WO2013129388A1 - 伸縮性人工皮革及びその製造方法 - Google Patents
伸縮性人工皮革及びその製造方法 Download PDFInfo
- Publication number
- WO2013129388A1 WO2013129388A1 PCT/JP2013/054949 JP2013054949W WO2013129388A1 WO 2013129388 A1 WO2013129388 A1 WO 2013129388A1 JP 2013054949 W JP2013054949 W JP 2013054949W WO 2013129388 A1 WO2013129388 A1 WO 2013129388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial leather
- stretchable
- vertical direction
- elongation
- fiber
- Prior art date
Links
- 239000002649 leather substitute Substances 0.000 title claims abstract description 447
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 60
- 239000000835 fiber Substances 0.000 claims abstract description 179
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 125
- 229920000642 polymer Polymers 0.000 claims description 92
- 229920001410 Microfiber Polymers 0.000 claims description 65
- 238000010438 heat treatment Methods 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 25
- 239000011295 pitch Substances 0.000 claims description 17
- 229920002635 polyurethane Polymers 0.000 claims description 17
- 239000004814 polyurethane Substances 0.000 claims description 17
- 230000008602 contraction Effects 0.000 claims description 13
- 239000000839 emulsion Substances 0.000 claims description 13
- 229920000728 polyester Polymers 0.000 claims description 11
- 230000002040 relaxant effect Effects 0.000 claims description 6
- 239000010985 leather Substances 0.000 claims description 5
- 244000043261 Hevea brasiliensis Species 0.000 claims description 4
- 229920003052 natural elastomer Polymers 0.000 claims description 4
- 229920001194 natural rubber Polymers 0.000 claims description 4
- 229920003051 synthetic elastomer Polymers 0.000 claims description 4
- 239000005061 synthetic rubber Substances 0.000 claims description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 42
- -1 polypropylene Polymers 0.000 description 40
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- 150000002009 diols Chemical class 0.000 description 25
- 229920001971 elastomer Polymers 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 20
- 238000009998 heat setting Methods 0.000 description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 description 19
- 229920002451 polyvinyl alcohol Polymers 0.000 description 19
- 239000005060 rubber Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 229920000139 polyethylene terephthalate Polymers 0.000 description 12
- 239000005020 polyethylene terephthalate Substances 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- 239000004332 silver Substances 0.000 description 11
- 238000009987 spinning Methods 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 238000005452 bending Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 239000004744 fabric Substances 0.000 description 10
- 229920000515 polycarbonate Polymers 0.000 description 10
- 239000004417 polycarbonate Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000004721 Polyphenylene oxide Substances 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 238000004043 dyeing Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 229920000570 polyether Polymers 0.000 description 9
- 238000004080 punching Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920005862 polyol Polymers 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 238000007664 blowing Methods 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- 229920003225 polyurethane elastomer Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 244000137852 Petrea volubilis Species 0.000 description 4
- 229920002396 Polyurea Polymers 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 210000004177 elastic tissue Anatomy 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004970 Chain extender Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004902 Softening Agent Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229920003211 cis-1,4-polyisoprene Polymers 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 1
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- LFSKFRWAJGNWJG-UHFFFAOYSA-N 4-methyl-1,7-dioxacycloheptadecane-8,17-dione Chemical compound CC1CCOC(=O)CCCCCCCCC(=O)OCC1 LFSKFRWAJGNWJG-UHFFFAOYSA-N 0.000 description 1
- MVFNWZHRHUOGKQ-UHFFFAOYSA-N 4-methyl-1,7-dioxacyclotridecane-8,13-dione Chemical compound CC1CCOC(=O)CCCCC(=O)OCC1 MVFNWZHRHUOGKQ-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- SFQNWNRHXAFLLJ-UHFFFAOYSA-N 6-methyl-1,3-dioxocan-2-one Chemical compound CC1CCOC(=O)OCC1 SFQNWNRHXAFLLJ-UHFFFAOYSA-N 0.000 description 1
- 241000221020 Hevea Species 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 229940058302 antinematodal agent piperazine and derivative Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UTTHLMXOSUFZCQ-UHFFFAOYSA-N benzene-1,3-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(C(=O)NN)=C1 UTTHLMXOSUFZCQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 229920006235 chlorinated polyethylene elastomer Polymers 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- GLOBUAZSRIOKLN-UHFFFAOYSA-N pentane-1,4-diol Chemical compound CC(O)CCCO GLOBUAZSRIOKLN-UHFFFAOYSA-N 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001123 polycyclohexylenedimethylene terephthalate Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0015—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
- D06N3/0025—Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
- D06N3/0027—Rubber or elastomeric fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C21/00—Shrinking by compressing
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0004—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0011—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0015—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
- D06N3/0025—Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
- D06N3/0029—Stretchable fibres; Stretching of fibres during manufacture
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0015—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
- D06N3/0025—Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
- D06N3/0031—Retractable fibres; Shrinking of fibres during manufacture
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0015—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
- D06N3/0036—Polyester fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/16—Properties of the materials having other properties
- D06N2209/1635—Elasticity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2211/00—Specially adapted uses
- D06N2211/12—Decorative or sun protection articles
- D06N2211/28—Artificial leather
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24438—Artificial wood or leather grain surface
Definitions
- the present invention relates to a stretchable artificial leather having moderate stretchability in the vertical direction and having a feeling of non-stretching and excellent in flexibility, moldability, and wearing feeling, and a method for producing the same.
- the present invention also relates to a stretchable artificial leather having excellent mechanical strength and having a moderate feeling of elongation in the vertical direction, and a method for producing the same.
- leather-like sheets such as artificial leather have flexibility and functionality not found in natural leather, they are used in various applications such as clothing and materials. Stretchability has attracted attention as an important function from the viewpoints of wearing feeling in clothing, molding processability in materials, and ease of sewing and tailoring.
- a method for producing artificial leather excellent in elasticity, characterized by shrinking the artificial leather by relaxing the extension of the elastic sheet and then removing the elastic sheet has been proposed (for example, Patent Document 1).
- this method requires the steps of applying an adhesive to the elastic sheet and removing the adhesive, which reduces productivity.
- the artificial leather substrate when the artificial leather substrate is shrunk after being bonded to the elastic sheet, the artificial leather substrate is curled on the elastic sheet side and the process passability is deteriorated. Further, since the artificial leather substrate is contracted only by the contraction force of the elastic sheet, it is difficult to contract the high-density artificial leather substrate at a high contraction rate. Furthermore, the use of adhesives degrades the quality of the artificial leather surface.
- Patent Document 2 discloses that an artificial leather mainly composed of a fiber entangled body mainly containing ultrafine fibers having a single yarn fineness of 1.1 dtex or less and a polyurethane resin, after applying a softener to the artificial leather, A method for producing artificial leather excellent in stretchability in the width direction is disclosed, wherein the agent is applied and simultaneously stretched in the length direction and contracted in the width direction in a heated state. However, since it elongates in the length direction, spotted spots and thickness spots of artificial leather are promoted.
- Patent Document 2 describes the improvement of the stretchability in the vertical direction of the artificial leather. Not considering anything.
- Patent Documents 3 and 4 A method in which the fabric is forcibly compressed in the vertical direction using a shrinkage processing apparatus having a configuration in which the endless rubber belt runs while contacting a part of the peripheral surface of the thermal cylinder roll, thereby forming a wrinkle on a part of the fabric, or A method for softening a high-density fabric has been proposed (Patent Documents 3 and 4).
- Patent Documents 3 and 4 do not describe anything about artificial leather having an entangled body of ultrafine fibers, and do not discuss anything about improving the stretchability of the fabric in the vertical direction.
- the above-mentioned prior art documents do not disclose a simple and efficient method for improving the warp direction stretchability and stretchability of artificial leather. Further, the above-mentioned prior art documents do not disclose artificial leather having improved vertical stretchability and stretchability while increasing the density and improving the mechanical properties.
- JP 2004-197282 A Japanese Patent Laying-Open No. 2005-076151 JP-A-5-44153 JP-A-9-31832
- An object of the present invention is to provide a method for producing a stretchable artificial leather having moderate stretchability, a feeling of non-stretching, and good flexibility (especially flexibility when bending) even at high density.
- Another object of the present invention is to provide a stretchable artificial leather that has a moderate stretch feeling in a vertical direction while increasing the density and improving the mechanical properties while maintaining a moderate stretch feeling. It is another object of the present invention to provide a stretchable artificial leather having a moderate feeling of stretching in the vertical direction.
- the method for producing the stretchable artificial leather of the present invention includes: A process of making ultrafine fibers into a web, A step of entangled the obtained web to produce an entangled nonwoven fabric, A step of producing a substrate for artificial leather by ultrafinening the ultrathinnable fiber in the nonwoven fabric, A process for producing artificial leather using the obtained substrate for artificial leather, and the obtained artificial leather is closely attached to an elastic sheet stretched 5 to 40% in the vertical direction, thereby relaxing the elastic sheet.
- the elastic body sheet is contracted in the vertical direction
- the artificial leather is contracted in the vertical direction, heat-treated in the contracted state of the artificial leather, and then the artificial leather is separated from the elastic sheet.
- the production method of the present invention may further include a step of optionally applying a polymer elastic body to the entangled nonwoven fabric or the artificial leather substrate.
- an elastic sheet having a thickness of about 40 to 75 mm is used, and the thick elastic sheet is caused to travel while being in contact with the surface of the roller, thereby utilizing the inner and outer circumference difference and the elastic recovery ability. Then, the elastic sheet is expanded and contracted.
- artificial leather is heat-treated in a contracted state by the ironing effect of a heating cylinder such as a drum or a roller, and heat set in the contracted state.
- the first stretchable artificial leather of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
- the vertical direction has a micro waviness structure composed of ultrafine fibers, and the number of pitches existing in 1 mm in the vertical direction of the waviness structure is 2. Two or more, and the average height of the undulating structure is 50 to 350 ⁇ m.
- the fiber entangled body contains a polymer elastic body, and the polymer elastic body is a solidified product of a polyurethane water-based emulsion.
- the ultrafine fibers are preferably non-elastic fibers such as polyester fibers.
- the micro waviness structure is preferably formed by shrinking in the vertical direction and heat setting.
- the second stretchable artificial leather of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
- the elongation coefficient calculated by the following equation (1) is 50 or less.
- Elongation coefficient Vertical 5% circular modulus / thickness (1)
- the stretchable artificial leather of the present invention has a micro waviness structure composed of ultrafine fibers in a cross section parallel to both the thickness direction and the vertical direction. Have. Moreover, it is preferable that the ratio of the load at 30% elongation to the load at 5% elongation in the vertical direction is 5 or more.
- the fiber entangled body contains, for example, a polymer elastic body, and the polymer elastic body is a solidified product of a polyurethane water-based emulsion.
- the ultrafine fiber is preferably a non-elastic fiber, and the non-elastic fiber is, for example, a polyester fiber.
- the stretchable artificial leather of the present invention is preferably formed by shrinking in the vertical direction and heat setting.
- the third stretchable artificial leather of the present invention is a vertical stretch strength elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 A method in stretchable artificial leather. The following conditions (A) and (B) are satisfied.
- (A) The strength F 5% at an elongation of 5% is 0.1 to 10 N / 2.5 cm.
- F 20% / F 5% is 5 or more.
- the third stretchable artificial leather has any of the following conditions (C) to (F).
- (D) The maximum value S 0 to 5% max of the tangential slope of the curve with an elongation of 0 to 5% is 8 or less.
- F 20% is 30 to 200 N / 2.5 cm.
- (F) The strength F 10% at an elongation of 10% is 5 to 60 N / 2.5 cm.
- the production method of the present invention it is possible to obtain a stretchable artificial leather having moderate stretchability and a feeling of non-stretching in the vertical direction.
- the first stretchable artificial leather of the present invention has a high apparent density and a predetermined undulation structure, so that it has appropriate stretchability in the vertical direction, and has good mechanical properties and proper elongation. A feeling can be given.
- the second stretchable artificial leather of the present invention has a high apparent density and a low elongation coefficient, so that it has an appropriate stretchability in the vertical direction and also has a good mechanical property and an appropriate feeling of elongation stoppage. You can also have it.
- the 3rd elastic artificial leather of this invention can be made into the elastic artificial leather which has a moderate feeling of a stretch stop of the length direction by having the said predetermined conditions (A) and (B).
- This stretchable artificial leather exhibits good moldability in applications such as interiors, seats, and shoes, and is excellent in form stability after molding.
- this stretchable artificial leather can give a feeling of roundness of the original fabric at the time of bending, and can further achieve a feeling of fullness in the texture.
- FIG. 3 is a diagram showing a strength elongation curve (SS curve) in the vertical direction of the stretchable artificial leather obtained in Example 1 and the unshrink-processed artificial leather of Comparative Example 1.
- 2 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the stretchable artificial leather obtained in Example 1.
- FIG. FIG. 5 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the stretchable artificial leather obtained in Example 1, and showing the magnification larger than that in FIG. 4.
- FIG. 4 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the unshrink-processed artificial leather of Comparative Example 1.
- FIG. 7 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the non-shrink-processed artificial leather of Comparative Example 1, which is a photograph showing the magnification larger than that in FIG. 6. It is a model of the lengthwise strong elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 K A of the stretchable artificial leather according to the present invention. It is the schematic for demonstrating the measuring method of 5% circular modulus.
- FIG. It is the strength elongation curve of the length direction measured by the method described in JIS * L * 1096 (1999) 8.14.1 * A method about the artificial leather of Example 1 and Comparative Example 1.
- FIG. It is the strength elongation curve of the horizontal direction measured about the artificial leather of Example 1 and Comparative Example 1 by the method described in JIS L1096 (1999) 8.14.1 A method.
- FIG. It is the strength elongation curve of the horizontal direction measured about the artificial leather of Example 2 and the comparative example 2 by the method described in JIS * L * 1096 (1999) 8.14.1 * A method.
- the method for producing the stretchable artificial leather of the present invention comprises: (1) a process of forming ultrafine fibers into a web; (2) A step of entangled the obtained web to produce an entangled nonwoven fabric, (4) A process of producing a substrate for artificial leather by ultrafinening the ultrathinnable fiber in the nonwoven fabric, (5) a step of producing artificial leather using the obtained artificial leather substrate, and (6) the obtained artificial leather is closely attached to an elastic sheet stretched 5 to 40% in the vertical direction, and the elastic body The elastic sheet is contracted in the vertical direction by relaxing the extension of the sheet, the artificial leather is contracted in the vertical direction, the contracted state of the artificial leather is heat-treated, and then the artificial leather is separated from the elastic sheet.
- the micro-buckling structure of the ultrafine fibers contained in the artificial leather is formed along the vertical direction of the artificial leather, and the artificial leather has excellent stretchability in the vertical direction.
- the method for producing the stretchable artificial leather of the present invention will be described by explaining the steps (1) to (6).
- the ultrathinnable fiber is made into a web.
- the ultrathinnable fiber is a multicomponent composite fiber composed of at least two types of polymers.
- a sea-island fiber has a cross section in which a different type of island component polymer is dispersed in a sea component polymer.
- the ultrafine fiber can be formed by forming an entangled nonwoven fabric, and then extracting or decomposing and removing one component (removal component) of the polymer before or after impregnation with the polymer elastic body, thereby removing the remaining polymer ( The fiber bundle is converted into a bundle of fibers.
- the sea component polymer is extracted or decomposed to be removed, and thereby converted into a fiber bundle in which a plurality of ultrafine fibers made of the remaining island component polymer are collected.
- the ultrathinnable fiber is not particularly limited, and can be appropriately selected from sea-island fibers, multilayer laminated fibers, and the like obtained by a method such as a mixed spinning method or a composite spinning method.
- a sea-island type fiber is used as an ultra-thinnable fiber
- the present invention can be similarly carried out when an ultra-thinnable fiber other than a sea-island fiber is used.
- the polymer forming the ultrafine fibers is preferably an inelastic polymer.
- ultrafine fibers made of polyamide, polypropylene, polyethylene or the like are preferably used.
- polyester since it becomes easy to hold
- Elastic fibers such as polyether ester fibers and polyurethane fibers such as so-called spandex are not preferable.
- the polyester is not particularly limited as long as it can be fiberized.
- polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polyethylene-1,2-bis (2- Chlorophenoxy) ethane-4,4′-dicarboxylate and the like are preferably used.
- examples of the polyamide include polymers having an amide bond such as nylon 6, nylon 66, nylon 610, nylon 12, and the like.
- inorganic particles such as titanium oxide particles may be added to improve the concealability, and lubricants, pigments, heat stabilizers, ultraviolet absorbers, conductive agents, heat storage materials, antibacterial agents, etc. These can also be added according to various purposes.
- the sea component polymer When converting sea-island fibers into fiber bundles of ultrafine fibers, the sea component polymer is extracted or decomposed and removed by a solvent or a decomposing agent. Accordingly, the sea component polymer needs to be more soluble in a solvent or decomposable by a decomposing agent than the island component polymer. From the viewpoint of spinning stability of the sea-island fiber, it is preferable that the affinity with the island component polymer is small and the melt viscosity and / or the surface tension is smaller than the island component polymer under the spinning conditions.
- the sea component polymer is not particularly limited as long as these conditions are satisfied.
- polyethylene, polypropylene, polystyrene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, styrene-ethylene copolymer, styrene-acrylic copolymer are used.
- Polymers, polyvinyl alcohol resins and the like are preferably used. Since artificial leather can be produced without using an organic solvent, water-soluble thermoplastic polyvinyl alcohol (PVA) or water-soluble thermoplastic modified polyvinyl alcohol (modified PVA) such as ethylene-modified PVA is used for the sea component polymer. Is preferred.
- the average fineness of the sea-island fiber is preferably 1.0 to 6.0 dtex.
- the mass ratio of the sea component polymer to the island component polymer is preferably 5/95 to 70/30, and the number of islands is preferably 5 or more.
- the spinning method of the ultrafine fiber is not particularly limited, and may be manufactured by a method conventionally used in the field of artificial leather manufacturing.
- the ultrathinnable fiber may be a short fiber or a long fiber. Short fibers are preferable because they can produce a non-woven fabric having a high-quality surface, but long fibers are preferable because they can simplify the manufacturing process and are excellent in physical properties such as strength.
- stretchability in the vertical direction can be achieved using nonelastic fibers. Can be produced.
- the ultrathinable short fiber is made into a web by a dry method such as carding or papermaking and a wet method, but it is preferable to make a web by a dry method because an artificial leather having a high quality surface can be obtained.
- the ultrathinnable long fibers can be made into a web by the spunbond method, and if they are collected in the form of continuous filaments to form a web, some of the long fibers are cut in the subsequent process of making artificial leather. May be.
- a long fiber is a fiber having a fiber length longer than that of a short fiber having a fiber length of usually about 3 to 80 mm and is not intentionally cut like a short fiber.
- the fiber length of the long fiber before ultrafinening is preferably 100 mm or more, and can be produced in a technical manner and has a fiber length of several meters, several hundreds of meters, several kilometers or more as long as it is not physically cut. It may be.
- the surface fibers may be temporarily fused by hot pressing. When temporarily fused, the form of the web is stabilized and the handling property in the subsequent process is improved.
- the basis weight of the web obtained in the step (1) is preferably 10 to 100 g / m 2 .
- the web obtained in the step (1) is entangled by a method such as needle punching or water jet to produce an entangled nonwoven fabric.
- a method such as needle punching or water jet to produce an entangled nonwoven fabric.
- needle punching is performed under the condition that at least one barb penetrates from both sides simultaneously or alternately.
- the punching density is preferably in the range of 200 to 5000 punches / cm 2 . When it is within the above range, sufficient entanglement can be obtained, and damage to the ultrathinnable fiber by the needle is small.
- the ultrathinnable fibers are entangled three-dimensionally, and an entangled nonwoven fabric in which the ultrathinnable fibers are gathered very densely is obtained.
- the web may be provided with a silicone oil agent or a mineral oil agent such as a needle breakage preventing oil agent, an antistatic oil agent, or an entanglement improving oil agent at any stage from the production to the entanglement treatment.
- the entangled state of the entangled nonwoven fabric may be made denser by a shrinking treatment such as immersing in warm water of 70 to 100 ° C.
- the ultra-thinnable fibers may be gathered more densely by performing a heat press treatment to stabilize the form of the entangled nonwoven fabric.
- the basis weight of the entangled nonwoven fabric is preferably 100 to 2000 g / m 2 .
- Step (3) the entangled nonwoven fabric obtained in the step (2) is impregnated with an aqueous dispersion or an organic solvent solution of a polymer elastic body as necessary and solidified.
- the ultrafine fiber is a long fiber, the use of a polymer elastic body may be omitted.
- polymer elastic body examples include polyurethane elastomers, polyurea elastomers, polyurethane-polyurea elastomers, polyacrylic resins, acrylonitrile-butadiene elastomers, styrene-butadiene elastomers.
- polyurethane elastomers, polyurea elastomers, polyurethane- Polyurethane elastomers such as polyurea elastomers are preferred.
- a polyurethane elastomer obtained by using at least one selected from polymer diols having a number average molecular weight of 500 to 3500 such as polyester diol, polyether diol, polyester polyether diol, polylactone diol, polycarbonate diol and the like is preferable.
- a polyurethane obtained by using a polymer diol containing 30% by weight or more of a polycarbonate diol is more preferable.
- the number average molecular weight is determined by gel permeation chromatography (GPC) measurement using polymethyl methacrylate as a standard substance.
- Polycarbonate diol is one in which diol skeletons are linked via a carbonate bond to form a polymer chain and have hydroxyl groups at both ends.
- the diol skeleton is determined by the glycol used as a raw material, but the type thereof is not particularly limited. For example, 1,6-hexanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl- 1,5-pentanediol can be used.
- a copolymer polycarbonate diol using at least two or more kinds of glycols selected from these glycol groups as raw materials is particularly preferable because an artificial leather excellent in flexibility and appearance can be obtained.
- the polyurethane elastomer can be obtained by reacting a polymer diol, an organic polyisocyanate, and a chain extender in a predetermined molar ratio.
- the reaction conditions are not particularly limited, and a polyurethane elastomer can be produced by a conventionally known method.
- polymer diol examples include polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and poly (methyltetramethylene glycol) and copolymers thereof; polybutylene adipate diol, polybutylene sebacate diol, polyhexamethylene Polyester polyols such as adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, poly (3-methyl-1,5-pentylene sebacate) diol, polycaprolactone diol and copolymers thereof; Hexamethylene carbonate diol, poly (3-methyl-1,5-pentylene carbonate) diol, polypentamethylene carbonate diol, polytetramethylene carbonate di Polycarbonate polyols and their copolymers such Lumpur; polyester carbonate polyols and the like.
- polyether polyols such as polyethylene glycol, polypropylene glycol, poly
- polyfunctional alcohols such as a trifunctional alcohol and a tetrafunctional alcohol, or short chain alcohols, such as ethylene glycol, as needed.
- polyfunctional alcohols such as a trifunctional alcohol and a tetrafunctional alcohol
- short chain alcohols such as ethylene glycol
- amorphous polycarbonate polyols, alicyclic polycarbonate polyols, linear polycarbonate polyol copolymers, polyether polyols, and the like are preferable from the viewpoint of obtaining artificial leather excellent in the balance between flexibility and fullness. .
- organic polyisocyanate examples include non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate; 2,4-tolylene diisocyanate, Aromatic diisocyanates such as 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate polyurethane and the like.
- non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate
- 2,4-tolylene diisocyanate Aromatic diis
- polyfunctional isocyanates such as trifunctional isocyanate and tetrafunctional isocyanate, as needed. These may be used alone or in combination of two or more.
- 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate have mechanical properties. It is preferable because it is excellent.
- chain extender examples include hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, diamines such as adipic acid dihydrazide and isophthalic acid dihydrazide; and diethylenetriamine.
- Triamines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4-cyclohexanediol Diols such as: Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, aminopropyl alcohol, etc. Roh alcohol, and the like. These may be used alone or in combination of two or more.
- hydrazine piperazine, ethylenediamine, hexamethylenediamine, isophoronediamine and derivatives thereof, and triamines such as diethylenetriamine.
- monoamines such as ethylamine, propylamine, and butylamine; carboxyl group-containing monoamine compounds such as 4-aminobutanoic acid and 6-aminohexanoic acid; methanol, ethanol, propanol, butanol, etc.
- Monools may be used in combination.
- the polymer elastic body is impregnated into the entangled nonwoven fabric as an aqueous solution, an aqueous dispersion, or an organic solvent solution (for example, a solution of an organic solvent such as dimethylformamide, methyl ethyl ketone, acetone, toluene).
- the impregnation method is not particularly limited, and examples thereof include a method of uniformly impregnating the entangled nonwoven fabric by dipping and the like, and a method of applying to the front and back surfaces.
- the impregnated polymer elastic body aqueous solution, aqueous dispersion, or organic solvent solution may be solidified by conditions and methods conventionally employed in artificial leather production (for example, a wet method or a dry method).
- the concentration of the polymer elastic body aqueous solution, aqueous dispersion (for example, aqueous emulsion), or organic solvent solution is preferably 5 to 50% by weight.
- the polymer elastic body is impregnated into the entangled nonwoven fabric as an aqueous dispersion, whereby the fiber entangled body contains a solidified product of an aqueous emulsion of the polymer elastic body.
- the fiber entangled body contains a solidified product of an aqueous emulsion of the polymer elastic body.
- a solidified product of an aqueous emulsion into the fiber entangled body, it is possible to easily form and maintain a swell structure by mechanical shrinkage treatment and heat setting treatment described later.
- an entangled nonwoven fabric is impregnated with a polymer elastic body as an organic solvent solution to form a swell structure by mechanical shrinkage and heat setting treatment. It is not preferable because it is difficult to hold.
- the application amount of the polymer elastic body varies depending on the fiber length (short fiber or long fiber) and the application method (aqueous solution, aqueous dispersion, organic solvent solution). From the product flexibility, surface touch, dyeing uniformity,
- the solid content is preferably in the range of 5 to 70% by weight of the ultrafine fiber weight. In particular, when short fibers are used and applied using an organic solvent solution of a polymer elastic body, the solid content is preferably 10 to 70% by weight of the ultrafine fiber weight. If the application amount is less than 10% by weight, the wear resistance tends to be lowered, and if the application amount exceeds 70% by weight, the texture tends to become hard, which is not preferable. You may mix
- the ultrathin fiber in the non-woven fabric that does not contain the elastic polymer obtained in the step (2) or in the non-woven fabric containing the elastic polymer obtained in the step (3) is made extremely fine.
- an entangled body made of the ultrafine fiber bundle, or a base for artificial leather made of the entangled body and a polymer elastic body contained in the entangled body is produced.
- the ultra-thinning of the ultrafine fiber is performed by converting the ultrafine fiber into a fiber bundle of ultrafine fibers by removing the sea component polymer.
- the non-island component polymer is dissolved but the sea component polymer is dissolved, or the non-degradable agent that does not decompose the island component polymer but decomposes the sea component polymer is contained in the elastic elastomer-containing nonwoven fabric
- the method of processing is preferred.
- the island component polymer is a polyamide resin or a polyester resin
- an organic solvent such as toluene, trichloroethylene, or tetrachloroethylene is used.
- the sea component polymer is water-soluble thermoplastic PVA or modified PVA
- warm water is used.
- an alkaline decomposing agent such as an aqueous sodium hydroxide solution is used.
- the removal of the sea component polymer may be performed according to methods and conditions conventionally employed in the artificial leather field, and is not particularly limited.
- water-soluble thermoplastic PVA or modified PVA is used as the sea component polymer, and this is used in hot water at 85 to 100 ° C. without using an organic solvent. It is preferable to process for a second, extract and remove until the removal rate is 95% by mass or more (including 100%), and convert the ultrafine fiber into a fiber bundle of ultrafine fibers made of island component polymers.
- the average single fiber fineness of the ultrafine fibers forming the entangled body of the artificial leather substrate of the present invention is preferably 0.9 dtex or less, more preferably 0.0001 to 0.9 dtex, more preferably 0.0001 to 0. 5 dtex, particularly preferably 0.005 to 0.3 dtex. If the average single fiber fineness is less than 0.0001 dtex, the strength of the artificial leather substrate may be lowered. On the other hand, when the average single fiber fineness exceeds 0.9 dtex, the texture of the artificial leather substrate becomes stiff, the fiber entanglement becomes insufficient, the surface quality of the artificial leather substrate decreases, Problems such as a decrease in wear may occur.
- a limited amount of fibers having a single fiber fineness of less than 0.0001 dtex or fibers having a single fiber fineness of more than 0.9 dtex may be included as long as the effects of the present invention are not impaired.
- the content of fibers having a single fiber fineness of less than 0.0001 dtex and fibers having a single fiber fineness of more than 0.9 dtex is preferably 30% or less (several standards) of the total fibers constituting the substrate for artificial leather, 10%
- the following (number basis) is more preferable, and it is further preferable that it is not included at all.
- the fineness of the fiber bundle of ultrafine fibers is preferably 1.0 to 4.0 dtex, and the number of ultrafine fibers in one fiber bundle is preferably 9 to 500. Within the above range, the appearance uniformity of the artificial leather substrate and the suede-like artificial leather obtained therefrom and the balance between the color development and the wear resistance are good.
- the ultrafine fiber may be either a short fiber or a long fiber, like the ultrafine fiber.
- the basis weight of the artificial leather substrate is preferably 150 to 1500 g / m 2 .
- the apparent density of the artificial leather substrate is preferably 0.25 to 0.80 g / cm 3 .
- the thickness of the artificial leather substrate is selected according to the use of the artificial leather, but is usually 0.3 to 3.0 mm.
- Step (3) may be omitted. Further, after the step (4), the step (3) may be performed to make the base material for artificial leather obtained by making the ultrathinnable fiber ultrafine, so that the polymer elastic body is contained.
- the artificial leather substrate of the present invention includes other dyes, softeners, texture modifiers, anti-pilling agents, antibacterial agents, deodorants, Functional agents such as a liquid medicine, a light-proofing agent, and a glaze-proofing agent may be included.
- Step (5) a silver surface layer is provided on at least one surface of the substrate for artificial leather obtained by the above method, or at least one surface is brushed to add artificial leather with silver and semi-silver An artificial leather, a napped artificial leather, or a nubuck artificial leather is obtained.
- a method of providing a silver layer on at least one surface of the artificial leather substrate, and a method of raising the surface of at least one surface of the artificial leather substrate may adopt a method conventionally used for manufacturing artificial leather, The present invention is not particularly limited.
- a dry surface forming method in which a silver surface layer and an adhesive layer formed on a release paper are bonded to at least one surface of an artificial leather substrate via an adhesive layer, on at least one surface of an artificial leather substrate
- the silver surface layer can be formed by a method of applying a dispersion or solution of a polymer elastic body to be a silver surface layer and drying and coagulating it.
- a raised surface can be formed by a method of raising at least one surface of the artificial leather substrate with a needle cloth, sandpaper or the like, and then performing a hair treatment.
- the artificial leather may be dyed with a dye such as an acid dye using a liquid dyeing machine or the like.
- Is preferably the basis weight of the artificial leather obtained as described above is 130 ⁇ 1600g / m 2, more preferably from 150 ⁇ 1400g / m 2, an apparent density of 0.25 ⁇ 0.80g / cm 3
- the thickness is preferably 0.30 to 0.70 g / cm 3 , and the thickness is preferably 0.5 to 2.0 mm.
- Step (6) the artificial leather obtained in step (5) is mechanically shrunk in the vertical direction (MD of the production line), heat-treated in this contracted state, and heat-set, so that it is moderate in the vertical direction.
- a stretchable artificial leather having extensibility, having a feeling of stopping and having good flexibility is obtained.
- FIG. 1 is a schematic view showing an example of an apparatus for contracting artificial leather by this method.
- the belt 3 made of a thick elastic sheet advances while contacting the surface of the pressure roller 4 (surface material: metal). During this time, the outer surface of the belt 3 is elongated in the vertical direction due to the difference between the inner and outer circumferences of the belt.
- the artificial leather 1 sent from the turn rollers 5 a and 5 b is brought into close contact with the extended outer surface of the belt 3.
- the belt 3 and the artificial leather 1 in close contact with the belt 3 pass through the gap between the pressure roller 4 and the drum 2 (surface material: metal), and run while contacting the surface of the drum 2.
- the belt 3 travels along the drum 2 so as to hold the artificial leather 1 therebetween, so that the stretched surface of the belt 3 is reversed and the surface of the belt 3 on the artificial leather 1 side is reversed.
- the artificial leather 1 is shrunk so as to be driven in the traveling direction (vertical direction), and then taken up as the shrunk artificial leather 6.
- the outer diameter of the pressure roller 4 is preferably 10 to 50 cm.
- the elastic sheet is contracted in the vertical direction (traveling direction), and at the same time, the artificial leather is contracted within the range described below.
- the outer diameter of the drum 2 is preferably larger than the outer diameter of the pressure roller 4 and is 20 to 80 cm.
- the diameter of the drum 2 is preferably as large as possible in order to lengthen the heat treatment time and efficiently perform heat setting, but is small in order to set the shrinkage rate using the difference between the inner and outer circumferences of the elastic belt within the range of the present invention. Since it is better, the outer diameters of the drum 2 and the roller 4 are determined in consideration of these. Usually, it is preferable to prioritize the heat treatment time.
- the pressure roller 4 is not directly heated, but a method of preheating the raw fabric (artificial leather) before shrinking is generally used, but the surface temperature of the roller 4 in a steady operation state is about 40 to 90 ° C. Preferably there is.
- the surface temperature of the drum 2 is preferably heated to 70 to 150 ° C.
- the drum 2 can be used as a contraction heating unit that heats when the artificial leather is contracted, and can also be used for heat-treating the contracted artificial leather by heat treatment.
- the belt 3 is preferably a thick belt such as rubber or felt, and the thickness is usually 20 mm or more. Further, when the conveying speed of the artificial leather 1 by the turn rollers 5a and 5b in FIG.
- the artificial leather 1 is higher than the conveying speed of the belt 3, the artificial leather 1 is folded in the vertical direction on the surface of the belt 3, and the folded artificial leather 1 is folded. Since the surface of the belt 3 is shrunk due to the change from the stretched state to the elastic recovery state, the shrinkage effect of the artificial leather 1 can be increased.
- FIG. 2 is a schematic view showing an example of an apparatus for contracting artificial leather by this method.
- a belt 3 made of an elastic sheet circulates along the surface of a rubber roller 13 having a metal roller 11 and a thick rubber portion 12.
- the thick rubber portion 12 is deformed and expanded in the central direction of the rubber roller 13 by the nip pressure, and the belt 3 is compressed in the thickness direction by the nip pressure.
- the artificial leather 1 is supplied between the metal roller 11 and the rubber roller 13, that is, on the outer surface of the belt 3.
- the belt 3 compressed in the thickness direction is stretched so that the length of the belt 3 becomes longer with the compression. Therefore, after passing through the nip, the belt 3 contracts (elastically recovers) by the compression release from the stretched state, whereby the artificial leather 1 disposed on the outer surface of the belt 3 also contracts in the vertical direction. For example, when the thickness is compressed to 1 ⁇ 2, assuming that the width of the rubber belt 3 does not change, the length of the rubber belt 3 is deformed approximately twice. Thereafter, the contracted artificial leather 1 travels along the surface of the heated metal roller 11 so as to be gripped by the belt 3 and the metal roller 11, and is then taken off.
- the metal roller 11 is preferably heated so that its surface temperature becomes 70 to 150 ° C., and can be used as the above-described shrink heating unit, and heat-set by heat-treating the contracted artificial leather 1. It can be used also as a member for doing.
- the rubber roller 13 is not directly heated, and the raw material (artificial leather) before shrinking is preheated.
- the surface temperature of the rubber roller 13 in a steady operation state is 40 to 90 ° C.
- the elastic sheet is extended in the vertical direction using an example in which the elastic sheet is extended in the vertical direction using the difference between the inner and outer circumferences, or the elastic sheet is extended in the thickness direction. Although the example has been described, the elastic sheet may be extended by other methods.
- the method for producing the artificial leather of the present invention using the mechanical shrinkage treatment described above causes the artificial leather to adhere to the surface without using an adhesive means such as an adhesive while extending the surface of the elastic sheet in the vertical direction.
- the stretched state is relaxed to elastically recover the surface of the elastic sheet to the state before stretching, and the artificial leather is shrunk so as to be driven in the traveling direction (vertical direction).
- the elongation ratio ((length stretched / length before stretching) ⁇ 100) of the elastic sheet surface when the artificial leather is closely attached is 5 to 40%, preferably 7 to 25%, more preferably 10 to 20%. is there.
- artificial leather that extends in the vertical direction can be obtained by the shrinking treatment in the step (6).
- an artificial leather made of short fibers having a basis weight of 250 g / m 2 or less is stretched by the tension applied in the production process, and as a result, hardly stretches in the vertical direction.
- the shrinkage treatment as described above is preferably performed at 70 to 150 ° C., more preferably 90 to 130 ° C. Further, the artificial leather is shrunk in the vertical direction preferably at a shrinkage rate of 2 to 20%, more preferably at a shrinkage rate of 4 to 15%.
- Shrinkage rate [(length before shrinkage) ⁇ (length after shrinkage)] / length before shrinkage ⁇ 100
- the apparent dynamic friction coefficient between the elastic sheet 3 and the artificial leather 1 is preferably 0.8 to 1.7, and more preferably 1.1 to 1.6.
- the dynamic friction coefficient between the cylinder (roller 2 or roller 11) and the artificial leather 1 is preferably 0.5 or less, and more preferably 0.4 or less.
- the contraction force of the elastic sheet can be uniformly transmitted to the artificial leather, and the artificial leather can be effectively contracted in the vertical direction.
- the dynamic friction coefficient is measured by measuring the tensile load resistance when the artificial leather is slid on the elastic sheet or cylinder with a load of 1.5 kgf and dividing by 1.5.
- the elastic sheet used in the present invention is not particularly limited as long as it is a sheet-like material having the above-mentioned elastic characteristics, but it is preferable to use a sheet of natural rubber or synthetic rubber.
- a sheet of natural rubber or synthetic rubber especially because it has a high elastic recovery force, when shrinking together with an artificial leather that is in close contact, the effect of shrinking the artificial leather sufficiently against the resistance of the artificial leather is obtained. Can do.
- the thickness of the elastic sheet is preferably 20 to 100 mm, and more preferably 40 to 75 mm. Within the above range, the elastic sheet can be effectively extended and contracted in the vertical direction using the difference between the inner and outer circumferences.
- the natural rubber rubber mainly composed of cis-1,4-polyisoprene collected from bark such as Hevea tree can be used.
- Synthetic rubbers include styrene-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber, ethylene propylene rubber, chloroprene rubber, nitrile rubber, silicone rubber, acrylic rubber, epichlorohydrin rubber, fluorine rubber, urethane rubber, ethylene-vinyl acetate rubber, chlorinated Polyethylene rubber or the like can be used.
- the elastic sheet is preferably excellent in heat resistance. Heat resistant silicone rubber, fluorine rubber or ethylene propylene rubber is preferred.
- the artificial leather is heat-treated and heat-set in a contracted state.
- the heat treatment may be performed after the artificial leather is separated from the elastic sheet, instead of before the artificial leather is separated from the elastic sheet, or may be performed both before and after the artificial leather is separated.
- the heating temperature for the heat treatment is preferably as described above in consideration of the thermal history received by the fibers contained in the artificial leather in the manufacturing process. Is selected from the range of 70 to 150 ° C, more preferably 100 to 150 ° C.
- the temperature for the heat treatment is preferably 120 ° C. or higher for wet heat treatment and 140 ° C. or higher for dry heat treatment.
- the wet heat treatment here means that the humidification treatment is performed together with the heat treatment
- the dry heat treatment means that the humidification treatment is not performed.
- the treatment time of the heat treatment (heat set) varies depending on the polymer type of the fiber contained in the artificial leather and the heat treatment temperature, and is usually selected from the range of 0.1 to 5 minutes. For example, in the case of polyethylene terephthalate fiber, 1 to 3 minutes is preferable in terms of heat setting and processing stability. When heat setting is insufficient with a single heat treatment, it is preferable to heat-treat (heat set) again after the artificial leather is separated from the elastic sheet.
- the heat treatment method may be a known method such as a method of heating by blowing hot air on artificial leather, a method of heating using an infrared heater, a method of heat treatment sandwiched between a heating cylinder and an elastic sheet or non-woven fabric sheet.
- a method of heating by blowing hot air on artificial leather a method of heating using an infrared heater
- a method of heat treatment sandwiched between a heating cylinder and an elastic sheet or non-woven fabric sheet for example, the ironing effect of the heating cylinder is obtained by sandwiching between the heating cylinder (drum 2 or metal roller 11) and the sheet.
- the method to be used is preferably used.
- the heat-treated artificial leather is usually taken up at a speed of 2 to 15 m / min.
- pre-heat treatment and / or humidification treatment for softening the artificial leather before the artificial leather is brought into close contact with the elastic sheet.
- a preheating method a known heating method such as a method of heating while humidifying by blowing steam or water, a method of blowing hot air to artificial leather, a method of heating using an infrared heater, or the like can be used.
- the method of performing the humidification treatment is not limited as long as moisture can be imparted to the artificial leather, but there is a method in which steam or water is sprayed on the artificial leather.
- the preheating temperature is preferably 40 to 100 ° C.
- the moisture application amount is preferably 1 to 5% by weight with respect to the amount of ultrafine fibers of the artificial leather.
- moisture can be imparted to the artificial leather by spraying steam or water to humidify the artificial leather, thereby preventing the artificial leather from being excessively heated during the shrinkage treatment. .
- contraction processing can also be easily controlled to 100 degrees C or less.
- the stretchable artificial leather is preferably cooled to 85 ° C. or less immediately after the step (6), and the stretchable artificial leather obtained in the step (6) is conveyed by a belt by a conveyor belt.
- stretchable artificial leather is immediately cooled to 85 ° C or lower by a cooling roll or air cooling from a state heated to 100 ° C or higher, it has the advantage that it can prevent the influence of process tension when being conveyed in a heated state. is there.
- the belt is conveyed, for example, even when stretchable artificial leather is sent between rolls and rolls, it is placed on the belt that is stretched between the rolls and rolls, so that the tension during the process is reduced.
- the artificial leather is sent to another heat treatment apparatus after the treatment by the apparatus shown in FIGS. 1 and 2 (for example, after the shrinkage treatment and the heat treatment are performed), and the heat treatment (heat set) is performed. Although it may be carried out, the belt is also conveyed when it is sent to the other heat treatment apparatus, and the artificial leather may be cooled as described above.
- the apparent density of the stretchable artificial leather obtained through the step (6) is preferably 0.25 to 0.80 g / cm 3 , and if it is within this range, the wear resistance and processing for various uses Good properties.
- the basis weight is 150 to 1700 g / m 2 , and the thickness is selected according to the application, but is preferably 0.5 to 2.0 mm.
- the artificial leather is shrunk so as to drive it in the direction of travel (vertical direction), so that the resulting stretchable artificial leather has a micro-bending structure consisting of a fiber bundle of ultrafine fibers and an arbitrary polymer elastic body. It is preferable to have a (swell structure), so that it has a soft texture and a dense folded fold regardless of the apparent density of the stretchable artificial leather.
- the micro-bending structure is a wavy structure that occurs along the vertical direction as a result of the artificial leather contracting in the vertical direction, and the artificial leather of the present invention has a nonwoven fabric structure composed of ultrafine fibers. It is easy to form (refer FIG.4 and FIG.5).
- the waviness structure does not need to be continuous and may be discontinuous in the vertical direction.
- the stretchable artificial leather of the present invention is not stretchable of the fiber itself, but stretches in the vertical direction due to such a change in the buckling structure (elongation), has a feeling of non-stretching, and is less likely to lose its shape when worn. Good feeling of wear and workability for various uses.
- undulation structure in this invention has a structure explained in full detail below.
- the artificial leather obtained by the production method of the present invention does not have to have the swell structure as described above. Even if it does not have a wavy structure, it is presumed that the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body are micro-bent or bent by the above-described mechanical shrinkage treatment and heat setting.
- the resulting stretchable artificial leather has a micro buckling structure that relaxes the tension of the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body. , It will have a certain degree of soft texture and a dense bend.
- the stretchable artificial leather of the present invention has moderate stretchability in the vertical direction, so that it has a good feeling of wear and processability to the product, and it has a feeling of non-stretching, so that it can be prevented from losing its shape and shape. it can.
- the stretchability in the vertical direction and the feeling of elongation stop can be evaluated by a strong elongation curve in the vertical direction (load elongation curve, vertical axis: load (strength), horizontal axis: elongation rate (elongation)).
- the stretchable artificial leather of the present invention can exhibit a stretch rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
- the feeling of non-elongation does not mean that it does not elongate at all, but it means that when the elongation exceeds a certain value, the resistance to elongation becomes remarkably large, and it is not easy to elongate. It is influenced by the load change at the time.
- the feeling of stopping the elongation is represented by the ratio of the load at the time of 30% elongation and the load at the time of 5% elongation (at the time of 30% elongation / 5% elongation) in the vertical strength elongation curve (see FIG. 3).
- the load at 5% elongation greatly affects the sewability, workability and wearing feeling.
- the load ratio of the stretchable artificial leather of the present invention is preferably 5 or more, more preferably 5 to 40, and particularly preferably 8 to 40.
- the vertical direction is the flow direction (MD) of the artificial leather production line, and the direction perpendicular thereto is the horizontal direction.
- the vertical direction of the artificial leather in the product can generally be determined from a plurality of factors such as the orientation direction of the fiber bundle of ultrafine fibers, streak traces by needle punching or high-speed fluid treatment, and treatment traces. If the vertical direction cannot be determined because the vertical direction determined by these multiple elements is different, there is no clear orientation, or there are no streak marks, the vertical direction in which the tensile strength is maximized is determined.
- the direction and the direction perpendicular to the direction are the horizontal direction.
- the artificial leather is brought into close contact with the elastic sheet extended in the vertical direction, and then the elastic sheet is contracted in the vertical direction and the artificial leather is also contracted in the vertical direction.
- This contraction improves the stretchability of the artificial leather in the vertical direction
- the stretchable artificial leather obtained by the production method of the present invention extends in the vertical direction with a lower load than conventionally known artificial leather.
- the strong elongation curve becomes a curve in which the load greatly increases when the elongation exceeds a certain elongation (see FIG. 3). Therefore, the stretchable artificial leather of the present invention has a property (extension stop feeling) that stretches with a low load in a low stretch region and does not stretch unless a high load is applied in a high stretch region.
- the stretchable artificial leather of the present invention thus obtained has moderate stretchability in the vertical direction and a feeling of non-stretching, and is excellent in surface quality, so it can be used in a wide range of applications such as clothing, furniture, car seats, sundries, etc. Can be used.
- the stretchable artificial leather according to the first embodiment of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0. 40 g / cm 3 or more and, as shown in FIGS. 4 and 5, have a micro waviness structure composed of ultrafine fibers along the vertical direction in a cross section parallel to both the thickness direction and the vertical direction. is there.
- the stretchable artificial leather of the present invention has an appropriate stretchability and a feeling of staying in the vertical direction due to a high apparent density and a micro waviness structure, and also has good mechanical properties.
- the stretchable artificial leather according to the present embodiment is preferably produced by the production method of the present invention, but the production method is not limited to the above method.
- the short fiber or the long ultrafine fiber or the ultrathinnable fiber is formed into a web by the step (1), and then the web obtained by the step (2) is entangled and entangled.
- the web obtained by the step (2) is entangled and entangled.
- it is formed by a method such as performing ultrafine treatment, for example, by the step (4). Since the structure of each member, such as a fiber entangled body and ultrafine fibers, is the same as that of the artificial leather obtained by the above manufacturing method, the description thereof is omitted.
- the fiber entangled body preferably contains a polymer elastic body, and the micro waviness structure is constituted by the polymer elastic body contained in the ultrafine fibers and the fiber entangled body. It is preferable.
- the ultrafine fiber is a long fiber
- the use of the polymer elastic body is omitted, and the undulating structure can be easily formed even if the fiber entangled body does not contain the polymer elastic body.
- the polymer elastic body is contained in the fiber entangled body by, for example, the polymer elastic body applying process in the step (3), but the specific processing method and material are the same as described above, and thus are omitted.
- the stretchable artificial leather of the present invention is provided with a silver surface on at least one surface, or at least one surface is raised by a napping treatment, thereby producing a silvered artificial leather, a semi-silvered artificial leather, a napped Artificial leather or nubuck-like artificial leather is preferable. It is preferable that the method of providing a silver surface layer and the method of napping treatment are performed by the method of the said process (5).
- the stretchable artificial leather according to the present embodiment is obtained by mechanically shrinking an artificial leather before mechanical shrinkage processing (hereinafter referred to as “artificial leather before treatment”) in the vertical direction, and performing heat treatment (heat setting) in the contracted state.
- a micro waviness structure is formed along the vertical direction by mechanical shrinkage, and the micro waviness structure is maintained by heat treatment (heat setting).
- the undulation structure is formed by bending a fiber entangled body composed of ultrafine fibers, or a fiber entangled body and a polymer elastic body contained in the fiber entangled body along the vertical direction. It is a thing.
- the shrinkable artificial leather has a flexible texture and a dense bend due to this undulation structure (bending structure) even if its apparent density is high.
- the waviness structure does not need to be continuous and may be discontinuous in the vertical direction.
- the undulation structure is characterized in that the number of pitches existing in a vertical direction of 1 mm is 2.2 or more, the average height (height difference between peaks and valleys) is 50 to 350 ⁇ m, and the average pitch is 450 ⁇ m or less.
- the average pitch means the average distance of one pitch of the undulation structure (between the valley and the next mountain, and between the mountain and the next valley), and the number of pitches means the pitch existing in 1 mm. Numbers.
- the stretchable artificial leather of the present invention is not stretchable of the fiber itself, but has a moderate stretch in the vertical direction and a sense of stopping stretching due to such a change (elongation) of the wavy structure.
- the stretchable artificial leather has an appropriate elongation in the vertical direction, so that it has a good feeling of wear and processability to the product, and has an appropriate feeling of not being stretched, so that it can be prevented from being lost or deformed.
- the number of pitches is preferably 2.2 to 6.7, more preferably 2.5 to 5.0.
- the average pitch is preferably 150 to 450 ⁇ m, and more preferably 200 to 400 ⁇ m.
- the average height is more preferably 100 to 300 ⁇ m. By setting the average height to 100 to 300 ⁇ m, it is possible to improve the vertical direction and the feeling of stretching stop, and at the same time, to suppress surface irregularities and to obtain an artificial leather excellent in smoothness and appearance. It becomes possible.
- the stretchable artificial leather of the present embodiment When the stretchable artificial leather of the present embodiment is mechanically shrunk in the vertical direction, it is shrunk smaller in the horizontal direction than in the vertical direction, or is not substantially shrunk. Therefore, the micro waviness structure along the horizontal direction is not formed in a cross section parallel to both the thickness direction and the horizontal direction. Alternatively, even if formed, the undulation amount of the undulation structure in the cross section parallel to the thickness direction and the horizontal direction is smaller than the undulation amount of the undulation structure in the cross section parallel to the thickness direction and the vertical direction. That is, the pitch number (per 1 mm) of the undulation structure along the vertical direction of the stretchable artificial leather and the average height are larger than the pitch number (per 1 mm) of the undulation structure along the horizontal direction and the average height, respectively. Become.
- the stretchable artificial leather of the present embodiment has a micro waviness structure in the vertical direction and has an appropriate stretchability, so that it has a good feeling of wear and workability to the product, and also has a feeling of non-stretching and breaks down. It is possible to prevent the loss of shape.
- the stretchability in the vertical direction and the feeling of stoppage can be evaluated by a strong elongation curve in the vertical direction (vertical axis: load, horizontal axis: elongation) and a 5% circular modulus in the vertical direction.
- the stretchable artificial leather of the present embodiment can exhibit an elongation rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
- the 5% circular modulus in the vertical direction is an index showing the extensibility at the time of low elongation, and in this embodiment, it can be set to, for example, 40 N or less, preferably 10 to 30 N by forming a wavy structure. .
- the feeling of non-elongation does not mean that it does not elongate at all, but it means that when the elongation exceeds a certain value, the resistance to elongation becomes remarkably large, and it is not easy to elongate. It is influenced by the load change at the time.
- the feeling of stoppage of elongation is expressed by the ratio of the load at the time of 30% extension and the load at the time of 5% extension (at the time of 30% extension / 5% extension) in the vertical strength elongation curve (see FIG. 3).
- the load ratio of the stretchable artificial leather of the present embodiment is preferably 5 or more, more preferably 5 to 40, and most preferably 8 to 40. When it is within the above range, there is a feeling of stoppage of elongation in the vertical direction, there is little loss of shape due to wearing, and the feeling of wearing and workability for various uses is good.
- the apparent density of the stretchable artificial leather of the present embodiment is 0.40 g / cm 3 or more.
- the apparent density is more preferably 0.45 g / cm 3 or more, further preferably 0.50 g / cm 3 or more.
- it is preferably 0.80 g / cm 3 or less, more preferably 0.70 g / cm 3 or less, and further preferably 0.65 g / cm 3 or less.
- the basis weight of the stretchable artificial leather is preferably 150 g / m 2 or more, more preferably 200 g / m 2 or more, and further preferably 250 g / m 2 or more. Moreover, it is preferably 1500 g / m 2 or less, more preferably 1200 g / m 2 or less, and still more preferably 1000 g / m 2 or less. It is preferable that the basis weight of the stretchable artificial leather is 150 g / m 2 or more because good resilience is easily obtained. Moreover, when the fabric weight of a stretchable artificial leather is 1500 g / m ⁇ 2 > or less, it exists in the tendency for the workability to various uses to become favorable, and is preferable.
- the thickness is selected according to the application, but is 0.35 to 2.00 mm, preferably 0.40 to 1.50 mm.
- the apparent density and basis weight are larger than the apparent density and basis weight of artificial leather before treatment, that is, artificial leather before mechanical shrinkage treatment, respectively. Become.
- a micro waviness structure along the vertical direction is obtained by mechanically contracting the artificial leather before treatment in the vertical direction and heat setting in the contracted state.
- the pre-treatment artificial leather is brought into close contact with the surface of a thick elastic sheet (rubber sheet, felt, etc.) having a thickness of several centimeters or more extended in the vertical direction.
- a method in which the artificial leather before treatment is contracted in the vertical direction by elastically restoring the surface from the stretched state to the state before stretching. More specifically, it is preferably performed by the method of step (6) detailed above.
- the resulting stretchable artificial leather has a micro-bending structure (swell structure) as described above. Moreover, in this embodiment, since the artificial leather has a non-woven structure composed of high density and ultrafine fibers, a micro waviness structure is easily formed.
- the pre-treatment artificial leather of the present embodiment is preferably formed by web-forming short fibers or long ultrafine fibers or ultrathinnable fibers, and entwining the obtained web. It is obtained by combining with each other to obtain an entangled nonwoven fabric, and then performing a polymer elastic body application treatment, an ultrafine treatment, and a silver surface / napped processing as necessary. Specifically, these treatment methods are carried out by the methods of the above steps (1) to (5).
- the apparent density of the artificial leather before treatment is preferably 0.25 to 0.80 g / cm 3 , more preferably 0.30 to 0.70 g / cm 3 , and 0.40 to 0.70 g / cm 3. 3 is most preferred.
- the basis weight is of preferably at 130 ⁇ 1600g / m 2, more preferably from 150 ⁇ 1400g / m 2, the thickness is preferably 0.2 ⁇ 2.0 mm, with 0.5 ⁇ 2.0 mm More preferably.
- the stretchable artificial leather of the present embodiment has a high apparent density and a wavy structure, so that it has an appropriate stretchability in the vertical direction, has a mechanical strength, and has a feeling of non-stretching. It will be excellent in quality. Therefore, it can be used for a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. Further, the undulation structure in the stretchable artificial leather can be easily formed by shrinking the artificial leather in the vertical direction and heat setting.
- the stretchable artificial leather of the second embodiment is manufactured by the above manufacturing method, for example, and has the following characteristics.
- the stretchable artificial leather of the second embodiment will be described in detail, the configuration not particularly mentioned is the same as that of the stretchable artificial leather of the first embodiment.
- the stretchable artificial leather according to the second embodiment is a stretchable artificial leather composed of a fiber entanglement composed of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
- the elongation coefficient calculated by the following formula (1) is 50 or less.
- the stretchable artificial leather of this embodiment is characterized in that the elongation coefficient obtained by dividing the 5% circular modulus in the vertical direction by the thickness is 50 or less.
- the 5% circular modulus is an index representing the elongation rate at the time of low elongation, and represents the elongation characteristic of the stretchable artificial leather, but increases as the thickness increases and decreases as the thickness decreases. . That is, the 5% circular modulus is changed by changing the thickness even if the artificial leather is made of a fiber entangled body having the same structure.
- the elongation coefficient in the present embodiment is obtained by dividing the 5% circular modulus by the thickness to eliminate the thickness factor, and is caused by the fiber structure itself of the stretchable artificial leather independent of the thickness. It shows the elongation characteristics.
- the stretchable artificial leather of the present embodiment has good mechanical strength due to the high apparent density as described above, the stretchability is in the above range, so that the stretchability at low stretch is also good.
- the elongation coefficient is preferably 5 to 40, more preferably 10 to 25. By setting the elongation coefficient within these ranges, it is possible to improve the mechanical strength of the stretchable artificial leather while improving the extensibility at the time of low elongation.
- the stretchable artificial leather of the present embodiment has a thickness equal to or greater than a certain value as described above, but by setting the elongation coefficient to 50 or less, the 5% circular modulus is, for example, 40 N or less, preferably 10 to 30 N. It becomes possible to do.
- the stretchable artificial leather of the present embodiment has a thickness that can sufficiently secure the strength as the artificial leather, and also has good extensibility at low elongation.
- the stretchable artificial leather of the present embodiment has a good 5% circular modulus value and an appropriate stretchability, so that the wearing feeling and the processability to the product are improved. Further, since the apparent density is high while the elongation coefficient is low, it is possible to have a moderate feeling of elongation stoppage.
- the stretchable artificial leather according to the present embodiment has a feeling of staying stationary, so that it can be prevented from being lost or deformed. As described above, the feeling of stoppage of elongation can be evaluated by a strength elongation curve in the vertical direction (vertical axis: load, horizontal axis: elongation).
- the ratio of the load at the time of 30% extension and the load at the time of 5% extension (the load at the time of 30% extension / the load at the time of 5% extension) in the vertical strength elongation curve is 5 or more. It is preferably 5 to 40, more preferably 8 to 40. When it is within the above range, there is a feeling of stoppage of elongation in the vertical direction, there is little loss of shape due to wearing, and the feeling of wearing and workability for various uses is good.
- this strength elongation curve can also evaluate the length direction extensibility similarly to 5% circular modulus.
- the stretchable artificial leather of the present embodiment preferably exhibits an elongation rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
- the stretchable artificial leather of the present embodiment has a micro waviness structure composed of ultrafine fibers in a cross section parallel to the thickness direction and the warp direction. It is preferable to have along.
- the microscopic undulation structure allows the elongation coefficient to be low as described above even if the apparent density is high. Since the micro waviness structure and the forming method thereof are the same as those in the first embodiment, the description thereof is omitted.
- other configurations such as the apparent density and basis weight of the pre-treatment artificial leather and the stretchable artificial leather are the same as those of the stretchable artificial leather of the first embodiment, and the description thereof is omitted.
- the stretchable artificial leather of this embodiment does not have a microstructure, it is formed by the production method of the present invention, so that the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body are microscopically formed. It is assumed that it is buckled or bent, thereby allowing it to have a somewhat low elongation coefficient.
- the stretchable artificial leather has a low apparent modulus and a low elongation coefficient. Therefore, even if it has an appropriate thickness as an artificial leather, the mechanical strength While having sufficient, the vertical direction extensibility at the time of low elongation can be improved. Further, an artificial leather having a texture that is supple, flexible, and has a sense of fulfillment can be obtained due to the low elongation coefficient and high apparent density. Therefore, the stretchable artificial leather of the present invention can be suitably used for a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. In addition, the stretchable artificial leather of the present invention can have a low elongation coefficient while maintaining a good apparent density due to a micro waviness structure.
- the stretchable artificial leather according to the third embodiment of the present invention has the following characteristics.
- the stretchable artificial leather of the present embodiment is a vertical stretch strength elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 A, in a stretchable artificial leather. The conditions A) and (B) are satisfied.
- the strength F 5% at an elongation of 5% is 0.1 to 10 N / 2.5 cm.
- F 20% / F 5% is 5 or more.
- the strength elongation curve is measured by the method described in JIS L 1096 (1999) 8.14.1 A.
- a test piece having a width of 2.5 cm was fixed to a chuck having a holding interval of 20 cm, and the test piece was pulled at a constant speed to obtain elongation and strength. From the result, a strength elongation curve is created in which the horizontal axis represents the elongation (%) and the vertical axis represents the strength per 2.5 cm width of the test piece (N / 25 mm).
- FIG. 8 is a model of a longitudinal strength elongation curve measured by the method described in the JIS L 1096 (1999) 8.14.1 A method of the stretchable artificial leather according to the present embodiment.
- the curve shown in FIG. 8 is a strong elongation curve in the vertical direction.
- the strength F 5% at an elongation of 5% is 0.1 to 20 N / 2.5 cm. By being in such a range, since it stretches smoothly in expansion and contraction, an appropriate flexibility can be obtained.
- the strength F 5% is preferably 0.2 to 15 N / 2.5 cm, more preferably 0.3 to 10 N / 2.5 cm.
- (B) F 20% / F 5% is 5 or more in the relationship between the strength F 20% at an elongation of 20% and the above F 5% .
- the strength at an elongation of 5% greatly affects the sewability, workability, and wearing feeling.
- F 20% / F 5% is preferably 8 or more, more preferably 10 or more, and further preferably 20 or more.
- an upper limit is not specifically limited, For example, it is 100.
- Stretchable artificial leather of the present embodiment in relation to the slope S 20% of the tangent of the curve at the slope S 5% and elongation 20% of the tangent of the curve at 5% (C) elongation, S 20% / S 5% is preferably 1.2 or more. In this way, when S 20% / S 5% is in the above relationship, a particularly significant increase in tensile stress can be obtained when the elongation is in the vicinity of 20%.
- S 20% / S 5% is preferably 5 or more, more preferably 10 or more.
- the upper limit value of S 20% / S 5% is not particularly limited, but is 100, for example.
- the maximum value S 0 to 5% max of the tangent of the curve with an elongation of 0 to 5% is 8 or less.
- the maximum value S 0 to 5% max of the slope is more preferably 5 or less, and more preferably 3 or less.
- the lower limit value of S 0 to 5% max is not particularly limited, but is 0.1, for example.
- the stretchable artificial leather of this embodiment preferably has (E) F 20% of 30 to 200 N / 2.5 cm.
- F 20% is more preferably 50 to 190 N / 2.5 cm or more, and still more preferably 80 to 180 N / 2.5 cm.
- the strength F 10% at an elongation of 10% is preferably 5 to 60 N / 2.5 cm. By being in such a range, even when stretched to 10% in expansion and contraction, an appropriate tensile stress can be exhibited, so that a suitable stretch stop can be obtained.
- the strength F 10% is preferably 10 to 40 N / 2.5 cm, more preferably 10 to 30 N / 2.5 cm.
- the artificial leather according to the present embodiment is manufactured by the above-described manufacturing method, for example. Moreover, Preferably, it has the structure of one or both of the elastic artificial leather of 1st and 2nd embodiment.
- the stretchable artificial leather of the present embodiment has moderate stretchability in the vertical direction, so that it has a good feeling of wear and processability to the product, and it has a feeling of non-stretching, so that it can be prevented from losing its shape and shape. Can do.
- the stretchable artificial leather according to the present embodiment allows the artificial leather to be in close contact with the elastic sheet extended in the vertical direction, and then the elastic sheet is contracted in the vertical direction and the artificial leather is also contracted in the vertical direction. Is preferred. This contraction improves the stretchability of the artificial leather in the vertical direction, and is low in strength and easily stretches in the vertical direction. As a result, the conditions (A) to (F) are easily satisfied. Further, by having the undulation structure as described above, the conditions (A) to (F) are easily satisfied.
- the stretchable artificial leather of the present embodiment has moderate stretchability in the vertical direction and a feeling of non-stretching, and is excellent in surface quality, so that it can be used in a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. Can be used.
- the basis weight and the apparent density basis weight were measured by the method described in JIS L 1096 8.4.2 (1999). Further, the thickness was measured with a dial thickness gauge (manufactured by Ozaki Mfg. Co., Ltd., trade name “Peacock H”), and the apparent density was determined by dividing the basis weight value by the thickness value.
- 5% circular modulus (N) As shown in FIG. 9, a mark between 200 mm is written in the vertical center of a 300 mm ⁇ circular test piece in the vertical direction extending in the vertical direction, and the gripping interval is 200 mm with an Instron type tensile tester and the tensile speed is 200 mm / The modulus at 5% elongation in minutes is measured.
- Example 1 Water-soluble thermoplastic ethylene-modified polyvinyl alcohol (modified PVA, sea component, modified degree 10 mol%) and isophthalic acid-modified polyethylene terephthalate (modified PET, island component) having a modified degree 6 mol% It was discharged from a die for melt composite spinning (number of islands: 25 islands / fiber) at 260 ° C. so that the island component was 25/75 (mass ratio). The ejector pressure was adjusted so that the spinning speed was 3700 m / min, and sea-island long fibers having an average fineness of 2.1 dtex were collected on the net.
- a sheet of sea-island long fibers on the net is lightly pressed with a metal roll with a surface temperature of 42 ° C, peeled off from the net while suppressing fuzz on the surface, and between the metal roll (lattice pattern) with a surface temperature of 75 ° C and the back roll To obtain a long fiber web having a basis weight of 34 g / m 2 in which the surface fibers were temporarily fused in a lattice shape.
- Water is applied in an amount of 10% by mass to the entangled nonwoven fabric, causing shrinkage by heat treatment in an atmosphere of relative humidity of 95% and 70 ° C., improving the apparent density of the nonwoven fabric and densifying.
- a non-woven fabric was obtained.
- the area shrinkage due to this densification treatment was 45%
- the basis weight of the nonwoven fabric was 1050 g / m 2
- the apparent density was 0.52 g / cm 3 .
- the densified nonwoven fabric was dry-heated and roll-pressed, impregnated with a water-based polyurethane emulsion, dried and cured at 150 ° C. to obtain a nonwoven fabric sheet containing a polymer elastic body.
- FIG. 3 (Comparative Example 1) shows a strength elongation curve in the vertical direction of the napped-tone artificial leather
- FIGS. 6 and 7 show scanning electron micrographs of cross sections parallel to the thickness direction and the vertical direction.
- the above-mentioned napped-tone artificial leather is shrunk by a humidification part, a shrinkage heating part (shrinkage treatment apparatus in FIG. 1) for heat-treating artificial leather continuously sent from the humidification part, and the shrinkage heating part.
- a shrinkage processing device manufactured by Komatsubara Iron Works Co., Ltd., Sun Foraging Machine
- a heat setting section having a drum for further heat-treating (heat setting) the processed artificial leather
- the artificial leather was humidified and heated so that steam treatment was performed and the raw fabric temperature was 45 ° C.
- the drum temperature of the shrink heating unit was 120 ° C.
- the drum temperature of the heat setting unit was 120 ° C.
- the artificial leather is cooled to 70 ° C. or less by blowing air at 25 ° C. or less immediately after the artificial leather after shrink heating is separated from the elastic sheet and immediately after passing through the heat set unit, and the artificial leather shrink heating unit and Conveyance between the heat setting units was performed by belt conveyance, and the artificial leather was conveyed by belt even after heat setting at the heat setting unit.
- FIG. 3 shows the strength elongation curve in the vertical direction of the stretchable artificial leather
- FIG. 10 and FIG. 11 show enlarged graphs showing the strength elongation curves in the vertical direction and the horizontal direction. Scanning electron micrographs of cross sections parallel to the thickness direction and the vertical direction are shown in FIGS. The evaluation results of the resulting stretchable artificial leather are shown in Table 1.
- the web was entangled with a 1200 punch / cm 2 needle punch, and then contracted in hot water at 90 ° C. to obtain an entangled nonwoven fabric with a basis weight of 750 g / m 2 .
- the entangled nonwoven fabric obtained was impregnated with a 15% dimethylformamide (DMF) solution of polyether polyurethane, and then immersed in a mixed liquid bath of DMF and water to wet-coagulate the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene was extracted and removed in a 85 ° C. toluene bath, and the remaining toluene was removed azeotropically in a 100 ° C. hot water bath, followed by drying. A substrate for artificial leather having m 2 and a thickness of 1.5 mm was obtained.
- DMF dimethylformamide
- the back surface of the obtained artificial leather substrate was buffed twice with No. 180 sandpaper to make the back surface smooth and the thickness was 0.65 mm. Subsequently, the surface was buffed twice with 240 sand paper and twice with 400 sand paper to obtain napped artificial leather having a raised surface made of polyethylene terephthalate ultrafine fibers.
- the hair was finished by brushing to obtain a dyed raised artificial leather (thickness 0.65 mm, basis weight 304 / m 2 , apparent density 0) .468 g / cm 3 ).
- the above-mentioned dyed napped artificial leather was treated using a shrinkage processing apparatus in the same manner as in Example 1 and contracted by 3% in the vertical direction.
- the evaluation results of the obtained stretchable artificial leather are shown in Table 1.
- the strong elongation curves are shown in FIGS.
- the web was entangled by needle punching at 400 punch / cm 2 to obtain an entangled nonwoven fabric having a basis weight of 370 g / m 2 .
- the entangled nonwoven fabric obtained was impregnated with a 22% DMF solution of polyether polyurethane, and then immersed in a DMF / water mixed bath to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene was extracted and removed in a 85 ° C. toluene bath, and the remaining toluene was removed azeotropically in a 100 ° C. hot water bath, followed by drying. A substrate for artificial leather having m 2 and a thickness of 0.8 mm was obtained.
- the back surface of the obtained artificial leather substrate was buffed twice with No. 180 sandpaper, and the thickness was 0.7 mm while smoothing the back surface. Then, the surface was buffed twice with 240 sand paper and twice with 400 sand paper to obtain napped artificial leather having a raised surface made of nylon 6 ultrafine fibers.
- Example 4 A sea component polymer PVA and an island component polymer isophthalic acid-modified polyethylene terephthalate having a modification degree of 6 mol% are melted at 260 ° C. so that the sea component / island component is 25/75 (mass ratio). It was discharged from a base for composite spinning (number of islands: 25 islands / fiber). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and a spunbond sheet in which sea-island fibers having an average fineness of 2.1 dtex were deposited on the net was obtained. Next, fluffing of the surface was suppressed by lightly pressing the spunbond sheet on the net with a metal roll having a surface temperature of 42 ° C.
- the spunbond sheet was peeled from the net. Next, the spunbond sheet was hot-pressed between a lattice-pattern metal roll having a surface temperature of 55 ° C. and a back roll, whereby the sea-island type fiber of the surface layer was temporarily fused in a lattice shape with a basis weight of 28 g / m 2 . A long fiber web was obtained.
- An oil agent and an antistatic agent were applied to the long fiber web, and eight webs were overlapped by cross-wrapping to produce a superposed web having a total basis weight of 218 g / m 2 , and sprayed with a needle breakage preventing oil agent. Then, a 6 barb needle with a distance of 3.2 mm from the needle tip to the first barb is used, and the overlap web is alternately punched from both sides at a needle depth of 8.3 mm at 3300 punches / cm 2 , and the entangled nonwoven fabric Got. In addition, the area shrinkage rate by the needle punch process was 68%. Further, the basis weight of the obtained entangled nonwoven fabric was 311 g / m 2 .
- contraction process by immersing an entangled nonwoven fabric in 70 degreeC hot water for 28 second was performed.
- the modified PVA which is a sea component polymer was melt
- an ultrafine nonwoven fabric in which a fiber bundle composed of 25 ultrafine fibers having an average fineness of 0.09 dtex was entangled three-dimensionally was obtained.
- the area shrinkage rate by the shrinkage treatment was 52%.
- the basis weight of the ultrafine nonwoven fabric was 446 g / m 2 and the apparent density was 0.602 g / cm 3 .
- the thickness of the ultrafine nonwoven fabric was adjusted to 0.9 mm by buffing. Then, a dispersion containing 300 parts by mass of an aqueous acrylic emulsion having a solid content concentration of 60% by mass and 90 parts by mass of a pigment is twice applied at a line speed of 6 m / min to the obtained ultrafine nonwoven fabric using a putter. The dip nip was used for impregnation.
- the solid content concentration of the acrylic resin in the water-based emulsion was 180 g / L, and the solid content concentration of the pigment was 90 g / L. Then, by blowing hot air of 120 ° C.
- Comparative Examples 1 to 4 Artificial leather was obtained in the same manner as in Examples 1 to 4 except that the shrinkage treatment was not performed. The evaluation results are shown in Table 2. Moreover, it shows in the strength elongation curve of the vertical direction of the artificial leather of Comparative Example 1. Furthermore, the strength and elongation curves in the vertical and horizontal directions of the artificial leathers of Comparative Examples 1 to 4 are shown in FIGS. Moreover, the scanning electron micrograph of the cross section parallel to the thickness direction and the vertical direction of the comparative example 1 is shown in FIGS.
- the web was entangled by needle punching at 400 punch / cm 2 to obtain an entangled nonwoven fabric having a basis weight of 780 g / m 2 .
- the entangled nonwoven fabric obtained was impregnated with a 22% DMF solution of polyether polyurethane, and then immersed in a DMF / water mixed bath to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene is extracted and removed in a 85 ° C.
- Example 6 A sea component polymer PVA and an island component polymer isophthalic acid-modified polyethylene terephthalate having a modification degree of 6 mol% are melted at 260 ° C. so that the sea component / island component is 25/75 (mass ratio). It was discharged from a base for composite spinning (number of islands: 25 islands / fiber). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and a spunbond sheet in which sea-island fibers having an average fineness of 2.1 dtex were deposited on the net was obtained. Next, fluffing of the surface was suppressed by lightly pressing the spunbond sheet on the net with a metal roll having a surface temperature of 42 ° C.
- the spunbond sheet was peeled from the net. Next, the spunbond sheet was hot-pressed between a lattice-pattern metal roll having a surface temperature of 55 ° C. and a back roll, whereby the surface sea-island fiber was temporarily fused in a lattice shape with a basis weight of 32 g / m 2 . A long fiber web was obtained.
- contraction process by immersing an entangled nonwoven fabric in 70 degreeC hot water for 28 second was performed.
- the modified PVA which is a sea component polymer was melt
- an ultrafine nonwoven fabric in which a fiber bundle composed of 25 ultrafine fibers having an average fineness of 0.09 dtex was entangled three-dimensionally was obtained.
- the area shrinkage rate by the shrinkage treatment was 50%.
- the basis weight of the ultrafine nonwoven fabric was 780 g / m 2 and the apparent density was 0.610 g / cm 3 .
- the thickness of the ultrafine nonwoven fabric was adjusted to 1.25 mm by buffing. Then, a dispersion containing 300 parts by mass of an aqueous acrylic emulsion having a solid content concentration of 60% by mass and 90 parts by mass of a pigment is obtained several times at a line speed of 4 m / min with respect to the obtained ultrafine nonwoven fabric. The dip nip was used for impregnation.
- the solid content concentration of the acrylic resin in the water-based emulsion was 180 g / L, and the solid content concentration of the pigment was 90 g / L. Then, by drying by blowing hot air of 120 ° C.
- the ice gray acrylic elastic body was migrated to the surface layer and solidified to obtain a semi-silver-like artificial leather (thickness 1.26 mm, basis weight 744 g / m 2 , apparent density 0.590 g / cm 3 ).
- the semi-silver-like artificial leather was treated using a shrinkage processing apparatus in the same manner as in Example 1 and contracted 10.6% in the vertical direction to obtain a stretchable artificial leather.
- the evaluation results of the resulting stretchable artificial leather are shown in Table 3.
- the entangled nonwoven fabric obtained was impregnated with a 14% DMF solution of polyether polyurethane, and then immersed in a mixed liquid bath of DMF and water to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene is extracted and removed in a 85 ° C. toluene bath, and the remaining toluene is removed azeotropically in a 100 ° C. hot water bath to obtain a substrate for artificial leather. It was.
- the back surface of the obtained base for artificial leather was buffed twice with No. 180 sandpaper to make the back surface smooth and the thickness was 0.78 mm. Next, the surface was buffed twice with a No.
- the stretchable artificial leather obtained in Examples 1, 2, 4, 6, and 7 has a micro waviness structure along the vertical direction and has a good elongation coefficient. Therefore, it has excellent extensibility at low elongation.
- the feeling of stopping growth was also good. It has a high density, excellent mechanical properties, and has a texture that is supple, flexible, and full, and when bent it produces fine wrinkles that are extremely useful as artificial leather for car seats and sports shoes. It was an excellent material.
- the stretchable artificial leather obtained in Examples 1, 2, 4, 6, and 7 has a low strength at an elongation of 5%, while a relatively high strength at an elongation of 20%. It was a material that showed good moldability in applications such as shoes and had excellent shape stability after molding. Further, the obtained stretchable artificial leather was a material that can impart a feeling of roundness of the original fabric at the time of bending, and also has a feeling of fulfilling texture.
- the artificial leathers obtained in Examples 3 and 5 were subjected to mechanical shrinkage treatment and heat setting, but no waviness structure was formed, so the extensibility at the time of low elongation or the feeling of non-stretching was slightly inferior, and the texture was somewhat hard. It was. However, due to the mechanical shrinkage treatment and heat setting, it has excellent elasticity in the vertical direction, has a soft texture, is high-density and excellent in mechanical properties, is flexible, and has fine wrinkles when bent. It was a uniform material that was excellent to some extent as artificial leather for clothing and sports shoes.
- the artificial leather of the comparative example is less stretchable in the vertical direction and less stretchy than the stretchable artificial leathers of Examples 1 to 7, and has a hard texture. Met.
- the present invention it is possible to obtain a stretchable artificial leather having moderate stretchability and a feeling of non-stretching in the vertical direction, and since it is excellent in wearing feeling and molding processability, clothing, furniture, car seats, shoes, sports It can be suitably used for the production of shoes and other leather products.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
Abstract
Description
極細化可能繊維をウェブにする工程、
得られたウェブを絡合して絡合不織布を製造する工程、
前記不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革の収縮状態で加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程を含む。
また、本発明の製造方法は、絡合不織布又は人工皮革用基体に任意で高分子弾性体を付与する工程をさらに備えてもよい。
伸び係数=タテ方向の5%円形モジュラス/厚さ ・・・(1)
(A)伸度5%における強力F5%が0.1~10N/2.5cmである。
(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。
(C)伸度5%における曲線の接線の傾きS5%と伸度20%における曲線の接線の傾きS20%との関係において、S20%/S5%が1.2以上である。
(D)伸度0~5%までの曲線の接線の傾きの最大値S0~5%maxが、8以下である。
(E)F20%が30~200N/2.5cmである。
(F)伸度10%における強力F10%が5~60N/2.5cmである。
また、本発明の第1の伸縮性人工皮革は、高い見掛け密度と所定のうねり構造を有することで、タテ方向に適度な伸縮性を持たせるとともに、機械的物性を良好にして適度な伸び止まり感も持たせることができる。
また、本発明の第2の伸縮性人工皮革は、高い見掛け密度と低い伸び係数を有することで、タテ方向に適度な伸縮性を有するとともに、機械的物性を良好にして適度な伸び止まり感も有することもできる。
さらに、本発明の第3の伸縮性人工皮革は、上記所定の条件(A)及び(B)を有することで、タテ方向の適度な伸び止まり感を有する伸縮性人工皮革とすることができる。この伸縮性人工皮革は、インテリア、シート、靴などの用途において良好な成形性を示し、成形後の形態安定性にも優れる。また、この伸縮性人工皮革は、折り曲げ時の原反の丸み感を付与することができ、更に、風合いの充実感を両立することが可能となる。
本発明の伸縮性人工皮革の製造方法は、
(1)極細化可能繊維をウェブにする工程、
(2)得られたウェブを絡合して絡合不織布を製造する工程、
(4)不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
(5)得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
(6)得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革の収縮状態を加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程
を含む。上記製造方法により、人工皮革の表面平滑性を保ちながら、人工皮革に含まれる極細繊維のミクロな挫屈構造を人工皮革のタテ方向に沿って形成させ、タテ方向の伸縮性に優れた人工皮革を製造することができる。
また、本発明では、(3)絡合不織布又は人工皮革用基体に高分子弾性体を含浸し、固化する工程を備えてもよい。
以下、工程(1)~(6)を説明することにより、本発明の伸縮性人工皮革の製造方法について説明する。
工程(1)では、極細化可能繊維をウェブにする。極細化可能繊維は少なくとも2種類のポリマーからなる多成分系複合繊維であって、例えば、海島型繊維は海成分ポリマー中にこれとは異なる種類の島成分ポリマーが分散した断面を有する。極細化可能繊維は、絡合不織布に形成した後、高分子弾性体を含浸させる前または含浸させた後にポリマーの一成分(除去成分)を抽出または分解して除去することで、残ったポリマー(繊維形成成分)からなる極細繊維が複数本集まった繊維束に変換される。海島型繊維の場合、海成分ポリマーを抽出または分解して除去することで、残った島成分ポリマーからなる極細繊維が複数本集まった繊維束に変換される。
極細繊維を形成するポリマー(海島型繊維の島成分)は非弾性ポリマーが好ましい。具体的にはポリアミド、ポリプロピレン、ポリエチレン等からなる極細繊維が好ましく用いられる。これらの中では、後述するヒートセットによって挫屈構造(うねり構造)が保持されやすくなるため、ポリエステルが好ましい。ポリエーテルエステル系繊維やいわゆるスパンデックス等のポリウレタン系繊維などの弾性繊維は好ましくない。
工程(1)で得られるウェブの目付は10~100g/m2が好ましい。
工程(2)では工程(1)で得られたウェブをニードルパンチ、ウォータージェットなどの方法により絡合して絡合不織布を製造する。例えば、前記ウェブを、必要に応じてクロスラッパー等を用いて複数層重ね合わせた後、両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチする。パンチング密度は、200~5000パンチ/cm2の範囲が好ましい。上記範囲内であると、充分な絡合が得られ、極細化可能繊維のニードルによる損傷が少ない。該絡合処理により、極細化可能繊維同士が三次元的に絡合し、極細化可能繊維が極めて緻密に集合した絡合不織布が得られる。ウェブにはその製造から絡合処理までのいずれかの段階で、針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤を付与してもよい。必要に応じて、70~100℃の温水に浸漬するなどの収縮処理によって、絡合不織布の絡合状態をより緻密にしてもよい。また、熱プレス処理を行うことで極細化可能繊維同士をさらに緻密に集合させ、絡合不織布の形態を安定にしてもよい。絡合不織布の目付は100~2000g/m2あるのが好ましい。
工程(3)では工程(2)で得られた絡合不織布に必要に応じて高分子弾性体の水性分散液又は有機溶媒溶液を含浸し、固化させる。なお、極細化可能繊維が長繊維である場合等には、高分子弾性体の使用を省略してもよい。
なお、本明細書において、数平均分子量とは、ポリメタクリル酸メチルを標準物質として、ゲルパーミエーションクロマトグラフィー(GPC)測定による求めるものである。
これらの中では、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートが、機械的特性に優れることから好ましい。
これらの中では、ヒドラジン、ピペラジン、エチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、ジエチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、力学性能の点から好ましい。また、鎖伸長反応時に、鎖伸長剤とともに、エチルアミン、プロピルアミン、ブチルアミンなどのモノアミン類;4-アミノブタン酸、6-アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール、ブタノールなどのモノオール類を併用してもよい。
高分子弾性体の水溶液、水分散体(例えば、水系エマルジョン)、又は有機溶媒溶液の濃度は5~50重量%であるのが好ましい。
高分子弾性体中に必要に応じて着色剤、酸化防止剤、制電防止剤、分散剤、柔軟剤、凝固調整剤などの添加剤を配合してもよい。
工程(4)では工程(2)で得られた高分子弾性体を含まない不織布中、又は、工程(3)で得られた高分子弾性体含有不織布中の極細化可能繊維を極細化し、極細繊維束に変換し、該極細繊維束からなる絡合体、又は該絡合体と該絡合体中に含まれる高分子弾性体からなる人工皮革用基体を製造する。
なお、本発明の効果を損なわない範囲で、単繊維繊度が0.0001デシテックス未満の繊維又は単繊維繊度が0.9デシテックスを越える繊維が限られた量含まれていてもよい。単繊維繊度が0.0001デシテックス未満の繊維および単繊維繊度が0.9デシテックスを越える繊維の含有量は、人工皮革用基体を構成する全繊維の30%以下(数基準)が好ましく、10%以下(数基準)がより好ましく、全く含まれないことがさらに好ましい。
工程(5)では、上記の方法で得られた人工皮革用基体の少なくとも一方の表面に銀面層を設けるか、又は、少なくとも一方の表面を立毛処理して銀付調人工皮革、半銀付調人工皮革、立毛調人工皮革、又はヌバック調人工皮革を得る。人工皮革用基体の少なくとも一方の表面に銀面層を設ける方法、人工皮革用基体の少なくとも一方の表面を立毛処理する方法は、従来人工皮革の製造に用いられている方法を採用すれば良く、本発明では特に限定されない。例えば、離型紙上に形成した銀面層となる層と接着層を人工皮革用基体の少なくとも一方の表面に接着層を介して接着する乾式造面法、人工皮革用基体の少なくとも一方の表面に銀面層となる高分子弾性体の分散液又は溶液を塗布し、乾燥凝固させる方法などにより銀面層を形成することが出来る。また、人工皮革用基体の少なくとも一方の表面を針布、サンドペーパーなどで起毛し、次いで、整毛処理する方法などにより立毛表面を形成することができる。
さらに、人工皮革に対しては、液流染色機等を用いて酸性染料等の染料で染色を行ってもよい。
工程(6)では工程(5)で得られた人工皮革をタテ方向(製造ラインのMD)に機械的に収縮させ、この収縮状態で加熱処理してヒートセットすることにより、タテ方向に適度な伸長性を有し、かつ、伸び止まり感があり良好な柔軟性を有する伸縮性人工皮革を得る。
この間隙を通過後、ベルト3は、人工皮革1を間に把持するようにドラム2に沿って走行することにより、ベルト3の伸長される面が反転し、ベルト3の人工皮革1側の表面はタテ方向の伸長状態から伸長前の状態に弾性回復することによって進行方向(タテ方向)に追い込まれるように収縮する。ベルト3の伸長状態から弾性回復状態への変化に対応して人工皮革1は進行方向(タテ方向)に追い込まれるように収縮され、その後、収縮した人工皮革6として引き取られていく。
ドラム2の表面温度は70~150℃に加熱されていることが好ましい。ドラム2は、人工皮革を収縮させる際に加熱する収縮加熱部として用いることができるとともに、収縮した状態の人工皮革を加熱処理してヒートセットするために用いることもできる。ベルト3はゴムまたはフェルトなどの厚いベルトが好ましく、厚さは通常20mm以上である。また、図1のターンローラ5a、5bによる人工皮革1の搬送速度をベルト3の搬送速度より高くすると、人工皮革1がベルト3の表面上でタテ方向に折り畳まれ、この折り畳まれた人工皮革1が厚いベルト3の表面の伸長状態から弾性回復状態への変化により収縮されるので、人工皮革1の収縮効果を増大することができる。
金属ローラ11は、その表面温度が70~150℃となるように加熱されていることが好ましく、上記した収縮加熱部として用いることができるとともに、収縮状態の人工皮革1を加熱処理してヒートセットするための部材としても用いることができる。
ゴムローラ13は直接加熱せず、収縮加工前の原反(人工皮革)を予熱する方法が一般的であるが、その場合、定常運転状態になったときのゴムローラ13の表面温度は40~90℃であることが好ましい。
なお、以上の説明では、内外周差を利用して弾性シートをタテ方向に伸長させる例や、弾性体シートを厚み方向に圧縮した際の伸びを利用して、弾性シートをタテ方向に伸長させる例を説明したが、他の方法で弾性シートを伸長させてもよい。
収縮率=[(収縮前の長さ)-(収縮後の長さ)]/収縮前の長さ×100
なお、動摩擦係数とは、荷重1.5kgfで人工皮革を弾性体シートまたはシリンダー上で滑らせた際の引張荷重抵抗を測定し、1.5で除することによって測定されたものである。
合成ゴムとしては、スチレン-ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、エチレンプロピレンゴム、クロロプレンゴム、ニトリルゴム、シリコーンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、エチレン-酢酸ビニルゴム、塩素化ポリエチレンゴムなどを用いることができる。
本発明の製造方法においては、弾性体シートから人工皮革を引き離す前に、加熱により人工皮革が収縮状態で処理されて、ヒートセットされるため、弾性体シートは耐熱性に優れていることが好ましく、耐熱性を有するシリコーンゴム、フッ素ゴムまたはエチレンプロピレンゴムが好ましい。
該加熱処理のための加熱温度(例えば、上記した金属ローラ11又はドラム2の表面温度)は、人工皮革用に含まれる繊維が製造工程で受けた熱履歴を考慮して、上記したように好ましくは70~150℃、より好ましくは100~150℃の範囲から選択するのがよい。
例えば、液流染色機などで湿熱120℃処理した人工皮革の場合には、加熱処理のための温度は、湿熱処理の場合は120℃以上、乾熱処理の場合は140℃以上が好ましい。
なお、ここでいう湿熱処理とは、該加熱処理とともに加湿処理が行われたことをいい、乾熱処理とは、加湿処理が行われていないことを意味する。
加熱処理(ヒートセット)の処理時間は、人工皮革に含まれる繊維のポリマー種および加熱処理温度によって異なり、通常0.1~5分の範囲から選ばれる。例えばポリエチレンテレフタレート繊維の場合、1~3分であるのがヒートセット、加工安定性の点で好ましい。一度の加熱処理でヒートセットが不十分な場合は、弾性体シートから人工皮革を引き離した後に、再度加熱処理(ヒートセット)することが好ましい。
使用する人工皮革により予熱処理の最適条件が異なるが、予熱温度は40~100℃が好ましい。また、水分付与量は人工皮革の極細繊維の量に対して1~5重量%が好ましい。
また、上記したように、スチーム又は水をスプレーして加湿処理することにより人工皮革に水分を付与しておくことがで、収縮処理時に人工皮革が過度に昇温することを防止することができる。これにより、収縮処理時における人工皮革の温度を100℃以下に容易にコントロールすることもできる。また、100℃以上に人工皮革を昇温して収縮処理を効果的に行いたい場合には、熱風もしくは赤外線ヒーターによる予熱処理を行うことが好ましい。予熱処理と加湿処理は組み合わせもよく、これらは同時に行ってもよい。
次に、上記製造方法により製造可能な伸縮性人工皮革の第1~第3の実施形態について、具体的に説明する。ただし、以下で説明する各伸縮性人工皮革において、特に説明しない構成は、上記製造方法で説明した構成と同じである。
本発明の第1の実施形態に係る伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、図4、5に示すように、その厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に沿って有するものである。本発明の伸縮性人工皮革は、高い見掛け密度とミクロなうねり構造により、タテ方向に適度な伸縮性と伸び止まり感を有しつつ、機械的物性も良好なものとなる。本実施形態に係る伸縮性人工皮革は、好ましくは、上記本発明の製造方法によって製造されたものであるが、その製造方法は、上記の方法に限定されるわけではない。
本実施形態における繊維絡合体は、例えば上記工程(1)により、短繊維もしくは長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、次いで工程(2)により得られたウェブを絡合して絡合不織布とし、その後、極細化可能繊維の場合には、例えば上記工程(4)により、極細化処理を行うなどの方法により形成されるものである。繊維絡合体や、極細繊維等の各部材の構成は、上記製造方法により得られた人工皮革と同様であるので、その説明は省略する。
本実施形態の伸縮性人工皮革において、繊維絡合体は、好ましくは高分子弾性体を含有しており、ミクロなうねり構造は、極細繊維と繊維絡合体に含有される高分子弾性体によって構成されることが好ましい。本実施形態では、極細繊維が長繊維である場合には、高分子弾性体の使用を省略し繊維絡合体が高分子弾性体を含有しなくても、容易にうねり構造を形成できる。高分子弾性体は、例えば、工程(3)による高分子弾性体付与処理により、繊維絡合体に含有されるが、具体的な処理方法や材料については上記と同様であるので省略する。
本発明の伸縮性人工皮革は、少なくとも一方の表面に銀面を備えるか、又は、立毛処理により少なくとも一方の表面を立毛表面にして、銀付調人工皮革、半銀付調人工皮革、立毛調人工皮革、又はヌバック調人工皮革とすることが好ましい。銀面層を設ける方法及び立毛処理する方法は、上記工程(5)の方法で行われることが好ましい。
本実施形態の伸縮性人工皮革は、機械収縮加工前の人工皮革(以下、処理前人工皮革という)をタテ方向に機械的に収縮させ、その収縮状態で、加熱処理(ヒートセット)することにより得られるものであり、機械的収縮によりミクロなうねり構造がタテ方向に沿って形成され、加熱処理(ヒートセット)によりそのミクロなうねり構造が保持されるものである。より具体的には、うねり構造は、極細繊維により構成される繊維絡合体、あるいは、繊維絡合体と該繊維絡合体に含有される高分子弾性体をタテ方向に沿って挫屈させて成形されたものである。収縮性人工皮革は、このうねり構造(挫屈構造)により、その見かけ密度が高くても、柔軟な風合いと緻密な折り曲げ皺を有している。うねり構造は連続している必要はなく、タテ方向に不連続であっても良い。
また、上記平均高さは、100~300μmであることがより好ましい。平均高さを100~300μmとすることにより、タテ方向の伸びや伸び止まり感をより良好にすることができると同時に表面の凹凸が抑制され、平滑性や外観に優れた人工皮革を得ることが可能となる。
伸び止まり感とは、全く伸びないことを意味するのではなく、伸度が一定値を超えたときに伸びに対する抵抗が著しく大きくなり、更に伸長することが容易ではなくなることを意味し、伸長する際の荷重変化に影響される。本実施形態では伸び止まり感をタテ方向の強力伸度曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時/5%伸長時)で表す。本実施形態の伸縮性人工皮革の上記荷重比は5以上であることが好ましく、5~40であることがより好ましく、特に8~40であることが最も好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
本実施形態の伸縮性人工皮革の見掛け密度は、0.40g/cm3以上であることを特徴とする。見掛け密度を0.40g/cm3以上とすることにより、人工皮革内部の空隙が少なくなり、機械的収縮処理によって容易にうねり構造が形成される。また、引裂強力、剥離強力等を良好にでき、特に伸び止まり感を良好にすることができるので、うねり構造によってタテ方向伸縮性を確保しつつ、高強度の人工皮革を得ることができる。見掛け密度は、より好ましくは0.45g/cm3以上、さらに好ましくは0.50g/cm3以上である。また、好ましくは0.80g/cm3以下であり、より好ましくは0.70g/cm3以下、さらに好ましくは0.65g/cm3以下である。見掛け密度を0.80g/cm3以下とすることにより、種々の用途への加工性を良好にすることができる。
タテ方向に沿うミクロなうねり構造は、処理前人工皮革をタテ方向に機械的に収縮して、その収縮状態でヒートセットすることにより得られるものである。
本実施形態の機械的収縮処理の具体例の一つとして、処理前人工皮革を厚さが数cm以上の厚い弾性体シート(ゴムシート、フェルトなど)のタテ方向に伸長した表面に密着させ、該表面が伸長状態から伸長前の状態に弾性回復させることによって、該処理前人工皮革をタテ方向に収縮させる方法が挙げられる。より詳しくは、上記で詳述した工程(6)の方法で行うことが好ましい。
本実施形態では、処理前人工皮革を進行方向(タテ方向)に追い込むように収縮させるので、得られる伸縮性人工皮革は、上記したようにミクロな挫屈構造(うねり構造)を有している。また、本実施形態では、人工皮革が高密度でかつ極細繊維からなる不織布構造を有しているので、ミクロなうねり構造は形成され易い。
上記したように、本実施形態の処理前人工皮革、すなわち熱収縮処理前の人工皮革は、好ましくは、短繊維又は長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、得られたウェブを絡合して絡合不織布とし、その後、必要に応じて高分子弾性体付与処理、極細化処理、銀面・立毛加工を行うことにより得られたものである。これら処理方法は、具体的には、上記工程(1)~(5)の方法で行われる。
第2の実施形態の伸縮性人工皮革は、例えば、上記の製造方法によって製造されるものであって、以下の特徴を有するものである。以下、第2の実施形態の伸縮性人工皮革を詳細に説明するが、特に言及しない構成は、第1の実施形態の伸縮性人工皮革と同様である。
第2の実施形態の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、以下の式(1)で算出される伸び係数を50以下としたものである。本実施形態の伸縮性人工皮革は、高い見掛け密度と良好な伸び係数により、タテ方向に適度な伸縮性と伸び止まり感を有しつつ、機械的物性も良好なものとなる。
伸び係数=5%円形モジュラス(タテ)/厚さ ・・・(1)
本実施形態の伸縮性人工皮革は、上記したように、タテ方向における5%円形モジュラスを厚さで除すことにより得られる伸び係数を50以下とすることを特徴とする。5%円形モジュラスは、低伸長時における伸長率を表す指標であり、伸縮性人工皮革の伸び特性を表すものであるが、厚さが大きくなると大きくなり、厚さが小さくなると小さくなるものである。すなわち、5%円形モジュラスは、同じ構造の繊維絡合体から成る人工皮革であっても、厚さが変化することにより変化するものである。それに対して、本実施形態における伸び係数は、5%円形モジュラスを厚さで除すことにより、厚さのファクターが無くなっており、厚さによらない伸縮性人工皮革の繊維構造そのものに起因する伸び特性を示すものである。
伸び止まり感は、上記で説明したように、タテ方向の強力伸度曲線(縦軸:荷重、横軸:伸度)により評価することができる。本実施形態でもタテ方向の強力伸度曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時の荷重/5%伸長時の荷重)は5以上であることが好ましく、5~40であることがより好ましく、特に8~40であることが好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
なお、この強力伸度曲線は、5%円形モジュラスと同様に、タテ方向伸長性も評価可能である。例えば、本実施形態の伸縮性人工皮革は、荷重40N/cmで10~40%の伸長率((伸長した長さ/伸長前の長さ)×100)を示すことが好ましい。
なお、本実施形態において、処理前人工皮革や伸縮性人工皮革の見掛け密度・目付等、その他の構成は、第1の実施形態の伸縮性人工皮革と同様であり、その説明は省略する。
[伸縮性人工皮革]
本発明における第3の実施形態の伸縮性人工皮革は、以下の特徴を有するものである。
本実施形態の伸縮性人工皮革は、伸縮性を有する人工皮革において、JIS L 1096(1999)8.14.1 A法記載された方法で測定されるタテ方向の強力伸度曲線で、下記(A)及び(B)の条件を具備するものである。
(A)伸度5%における強力F5%が0.1~10N/2.5cmである。
(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。
ここで、図8に示される曲線はタテ方向の強力伸度曲線である。なお、伸度とは、下記の意味で用いられる。
伸度=[(伸長後の長さ)-(伸長前の長さ)]/伸長前の長さ×100
F20%/F5%は、好ましくは8以上であり、より好ましくは10以上であり、更に好ましくは20以上である。上限は特に限定されないが例えば、100である。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
また、本実施形態の伸縮性人工皮革は、タテ方向に伸長させた弾性体シートに人工皮革を密着させ、次いで、タテ方向に弾性体シートを収縮させると共に人工皮革もタテ方向に収縮させることが好適である。この収縮により人工皮革のタテ方向の伸縮性が向上し、低強力でタテ方向に伸長しやすくなる。その結果、(A)~(F)の条件を満足しやすくなる。
また、上記したようなうねり構造を有することで、(A)~(F)の条件を満足しやすくなる。
目付はJIS L 1096 8.4.2(1999)に記載された方法で測定した。また、厚みをダイヤルシックネスゲージ((株)尾崎製作所製、商品名“ピーコックH”)により測定し、目付の値を厚みの値で割って見掛け密度を求めた。
JIS L 1096 8.19.5 E法(ハンドルオメータ法)にて測定した。試験台上に設けられた幅20mmのスリットに試験片(タテ方向:10cm、横方向:10cm)を載せ、ブレードにて8mmの深さまで試験片をスリットに押し込み、そのときの抵抗力(g)を測定した。測定は表、裏面のそれぞれタテ方向と横方向について行った。
JIS L 1096(1999)8.14.1 A法記載された方法で測定した。幅2.5cmの試験片をつかみ間隔20cmのチャックに固定し、一定速度で試験片を引っ張り、伸度と強力を求めた。その結果から、横軸が伸度(%)、縦軸が試験片2.5cm幅あたりの強力(N/2.5cm)である強力伸度曲線を作成した。
(4)伸び止まり感
上記強力伸度曲線から、30%伸長時の荷重(強力)と、5%伸長時の荷重(強力)を求め、その比(30%伸長時/5%伸長時)を求めた。3回測定し、その平均値を小数点以下1けたに丸めた。伸び止まり感のある場合(前記比が5以上)を“A”とし、伸び止まり感がやや良い場合(前記比が5以上8未満)を“B”とし、それ以外を“C”として評価した。
(5)伸長率(荷重:40N/cm)
前記強力伸度曲線から荷重40N/cmのときのタテ方向伸長率を求めた。
光学顕微鏡にてランダムに選んだ100個の繊維の断面積を測定し、その数平均を求めた。繊維断面積の平均値と繊維の比重から、繊度を計算により求めた。なお、繊維の比重はJIS L 1015 8.14.2(1999)に基づいて測定した。
図9に示すように、300mmφの円形試験片1片にタテ方向に延びる直線上中央部に200mm間の標点をタテ方向に記し、インストロン型引張試験機でつかみ間隔200mm、引張速度200mm/分で5%伸長時のモジュラスを測定するものである。
伸縮性人工皮革の厚み方向とタテ方向に共に平行な断面を走査型電子顕微鏡で撮影し、厚さ方向の任意の位置におけるタテ方向に沿う5.0mmにおいて、うねり構造のピッチ(すなわち、谷から次の山、および山から次の谷)を数えていき、その平均を求めて1mm中に存在するピッチ数とした。また、上記5.0mm中に見られたうねり構造において、隣接する山と谷の高さ差それぞれの平均を求めてうねり構造の平均高さとするとともに、ピッチのタテ方向に沿う平均長さを平均ピッチとした。なお、隣接する山と谷の高さ差は、厚さ方向に沿う山と谷の高さ差を求めた。
水溶性熱可塑性のエチレン変性ポリビニルアルコール(変性PVA、海成分、変性度10モル%)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-ト(変性PET、島成分)を、海成分/島成分が25/75(質量比)となるように260℃で溶融複合紡糸用口金(島数:25島/繊維)より吐出した。紡糸速度が3700m/minとなるようにエジェクター圧力を調整し、平均繊度が2.1デシテックス(dtex)の海島型長繊維をネット上に捕集した。ついで、表面温度42℃の金属ロールでネット上の海島型長繊維からなるシートを軽く押さえ、表面の毛羽立ちを抑えてネットから剥離し、表面温度75℃の金属ロール(格子柄)とバックロール間で熱プレスして表面繊維が格子状に仮融着した目付34g/m2の長繊維ウェブを得た。
伸縮性人工皮革のタテ方向の強力伸度曲線を図3に、タテ方向、ヨコ方向の強力伸度曲線であって、拡大して示したグラフを図10、図11に示した。厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図4、5に示した。また、得られた伸縮性人工皮革の評価結果を第1表に示した。
島成分が変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=60:40(質量比);繊度4.0dtex;繊維長51mm;捲縮数12クリンプ/inch)をカード、クロスラッピングしてウェブを作成した。
該ウェブを1200パンチ/cm2のニードルパンチを行って絡合処理し、次いで、90℃の熱水中で収縮させることにより、目付750g/m2の絡合不織布を得た。
得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図12、図13に示した。
島成分がナイロン6、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=50:50(質量比);繊度3.5dtex;繊維長51mm;捲縮数12クリンプ/inch)をカード、クロスラッピングしてウェブを作成した。
該ウェブを400パンチ/cm2のニードルパンチを行って絡合処理し、目付370g/m2の絡合不織布を得た。
上記染色立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に2%収縮させた。
得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図14、図15に示した。
海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付28g/m2の長繊維ウェブを得た。
上記半銀調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させた。
得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図16、図17に示した。
収縮加工を施さない以外は実施例1~4と同様にして人工皮革を得た。評価結果を第2表に示した。また、比較例1の人工皮革のタテ方向の強力伸度曲線に示す。さらに、比較例1~4の人工皮革のタテ方向、ヨコ方向の強力伸度曲線は、図10~17に示す。また、比較例1の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図6、7に示す。
島成分がナイロン6、海成分がポリエチレンの海島型複合長繊維(島成分:海成分=50:50(質量比);繊度3.5dtex)を用いて長繊維ウェブを作成した。
該ウェブを400パンチ/cm2のニードルパンチを行って絡合処理し、目付780g/m2の絡合不織布を得た。
得られた絡合不織布にポリエーテル系ポリウレタンの22%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥、厚み方向に2分割することにより、目付325g/m2、厚み0.77mmの人工皮革用基体を得た。
得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.7mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてナイロン6極細繊維からなる立毛面を形成した立毛調人工皮革を得た(厚さ0.61mm、目付261g/m2、見掛け密度0.428g/cm3)。
上記立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に4.8%収縮させた。
得られた伸縮性人工皮革の評価結果を第3表に示した。
海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付32g/m2の長繊維ウェブを得た。
上記半銀調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させ、伸縮性人工皮革を得た。
得られた伸縮性人工皮革の評価結果を第3表に示した。
島成分がポリエチレンテレフタレ-ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=65:35(質量比);繊度4.5デシテックス;繊維長51mm)をカード、クロスラッピングしてウェブを作成した。
該ウェブを1500パンチ/cm2のニードルパンチを行って絡合処理し、目付890g/m2の絡合不織布を得た。
得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.78mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてポリエチレンテレフタレート極細繊維からなる立毛面を形成し、人工皮革用基体を立毛調人工皮革とした(厚さ0.78mm、目付340g/m2、見掛け密度0.436g/cm3)。
その立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に5.4%収縮させ、伸縮性人工皮革を得た。
得られた伸縮性人工皮革の評価結果を第3表に示した。
収縮加工を施さない以外は実施例5~7と同様にして人工皮革を得た。評価結果を第4表に示した。
また、実施例1、2、4、6、7で得られた伸縮性人工皮革は、伸度5%における強力が小さい一方、伸度20%における強力が比較的大きくなったため、インテリア、シート、靴などの用途において良好な成形性を示し、成形後の形態安定性にも優れた素材であった。また、得られた伸縮性人工皮革は、折り曲げ時の原反の丸み感を付与することができ、更に、風合いの充実感を両立する素材であった。
2 ドラム
3 ベルト
4 プレッシャーローラ
5a、5b ターンローラ
6 収縮した人工皮革
11 金属ローラ
12 肉厚ゴム部
13 ゴムローラ
14 収縮した人工皮革
Claims (30)
- 極細化可能繊維をウェブにする工程、
得られたウェブを絡合して絡合不織布を製造する工程、
前記不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張状態を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革を収縮状態で加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程
を含む伸縮性人工皮革の製造方法。 - 前記絡合不織布又は人工皮革用基体に高分子弾性体を含浸し、固化する工程をさらに備える請求項1に記載の伸縮性人工皮革の製造方法。
- 前記弾性体シートが天然ゴムまたは合成ゴムのシートである請求項1又は2に記載の伸縮性人工皮革の製造方法。
- 前記弾性体シートをローラの表面に接しながら走行させ、湾曲した弾性体シートの内外周差を利用し、又は前記弾性体シートを圧縮した際の伸びを利用して弾性シートをタテ方向に伸長させ、次いで、伸張状態を緩和することにより該弾性体シートをタテ方向に収縮させることで、前記人工皮革を進行方向に収縮させる請求項1又は2に記載の伸縮性人工皮革の製造方法。
- 前記弾性体シートの厚みが40~75mmである請求項1~4のいずれか1項に記載の伸縮性人工皮革の製造方法。
- 前記弾性体シートは、前記人工皮革を間に把持するようにシリンダーに沿って走行しつつ、前記人工皮革側の面がタテ方向に収縮する請求項4又は5に記載の伸縮性人工皮革の製造方法。
- 前記弾性体シートと人工皮革の見掛けの動摩擦係数が0.8~1.7、前記シリンダーと人工皮革の動摩擦係数が0.5以下である請求項6に記載の伸縮性人工皮革の製造方法。
- 前記シリンダーが加熱シリンダーである請求項6又は7に記載の伸縮性人工皮革の製造方法。
- 人工皮革を弾性体シートに密着させる前に、人工皮革を予熱処理、加湿処理、又はその双方の処理をする請求項1~8のいずれか1項に記載の伸縮性人工皮革の製造方法。
- 前記高分子弾性体がポリウレタン水系エマルジョンの固化物である請求項2に記載の伸縮性人工皮革の製造方法。
- 極細繊維が非弾性繊維である請求項1~10のいずれか1項に記載の伸縮性人工皮革の製造方法。
- 前記人工皮革を弾性体シートから引き離した直後に人工皮革を85℃以下に冷却し、またはベルト搬送する請求項1~11のいずれか1項に記載の伸縮性人工皮革の製造方法。
- 平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、その厚み方向とタテ方向に共に平行な断面において、前記極細繊維より構成されるミクロなうねり構造をタテ方向に有し、タテ方向1mm中に存在する前記うねり構造のピッチ数が2.2個以上であるとともに、前記うねり構造の平均高さが50~350μmである伸縮性人工皮革。
- 前記繊維絡合体が高分子弾性体を含有する請求項13に記載の伸縮性人工皮革。
- 前記高分子弾性体が、ポリウレタン水系エマルジョンの固化物である請求項14に記載の伸縮性人工皮革。
- 前記極細繊維が非弾性繊維である請求項13~15のいずれか1項に記載の伸縮性人工皮革。
- 前記非弾性繊維がポリエステル繊維である請求項16に記載の伸縮性人工皮革。
- 前記ミクロなうねり構造が、タテ方向に収縮させ加熱処理することにより形成されたものである請求項13~17のいずれか1項に記載の伸縮性人工皮革。
- 平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度が0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下である伸縮性人工皮革。
伸び係数=タテ方向の5%円形モジュラス/厚さ (1) - タテ方向における5%伸長時の荷重に対する30%伸長時の荷重の比を5以上とする請求項19に記載の伸縮性人工皮革。
- 前記繊維絡合体が高分子弾性体を含有する請求項19又は20に記載の伸縮性人工皮革。
- 前記高分子弾性体が、ポリウレタン水系エマルジョンの固化物である請求項21に記載の伸縮性人工皮革。
- 前記極細繊維が非弾性繊維である請求項19~22のいずれか1項に記載の伸縮性人工皮革。
- 前記非弾性繊維がポリエステル繊維である請求項23に記載の伸縮性人工皮革。
- タテ方向に収縮させ加熱処理することにより形成されたものである請求項19~24のいずれか1項に記載の伸縮性人工皮革。
- 伸縮性を有する人工皮革において、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されるタテ方向の強力伸度曲線で、下記(A)及び(B)の条件を具備する伸縮性人工皮革。
(A)伸度5%における強力F5%が0.1~20N/2.5cmである。
(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。 - 下記(C)の条件を更に具備する、請求項26に記載の伸縮性人工皮革。
(4)伸度5%における曲線の接線の傾きS5%と伸度20%における曲線の接線の傾きS20%との関係において、S20%/S5%が1.2以上である。 - 下記(D)の条件を更に具備する、請求項26又は27に記載の伸縮性人工皮革。
(D)伸度0~5%までの曲線の接線の傾きの最大値S0~5%maxが、8以下である。 - 下記(E)の条件を更に具備する、請求項26~28のいずれか1項に記載の伸縮性人工皮革。
(E)F20%が30~200N/2.5cmである。 - 下記(F)の条件を更に具備する、請求項26~29のいずれか1項に記載の伸縮性人工皮革。
(F)伸度10%における強力F10%が5~60N/2.5cmである。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13755090.1A EP2821545B1 (en) | 2012-02-29 | 2013-02-26 | Elastic artificial leather and production method therefor |
CN201380011648.2A CN104145058B (zh) | 2012-02-29 | 2013-02-26 | 伸缩性人造革及其制造方法 |
KR1020147023474A KR101982372B1 (ko) | 2012-02-29 | 2013-02-26 | 신축성 인공 피혁 및 그 제조 방법 |
KR1020197014112A KR102074112B1 (ko) | 2012-02-29 | 2013-02-26 | 신축성 인공 피혁 및 그 제조 방법 |
US14/381,072 US10465338B2 (en) | 2012-02-29 | 2013-02-26 | Elastic artificial leather and production method therefor |
EP18191768.3A EP3428340A1 (en) | 2012-02-29 | 2013-02-26 | Elastic artificial leather and production method therefor |
US16/440,117 US11268237B2 (en) | 2012-02-29 | 2019-06-13 | Elastic artificial leather and production method therefor |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012044188A JP5746074B2 (ja) | 2012-02-29 | 2012-02-29 | 伸縮性人工皮革の製造方法 |
JP2012-044188 | 2012-02-29 | ||
JP2012-059385 | 2012-03-15 | ||
JP2012059386A JP5860737B2 (ja) | 2012-03-15 | 2012-03-15 | 伸縮性人工皮革 |
JP2012059384A JP5903302B2 (ja) | 2012-03-15 | 2012-03-15 | 伸縮性人工皮革 |
JP2012-059386 | 2012-03-15 | ||
JP2012-059384 | 2012-03-15 | ||
JP2012059385A JP5903303B2 (ja) | 2012-03-15 | 2012-03-15 | 伸縮性人工皮革 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/381,072 A-371-Of-International US10465338B2 (en) | 2012-02-29 | 2013-02-26 | Elastic artificial leather and production method therefor |
US16/440,117 Continuation US11268237B2 (en) | 2012-02-29 | 2019-06-13 | Elastic artificial leather and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013129388A1 true WO2013129388A1 (ja) | 2013-09-06 |
Family
ID=49082585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054949 WO2013129388A1 (ja) | 2012-02-29 | 2013-02-26 | 伸縮性人工皮革及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10465338B2 (ja) |
EP (2) | EP3428340A1 (ja) |
KR (2) | KR102074112B1 (ja) |
CN (2) | CN104145058B (ja) |
WO (1) | WO2013129388A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105088597A (zh) * | 2015-09-11 | 2015-11-25 | 中纺新材料科技有限公司 | 一种改善单面tpu复合织物平整度的方法 |
JPWO2015064078A1 (ja) * | 2013-11-01 | 2017-03-09 | 株式会社クラレ | ヌバック調皮革様シート及びその製造方法 |
EP3202974A4 (en) * | 2014-09-29 | 2018-05-23 | Kuraray Co., Ltd. | Suede-like sheet and method for producing same |
JPWO2017221961A1 (ja) * | 2016-06-22 | 2019-04-18 | 株式会社クラレ | 立毛調人工皮革及びその製造方法 |
WO2020003866A1 (ja) * | 2018-06-29 | 2020-01-02 | 東レ株式会社 | シート状物およびその製造方法 |
WO2023042782A1 (ja) * | 2021-09-15 | 2023-03-23 | 東レ株式会社 | 人工皮革およびその製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629397B2 (en) | 2012-08-31 | 2017-04-25 | Under Armour, Inc. | Articles of apparel including auxetic materials |
US10426226B2 (en) | 2012-08-31 | 2019-10-01 | Under Armour, Inc. | Footwear upper with dynamic and lock-out regions |
US12070100B2 (en) | 2012-08-31 | 2024-08-27 | Under Armour, Inc. | Laminate panel with auxetic layer |
US11839253B2 (en) | 2012-08-31 | 2023-12-12 | Under Armour, Inc. | Article of apparel including fabric having auxetic structure |
CN104333108B (zh) * | 2014-11-14 | 2016-08-31 | 国网电力科学研究院武汉南瑞有限责任公司 | 一种用于电动汽车的应急救援充电车电气系统及其工作方法 |
KR101597485B1 (ko) * | 2015-02-27 | 2016-02-24 | 최규양 | 균일 온도의 가열이 가능한 합성 피혁 제조장치 및 이것을 이용한 합성 피혁의 제조방법 |
KR101597486B1 (ko) * | 2015-02-27 | 2016-02-24 | 최규양 | 균일 온도의 가열이 가능한 합성 피혁 제조장치 |
EP3556933A4 (en) | 2016-12-13 | 2020-08-19 | Kuraray Co., Ltd. | SCRATCHED ARTIFICIAL LEATHER, POLYESTER FIBERS, AND NON-WOVEN FABRIC |
WO2019058924A1 (ja) * | 2017-09-22 | 2019-03-28 | 株式会社クラレ | 立毛人工皮革 |
CN108215401A (zh) * | 2017-12-29 | 2018-06-29 | 合肥市安山涂层织物有限公司 | 一种伸缩性人造革的制造方法 |
WO2020044911A1 (ja) | 2018-08-27 | 2020-03-05 | 株式会社クラレ | 人工皮革基材、その製造方法及び立毛人工皮革 |
IT201900003121A1 (it) * | 2019-03-04 | 2020-09-04 | Red Carpet S R L | Una macchina compattatrice |
KR102739261B1 (ko) * | 2022-03-30 | 2024-12-05 | 주식회사 휴비스 | 고수축 폴리시클로헥실렌디메틸렌테레프탈레이트 해도사 및 그의 제조방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0544153A (ja) | 1991-07-31 | 1993-02-23 | Unitika Ltd | 布帛の部分的皺づけ加工方法 |
JPH0931832A (ja) | 1995-07-24 | 1997-02-04 | Unitika Ltd | 高密度布帛の柔軟加工方法 |
JP2003089983A (ja) * | 2001-09-20 | 2003-03-28 | Toray Ind Inc | 伸縮性に優れた人工皮革とその製造方法 |
JP2003089984A (ja) * | 2001-09-20 | 2003-03-28 | Toray Ind Inc | 伸縮性に優れた人工皮革およびその製造方法 |
JP2004197282A (ja) | 2002-12-20 | 2004-07-15 | Toray Ind Inc | 伸縮性に優れた人工皮革の製造方法 |
JP2005076151A (ja) | 2003-09-01 | 2005-03-24 | Toray Ind Inc | ストレッチ性人工皮革の製造方法 |
JP4116215B2 (ja) * | 2000-02-02 | 2008-07-09 | 帝人コードレ株式会社 | 皮革様シート状物およびその製造方法 |
JP2010248683A (ja) * | 2009-03-26 | 2010-11-04 | Toray Ind Inc | 皮革様シート状物およびその製造方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1236633A (en) * | 1968-06-18 | 1971-06-23 | Alfred Achille Candel | Composite material |
JPS4985204A (ja) * | 1972-12-20 | 1974-08-15 | ||
JP3187357B2 (ja) | 1997-11-10 | 2001-07-11 | 帝人株式会社 | 皮革様シート状物およびその製造方法 |
JP3727181B2 (ja) | 1998-10-02 | 2005-12-14 | 帝人コードレ株式会社 | 人工皮革用不織布の製造方法 |
TWI223019B (en) * | 1999-03-16 | 2004-11-01 | Kuraray Co | Artificial leather sheet substrate and production process thereof |
KR100648871B1 (ko) * | 2000-02-03 | 2006-11-24 | 데이진 가부시키가이샤 | 피혁 모양 시트 형상물 및 이의 제조방법 |
JP3704273B2 (ja) * | 2000-05-08 | 2005-10-12 | 住江織物株式会社 | 車輌用内装表皮材及びその製造方法 |
JP2002348784A (ja) * | 2001-05-29 | 2002-12-04 | Toray Ind Inc | 伸縮性に優れた人工皮革の製造方法 |
JP4212787B2 (ja) | 2001-07-02 | 2009-01-21 | 株式会社クラレ | 皮革様シート |
KR100919239B1 (ko) * | 2001-09-20 | 2009-09-30 | 도레이 카부시키가이샤 | 신축성이 뛰어난 인공피혁 및 그 제조방법 |
JP4110800B2 (ja) * | 2002-03-04 | 2008-07-02 | 東レ株式会社 | タテ方向伸縮性に優れた人工皮革及びその製造方法 |
TWI230216B (en) * | 2002-03-11 | 2005-04-01 | San Fang Chemical Industry Co | Manufacture method for artificial leather composite reinforced with ultra-fine fiber non-woven fabric |
WO2005106108A1 (ja) * | 2004-04-28 | 2005-11-10 | Kuraray Co., Ltd. | 銀付き調人工皮革 |
TW200936843A (en) | 2002-08-22 | 2009-09-01 | Teijin Cordley Ltd | Leather like sheet material and method for production the same |
KR101027878B1 (ko) * | 2003-05-29 | 2011-04-07 | 가부시키가이샤 구라레 | 피혁 모양 시트 및 그 제조 방법 |
US7122089B2 (en) * | 2003-06-05 | 2006-10-17 | Dzs, L.L.C. | Method of making a textile laminate having pile-like surface |
KR100601767B1 (ko) * | 2003-08-28 | 2006-07-19 | 가부시키가이샤 구라레 | 인공 피혁 및 그 제조 방법 |
CN101057025B (zh) * | 2004-10-08 | 2010-08-04 | 可乐丽股份有限公司 | 人造皮革用无纺布及人造皮革基体的制造方法 |
WO2007081003A1 (ja) | 2006-01-16 | 2007-07-19 | Kuraray Co., Ltd. | 人工皮革用基材およびその製造方法 |
US8388809B2 (en) * | 2006-02-10 | 2013-03-05 | Akzo Nobel N.V. | Microspheres |
JP4967627B2 (ja) * | 2006-12-01 | 2012-07-04 | 東レ株式会社 | 皮革様シートおよびその製造方法 |
JP4935721B2 (ja) * | 2007-03-19 | 2012-05-23 | 東レ株式会社 | 伸縮性シートとその製造方法 |
TWI467074B (zh) * | 2007-08-28 | 2015-01-01 | Kuraray Co | 仿皮革片材及其製法 |
CN101691681B (zh) * | 2009-11-02 | 2011-01-12 | 浙江弘扬无纺新材料有限公司 | 一种伸缩性非织造材料的两步生产法 |
JP2011214196A (ja) * | 2010-03-31 | 2011-10-27 | Kuraray Co Ltd | 針穴加工付銀付調人工皮革、およびその製造方法 |
-
2013
- 2013-02-26 US US14/381,072 patent/US10465338B2/en active Active
- 2013-02-26 EP EP18191768.3A patent/EP3428340A1/en not_active Withdrawn
- 2013-02-26 CN CN201380011648.2A patent/CN104145058B/zh not_active Expired - Fee Related
- 2013-02-26 CN CN201610457536.5A patent/CN105926303B/zh active Active
- 2013-02-26 KR KR1020197014112A patent/KR102074112B1/ko not_active Expired - Fee Related
- 2013-02-26 WO PCT/JP2013/054949 patent/WO2013129388A1/ja active Application Filing
- 2013-02-26 EP EP13755090.1A patent/EP2821545B1/en active Active
- 2013-02-26 KR KR1020147023474A patent/KR101982372B1/ko active Active
-
2019
- 2019-06-13 US US16/440,117 patent/US11268237B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0544153A (ja) | 1991-07-31 | 1993-02-23 | Unitika Ltd | 布帛の部分的皺づけ加工方法 |
JPH0931832A (ja) | 1995-07-24 | 1997-02-04 | Unitika Ltd | 高密度布帛の柔軟加工方法 |
JP4116215B2 (ja) * | 2000-02-02 | 2008-07-09 | 帝人コードレ株式会社 | 皮革様シート状物およびその製造方法 |
JP2003089983A (ja) * | 2001-09-20 | 2003-03-28 | Toray Ind Inc | 伸縮性に優れた人工皮革とその製造方法 |
JP2003089984A (ja) * | 2001-09-20 | 2003-03-28 | Toray Ind Inc | 伸縮性に優れた人工皮革およびその製造方法 |
JP2004197282A (ja) | 2002-12-20 | 2004-07-15 | Toray Ind Inc | 伸縮性に優れた人工皮革の製造方法 |
JP2005076151A (ja) | 2003-09-01 | 2005-03-24 | Toray Ind Inc | ストレッチ性人工皮革の製造方法 |
JP2010248683A (ja) * | 2009-03-26 | 2010-11-04 | Toray Ind Inc | 皮革様シート状物およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2821545A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015064078A1 (ja) * | 2013-11-01 | 2017-03-09 | 株式会社クラレ | ヌバック調皮革様シート及びその製造方法 |
EP3202974A4 (en) * | 2014-09-29 | 2018-05-23 | Kuraray Co., Ltd. | Suede-like sheet and method for producing same |
CN105088597A (zh) * | 2015-09-11 | 2015-11-25 | 中纺新材料科技有限公司 | 一种改善单面tpu复合织物平整度的方法 |
JPWO2017221961A1 (ja) * | 2016-06-22 | 2019-04-18 | 株式会社クラレ | 立毛調人工皮革及びその製造方法 |
JP7008018B2 (ja) | 2016-06-22 | 2022-01-25 | 株式会社クラレ | 立毛調人工皮革及びその製造方法 |
WO2020003866A1 (ja) * | 2018-06-29 | 2020-01-02 | 東レ株式会社 | シート状物およびその製造方法 |
CN112218982A (zh) * | 2018-06-29 | 2021-01-12 | 东丽株式会社 | 片状物及其制造方法 |
WO2023042782A1 (ja) * | 2021-09-15 | 2023-03-23 | 東レ株式会社 | 人工皮革およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3428340A1 (en) | 2019-01-16 |
CN105926303A (zh) | 2016-09-07 |
CN105926303B (zh) | 2019-08-09 |
EP2821545A1 (en) | 2015-01-07 |
US20150050460A1 (en) | 2015-02-19 |
US10465338B2 (en) | 2019-11-05 |
US20190292723A1 (en) | 2019-09-26 |
KR102074112B1 (ko) | 2020-03-02 |
US11268237B2 (en) | 2022-03-08 |
KR20190058669A (ko) | 2019-05-29 |
KR101982372B1 (ko) | 2019-05-27 |
EP2821545B1 (en) | 2018-11-28 |
CN104145058B (zh) | 2016-08-24 |
EP2821545A4 (en) | 2016-02-24 |
CN104145058A (zh) | 2014-11-12 |
KR20140130447A (ko) | 2014-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013129388A1 (ja) | 伸縮性人工皮革及びその製造方法 | |
JP5593379B2 (ja) | 皮革様シート | |
JP5901468B2 (ja) | 伸縮性難燃人工皮革 | |
JP5746074B2 (ja) | 伸縮性人工皮革の製造方法 | |
WO2010098364A1 (ja) | 人工皮革、長繊維絡合ウェブおよびそれらの製造方法 | |
JP5860737B2 (ja) | 伸縮性人工皮革 | |
KR102337556B1 (ko) | 시트상물 및 그의 제조 방법 | |
JP2018003181A (ja) | 銀付人工皮革およびその製造方法 | |
JP6583276B2 (ja) | シート状物とその製造方法 | |
JP5903302B2 (ja) | 伸縮性人工皮革 | |
JP5903303B2 (ja) | 伸縮性人工皮革 | |
JP6354337B2 (ja) | シート状物 | |
JP2013067917A (ja) | 皮革様シート | |
JP2012017541A (ja) | 銀付調人工皮革 | |
JP2014163005A (ja) | 伸縮性人工皮革の製造方法 | |
JP5750228B2 (ja) | 人工皮革およびその製造方法 | |
JP7671150B2 (ja) | 銀付調人工皮革及びその製造方法 | |
KR20250029811A (ko) | 입모 인공 피혁 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13755090 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147023474 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14381072 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013755090 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |