen the ability to secrete this enzyme, cells were made competent to secrete various enzymes, thereby completing the present invention.
  • the present invention is a novel microorganism belonging to the genus Bacillus, which has at least the ability to degrade cell walls and lipids of bacteria.
  • the present invention is a waste water treatment biocide for preventing excess sludge generation or reducing the volume, which contains the above-mentioned novel microorganism.
  • the present invention is a fat and oil containing waste water treatment viable bacterial composition comprising the above-mentioned novel microorganism and fat and oil utilization yeast.
  • the present invention is a method for reducing excess sludge in a wastewater treatment facility, characterized in that the above-mentioned new microorganisms are added singly or in combination of two or more to the water to be treated in the wastewater treatment facility. is there.
  • the present invention is characterized in that in the solid-liquid separation wastewater treatment method for removing water using a solid-liquid separation membrane, the above-mentioned novel microorganism is caused to act on the solid-liquid separation membrane singly or in combination of two or more kinds. , And a method of suppressing the decrease in flux through the membrane.
  • the present invention includes a treatment tank for storing and treating the water to be treated, an inflow pipe for letting the treatment water flow into the treatment tank, a discharge pipe for discharging the treated water, and aeration for the water to be treated.
  • the novel Bacillus microorganism of the present invention has at least the ability to degrade cell walls and lipids of bacteria, and also includes those having the action of degrading protein and starch, so this is the case in waste water treatment by conventional aerobic biological treatment.
  • decomposition treatment of sludge and fats and oils can be easily performed, so that the amount of excess sludge and waste fat and oil can be reduced.
  • the yeast fat and oil decomposition tank is provided during the wastewater treatment process and used in combination with fat and oil assimilation yeast here, the amount of excess sludge and waste fat and oil can be reduced or eliminated.
  • the novel Bacillus microorganism of the present invention is allowed to act on this solid-liquid separation membrane to prevent a decrease in flux passing through the membrane due to clogging of the membrane. I can do it.
  • the microorganism belonging to the genus Bacillus used in the present invention is at least capable of degrading bacterial cell walls and lipids.
  • the microorganism having such ability can be obtained by screening from the natural world, or by performing transformation by means of genetic engineering based on the microorganism obtained by screening from the natural world.
  • a microorganism isolated from plants, water, food or soil is selected using the degradability of bacterial cell wall and the degradability of lipid as an index. It can be obtained by In addition, these microorganisms are more preferable if they have the ability to degrade protein, starch and the like.
  • the cell wall resolution is to destroy or dissolve all or part of the cell wall. By screening, strains HB-88 and HB-113 were obtained.
  • the microorganism thus obtained may be selected as it is from the resolution of the cell wall of the bacteria and the resolution of the lipids as described above, but for example, it is mutated by the usual method under conditions that grow by about 10% under ultraviolet irradiation. You may do, and then screen.
  • transformation ability is enhanced and donors are used here.
  • a strain may be introduced to have new properties.
  • the Marburg strain and the strain derived therefrom can be purchased from RIKEN, NBRC, ATCC, etc.
  • HB-14 strain was Bacillus subtilis (Bacillus subtilis (Bacillus subtilis)
  • HB-88 strain was Bacillus methylotrophicus (Bacillus methylotrophicus) in 16s DNA gene elucidation ((strain ) Technosurga Lab).
  • the HB-113 strain was determined to be Bacillus subtilis by API 50 CHB.
  • HB-14 and HB-88 selected by the above screening are shown.
  • the DNA analysis was carried out in Nutrient agar medium, and the culture was carried out in aerobic culture at a temperature of 30 ° C. for 40 hours, and used as a test fungus.
  • DNA is extracted with achromopeptidase (Wako Pure Chemical Industries, Ltd.), PCR of PrimeSTAR HS DNA polymerase (Takara Bio Inc.) is used, and BigDye Terminator v3 .1 Using the Cycle Sequence of Cycle Sequencing Kit (Applied Biosystems, CA, USA), the primers used are (PCR amplification: 9F, 1510R, sequence: 9F, 785F, 802R, 1510R), and the sequence is ABI PRISM 3130xl Genetic Analyzer System (Applied) ChromasPro 1.4 (For Biosystems, CA, USA) to determine the base sequence Apollo 2.0 as software for homology search and simplified phylogenetic analysis using Technelysium Pty Ltd., Tewantin, USA), Apollo DB-BA 7.0 as a database (Technosurga Labs Co., Ltd.), International Sequence Database (GenBank / DDBJ / Embl) was
  • novel Bacillus microorganism of the present invention as described above can be used for all wastewater having BOD load in the aerobic wastewater treatment process, but can be preferably used for wastewater from sewage treatment and factories such as food factories.
  • microorganisms (10 7 to 10 8 / ml) cultured in a culture solution in the raw water tank or aeration tank of a wastewater treatment facility ) May be added in an amount of 1 to 1000 ppm, preferably 10 to 300 ppm. The addition of about once to 1 to 3 days is more preferable to continue the effect.
  • the novel Bacillus microorganism of the present invention is preferably used particularly in waste water treatment methods utilizing membrane treatment. That is, since the microorganism of the present invention has the resolution of the cell wall of bacteria as described above, it decomposes the bacteria and the viscous substances that grow in or around the pores of the treated membrane used in wastewater treatment. It is because sufficient sludge treatment capacity can be maintained without clogging the pores of the
  • the treatment membrane may be a flat membrane or a hollow fiber membrane, and can be used similarly.
  • the most appropriate type of membrane is the MF membrane from the size of the membrane's holes.
  • the volume reduction rate of excess sludge can be raised more by utilizing the novel Bacillus-genus microbe of this invention for the process which combines the waste-water-treatment method of film
  • FIG. 1 is a drawing schematically showing one aspect of the waste water treatment apparatus of the present invention.
  • 1 is a waste water treatment apparatus
  • 2 is a treatment tank
  • 3 is a treated water
  • 4 is an aeration pipe
  • 5 is an aeration hole
  • 6 is a treated water inflow pipe
  • 7 is a treatment agent feeding device
  • 8 is a treatment agent injection
  • the pipe 9 is a fine air bubble generator
  • 10 is a submersible pump
  • 11 is a water discharge pipe.
  • the waste water treatment apparatus shown in FIG. 1 contains a treatment tank 2 for storing and treating the water to be treated 3, an inflow pipe 6 for letting the water to be treated flow into the treatment tank, and a discharge for discharging the water to be treated. It includes the pipe 11, the aeration pipe 4 for aerating the water to be treated, and the treatment agent feeding device 7 for feeding the treatment agent.
  • the treatment tank 2 may be of any material and size as long as the treated water 3 can be stored, but in general, in the waste water treatment apparatus, one used as an adjustment tank is used It is preferable to do.
  • the aeration pipe 4 can be used without any problem as long as it is generally used for aeration in waste water treatment, as long as the aeration pipe 4 is provided with an appropriate number of aeration holes 5.
  • the number and the diameter of the aeration holes 5 are preferably set so that a sufficient amount of air is blown in consideration of the volume and the depth of the treatment tank.
  • the inflow piping 6 and the discharge piping 11 can also flow in and discharge the water to be treated, those which are conventionally used in the waste water treatment apparatus can be used as they are.
  • the water to be treated that flows in from the inflow piping 6 is, for example, waste water including lipids, proteins, starch and the like discharged from a food manufacturing plant, a store that prepares and supplies food, etc., especially plant or animal It may be drainage having a high fat and oil content, and its flow rate may be greatly changed.
  • the discharge pipe 11 may be provided in an overflow tank that naturally flows out when the water 3 to be treated reaches a predetermined amount or more, or it is a pipe connected to a pump, and it is electrically or continuously or intermittently. You may discharge it.
  • a feature of the waste water treatment apparatus is that a treatment agent feeding device 7 is provided, from which the treatment agent can be fed. That is, the waste water treatment apparatus not only aerates with air from the aeration pipe 4 but also a treatment agent such as a Bacillus microorganism having an ability to degrade at least bacterial cell walls and lipids in the aerated treated water.
  • a treatment agent such as a Bacillus microorganism having an ability to degrade at least bacterial cell walls and lipids in the aerated treated water.
  • a wastewater treatment living bacteria agent containing "the microorganism of the present invention” or a fat and oil containing wastewater treatment living bacteria composition containing the microorganism and a fat utilization yeast a lipid is positively produced. , Protein, starch etc. can be degraded.
  • the treatment agent may be charged according to the amount of the water to be treated from the inflow pipe 6.
  • the fine air bubble generator 9 having the submersible pump 10 in the treatment tank 2 it is possible to further install the fine air bubble generator 9 having the submersible pump 10 in the treatment tank 2 to enable the circulation of the water 3 to be treated.
  • the amount of air in the treated water is increased, the treated water in the tank is circulated, the activity of the microorganism of the present invention becomes active, and more excellent lipid, protein, starch, etc. Disassembly can be expected.
  • micro-bubble generator 9 of the present invention continuously releases micro-bubbles (1 to 1000 ⁇ m in diameter) and nano-bubbles (1 to 1000 nm in diameter), and the generation mechanism is crush, cavitation, turbulence or shear, Micropores, individual embedding, electrolysis, chemical reaction etc. These fine bubbles have the property of raising dissolved oxygen in water, and making the drainage in the tank flow and homogenize due to the release force and the difference in specific gravity of water.
  • the above-described waste water treatment apparatus 1 can greatly reduce the concentrations of BOD, COD and fats and oils as shown in the examples described later, so it can be used as an apparatus for directly discharging treated water to the sewerage However, it can also be used as an apparatus (primary biological treatment tank) for pre-stage treatment in a conventional wastewater treatment apparatus.
  • examples of treatment methods in the later stage include biological treatment such as activated sludge biological method, fluidized bed method, fixed bed method, aggregation treatment, membrane treatment and the like.
  • biological treatment such as activated sludge biological method, fluidized bed method, fixed bed method, aggregation treatment, membrane treatment and the like.
  • the microorganism used in the present invention described above is a microorganism of the genus Bacillus, which forms spores, and thus can be used in powder form using this.
  • it in order to facilitate dispersion in water, it can be used in the form of being mixed with minerals, grain components such as corn and organic substances such as glucose. Further, it can be kneaded with clay soil and used as a solid (including foamed concrete etc.), which may be dry or contain water.
  • a bacteriostatic agent can be added, and it may be a liquid to which, for example, an alcohol, a salt, an emulsifier or the like is added or a component for lowering pH is added.
  • Test example 1 Screening of useful bacteria Microorganisms belonging to the genus Bacillus were collected and separated from soil, dead leaves, drainage and food. Identification of bacteria used for the present invention was carried out according to a general separation / identification method of Bacillus genus in food (Spore experimental manual, p 110-111, published by Shiho Shiho).
  • the collected sample is diluted or suspended with an appropriate amount of physiological saline, heated at 80 ° C. for about 10 minutes, streaked on a common agar medium (Eiken Chemical Co., Ltd.), and 37 ° C. It was cultured for 4 days. The number of germinated germs appeared at this time was over 3,000.
  • Gram-stained pure-cultured strains to confirm gram-positive spore-forming bacilli (Bacillus spp.) Were examined for biochemical characteristics according to the above-mentioned experimental manual to estimate the species.
  • the presumed bacterial species is Bacillus licheniforms, B. coagulans, B. polymyxa, B. B. cereus, B. alvei, B. subtilis, B. pumilus, B .. stearothermophilus, B. macerans, B. et al. megaterium B. circulans B. firmus, B. laterosprus B. brevis, B. sphericus, B. et al. larvae B. popilliae, B. It was lentimorbus.
  • the test was carried out on catalase, VP test, viability on an anaerobic agar medium and starch hydrolyzability, respectively, and 180 strains were selected as Bacillus.
  • the secretory properties of various enzymes were examined, the bacteria having two or more enzymes were stored, and 68 strains were selected except for harmful bacterial species due to the fermentability such as Apitest. These were subjected to the degradability test of Test Example 3 below, and finally Bacillus subtilis HB-88 and Bacillus HB-113 strains having high ability were further selected.
  • Test example 2 Acquisition of Transformed Bacteria Using Competence Method
  • NBRC14144 strain obtained at NBRC was used. This strain has the ability to transform donor DNA into cells, but lacks strength and lack of secreted enzymes.
  • Bacillus subtilis strain HB-88 screened from among wild B. subtilis strains as a strain that strongly secretes the enzyme was used.
  • antibiotic resistant bacteria are prepared by ultraviolet irradiation, and the antibiotic gradient plate method (Manual of Methods for General Bacteriolyz p 230 1981) is used. Selected using chloralfenicol.
  • competent cells were prepared using minimal medium according to the method of Microbial Genetic Experiment p96-101 (1982), and transformed by donating a donor strain. As a result, Bacillus strain HB-14 was obtained.
  • Test example 3 Selection of degrading enzyme-secreting Bacillus microorganism (1) The secretory enzyme productivity was determined according to the method described in “Research Methods of Natto”, p.
  • the substrate to be examined was dissolved in a standard agar medium and sterilized according to a standard method, and the plate was made by pouring in a plastic dish having a diameter of 85 mm.
  • the titer measured the clear zone of the colony outer side using a paper disc (Toyo Roshi Kogyo Co., Ltd.) of diameter 8 mm and thickness 1.5 mm.
  • E. coli E. coli NBRC14237 strain
  • a plate for confirming bacterial degradation was prepared in a petri dish.
  • 70 ⁇ l of positive bacterial solution was placed on a disc, placed on a plate, placed in a thermostat at 37 ° C. for 2 days, and the clear zone was measured.
  • the HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
  • the lactic acid bacteria (Lactobacillus acidophilus (strain ATCC 53103)) are cultured in MRS synthetic medium for 48 hours, 1% is added to the sterilized standard agar medium, and mixed uniformly to prepare a bacterially degradable confirmation plate in a petri dish did.
  • the previously isolated Bacillus microorganism was streaked on this plate to confirm the degradability of the bacteria.
  • 70 ⁇ l of positive bacterial solution was placed on a disc, placed on a plate, placed in a thermostat at 37 ° C. for 1 day, and the clear zone was measured.
  • the HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
  • E. coli and lactic acid bacteria were each cultured for 20 hours, and 160 ml of their respective culture broths were centrifuged at 5000 rpm for 15 minutes to separate the cells.
  • the cells of E. coli and lactic acid bacteria were centrifuged and washed twice with 80 ml of sterile physiological saline (0.85%) to obtain 20 ml of bacterial solution.
  • the bacterial solution was sterilized at 85 ° C. for 10 minutes and cooled with cold water, and then 5% (V / V) was added to a sterile standard agar medium, and mixed uniformly to prepare a cell wall degradable confirmation plate for E.
  • Example 1 General Analysis Value of Aerobic Treatment HB-113 (NITE BP-1277), which is rich in fat, cell wall, protein and amylolytic enzymes and can be used as a nutrient source, was used as a nutrient source.
  • HB-113 NITE BP-1277
  • MAB Japan Water Treatment Giken Co., Ltd.
  • the treatment was performed for 24 hours under aerobic conditions of L (25 ° C.) or higher.
  • the analysis values when the wastewater is treated are shown in Tables 4 and 5 below.
  • the bath treated with the addition of HB-113 cells showed very good results in terms of cut rate of BOD, COD, N-hexane, and SS compared to the case without addition.
  • Example 2 Sludge volume reduction test Water containing 7% milk is used as a raw water model for drainage, and 200 ml of the strain is a strain of Bacillus HB-14 (NITE BP-1275) cultured in ordinary broth medium (Eiken Chemical Co., Ltd.) 2 ml was added and culture was carried out with stirring at 30 ° C. for 24 hours to obtain pre-culture.
  • 200 ml samples were taken and the preculture was added as on the first day. This was continued for one week, and the value of MLSS of the amount of sludge was measured.
  • Example 3 Clogging prevention test in waste water treatment using a membrane
  • 1000 ml of 10% soymilk component unadjusted soymilk; Inc., Inc.
  • 20 ml of Bacillus subtilis HB-88 strain NITE BP-1276
  • Air was sent at 0 mg oxygen / L
  • aeration culture was performed all day.
  • 200 ml of each sample was taken, and 10% soy milk dewatered stock solution model was added each time to make 1000 ml, and aeration culture was continued.
  • Each sample was centrifuged (3000 rpm) after measuring MLSS, and drainage was possible for 5 days by using a 0.45 micron sterile membrane.
  • Example 4 Fat and oil reduction test in waste water
  • Inorganic salt ((NH 4 ) 2 SO 4 : 5.0 g, Na 2 HPO 4 : 0.5 g, MgSO 4 ⁇ 7H 2 O: 0.25 g, CaCO 3 : 5.
  • a solution of 500 ml of the aqueous solution in which 0) was dissolved was sterilized, and 100 ml of skimmed milk (Takahana non-fat milk) made 500 ml of water was added thereto to make a total of 1000 ml as a pre-culture liquid. Two sets of this preculture solution were prepared.
  • Water was added to 60 ml of milk (Taka pear unadjusted milk, milk fat percentage: 3.6%) to make the total amount 1000 ml, and used as a model raw water of oil-containing drainage.
  • the initial culture solution was added to this model raw water to make a total of 2000 ml of oil-containing (1080 mg / L) waste water.
  • the oil-containing waste water (2 sets) was kept at 30 ° C. in a container, and air was sent at the strength at which the solution circulated through the air stone in the same manner as above, and was cultured for 3 days. 1000 ml per day was taken as a sample, and the amount of n-hexane extract (oil amount) in treated water was measured.
  • Example 5 E. coli inhibitory action Inorganic salt ((NH 4 ) 2 SO 4 : 5.0 g, Na 2 HPO 4 : 0.5, MgSO 4 ⁇ 7 H 2 O: 0.25 g, CaCO 3 : 5.0) in 970 ml water It melt
  • E. coli E. coli (NBRC 14237 strain) which was statically cultured at 35 ° C. in a normal broth medium for 1 day was added, and gently culture was carried out at 32 ° C. for 3 days.
  • An analysis sample was collected after one day and three days, and the oil content and the number of bacteria added were counted.
  • the method of measuring the number of bacteria is appropriately diluted with sterile saline according to a standard method, and the detection of yeast (YH-01) is carried out using a subrow-agar medium (Eiken) for 5 days at 30 ° C., Bacillus (HB-88) Were cultured at 37 ° C. for 2 days using a standard agar medium.
  • E. coli For E. coli, 0.1 ml of a stock solution was applied to a plate of deoxycholate medium and cultured at 37 ° C. for 2 days. The results are shown in Table 8. As a result, both after 1 day and after 3 days, E. coli decreased, and the degradability of the oil was also sufficiently degraded as in Example 4.
  • the novel Bacillus microorganism of the present invention has the property of degrading the cell wall, assimilating and growing the degraded cells, secreting an enzyme that degrades lipid, and further secretes an enzyme that degrades protein and starch. It is.
  • the sludge contains protein viscous substance, polysaccharide mucilage, fat agglomerate, bacteria lump, mineral and the like as a component, and these are aggregated, but the Bacillus microorganism of the present invention is not mineral among these Since it is possible to secrete an enzyme capable of decomposing and to grow with the lysed components, volume reduction of excess sludge can be advantageously promoted.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to discover microbes capable of treating oil-containing wastewater with good efficiency without spending a great deal of time reducing the oil content in the processing wastewater, and to provide a technology that uses those microbes to enable volume reduction of excess sludge in wastewater treatment and a reduction in wastewater oil content. Provided are a wastewater treatment device and a method comprising novel microbes belonging to the genus Bacillus and having the ability to decompose at least bacterial cell walls and lipids, and a wastewater probiotic that contains such microbes and is for preventing the generation or for volume reduction of excess sludge. The wastewater treatment device and method are characterized in that one or a mixture of two or more of the novel microbes are added to treated water of the wastewater treatment device.

Description

新規バチルス属微生物およびその利用Novel Bacillus microorganism and use thereof
 本発明は、新規バチルス属微生物およびその利用に関し、更に詳細には、活性汚泥法による排水処理で発生する余剰汚泥を抑制し、また真菌類と共生することで油脂排水の処理を効率的におこなう新規なバチルス属微生物、該微生物を使用した好気性汚泥処理方法および排水処理装置等に関するものである。 The present invention relates to a novel Bacillus microorganism and its use, and more specifically, suppresses excess sludge generated by waste water treatment by the activated sludge method, and efficiently treats oil and fat waste water by symbiosis with fungi. The present invention relates to a novel Bacillus microorganism, an aerobic sludge treatment method and a wastewater treatment apparatus using the microorganism, and the like.
 我国で発生している上下水道等の汚泥は、平成17年度実績によれば産業廃棄物全体の44.5%を占め、年間約1億8,779万トンが発生している(環境省調べ)。このうち48%(7,961万トン)が下水処理場から発生している下水汚泥で、動物の糞尿が21%(3,944万トン)、その他の工場排水が31%(5,822万トン)である。 According to the results in fiscal 2005, the amount of sludge generated from water and sewage in Japan accounted for 44.5% of the total industrial waste, generating approximately 1877,900,000 tons annually ). Of this, 48% (79.16 million tons) is sewage sludge generated from sewage treatment plants, and 21% (39.44 million tons) of animal manure and 31% (58.2 million for other industrial wastewater) T).
 代表的な下水汚泥の処理処分状況は、再生利用率9%、中間処理率86%、最終処分率5%となり、中間処理は濃縮、脱水、焼却が大部分となり、多くのエネルギーが付加されることとなる。汚泥は多くの場合、含水率が60~90%の水を含むので処理処分には大きなエネルギーコストがかかることとなる。 Typical sewage sludge treatment and disposal status is 9% regeneration rate, 86% intermediate treatment rate, 5% final disposal rate, intermediate treatment is mostly concentrated, dehydrated and incinerated, and much energy is added It will be. Since sludge often contains water with a water content of 60 to 90%, disposal of the treatment involves a large energy cost.
 工場排水処理の余剰汚泥の一部は、土壌改良剤、コンポスト材料として利用もなされているものの、大部分は脱水、焼却などの前処理をした後、埋め立てなどで廃棄することが主流である。この処理には多くのエネルギーを消費し、事業者はエネルギーコストの上昇に苦しめられ、自治体や最終処分業者は処分場所の確保の困難さや規制の問題が集積し、今後も大きな問題となって横たわる。 Some of the excess sludge from factory wastewater treatment is used as a soil conditioner and compost material, but most of it is pretreated by dehydration, incineration, etc. and then disposed of in landfills. This process consumes a lot of energy, the enterprise suffers from rising energy costs, and local governments and final disposal companies have difficulties in securing a disposal site and regulatory problems, which will continue to be a major issue in the future .
 汚泥減容化の技術は、非特許文献1によれば、化学的減容化法、物理化学的減容化法、生物的減容化法などがある。このうち、化学的減容化法としては、オゾンの酸化力により細胞壁を分解するオゾン法、セルラーゼ、プロテアーゼ、アミラーゼなどの酵素により細胞壁を可溶化する酵素法、アルカリによるタンパク質の変性を利用したアルカリ法等がある。このうち、オゾン法はイニシャルコストが高く、酵素法はランニングコストが高い等の課題がある。 According to Non-Patent Document 1, techniques for sludge volume reduction include a chemical volume reduction method, a physicochemical volume reduction method, a biological volume reduction method and the like. Among them, chemical reduction methods include the ozone method of degrading cell walls by the oxidizing power of ozone, the enzyme method of solubilizing cell walls by enzymes such as cellulase, protease and amylase, and the alkali using protein denaturation by alkali There is a law etc. Among these, the ozone method has problems such as high initial cost and the enzymatic method has high running cost.
 また、物理化学的減容化法には、ビーズミル、高速回転ディスク等による高い剪断力を利用して汚泥を機械的に磨砕することにより可溶化を促進する機械的分解法、熱による熱分解ガス化する熱分解法、超臨界水や亜臨界水の水熱反応を用いてあらゆる有機物を加水分解、熱分解により低分子化して可溶化する水熱反応法、食塩水の電気分解により発生する塩素および次亜塩素酸にて微生物を死滅・可溶化させ、生物分解する電解酸化法がある。これらの減容化法はイニシャルコストもランニングコストも高額な投資に大きな課題がある。 In the physicochemical volume reduction method, mechanical decomposition method that promotes solubilization by mechanically grinding sludge using high shear force by bead mill, high-speed rotating disk, etc., thermal decomposition It is generated by gasification pyrolysis method, hydrothermal reaction method in which all organic substances are hydrolyzed and decomposed by thermal decomposition using hydrothermal reaction of supercritical water or subcritical water, and solubilization, electrolysis of saline solution There are electrolytic oxidation methods that kill and solubilize microorganisms with chlorine and hypochlorous acid and biodegrade. These volume reduction methods have major problems with high initial investment and running costs.
 更に、生物学的減容化法には、自己酸化法および食物連鎖法がある。このうち、自己酸化法は、汚泥を構成する微生物が外部からの有機エネルギーの供給がない状況で、他の微生物を有機エネルギー源として利用し、時間の経過とともに、水と炭酸ガスにまで分解し減容化する方法であり、食物連鎖法は、細菌類→原生動物→後生動物の食物連鎖系を作る方法である。自己酸化法は1週間分の汚泥をためる減容槽の設置と温度を60℃に保つなどのランニングコストが課題であり、食物連鎖法には外気開放系で細菌類、原生動物、後生動物を飼育する技術的ノウハウの蓄積が課題である。 In addition, biological volume reduction methods include auto-oxidation and food chain methods. Among them, in the self-oxidation method, other microorganisms are used as an organic energy source in the situation where microorganisms constituting sludge do not supply organic energy from the outside, and they are decomposed into water and carbon dioxide gas with the passage of time. The food chain method is a method of reducing the volume and creating a food chain system of bacteria → protozoan → metazoan. The self-oxidation method has problems with installing a volume-saving tank for one week's worth of sludge and running costs such as maintaining the temperature at 60 ° C, and the food chain method uses bacteria, protozoa and metazoans in an open air system. The issue is the accumulation of technical know-how to breed.
 更にまた、汚泥減容化手段として、特許文献1にあるように高熱性微生物を添加する方法や、特許文献2にあるようにアルカリ条件下で好気性微生物の存在下で曝気して生物処理工程に返送する汚泥処理方法も提案されている。 Furthermore, as a means for reducing the volume of sludge, a method of adding a hyperthermic microorganism as in Patent Document 1 or a biological treatment process by aeration in the presence of an aerobic microorganism under alkaline conditions as in Patent Document 2 A sludge treatment method is also proposed to be returned to Japan.
 特許文献3では、高アルカリ性・高温という条件で生育可能な、汚泥分解能を持つ新規な微生物で、汚泥を減容化する方法を提案している。これらの技術は高温、アルカリ性に保つことで、アルカリ剤の使用や中和剤の使用、また高温にするエネルギーを毎日使用する、生産性のない汚泥の処理に高いイニシャルコスト及びランニングコストが課題となる。 Patent Document 3 proposes a method of reducing the volume of sludge with a novel microorganism having sludge decomposability that can be grown under conditions of high alkalinity and high temperature. These techniques have high temperature and alkalinity, and the use of alkali agents and neutralizing agents, and high initial cost and running cost in the treatment of non-productivity sludge which use energy to make high temperature every day is a problem Become.
 また、油脂含有量の多い排水を出すアイスクリーム、マヨネーズ製造工場や、これらを利用したレストランやデリカフーズを生産する店舗の排水も同様に油脂含量が多い。これらの油脂は植物性であれ、動物性であれ油脂含量の多い排水は、そのまま微生物処理することが困難となり、予め、物理学的、化学的に油脂を排除した排水を活性汚泥法等の排水処理工程に送り込まなければならない。 In addition, the drainage of ice cream for producing drainage with a high oil content, mayonnaise manufacturing plant, and the drainage of a restaurant using these or a shop for producing delicatess has a high oil content as well. Whether these fats or oils are vegetable or animal, it is difficult to treat the waste water with high fat content as it is, and waste water from which fats and oils have been physically and chemically removed in advance is waste water such as activated sludge method It must be sent to the treatment process.
 油脂含有排水の除去方法としては、N-ヘキサン抽出物として200~500mg/Lまでの油脂含有排水は、油脂分離槽を設置して処理し、500mg/Lを超える場合は加圧浮上分離槽を設置して油脂を除去し、N-ヘキサン抽出物を低下させた上で処理することが望まれている。油脂含有排水の処理には、このような施設の設置のイニシャルコストと浮上させた油脂の廃棄処分費といったランニングコストもかかり、夏場の保管には悪臭も漂うことから、微生物による処理が熱望されている。 As a method of removing fat and oil containing waste water, the fat and oil containing waste water of 200 to 500 mg / L as N-hexane extract is treated by installing a fat and oil separation tank, and when it exceeds 500 mg / L, a pressurized floatation tank is used. It is desirable to install to remove fats and oils and to process after reducing N-hexane extract. Treatment of fat and oil-containing wastewater involves running costs such as the initial cost of installation of such facilities and the disposal cost of fats and oils that are raised, and there is also an offensive odor for storage in summer, so microbial treatment is eagerly desired There is.
 そこで、種々の酵母を用いて動植物性油脂を資化させる方法が提案されている。中でも特許文献4の技術は油脂資化性酵母の生育pHの幅が広く、細菌汚染を塩素剤で抑えなくて良く、利用しやすい生物学的排水処理の発明であるが、排水油脂の減量に時間がかかる課題があった。 Then, the method of assimilation of animal and vegetable fats and oils is proposed using various yeast. Above all, the technology of Patent Document 4 is an invention of biological wastewater treatment which is easy to use because the range of growth pH of fat utilization yeast is wide and bacterial contamination does not have to be suppressed with a chlorinating agent. There was an issue that took time.
特開平9-253699Japanese Patent Application Laid-Open No. 9-253699 特開平9-136097Japanese Patent Application Laid-Open No. 9-136097 特開2000-139449JP 2000-139449 特許第4654332Patent No. 4465332
 本発明は上記観点からなされたものであり、排水処理上の改善、すなわち排水を効率良く処理することができる微生物を見いだし、これを用いて排水処理の余剰汚泥の減容化や排水中の油脂の低減等を可能にする技術及びこれらに関する排水処理装置を提供することを課題とする。 The present invention was made from the above point of view, and improved the treatment of waste water, that is, found a microorganism capable of efficiently treating waste water, and using this, it was used to reduce excess sludge in waste water treatment and fats and oils in waste water. It is an object of the present invention to provide a technology that enables the reduction of the
 本発明者は、上記課題を解決するために、種々の酵素を分泌するバチルス属に属する微生物に着目し、油脂含有排水の処理に有効な分解酵素を分泌するものを検索していたところ、数種のバチルス属の野生株が、脂質や、細菌の細胞壁を分解する酵素を分泌することを見いだした。また、この酵素分泌能をより強固にするためにコンピテント細胞化して種々の酵素を分泌させる株を作製し、本発明を完成した。 In order to solve the above problems, the present inventor focused attention on microorganisms belonging to the genus Bacillus that secrete various enzymes, and searched for those that secrete decomposing enzymes effective for treating oil-containing waste water. We have found that wild strains of the genus Bacillus secrete lipids and enzymes that degrade bacterial cell walls. In addition, in order to strengthen the ability to secrete this enzyme, cells were made competent to secrete various enzymes, thereby completing the present invention.
 すなわち本発明は、バチルス属に属し、少なくとも細菌の細胞壁および脂質を分解する能力を有する新規微生物である。 That is, the present invention is a novel microorganism belonging to the genus Bacillus, which has at least the ability to degrade cell walls and lipids of bacteria.
 また本発明は、上記の新規微生物を含む、余剰汚泥発生防止もしくは減容化のための排水処理生菌剤である。 Further, the present invention is a waste water treatment biocide for preventing excess sludge generation or reducing the volume, which contains the above-mentioned novel microorganism.
 更に本発明は、上記の新規微生物と油脂資化性酵母を含む油脂含有排水処理生菌組成物である。 Furthermore, the present invention is a fat and oil containing waste water treatment viable bacterial composition comprising the above-mentioned novel microorganism and fat and oil utilization yeast.
 更にまた本発明は、排水処理施設の被処理水中に、前記の新規微生物を、単独あるいは2種以上混合して添加することを特徴とする、排水処理施設での余剰汚泥の減容化方法である。 Furthermore, the present invention is a method for reducing excess sludge in a wastewater treatment facility, characterized in that the above-mentioned new microorganisms are added singly or in combination of two or more to the water to be treated in the wastewater treatment facility. is there.
 また更に本発明は、固液分離膜を用いて除水する固液分離排水処理方法において、前記固液分離膜に前記の新規微生物を単独あるいは2種以上混合して作用させることを特徴とする、膜通過のフラックス低下を抑制する方法である。 Furthermore, the present invention is characterized in that in the solid-liquid separation wastewater treatment method for removing water using a solid-liquid separation membrane, the above-mentioned novel microorganism is caused to act on the solid-liquid separation membrane singly or in combination of two or more kinds. , And a method of suppressing the decrease in flux through the membrane.
 加えて本発明は、被処理水を収容、処理するための処理槽、当該処理槽に被処理水を流入させる流入配管、処理水を排出させるための排出配管および被処理水を曝気するための曝気パイプを有する排水処理装置であって、処理剤を投入するための処理剤投入装置を設けたことを特徴とする排水処理装置である。 In addition, the present invention includes a treatment tank for storing and treating the water to be treated, an inflow pipe for letting the treatment water flow into the treatment tank, a discharge pipe for discharging the treated water, and aeration for the water to be treated. A waste water treatment apparatus having an aeration pipe, comprising a treatment agent feeding device for feeding a treatment agent.
 本発明の新規バチルス属微生物は、少なくとも細菌の細胞壁および脂質を分解する能力を有し、更にタンパク質およびデンプンを分解する作用を有するものも含まれるので、従来の好気性生物処理による排水処理においてこのものを用いることで、汚泥の分解処理や油脂資化が容易に可能となるので、余剰汚泥や廃油脂の発生量を減少させることができる。 The novel Bacillus microorganism of the present invention has at least the ability to degrade cell walls and lipids of bacteria, and also includes those having the action of degrading protein and starch, so this is the case in waste water treatment by conventional aerobic biological treatment. By using such a product, decomposition treatment of sludge and fats and oils can be easily performed, so that the amount of excess sludge and waste fat and oil can be reduced.
 特に、排水処理工程中に酵母油脂分解槽を設け、ここで油脂資化性酵母と併用すると、余剰汚泥や廃油脂の発生量を低減ないし、なくすことができる。 In particular, if the yeast fat and oil decomposition tank is provided during the wastewater treatment process and used in combination with fat and oil assimilation yeast here, the amount of excess sludge and waste fat and oil can be reduced or eliminated.
 また固液分離膜を用いて除水する固液分離排水処理方法において、この固液分離膜に本発明の新規バチルス属微生物を作用させることで、膜の詰まりによる膜通過のフラックスの低下を防止することがでる。 In addition, in the solid-liquid separation wastewater treatment method for removing water using a solid-liquid separation membrane, the novel Bacillus microorganism of the present invention is allowed to act on this solid-liquid separation membrane to prevent a decrease in flux passing through the membrane due to clogging of the membrane. I can do it.
本発明排水処理装置の一態様を模式的に示した図面である。It is drawing which showed typically the one aspect | mode of this invention waste water treatment apparatus.
 本発明で使用する、バチルス属に属する微生物は、少なくとも細菌の細胞壁および脂質を分解する能力を有するものである。このような能力を有する微生物は、自然界からスクリーニングにより、あるいは自然界からスクリーニングで得た微生物を元に遺伝子操作の手段により形質転換を施すことにより得ることができる。 The microorganism belonging to the genus Bacillus used in the present invention is at least capable of degrading bacterial cell walls and lipids. The microorganism having such ability can be obtained by screening from the natural world, or by performing transformation by means of genetic engineering based on the microorganism obtained by screening from the natural world.
 本発明のバチルス属に属する微生物を採るための方法の具体例としては、植物、水中、食品あるいは土壌より分離した微生物を、細菌の細胞壁の分解能および脂質の分解能の有無を指標に、選抜することにより得ることができる。また、これらの微生物は、タンパク質、デンプン等の分解能を有するものであれば、より好ましい。なお、細胞壁の分解能とは細胞壁の全部および一部を破壊若しくは溶解することである。スクリーニングでHB-88株およびHB-113株を得た。 As a specific example of the method for obtaining the microorganism belonging to the genus Bacillus according to the present invention, a microorganism isolated from plants, water, food or soil is selected using the degradability of bacterial cell wall and the degradability of lipid as an index. It can be obtained by In addition, these microorganisms are more preferable if they have the ability to degrade protein, starch and the like. The cell wall resolution is to destroy or dissolve all or part of the cell wall. By screening, strains HB-88 and HB-113 were obtained.
 このようにして得た微生物は、上記のようにそのまま細菌の細胞壁の分解能および脂質の分解能から選抜しても良いが、例えば、紫外線照射下等において10%程成育する条件で、定法により突然変異を行なわせ、その後スクリーニングしても良い。 The microorganism thus obtained may be selected as it is from the resolution of the cell wall of the bacteria and the resolution of the lipids as described above, but for example, it is mutated by the usual method under conditions that grow by about 10% under ultraviolet irradiation. You may do, and then screen.
 更に、自然形質転換能が高い枯草菌のマーバーグ株やその他160、166、168の由来株を用いて、コンピテントの細胞を調節する形質転換用培地を用い、形質転換能を高めてここにドナー株を導入して、新たな性質を有するものとしても良い。なお、上記マーバーグ株や由来株は、理化学研究所、NBRC、ATCC等から購入することができる。 Furthermore, using a transformation culture medium that regulates competent cells using Marburg strain of Bacillus subtilis having high natural transformation ability and other 160, 166, and 168-derived strains, transformation ability is enhanced and donors are used here. A strain may be introduced to have new properties. The Marburg strain and the strain derived therefrom can be purchased from RIKEN, NBRC, ATCC, etc.
 使用したマーバーグ株はデンプン分解酵素と脂質分解酵素を有していたので、同様にグラム陰性菌、グラム陽性菌の分解酵素を付加する形質転換を同様に行った。この操作により、改質された菌は、脂質、細菌細胞壁、デンプン、タンパク質の分解酵素を分泌するように改質された。改質された菌株が16株あり、この中で、強く酵素を分泌するものを1株見出した。この株をHB-14株とした。 Since the Marburg strain used had a starch-degrading enzyme and a lipolytic enzyme, transformation to add a gram-negative bacterial or gram-positive bacterial degrading enzyme was similarly performed. By this operation, the modified bacteria were modified to secrete lipids, bacterial cell walls, starches, and protein degrading enzymes. Among the 16 modified strains, among them, 1 strain which strongly secreted the enzyme was found. This strain was designated as HB-14.
 以上のようにして、HB-14株、HB-88株およびHB-113株の3種の微生物を得た。この微生物について、その菌学的性質を、”Bergey’s manual of systematic bacteriology Volume 2(1984)”に照らし合わせた結果、いずれの微生物もバチルス属に属するものであった。 As described above, three types of microorganisms, HB-14 strain, HB-88 strain and HB-113 strain, were obtained. As a result of comparing the bacteriological properties of this microorganism with "Bergey's manual of systematic biology Volume 2 (1984)", all the microorganisms belonged to the genus Bacillus.
 更に、下記のDNA分析を行った結果、16sDNA遺伝子解明でHB-14株はバチルス・サブチリス(Bacillus subtilis)、HB-88株は、バチルス・メチロトロフィカス(Bacillus methylotrophicus)と推定された((株)テクノスルガ・ラボ)。HB-113株はAPI50CHBにより、バチルス・サブチリス(Bacillus subtilis)と判定された。 Furthermore, as a result of performing the following DNA analysis, it was presumed that HB-14 strain was Bacillus subtilis (Bacillus subtilis (Bacillus subtilis), HB-88 strain was Bacillus methylotrophicus (Bacillus methylotrophicus) in 16s DNA gene elucidation ((strain ) Technosurga Lab). The HB-113 strain was determined to be Bacillus subtilis by API 50 CHB.
 次に上記スクリーニングより選抜したHB-14およびHB-88の菌学的諸性質を示す。DNA解析は、Nutrient agar培地にて、培養は温度30℃、40時間、好気培養にて行い供試菌とした。16S rDNA-Fullによる菌種の同定については、アクロモペプチダーゼ(和光純薬工業(株))でDNAを抽出し、PrimeSTAR HS DNA polymerase(タカラバイオ(株))のPCRを使用し、BigDye Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems、CA、USA)のサイクルシーエンスを用い、使用プライマーは(PCR増幅:9F、1510R、シークエンス:9F、785F、802R、1510R)、シークエンスはABIPRISM3130xl Genetic Analyzer System(Applied Biosystems、CA、USA)で、塩基配列の決定にはChromasPro1.4(Technelysium Pty Ltd.,Tewantin、USA)を用い、相同性検索および簡易系統解析にはソフトウェアとしてアポロン2.0、データベースとしてアポロンDB-BA7.0((株)テクノスルガ・ラボ)、国際塩基配列データベース(GenBank/DDBJ/Embl)を使用した。また、HB-113については、検索法に則り(スポア実験マニュアル p110~111、技報堂出版)、各種の検索を行うと共にAPIシステムにて同定を行った。 Next, the microbiological properties of HB-14 and HB-88 selected by the above screening are shown. The DNA analysis was carried out in Nutrient agar medium, and the culture was carried out in aerobic culture at a temperature of 30 ° C. for 40 hours, and used as a test fungus. For identification of bacterial species by 16S rDNA-Full, DNA is extracted with achromopeptidase (Wako Pure Chemical Industries, Ltd.), PCR of PrimeSTAR HS DNA polymerase (Takara Bio Inc.) is used, and BigDye Terminator v3 .1 Using the Cycle Sequence of Cycle Sequencing Kit (Applied Biosystems, CA, USA), the primers used are (PCR amplification: 9F, 1510R, sequence: 9F, 785F, 802R, 1510R), and the sequence is ABI PRISM 3130xl Genetic Analyzer System (Applied) ChromasPro 1.4 (For Biosystems, CA, USA) to determine the base sequence Apollo 2.0 as software for homology search and simplified phylogenetic analysis using Technelysium Pty Ltd., Tewantin, USA), Apollo DB-BA 7.0 as a database (Technosurga Labs Co., Ltd.), International Sequence Database (GenBank / DDBJ / Embl) was used. In addition, HB-113 was subjected to various searches according to the search method (Spore Experimental Manual p110 to 111, published by Shihobodou) and identified using the API system.
新規微生物の特性一覧I(30℃培養)
Figure JPOXMLDOC01-appb-T000001
List of characteristics of new microorganisms I (30 ° C culture)
Figure JPOXMLDOC01-appb-T000001
新規微生物の特性一覧II
Figure JPOXMLDOC01-appb-T000002
Characteristic list of new microorganisms II
Figure JPOXMLDOC01-appb-T000002
 これら微生物は、独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)にHB-14はNITE BP-1275、HB-88はNITE BP-1276、HB-113はNITE BP-1277として2012年3月7日に国際寄託した。 These microorganisms are not included in the National Institute of Technology and Evaluation, Patent Microorganisms Depositary Center (〒2-5-8, Kisarazu City, Chiba Prefecture, 〒 292-0818), HB-14 for NITE BP-1275, HB-88 NITE BP-1276 and HB-113 were internationally deposited on March 7, 2012 as NITE BP-1277.
 以上説明した、本発明の新規バチルス属微生物は、好気的排水処理工程において、BOD負荷のある全ての排水に利用できるが、下水処理や食品工場等の工場排水に好ましく使用することができる。 The novel Bacillus microorganism of the present invention as described above can be used for all wastewater having BOD load in the aerobic wastewater treatment process, but can be preferably used for wastewater from sewage treatment and factories such as food factories.
 本発明の新規バチルス属微生物を活性汚泥法に利用し、汚泥の減容化をする場合は、排水処理施設の原水槽や曝気槽に、培養液で培養した微生物(10~10/ml)を1~1000ppm添加すればよく、好ましくは10~300ppm添加すればよい。効果を継続するには1~3日に1回程度の添加がより好ましい。 When reducing the volume of sludge by utilizing the novel Bacillus microorganism of the present invention for the activated sludge method, microorganisms (10 7 to 10 8 / ml) cultured in a culture solution in the raw water tank or aeration tank of a wastewater treatment facility ) May be added in an amount of 1 to 1000 ppm, preferably 10 to 300 ppm. The addition of about once to 1 to 3 days is more preferable to continue the effect.
 本発明の新規バチルス属微生物は、特に膜処理を利用する排水処理法において好ましく使用される。すなわち、本発明の微生物は、前記したように細菌の細胞壁の分解能を有するため、排水処理で使用する処理膜の細孔中、あるいはその周辺に生育する細菌や粘性物を分解するため、処理膜の細孔が目詰まりすることなく、十分な汚泥処理能力を維持できる為である。この処理膜としては、平膜でも、中空糸膜でもあっても良く、同様に利用できる。最も適切な膜の種類は、膜の穴の大きさからMF膜である。 The novel Bacillus microorganism of the present invention is preferably used particularly in waste water treatment methods utilizing membrane treatment. That is, since the microorganism of the present invention has the resolution of the cell wall of bacteria as described above, it decomposes the bacteria and the viscous substances that grow in or around the pores of the treated membrane used in wastewater treatment. It is because sufficient sludge treatment capacity can be maintained without clogging the pores of the The treatment membrane may be a flat membrane or a hollow fiber membrane, and can be used similarly. The most appropriate type of membrane is the MF membrane from the size of the membrane's holes.
 また、本発明の新規バチルス属微生物を、膜使用の排水処理方法と活性汚泥法を組み合わせる処理に利用することで、より余剰汚泥の減容化率を高めることができる。この両方法の組み合わせには、並列処理法、直列処理法があるが、排水中の有機物の種類が一定の場合はフロックを生じない本バチルスで直列処理を利用することで、高濃度処理ができる。一方、処理物の種類が多種で変化に富む場合は膜を利用して高濃度排水のみ並列処理した後に活性汚泥槽に流す方法がよい。 Moreover, the volume reduction rate of excess sludge can be raised more by utilizing the novel Bacillus-genus microbe of this invention for the process which combines the waste-water-treatment method of film | membrane use, and the activated sludge method. There are parallel processing method and serial processing method in combination of these two methods, but high concentration processing can be performed by using serial processing with this Bacillus which does not produce floc if the kind of organic matter in the drainage is constant. . On the other hand, in the case where the types of treated products are various and rich in variation, it is preferable to use a membrane to treat only high concentration drainage in parallel and then to flow it into an activated sludge tank.
 次に、本発明の新規バチルス属微生物による排水処理を実施するに当たり、有利に利用することのできる排水処理装置について説明する。 Next, a waste water treatment apparatus that can be advantageously used in carrying out waste water treatment with the novel Bacillus microorganism of the present invention will be described.
 図1は、本発明排水処理装置の一態様を模式的に示した図面である。図中、1は排水処理装置、2は処理槽、3は被処理水、4は曝気パイプ、5は曝気孔、6は被処理水流入配管、7は処理剤投入装置、8は処理剤注入管、9は微細気泡発生装置、10は水中ポンプ、11は被処理水排出配管をそれぞれ示す。 FIG. 1 is a drawing schematically showing one aspect of the waste water treatment apparatus of the present invention. In the figure, 1 is a waste water treatment apparatus, 2 is a treatment tank, 3 is a treated water, 4 is an aeration pipe, 5 is an aeration hole, 6 is a treated water inflow pipe, 7 is a treatment agent feeding device, 8 is a treatment agent injection The pipe 9 is a fine air bubble generator, 10 is a submersible pump, and 11 is a water discharge pipe.
 図1に示した排水処理装置は、被処理水3を収容し、処理するための処理槽2と、この処理槽に被処理水を流入させる流入配管6、被処理水を排出させるための排出配管11および被処理水を曝気するための曝気パイプ4および処理剤を投入するための処理剤投入装置7を含むものである。 The waste water treatment apparatus shown in FIG. 1 contains a treatment tank 2 for storing and treating the water to be treated 3, an inflow pipe 6 for letting the water to be treated flow into the treatment tank, and a discharge for discharging the water to be treated. It includes the pipe 11, the aeration pipe 4 for aerating the water to be treated, and the treatment agent feeding device 7 for feeding the treatment agent.
 処理槽2は、被処理水3が収納可能であれば、どのような材質、大きさのものであっても良いが、一般には排水処理装置において、調整槽として使用されるようなものを利用することが好ましい。また、曝気パイプ4も、適当な数の曝気孔5を設けたものであれば、一般に排水処理においてエアレーションに使用されるようなものであれば問題なく使用することができる。この曝気孔5の数や径の大きさは、処理槽の容量や、深さを勘案し、十分な量の空気が吹き込まれるようにすることが好ましい。 The treatment tank 2 may be of any material and size as long as the treated water 3 can be stored, but in general, in the waste water treatment apparatus, one used as an adjustment tank is used It is preferable to do. Also, the aeration pipe 4 can be used without any problem as long as it is generally used for aeration in waste water treatment, as long as the aeration pipe 4 is provided with an appropriate number of aeration holes 5. The number and the diameter of the aeration holes 5 are preferably set so that a sufficient amount of air is blown in consideration of the volume and the depth of the treatment tank.
 更に、流入配管6や排出配管11も、被処理水を流入、排出できるものであれば、従来から排水処理装置に使用されていたものをそのまま利用することができる。流入配管6から流入する被処理水は、例えば、食品の製造工場や、食品を調理、提供する店舗などから排出される脂質、タンパク質、デンプン等が含まれる排水、特に植物性や、動物性の油脂含量の多い排水であっても良く、その流量が大きく変化するものであっても良い。なお、排出配管11は、被処理水3が所定量以上になった際に、自然に流出するオーバーフロー槽に設けても良いし、またポンプとつなげた配管とし、電動で連続的あるいは間欠的に排出するようにしても良い。 Furthermore, as long as the inflow piping 6 and the discharge piping 11 can also flow in and discharge the water to be treated, those which are conventionally used in the waste water treatment apparatus can be used as they are. The water to be treated that flows in from the inflow piping 6 is, for example, waste water including lipids, proteins, starch and the like discharged from a food manufacturing plant, a store that prepares and supplies food, etc., especially plant or animal It may be drainage having a high fat and oil content, and its flow rate may be greatly changed. The discharge pipe 11 may be provided in an overflow tank that naturally flows out when the water 3 to be treated reaches a predetermined amount or more, or it is a pipe connected to a pump, and it is electrically or continuously or intermittently. You may discharge it.
 本排水処理装置の特徴は、処理剤投入装置7が設けられており、ここから処理剤が投入できる点である。すなわち、本排水処理装置は、曝気パイプ4からの空気でエアレーションするのみでなく、このエアレーションさせた被処理水中に処理剤、例えば、少なくとも細菌の細胞壁および脂質を分解する能力を有するバチルス属微生物(以下、「本発明微生物」ということがある)を含む排水処理生菌剤や、この微生物と油脂資化性酵母を含む油脂含有排水処理生菌組成物を投入することで、積極的に、脂質、タンパク質、デンプン等を分解することを可能としたものである。そして、この処理剤投入装置7から1度に全部の処理剤を投入することも可能であるが、例えば、間欠的な投入や、滴下、処理剤粉体を添加するなどの手段により、定量的に投入する方が、一定の処理能力を維持できるので好ましい。また、流入配管6からの被処理水の量に対応して処理剤を投入するようにしても良い。 A feature of the waste water treatment apparatus is that a treatment agent feeding device 7 is provided, from which the treatment agent can be fed. That is, the waste water treatment apparatus not only aerates with air from the aeration pipe 4 but also a treatment agent such as a Bacillus microorganism having an ability to degrade at least bacterial cell walls and lipids in the aerated treated water. Hereinafter, by actively introducing a wastewater treatment living bacteria agent containing "the microorganism of the present invention" or a fat and oil containing wastewater treatment living bacteria composition containing the microorganism and a fat utilization yeast, a lipid is positively produced. , Protein, starch etc. can be degraded. Then, it is possible to charge all the treating agents at one time from the treating agent feeding device 7. However, quantitative, for example, by means of intermittent feeding, dropping, adding treating agent powder, etc. It is preferable to use this method because it can maintain a constant processing capacity. In addition, the treatment agent may be charged according to the amount of the water to be treated from the inflow pipe 6.
 また本排水処理装置において、更に処理槽2に水中ポンプ10を備えた微細気泡発生装置9を設置し、被処理水3の循環を可能とすることもできる。この微細気泡発生装置9を設置することで、処理水中の空気量が増え、槽内の処理水の循環が生じ本発明微生物等の活動が活発になり、より優れた脂質、タンパク質、デンプン等の分解が期待できる。 Further, in the waste water treatment apparatus, it is possible to further install the fine air bubble generator 9 having the submersible pump 10 in the treatment tank 2 to enable the circulation of the water 3 to be treated. By installing this micro air bubble generator 9, the amount of air in the treated water is increased, the treated water in the tank is circulated, the activity of the microorganism of the present invention becomes active, and more excellent lipid, protein, starch, etc. Disassembly can be expected.
 本発明の微細気泡発生装置9は、マイクロバブル(直径1~1000μm)やナノバブル(直径1~1000nm)の気泡を連続的に放出するもので、その発生機構は圧壊、キャビテーション、乱流または剪断、微細孔、個体包埋、電解、化学反応等による。この微細気泡は、水中の溶存酸素を上昇させ、且つ、放出力や水の比重差で、槽中の排水を流動させ、均質化する性質がある。 The micro-bubble generator 9 of the present invention continuously releases micro-bubbles (1 to 1000 μm in diameter) and nano-bubbles (1 to 1000 nm in diameter), and the generation mechanism is crush, cavitation, turbulence or shear, Micropores, individual embedding, electrolysis, chemical reaction etc. These fine bubbles have the property of raising dissolved oxygen in water, and making the drainage in the tank flow and homogenize due to the release force and the difference in specific gravity of water.
 以上説明した本排水処理装置1は、後記実施例に示すようにBOD、CODや油脂の濃度を大きく低下させることができるため、それのみでも直接下水道に処理水を排出するための装置として利用可能であるが、通常の排水処理装置における前段階の処理用の装置(一次生物処理槽)としても利用可能である。 The above-described waste water treatment apparatus 1 can greatly reduce the concentrations of BOD, COD and fats and oils as shown in the examples described later, so it can be used as an apparatus for directly discharging treated water to the sewerage However, it can also be used as an apparatus (primary biological treatment tank) for pre-stage treatment in a conventional wastewater treatment apparatus.
 後者の使用の場合、後段階の処理方法(二次生物処理)としては、活性汚泥生物法、流動床法、固定床法等の生物処理や、凝集処理、膜処理等が挙げられる。このように2段階で処理された処理水は、その状態で河川放流することが可能であり、しかも本排水処理装置により、余剰汚泥の発生量も大幅に減らすことが可能となる。 In the case of use of the latter, examples of treatment methods in the later stage (secondary biological treatment) include biological treatment such as activated sludge biological method, fluidized bed method, fixed bed method, aggregation treatment, membrane treatment and the like. Thus, the treated water treated in two stages can be discharged to the river in that state, and the waste water treatment apparatus can also significantly reduce the amount of excess sludge generated.
 以上説明した本発明で利用する微生物はバチルス属の微生物であり、胞子を形成するものであるため、これを利用して粉末形態で使用することができる。この場合、水中で分散しやすくするために鉱物、フスマのような穀物成分や、ブドウ糖のような有機物に混合した形態で使用することができる。また、粘土質の土壌と捏ねて固形物(発泡コンクリート等を含む)として使用することもでき、これは乾燥していても、また水分を含有していてもよい。更に、生育を調整するために、静菌剤を加えることができ、例えばアルコール類、塩類、乳化剤等を加えたり、低pHにするための成分を加えた液体であってもよい。 The microorganism used in the present invention described above is a microorganism of the genus Bacillus, which forms spores, and thus can be used in powder form using this. In this case, in order to facilitate dispersion in water, it can be used in the form of being mixed with minerals, grain components such as corn and organic substances such as glucose. Further, it can be kneaded with clay soil and used as a solid (including foamed concrete etc.), which may be dry or contain water. Furthermore, in order to control the growth, a bacteriostatic agent can be added, and it may be a liquid to which, for example, an alcohol, a salt, an emulsifier or the like is added or a component for lowering pH is added.
 以下実施例を用いて発明を更に詳しく説明するが、本発明はこれに限定されるものではない。 The invention will be described in more detail with reference to the following examples, but the invention is not limited thereto.
試 験 例 1
   有用菌のスクリーニング
 土壌、枯れ葉、排水中、食品より、バチルス属に属する微生物を採取し分離した。本発明のために利用した菌の同定は、食品中のバチルス属の一般的分離・同定法(スポア実験マニュアル、p110~111、技報堂出版)に準じて行なった。
Test example 1
Screening of useful bacteria Microorganisms belonging to the genus Bacillus were collected and separated from soil, dead leaves, drainage and food. Identification of bacteria used for the present invention was carried out according to a general separation / identification method of Bacillus genus in food (Spore experimental manual, p 110-111, published by Shiho Shiho).
 具体的には、先ず採取試料を適当量の生理食塩水にて希釈又は懸濁させ、80℃にて10分ほど加熱し、普通寒天培地(栄研化学株式会社)に画線し、37℃4日間培養した。この際に出現した発芽菌は3000株を超えていた。 Specifically, first, the collected sample is diluted or suspended with an appropriate amount of physiological saline, heated at 80 ° C. for about 10 minutes, streaked on a common agar medium (Eiken Chemical Co., Ltd.), and 37 ° C. It was cultured for 4 days. The number of germinated germs appeared at this time was over 3,000.
 純粋培養した菌株をグラム染色しグラム陽性のスポア形成桿菌(Bacillus属菌)を確認したら先の実験マニュアルに従い生化学的性状を検査し、菌種を推定した。推定される菌種はBacillus licheniforms、B.coagulans、B.polymyxa、B.cereus、B.alvei、B.subtilis、B.pumilus、B.stearothermophilus、B.macerans、B.megaterium、B.circulans、B.firmus、B.laterosprus、B.brevis、B.sphericus、B.larvae、B.popilliae、B.lentimorbusであった。 Gram-stained pure-cultured strains to confirm gram-positive spore-forming bacilli (Bacillus spp.) Were examined for biochemical characteristics according to the above-mentioned experimental manual to estimate the species. The presumed bacterial species is Bacillus licheniforms, B. coagulans, B. polymyxa, B. B. cereus, B. alvei, B. subtilis, B. pumilus, B .. stearothermophilus, B. macerans, B. et al. megaterium B. circulans B. firmus, B. laterosprus B. brevis, B. sphericus, B. et al. larvae B. popilliae, B. It was lentimorbus.
 グラム陽性のスポア形成桿菌の場合は、カタラーゼ、VPテスト、嫌気寒天培地での生育性およびデンプン加水分解能についてそれぞれテストを行い、バチルス属(Bacillus)として180株選出した。種々の酵素分泌性を検討して、2つ以上の酵素を有する菌を保存し、アピテスト等の醗酵性等で有害性菌種を除き68株を選定した。これらについて、後記試験例3の分解性試験を行い、最終的に高能力を有するバチルスHB-88株およびバチルスHB-113株を更に選抜した。 In the case of the gram-positive spore-forming bacilli, the test was carried out on catalase, VP test, viability on an anaerobic agar medium and starch hydrolyzability, respectively, and 180 strains were selected as Bacillus. The secretory properties of various enzymes were examined, the bacteria having two or more enzymes were stored, and 68 strains were selected except for harmful bacterial species due to the fermentability such as Apitest. These were subjected to the degradability test of Test Example 3 below, and finally Bacillus subtilis HB-88 and Bacillus HB-113 strains having high ability were further selected.
試 験 例 2
   コンピテンス法を用いた形質転換菌の取得
 コンピテンスさせる枯草菌のマーバーグ株としては、NBRCにて入手したNBRC14144株を使用した。この株は、ドナーのDNAを菌体内に引きずり込む形質転換の能力を有するが、分泌酵素の種類が少ないのと強さが不足していた。ドナー菌としては、野生の枯草菌中から、酵素を強く分泌する株としてスクリーニングされたバチルスHB-88株を使用した。
Test example 2
Acquisition of Transformed Bacteria Using Competence Method As a Marberg strain of Bacillus subtilis to be made competent, NBRC14144 strain obtained at NBRC was used. This strain has the ability to transform donor DNA into cells, but lacks strength and lack of secreted enzymes. As a donor strain, Bacillus subtilis strain HB-88 screened from among wild B. subtilis strains as a strain that strongly secretes the enzyme was used.
 NBRC14144株をシャーレの生理食塩水(0.85%)に懸濁させた後、紫外線照射により抗生物質耐性菌を作製し、抗生物質グラディエントプレート法(Manual of Methods for General Bacteriolozy p230 1981)にて、クロラルフェニコールを使用して選出した。 After suspending the NBRC 14144 strain in petri dish saline (0.85%), antibiotic resistant bacteria are prepared by ultraviolet irradiation, and the antibiotic gradient plate method (Manual of Methods for General Bacteriolyz p 230 1981) is used. Selected using chloralfenicol.
 自然形質転換は、微生物遺伝実験法p96~101(1982年)の方法にて、最少培地を利用してコンピテント細胞を作製し、ドナー菌株を供与して形質転換させた。この結果、バチルスHB-14株を得た。 In natural transformation, competent cells were prepared using minimal medium according to the method of Microbial Genetic Experiment p96-101 (1982), and transformed by donating a donor strain. As a result, Bacillus strain HB-14 was obtained.
試 験 例 3
   分解酵素分泌バチルス属微生物の選出
(1)分泌酵素生産性程度は、「納豆の研究法」、第44頁((株)恒星社厚生閣、木内幹監修)に記載の方法にて行った。標準寒天培地に、検討すべき基質を溶解させ定法に従い滅菌し、直径85mmのポリシャーレに流しプレートを作成した。力価は直径8mm、厚さ1.5mmのペーパーディスク(東洋濾紙(株))を使用して、コロニー外側のクリアゾーンを測定した。測定する菌液は全て普通ブイヨン培地にて、20時間の撹拌培養後に画線培養し、有効であった菌液を30~70μlディスクに含ませた後に測定プレートに添付した。力価の判定はクリアゾーンがコロニー外縁より1mm以内を(+)、2~3mmを(++)、3mm以上を(+++)として判定した。なお、クリアゾーンが作成されないものは(-)とした。
Test example 3
Selection of degrading enzyme-secreting Bacillus microorganism (1) The secretory enzyme productivity was determined according to the method described in “Research Methods of Natto”, p. The substrate to be examined was dissolved in a standard agar medium and sterilized according to a standard method, and the plate was made by pouring in a plastic dish having a diameter of 85 mm. The titer measured the clear zone of the colony outer side using a paper disc (Toyo Roshi Kogyo Co., Ltd.) of diameter 8 mm and thickness 1.5 mm. All bacterial solutions to be measured were streaked and cultured in a common broth medium for 20 hours with stirring culture, and the effective bacterial solutions were contained in 30 to 70 μl discs and attached to a measurement plate. In the determination of the titer, the clear zone was determined as (+) within 1 mm, 2-3 mm as (++), and 3 mm or more as (+++) from the colony outer edge. In addition, it is assumed that the clear zone is not created is (-).
(2)脂質の分解性の確認
 トリブチリン3%を含む標準寒天培地を滅菌した後ポリトロン(POLYTRON) ホモジナイザー(KINEMATICA.CH)20000rpm5分で乳化し、シャーレに流し込み、脂質分解性確認プレートを作製した。第一スクリーニングとして、このプレートに先に分離したバチルス属微生物を画線培養し、脂質の分解性を確認した。陽性の菌液70μlをディスクに含ませ、プレートに載せ37℃で5日間恒温器に入れ、クリアゾーンを測定した。コロニーが大きく成長した際は、下部が透明であればクリアーゾーンに加えた。HB-14株、HB-88株、HB-113株はともに(+++)であった。
(2) Confirmation of Degradability of Lipid A standard agar medium containing 3% of tributyrin was sterilized and then emulsified with a Polytron (POLYTRON) homogenizer (KINEMATICA. CH) 20000 rpm for 5 minutes, poured into a petri dish to prepare a lipolytic confirmation plate. As a first screening, the Bacillus microorganism previously separated on this plate was streaked to confirm the degradability of the lipid. 70 μl of positive bacterial solution was contained in a disc, placed on a plate, placed in a thermostat at 37 ° C. for 5 days, and the clear zone was measured. When the colony grew large, if the lower part was transparent, it was added to the clear zone. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
(3)デンプンの分解性の確認
 可溶性デンプン(和光純薬工業(株))3%を含む標準寒天培地を滅菌した後、シャーレに流し込み、デンプン分解性確認プレートを作製した。第一スクリーニングとして、このプレートに先に分離したバチルス属微生物を画線培養し、デンプンの分解性を確認した。陽性の菌液30μlをディスクに含ませ、プレートに載せ、37℃で8時間恒温器に入れ、ルゴール液適してクリアゾーンを測定した。HB-14株、HB-88株、HB-113株はともに(+++)であった。
(3) Confirmation of Degradability of Starch After sterilizing a standard agar medium containing 3% of soluble starch (Wako Pure Chemical Industries, Ltd.), it was poured into a petri dish to prepare a plate for confirming starch degradability. As a first screening, the Bacillus microorganism previously separated on this plate was streaked to confirm the degradability of starch. 30 μl of positive bacterial solution was contained in a disc, placed on a plate, placed in a thermostat at 37 ° C. for 8 hours, and a clear zone suitable for Lugol's solution was measured. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
(4)タンパク質の分解性の確認
 豆乳(株式会社 ふくれん)10%を含む標準寒天培地を滅菌した後、シャーレに流し込み、植物性タンパク質分解性確認プレートを作製した。第一スクリーニングとして、このプレートに先に分離したバチルス属微生物を画線し、タンパク質の分解性を確認した。陽性の菌液50μlをディスクに含ませ、プレートに載せ、37℃で3日間恒温器に入れ、クリアゾーンを測定した。HB-14株、HB-88株、HB-113株はともに(+++)であった。
(4) Confirmation of Degradability of Protein After sterilizing a standard agar medium containing 10% of soymilk (Future Co., Ltd.), it was poured into a petri dish to prepare a plate for confirming plant proteolysis. As a first screening, the Bacillus microorganism previously separated on this plate was streaked to confirm the protein degradation. 50 μl of positive bacterial solution was contained in a disc, placed on a plate, placed in a thermostat at 37 ° C. for 3 days, and the clear zone was measured. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
 無脂肪乳(タカナシ乳業)5%を含む標準寒天培地を滅菌した後、シャーレに流し込み、動物性タンパク質分解性確認プレートを作製した。第一スクリーニングとして、このプレートに先に分離したバチルス属微生物を画線し、タンパク質の分解性を確認した。陽性の菌液70μlをディスクに含ませ、プレートに載せ、37℃で10時間恒温器に入れ、クリアゾーンを測定した。HB-14株、HB-88株、HB-113株はともに(+++)であった。 After sterilizing a standard agar medium containing 5% non-fat milk (Taka pear milk industry), it was poured into a petri dish to prepare an animal protein degradation confirmation plate. As a first screening, the Bacillus microorganism previously separated on this plate was streaked to confirm the protein degradation. 70 μl of positive bacterial solution was contained in a disc, placed on a plate, placed in a thermostat at 37 ° C. for 10 hours, and the clear zone was measured. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
(5)細菌分解性の確認(I)
 大腸菌(E.coli NBRC14237株)を普通ブイヨン培地にて20時間培養し、滅菌した標準寒天培地に1%添加し、均質に混合し、シャーレに細菌分解性確認プレートを作製した。第一スクリーニングとして、このプレートに、先に分離したバチルス属微生物を画線し、細菌の分解性を確認した。陽性の菌液70μlをディスクに含ませ、プレートに載せ37℃2日間恒温器に入れ、クリアゾーンを測定した。HB-14株、HB-88株、HB-113株はともに(+++)であった。
(5) Confirmation of bacterial degradability (I)
E. coli (E. coli NBRC14237 strain) was cultured for 20 hours in a common broth medium, 1% was added to a sterile standard agar medium, mixed uniformly, and a plate for confirming bacterial degradation was prepared in a petri dish. As the first screening, the previously isolated Bacillus microorganism was streaked on this plate to confirm the degradability of the bacteria. 70 μl of positive bacterial solution was placed on a disc, placed on a plate, placed in a thermostat at 37 ° C. for 2 days, and the clear zone was measured. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
 次に、乳酸菌(ラクトバチルス・アシドフィラス(ATCC53103株))をMRS合成培地にて48時間培養し、滅菌した標準寒天培地に1%添加し、均質に混合し、シャーレに細菌分解性確認プレートを作製した。第一スクリーニングとして、このプレートに、先に分離したバチルス属微生物を画線し、細菌の分解性を確認した。陽性の菌液70μlをディスクに含ませ、プレートに載せ37℃1日間恒温器に入れ、クリアゾーンを測定した。HB-14株、HB-88株、HB-113株はともに(+++)であった。 Next, the lactic acid bacteria (Lactobacillus acidophilus (strain ATCC 53103)) are cultured in MRS synthetic medium for 48 hours, 1% is added to the sterilized standard agar medium, and mixed uniformly to prepare a bacterially degradable confirmation plate in a petri dish did. As the first screening, the previously isolated Bacillus microorganism was streaked on this plate to confirm the degradability of the bacteria. 70 μl of positive bacterial solution was placed on a disc, placed on a plate, placed in a thermostat at 37 ° C. for 1 day, and the clear zone was measured. The HB-14 strain, the HB-88 strain and the HB-113 strain were all (+++).
(6)細菌分解性の確認(II)
 細胞壁の分解を明確にするため、大腸菌および乳酸菌をそれぞれ20時間培養し、これらのそれぞれの培養液160mlを5000rpmで15分遠心し、菌体を分離した。この大腸菌および乳酸菌の菌体それぞれを80mlの滅菌生理食塩水(0.85%)にて2回遠心洗浄し、20mlの菌液とした。この菌液を85℃10分殺菌し、冷水冷却後、滅菌した標準寒天培地に5%(V/V)添加し、均質に混合し大腸菌用及び乳酸菌用の細胞壁分解性確認プレートを作製した。第一スクリーニングとして、このプレートに、先に分離したバチルス属微生物を画線し、細菌の分解性を確認した。陽性の菌液70μlをディスクに含ませ、先のそれぞれのプレートに載せ37℃10時間恒温器に入れ、クリアゾーンを測定した。HB-14株、HB-88株、HB-113株は大腸菌及び乳酸菌に関しても、ともに(+++)であった。
(6) Confirmation of bacterial degradability (II)
In order to clarify the degradation of the cell wall, E. coli and lactic acid bacteria were each cultured for 20 hours, and 160 ml of their respective culture broths were centrifuged at 5000 rpm for 15 minutes to separate the cells. The cells of E. coli and lactic acid bacteria were centrifuged and washed twice with 80 ml of sterile physiological saline (0.85%) to obtain 20 ml of bacterial solution. The bacterial solution was sterilized at 85 ° C. for 10 minutes and cooled with cold water, and then 5% (V / V) was added to a sterile standard agar medium, and mixed uniformly to prepare a cell wall degradable confirmation plate for E. coli and lactic acid bacteria. As the first screening, the previously isolated Bacillus microorganism was streaked on this plate to confirm the degradability of the bacteria. 70 μl of positive bacterial solution was contained in a disc, placed on each of the above plates, placed in a thermostat at 37 ° C. for 10 hours, and the clear zone was measured. The strains HB-14, HB-88 and HB-113 were both (+++) for E. coli and lactic acid bacteria.
(7)溶菌からの生育性
 先に記載した大腸菌を、普通ブイヨン培地にて20時間培養し、40mlの培養液を5000回転(rpm)で15分間遠心分離した。生理食塩水(0.85%)で同様に遠心洗浄し、これを3回繰り返した。全量の洗浄済みの菌、20%に、最低限必要な無機塩類(NHNO;1.0%、KHPO;0.25%、MgSO・7HO;0.25%、FeSO・7HO;0.0002%)及び寒天を加えて、シャーレに細菌分解性確認プレートを作製した。このプレートに画線し37℃で2日間恒温器にて培養し分解性を確認したところ、HB-14株、HB-88株、HB-113株では、その生育性が確認されると共にコロニー付近の培地が透明になった。なお、陽性株に対しては、上記無機塩のみの寒天培地では成育しない事を確認した。
(7) Viability from lysis The above-described E. coli was cultured in normal broth medium for 20 hours, and 40 ml of the culture solution was centrifuged at 5000 rpm (rpm) for 15 minutes. Similar centrifugation with physiological saline (0.85%) was repeated three times. Total amount of washed bacteria, 20%, minimum required inorganic salts (NH 4 NO 3 ; 1.0%, KH 2 PO 4 ; 0.25%, MgSO 4 · 7H 2 O; 0.25%, FeSO 4 · 7H 2 O; 0.0002 %) and by adding agar to prepare a bacterial degradable check plate in a petri dish. The plate was streaked and cultured in a thermostat at 37 ° C. for 2 days to confirm its degradability. With HB-14 strain, HB-88 strain and HB-113 strain, their viability was confirmed and in the vicinity of the colony Medium became clear. In addition, it confirmed that it did not grow with the agar medium of only the said inorganic salt with respect to the positive strain.
 試験例3から、180菌株中、2種(脂質、デンプン)の分解酵素を有する菌株68株にて他の分解酵素の力価を確認した。この結果を表3に示す。全ての項目が分解性(+++)の力価の菌株を5菌株見出し、HB-13、HB-88、HB-113をこの代表とした。 From Test Example 3, the titers of the other degrading enzymes were confirmed in 68 strains having two degrading enzymes (lipid, starch) out of 180 strains. The results are shown in Table 3. All items were found 5 strains of degradable (+++) titer, and HB-13, HB-88, and HB-113 were representative of this.
バチルス属菌の分解酵素の分解性の力価
Figure JPOXMLDOC01-appb-T000003
Degradability titer of Bacillus decomposing enzymes
Figure JPOXMLDOC01-appb-T000003
実 施 例 1
   好気処理の一般分析値
 脂肪、細胞壁、タンパク質、デンプン分解性酵素を豊富に分泌し、且つ、溶菌した菌を栄養源として、生育できるHB-113(NITE BP-1277)を用いた。乳製品メーカーの排水を原水調整槽から200Lを500Lのタンクにとり、上記の菌を100mg/L加え、微細気泡発生装置MAB((株)日本水処理技研)を使用し、発生時溶存酸素10mg/L(25℃)以上の好気性条件にて24時間処理した。排水を処理した際の分析値を下記の表4、5に示す。HB-113菌添加処理した槽が、BOD、COD,N-ヘキサン、SSのカット率が無添加に比較して非常に良好な結果を示した。
Example 1
General Analysis Value of Aerobic Treatment HB-113 (NITE BP-1277), which is rich in fat, cell wall, protein and amylolytic enzymes and can be used as a nutrient source, was used as a nutrient source. Take 200 L from the raw water conditioning tank into a 500 L tank and add 100 mg / L of the bacteria mentioned above from the dairy manufacturer's wastewater, and use the micro-bubble generator MAB (Japan Water Treatment Giken Co., Ltd.) The treatment was performed for 24 hours under aerobic conditions of L (25 ° C.) or higher. The analysis values when the wastewater is treated are shown in Tables 4 and 5 below. The bath treated with the addition of HB-113 cells showed very good results in terms of cut rate of BOD, COD, N-hexane, and SS compared to the case without addition.
  結 果 :HB-113菌添加処理
Figure JPOXMLDOC01-appb-T000004
Result: HB-113 bacteria addition treatment
Figure JPOXMLDOC01-appb-T000004
  結 果 :添加菌なし
Figure JPOXMLDOC01-appb-T000005
Result: no added bacteria
Figure JPOXMLDOC01-appb-T000005
実 施 例 2
   汚泥の減容化試験
 7%の牛乳を含む水を排水の原水モデルとし、その200mlに、普通ブイヨン培地(栄研化学(株))で培養したバチルス HB-14株(NITE BP-1275)を2ml加え、30℃にて24時間、攪拌培養して前段培養とした。この前段培養液を800mlの菓子を製造している食品会社の排水処理の汚泥液(被検汚泥液;COD=31)に加え、熱帯魚に使用するエアーストーンを通して汚泥が循環する強さ(1.2~2.0mg 酸素/L)でエアーを送り、曝気培養した。1日後、200mlのサンプルを採取し、前段培養液を初日と同様に加えた。これを1週間継続し、汚泥量のMLSSの値を測定した。
Example 2
Sludge volume reduction test Water containing 7% milk is used as a raw water model for drainage, and 200 ml of the strain is a strain of Bacillus HB-14 (NITE BP-1275) cultured in ordinary broth medium (Eiken Chemical Co., Ltd.) 2 ml was added and culture was carried out with stirring at 30 ° C. for 24 hours to obtain pre-culture. This pre-culture solution is added to the sludge solution (test sludge solution; COD = 31) of the waste water treatment of a food company producing 800 ml of confectionery, and the strength of circulating sludge through air stone used for tropical fish (1. The air was fed at 2 to 2.0 mg oxygen / L), and aeration culture was performed. One day later, 200 ml samples were taken and the preculture was added as on the first day. This was continued for one week, and the value of MLSS of the amount of sludge was measured.
 また、比較としては、HB-14株に代え、納豆から分離したバチルス属微生物(細菌を溶解せず、タンパク質分解性(+)、脂質分解性(-)、デンプン分解性(+++))を用いた。これらの結果を表6に示す。 In addition, as a comparison, instead of the HB-14 strain, a Bacillus microorganism (not soluble in bacteria, proteolytic (+), lipolytic (-), starch-degradable (+++)) isolated from natto is used. It was. These results are shown in Table 6.
  結 果 :
Figure JPOXMLDOC01-appb-T000006
Result:
Figure JPOXMLDOC01-appb-T000006
実 施 例 3
   膜を利用した排水処理での目詰まり防止試験
(1)10%の豆乳(成分無調整豆乳;株式会社 ふくれん)1000mlを排水原液モデルとして使用した。この液に、普通ブイヨン培地で20時間培養したバチルス・サブチルスHB-88株(NITE BP-1276)を20ml加え、株熱帯魚に使用するエアーストーンを通して汚泥が循環する強さ(1.2~2.0mg 酸素/L)でエアーを送り、終日曝気培養した。1日後~4日後にそれぞれ200mlのサンプルを採取し、その都度10%の豆乳排水原液モデルを加えて1000mlにし、曝気培養を継続した。各々のサンプルは、MLSSを測定した後に遠心(3000rpm)し、0.45ミクロンの除菌膜を使用することで5日間排水が可能であった。
Example 3
Clogging prevention test in waste water treatment using a membrane (1) 1000 ml of 10% soymilk (component unadjusted soymilk; Inc., Inc.) was used as a drainage stock solution model. To this solution, 20 ml of Bacillus subtilis HB-88 strain (NITE BP-1276) cultured for 20 hours in ordinary broth medium was added, and the strength of circulating sludge through the air stone used for stock tropical fish (1.2 to 2.). Air was sent at 0 mg oxygen / L), and aeration culture was performed all day. After 1 day to 4 days, 200 ml of each sample was taken, and 10% soy milk dewatered stock solution model was added each time to make 1000 ml, and aeration culture was continued. Each sample was centrifuged (3000 rpm) after measuring MLSS, and drainage was possible for 5 days by using a 0.45 micron sterile membrane.
(2)一方、普通ブイヨン培地で培養したバチルス・サブチルス HB-88株に代え、返送活性汚泥液(食品工場で得たもの;COD=31)を使用する以外は、上記(1)と同様に処理した。この場合、0.45ミクロンの除菌膜が目詰まりしてほとんど濾過できなかった。 (2) On the other hand, the same procedure as in (1) above is used except that the activated activated sludge liquid (obtained at a food factory; COD = 31) is used instead of Bacillus subtilis HB-88 strain cultured in ordinary broth medium. It was processed. In this case, the 0.45 micron sterile membrane was clogged and could hardly be filtered.
実 施 例 4
   排水中の油脂低減化試験
(1)無機塩((NHSO:5.0g、NaHPO:0.5g、MgSO・7HO:0.25g、CaCO:5.0)を溶解した水溶液500mlを滅菌し、これに脱脂乳(タカナシ無脂肪乳)100mlを水で500mlとした溶液を加え、あわせて1000mlとしたものを前培養液とした。この前培養液は2セット準備した。
Example 4
Fat and oil reduction test in waste water (1) Inorganic salt ((NH 4 ) 2 SO 4 : 5.0 g, Na 2 HPO 4 : 0.5 g, MgSO 4 · 7H 2 O: 0.25 g, CaCO 3 : 5. A solution of 500 ml of the aqueous solution in which 0) was dissolved was sterilized, and 100 ml of skimmed milk (Takahana non-fat milk) made 500 ml of water was added thereto to make a total of 1000 ml as a pre-culture liquid. Two sets of this preculture solution were prepared.
(2)この前培養液に、普通ブィヨン培地で30℃、2日間攪拌培養した酵母(YH-01株 日之出産業(株))培養液20mlと、同様に培養したバチルス HB-113株(NITE BP-1277)培養液20mlを加え、容器を30℃に保ち、エアーストーンを通して溶液が循環する強さ(1.2~2.0mg 酸素/L)でエアーを送り1日間培養し、前段培養液(2セット)とした。 (2) In this pre-culture solution, 20 ml of a yeast (YH-01 strain Hinode Sangyo Co., Ltd.) culture solution, which was cultured with stirring for 2 days at 30 ° C. in normal bouillon medium, and a Bacillus HB-113 strain (NITE BP) -1277) Add 20 ml of the culture solution, keep the container at 30 ° C, send air at a strength (1.2 to 2.0 mg oxygen / L) at which the solution circulates through an air stone, and culture for 1 day. 2 sets).
 牛乳60ml(タカナシ無調整牛乳 乳脂肪率3.6%)に水を加え、全量を1000mlとし、油脂含有排水のモデル原水とした。このモデル原水に、前段培養液を加えて、全量2000mlの油脂含有(1080mg/L)排水とした。この油脂含有排水(2セット)を、容器中で30℃に保ち、先と同様にエアーストーンを通して溶液が循環する強さでエアーを送り、3日間培養した。1日1000mlを試料として採取し、処理水中のn-ヘキサン抽出物量(油分量)を測定した。 Water was added to 60 ml of milk (Taka pear unadjusted milk, milk fat percentage: 3.6%) to make the total amount 1000 ml, and used as a model raw water of oil-containing drainage. The initial culture solution was added to this model raw water to make a total of 2000 ml of oil-containing (1080 mg / L) waste water. The oil-containing waste water (2 sets) was kept at 30 ° C. in a container, and air was sent at the strength at which the solution circulated through the air stone in the same manner as above, and was cultured for 3 days. 1000 ml per day was taken as a sample, and the amount of n-hexane extract (oil amount) in treated water was measured.
(3)比較例として、上記(1)で調製した2セットの前培養液に、普通ブィヨン培地で30℃2日間攪拌培養した酵母(YH-01株 日之出産業(株))培養液20mlのみを加え、以下、(2)と同様に培養し、処理液中のn-ヘキサン抽出物量を測定した。 (3) As a comparative example, only 20 ml of the yeast (YH-01 strain Hinode Sangyo Co., Ltd.) culture solution which was cultured with stirring in a medium of 30 ° C. for 2 days was added to the two sets of precultures prepared in (1). In addition, the culture was conducted in the same manner as in (2) below, and the amount of n-hexane extract in the treatment solution was measured.
(4)比較例として、上記(1)で調製した2セットの前培養液に、普通ブィヨン培地で30℃2日間攪拌培養したHB-113培養液20mlのみを加え、以下、(2)と同様に培養し、処理液中のn-ヘキサン抽出物量を測定した。(2)、(3)および(4)の結果を表7に示す。 (4) As a comparative example, only 20 ml of HB-113 culture solution cultured with stirring at 30 ° C. for 2 days in ordinary bouillon medium is added to the two sets of pre-culture solutions prepared in (1) above. And the amount of n-hexane extract in the treatment solution was measured. The results of (2), (3) and (4) are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実 施 例 5
    大腸菌抑制作用
 無機塩((NHSO:5.0g、NaHPO:0.5、MgSO・7HO:0.25g、CaCO:5.0)を970mlの水に溶解し、これに牛乳30ml(脂肪率3.6%)を加えて1000mlの油脂含有排水モデルとした。これに普通ブィヨン培地中、30℃で2日間攪拌培養した酵母(YH-01株)培養液10ml、普通ブィヨン培地で35℃1日攪拌培養したHB-88株(NITE BP-1276)培養液10mlおよび普通ブイヨン培地で35℃1日静置培養した大腸菌(NBRC14237株)10mlを加え、32℃で3日間、緩やかに攪拌培養を行った。1日後と3日後に分析サンプルを採取し、油脂含有率と添加したそれぞれの菌数を計測した。菌数の測定法は定法に従い生理食塩滅菌水で適切に希釈し、酵母(YH-01)の検出はサブロウ―寒天培地(栄研)を使用し30℃で5日間、バチルス(HB-88)は標準寒天培地を使用し37℃で2日間培養した。大腸菌は原液をデオキシコーレイト培地のプレートに0.1ml塗布し37℃で2日間培養した。結果を表8に示す。この結果、1日後、3日後共に大腸菌が減少し、油脂の分解性も実施例4と同様に十分に分解された。
Example 5
E. coli inhibitory action Inorganic salt ((NH 4 ) 2 SO 4 : 5.0 g, Na 2 HPO 4 : 0.5, MgSO 4 · 7 H 2 O: 0.25 g, CaCO 3 : 5.0) in 970 ml water It melt | dissolved, 30 ml of milk (fat percentage 3.6%) was added to this, and it was set as the oil-and-fat containing drainage model of 1000 ml. 10 ml of yeast (YH-01 strain) culture broth cultured at 30 ° C. for 2 days in ordinary bouillon medium and 10 ml of HB-88 strain culture broth (NITE BP-1276) cultured at 35 ° C. for 1 day in ordinary bouillon medium Then, 10 ml of E. coli (NBRC 14237 strain) which was statically cultured at 35 ° C. in a normal broth medium for 1 day was added, and gently culture was carried out at 32 ° C. for 3 days. An analysis sample was collected after one day and three days, and the oil content and the number of bacteria added were counted. The method of measuring the number of bacteria is appropriately diluted with sterile saline according to a standard method, and the detection of yeast (YH-01) is carried out using a subrow-agar medium (Eiken) for 5 days at 30 ° C., Bacillus (HB-88) Were cultured at 37 ° C. for 2 days using a standard agar medium. For E. coli, 0.1 ml of a stock solution was applied to a plate of deoxycholate medium and cultured at 37 ° C. for 2 days. The results are shown in Table 8. As a result, both after 1 day and after 3 days, E. coli decreased, and the degradability of the oil was also sufficiently degraded as in Example 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の新規バチルス属微生物は、細胞壁を分解し、分解した細胞を資化して生育する性質を持ち、脂質を分解する酵素を分泌し、さらには、タンパク質、デンプンを分解する酵素を分泌するものである。 The novel Bacillus microorganism of the present invention has the property of degrading the cell wall, assimilating and growing the degraded cells, secreting an enzyme that degrades lipid, and further secretes an enzyme that degrades protein and starch. It is.
 そして、上記バチルス属微生物の性質を利用して活性汚泥法の余剰汚泥の減容化と排水中の油脂の減少、固液分離を改良させることが可能となる。すなわち、汚泥は、蛋白質粘性物、多糖粘質物、脂肪凝塊物、細菌塊、鉱物等を構成成分とし、これらの凝集したものであるが、本発明のバチルス属微生物は、これらのうち鉱物以外を分解できる酵素を分泌し、かつ、溶菌した成分で生育できるので、余剰汚泥の減容化を有利に進めることができる。 And it becomes possible to improve the volume reduction of the excess sludge of an activated sludge method, the reduction of the fats and oils in waste water, and solid-liquid separation using the characteristic of the said Bacillus-genus microbe. That is, the sludge contains protein viscous substance, polysaccharide mucilage, fat agglomerate, bacteria lump, mineral and the like as a component, and these are aggregated, but the Bacillus microorganism of the present invention is not mineral among these Since it is possible to secrete an enzyme capable of decomposing and to grow with the lysed components, volume reduction of excess sludge can be advantageously promoted.
 また、油脂を含有する排水に対しては、油脂を資化する酵母と共生させることでより優れた油脂分解作用を得ることができる。 Moreover, to the waste water containing fats and oils, more excellent fats-and-oils decomposition action can be obtained by making it coexist with the yeast which assimilate fats and oils.
   1 … … 排水処理装置
   2 … … 処理槽
   3 … … 被処理水
   4 … … 曝気パイプ
   5 … … 曝気孔
   6 … … 被処理水流入配管
   7 … … 処理剤投入装置
   8 … … 処理剤注入管
   9 … … 微細気泡発生装置
  10 … … 水中ポンプ
  11 … … 被処理水排出配管
1 ... ... Waste water treatment device 2 ... ... Treatment tank 3 ... ... Water to be treated 4 ... ... Aeration pipe 5 ... ... Air aeration 6 ... ... Water inflow piping to be treated 7 ... ... Treatment agent feeding device 8 ... ... Treatment agent injection tube 9 ... ... Fine air bubble generator 10 ... ... Submersible pump 11 ... ... Processed water discharge piping

Claims (15)

  1.  バチルス属に属し、少なくとも細菌の細胞壁および脂質を分解する能力を有する新規微生物。 A novel microorganism belonging to the genus Bacillus, which has the ability to degrade at least bacterial cell walls and lipids.
  2.  更に、蛋白質およびデンプンを分解する能力を有する請求項1記載の新規微生物。 The novel microorganism according to claim 1, further having the ability to degrade protein and starch.
  3.  グラム陰性菌を死滅させ、その細菌の成分を栄養源として生育可能なものである請求項1または2に記載の新規微生物。 The novel microorganism according to claim 1 or 2, which kills gram-negative bacteria and can be grown using the components of the bacteria as a nutrient source.
  4.  バチルスHB-14株(NITE BP-1275)、バチルスHB-88株(NITE BP-1276)およびバチルスHB-113株(NITE BP-1277)と命名されたものである請求項1~3の何れかの項記載の新規微生物。 The method according to any one of claims 1 to 3, which is designated as Bacillus HB-14 strain (NITE BP-1275), Bacillus HB-88 strain (NITE BP-1276) and Bacillus HB-113 strain (NITE BP-1277). Novel microorganism described in paragraph.
  5.  請求項1~4の何れかの項に記載の新規微生物を含む、余剰汚泥発生防止もしくは減容化のための排水処理生菌剤。 An agent for treating waste water, comprising the novel microorganism according to any one of claims 1 to 4, for preventing excess sludge generation or reducing the volume.
  6.  請求項1~4の何れかの項に記載の新規微生物と油脂資化性酵母を含む油脂含有排水処理生菌組成物。 An oil- and fat-containing wastewater treatment composition comprising the novel microorganism according to any one of claims 1 to 4 and an oil-utilizing yeast.
  7.  排水処理施設の被処理水中に、請求項1~4のいずれかの項記載の新規微生物を、単独あるいは2種以上混合して添加することを特徴とする、排水処理施設での余剰汚泥の減容化方法。 A method for reducing excess sludge in a wastewater treatment facility, characterized in that the novel microorganism according to any one of claims 1 to 4 is added singly or in combination of two or more to the water to be treated in the wastewater treatment facility. Method of packaging.
  8.  固液分離膜を用いて除水する固液分離排水処理方法において、前記固液分離膜に、請求項1~4のいずれかの項記載の新規微生物を、単独あるいは2種以上混合して作用させることを特徴とする、膜通過のフラックス低下を抑制する方法。 In the solid-liquid separation wastewater treatment method of removing water using a solid-liquid separation membrane, the action of the novel microorganism according to any one of claims 1 to 4 in the solid-liquid separation membrane is exerted alone or in combination. A method of suppressing flux reduction through a membrane, characterized in that
  9.  被処理水を収容、処理するための処理槽、当該処理槽に被処理水を流入させる流入配管、処理水を排出させるための排出配管および被処理水を曝気するための曝気パイプを有する排水処理装置であって、処理剤を投入するための処理剤投入装置を設けたことを特徴とする排水処理装置。 A treatment tank for containing and treating treated water, an inflow pipe for introducing treated water into the treated tank, a discharge pipe for discharging treated water, and an aeration pipe for aerating treated water An apparatus, comprising: a treatment agent input device for injecting a treatment agent.
  10.  前記処理剤投入装置が、処理剤を定量投入するものである請求項第9項記載の排水処理装置。 10. The waste water treatment apparatus according to claim 9, wherein the treatment agent feeding device feeds a treatment agent in a fixed amount.
  11.  処理剤が請求項5記載の排水処理生菌剤である請求項9または10記載の排水処理装置。 The waste water treatment apparatus according to claim 9 or 10, wherein the treatment agent is the waste water treatment biocide according to claim 5.
  12.  処理剤が請求項6記載の油脂含有排水処理生菌組成物である請求項9または10記載の排水処理装置。 The waste water treatment apparatus according to claim 9 or 10, wherein the treatment agent is the fat and oil containing waste water treatment living microbe composition according to claim 6.
  13.  前記排出配管が、処理槽に設けられたオーバーフロー槽に設けられたものである請求項9ないし12の何れかの項記載の排水処理装置。 The wastewater treatment device according to any one of claims 9 to 12, wherein the discharge pipe is provided in an overflow tank provided in the treatment tank.
  14.  前記排出配管が、処理槽中から処理水をポンプにより汲み上げるように設けたものである請求項9ないし12の何れかの項記載の排水処理装置。 The waste water treatment apparatus according to any one of claims 9 to 12, wherein the discharge pipe is provided to pump treated water from the treatment tank with a pump.
  15.  更に前記処理槽に微細気泡発生装置を設置し、被処理水の循環を可能とした請求項9ないし12の何れかの項記載の排水処理装置。 The waste water treatment apparatus according to any one of claims 9 to 12, further comprising a microbubble generator installed in the treatment tank to enable circulation of the water to be treated.
PCT/JP2013/055504 2012-03-12 2013-02-28 Novel bacillus microbes and use of same WO2013137010A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504790A JP6105553B2 (en) 2012-03-12 2013-02-28 Novel microorganisms of the genus Bacillus and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053981 2012-03-12
JP2012-053981 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013137010A1 true WO2013137010A1 (en) 2013-09-19

Family

ID=49160926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055504 WO2013137010A1 (en) 2012-03-12 2013-02-28 Novel bacillus microbes and use of same

Country Status (2)

Country Link
JP (1) JP6105553B2 (en)
WO (1) WO2013137010A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119100A1 (en) * 2014-02-04 2015-08-13 富士電機株式会社 Wastewater treatment process
JP2016140838A (en) * 2015-02-03 2016-08-08 富士電機株式会社 Waste water treatment method and waste water treatment equipment
JPWO2015068764A1 (en) * 2013-11-06 2017-03-09 株式会社明治 Method for producing fructooligosaccharide
JP2017070894A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Oil-containing wastewater treatment method
WO2017163340A1 (en) * 2016-03-23 2017-09-28 富士電機株式会社 Wastewater treatment method and wastewater treatment apparatus
WO2024003978A1 (en) * 2022-06-27 2024-01-04 株式会社水和 Method for biologically treating persistent organic waste water containing oil component including higher fatty acid and thickening polysaccharide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234454A (en) * 1995-12-31 1997-09-09 Tsutomu Nishimura Garbage treating method and machine therefor
JP2005021010A (en) * 2003-06-30 2005-01-27 Yakult Honsha Co Ltd Novel Bacillus strain and garbage treatment agent, garbage treatment method and apparatus using the same
WO2006121803A1 (en) * 2005-05-05 2006-11-16 Sensient Flavors Inc. Production of beta-glucans and mannans

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654332B2 (en) * 2004-08-03 2011-03-16 日之出産業株式会社 New Yarrowia yeast and biological treatment method of waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234454A (en) * 1995-12-31 1997-09-09 Tsutomu Nishimura Garbage treating method and machine therefor
JP2005021010A (en) * 2003-06-30 2005-01-27 Yakult Honsha Co Ltd Novel Bacillus strain and garbage treatment agent, garbage treatment method and apparatus using the same
WO2006121803A1 (en) * 2005-05-05 2006-11-16 Sensient Flavors Inc. Production of beta-glucans and mannans

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HELISTO P. ET AL.: "Lytic enzyme complex of an antagonistic Bacillus sp. X-b: isolation and purification of components.", JOURNAL OF CHROMATOLOGY B, vol. 758, 2001, pages 197 - 205, XP027432499, DOI: doi:10.1016/S0378-4347(01)00181-5 *
KATSURA KITATSUJI ET AL.: "Isolation of Microorganisms that Lyse Filamentous Bacteria and Purification of the Lytic Substance Secreted by Bacillus Polymyxa", JOURNAL OF JAPAN SOCIETY ON WATER ENVIRONMENT, vol. 21, no. 12, 1998, pages 856 - 861 *
MASASHI TOYOOKA: "Haisui Shori Trouble-ji no Biseibutsu Seizai ni yoru Shori Jotai Kaizen Jirei", ENVIRONMENTAL SOLUTION TECHNOLOGY, vol. 6, no. 8, 2007, pages 59 - 61 *
SEIICHI OBAYASHI ET AL.: "Shokuhin-Inryo Kojo Muke Yushi Haisui Shori Gijutsu Biseibutsu Seizai ni yoru Yushi Bunkai Shori Gijutsu (Yushi Bunkai Biseibutsu Seizai no Tokucho to Shingijutsu `Two Way System' no Tekiyo)", ENVIRONMENTAL SOLUTION TECHNOLOGY, vol. 10, no. L, 2011, pages 11 - 17 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068764A1 (en) * 2013-11-06 2017-03-09 株式会社明治 Method for producing fructooligosaccharide
WO2015119100A1 (en) * 2014-02-04 2015-08-13 富士電機株式会社 Wastewater treatment process
JP5959755B2 (en) * 2014-02-04 2016-08-02 富士電機株式会社 Wastewater treatment method
CN106068243A (en) * 2014-02-04 2016-11-02 富士电机株式会社 Method of wastewater treatment
EP3103773A4 (en) * 2014-02-04 2017-09-27 Fuji Electric Co., Ltd. Wastewater treatment process
US9994469B2 (en) 2014-02-04 2018-06-12 Fuji Electric Co., Ltd. Wastewater treatment process
JP2016140838A (en) * 2015-02-03 2016-08-08 富士電機株式会社 Waste water treatment method and waste water treatment equipment
JP2017070894A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Oil-containing wastewater treatment method
WO2017163340A1 (en) * 2016-03-23 2017-09-28 富士電機株式会社 Wastewater treatment method and wastewater treatment apparatus
CN108602703A (en) * 2016-03-23 2018-09-28 富士电机株式会社 Drainage processing method and drain treatment apparatus
WO2024003978A1 (en) * 2022-06-27 2024-01-04 株式会社水和 Method for biologically treating persistent organic waste water containing oil component including higher fatty acid and thickening polysaccharide

Also Published As

Publication number Publication date
JP6105553B2 (en) 2017-03-29
JPWO2013137010A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
DK2999801T3 (en) MICROBIAL WASTE WATER TREATMENT COMPOSITIONS AND PROCEDURES FOR USING THEREOF
EP3659982B1 (en) A bio-catalytic composition useful in soil conditioning
Al-Wasify et al. Biodegradation of dairy wastewater using bacterial and fungal local isolates
JP5819442B2 (en) Biological treatment method of refractory wastewater and wastewater treatment agent
CN102268394B (en) Method of amplification culture of microorganism for waste water treatment and method of microorganism waste water treatment
Dhall et al. Biodegradation of sewage wastewater using autochthonous bacteria
CN103025668B (en) A kind of method of quick processing wastewater and combinations thereof thing
WO2013137010A1 (en) Novel bacillus microbes and use of same
El-Bestawy et al. The potentiality of free Gram-negative bacteria for removing oil and grease from contaminated industrial effluents
Pillai et al. Rubber processing industry effluent treatment using a bacterial consortium
Shruthi et al. Bioremediation of rubber processing industry effluent by Pseudomonas sp
CN102985376B (en) Method for handling industrial waste
JP4654332B2 (en) New Yarrowia yeast and biological treatment method of waste water
Smitha et al. Bioremediation of rubber processing industry effluent by Arthrobacter sp
EP3328799B1 (en) Consortium of micro-organisms and its use to reduce chemical oxygen demand of spent metal working fluid
El Bestawy et al. Microbial Remediation of Dairy Industrial Wastewater Using Batch Mode Moving Bed Biofilm Reactor (MBBR)
Gunalan et al. Decolourization of methylene blue using indigenous microbes
Hassan et al. Assessment of some bacterial and fungal strains for dairy wastewater treatment
Chatterjee et al. In situ Bioremediation of Dairy Waste Water–A Novel Approach in Dairy Waste Management
Khaleel et al. Bioremediation of dairy wastewater using locally isolated microorganisms.
GB2565235B (en) Consortium
Gawai et al. Evaluation of B. cereus MTCC 25641 for the Treatment of Dairy Waste Effluent
Аль-Суфи et al. EFFECTIVENESS OF BACILLUS SUBTILIS STRAIN IN THE TREATMENT OF DAIRY INDUSTRY WASTEWATER
Roushdy et al. Bioscience Research
Hassan et al. Microbiological studies on the wastewater treatment and agricultural fertilization

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504790

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761745

Country of ref document: EP

Kind code of ref document: A1