[go: up one dir, main page]

WO2013129388A1 - 伸縮性人工皮革及びその製造方法 - Google Patents

伸縮性人工皮革及びその製造方法 Download PDF

Info

Publication number
WO2013129388A1
WO2013129388A1 PCT/JP2013/054949 JP2013054949W WO2013129388A1 WO 2013129388 A1 WO2013129388 A1 WO 2013129388A1 JP 2013054949 W JP2013054949 W JP 2013054949W WO 2013129388 A1 WO2013129388 A1 WO 2013129388A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial leather
stretchable
vertical direction
elongation
fiber
Prior art date
Application number
PCT/JP2013/054949
Other languages
English (en)
French (fr)
Inventor
道憲 藤澤
幸男 前田
和正 井上
康寿 野村
芦田 哲哉
久一 渡辺
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012044188A external-priority patent/JP5746074B2/ja
Priority claimed from JP2012059385A external-priority patent/JP5903303B2/ja
Priority claimed from JP2012059384A external-priority patent/JP5903302B2/ja
Priority claimed from JP2012059386A external-priority patent/JP5860737B2/ja
Priority to KR1020147023474A priority Critical patent/KR101982372B1/ko
Priority to US14/381,072 priority patent/US10465338B2/en
Priority to EP18191768.3A priority patent/EP3428340A1/en
Priority to KR1020197014112A priority patent/KR102074112B1/ko
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201380011648.2A priority patent/CN104145058B/zh
Priority to EP13755090.1A priority patent/EP2821545B1/en
Publication of WO2013129388A1 publication Critical patent/WO2013129388A1/ja
Priority to US16/440,117 priority patent/US11268237B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0025Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
    • D06N3/0027Rubber or elastomeric fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C21/00Shrinking by compressing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0025Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
    • D06N3/0029Stretchable fibres; Stretching of fibres during manufacture
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0025Rubber threads; Elastomeric fibres; Stretchable, bulked or crimped fibres; Retractable, crimpable fibres; Shrinking or stretching of fibres during manufacture; Obliquely threaded fabrics
    • D06N3/0031Retractable fibres; Shrinking of fibres during manufacture
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1635Elasticity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface

Definitions

  • the present invention relates to a stretchable artificial leather having moderate stretchability in the vertical direction and having a feeling of non-stretching and excellent in flexibility, moldability, and wearing feeling, and a method for producing the same.
  • the present invention also relates to a stretchable artificial leather having excellent mechanical strength and having a moderate feeling of elongation in the vertical direction, and a method for producing the same.
  • leather-like sheets such as artificial leather have flexibility and functionality not found in natural leather, they are used in various applications such as clothing and materials. Stretchability has attracted attention as an important function from the viewpoints of wearing feeling in clothing, molding processability in materials, and ease of sewing and tailoring.
  • a method for producing artificial leather excellent in elasticity, characterized by shrinking the artificial leather by relaxing the extension of the elastic sheet and then removing the elastic sheet has been proposed (for example, Patent Document 1).
  • this method requires the steps of applying an adhesive to the elastic sheet and removing the adhesive, which reduces productivity.
  • the artificial leather substrate when the artificial leather substrate is shrunk after being bonded to the elastic sheet, the artificial leather substrate is curled on the elastic sheet side and the process passability is deteriorated. Further, since the artificial leather substrate is contracted only by the contraction force of the elastic sheet, it is difficult to contract the high-density artificial leather substrate at a high contraction rate. Furthermore, the use of adhesives degrades the quality of the artificial leather surface.
  • Patent Document 2 discloses that an artificial leather mainly composed of a fiber entangled body mainly containing ultrafine fibers having a single yarn fineness of 1.1 dtex or less and a polyurethane resin, after applying a softener to the artificial leather, A method for producing artificial leather excellent in stretchability in the width direction is disclosed, wherein the agent is applied and simultaneously stretched in the length direction and contracted in the width direction in a heated state. However, since it elongates in the length direction, spotted spots and thickness spots of artificial leather are promoted.
  • Patent Document 2 describes the improvement of the stretchability in the vertical direction of the artificial leather. Not considering anything.
  • Patent Documents 3 and 4 A method in which the fabric is forcibly compressed in the vertical direction using a shrinkage processing apparatus having a configuration in which the endless rubber belt runs while contacting a part of the peripheral surface of the thermal cylinder roll, thereby forming a wrinkle on a part of the fabric, or A method for softening a high-density fabric has been proposed (Patent Documents 3 and 4).
  • Patent Documents 3 and 4 do not describe anything about artificial leather having an entangled body of ultrafine fibers, and do not discuss anything about improving the stretchability of the fabric in the vertical direction.
  • the above-mentioned prior art documents do not disclose a simple and efficient method for improving the warp direction stretchability and stretchability of artificial leather. Further, the above-mentioned prior art documents do not disclose artificial leather having improved vertical stretchability and stretchability while increasing the density and improving the mechanical properties.
  • JP 2004-197282 A Japanese Patent Laying-Open No. 2005-076151 JP-A-5-44153 JP-A-9-31832
  • An object of the present invention is to provide a method for producing a stretchable artificial leather having moderate stretchability, a feeling of non-stretching, and good flexibility (especially flexibility when bending) even at high density.
  • Another object of the present invention is to provide a stretchable artificial leather that has a moderate stretch feeling in a vertical direction while increasing the density and improving the mechanical properties while maintaining a moderate stretch feeling. It is another object of the present invention to provide a stretchable artificial leather having a moderate feeling of stretching in the vertical direction.
  • the method for producing the stretchable artificial leather of the present invention includes: A process of making ultrafine fibers into a web, A step of entangled the obtained web to produce an entangled nonwoven fabric, A step of producing a substrate for artificial leather by ultrafinening the ultrathinnable fiber in the nonwoven fabric, A process for producing artificial leather using the obtained substrate for artificial leather, and the obtained artificial leather is closely attached to an elastic sheet stretched 5 to 40% in the vertical direction, thereby relaxing the elastic sheet.
  • the elastic body sheet is contracted in the vertical direction
  • the artificial leather is contracted in the vertical direction, heat-treated in the contracted state of the artificial leather, and then the artificial leather is separated from the elastic sheet.
  • the production method of the present invention may further include a step of optionally applying a polymer elastic body to the entangled nonwoven fabric or the artificial leather substrate.
  • an elastic sheet having a thickness of about 40 to 75 mm is used, and the thick elastic sheet is caused to travel while being in contact with the surface of the roller, thereby utilizing the inner and outer circumference difference and the elastic recovery ability. Then, the elastic sheet is expanded and contracted.
  • artificial leather is heat-treated in a contracted state by the ironing effect of a heating cylinder such as a drum or a roller, and heat set in the contracted state.
  • the first stretchable artificial leather of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
  • the vertical direction has a micro waviness structure composed of ultrafine fibers, and the number of pitches existing in 1 mm in the vertical direction of the waviness structure is 2. Two or more, and the average height of the undulating structure is 50 to 350 ⁇ m.
  • the fiber entangled body contains a polymer elastic body, and the polymer elastic body is a solidified product of a polyurethane water-based emulsion.
  • the ultrafine fibers are preferably non-elastic fibers such as polyester fibers.
  • the micro waviness structure is preferably formed by shrinking in the vertical direction and heat setting.
  • the second stretchable artificial leather of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
  • the elongation coefficient calculated by the following equation (1) is 50 or less.
  • Elongation coefficient Vertical 5% circular modulus / thickness (1)
  • the stretchable artificial leather of the present invention has a micro waviness structure composed of ultrafine fibers in a cross section parallel to both the thickness direction and the vertical direction. Have. Moreover, it is preferable that the ratio of the load at 30% elongation to the load at 5% elongation in the vertical direction is 5 or more.
  • the fiber entangled body contains, for example, a polymer elastic body, and the polymer elastic body is a solidified product of a polyurethane water-based emulsion.
  • the ultrafine fiber is preferably a non-elastic fiber, and the non-elastic fiber is, for example, a polyester fiber.
  • the stretchable artificial leather of the present invention is preferably formed by shrinking in the vertical direction and heat setting.
  • the third stretchable artificial leather of the present invention is a vertical stretch strength elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 A method in stretchable artificial leather. The following conditions (A) and (B) are satisfied.
  • (A) The strength F 5% at an elongation of 5% is 0.1 to 10 N / 2.5 cm.
  • F 20% / F 5% is 5 or more.
  • the third stretchable artificial leather has any of the following conditions (C) to (F).
  • (D) The maximum value S 0 to 5% max of the tangential slope of the curve with an elongation of 0 to 5% is 8 or less.
  • F 20% is 30 to 200 N / 2.5 cm.
  • (F) The strength F 10% at an elongation of 10% is 5 to 60 N / 2.5 cm.
  • the production method of the present invention it is possible to obtain a stretchable artificial leather having moderate stretchability and a feeling of non-stretching in the vertical direction.
  • the first stretchable artificial leather of the present invention has a high apparent density and a predetermined undulation structure, so that it has appropriate stretchability in the vertical direction, and has good mechanical properties and proper elongation. A feeling can be given.
  • the second stretchable artificial leather of the present invention has a high apparent density and a low elongation coefficient, so that it has an appropriate stretchability in the vertical direction and also has a good mechanical property and an appropriate feeling of elongation stoppage. You can also have it.
  • the 3rd elastic artificial leather of this invention can be made into the elastic artificial leather which has a moderate feeling of a stretch stop of the length direction by having the said predetermined conditions (A) and (B).
  • This stretchable artificial leather exhibits good moldability in applications such as interiors, seats, and shoes, and is excellent in form stability after molding.
  • this stretchable artificial leather can give a feeling of roundness of the original fabric at the time of bending, and can further achieve a feeling of fullness in the texture.
  • FIG. 3 is a diagram showing a strength elongation curve (SS curve) in the vertical direction of the stretchable artificial leather obtained in Example 1 and the unshrink-processed artificial leather of Comparative Example 1.
  • 2 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the stretchable artificial leather obtained in Example 1.
  • FIG. FIG. 5 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the stretchable artificial leather obtained in Example 1, and showing the magnification larger than that in FIG. 4.
  • FIG. 4 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the unshrink-processed artificial leather of Comparative Example 1.
  • FIG. 7 is a scanning electron micrograph of a cross section parallel to the thickness direction and the vertical direction of the non-shrink-processed artificial leather of Comparative Example 1, which is a photograph showing the magnification larger than that in FIG. 6. It is a model of the lengthwise strong elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 K A of the stretchable artificial leather according to the present invention. It is the schematic for demonstrating the measuring method of 5% circular modulus.
  • FIG. It is the strength elongation curve of the length direction measured by the method described in JIS * L * 1096 (1999) 8.14.1 * A method about the artificial leather of Example 1 and Comparative Example 1.
  • FIG. It is the strength elongation curve of the horizontal direction measured about the artificial leather of Example 1 and Comparative Example 1 by the method described in JIS L1096 (1999) 8.14.1 A method.
  • FIG. It is the strength elongation curve of the horizontal direction measured about the artificial leather of Example 2 and the comparative example 2 by the method described in JIS * L * 1096 (1999) 8.14.1 * A method.
  • the method for producing the stretchable artificial leather of the present invention comprises: (1) a process of forming ultrafine fibers into a web; (2) A step of entangled the obtained web to produce an entangled nonwoven fabric, (4) A process of producing a substrate for artificial leather by ultrafinening the ultrathinnable fiber in the nonwoven fabric, (5) a step of producing artificial leather using the obtained artificial leather substrate, and (6) the obtained artificial leather is closely attached to an elastic sheet stretched 5 to 40% in the vertical direction, and the elastic body The elastic sheet is contracted in the vertical direction by relaxing the extension of the sheet, the artificial leather is contracted in the vertical direction, the contracted state of the artificial leather is heat-treated, and then the artificial leather is separated from the elastic sheet.
  • the micro-buckling structure of the ultrafine fibers contained in the artificial leather is formed along the vertical direction of the artificial leather, and the artificial leather has excellent stretchability in the vertical direction.
  • the method for producing the stretchable artificial leather of the present invention will be described by explaining the steps (1) to (6).
  • the ultrathinnable fiber is made into a web.
  • the ultrathinnable fiber is a multicomponent composite fiber composed of at least two types of polymers.
  • a sea-island fiber has a cross section in which a different type of island component polymer is dispersed in a sea component polymer.
  • the ultrafine fiber can be formed by forming an entangled nonwoven fabric, and then extracting or decomposing and removing one component (removal component) of the polymer before or after impregnation with the polymer elastic body, thereby removing the remaining polymer ( The fiber bundle is converted into a bundle of fibers.
  • the sea component polymer is extracted or decomposed to be removed, and thereby converted into a fiber bundle in which a plurality of ultrafine fibers made of the remaining island component polymer are collected.
  • the ultrathinnable fiber is not particularly limited, and can be appropriately selected from sea-island fibers, multilayer laminated fibers, and the like obtained by a method such as a mixed spinning method or a composite spinning method.
  • a sea-island type fiber is used as an ultra-thinnable fiber
  • the present invention can be similarly carried out when an ultra-thinnable fiber other than a sea-island fiber is used.
  • the polymer forming the ultrafine fibers is preferably an inelastic polymer.
  • ultrafine fibers made of polyamide, polypropylene, polyethylene or the like are preferably used.
  • polyester since it becomes easy to hold
  • Elastic fibers such as polyether ester fibers and polyurethane fibers such as so-called spandex are not preferable.
  • the polyester is not particularly limited as long as it can be fiberized.
  • polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polyethylene-1,2-bis (2- Chlorophenoxy) ethane-4,4′-dicarboxylate and the like are preferably used.
  • examples of the polyamide include polymers having an amide bond such as nylon 6, nylon 66, nylon 610, nylon 12, and the like.
  • inorganic particles such as titanium oxide particles may be added to improve the concealability, and lubricants, pigments, heat stabilizers, ultraviolet absorbers, conductive agents, heat storage materials, antibacterial agents, etc. These can also be added according to various purposes.
  • the sea component polymer When converting sea-island fibers into fiber bundles of ultrafine fibers, the sea component polymer is extracted or decomposed and removed by a solvent or a decomposing agent. Accordingly, the sea component polymer needs to be more soluble in a solvent or decomposable by a decomposing agent than the island component polymer. From the viewpoint of spinning stability of the sea-island fiber, it is preferable that the affinity with the island component polymer is small and the melt viscosity and / or the surface tension is smaller than the island component polymer under the spinning conditions.
  • the sea component polymer is not particularly limited as long as these conditions are satisfied.
  • polyethylene, polypropylene, polystyrene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, styrene-ethylene copolymer, styrene-acrylic copolymer are used.
  • Polymers, polyvinyl alcohol resins and the like are preferably used. Since artificial leather can be produced without using an organic solvent, water-soluble thermoplastic polyvinyl alcohol (PVA) or water-soluble thermoplastic modified polyvinyl alcohol (modified PVA) such as ethylene-modified PVA is used for the sea component polymer. Is preferred.
  • the average fineness of the sea-island fiber is preferably 1.0 to 6.0 dtex.
  • the mass ratio of the sea component polymer to the island component polymer is preferably 5/95 to 70/30, and the number of islands is preferably 5 or more.
  • the spinning method of the ultrafine fiber is not particularly limited, and may be manufactured by a method conventionally used in the field of artificial leather manufacturing.
  • the ultrathinnable fiber may be a short fiber or a long fiber. Short fibers are preferable because they can produce a non-woven fabric having a high-quality surface, but long fibers are preferable because they can simplify the manufacturing process and are excellent in physical properties such as strength.
  • stretchability in the vertical direction can be achieved using nonelastic fibers. Can be produced.
  • the ultrathinable short fiber is made into a web by a dry method such as carding or papermaking and a wet method, but it is preferable to make a web by a dry method because an artificial leather having a high quality surface can be obtained.
  • the ultrathinnable long fibers can be made into a web by the spunbond method, and if they are collected in the form of continuous filaments to form a web, some of the long fibers are cut in the subsequent process of making artificial leather. May be.
  • a long fiber is a fiber having a fiber length longer than that of a short fiber having a fiber length of usually about 3 to 80 mm and is not intentionally cut like a short fiber.
  • the fiber length of the long fiber before ultrafinening is preferably 100 mm or more, and can be produced in a technical manner and has a fiber length of several meters, several hundreds of meters, several kilometers or more as long as it is not physically cut. It may be.
  • the surface fibers may be temporarily fused by hot pressing. When temporarily fused, the form of the web is stabilized and the handling property in the subsequent process is improved.
  • the basis weight of the web obtained in the step (1) is preferably 10 to 100 g / m 2 .
  • the web obtained in the step (1) is entangled by a method such as needle punching or water jet to produce an entangled nonwoven fabric.
  • a method such as needle punching or water jet to produce an entangled nonwoven fabric.
  • needle punching is performed under the condition that at least one barb penetrates from both sides simultaneously or alternately.
  • the punching density is preferably in the range of 200 to 5000 punches / cm 2 . When it is within the above range, sufficient entanglement can be obtained, and damage to the ultrathinnable fiber by the needle is small.
  • the ultrathinnable fibers are entangled three-dimensionally, and an entangled nonwoven fabric in which the ultrathinnable fibers are gathered very densely is obtained.
  • the web may be provided with a silicone oil agent or a mineral oil agent such as a needle breakage preventing oil agent, an antistatic oil agent, or an entanglement improving oil agent at any stage from the production to the entanglement treatment.
  • the entangled state of the entangled nonwoven fabric may be made denser by a shrinking treatment such as immersing in warm water of 70 to 100 ° C.
  • the ultra-thinnable fibers may be gathered more densely by performing a heat press treatment to stabilize the form of the entangled nonwoven fabric.
  • the basis weight of the entangled nonwoven fabric is preferably 100 to 2000 g / m 2 .
  • Step (3) the entangled nonwoven fabric obtained in the step (2) is impregnated with an aqueous dispersion or an organic solvent solution of a polymer elastic body as necessary and solidified.
  • the ultrafine fiber is a long fiber, the use of a polymer elastic body may be omitted.
  • polymer elastic body examples include polyurethane elastomers, polyurea elastomers, polyurethane-polyurea elastomers, polyacrylic resins, acrylonitrile-butadiene elastomers, styrene-butadiene elastomers.
  • polyurethane elastomers, polyurea elastomers, polyurethane- Polyurethane elastomers such as polyurea elastomers are preferred.
  • a polyurethane elastomer obtained by using at least one selected from polymer diols having a number average molecular weight of 500 to 3500 such as polyester diol, polyether diol, polyester polyether diol, polylactone diol, polycarbonate diol and the like is preferable.
  • a polyurethane obtained by using a polymer diol containing 30% by weight or more of a polycarbonate diol is more preferable.
  • the number average molecular weight is determined by gel permeation chromatography (GPC) measurement using polymethyl methacrylate as a standard substance.
  • Polycarbonate diol is one in which diol skeletons are linked via a carbonate bond to form a polymer chain and have hydroxyl groups at both ends.
  • the diol skeleton is determined by the glycol used as a raw material, but the type thereof is not particularly limited. For example, 1,6-hexanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl- 1,5-pentanediol can be used.
  • a copolymer polycarbonate diol using at least two or more kinds of glycols selected from these glycol groups as raw materials is particularly preferable because an artificial leather excellent in flexibility and appearance can be obtained.
  • the polyurethane elastomer can be obtained by reacting a polymer diol, an organic polyisocyanate, and a chain extender in a predetermined molar ratio.
  • the reaction conditions are not particularly limited, and a polyurethane elastomer can be produced by a conventionally known method.
  • polymer diol examples include polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and poly (methyltetramethylene glycol) and copolymers thereof; polybutylene adipate diol, polybutylene sebacate diol, polyhexamethylene Polyester polyols such as adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, poly (3-methyl-1,5-pentylene sebacate) diol, polycaprolactone diol and copolymers thereof; Hexamethylene carbonate diol, poly (3-methyl-1,5-pentylene carbonate) diol, polypentamethylene carbonate diol, polytetramethylene carbonate di Polycarbonate polyols and their copolymers such Lumpur; polyester carbonate polyols and the like.
  • polyether polyols such as polyethylene glycol, polypropylene glycol, poly
  • polyfunctional alcohols such as a trifunctional alcohol and a tetrafunctional alcohol, or short chain alcohols, such as ethylene glycol, as needed.
  • polyfunctional alcohols such as a trifunctional alcohol and a tetrafunctional alcohol
  • short chain alcohols such as ethylene glycol
  • amorphous polycarbonate polyols, alicyclic polycarbonate polyols, linear polycarbonate polyol copolymers, polyether polyols, and the like are preferable from the viewpoint of obtaining artificial leather excellent in the balance between flexibility and fullness. .
  • organic polyisocyanate examples include non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate; 2,4-tolylene diisocyanate, Aromatic diisocyanates such as 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate polyurethane and the like.
  • non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate
  • 2,4-tolylene diisocyanate Aromatic diis
  • polyfunctional isocyanates such as trifunctional isocyanate and tetrafunctional isocyanate, as needed. These may be used alone or in combination of two or more.
  • 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate have mechanical properties. It is preferable because it is excellent.
  • chain extender examples include hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, diamines such as adipic acid dihydrazide and isophthalic acid dihydrazide; and diethylenetriamine.
  • Triamines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4-cyclohexanediol Diols such as: Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, aminopropyl alcohol, etc. Roh alcohol, and the like. These may be used alone or in combination of two or more.
  • hydrazine piperazine, ethylenediamine, hexamethylenediamine, isophoronediamine and derivatives thereof, and triamines such as diethylenetriamine.
  • monoamines such as ethylamine, propylamine, and butylamine; carboxyl group-containing monoamine compounds such as 4-aminobutanoic acid and 6-aminohexanoic acid; methanol, ethanol, propanol, butanol, etc.
  • Monools may be used in combination.
  • the polymer elastic body is impregnated into the entangled nonwoven fabric as an aqueous solution, an aqueous dispersion, or an organic solvent solution (for example, a solution of an organic solvent such as dimethylformamide, methyl ethyl ketone, acetone, toluene).
  • the impregnation method is not particularly limited, and examples thereof include a method of uniformly impregnating the entangled nonwoven fabric by dipping and the like, and a method of applying to the front and back surfaces.
  • the impregnated polymer elastic body aqueous solution, aqueous dispersion, or organic solvent solution may be solidified by conditions and methods conventionally employed in artificial leather production (for example, a wet method or a dry method).
  • the concentration of the polymer elastic body aqueous solution, aqueous dispersion (for example, aqueous emulsion), or organic solvent solution is preferably 5 to 50% by weight.
  • the polymer elastic body is impregnated into the entangled nonwoven fabric as an aqueous dispersion, whereby the fiber entangled body contains a solidified product of an aqueous emulsion of the polymer elastic body.
  • the fiber entangled body contains a solidified product of an aqueous emulsion of the polymer elastic body.
  • a solidified product of an aqueous emulsion into the fiber entangled body, it is possible to easily form and maintain a swell structure by mechanical shrinkage treatment and heat setting treatment described later.
  • an entangled nonwoven fabric is impregnated with a polymer elastic body as an organic solvent solution to form a swell structure by mechanical shrinkage and heat setting treatment. It is not preferable because it is difficult to hold.
  • the application amount of the polymer elastic body varies depending on the fiber length (short fiber or long fiber) and the application method (aqueous solution, aqueous dispersion, organic solvent solution). From the product flexibility, surface touch, dyeing uniformity,
  • the solid content is preferably in the range of 5 to 70% by weight of the ultrafine fiber weight. In particular, when short fibers are used and applied using an organic solvent solution of a polymer elastic body, the solid content is preferably 10 to 70% by weight of the ultrafine fiber weight. If the application amount is less than 10% by weight, the wear resistance tends to be lowered, and if the application amount exceeds 70% by weight, the texture tends to become hard, which is not preferable. You may mix
  • the ultrathin fiber in the non-woven fabric that does not contain the elastic polymer obtained in the step (2) or in the non-woven fabric containing the elastic polymer obtained in the step (3) is made extremely fine.
  • an entangled body made of the ultrafine fiber bundle, or a base for artificial leather made of the entangled body and a polymer elastic body contained in the entangled body is produced.
  • the ultra-thinning of the ultrafine fiber is performed by converting the ultrafine fiber into a fiber bundle of ultrafine fibers by removing the sea component polymer.
  • the non-island component polymer is dissolved but the sea component polymer is dissolved, or the non-degradable agent that does not decompose the island component polymer but decomposes the sea component polymer is contained in the elastic elastomer-containing nonwoven fabric
  • the method of processing is preferred.
  • the island component polymer is a polyamide resin or a polyester resin
  • an organic solvent such as toluene, trichloroethylene, or tetrachloroethylene is used.
  • the sea component polymer is water-soluble thermoplastic PVA or modified PVA
  • warm water is used.
  • an alkaline decomposing agent such as an aqueous sodium hydroxide solution is used.
  • the removal of the sea component polymer may be performed according to methods and conditions conventionally employed in the artificial leather field, and is not particularly limited.
  • water-soluble thermoplastic PVA or modified PVA is used as the sea component polymer, and this is used in hot water at 85 to 100 ° C. without using an organic solvent. It is preferable to process for a second, extract and remove until the removal rate is 95% by mass or more (including 100%), and convert the ultrafine fiber into a fiber bundle of ultrafine fibers made of island component polymers.
  • the average single fiber fineness of the ultrafine fibers forming the entangled body of the artificial leather substrate of the present invention is preferably 0.9 dtex or less, more preferably 0.0001 to 0.9 dtex, more preferably 0.0001 to 0. 5 dtex, particularly preferably 0.005 to 0.3 dtex. If the average single fiber fineness is less than 0.0001 dtex, the strength of the artificial leather substrate may be lowered. On the other hand, when the average single fiber fineness exceeds 0.9 dtex, the texture of the artificial leather substrate becomes stiff, the fiber entanglement becomes insufficient, the surface quality of the artificial leather substrate decreases, Problems such as a decrease in wear may occur.
  • a limited amount of fibers having a single fiber fineness of less than 0.0001 dtex or fibers having a single fiber fineness of more than 0.9 dtex may be included as long as the effects of the present invention are not impaired.
  • the content of fibers having a single fiber fineness of less than 0.0001 dtex and fibers having a single fiber fineness of more than 0.9 dtex is preferably 30% or less (several standards) of the total fibers constituting the substrate for artificial leather, 10%
  • the following (number basis) is more preferable, and it is further preferable that it is not included at all.
  • the fineness of the fiber bundle of ultrafine fibers is preferably 1.0 to 4.0 dtex, and the number of ultrafine fibers in one fiber bundle is preferably 9 to 500. Within the above range, the appearance uniformity of the artificial leather substrate and the suede-like artificial leather obtained therefrom and the balance between the color development and the wear resistance are good.
  • the ultrafine fiber may be either a short fiber or a long fiber, like the ultrafine fiber.
  • the basis weight of the artificial leather substrate is preferably 150 to 1500 g / m 2 .
  • the apparent density of the artificial leather substrate is preferably 0.25 to 0.80 g / cm 3 .
  • the thickness of the artificial leather substrate is selected according to the use of the artificial leather, but is usually 0.3 to 3.0 mm.
  • Step (3) may be omitted. Further, after the step (4), the step (3) may be performed to make the base material for artificial leather obtained by making the ultrathinnable fiber ultrafine, so that the polymer elastic body is contained.
  • the artificial leather substrate of the present invention includes other dyes, softeners, texture modifiers, anti-pilling agents, antibacterial agents, deodorants, Functional agents such as a liquid medicine, a light-proofing agent, and a glaze-proofing agent may be included.
  • Step (5) a silver surface layer is provided on at least one surface of the substrate for artificial leather obtained by the above method, or at least one surface is brushed to add artificial leather with silver and semi-silver An artificial leather, a napped artificial leather, or a nubuck artificial leather is obtained.
  • a method of providing a silver layer on at least one surface of the artificial leather substrate, and a method of raising the surface of at least one surface of the artificial leather substrate may adopt a method conventionally used for manufacturing artificial leather, The present invention is not particularly limited.
  • a dry surface forming method in which a silver surface layer and an adhesive layer formed on a release paper are bonded to at least one surface of an artificial leather substrate via an adhesive layer, on at least one surface of an artificial leather substrate
  • the silver surface layer can be formed by a method of applying a dispersion or solution of a polymer elastic body to be a silver surface layer and drying and coagulating it.
  • a raised surface can be formed by a method of raising at least one surface of the artificial leather substrate with a needle cloth, sandpaper or the like, and then performing a hair treatment.
  • the artificial leather may be dyed with a dye such as an acid dye using a liquid dyeing machine or the like.
  • Is preferably the basis weight of the artificial leather obtained as described above is 130 ⁇ 1600g / m 2, more preferably from 150 ⁇ 1400g / m 2, an apparent density of 0.25 ⁇ 0.80g / cm 3
  • the thickness is preferably 0.30 to 0.70 g / cm 3 , and the thickness is preferably 0.5 to 2.0 mm.
  • Step (6) the artificial leather obtained in step (5) is mechanically shrunk in the vertical direction (MD of the production line), heat-treated in this contracted state, and heat-set, so that it is moderate in the vertical direction.
  • a stretchable artificial leather having extensibility, having a feeling of stopping and having good flexibility is obtained.
  • FIG. 1 is a schematic view showing an example of an apparatus for contracting artificial leather by this method.
  • the belt 3 made of a thick elastic sheet advances while contacting the surface of the pressure roller 4 (surface material: metal). During this time, the outer surface of the belt 3 is elongated in the vertical direction due to the difference between the inner and outer circumferences of the belt.
  • the artificial leather 1 sent from the turn rollers 5 a and 5 b is brought into close contact with the extended outer surface of the belt 3.
  • the belt 3 and the artificial leather 1 in close contact with the belt 3 pass through the gap between the pressure roller 4 and the drum 2 (surface material: metal), and run while contacting the surface of the drum 2.
  • the belt 3 travels along the drum 2 so as to hold the artificial leather 1 therebetween, so that the stretched surface of the belt 3 is reversed and the surface of the belt 3 on the artificial leather 1 side is reversed.
  • the artificial leather 1 is shrunk so as to be driven in the traveling direction (vertical direction), and then taken up as the shrunk artificial leather 6.
  • the outer diameter of the pressure roller 4 is preferably 10 to 50 cm.
  • the elastic sheet is contracted in the vertical direction (traveling direction), and at the same time, the artificial leather is contracted within the range described below.
  • the outer diameter of the drum 2 is preferably larger than the outer diameter of the pressure roller 4 and is 20 to 80 cm.
  • the diameter of the drum 2 is preferably as large as possible in order to lengthen the heat treatment time and efficiently perform heat setting, but is small in order to set the shrinkage rate using the difference between the inner and outer circumferences of the elastic belt within the range of the present invention. Since it is better, the outer diameters of the drum 2 and the roller 4 are determined in consideration of these. Usually, it is preferable to prioritize the heat treatment time.
  • the pressure roller 4 is not directly heated, but a method of preheating the raw fabric (artificial leather) before shrinking is generally used, but the surface temperature of the roller 4 in a steady operation state is about 40 to 90 ° C. Preferably there is.
  • the surface temperature of the drum 2 is preferably heated to 70 to 150 ° C.
  • the drum 2 can be used as a contraction heating unit that heats when the artificial leather is contracted, and can also be used for heat-treating the contracted artificial leather by heat treatment.
  • the belt 3 is preferably a thick belt such as rubber or felt, and the thickness is usually 20 mm or more. Further, when the conveying speed of the artificial leather 1 by the turn rollers 5a and 5b in FIG.
  • the artificial leather 1 is higher than the conveying speed of the belt 3, the artificial leather 1 is folded in the vertical direction on the surface of the belt 3, and the folded artificial leather 1 is folded. Since the surface of the belt 3 is shrunk due to the change from the stretched state to the elastic recovery state, the shrinkage effect of the artificial leather 1 can be increased.
  • FIG. 2 is a schematic view showing an example of an apparatus for contracting artificial leather by this method.
  • a belt 3 made of an elastic sheet circulates along the surface of a rubber roller 13 having a metal roller 11 and a thick rubber portion 12.
  • the thick rubber portion 12 is deformed and expanded in the central direction of the rubber roller 13 by the nip pressure, and the belt 3 is compressed in the thickness direction by the nip pressure.
  • the artificial leather 1 is supplied between the metal roller 11 and the rubber roller 13, that is, on the outer surface of the belt 3.
  • the belt 3 compressed in the thickness direction is stretched so that the length of the belt 3 becomes longer with the compression. Therefore, after passing through the nip, the belt 3 contracts (elastically recovers) by the compression release from the stretched state, whereby the artificial leather 1 disposed on the outer surface of the belt 3 also contracts in the vertical direction. For example, when the thickness is compressed to 1 ⁇ 2, assuming that the width of the rubber belt 3 does not change, the length of the rubber belt 3 is deformed approximately twice. Thereafter, the contracted artificial leather 1 travels along the surface of the heated metal roller 11 so as to be gripped by the belt 3 and the metal roller 11, and is then taken off.
  • the metal roller 11 is preferably heated so that its surface temperature becomes 70 to 150 ° C., and can be used as the above-described shrink heating unit, and heat-set by heat-treating the contracted artificial leather 1. It can be used also as a member for doing.
  • the rubber roller 13 is not directly heated, and the raw material (artificial leather) before shrinking is preheated.
  • the surface temperature of the rubber roller 13 in a steady operation state is 40 to 90 ° C.
  • the elastic sheet is extended in the vertical direction using an example in which the elastic sheet is extended in the vertical direction using the difference between the inner and outer circumferences, or the elastic sheet is extended in the thickness direction. Although the example has been described, the elastic sheet may be extended by other methods.
  • the method for producing the artificial leather of the present invention using the mechanical shrinkage treatment described above causes the artificial leather to adhere to the surface without using an adhesive means such as an adhesive while extending the surface of the elastic sheet in the vertical direction.
  • the stretched state is relaxed to elastically recover the surface of the elastic sheet to the state before stretching, and the artificial leather is shrunk so as to be driven in the traveling direction (vertical direction).
  • the elongation ratio ((length stretched / length before stretching) ⁇ 100) of the elastic sheet surface when the artificial leather is closely attached is 5 to 40%, preferably 7 to 25%, more preferably 10 to 20%. is there.
  • artificial leather that extends in the vertical direction can be obtained by the shrinking treatment in the step (6).
  • an artificial leather made of short fibers having a basis weight of 250 g / m 2 or less is stretched by the tension applied in the production process, and as a result, hardly stretches in the vertical direction.
  • the shrinkage treatment as described above is preferably performed at 70 to 150 ° C., more preferably 90 to 130 ° C. Further, the artificial leather is shrunk in the vertical direction preferably at a shrinkage rate of 2 to 20%, more preferably at a shrinkage rate of 4 to 15%.
  • Shrinkage rate [(length before shrinkage) ⁇ (length after shrinkage)] / length before shrinkage ⁇ 100
  • the apparent dynamic friction coefficient between the elastic sheet 3 and the artificial leather 1 is preferably 0.8 to 1.7, and more preferably 1.1 to 1.6.
  • the dynamic friction coefficient between the cylinder (roller 2 or roller 11) and the artificial leather 1 is preferably 0.5 or less, and more preferably 0.4 or less.
  • the contraction force of the elastic sheet can be uniformly transmitted to the artificial leather, and the artificial leather can be effectively contracted in the vertical direction.
  • the dynamic friction coefficient is measured by measuring the tensile load resistance when the artificial leather is slid on the elastic sheet or cylinder with a load of 1.5 kgf and dividing by 1.5.
  • the elastic sheet used in the present invention is not particularly limited as long as it is a sheet-like material having the above-mentioned elastic characteristics, but it is preferable to use a sheet of natural rubber or synthetic rubber.
  • a sheet of natural rubber or synthetic rubber especially because it has a high elastic recovery force, when shrinking together with an artificial leather that is in close contact, the effect of shrinking the artificial leather sufficiently against the resistance of the artificial leather is obtained. Can do.
  • the thickness of the elastic sheet is preferably 20 to 100 mm, and more preferably 40 to 75 mm. Within the above range, the elastic sheet can be effectively extended and contracted in the vertical direction using the difference between the inner and outer circumferences.
  • the natural rubber rubber mainly composed of cis-1,4-polyisoprene collected from bark such as Hevea tree can be used.
  • Synthetic rubbers include styrene-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber, ethylene propylene rubber, chloroprene rubber, nitrile rubber, silicone rubber, acrylic rubber, epichlorohydrin rubber, fluorine rubber, urethane rubber, ethylene-vinyl acetate rubber, chlorinated Polyethylene rubber or the like can be used.
  • the elastic sheet is preferably excellent in heat resistance. Heat resistant silicone rubber, fluorine rubber or ethylene propylene rubber is preferred.
  • the artificial leather is heat-treated and heat-set in a contracted state.
  • the heat treatment may be performed after the artificial leather is separated from the elastic sheet, instead of before the artificial leather is separated from the elastic sheet, or may be performed both before and after the artificial leather is separated.
  • the heating temperature for the heat treatment is preferably as described above in consideration of the thermal history received by the fibers contained in the artificial leather in the manufacturing process. Is selected from the range of 70 to 150 ° C, more preferably 100 to 150 ° C.
  • the temperature for the heat treatment is preferably 120 ° C. or higher for wet heat treatment and 140 ° C. or higher for dry heat treatment.
  • the wet heat treatment here means that the humidification treatment is performed together with the heat treatment
  • the dry heat treatment means that the humidification treatment is not performed.
  • the treatment time of the heat treatment (heat set) varies depending on the polymer type of the fiber contained in the artificial leather and the heat treatment temperature, and is usually selected from the range of 0.1 to 5 minutes. For example, in the case of polyethylene terephthalate fiber, 1 to 3 minutes is preferable in terms of heat setting and processing stability. When heat setting is insufficient with a single heat treatment, it is preferable to heat-treat (heat set) again after the artificial leather is separated from the elastic sheet.
  • the heat treatment method may be a known method such as a method of heating by blowing hot air on artificial leather, a method of heating using an infrared heater, a method of heat treatment sandwiched between a heating cylinder and an elastic sheet or non-woven fabric sheet.
  • a method of heating by blowing hot air on artificial leather a method of heating using an infrared heater
  • a method of heat treatment sandwiched between a heating cylinder and an elastic sheet or non-woven fabric sheet for example, the ironing effect of the heating cylinder is obtained by sandwiching between the heating cylinder (drum 2 or metal roller 11) and the sheet.
  • the method to be used is preferably used.
  • the heat-treated artificial leather is usually taken up at a speed of 2 to 15 m / min.
  • pre-heat treatment and / or humidification treatment for softening the artificial leather before the artificial leather is brought into close contact with the elastic sheet.
  • a preheating method a known heating method such as a method of heating while humidifying by blowing steam or water, a method of blowing hot air to artificial leather, a method of heating using an infrared heater, or the like can be used.
  • the method of performing the humidification treatment is not limited as long as moisture can be imparted to the artificial leather, but there is a method in which steam or water is sprayed on the artificial leather.
  • the preheating temperature is preferably 40 to 100 ° C.
  • the moisture application amount is preferably 1 to 5% by weight with respect to the amount of ultrafine fibers of the artificial leather.
  • moisture can be imparted to the artificial leather by spraying steam or water to humidify the artificial leather, thereby preventing the artificial leather from being excessively heated during the shrinkage treatment. .
  • contraction processing can also be easily controlled to 100 degrees C or less.
  • the stretchable artificial leather is preferably cooled to 85 ° C. or less immediately after the step (6), and the stretchable artificial leather obtained in the step (6) is conveyed by a belt by a conveyor belt.
  • stretchable artificial leather is immediately cooled to 85 ° C or lower by a cooling roll or air cooling from a state heated to 100 ° C or higher, it has the advantage that it can prevent the influence of process tension when being conveyed in a heated state. is there.
  • the belt is conveyed, for example, even when stretchable artificial leather is sent between rolls and rolls, it is placed on the belt that is stretched between the rolls and rolls, so that the tension during the process is reduced.
  • the artificial leather is sent to another heat treatment apparatus after the treatment by the apparatus shown in FIGS. 1 and 2 (for example, after the shrinkage treatment and the heat treatment are performed), and the heat treatment (heat set) is performed. Although it may be carried out, the belt is also conveyed when it is sent to the other heat treatment apparatus, and the artificial leather may be cooled as described above.
  • the apparent density of the stretchable artificial leather obtained through the step (6) is preferably 0.25 to 0.80 g / cm 3 , and if it is within this range, the wear resistance and processing for various uses Good properties.
  • the basis weight is 150 to 1700 g / m 2 , and the thickness is selected according to the application, but is preferably 0.5 to 2.0 mm.
  • the artificial leather is shrunk so as to drive it in the direction of travel (vertical direction), so that the resulting stretchable artificial leather has a micro-bending structure consisting of a fiber bundle of ultrafine fibers and an arbitrary polymer elastic body. It is preferable to have a (swell structure), so that it has a soft texture and a dense folded fold regardless of the apparent density of the stretchable artificial leather.
  • the micro-bending structure is a wavy structure that occurs along the vertical direction as a result of the artificial leather contracting in the vertical direction, and the artificial leather of the present invention has a nonwoven fabric structure composed of ultrafine fibers. It is easy to form (refer FIG.4 and FIG.5).
  • the waviness structure does not need to be continuous and may be discontinuous in the vertical direction.
  • the stretchable artificial leather of the present invention is not stretchable of the fiber itself, but stretches in the vertical direction due to such a change in the buckling structure (elongation), has a feeling of non-stretching, and is less likely to lose its shape when worn. Good feeling of wear and workability for various uses.
  • undulation structure in this invention has a structure explained in full detail below.
  • the artificial leather obtained by the production method of the present invention does not have to have the swell structure as described above. Even if it does not have a wavy structure, it is presumed that the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body are micro-bent or bent by the above-described mechanical shrinkage treatment and heat setting.
  • the resulting stretchable artificial leather has a micro buckling structure that relaxes the tension of the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body. , It will have a certain degree of soft texture and a dense bend.
  • the stretchable artificial leather of the present invention has moderate stretchability in the vertical direction, so that it has a good feeling of wear and processability to the product, and it has a feeling of non-stretching, so that it can be prevented from losing its shape and shape. it can.
  • the stretchability in the vertical direction and the feeling of elongation stop can be evaluated by a strong elongation curve in the vertical direction (load elongation curve, vertical axis: load (strength), horizontal axis: elongation rate (elongation)).
  • the stretchable artificial leather of the present invention can exhibit a stretch rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
  • the feeling of non-elongation does not mean that it does not elongate at all, but it means that when the elongation exceeds a certain value, the resistance to elongation becomes remarkably large, and it is not easy to elongate. It is influenced by the load change at the time.
  • the feeling of stopping the elongation is represented by the ratio of the load at the time of 30% elongation and the load at the time of 5% elongation (at the time of 30% elongation / 5% elongation) in the vertical strength elongation curve (see FIG. 3).
  • the load at 5% elongation greatly affects the sewability, workability and wearing feeling.
  • the load ratio of the stretchable artificial leather of the present invention is preferably 5 or more, more preferably 5 to 40, and particularly preferably 8 to 40.
  • the vertical direction is the flow direction (MD) of the artificial leather production line, and the direction perpendicular thereto is the horizontal direction.
  • the vertical direction of the artificial leather in the product can generally be determined from a plurality of factors such as the orientation direction of the fiber bundle of ultrafine fibers, streak traces by needle punching or high-speed fluid treatment, and treatment traces. If the vertical direction cannot be determined because the vertical direction determined by these multiple elements is different, there is no clear orientation, or there are no streak marks, the vertical direction in which the tensile strength is maximized is determined.
  • the direction and the direction perpendicular to the direction are the horizontal direction.
  • the artificial leather is brought into close contact with the elastic sheet extended in the vertical direction, and then the elastic sheet is contracted in the vertical direction and the artificial leather is also contracted in the vertical direction.
  • This contraction improves the stretchability of the artificial leather in the vertical direction
  • the stretchable artificial leather obtained by the production method of the present invention extends in the vertical direction with a lower load than conventionally known artificial leather.
  • the strong elongation curve becomes a curve in which the load greatly increases when the elongation exceeds a certain elongation (see FIG. 3). Therefore, the stretchable artificial leather of the present invention has a property (extension stop feeling) that stretches with a low load in a low stretch region and does not stretch unless a high load is applied in a high stretch region.
  • the stretchable artificial leather of the present invention thus obtained has moderate stretchability in the vertical direction and a feeling of non-stretching, and is excellent in surface quality, so it can be used in a wide range of applications such as clothing, furniture, car seats, sundries, etc. Can be used.
  • the stretchable artificial leather according to the first embodiment of the present invention is a stretchable artificial leather composed of a fiber entangled body made of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0. 40 g / cm 3 or more and, as shown in FIGS. 4 and 5, have a micro waviness structure composed of ultrafine fibers along the vertical direction in a cross section parallel to both the thickness direction and the vertical direction. is there.
  • the stretchable artificial leather of the present invention has an appropriate stretchability and a feeling of staying in the vertical direction due to a high apparent density and a micro waviness structure, and also has good mechanical properties.
  • the stretchable artificial leather according to the present embodiment is preferably produced by the production method of the present invention, but the production method is not limited to the above method.
  • the short fiber or the long ultrafine fiber or the ultrathinnable fiber is formed into a web by the step (1), and then the web obtained by the step (2) is entangled and entangled.
  • the web obtained by the step (2) is entangled and entangled.
  • it is formed by a method such as performing ultrafine treatment, for example, by the step (4). Since the structure of each member, such as a fiber entangled body and ultrafine fibers, is the same as that of the artificial leather obtained by the above manufacturing method, the description thereof is omitted.
  • the fiber entangled body preferably contains a polymer elastic body, and the micro waviness structure is constituted by the polymer elastic body contained in the ultrafine fibers and the fiber entangled body. It is preferable.
  • the ultrafine fiber is a long fiber
  • the use of the polymer elastic body is omitted, and the undulating structure can be easily formed even if the fiber entangled body does not contain the polymer elastic body.
  • the polymer elastic body is contained in the fiber entangled body by, for example, the polymer elastic body applying process in the step (3), but the specific processing method and material are the same as described above, and thus are omitted.
  • the stretchable artificial leather of the present invention is provided with a silver surface on at least one surface, or at least one surface is raised by a napping treatment, thereby producing a silvered artificial leather, a semi-silvered artificial leather, a napped Artificial leather or nubuck-like artificial leather is preferable. It is preferable that the method of providing a silver surface layer and the method of napping treatment are performed by the method of the said process (5).
  • the stretchable artificial leather according to the present embodiment is obtained by mechanically shrinking an artificial leather before mechanical shrinkage processing (hereinafter referred to as “artificial leather before treatment”) in the vertical direction, and performing heat treatment (heat setting) in the contracted state.
  • a micro waviness structure is formed along the vertical direction by mechanical shrinkage, and the micro waviness structure is maintained by heat treatment (heat setting).
  • the undulation structure is formed by bending a fiber entangled body composed of ultrafine fibers, or a fiber entangled body and a polymer elastic body contained in the fiber entangled body along the vertical direction. It is a thing.
  • the shrinkable artificial leather has a flexible texture and a dense bend due to this undulation structure (bending structure) even if its apparent density is high.
  • the waviness structure does not need to be continuous and may be discontinuous in the vertical direction.
  • the undulation structure is characterized in that the number of pitches existing in a vertical direction of 1 mm is 2.2 or more, the average height (height difference between peaks and valleys) is 50 to 350 ⁇ m, and the average pitch is 450 ⁇ m or less.
  • the average pitch means the average distance of one pitch of the undulation structure (between the valley and the next mountain, and between the mountain and the next valley), and the number of pitches means the pitch existing in 1 mm. Numbers.
  • the stretchable artificial leather of the present invention is not stretchable of the fiber itself, but has a moderate stretch in the vertical direction and a sense of stopping stretching due to such a change (elongation) of the wavy structure.
  • the stretchable artificial leather has an appropriate elongation in the vertical direction, so that it has a good feeling of wear and processability to the product, and has an appropriate feeling of not being stretched, so that it can be prevented from being lost or deformed.
  • the number of pitches is preferably 2.2 to 6.7, more preferably 2.5 to 5.0.
  • the average pitch is preferably 150 to 450 ⁇ m, and more preferably 200 to 400 ⁇ m.
  • the average height is more preferably 100 to 300 ⁇ m. By setting the average height to 100 to 300 ⁇ m, it is possible to improve the vertical direction and the feeling of stretching stop, and at the same time, to suppress surface irregularities and to obtain an artificial leather excellent in smoothness and appearance. It becomes possible.
  • the stretchable artificial leather of the present embodiment When the stretchable artificial leather of the present embodiment is mechanically shrunk in the vertical direction, it is shrunk smaller in the horizontal direction than in the vertical direction, or is not substantially shrunk. Therefore, the micro waviness structure along the horizontal direction is not formed in a cross section parallel to both the thickness direction and the horizontal direction. Alternatively, even if formed, the undulation amount of the undulation structure in the cross section parallel to the thickness direction and the horizontal direction is smaller than the undulation amount of the undulation structure in the cross section parallel to the thickness direction and the vertical direction. That is, the pitch number (per 1 mm) of the undulation structure along the vertical direction of the stretchable artificial leather and the average height are larger than the pitch number (per 1 mm) of the undulation structure along the horizontal direction and the average height, respectively. Become.
  • the stretchable artificial leather of the present embodiment has a micro waviness structure in the vertical direction and has an appropriate stretchability, so that it has a good feeling of wear and workability to the product, and also has a feeling of non-stretching and breaks down. It is possible to prevent the loss of shape.
  • the stretchability in the vertical direction and the feeling of stoppage can be evaluated by a strong elongation curve in the vertical direction (vertical axis: load, horizontal axis: elongation) and a 5% circular modulus in the vertical direction.
  • the stretchable artificial leather of the present embodiment can exhibit an elongation rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
  • the 5% circular modulus in the vertical direction is an index showing the extensibility at the time of low elongation, and in this embodiment, it can be set to, for example, 40 N or less, preferably 10 to 30 N by forming a wavy structure. .
  • the feeling of non-elongation does not mean that it does not elongate at all, but it means that when the elongation exceeds a certain value, the resistance to elongation becomes remarkably large, and it is not easy to elongate. It is influenced by the load change at the time.
  • the feeling of stoppage of elongation is expressed by the ratio of the load at the time of 30% extension and the load at the time of 5% extension (at the time of 30% extension / 5% extension) in the vertical strength elongation curve (see FIG. 3).
  • the load ratio of the stretchable artificial leather of the present embodiment is preferably 5 or more, more preferably 5 to 40, and most preferably 8 to 40. When it is within the above range, there is a feeling of stoppage of elongation in the vertical direction, there is little loss of shape due to wearing, and the feeling of wearing and workability for various uses is good.
  • the apparent density of the stretchable artificial leather of the present embodiment is 0.40 g / cm 3 or more.
  • the apparent density is more preferably 0.45 g / cm 3 or more, further preferably 0.50 g / cm 3 or more.
  • it is preferably 0.80 g / cm 3 or less, more preferably 0.70 g / cm 3 or less, and further preferably 0.65 g / cm 3 or less.
  • the basis weight of the stretchable artificial leather is preferably 150 g / m 2 or more, more preferably 200 g / m 2 or more, and further preferably 250 g / m 2 or more. Moreover, it is preferably 1500 g / m 2 or less, more preferably 1200 g / m 2 or less, and still more preferably 1000 g / m 2 or less. It is preferable that the basis weight of the stretchable artificial leather is 150 g / m 2 or more because good resilience is easily obtained. Moreover, when the fabric weight of a stretchable artificial leather is 1500 g / m ⁇ 2 > or less, it exists in the tendency for the workability to various uses to become favorable, and is preferable.
  • the thickness is selected according to the application, but is 0.35 to 2.00 mm, preferably 0.40 to 1.50 mm.
  • the apparent density and basis weight are larger than the apparent density and basis weight of artificial leather before treatment, that is, artificial leather before mechanical shrinkage treatment, respectively. Become.
  • a micro waviness structure along the vertical direction is obtained by mechanically contracting the artificial leather before treatment in the vertical direction and heat setting in the contracted state.
  • the pre-treatment artificial leather is brought into close contact with the surface of a thick elastic sheet (rubber sheet, felt, etc.) having a thickness of several centimeters or more extended in the vertical direction.
  • a method in which the artificial leather before treatment is contracted in the vertical direction by elastically restoring the surface from the stretched state to the state before stretching. More specifically, it is preferably performed by the method of step (6) detailed above.
  • the resulting stretchable artificial leather has a micro-bending structure (swell structure) as described above. Moreover, in this embodiment, since the artificial leather has a non-woven structure composed of high density and ultrafine fibers, a micro waviness structure is easily formed.
  • the pre-treatment artificial leather of the present embodiment is preferably formed by web-forming short fibers or long ultrafine fibers or ultrathinnable fibers, and entwining the obtained web. It is obtained by combining with each other to obtain an entangled nonwoven fabric, and then performing a polymer elastic body application treatment, an ultrafine treatment, and a silver surface / napped processing as necessary. Specifically, these treatment methods are carried out by the methods of the above steps (1) to (5).
  • the apparent density of the artificial leather before treatment is preferably 0.25 to 0.80 g / cm 3 , more preferably 0.30 to 0.70 g / cm 3 , and 0.40 to 0.70 g / cm 3. 3 is most preferred.
  • the basis weight is of preferably at 130 ⁇ 1600g / m 2, more preferably from 150 ⁇ 1400g / m 2, the thickness is preferably 0.2 ⁇ 2.0 mm, with 0.5 ⁇ 2.0 mm More preferably.
  • the stretchable artificial leather of the present embodiment has a high apparent density and a wavy structure, so that it has an appropriate stretchability in the vertical direction, has a mechanical strength, and has a feeling of non-stretching. It will be excellent in quality. Therefore, it can be used for a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. Further, the undulation structure in the stretchable artificial leather can be easily formed by shrinking the artificial leather in the vertical direction and heat setting.
  • the stretchable artificial leather of the second embodiment is manufactured by the above manufacturing method, for example, and has the following characteristics.
  • the stretchable artificial leather of the second embodiment will be described in detail, the configuration not particularly mentioned is the same as that of the stretchable artificial leather of the first embodiment.
  • the stretchable artificial leather according to the second embodiment is a stretchable artificial leather composed of a fiber entanglement composed of ultrafine fibers having an average single fiber fineness of 0.9 dtex or less, and has an apparent density of 0.40 g / cm 3.
  • the elongation coefficient calculated by the following formula (1) is 50 or less.
  • the stretchable artificial leather of this embodiment is characterized in that the elongation coefficient obtained by dividing the 5% circular modulus in the vertical direction by the thickness is 50 or less.
  • the 5% circular modulus is an index representing the elongation rate at the time of low elongation, and represents the elongation characteristic of the stretchable artificial leather, but increases as the thickness increases and decreases as the thickness decreases. . That is, the 5% circular modulus is changed by changing the thickness even if the artificial leather is made of a fiber entangled body having the same structure.
  • the elongation coefficient in the present embodiment is obtained by dividing the 5% circular modulus by the thickness to eliminate the thickness factor, and is caused by the fiber structure itself of the stretchable artificial leather independent of the thickness. It shows the elongation characteristics.
  • the stretchable artificial leather of the present embodiment has good mechanical strength due to the high apparent density as described above, the stretchability is in the above range, so that the stretchability at low stretch is also good.
  • the elongation coefficient is preferably 5 to 40, more preferably 10 to 25. By setting the elongation coefficient within these ranges, it is possible to improve the mechanical strength of the stretchable artificial leather while improving the extensibility at the time of low elongation.
  • the stretchable artificial leather of the present embodiment has a thickness equal to or greater than a certain value as described above, but by setting the elongation coefficient to 50 or less, the 5% circular modulus is, for example, 40 N or less, preferably 10 to 30 N. It becomes possible to do.
  • the stretchable artificial leather of the present embodiment has a thickness that can sufficiently secure the strength as the artificial leather, and also has good extensibility at low elongation.
  • the stretchable artificial leather of the present embodiment has a good 5% circular modulus value and an appropriate stretchability, so that the wearing feeling and the processability to the product are improved. Further, since the apparent density is high while the elongation coefficient is low, it is possible to have a moderate feeling of elongation stoppage.
  • the stretchable artificial leather according to the present embodiment has a feeling of staying stationary, so that it can be prevented from being lost or deformed. As described above, the feeling of stoppage of elongation can be evaluated by a strength elongation curve in the vertical direction (vertical axis: load, horizontal axis: elongation).
  • the ratio of the load at the time of 30% extension and the load at the time of 5% extension (the load at the time of 30% extension / the load at the time of 5% extension) in the vertical strength elongation curve is 5 or more. It is preferably 5 to 40, more preferably 8 to 40. When it is within the above range, there is a feeling of stoppage of elongation in the vertical direction, there is little loss of shape due to wearing, and the feeling of wearing and workability for various uses is good.
  • this strength elongation curve can also evaluate the length direction extensibility similarly to 5% circular modulus.
  • the stretchable artificial leather of the present embodiment preferably exhibits an elongation rate of 10 to 40% ((stretched length / length before stretching) ⁇ 100) at a load of 40 N / cm.
  • the stretchable artificial leather of the present embodiment has a micro waviness structure composed of ultrafine fibers in a cross section parallel to the thickness direction and the warp direction. It is preferable to have along.
  • the microscopic undulation structure allows the elongation coefficient to be low as described above even if the apparent density is high. Since the micro waviness structure and the forming method thereof are the same as those in the first embodiment, the description thereof is omitted.
  • other configurations such as the apparent density and basis weight of the pre-treatment artificial leather and the stretchable artificial leather are the same as those of the stretchable artificial leather of the first embodiment, and the description thereof is omitted.
  • the stretchable artificial leather of this embodiment does not have a microstructure, it is formed by the production method of the present invention, so that the fiber bundle of ultrafine fibers and an arbitrary polymer elastic body are microscopically formed. It is assumed that it is buckled or bent, thereby allowing it to have a somewhat low elongation coefficient.
  • the stretchable artificial leather has a low apparent modulus and a low elongation coefficient. Therefore, even if it has an appropriate thickness as an artificial leather, the mechanical strength While having sufficient, the vertical direction extensibility at the time of low elongation can be improved. Further, an artificial leather having a texture that is supple, flexible, and has a sense of fulfillment can be obtained due to the low elongation coefficient and high apparent density. Therefore, the stretchable artificial leather of the present invention can be suitably used for a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. In addition, the stretchable artificial leather of the present invention can have a low elongation coefficient while maintaining a good apparent density due to a micro waviness structure.
  • the stretchable artificial leather according to the third embodiment of the present invention has the following characteristics.
  • the stretchable artificial leather of the present embodiment is a vertical stretch strength elongation curve measured by the method described in JIS L 1096 (1999) 8.14.1 A, in a stretchable artificial leather. The conditions A) and (B) are satisfied.
  • the strength F 5% at an elongation of 5% is 0.1 to 10 N / 2.5 cm.
  • F 20% / F 5% is 5 or more.
  • the strength elongation curve is measured by the method described in JIS L 1096 (1999) 8.14.1 A.
  • a test piece having a width of 2.5 cm was fixed to a chuck having a holding interval of 20 cm, and the test piece was pulled at a constant speed to obtain elongation and strength. From the result, a strength elongation curve is created in which the horizontal axis represents the elongation (%) and the vertical axis represents the strength per 2.5 cm width of the test piece (N / 25 mm).
  • FIG. 8 is a model of a longitudinal strength elongation curve measured by the method described in the JIS L 1096 (1999) 8.14.1 A method of the stretchable artificial leather according to the present embodiment.
  • the curve shown in FIG. 8 is a strong elongation curve in the vertical direction.
  • the strength F 5% at an elongation of 5% is 0.1 to 20 N / 2.5 cm. By being in such a range, since it stretches smoothly in expansion and contraction, an appropriate flexibility can be obtained.
  • the strength F 5% is preferably 0.2 to 15 N / 2.5 cm, more preferably 0.3 to 10 N / 2.5 cm.
  • (B) F 20% / F 5% is 5 or more in the relationship between the strength F 20% at an elongation of 20% and the above F 5% .
  • the strength at an elongation of 5% greatly affects the sewability, workability, and wearing feeling.
  • F 20% / F 5% is preferably 8 or more, more preferably 10 or more, and further preferably 20 or more.
  • an upper limit is not specifically limited, For example, it is 100.
  • Stretchable artificial leather of the present embodiment in relation to the slope S 20% of the tangent of the curve at the slope S 5% and elongation 20% of the tangent of the curve at 5% (C) elongation, S 20% / S 5% is preferably 1.2 or more. In this way, when S 20% / S 5% is in the above relationship, a particularly significant increase in tensile stress can be obtained when the elongation is in the vicinity of 20%.
  • S 20% / S 5% is preferably 5 or more, more preferably 10 or more.
  • the upper limit value of S 20% / S 5% is not particularly limited, but is 100, for example.
  • the maximum value S 0 to 5% max of the tangent of the curve with an elongation of 0 to 5% is 8 or less.
  • the maximum value S 0 to 5% max of the slope is more preferably 5 or less, and more preferably 3 or less.
  • the lower limit value of S 0 to 5% max is not particularly limited, but is 0.1, for example.
  • the stretchable artificial leather of this embodiment preferably has (E) F 20% of 30 to 200 N / 2.5 cm.
  • F 20% is more preferably 50 to 190 N / 2.5 cm or more, and still more preferably 80 to 180 N / 2.5 cm.
  • the strength F 10% at an elongation of 10% is preferably 5 to 60 N / 2.5 cm. By being in such a range, even when stretched to 10% in expansion and contraction, an appropriate tensile stress can be exhibited, so that a suitable stretch stop can be obtained.
  • the strength F 10% is preferably 10 to 40 N / 2.5 cm, more preferably 10 to 30 N / 2.5 cm.
  • the artificial leather according to the present embodiment is manufactured by the above-described manufacturing method, for example. Moreover, Preferably, it has the structure of one or both of the elastic artificial leather of 1st and 2nd embodiment.
  • the stretchable artificial leather of the present embodiment has moderate stretchability in the vertical direction, so that it has a good feeling of wear and processability to the product, and it has a feeling of non-stretching, so that it can be prevented from losing its shape and shape. Can do.
  • the stretchable artificial leather according to the present embodiment allows the artificial leather to be in close contact with the elastic sheet extended in the vertical direction, and then the elastic sheet is contracted in the vertical direction and the artificial leather is also contracted in the vertical direction. Is preferred. This contraction improves the stretchability of the artificial leather in the vertical direction, and is low in strength and easily stretches in the vertical direction. As a result, the conditions (A) to (F) are easily satisfied. Further, by having the undulation structure as described above, the conditions (A) to (F) are easily satisfied.
  • the stretchable artificial leather of the present embodiment has moderate stretchability in the vertical direction and a feeling of non-stretching, and is excellent in surface quality, so that it can be used in a wide range of applications such as clothing, furniture, car seats, and miscellaneous goods. Can be used.
  • the basis weight and the apparent density basis weight were measured by the method described in JIS L 1096 8.4.2 (1999). Further, the thickness was measured with a dial thickness gauge (manufactured by Ozaki Mfg. Co., Ltd., trade name “Peacock H”), and the apparent density was determined by dividing the basis weight value by the thickness value.
  • 5% circular modulus (N) As shown in FIG. 9, a mark between 200 mm is written in the vertical center of a 300 mm ⁇ circular test piece in the vertical direction extending in the vertical direction, and the gripping interval is 200 mm with an Instron type tensile tester and the tensile speed is 200 mm / The modulus at 5% elongation in minutes is measured.
  • Example 1 Water-soluble thermoplastic ethylene-modified polyvinyl alcohol (modified PVA, sea component, modified degree 10 mol%) and isophthalic acid-modified polyethylene terephthalate (modified PET, island component) having a modified degree 6 mol% It was discharged from a die for melt composite spinning (number of islands: 25 islands / fiber) at 260 ° C. so that the island component was 25/75 (mass ratio). The ejector pressure was adjusted so that the spinning speed was 3700 m / min, and sea-island long fibers having an average fineness of 2.1 dtex were collected on the net.
  • a sheet of sea-island long fibers on the net is lightly pressed with a metal roll with a surface temperature of 42 ° C, peeled off from the net while suppressing fuzz on the surface, and between the metal roll (lattice pattern) with a surface temperature of 75 ° C and the back roll To obtain a long fiber web having a basis weight of 34 g / m 2 in which the surface fibers were temporarily fused in a lattice shape.
  • Water is applied in an amount of 10% by mass to the entangled nonwoven fabric, causing shrinkage by heat treatment in an atmosphere of relative humidity of 95% and 70 ° C., improving the apparent density of the nonwoven fabric and densifying.
  • a non-woven fabric was obtained.
  • the area shrinkage due to this densification treatment was 45%
  • the basis weight of the nonwoven fabric was 1050 g / m 2
  • the apparent density was 0.52 g / cm 3 .
  • the densified nonwoven fabric was dry-heated and roll-pressed, impregnated with a water-based polyurethane emulsion, dried and cured at 150 ° C. to obtain a nonwoven fabric sheet containing a polymer elastic body.
  • FIG. 3 (Comparative Example 1) shows a strength elongation curve in the vertical direction of the napped-tone artificial leather
  • FIGS. 6 and 7 show scanning electron micrographs of cross sections parallel to the thickness direction and the vertical direction.
  • the above-mentioned napped-tone artificial leather is shrunk by a humidification part, a shrinkage heating part (shrinkage treatment apparatus in FIG. 1) for heat-treating artificial leather continuously sent from the humidification part, and the shrinkage heating part.
  • a shrinkage processing device manufactured by Komatsubara Iron Works Co., Ltd., Sun Foraging Machine
  • a heat setting section having a drum for further heat-treating (heat setting) the processed artificial leather
  • the artificial leather was humidified and heated so that steam treatment was performed and the raw fabric temperature was 45 ° C.
  • the drum temperature of the shrink heating unit was 120 ° C.
  • the drum temperature of the heat setting unit was 120 ° C.
  • the artificial leather is cooled to 70 ° C. or less by blowing air at 25 ° C. or less immediately after the artificial leather after shrink heating is separated from the elastic sheet and immediately after passing through the heat set unit, and the artificial leather shrink heating unit and Conveyance between the heat setting units was performed by belt conveyance, and the artificial leather was conveyed by belt even after heat setting at the heat setting unit.
  • FIG. 3 shows the strength elongation curve in the vertical direction of the stretchable artificial leather
  • FIG. 10 and FIG. 11 show enlarged graphs showing the strength elongation curves in the vertical direction and the horizontal direction. Scanning electron micrographs of cross sections parallel to the thickness direction and the vertical direction are shown in FIGS. The evaluation results of the resulting stretchable artificial leather are shown in Table 1.
  • the web was entangled with a 1200 punch / cm 2 needle punch, and then contracted in hot water at 90 ° C. to obtain an entangled nonwoven fabric with a basis weight of 750 g / m 2 .
  • the entangled nonwoven fabric obtained was impregnated with a 15% dimethylformamide (DMF) solution of polyether polyurethane, and then immersed in a mixed liquid bath of DMF and water to wet-coagulate the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene was extracted and removed in a 85 ° C. toluene bath, and the remaining toluene was removed azeotropically in a 100 ° C. hot water bath, followed by drying. A substrate for artificial leather having m 2 and a thickness of 1.5 mm was obtained.
  • DMF dimethylformamide
  • the back surface of the obtained artificial leather substrate was buffed twice with No. 180 sandpaper to make the back surface smooth and the thickness was 0.65 mm. Subsequently, the surface was buffed twice with 240 sand paper and twice with 400 sand paper to obtain napped artificial leather having a raised surface made of polyethylene terephthalate ultrafine fibers.
  • the hair was finished by brushing to obtain a dyed raised artificial leather (thickness 0.65 mm, basis weight 304 / m 2 , apparent density 0) .468 g / cm 3 ).
  • the above-mentioned dyed napped artificial leather was treated using a shrinkage processing apparatus in the same manner as in Example 1 and contracted by 3% in the vertical direction.
  • the evaluation results of the obtained stretchable artificial leather are shown in Table 1.
  • the strong elongation curves are shown in FIGS.
  • the web was entangled by needle punching at 400 punch / cm 2 to obtain an entangled nonwoven fabric having a basis weight of 370 g / m 2 .
  • the entangled nonwoven fabric obtained was impregnated with a 22% DMF solution of polyether polyurethane, and then immersed in a DMF / water mixed bath to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene was extracted and removed in a 85 ° C. toluene bath, and the remaining toluene was removed azeotropically in a 100 ° C. hot water bath, followed by drying. A substrate for artificial leather having m 2 and a thickness of 0.8 mm was obtained.
  • the back surface of the obtained artificial leather substrate was buffed twice with No. 180 sandpaper, and the thickness was 0.7 mm while smoothing the back surface. Then, the surface was buffed twice with 240 sand paper and twice with 400 sand paper to obtain napped artificial leather having a raised surface made of nylon 6 ultrafine fibers.
  • Example 4 A sea component polymer PVA and an island component polymer isophthalic acid-modified polyethylene terephthalate having a modification degree of 6 mol% are melted at 260 ° C. so that the sea component / island component is 25/75 (mass ratio). It was discharged from a base for composite spinning (number of islands: 25 islands / fiber). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and a spunbond sheet in which sea-island fibers having an average fineness of 2.1 dtex were deposited on the net was obtained. Next, fluffing of the surface was suppressed by lightly pressing the spunbond sheet on the net with a metal roll having a surface temperature of 42 ° C.
  • the spunbond sheet was peeled from the net. Next, the spunbond sheet was hot-pressed between a lattice-pattern metal roll having a surface temperature of 55 ° C. and a back roll, whereby the sea-island type fiber of the surface layer was temporarily fused in a lattice shape with a basis weight of 28 g / m 2 . A long fiber web was obtained.
  • An oil agent and an antistatic agent were applied to the long fiber web, and eight webs were overlapped by cross-wrapping to produce a superposed web having a total basis weight of 218 g / m 2 , and sprayed with a needle breakage preventing oil agent. Then, a 6 barb needle with a distance of 3.2 mm from the needle tip to the first barb is used, and the overlap web is alternately punched from both sides at a needle depth of 8.3 mm at 3300 punches / cm 2 , and the entangled nonwoven fabric Got. In addition, the area shrinkage rate by the needle punch process was 68%. Further, the basis weight of the obtained entangled nonwoven fabric was 311 g / m 2 .
  • contraction process by immersing an entangled nonwoven fabric in 70 degreeC hot water for 28 second was performed.
  • the modified PVA which is a sea component polymer was melt
  • an ultrafine nonwoven fabric in which a fiber bundle composed of 25 ultrafine fibers having an average fineness of 0.09 dtex was entangled three-dimensionally was obtained.
  • the area shrinkage rate by the shrinkage treatment was 52%.
  • the basis weight of the ultrafine nonwoven fabric was 446 g / m 2 and the apparent density was 0.602 g / cm 3 .
  • the thickness of the ultrafine nonwoven fabric was adjusted to 0.9 mm by buffing. Then, a dispersion containing 300 parts by mass of an aqueous acrylic emulsion having a solid content concentration of 60% by mass and 90 parts by mass of a pigment is twice applied at a line speed of 6 m / min to the obtained ultrafine nonwoven fabric using a putter. The dip nip was used for impregnation.
  • the solid content concentration of the acrylic resin in the water-based emulsion was 180 g / L, and the solid content concentration of the pigment was 90 g / L. Then, by blowing hot air of 120 ° C.
  • Comparative Examples 1 to 4 Artificial leather was obtained in the same manner as in Examples 1 to 4 except that the shrinkage treatment was not performed. The evaluation results are shown in Table 2. Moreover, it shows in the strength elongation curve of the vertical direction of the artificial leather of Comparative Example 1. Furthermore, the strength and elongation curves in the vertical and horizontal directions of the artificial leathers of Comparative Examples 1 to 4 are shown in FIGS. Moreover, the scanning electron micrograph of the cross section parallel to the thickness direction and the vertical direction of the comparative example 1 is shown in FIGS.
  • the web was entangled by needle punching at 400 punch / cm 2 to obtain an entangled nonwoven fabric having a basis weight of 780 g / m 2 .
  • the entangled nonwoven fabric obtained was impregnated with a 22% DMF solution of polyether polyurethane, and then immersed in a DMF / water mixed bath to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene is extracted and removed in a 85 ° C.
  • Example 6 A sea component polymer PVA and an island component polymer isophthalic acid-modified polyethylene terephthalate having a modification degree of 6 mol% are melted at 260 ° C. so that the sea component / island component is 25/75 (mass ratio). It was discharged from a base for composite spinning (number of islands: 25 islands / fiber). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and a spunbond sheet in which sea-island fibers having an average fineness of 2.1 dtex were deposited on the net was obtained. Next, fluffing of the surface was suppressed by lightly pressing the spunbond sheet on the net with a metal roll having a surface temperature of 42 ° C.
  • the spunbond sheet was peeled from the net. Next, the spunbond sheet was hot-pressed between a lattice-pattern metal roll having a surface temperature of 55 ° C. and a back roll, whereby the surface sea-island fiber was temporarily fused in a lattice shape with a basis weight of 32 g / m 2 . A long fiber web was obtained.
  • contraction process by immersing an entangled nonwoven fabric in 70 degreeC hot water for 28 second was performed.
  • the modified PVA which is a sea component polymer was melt
  • an ultrafine nonwoven fabric in which a fiber bundle composed of 25 ultrafine fibers having an average fineness of 0.09 dtex was entangled three-dimensionally was obtained.
  • the area shrinkage rate by the shrinkage treatment was 50%.
  • the basis weight of the ultrafine nonwoven fabric was 780 g / m 2 and the apparent density was 0.610 g / cm 3 .
  • the thickness of the ultrafine nonwoven fabric was adjusted to 1.25 mm by buffing. Then, a dispersion containing 300 parts by mass of an aqueous acrylic emulsion having a solid content concentration of 60% by mass and 90 parts by mass of a pigment is obtained several times at a line speed of 4 m / min with respect to the obtained ultrafine nonwoven fabric. The dip nip was used for impregnation.
  • the solid content concentration of the acrylic resin in the water-based emulsion was 180 g / L, and the solid content concentration of the pigment was 90 g / L. Then, by drying by blowing hot air of 120 ° C.
  • the ice gray acrylic elastic body was migrated to the surface layer and solidified to obtain a semi-silver-like artificial leather (thickness 1.26 mm, basis weight 744 g / m 2 , apparent density 0.590 g / cm 3 ).
  • the semi-silver-like artificial leather was treated using a shrinkage processing apparatus in the same manner as in Example 1 and contracted 10.6% in the vertical direction to obtain a stretchable artificial leather.
  • the evaluation results of the resulting stretchable artificial leather are shown in Table 3.
  • the entangled nonwoven fabric obtained was impregnated with a 14% DMF solution of polyether polyurethane, and then immersed in a mixed liquid bath of DMF and water to wet-solidify the polyurethane. After removing the remaining DMF by washing with water, the sea component polyethylene is extracted and removed in a 85 ° C. toluene bath, and the remaining toluene is removed azeotropically in a 100 ° C. hot water bath to obtain a substrate for artificial leather. It was.
  • the back surface of the obtained base for artificial leather was buffed twice with No. 180 sandpaper to make the back surface smooth and the thickness was 0.78 mm. Next, the surface was buffed twice with a No.
  • the stretchable artificial leather obtained in Examples 1, 2, 4, 6, and 7 has a micro waviness structure along the vertical direction and has a good elongation coefficient. Therefore, it has excellent extensibility at low elongation.
  • the feeling of stopping growth was also good. It has a high density, excellent mechanical properties, and has a texture that is supple, flexible, and full, and when bent it produces fine wrinkles that are extremely useful as artificial leather for car seats and sports shoes. It was an excellent material.
  • the stretchable artificial leather obtained in Examples 1, 2, 4, 6, and 7 has a low strength at an elongation of 5%, while a relatively high strength at an elongation of 20%. It was a material that showed good moldability in applications such as shoes and had excellent shape stability after molding. Further, the obtained stretchable artificial leather was a material that can impart a feeling of roundness of the original fabric at the time of bending, and also has a feeling of fulfilling texture.
  • the artificial leathers obtained in Examples 3 and 5 were subjected to mechanical shrinkage treatment and heat setting, but no waviness structure was formed, so the extensibility at the time of low elongation or the feeling of non-stretching was slightly inferior, and the texture was somewhat hard. It was. However, due to the mechanical shrinkage treatment and heat setting, it has excellent elasticity in the vertical direction, has a soft texture, is high-density and excellent in mechanical properties, is flexible, and has fine wrinkles when bent. It was a uniform material that was excellent to some extent as artificial leather for clothing and sports shoes.
  • the artificial leather of the comparative example is less stretchable in the vertical direction and less stretchy than the stretchable artificial leathers of Examples 1 to 7, and has a hard texture. Met.
  • the present invention it is possible to obtain a stretchable artificial leather having moderate stretchability and a feeling of non-stretching in the vertical direction, and since it is excellent in wearing feeling and molding processability, clothing, furniture, car seats, shoes, sports It can be suitably used for the production of shoes and other leather products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

 本発明の伸縮性人工皮革の製造方法は、極細化可能繊維をウェブにする工程;得られたウェブを絡合して絡合不織布を製造する工程;前記不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程;得られた人工皮革用基体を用いて人工皮革を製造する工程、及び、得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張状態を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革を収縮状態で加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程を備える。

Description

伸縮性人工皮革及びその製造方法
本発明は、タテ方向に適度な伸長性を有し、かつ、伸び止まり感があり、柔軟性、成形加工性、及び着用感に優れた伸縮性人工皮革、及びその製造方法に関するものである。また、本発明は、機械的強度に優れつつ、タテ方向に適度な伸び止まり感を有する伸縮性人工皮革、及びその製造方法に関するものである。
人工皮革などの皮革様シートは、天然皮革にはない柔軟性や機能性を有していることから、衣料や資材等種々の用途に使用されている。衣料用途における着用感、資材用途における成形加工性、さらには縫製の容易性や仕立て栄え等の観点から、伸縮性が重要な機能として注目されている。
上記背景から、伸縮性を有する皮革様シートが種々検討されている。例えば、主として単繊維繊度0.9dtex以下の極細繊維を含む繊維絡合体と高分子弾性体で構成された人工皮革用基体に、タテおよび/またはヨコ方向に15%以上伸張させた弾性体シートを接着した後、弾性体シートの伸張を緩和することにより人工皮革を収縮させ、次いで弾性体シートを除去することを特徴とする伸縮性に優れた人工皮革の製造方法が提案されている(例えば、特許文献1)。しかし、この方法は弾性体シートを接着剤塗布、接着剤除去の工程が必要であり、生産性が低下する。また、人工皮革用基体を弾性体シートに接着後に収縮させる際に、弾性体シート側に人工皮革用基体がカールして工程通過性が悪化する。さらに、弾性体シートの収縮力のみで人工皮革用基体を収縮させるため、高密度の人工皮革用基体を高収縮率で収縮させることは難しい。さらに、接着剤の使用は人工皮革表面の品位を低下させる。
そこで、弾性体シートを用いない製造方法が提案されている。例えば、特許文献2は、単糸繊度1.1デシテックス以下の極細繊維を主として含む繊維絡合体とポリウレタン樹脂で構成された人工皮革において、該人工皮革に、柔軟剤を付与した後、または、柔軟剤を付与すると同時に、加熱状態で長さ方向に伸張して幅方向に収縮させることを特徴とする幅方向のストレッチ性に優れた人工皮革の製造方法を開示している。しかし、長さ方向に伸長するため、人工皮革の目付斑、厚み斑が助長される。また、柔軟剤を付与して伸長するため、スエード調人工皮革として用いると、表面均一性や耐摩耗性が不十分であった。また、提案されている製造方法は人工皮革の幅方向の伸長性を改善するのが目的である。該製造方法では、加熱状態で長さ方向に伸長しているので、得られた人工皮革の長さ方向の伸長性は低く、従って、特許文献2は人工皮革のタテ方向伸長性の改善については何も検討していない。
 無端ゴムベルトが熱シリンダーロールの周面の一部に接触して走行する構成を有する収縮加工装置を用いて布帛をタテ方向に強制圧縮し、これにより布帛の一部に皺を形成する方法、又は、高密度布帛を柔軟にする方法が提案されている(特許文献3及び4)。しかし、特許文献3及び4は、極細繊維の絡合体を有する人工皮革については何も記載せず、また、布帛のタテ方向伸長性の改善については何も検討していない。
このように、上記先行技術文献は人工皮革のタテ方向伸長性、伸縮性を改善する簡便かつ効率的な方法を開示していない。また、上記先行技術文献は、密度を高くして機械的物性を良好にしつつも、タテ方向の伸長性や伸縮性を改善した人工皮革も開示していない。
特開2004-197282号公報 特開2005-076151号公報 特開平5-44153号公報 特開平9-31832号公報
 本発明は、適度な伸縮性、伸び止まり感、及び高密度であっても良好な柔軟性(特に、曲げる際の柔軟性)を有する伸縮性人工皮革の製造方法を提供することを課題とする。また、本発明は、タテ方向に適度な伸縮性を有しながら、密度を高くして機械的物性を良好にしつつ適度な伸び止まり感がある伸縮性人工皮革を提供することを課題とする。さらには、タテ方向の適度な伸び止まり感を有する伸縮性人工皮革を提供することも課題とする。
 本発明は以下の製造方法及び以下の第1~第3の伸縮性人工皮革により前記課題を解決する。すなわち、本発明の伸縮性人工皮革の製造方法は、
 極細化可能繊維をウェブにする工程、
 得られたウェブを絡合して絡合不織布を製造する工程、
 前記不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
 得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
 得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革の収縮状態で加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程を含む。
 また、本発明の製造方法は、絡合不織布又は人工皮革用基体に任意で高分子弾性体を付与する工程をさらに備えてもよい。
 本発明の製造方法の好ましい態様においては、厚さ40~75mm程度の弾性体シートを用い、該部厚な弾性体シートをローラの表面に接しながら走行させ、内外周差及び弾性回復能を利用して弾性体シートを伸長、収縮させる。又、他の好ましい態様においては、ドラムやローラ等の加熱シリンダーのアイロン効果によって人工皮革を収縮状態で加熱処理し、収縮状態でヒートセットする。
 本発明の第1の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、その厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に有し、うねり構造のタテ方向1mm中に存在するピッチ数が2.2個以上であるとともに、うねり構造の平均高さが50~350μmであることを特徴とする。
 本発明の第1の伸縮性人工皮革における好ましい態様において、繊維絡合体は高分子弾性体を含有し、また、高分子弾性体が、ポリウレタン水系エマルジョンの固化物である。また、極細繊維は、ポリエステル繊維等の非弾性繊維であることが好ましい。また、ミクロなうねり構造は、タテ方向に収縮させヒートセットすることにより形成されたものであることが好ましい。
 本発明の第2の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下である。
                伸び係数=タテ方向の5%円形モジュラス/厚さ ・・・(1)
 本発明の第2の伸縮性人工皮革における好ましい態様においては、本発明の伸縮性人工皮革は、厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に有する。また、タテ方向における5%伸長時の荷重に対する30%伸長時の荷重の比を5以上とすることが好ましい。繊維絡合体は、例えば、高分子弾性体を含有し、高分子弾性体は、ポリウレタン水系エマルジョンの固化物である。極細繊維は、好ましくは非弾性繊維であり、非弾性繊維は例えばポリエステル繊維である。本発明の伸縮性人工皮革は、タテ方向に収縮させヒートセットすることにより形成されたものであることが好ましい。
 本発明の第3の伸縮性人工皮革は、伸縮性を有する人工皮革において、JIS L 1096(1999)8.14.1 A法記載された方法で測定されるタテ方向の強力伸度曲線で、下記(A)及び(B)の条件を具備する。
(A)伸度5%における強力F5%が0.1~10N/2.5cmである。
(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。
 本発明の好ましい態様の第3の伸縮性人工皮革は、以下の(C)~(F)のいずれかの条件を具備する。
(C)伸度5%における曲線の接線の傾きS5%と伸度20%における曲線の接線の傾きS20%との関係において、S20%/S5%が1.2以上である。
(D)伸度0~5%までの曲線の接線の傾きの最大値S05%maxが、8以下である。
(E)F20%が30~200N/2.5cmである。
(F)伸度10%における強力F10%が5~60N/2.5cmである。
 本発明の製造方法によれば、タテ方向に適度な伸縮性と伸び止まり感を有する伸縮性人工皮革を得ることができる。
 また、本発明の第1の伸縮性人工皮革は、高い見掛け密度と所定のうねり構造を有することで、タテ方向に適度な伸縮性を持たせるとともに、機械的物性を良好にして適度な伸び止まり感も持たせることができる。
 また、本発明の第2の伸縮性人工皮革は、高い見掛け密度と低い伸び係数を有することで、タテ方向に適度な伸縮性を有するとともに、機械的物性を良好にして適度な伸び止まり感も有することもできる。
 さらに、本発明の第3の伸縮性人工皮革は、上記所定の条件(A)及び(B)を有することで、タテ方向の適度な伸び止まり感を有する伸縮性人工皮革とすることができる。この伸縮性人工皮革は、インテリア、シート、靴などの用途において良好な成形性を示し、成形後の形態安定性にも優れる。また、この伸縮性人工皮革は、折り曲げ時の原反の丸み感を付与することができ、更に、風合いの充実感を両立することが可能となる。
本発明の製造方法を実施するための収縮加工装置の一例を示す概略図である。 本発明の製造方法を実施するための収縮加工装置の他の例を示す概略図である。 実施例1で得た伸縮性人工皮革、及び比較例1の未収縮加工処理人工皮革のタテ方向の強力伸度曲線(S-S曲線)を示す図である。 実施例1で得た伸縮性人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真である。 実施例1で得た伸縮性人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真であって、図4より倍率を大きくして示した写真である。 比較例1の未収縮加工処理人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真である。 比較例1の未収縮加工処理人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真であって、図6より倍率を大きくして示した写真である。 本発明に係る伸縮性人工皮革のJIS L 1096(1999)8.14.1 A法に記載された方法で測定されるタテ方向の強力伸度曲線のモデルである。 5%円形モジュラスの測定方法を説明するための概略図である。 実施例1及び比較例1の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたタテ方向の強力伸度曲線である。 実施例1及び比較例1の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたヨコ方向の強力伸度曲線である。 実施例2及び比較例2の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたタテ方向の強力伸度曲線である。 実施例2及び比較例2の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたヨコ方向の強力伸度曲線である。 実施例3及び比較例3の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたタテ方向の強力伸度曲線である。 実施例3及び比較例3の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたヨコ方向の強力伸度曲線である。 実施例4及び比較例4の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたタテ方向の強力伸度曲線である。 実施例4及び比較例4の人工皮革について、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されたヨコ方向の強力伸度曲線である。
 以下、本発明についての実施形態を用いて詳細に説明する。
 本発明の伸縮性人工皮革の製造方法は、
(1)極細化可能繊維をウェブにする工程、
(2)得られたウェブを絡合して絡合不織布を製造する工程、
(4)不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
(5)得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
(6)得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革の収縮状態を加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程
を含む。上記製造方法により、人工皮革の表面平滑性を保ちながら、人工皮革に含まれる極細繊維のミクロな挫屈構造を人工皮革のタテ方向に沿って形成させ、タテ方向の伸縮性に優れた人工皮革を製造することができる。
 また、本発明では、(3)絡合不織布又は人工皮革用基体に高分子弾性体を含浸し、固化する工程を備えてもよい。
 以下、工程(1)~(6)を説明することにより、本発明の伸縮性人工皮革の製造方法について説明する。
工程(1)
 工程(1)では、極細化可能繊維をウェブにする。極細化可能繊維は少なくとも2種類のポリマーからなる多成分系複合繊維であって、例えば、海島型繊維は海成分ポリマー中にこれとは異なる種類の島成分ポリマーが分散した断面を有する。極細化可能繊維は、絡合不織布に形成した後、高分子弾性体を含浸させる前または含浸させた後にポリマーの一成分(除去成分)を抽出または分解して除去することで、残ったポリマー(繊維形成成分)からなる極細繊維が複数本集まった繊維束に変換される。海島型繊維の場合、海成分ポリマーを抽出または分解して除去することで、残った島成分ポリマーからなる極細繊維が複数本集まった繊維束に変換される。
 極細化可能繊維としては、特に限定されず、混合紡糸方式や複合紡糸方式などの方法を用いて得られる海島型繊維や多層積層型繊維等から適宜選択することができる。以下、極細化可能繊維として海島型繊維を用いた場合について説明するが、海島型繊維以外の極細化可能繊維を用いた場合も同様に本発明を実施することが出来る。
 極細繊維を形成するポリマー(海島型繊維の島成分)は非弾性ポリマーが好ましい。具体的にはポリアミド、ポリプロピレン、ポリエチレン等からなる極細繊維が好ましく用いられる。これらの中では、後述するヒートセットによって挫屈構造(うねり構造)が保持されやすくなるため、ポリエステルが好ましい。ポリエーテルエステル系繊維やいわゆるスパンデックス等のポリウレタン系繊維などの弾性繊維は好ましくない。
 ポリエステルとしては、繊維化が可能なものであれば特に限定されるものではない。具体的には、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレ-ト、ポリエチレン-1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレート等が挙げられる。中でも最も汎用的に用いられているポリエチレンテレフタレートまたは主としてエチレンテレフタレート単位からなる変性ポリエステル(例えば、イソフタル酸変性ポリエチレンテレフタレート)が好適に使用される。
 また、ポリアミドとしては、たとえばナイロン6、ナイロン66、ナイロン610、ナイロン12、等のアミド結合を有するポリマーを挙げることができる。
 島成分ポリマーには、隠蔽性を向上させるために酸化チタン粒子等の無機粒子を添加してもよいし、潤滑剤、顔料、熱安定剤、紫外線吸収剤、導電剤、蓄熱材、抗菌剤等、種々目的に応じて添加することもできる。
 海島型繊維を極細繊維の繊維束に変換する際に、海成分ポリマーは溶剤または分解剤により抽出または分解除去される。従って、海成分ポリマーは溶剤に対する溶解性または分解剤による分解性が島成分ポリマーよりも大きいことが必要である。海島型繊維の紡糸安定性の点から島成分ポリマーとの親和性が小さく、かつ、紡糸条件において溶融粘度及び/又は表面張力が島成分ポリマーより小さいことが好ましい。このような条件を満たす限り海成分ポリマーは特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、スチレン-エチレン共重合体、スチレン-アクリル共重合体、ポリビニルアルコール系樹脂などが好ましく用いられる。有機溶剤を用いることなく人工皮革を製造することができるので、海成分ポリマーに水溶性熱可塑性ポリビニルアルコール(PVA)又は水溶性熱可塑性変性ポリビニルアルコール(変性PVA)、例えば、エチレン変性PVAを用いるのが好ましい。
 海島型繊維の平均繊度は1.0~6.0dtexであるのが好ましい。海島型繊維の断面において、海成分ポリマーと島成分ポリマーの質量比は5/95~70/30が好ましく、島数は5島以上であるのが好ましい。
 極細化可能繊維の紡糸方法は特に限定されず、人工皮革の製造分野で従来採用されている方法により製造すればよい。極細化可能繊維は短繊維でも長繊維でもよい。短繊維は高品位な表面を有する不織布を製造できる点で好ましいが、長繊維は製造工程を単純化でき、強度などの物性面で優れている点で好ましい。また、非弾性長繊維を用いてタテ方向に伸縮性を有する人工皮革を製造することは一般に困難であるが、本発明の製造方法によれば、非弾性繊維を用いてもタテ方向に伸縮性を有する人工皮革を製造することができる。さらに本発明では、短繊維より長繊維のほうが、後述するうなり構造を形成することにより、伸び係数をより良好にすることが可能である。
 極細化可能短繊維は、カーディング、抄紙などの乾式法と湿式法によりウェブにするが、乾式法によりウェブにする方が高品位な表面を有する人工皮革を得ることができるので好ましい。
 極細化可能長繊維はスパンボンド法によってウェブにすることができ、連続フィラメントの状態で捕集されウェブを形成していれば、人工皮革とする後の工程において長繊維の一部が切断されていても良い。
 本発明において、長繊維とは、繊維長が通常3~80mm程度である短繊維よりも長い繊維長を有する繊維であり、短繊維のように意図的に切断されていない繊維をいう。例えば、極細化する前の長繊維の繊維長は100mm以上が好ましく、技術的に製造可能であり、かつ、物理的に切れない限り、数m、数百m、数kmあるいはそれ以上の繊維長であってもよい。極細化可能長繊維を用いたウェブの場合、熱プレスして表面繊維を仮融着してもよい。仮融着するとウェブの形態が安定し後の工程での取り扱い性が向上する。
 工程(1)で得られるウェブの目付は10~100g/m2が好ましい。
工程(2)
 工程(2)では工程(1)で得られたウェブをニードルパンチ、ウォータージェットなどの方法により絡合して絡合不織布を製造する。例えば、前記ウェブを、必要に応じてクロスラッパー等を用いて複数層重ね合わせた後、両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチする。パンチング密度は、200~5000パンチ/cm2の範囲が好ましい。上記範囲内であると、充分な絡合が得られ、極細化可能繊維のニードルによる損傷が少ない。該絡合処理により、極細化可能繊維同士が三次元的に絡合し、極細化可能繊維が極めて緻密に集合した絡合不織布が得られる。ウェブにはその製造から絡合処理までのいずれかの段階で、針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤を付与してもよい。必要に応じて、70~100℃の温水に浸漬するなどの収縮処理によって、絡合不織布の絡合状態をより緻密にしてもよい。また、熱プレス処理を行うことで極細化可能繊維同士をさらに緻密に集合させ、絡合不織布の形態を安定にしてもよい。絡合不織布の目付は100~2000g/m2あるのが好ましい。
工程(3)
 工程(3)では工程(2)で得られた絡合不織布に必要に応じて高分子弾性体の水性分散液又は有機溶媒溶液を含浸し、固化させる。なお、極細化可能繊維が長繊維である場合等には、高分子弾性体の使用を省略してもよい。
 高分子弾性体としては、例えば、ポリウレタンエラストマー、ポリウレアエラストマー、ポリウレタン-ポリウレアエラストマー、ポリアクリル酸樹脂、アクリロニトリル-ブタジエンエラストマー、スチレン-ブタジエンエラストマーなどが挙げられるが、中でも、ポリウレタンエラストマー、ポリウレアエラストマー、ポリウレタン-ポリウレアエラストマーなどのポリウレタン系エラストマーが好ましい。例えば、ポリエステルジオール、ポリエーテルジオール、ポリエステルポリエーテルジオール、ポリラクトンジオール、ポリカーボネートジオールなどの数平均分子量500~3500のポリマージオールから選ばれた少なくとも1種を用いて得られるポリウレタン系エラストマーが好ましい。製品の耐久性の観点から、ポリカーボネートジオールを30重量%以上含むポリマージオールを用いて得られたポリウレタンがより好ましい。ポリカーボネートジオールが30重量%以上とすることで、耐久性が良好となる。
 なお、本明細書において、数平均分子量とは、ポリメタクリル酸メチルを標準物質として、ゲルパーミエーションクロマトグラフィー(GPC)測定による求めるものである。
 ポリカーボネートジオールとは、ジオール骨格がカーボネート結合を介して連結されて高分子鎖を形成し、その両末端に水酸基を有するものである。該ジオール骨格は、原料として用いるグリコールにより決定されるが、その種類は特に制限されることはなく、例えば、1,6-ヘキサンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオールを用いることができる。また、これらのグリコール群から選ばれた少なくとも2種以上のグリコールを原料として用いた共重合ポリカーボネートジオールは、特に柔軟性と外観に優れた人工皮革を得ることができるので好ましい。また、特に柔軟性に優れた人工皮革を得る場合は、耐久性を損なわない範囲でポリマージオール中にカーボネート結合以外の化学結合、例えば、エステル結合、エーテル結合などを導入することが好ましい。
 かかる化学結合を導入する方法としては、ポリカーボネートジオールとそれ以外のポリマージオールをそれぞれ単独で重合し、これらを、ポリウレタン製造時に適当な比率で混合して用いる方法を採用することができる。
 ポリウレタン系エラストマーはポリマージオール、有機ポリイソシアネ-ト、及び鎖伸長剤を、所定のモル比で反応させることにより得られる。反応条件は特に限定されず、従来公知の方法でポリウレタン系エラストマーを製造することができる。
 ポリマージオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などのポリエーテルポリオールおよびその共重合体;ポリブチレンアジペートジオール、ポリブチレンセバケートジオール、ポリヘキサメチレンアジペートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリ(3-メチル-1,5-ペンチレンセバケート)ジオール、ポリカプロラクトンジオールなどのポリエステルポリオールおよびその共重合体;ポリヘキサメチレンカーボネートジオール、ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオールなどのポリカーボネートポリオールおよびその共重合体;ポリエステルカーボネートポリオール等が挙げられる。また、必要に応じて、3官能アルコールや4官能アルコールなどの多官能アルコール、又は、エチレングリコール等の短鎖アルコールを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。特に、非晶性のポリカーボネートポリオール、脂環式ポリカーボネートポリオール、直鎖状ポリカーボネートポリオール共重合体、及び、ポリエーテルポリオール等が、柔軟性と充実感のバランスにより優れた人工皮革が得られる点から好ましい。
 有機ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート等の脂肪族あるいは脂環族ジイソシアネート等の無黄変型ジイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートポリウレタン等の芳香族ジイソシアネート等が挙げられる。また、必要に応じて、3官能イソシアネートや4官能イソシアネートなどの多官能イソシアネートを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
 これらの中では、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートが、機械的特性に優れることから好ましい。
 鎖伸長剤としては、例えば、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンおよびその誘導体、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジドなどのジアミン類;ジエチレントリアミンなどのトリアミン類;トリエチレンテトラミンなどのテトラミン類;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオールなどのジオール類;トリメチロールプロパンなどのトリオール類;ペンタエリスリトールなどのペンタオール類;アミノエチルアルコール、アミノプロピルアルコールなどのアミノアルコール類等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
 これらの中では、ヒドラジン、ピペラジン、エチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、ジエチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、力学性能の点から好ましい。また、鎖伸長反応時に、鎖伸長剤とともに、エチルアミン、プロピルアミン、ブチルアミンなどのモノアミン類;4-アミノブタン酸、6-アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール、ブタノールなどのモノオール類を併用してもよい。
 高分子弾性体は水溶液、水分散体、又は有機溶媒溶液(例えば、ジメチルホルムアミド、メチルエチルケトン、アセトン、トルエンなどの有機溶媒の溶液)として絡合不織布に含浸させる。含浸させる方法は特に制限されないが、例えば、浸漬などにより絡合不織布内部に均一に含浸する方法、表面と裏面に塗布する方法などが挙げられる。含浸させた高分子弾性体の水溶液、水分散体、又は有機溶媒溶液は、人工皮革製造に従来採用されている条件及び方法(例えば、湿式法又は乾式法)により凝固させればよい。
 高分子弾性体の水溶液、水分散体(例えば、水系エマルジョン)、又は有機溶媒溶液の濃度は5~50重量%であるのが好ましい。
 高分子弾性体は水分散体として絡合不織布に含浸させることが特に好ましく、これにより、繊維絡合体に高分子弾性体の水系エマルジョンの固化物を含有させることになる。本発明では、繊維絡合体に水系エマルジョンの固化物を含有させることにより、後述する機械的収縮処理とヒートセット処理により、うねり構造を形成・保持しやすくすることができる。また、例えば、極細繊維としてヒートセットしにくいポリアミドを使用した場合等には、高分子弾性体を有機溶媒溶液として絡合不織布に含浸させると、機械的収縮及びヒートセット処理によりうねり構造を形成・保持しにくいため好ましくない。
 高分子弾性体の付与量は、繊維長(短繊維又は長繊維)、付与方法(水溶液、水分散体、有機溶媒溶液)により異なるが、製品の柔軟性、表面タッチ、染色均一性などから、固形分として極細繊維重量の5~70重量%の範囲が好ましい。特に、短繊維を使用し、高分子弾性体の有機溶媒溶液をもちいて付与する場合には、固形分として極細繊維重量の10~70重量%が好ましい。付与量が10重量%未満では、耐摩耗性が低下しやすく、付与量が70重量%を越えると風合が硬くなりやすいので好ましくない。
 高分子弾性体中に必要に応じて着色剤、酸化防止剤、制電防止剤、分散剤、柔軟剤、凝固調整剤などの添加剤を配合してもよい。
工程(4)
 工程(4)では工程(2)で得られた高分子弾性体を含まない不織布中、又は、工程(3)で得られた高分子弾性体含有不織布中の極細化可能繊維を極細化し、極細繊維束に変換し、該極細繊維束からなる絡合体、又は該絡合体と該絡合体中に含まれる高分子弾性体からなる人工皮革用基体を製造する。
 極細化可能繊維の極細化は、海成分ポリマーを除去することにより極細化可能繊維を極細繊維の繊維束に変換することにより行う。海成分ポリマーを除去する方法としては、島成分ポリマー溶解しないが海成分ポリマーを溶解する溶剤、又は、島成分ポリマーを分解しないが海成分ポリマーを分解する分解剤で高分子弾性体含有不織布中を処理する方法が好ましい。島成分ポリマーがポリアミド系樹脂やポリエステル系樹脂である場合、海成分ポリマーがポリエチレンであればトルエン、トリクロロエチレン、テトラクロロエチレンなどの有機溶剤が、海成分ポリマーが水溶性熱可塑性PVAもしくは変性PVAであれば温水が、また、海成分ポリマーが易アルカリ分解性の変性ポリエステルであれば水酸化ナトリウム水溶液などのアルカリ性分解剤が使用される。海成分ポリマーの除去は人工皮革分野において従来採用されている方法、条件により行えばよく、特に制限されない。環境負荷が少ない方法が望まれる場合には、海成分ポリマーとして水溶性熱可塑性PVAもしくは変性PVAを使用し、これを、有機溶媒を使用することなく85~100℃の熱水中で100~600秒間処理し、除去率が95質量%以上(100%を含む)になるまで抽出除去し、極細化可能繊維を島成分ポリマーからなる極細繊維の繊維束に変換するのが好ましい。
 本発明の人工皮革用基体の絡合体を形成する極細繊維の平均単繊維繊度は好ましくは0.9デシテックス以下、さらに好ましくは0.0001~0.9デシテックス、より好ましくは0.0001~0.5デシテックス、特に好ましくは0.005~0.3デシテックスである。平均単繊維繊度が0.0001デシテックス未満であると、人工皮革用基体の強度が低下することがある。また平均単繊維繊度が0.9デシテックスを越えると、人工皮革用基体の風合いが堅くなり、また、繊維の絡合が不十分になって、人工皮革用基体の表面品位が低下したり、耐摩耗性が低下したりする等の問題が生じることがある。
 なお、本発明の効果を損なわない範囲で、単繊維繊度が0.0001デシテックス未満の繊維又は単繊維繊度が0.9デシテックスを越える繊維が限られた量含まれていてもよい。単繊維繊度が0.0001デシテックス未満の繊維および単繊維繊度が0.9デシテックスを越える繊維の含有量は、人工皮革用基体を構成する全繊維の30%以下(数基準)が好ましく、10%以下(数基準)がより好ましく、全く含まれないことがさらに好ましい。
 極細繊維の繊維束の繊度は好ましくは1.0~4.0dtexであり、1本の繊維束中の極細繊維の数は好ましくは9~500本である。上記範囲内であると、人工皮革用基体及びこれから得られるスエード調人工皮革の外観の均一性および発色性と耐磨耗性のバランスが良好である。なお、極細繊維は、極細化可能繊維と同様に、短繊維又は長繊維のいずれでもよい。
人工皮革用基体の目付は、好ましくは150~1500g/m2である。人工皮革用基体の目付が150g/m2以上であると、良好な反発感が得られる。また人工皮革用基体の目付が1500g/m2以下であると、種々の用途への加工性が良好である。また、人工皮革用基体の見掛け密度は、好ましくは0.25~0.80g/cm3である。見掛け密度が0.25g/cm3以上であると、耐摩耗性が良好である。また、繊維見掛け密度が0.80g/cm3以下であると、種々の用途への加工性が良好である。人工皮革用基体の厚さは人工皮革の用途に応じて選ばれるが、通常、0.3~3.0mmである。
 工程(3)は省略してもよい。また、工程(4)の後に工程(3)を行って、極細化可能繊維を極細化して得た人工皮革用基体に高分子弾性体を含有させてもよい。
 本発明の人工皮革用基体には、本発明の効果を逸脱しない範囲において、上述した添加物以外に、他の染料、柔軟剤、風合い調整剤、ピリング防止剤、抗菌剤、消臭剤、撥水剤、耐光剤、耐侯剤等の機能性薬剤が含まれていても良い。
工程(5)
 工程(5)では、上記の方法で得られた人工皮革用基体の少なくとも一方の表面に銀面層を設けるか、又は、少なくとも一方の表面を立毛処理して銀付調人工皮革、半銀付調人工皮革、立毛調人工皮革、又はヌバック調人工皮革を得る。人工皮革用基体の少なくとも一方の表面に銀面層を設ける方法、人工皮革用基体の少なくとも一方の表面を立毛処理する方法は、従来人工皮革の製造に用いられている方法を採用すれば良く、本発明では特に限定されない。例えば、離型紙上に形成した銀面層となる層と接着層を人工皮革用基体の少なくとも一方の表面に接着層を介して接着する乾式造面法、人工皮革用基体の少なくとも一方の表面に銀面層となる高分子弾性体の分散液又は溶液を塗布し、乾燥凝固させる方法などにより銀面層を形成することが出来る。また、人工皮革用基体の少なくとも一方の表面を針布、サンドペーパーなどで起毛し、次いで、整毛処理する方法などにより立毛表面を形成することができる。
 さらに、人工皮革に対しては、液流染色機等を用いて酸性染料等の染料で染色を行ってもよい。
 上記のようにして得られる人工皮革の目付は130~1600g/m2であるのが好ましく、150~1400g/m2であるのがより好ましく、見掛け密度は0.25~0.80g/cm3であるのが好ましく、0.30~0.70g/cm3であるのがより好ましく、また、厚さは0.5~2.0mmであるのが好ましい。
工程(6)
 工程(6)では工程(5)で得られた人工皮革をタテ方向(製造ラインのMD)に機械的に収縮させ、この収縮状態で加熱処理してヒートセットすることにより、タテ方向に適度な伸長性を有し、かつ、伸び止まり感があり良好な柔軟性を有する伸縮性人工皮革を得る。
 本発明の伸縮性人工皮革を得るための機械的収縮処理の具体例の一つとして、人工皮革を厚さが数cm以上の厚い弾性体シート(ゴムシート、フェルトなど)のタテ方向に伸長した表面に密着させ、該表面が伸長状態から伸長前の状態に弾性回復させることによって、該人工皮革をタテ方向に収縮させる方法が挙げられる。図1は、この方法により人工皮革を収縮処理する装置の一例を表す概略図である。厚い弾性体シートからなるベルト3はプレッシャーローラ4(表面の材質:金属製)の表面に接しながら進行する。この間に、ベルト3の外表面はベルトの内外周差によりタテ方向に伸長される。ターンローラ5a、5bより送られてきた人工皮革1をベルト3の伸長した外表面に密着させる。ベルト3とこれに密着した人工皮革1はプレッシャーローラ4とドラム2(表面の材質:金属製)の間隙を通過し、ドラム2の表面に接しながら走行する。
 この間隙を通過後、ベルト3は、人工皮革1を間に把持するようにドラム2に沿って走行することにより、ベルト3の伸長される面が反転し、ベルト3の人工皮革1側の表面はタテ方向の伸長状態から伸長前の状態に弾性回復することによって進行方向(タテ方向)に追い込まれるように収縮する。ベルト3の伸長状態から弾性回復状態への変化に対応して人工皮革1は進行方向(タテ方向)に追い込まれるように収縮され、その後、収縮した人工皮革6として引き取られていく。
 内外周差を利用して弾性シートの外表面を後述する範囲の伸長率で伸長させるためにはプレッシャーローラ4の外径は10~50cmであることが好ましい。また、弾性シートの外表面の伸長状態を緩和し、伸長前の状態に弾性回復させることで、弾性シートをタテ方向(進行方向)に収縮させるのと同時に人工皮革を後述する範囲の収縮率でタテ方向(進行方向)に収縮させるためには、ドラム2の外径はプレッシャーローラ4の外径よりも大きく、20~80cmであることが好ましい。ドラム2の径は加熱処理時間を長くし、ヒートセットを効率よく行うためには大きいほど好ましいが、弾性体ベルトの内外周差を利用した収縮率を本発明の範囲に設定するためには小さい方がよいので、ドラム2とローラ4の外径はこれらを考慮して決められる。通常は、加熱処理時間を優先して決めるのが好ましい。
 プレッシャーローラ4は直接加熱せず、収縮加工前の原反(人工皮革)を予熱する方法が一般的であるが、定常運転状態になったときのローラ4の表面温度は40~90℃程度であるのが好ましい。
 ドラム2の表面温度は70~150℃に加熱されていることが好ましい。ドラム2は、人工皮革を収縮させる際に加熱する収縮加熱部として用いることができるとともに、収縮した状態の人工皮革を加熱処理してヒートセットするために用いることもできる。ベルト3はゴムまたはフェルトなどの厚いベルトが好ましく、厚さは通常20mm以上である。また、図1のターンローラ5a、5bによる人工皮革1の搬送速度をベルト3の搬送速度より高くすると、人工皮革1がベルト3の表面上でタテ方向に折り畳まれ、この折り畳まれた人工皮革1が厚いベルト3の表面の伸長状態から弾性回復状態への変化により収縮されるので、人工皮革1の収縮効果を増大することができる。
 他の機械的収縮処理方法として、加圧ローラ間でニップして変形させて、弾性体シートが伸長状態から弾性回復する作用を利用して人工皮革をタテ方向(進行方向)に収縮させる方法もある。図2はこの方法により人工皮革を収縮処理する装置の一例を表す概略図である。金属ローラ11と肉厚ゴム部12を有するゴムローラ13の表面に沿って弾性体シート製のベルト3が循環走行している。ここで、金属ローラ11とゴムローラ13のニップ部では、ニップの圧力で肉厚ゴム部12がゴムローラ13の中心方向に変形されて伸張し、ベルト3がニップの圧力で厚さ方向に圧縮される。一方、人工皮革1は、金属ローラ11とゴムローラ13の間、すなわちベルト3の外表面上に供給されている。ここで、厚み方向に圧縮されたベルト3は、その圧縮に伴い、ベルト3の長さが長くなるように伸長する。そのため、ニップ通過後、伸長状態からの圧縮開放によりベルト3は収縮(弾性回復)し、それにより、ベルト3の外表面上に配置された人工皮革1もタテ方向に収縮する。例えば、厚みが1/2に圧縮された場合には、ゴムベルト3の幅が変化しないと仮定すると、ゴムベルト3の長さは約2倍に変形する。その後、収縮した人工皮革1は、ベルト3と金属ローラ11に把持されるように、加熱された金属ローラ11の表面に沿って走行し、その後引き取られる。
 金属ローラ11は、その表面温度が70~150℃となるように加熱されていることが好ましく、上記した収縮加熱部として用いることができるとともに、収縮状態の人工皮革1を加熱処理してヒートセットするための部材としても用いることができる。
 ゴムローラ13は直接加熱せず、収縮加工前の原反(人工皮革)を予熱する方法が一般的であるが、その場合、定常運転状態になったときのゴムローラ13の表面温度は40~90℃であることが好ましい。
 なお、以上の説明では、内外周差を利用して弾性シートをタテ方向に伸長させる例や、弾性体シートを厚み方向に圧縮した際の伸びを利用して、弾性シートをタテ方向に伸長させる例を説明したが、他の方法で弾性シートを伸長させてもよい。
上記の機械的収縮処理を利用する本発明の人工皮革の製造方法は、弾性体シートの表面をタテ方向に伸長させながら人工皮革を該表面に接着剤などの接着手段を用いることなく密着させ、次いで、伸長状態を緩和させて該弾性体シート表面を伸長前の状態に弾性回復させると共に人工皮革を進行方向(タテ方向)に追い込むように収縮させることを特徴とする。人工皮革を密着させる際の弾性シート表面の伸長率((伸長した長さ/伸長前の長さ)×100)は5~40%、好ましくは7~25%、より好ましくは10~20%である。5%以上であれば、タテ方向にほとんど伸長しない人工皮革を密着させた場合であっても、工程(6)の収縮処理により、タテ方向に伸長する人工皮革を得ることができる。例えば、目付250g/m2以下の短繊維からなる人工皮革は、その製造工程でかかる張力によって伸びが生じ、その結果、タテ方向に伸長し難い。しかし、本発明の製造方法によれば、短繊維を用いた場合であっても、容易にタテ方向に伸長する人工皮革を得ることができる。また、スパンボンド法によるウェブを用いた場合、一般にタテ方向にフィラメントが並び、タテ方向に伸長し難い人工皮革が得られるが、本発明の製造方法によれば、タテ方向に伸長する人工皮革を得ることができる。
 上記したような収縮処理は好ましくは70~150℃、より好ましくは90~130℃で行うとよい。また、好ましくは2~20%の収縮率、より好ましくは4~15%の収縮率で人工皮革をタテ方向に収縮させる。
 収縮率=[(収縮前の長さ)-(収縮後の長さ)]/収縮前の長さ×100
 上記各方法では、弾性体シート3と人工皮革1の見掛けの動摩擦係数が0.8~1.7であることが好ましく、1.1~1.6であることがより好ましい。一方で、シリンダー(ローラ2又はローラ11)と、人工皮革1の動摩擦係数は、0.5以下であることが好ましく、0.4以下であることがより好ましい。本発明では、上記動摩擦係数が上記範囲内となることで、弾性体シートの収縮力を均一に人工皮革に伝達し、人工皮革をタテ方向に効果的に収縮させることができる。
 なお、動摩擦係数とは、荷重1.5kgfで人工皮革を弾性体シートまたはシリンダー上で滑らせた際の引張荷重抵抗を測定し、1.5で除することによって測定されたものである。
 本発明において用いられる弾性体シートは、上述の弾性特性を有するシート状物であればよく、特に限定されないが、天然ゴムまたは合成ゴムのシートを用いるのが好ましい。天然ゴムまたは合成ゴムの弾性シートを用いれば、特に、弾性回復力が高いので、密着した人工皮革と共に収縮する際、人工皮革の抵抗力に逆らってなお充分に人工皮革を収縮させる効果を得ることができる。また、収縮処理時における、加熱、加圧による人工皮革表面の構造変化を防止するためには、弾性体シートのテンションを低くコントロールするとともに、硬度の低い弾性体シートを用いることが好ましい。
 弾性体シートの厚さは20~100mmであるのが好ましく、40~75mmであるのがより好ましい。上記範囲内であると、内外周差を利用して弾性体シートをタテ方向に効果的に伸長、収縮させることができる。
 天然ゴムとしては、ヘベア樹などの樹皮から採取されるシス-1,4-ポリイソプレンを主成分とするゴムなどを用いることができる。
 合成ゴムとしては、スチレン-ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、エチレンプロピレンゴム、クロロプレンゴム、ニトリルゴム、シリコーンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、エチレン-酢酸ビニルゴム、塩素化ポリエチレンゴムなどを用いることができる。
 本発明の製造方法においては、弾性体シートから人工皮革を引き離す前に、加熱により人工皮革が収縮状態で処理されて、ヒートセットされるため、弾性体シートは耐熱性に優れていることが好ましく、耐熱性を有するシリコーンゴム、フッ素ゴムまたはエチレンプロピレンゴムが好ましい。
 本発明の製造方法においては、人工皮革をタテ方向に収縮させた後、例えば、弾性体シートから引き離す前に該人工皮革を加熱処理し、収縮状態でヒートセットする。これにより人工皮革の伸縮性を高めることができる。ただし、加熱処理は、人工皮革を弾性体シートから引き離す前に行う代わりに、人工皮革を弾性体シートから引き離した後に行ってもよいし、引き離す前及び引き離した後の両方で行ってもよい。
 該加熱処理のための加熱温度(例えば、上記した金属ローラ11又はドラム2の表面温度)は、人工皮革用に含まれる繊維が製造工程で受けた熱履歴を考慮して、上記したように好ましくは70~150℃、より好ましくは100~150℃の範囲から選択するのがよい。
 例えば、液流染色機などで湿熱120℃処理した人工皮革の場合には、加熱処理のための温度は、湿熱処理の場合は120℃以上、乾熱処理の場合は140℃以上が好ましい。
なお、ここでいう湿熱処理とは、該加熱処理とともに加湿処理が行われたことをいい、乾熱処理とは、加湿処理が行われていないことを意味する。
 加熱処理(ヒートセット)の処理時間は、人工皮革に含まれる繊維のポリマー種および加熱処理温度によって異なり、通常0.1~5分の範囲から選ばれる。例えばポリエチレンテレフタレート繊維の場合、1~3分であるのがヒートセット、加工安定性の点で好ましい。一度の加熱処理でヒートセットが不十分な場合は、弾性体シートから人工皮革を引き離した後に、再度加熱処理(ヒートセット)することが好ましい。
 加熱処理する方法は熱風を人工皮革に吹き付けて加熱する方法、赤外線ヒーターを用いて加熱する方法、加熱シリンダーと弾性体シートもしくは不織布シートの間に挟んで熱処理する方法など公知の方法を用いることができるが、低テンションで処理可能な点から、例えば図1,2で示したように、加熱シリンダー(ドラム2又は金属ローラ11)とシートの間に挟んで熱処理して、加熱シリンダーのアイロン効果を利用する方法が好ましく用いられる。加熱処理された人工皮革は通常2~15m/分の速度で引き取られる。
 人工皮革をタテ方向により効果的に収縮させるためには、人工皮革を弾性体シートに密着させる前に、人工皮革を軟化させるための予熱処理、加湿処理又はこれらの両方を行うことが好ましい。予熱処理する方法としては、スチーム又は水を吹き付けて加湿しながら加熱する方法、熱風を人工皮革に吹き付けて加熱する方法、赤外線ヒーターを用いて加熱する方法など公知の加熱方法を用いることができる。加湿処理する方法としては、人工皮革に水分を付与することができれば限定されないが、スチーム又は水を人工皮革に吹き付けて行う方法などがある。
 使用する人工皮革により予熱処理の最適条件が異なるが、予熱温度は40~100℃が好ましい。また、水分付与量は人工皮革の極細繊維の量に対して1~5重量%が好ましい。
 また、上記したように、スチーム又は水をスプレーして加湿処理することにより人工皮革に水分を付与しておくことがで、収縮処理時に人工皮革が過度に昇温することを防止することができる。これにより、収縮処理時における人工皮革の温度を100℃以下に容易にコントロールすることもできる。また、100℃以上に人工皮革を昇温して収縮処理を効果的に行いたい場合には、熱風もしくは赤外線ヒーターによる予熱処理を行うことが好ましい。予熱処理と加湿処理は組み合わせもよく、これらは同時に行ってもよい。
 本発明では、工程(6)の直後に伸縮性人工皮革は、85℃以下に冷却されることが好ましく、また、工程(6)で得た伸縮性人工皮革は、コンベヤベルトによってベルト搬送されること好ましい。伸縮性人工皮革は、例えば100℃以上に加熱された状態から、冷却ロールや空冷によって直ちに85℃以下に冷却されると、加熱状態で搬送される際の工程張力の影響を防止できるという利点がある。また、ベルト搬送されると、例えば、伸縮性人工皮革がロール-ロール間に送られる場合でも、そのロール-ロール間に架けられたベルト上に載せられて送られることで、工程中の張力の影響を受けて収縮した人工皮革が伸びることを防止できる。なお、人工皮革は、上記図1、2で示した装置による処理の後(例えば、収縮処理と加熱処理が行われた後)、別の加熱処理装置に送られて加熱処理(ヒートセット)が行われる場合があるが、その別の加熱処理装置に送られるときにもベルト搬送され、また上記したように人工皮革は冷却されてもよい。
 上記工程(6)を経て得られた伸縮性人工皮革の見掛け密度は0.25~0.80g/cm3であるのが好ましく、この範囲であると、耐摩耗性及び種々の用途への加工性が良好である。目付は150~1700g/m2、厚さは用途に応じて選ばれるが、0.5~2.0mmであるのが好ましい。
 本発明の製造方法では人工皮革を進行方向(タテ方向)に追い込むように収縮させるので、得られる伸縮性人工皮革は、極細繊維の繊維束と任意の高分子弾性体からなるミクロな挫屈構造(うねり構造)を有していることが好ましく、それにより、伸縮性人工皮革の見かけ密度に関わらず、柔軟な風合いと緻密な折り曲げ皺を有することになる。ミクロな挫屈構造は人工皮革がタテ方向に収縮した結果、タテ方向に沿って生じるうねり構造であり、本発明の人工皮革は極細繊維からなる不織布構造を有しているので、このうねり構造が形成され易い(図4及び図5参照)。うねり構造は連続している必要はなく、タテ方向に不連続であっても良い。本発明の伸縮性人工皮革は、繊維自体の伸長性ではなく、このような挫屈構造の変化(伸長)によりタテ方向に伸び、また、伸び止まり感を有し、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。また、本発明におけるうねり構造は、下記で詳述する構造を有することが好ましい。
 ただし、本発明の製造方法で得た人工皮革は、上記したようなうねり構造を有していなくてもよい。うねり構造を有していなくても、上記した機械的収縮処理とヒートセットにより、極極細繊維の繊維束と任意の高分子弾性体がミクロに挫屈され、または曲げられると推測される。そして、得られる伸縮性人工皮革は、そのミクロな座屈構造等により、極細繊維の繊維束と任意の高分子弾性体の緊張状態が緩和されることにより、人工皮革は、見かけ密度に関わらず、ある程度の柔軟な風合いと緻密な折り曲げ皺を有することになる。
 本発明の伸縮性人工皮革は、タテ方向に適度な伸長性を有するので着用感や製品への加工性が良好であり、また、伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。タテ方向伸長性及び伸び止まり感はタテ方向の強力伸度曲線(荷重伸び曲線、縦軸:荷重(強力)、横軸:伸長率(伸度))により評価することができる。例えば、本発明の伸縮性人工皮革は荷重40N/cmで10~40%の伸長率((伸長した長さ/伸長前の長さ)×100)を示すことが可能である。伸び止まり感とは、全く伸びないことを意味するのではなく、伸度が一定値を超えたときに伸びに対する抵抗が著しく大きくなり、更に伸長することが容易ではなくなることを意味し、伸長する際の荷重変化に影響される。本発明では伸び止まり感をタテ方向の強力伸度曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時/5%伸長時)で表す。5%伸長時の荷重は縫製性、加工性、着用感に大きく影響する。人工皮革を30%を超えて伸長した場合、通常人工皮革を構成する不織布の構造は大きく変化してしまい、このような人工皮革は本発明が意図する着崩れ、型崩れ防止効果を示すことができない。この理由で30%伸長時の荷重を採用した。本発明の伸縮性人工皮革の上記荷重比は5以上であることが好ましく、5~40であることがより好ましく、8~40が特に好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
 なお、本発明においてタテ方向は人工皮革製造ラインの流れ方向(MD)であり、これと直交する方向がヨコ方向である。製品中の人工皮革のタテ方向は、一般に極細繊維の繊維束の配向方向、ニードルパンチや高速流体処理等によるスジ跡や処理跡等の複数の要素から決定することができる。これらの複数の要素により決定したタテ方向が異なる、明確な配向がない、またはスジ跡などがない等の理由でタテ方向を決定することができない場合には、引張強力が最大となる方向をタテ方向、それと直交する方向をヨコ方向とする。
 本発明の製造方法では、タテ方向に伸長させた弾性体シートに人工皮革を密着させ、次いで、タテ方向に弾性体シートを収縮させると共に人工皮革もタテ方向に収縮させる。この収縮により人工皮革のタテ方向の伸縮性が向上し、本発明の製造方法で得られる伸縮性人工皮革は、従来公知の人工皮革と比べて、低荷重でタテ方向に伸長する。その結果、強力伸度曲線は一定伸度を超えると荷重が大きく増加する曲線となる(図3参照)。そのため、本発明の伸縮性人工皮革は、低伸長領域では低荷重で伸び、高伸長領域では高荷重をかけないと伸びない性質(伸び止まり感)を有する。
 このようにして得られる本発明の伸縮性人工皮革は、タテ方向に適度な伸長性と伸び止まり感を有し、表面品位に優れることから、衣料や家具、カーシート、雑貨等の幅広い用途に使用することができる。
(伸縮性人工皮革)
 次に、上記製造方法により製造可能な伸縮性人工皮革の第1~第3の実施形態について、具体的に説明する。ただし、以下で説明する各伸縮性人工皮革において、特に説明しない構成は、上記製造方法で説明した構成と同じである。
<第1の実施形態>
 本発明の第1の実施形態に係る伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、図4、5に示すように、その厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に沿って有するものである。本発明の伸縮性人工皮革は、高い見掛け密度とミクロなうねり構造により、タテ方向に適度な伸縮性と伸び止まり感を有しつつ、機械的物性も良好なものとなる。本実施形態に係る伸縮性人工皮革は、好ましくは、上記本発明の製造方法によって製造されたものであるが、その製造方法は、上記の方法に限定されるわけではない。
 [繊維絡合体]
 本実施形態における繊維絡合体は、例えば上記工程(1)により、短繊維もしくは長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、次いで工程(2)により得られたウェブを絡合して絡合不織布とし、その後、極細化可能繊維の場合には、例えば上記工程(4)により、極細化処理を行うなどの方法により形成されるものである。繊維絡合体や、極細繊維等の各部材の構成は、上記製造方法により得られた人工皮革と同様であるので、その説明は省略する。
 [高分子弾性体]
 本実施形態の伸縮性人工皮革において、繊維絡合体は、好ましくは高分子弾性体を含有しており、ミクロなうねり構造は、極細繊維と繊維絡合体に含有される高分子弾性体によって構成されることが好ましい。本実施形態では、極細繊維が長繊維である場合には、高分子弾性体の使用を省略し繊維絡合体が高分子弾性体を含有しなくても、容易にうねり構造を形成できる。高分子弾性体は、例えば、工程(3)による高分子弾性体付与処理により、繊維絡合体に含有されるが、具体的な処理方法や材料については上記と同様であるので省略する。
 [銀面・立毛加工]
 本発明の伸縮性人工皮革は、少なくとも一方の表面に銀面を備えるか、又は、立毛処理により少なくとも一方の表面を立毛表面にして、銀付調人工皮革、半銀付調人工皮革、立毛調人工皮革、又はヌバック調人工皮革とすることが好ましい。銀面層を設ける方法及び立毛処理する方法は、上記工程(5)の方法で行われることが好ましい。
 [うねり構造]
 本実施形態の伸縮性人工皮革は、機械収縮加工前の人工皮革(以下、処理前人工皮革という)をタテ方向に機械的に収縮させ、その収縮状態で、加熱処理(ヒートセット)することにより得られるものであり、機械的収縮によりミクロなうねり構造がタテ方向に沿って形成され、加熱処理(ヒートセット)によりそのミクロなうねり構造が保持されるものである。より具体的には、うねり構造は、極細繊維により構成される繊維絡合体、あるいは、繊維絡合体と該繊維絡合体に含有される高分子弾性体をタテ方向に沿って挫屈させて成形されたものである。収縮性人工皮革は、このうねり構造(挫屈構造)により、その見かけ密度が高くても、柔軟な風合いと緻密な折り曲げ皺を有している。うねり構造は連続している必要はなく、タテ方向に不連続であっても良い。
 うねり構造は、タテ方向1mm中に存在するピッチ数が2.2個以上であり、平均高さ(山と谷の高さ差)は50~350μm、平均ピッチは450μm以下であることを特徴とする。なお、ここで平均ピッチとは、うねり構造の1ピッチ(谷と次の山の間、山と次の谷の間)の距離の平均をいい、ピッチ数とは、1mm中に存在するピッチの数をいう。本発明の伸縮性人工皮革は、繊維自体の伸長性ではなく、このようなうねり構造の変化(伸長)によりタテ方向に適度な伸びと伸び止まり感を有する。伸縮性人工皮革は、タテ方向に適度な伸びを有するので着用感や製品への加工性が良好であり、また、適度な伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。
 上記ピッチ数は好ましくは2.2~6.7個、より好ましくは2.5~5.0個である。また、上記平均ピッチは150~450μmであることが好ましく、200~400μmであることがより好ましい。ピッチ数を上記範囲とすることにより、より高い伸び止まり感が得られ、着用による型崩れが起こりにくくなるとともに、タテ方向の伸びが良好となり、着用感や成形性がより良好になる。
 また、上記平均高さは、100~300μmであることがより好ましい。平均高さを100~300μmとすることにより、タテ方向の伸びや伸び止まり感をより良好にすることができると同時に表面の凹凸が抑制され、平滑性や外観に優れた人工皮革を得ることが可能となる。
 本実施形態の伸縮性人工皮革は、タテ方向に機械的に収縮される際、ヨコ方向にはタテ方向よりも小さく収縮され、或いは実質的に収縮されない。そのため、ヨコ方向に沿うミクロなうねり構造は、厚み方向とヨコ方向に共に平行な断面において形成されない。あるいは、形成されたとしても、厚み方向とヨコ方向に共に平行な断面におけるうねり構造のうねり量は、厚み方向とタテ方向に共に平行な断面におけるうねり構造のうねり量よりも小さくなる。すなわち、伸縮性人工皮革のタテ方向に沿ううねり構造のピッチ数(1mmあたり)、及び平均高さそれぞれは、ヨコ方向に沿ううねり構造のピッチ数(1mmあたり)、及び平均高さそれぞれよりも大きくなる。
 本実施形態の伸縮性人工皮革は、タテ方向にミクロなうねり構造を備え、適度な伸長性を有するので、着用感や製品への加工性が良好であり、また、伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。タテ方向伸長性及び伸び止まり感はタテ方向の強力伸度曲線(縦軸:荷重、横軸:伸度)やタテ方向の5%円形モジュラスにより評価することができる。例えば、本実施形態の伸縮性人工皮革は荷重40N/cmで10~40%の伸長率((伸長した長さ/伸長前の長さ)×100)を示すことが可能である。タテ方向の5%円形モジュラスは、低伸長時の伸長性を示す指標であって、本実施形態ではうねり構造を形成することにより、例えば40N以下、好ましくは10~30Nとすることが可能である。
 伸び止まり感とは、全く伸びないことを意味するのではなく、伸度が一定値を超えたときに伸びに対する抵抗が著しく大きくなり、更に伸長することが容易ではなくなることを意味し、伸長する際の荷重変化に影響される。本実施形態では伸び止まり感をタテ方向の強力伸度曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時/5%伸長時)で表す。本実施形態の伸縮性人工皮革の上記荷重比は5以上であることが好ましく、5~40であることがより好ましく、特に8~40であることが最も好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
[伸縮性人工皮革の見掛け密度・目付]
 本実施形態の伸縮性人工皮革の見掛け密度は、0.40g/cm3以上であることを特徴とする。見掛け密度を0.40g/cm3以上とすることにより、人工皮革内部の空隙が少なくなり、機械的収縮処理によって容易にうねり構造が形成される。また、引裂強力、剥離強力等を良好にでき、特に伸び止まり感を良好にすることができるので、うねり構造によってタテ方向伸縮性を確保しつつ、高強度の人工皮革を得ることができる。見掛け密度は、より好ましくは0.45g/cm3以上、さらに好ましくは0.50g/cm3以上である。また、好ましくは0.80g/cm3以下であり、より好ましくは0.70g/cm3以下、さらに好ましくは0.65g/cm3以下である。見掛け密度を0.80g/cm3以下とすることにより、種々の用途への加工性を良好にすることができる。
 伸縮性人工皮革の目付は、好ましくは150g/m2以上であり、より好ましくは200g/m2以上、さらに好ましくは250g/m2以上である。また、好ましくは1500g/m2以下であり、より好ましくは1200g/m2以下、さらに好ましくは1000g/m2以下である。伸縮性人工皮革の目付が150g/m2以上にすることにより、良好な反発感が得られやすくなるため好ましい。また伸縮性人工皮革の目付が1500g/m2以下の場合、種々の用途への加工性が良好になる傾向にあり好ましい。また、厚さは用途に応じて選ばれるが、0.35~2.00mm、好ましく0.40~1.50mmである。本実施形態では、機械的収縮処理・ヒートセット処理が施されることにより、その見掛け密度、目付それぞれは、処理前人工皮革、すなわち機械的収縮処理前の人工皮革の見掛け密度、目付よりも大きくなる。
[うねり構造の形成]
 タテ方向に沿うミクロなうねり構造は、処理前人工皮革をタテ方向に機械的に収縮して、その収縮状態でヒートセットすることにより得られるものである。
 本実施形態の機械的収縮処理の具体例の一つとして、処理前人工皮革を厚さが数cm以上の厚い弾性体シート(ゴムシート、フェルトなど)のタテ方向に伸長した表面に密着させ、該表面が伸長状態から伸長前の状態に弾性回復させることによって、該処理前人工皮革をタテ方向に収縮させる方法が挙げられる。より詳しくは、上記で詳述した工程(6)の方法で行うことが好ましい。
 本実施形態では、処理前人工皮革を進行方向(タテ方向)に追い込むように収縮させるので、得られる伸縮性人工皮革は、上記したようにミクロな挫屈構造(うねり構造)を有している。また、本実施形態では、人工皮革が高密度でかつ極細繊維からなる不織布構造を有しているので、ミクロなうねり構造は形成され易い。
[処理前人工皮革]
 上記したように、本実施形態の処理前人工皮革、すなわち熱収縮処理前の人工皮革は、好ましくは、短繊維又は長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、得られたウェブを絡合して絡合不織布とし、その後、必要に応じて高分子弾性体付与処理、極細化処理、銀面・立毛加工を行うことにより得られたものである。これら処理方法は、具体的には、上記工程(1)~(5)の方法で行われる。
 処理前人工皮革の見掛け密度は0.25~0.80g/cm3であるのが好ましく、0.30~0.70g/cm3であるのがより好ましく、0.40~0.70g/cm3が最も好ましい。熱収縮処理前の人工皮革の見掛け密度をこれら範囲にすることにより、処理前人工皮革の繊維絡合体中の空隙が少なくなり、後述する熱収縮処理でうねり構造を形成しやすくなるとともに、加工性も良好にすることができる。また、目付は130~1600g/m2であるのが好ましく、150~1400g/m2であるのがより好ましく、厚さは0.2~2.0mmが好ましく、0.5~2.0mmであるのがより好ましい。
 以上のように、本実施形態の伸縮性人工皮革は、高い見掛け密度とうねり構造を有するため、タテ方向に適度な伸長性を有しながら、機械的強度を有し伸び止まり感があり、表面品位に優れることになる。そのため、衣料や家具、カーシート、雑貨等の幅広い用途に使用することができる。また、伸縮性人工皮革におけるうねり構造は、人工皮革をタテ方向に収縮させヒートセットすることにより容易に形成することができる。
<第2の実施形態>
 第2の実施形態の伸縮性人工皮革は、例えば、上記の製造方法によって製造されるものであって、以下の特徴を有するものである。以下、第2の実施形態の伸縮性人工皮革を詳細に説明するが、特に言及しない構成は、第1の実施形態の伸縮性人工皮革と同様である。
[伸縮性人工皮革]
 第2の実施形態の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、以下の式(1)で算出される伸び係数を50以下としたものである。本実施形態の伸縮性人工皮革は、高い見掛け密度と良好な伸び係数により、タテ方向に適度な伸縮性と伸び止まり感を有しつつ、機械的物性も良好なものとなる。
                伸び係数=5%円形モジュラス(タテ)/厚さ ・・・(1)
 [伸縮性人工皮革の伸び係数及び伸び止まり感]
 本実施形態の伸縮性人工皮革は、上記したように、タテ方向における5%円形モジュラスを厚さで除すことにより得られる伸び係数を50以下とすることを特徴とする。5%円形モジュラスは、低伸長時における伸長率を表す指標であり、伸縮性人工皮革の伸び特性を表すものであるが、厚さが大きくなると大きくなり、厚さが小さくなると小さくなるものである。すなわち、5%円形モジュラスは、同じ構造の繊維絡合体から成る人工皮革であっても、厚さが変化することにより変化するものである。それに対して、本実施形態における伸び係数は、5%円形モジュラスを厚さで除すことにより、厚さのファクターが無くなっており、厚さによらない伸縮性人工皮革の繊維構造そのものに起因する伸び特性を示すものである。
 本実施形態の伸縮性人工皮革は、上記したように高見掛け密度により機械的強度が良好であるにもかかわらず、伸び係数が上記範囲となることにより低伸長時の伸長性も良好になる。伸び係数は好ましくは5~40であり、より好ましくは10~25である。伸び係数をこれら範囲とすることにより、低伸長時の伸長性をより良好にしつつ伸縮性人工皮革の機械的強度もより良好にすることができる。本実施形態の伸縮性人工皮革は、上記したよう一定値以上の厚さを有しながらも、伸び係数を50以下とすることにより、5%円形モジュラスを例えば40N以下、好ましくは10~30Nとすることが可能になる。このように、本実施形態の伸縮性人工皮革は、人工皮革としての強度を十分に確保できる厚さを有しつつも、低伸長時の伸長性も良好になる。
 本実施形態の伸縮性人工皮革は、上記したように5%円形モジュラスの値が良好となり、適度な伸長性を有するので、着用感や製品への加工性が良好になるものである。また、見掛け密度が高い一方で伸び係数が低いことにより、適度な伸び止まり感を持つことが可能なる。本実施形態の伸縮性人工皮革は、伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。
 伸び止まり感は、上記で説明したように、タテ方向の強力伸度曲線(縦軸:荷重、横軸:伸度)により評価することができる。本実施形態でもタテ方向の強力伸度曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時の荷重/5%伸長時の荷重)は5以上であることが好ましく、5~40であることがより好ましく、特に8~40であることが好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
 なお、この強力伸度曲線は、5%円形モジュラスと同様に、タテ方向伸長性も評価可能である。例えば、本実施形態の伸縮性人工皮革は、荷重40N/cmで10~40%の伸長率((伸長した長さ/伸長前の長さ)×100)を示すことが好ましい。
 本実施形態の伸縮性人工皮革は、第1の実施形態の伸縮性人工皮革と同様に、その厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に沿って有することが好ましい。本実施形態では、このミクロなうねり構造により、見掛け密度が高いものであっても、伸び係数を上記のように低いものとすることができる。ミクロなうねり構造及びその成形方法は、上記した第1の実施形態と同様であるので、その説明は省略する。
 なお、本実施形態において、処理前人工皮革や伸縮性人工皮革の見掛け密度・目付等、その他の構成は、第1の実施形態の伸縮性人工皮革と同様であり、その説明は省略する。
 また、本実施形態の伸縮性人工皮革は、ミクロ構造を有さなくても、上記本発明の製造方法で形成されることにより、極細繊維の繊維束と任意の高分子弾性体が、ミクロに挫屈され、または曲げられると推測され、それにより、ある程度低い伸び係数を有することが可能になる。
 以上のように、本実施形態では、伸縮性人工皮革は、見掛け密度を良好にしつつも、伸び係数が低いものであったため、人工皮革として適切な厚みを有するものであっても、機械的強度を十分に持たせつつ、低伸長時におけるタテ方向伸長性を良好にすることができる。また、低い伸び係数と高い見掛け密度により、しなやかで柔軟であり充実感がある風合いを有する人工皮革を得ることができる。そのため、本発明の伸縮性人工皮革は、衣料や家具、カーシート、雑貨等の幅広い用途に好適に使用することができる。また、本発明の伸縮性人工皮革は、ミクロなうねり構造により、見掛け密度を良好にしつつも、伸び係数を低く抑えたものとすることが可能になる。
<第3の実施形態>
[伸縮性人工皮革]
 本発明における第3の実施形態の伸縮性人工皮革は、以下の特徴を有するものである。
 本実施形態の伸縮性人工皮革は、伸縮性を有する人工皮革において、JIS L 1096(1999)8.14.1 A法記載された方法で測定されるタテ方向の強力伸度曲線で、下記(A)及び(B)の条件を具備するものである。
(A)伸度5%における強力F5%が0.1~10N/2.5cmである。
(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。
 本実施形態において、強力伸度曲線は、JIS L 1096(1999)8.14.1 A法記載された方法で測定される。幅2.5cmの試験片をつかみ間隔20cmのチャックに固定し、一定速度で試験片を引っ張り、伸度と強力を求めた。その結果から、横軸が伸度(%)、縦軸が試験片2.5cm幅あたりの強力(N/25mm)である強力伸度曲線を作成する。
 図8は、本実施形態に係る伸縮性人工皮革のJIS L 1096(1999)8.14.1 A法に記載された方法で測定されるタテ方向の強力伸度曲線のモデルである。
 ここで、図8に示される曲線はタテ方向の強力伸度曲線である。なお、伸度とは、下記の意味で用いられる。
 伸度=[(伸長後の長さ)-(伸長前の長さ)]/伸長前の長さ×100
 本実施形態の伸縮性人工皮革は、(A)伸度5%における強力F5%が0.1~20N/2.5cmである。このような範囲であることで、伸縮においてスムーズに伸びるため、適度な柔軟性を得ることができる。強力F5%は、好ましくは0.2~15N/2.5cmであり、より好ましくは0.3~10N/2.5cmである。
 本実施形態の伸縮性人工皮革は、(B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。このような範囲であることで、伸度20%まで伸びた場合には高い応力が発揮されるため、好適な伸び止まりを得ることができ、革製品の定型性を高めて、型崩れなどを起こしにくくすることができる。伸度5%における強力は縫製性、加工性、着用感に大きく影響する。人工皮革を20%を超えて伸長した場合、通常人工皮革を構成する不織布の構造は大きく変化してしまい、このような人工皮革は本実施形態が意図する着崩れ、型崩れ防止効果を示すことができない。この理由で伸度20%の強力を採用した。
 F20%/F5%は、好ましくは8以上であり、より好ましくは10以上であり、更に好ましくは20以上である。上限は特に限定されないが例えば、100である。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
 本実施形態の伸縮性人工皮革は、(C)伸度5%における曲線の接線の傾きS5%と伸度20%における曲線の接線の傾きS20%との関係において、S20%/S5%が1.2以上であることが好ましい。このように、S20%/S5%が上記関係にあることで、伸びが20%付近において特に顕著な引っ張り応力の上昇が得られるため、伸び止まり感が特に顕著になる。S20%/S5%は、好ましくは5以上であり、より好ましくは10以上である。S20%/S5%の上限値は、特に限定されないが、例えば、100である。
 本実施形態の伸縮性人工皮革は、(D)伸度0~5%までの曲線の接線の傾きの最大値S05%maxが、8以下であることが好ましい。このような条件を有することで、低伸長時において伸びの抵抗が少なく、スムーズな伸びを実現することができ、適度な柔軟性を得ることができる。上記傾きの最大値S05%maxは、より好ましくは5以下であり、より好ましくは3以下である。S05%maxの下限値は特に限定されないが、例えば、0.1である。
 本実施形態の伸縮性人工皮革は、(E)F20%が30~200N/2.5cmであることが好ましい。このような範囲であることで、伸縮において20%まで伸びた場合には高い応力が発揮されるため、好適な伸び止まりを得ることができ、革製品の定型性を高めて、型崩れなどを起こしにくくすることができる。F20%は、より好ましくは50~190N/2.5cm以上であり、更に好ましくは80~180N/2.5cmである。
 本実施形態の伸縮性人工皮革は、(F)伸度10%における強力F10%が5~60N/2.5cmであることが好適である。このような範囲であることで、伸縮において10%まで伸びた場合にも、適度な引っ張り応力が発揮されるため、好適な伸び止まりを得ることができる。強力F10%は、好ましくは10~40N/2.5cmであり、より好ましくは10~30N/2.5cmである。
 上記の(A)~(F)の条件を有する人工皮革は、当業者の技術常識をふまえて、基体に使用する極細繊維、繊維絡合体の選択や、密度の調節、機械的収縮処理の調整によって得ることができる。本実施形態に係る人工皮革は、例えば、上記した製造方法により製造されるものである。また、好ましくは、第1及び第2の実施形態の伸縮性人工皮革の一方又は両方の構成を有するものである。
 本実施形態の伸縮性人工皮革は、タテ方向に適度な伸長性を有するので着用感や製品への加工性が良好であり、また、伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。
 また、本実施形態の伸縮性人工皮革は、タテ方向に伸長させた弾性体シートに人工皮革を密着させ、次いで、タテ方向に弾性体シートを収縮させると共に人工皮革もタテ方向に収縮させることが好適である。この収縮により人工皮革のタテ方向の伸縮性が向上し、低強力でタテ方向に伸長しやすくなる。その結果、(A)~(F)の条件を満足しやすくなる。
 また、上記したようなうねり構造を有することで、(A)~(F)の条件を満足しやすくなる。
 以上のように、本実施形態の伸縮性人工皮革は、タテ方向に適度な伸長性と伸び止まり感を有し、表面品位に優れることから、衣料や家具、カーシート、雑貨等の幅広い用途に使用することができる。
以下、本発明を実施例で詳細に説明するが、本発明は以下の実施例に限定される者ではない。実施例中の各物性値は下記の方法により測定した。
(1)目付、見掛け密度
目付はJIS L 1096 8.4.2(1999)に記載された方法で測定した。また、厚みをダイヤルシックネスゲージ((株)尾崎製作所製、商品名“ピーコックH”)により測定し、目付の値を厚みの値で割って見掛け密度を求めた。
(2)剛軟度(曲げる際の柔軟性の指標)
JIS L 1096 8.19.5 E法(ハンドルオメータ法)にて測定した。試験台上に設けられた幅20mmのスリットに試験片(タテ方向:10cm、横方向:10cm)を載せ、ブレードにて8mmの深さまで試験片をスリットに押し込み、そのときの抵抗力(g)を測定した。測定は表、裏面のそれぞれタテ方向と横方向について行った。
(3)強力伸度曲線
 JIS L 1096(1999)8.14.1 A法記載された方法で測定した。幅2.5cmの試験片をつかみ間隔20cmのチャックに固定し、一定速度で試験片を引っ張り、伸度と強力を求めた。その結果から、横軸が伸度(%)、縦軸が試験片2.5cm幅あたりの強力(N/2.5cm)である強力伸度曲線を作成した。
(4)伸び止まり感
 上記強力伸度曲線から、30%伸長時の荷重(強力)と、5%伸長時の荷重(強力)を求め、その比(30%伸長時/5%伸長時)を求めた。3回測定し、その平均値を小数点以下1けたに丸めた。伸び止まり感のある場合(前記比が5以上)を“A”とし、伸び止まり感がやや良い場合(前記比が5以上8未満)を“B”とし、それ以外を“C”として評価した。
(5)伸長率(荷重:40N/cm)
前記強力伸度曲線から荷重40N/cmのときのタテ方向伸長率を求めた。
(6)平均単繊維繊度
光学顕微鏡にてランダムに選んだ100個の繊維の断面積を測定し、その数平均を求めた。繊維断面積の平均値と繊維の比重から、繊度を計算により求めた。なお、繊維の比重はJIS L 1015 8.14.2(1999)に基づいて測定した。
(7)5%円形モジュラス(N)
 図9に示すように、300mmφの円形試験片1片にタテ方向に延びる直線上中央部に200mm間の標点をタテ方向に記し、インストロン型引張試験機でつかみ間隔200mm、引張速度200mm/分で5%伸長時のモジュラスを測定するものである。
(8)うねり構造評価
 伸縮性人工皮革の厚み方向とタテ方向に共に平行な断面を走査型電子顕微鏡で撮影し、厚さ方向の任意の位置におけるタテ方向に沿う5.0mmにおいて、うねり構造のピッチ(すなわち、谷から次の山、および山から次の谷)を数えていき、その平均を求めて1mm中に存在するピッチ数とした。また、上記5.0mm中に見られたうねり構造において、隣接する山と谷の高さ差それぞれの平均を求めてうねり構造の平均高さとするとともに、ピッチのタテ方向に沿う平均長さを平均ピッチとした。なお、隣接する山と谷の高さ差は、厚さ方向に沿う山と谷の高さ差を求めた。
実施例1
 水溶性熱可塑性のエチレン変性ポリビニルアルコール(変性PVA、海成分、変性度10モル%)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-ト(変性PET、島成分)を、海成分/島成分が25/75(質量比)となるように260℃で溶融複合紡糸用口金(島数:25島/繊維)より吐出した。紡糸速度が3700m/minとなるようにエジェクター圧力を調整し、平均繊度が2.1デシテックス(dtex)の海島型長繊維をネット上に捕集した。ついで、表面温度42℃の金属ロールでネット上の海島型長繊維からなるシートを軽く押さえ、表面の毛羽立ちを抑えてネットから剥離し、表面温度75℃の金属ロール(格子柄)とバックロール間で熱プレスして表面繊維が格子状に仮融着した目付34g/m2の長繊維ウェブを得た。
 上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより14枚重ねて総目付が480g/m2の重ね合わせウェブを作製し、更に針折れ防止油剤をスプレーした。次いで、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、針深度8.3mmにて両面から交互に3300パンチ/cm2でニードルパンチした。このニードルパンチ処理による面積収縮率は68%であり、ニードルパンチ後の絡合不織布の目付は580g/m2であった。
 上記絡合不織布に対して10質量%の量の水を付与して、相対湿度95%、70℃の雰囲気下で、熱処理により収縮を生じさせ、不織布の見かけの密度を向上させ、緻密化された不織布を得た。この緻密化処理による面積収縮率は45%であり、また該不織布の目付は1050g/m2、見かけ密度は0.52g/cm3であった。ついで該緻密化不織布を乾熱ロールプレスし、水系ポリウレタンエマルジョンを含浸付与し、150℃で乾燥およびキュアリングを施し、高分子弾性体含有不織布シートを得た。ついで、95℃の熱水中でPVAを溶解除去し、樹脂繊維比率R/F=12/88の人工皮革用基体を得た。
 得られた人工皮革用基体を主表面に平行にスライスして2分割し、分割面をサンドペーパーでバフィング処理して厚みを均一にした(厚み:0.75mm)。次いで、表面(分割面の反対面)をサンドペーパーで起毛および整毛処理した。次いで、液流染色機を用いて分散染料で染色加工及び乾燥した後、ブラッシングによる整毛仕上げをして立毛調人工皮革を得た(厚さ0.8mm、目付377/m2、見掛け密度0.471g/cm3)。立毛調人工皮革のタテ方向の強力伸度曲線を図3(比較例1)に、厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図6、7に示した。
 上記立毛調人工皮革を、加湿部と、加湿部から連続的に送られてくる人工皮革を収縮加工し、加熱処理する収縮加熱部(図1の収縮処理装置)と、この収縮加熱部で収縮加工された人工皮革をさらに加熱処理(ヒートセット)するためのドラムを有するヒートセット部とを備えた、収縮加工装置(小松原鉄工株式会社製、サンフォライジング機)を用いて、搬送速度10m/分で処理してタテ方向(長さ方向)に9.2%収縮させ伸縮性人工皮革を得た。このとき、加湿部では、スチーム処理して、原反温度が45℃になるように、人工皮革を加湿及び加熱した。また、収縮加熱部のドラム温度120℃、ヒートセット部のドラム温度120℃であった。さらに、収縮加熱後の人工皮革を弾性体シートから引き離した直後およびヒートセット部を通過直後に25℃以下のエアーを吹き付けて人工皮革を70℃以下に冷却するとともに、人工皮革の収縮加熱部とヒートセット部間の搬送をベルト搬送で行い、また、ヒートセット部でヒートセットした後も、人工皮革はベルト搬送した。
 伸縮性人工皮革のタテ方向の強力伸度曲線を図3に、タテ方向、ヨコ方向の強力伸度曲線であって、拡大して示したグラフを図10、図11に示した。厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図4、5に示した。また、得られた伸縮性人工皮革の評価結果を第1表に示した。
実施例2
 島成分が変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=60:40(質量比);繊度4.0dtex;繊維長51mm;捲縮数12クリンプ/inch)をカード、クロスラッピングしてウェブを作成した。
 該ウェブを1200パンチ/cm2のニードルパンチを行って絡合処理し、次いで、90℃の熱水中で収縮させることにより、目付750g/m2の絡合不織布を得た。
 得られた絡合不織布にポリエーテル系ポリウレタンの15%ジメチルホルムアミド(DMF)溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥することにより、目付675g/m2、厚み1.5mmの人工皮革用基体を得た。
得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.65mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてポリエチレンテレフタレート極細繊維からなる立毛面を形成した立毛調人工皮革を得た。
次いで、液流染色機を用いて分散染料で染色及び乾燥した後、ブラッシングによる整毛仕上げをして染色立毛調人工皮革を得た(厚さ0.65mm、目付304/m2、見掛け密度0.468g/cm3)。
上記染色立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に3%収縮させた。
 得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図12、図13に示した。
実施例3
 島成分がナイロン6、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=50:50(質量比);繊度3.5dtex;繊維長51mm;捲縮数12クリンプ/inch)をカード、クロスラッピングしてウェブを作成した。
 該ウェブを400パンチ/cm2のニードルパンチを行って絡合処理し、目付370g/m2の絡合不織布を得た。
 得られた絡合不織布にポリエーテル系ポリウレタンの22%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥することにより、目付295g/m2、厚み0.8mmの人工皮革用基体を得た。
 得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.7mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてナイロン6極細繊維からなる立毛面を形成した立毛調人工皮革を得た。
 次いで、液流染色機を用いて含金染料で染色及び乾燥した後、ブラッシングによる整毛仕上げをして染色立毛調人工皮革を得た(厚さ0.50mm、目付177g/m2、見掛け密度0.354g/cm3)。
 上記染色立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に2%収縮させた。
 得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図14、図15に示した。
実施例4
 海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付28g/m2の長繊維ウェブを得た。
 上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより8枚重ねて総目付が218g/m2の重ね合わせウェブを作製し、さらに針折れ防止油剤をスプレーした。そして、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、重ね合わせウェブを針深度8.3mmで両面から交互に3300パンチ/cm2でニードルパンチすることにより絡合不織布を得た。なお、ニードルパンチ処理による面積収縮率は68%であった。また、得られた絡合不織布の目付は311g/m2であった。
 次に、絡合不織布を70℃の熱水中に28秒間浸漬することによる収縮処理を行った。そして、95℃の熱水中でディップニップ処理を繰り返すことにより海成分ポリマーである変性PVAを溶解除去した。変性PVAを溶解除去することにより、平均繊度0.09デシテックスの25本の極細繊維からなる繊維束が3次元的に交絡した極細化不織布を得た。なお、収縮処理による面積収縮率は52%であった。また、極細化不織布の目付は446g/m2、見掛け密度は0.602g/cm3であった。
 次に、バフィングにより極細化不織布の厚みを0.9mmに調整した。そして、得られた極細化不織布に対して、固形分濃度60質量%の水系アクリルエマルジョン300質量部、及び顔料90質量部を含む分散液を、パッターを用いて、ライン速度 6m/分で2回のディップニップにより含浸させた。なお、水系エマルジョン中の、アクリル樹脂の固形分濃度は180g/Lであり、顔料の固形分濃度は90g/Lであった。そして、表面側から120℃の熱風を吹き付けて乾燥させることによりアイスグレー色のアクリル系弾性体を表層にマイグレーションさせて凝固させ半銀調人工皮革を得た(厚さ0.88mm、目付437g/m2、見掛け密度0.497g/cm3)。
 上記半銀調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させた。
 得られた伸縮性人工皮革の評価結果を第1表に示した。また、強力伸度曲線を図16、図17に示した。
 比較例1~4
 収縮加工を施さない以外は実施例1~4と同様にして人工皮革を得た。評価結果を第2表に示した。また、比較例1の人工皮革のタテ方向の強力伸度曲線に示す。さらに、比較例1~4の人工皮革のタテ方向、ヨコ方向の強力伸度曲線は、図10~17に示す。また、比較例1の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図6、7に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例5
 島成分がナイロン6、海成分がポリエチレンの海島型複合長繊維(島成分:海成分=50:50(質量比);繊度3.5dtex)を用いて長繊維ウェブを作成した。
 該ウェブを400パンチ/cm2のニードルパンチを行って絡合処理し、目付780g/m2の絡合不織布を得た。
 得られた絡合不織布にポリエーテル系ポリウレタンの22%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥、厚み方向に2分割することにより、目付325g/m2、厚み0.77mmの人工皮革用基体を得た。
 得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.7mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてナイロン6極細繊維からなる立毛面を形成した立毛調人工皮革を得た(厚さ0.61mm、目付261g/m2、見掛け密度0.428g/cm3)。
 上記立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に4.8%収縮させた。
 得られた伸縮性人工皮革の評価結果を第3表に示した。
実施例6
 海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ-トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付32g/m2の長繊維ウェブを得た。
 上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより12枚重ねて総目付が370g/m2の重ね合わせウェブを作製し、さらに針折れ防止油剤をスプレーした。そして、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、重ね合わせウェブを針深度8.3mmで両面から交互に3300パンチ/cm2でニードルパンチすることにより絡合不織布を得た。なお、ニードルパンチ処理による面積収縮率は70%であった。また、得られた絡合不織布の目付は528g/m2であった。
 次に、絡合不織布を70℃の熱水中に28秒間浸漬することによる収縮処理を行った。そして、95℃の熱水中でディップニップ処理を繰り返すことにより海成分ポリマーである変性PVAを溶解除去した。変性PVAを溶解除去することにより、平均繊度0.09デシテックスの25本の極細繊維からなる繊維束が3次元的に交絡した極細化不織布を得た。なお、収縮処理による面積収縮率は50%であった。また、極細化不織布の目付は780g/m2、見掛け密度は0.610g/cm3であった。
 次に、バフィングにより極細化不織布の厚みを1.25mmに調整した。そして、得られた極細化不織布に対して、固形分濃度60質量%の水系アクリルエマルジョン300質量部、及び顔料90質量部を含む分散液を、パッターを用いて、ライン速度4m/分で複数回のディップニップにより含浸させた。なお、水系エマルジョン中の、アクリル樹脂の固形分濃度は180g/Lであり、顔料の固形分濃度は90g/Lであった。そして、表面側から120℃の熱風を吹き付けて乾燥させることによりアイスグレー色のアクリル系弾性体を表層にマイグレーションさせて凝固させ半銀調人工皮革を得た(厚さ1.26mm、目付744g/m2、見掛け密度0.590g/cm3)。
 上記半銀調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させ、伸縮性人工皮革を得た。
 得られた伸縮性人工皮革の評価結果を第3表に示した。
実施例7
 島成分がポリエチレンテレフタレ-ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=65:35(質量比);繊度4.5デシテックス;繊維長51mm)をカード、クロスラッピングしてウェブを作成した。
 該ウェブを1500パンチ/cm2のニードルパンチを行って絡合処理し、目付890g/m2の絡合不織布を得た。
 得られた絡合不織布にポリエーテル系ポリウレタンの14%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し乾燥し、人工皮革用基体を得た。
 得られた人工皮革用基体の裏面を180番のサンドペーパーにより2回バフィングして、裏面を平滑にしつつ厚みを0.78mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてポリエチレンテレフタレート極細繊維からなる立毛面を形成し、人工皮革用基体を立毛調人工皮革とした(厚さ0.78mm、目付340g/m2、見掛け密度0.436g/cm3)。
 その立毛調人工皮革を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に5.4%収縮させ、伸縮性人工皮革を得た。
 得られた伸縮性人工皮革の評価結果を第3表に示した。
比較例5~7
 収縮加工を施さない以外は実施例5~7と同様にして人工皮革を得た。評価結果を第4表に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1、2、4、6、7で得られた伸縮性人工皮革は、タテ方向に沿うミクロなうねり構造を有し、伸び係数が良好であったため、低伸長時の伸長性に優れ、伸び止まり感も良好なものとなった。そして、高密度で機械的物性に優れていながら、しなやかで柔軟があり充実感がある風合いを有するものであり、屈曲すると細かな皺が均一に生じ、カーシート、スポーツシューズ用の人工皮革として極めて優れた素材であった。
 また、実施例1、2、4、6、7で得られた伸縮性人工皮革は、伸度5%における強力が小さい一方、伸度20%における強力が比較的大きくなったため、インテリア、シート、靴などの用途において良好な成形性を示し、成形後の形態安定性にも優れた素材であった。また、得られた伸縮性人工皮革は、折り曲げ時の原反の丸み感を付与することができ、更に、風合いの充実感を両立する素材であった。
 実施例3、5で得られた人工皮革は、機械的収縮処理及びヒートセットを施したがうねり構造が形成されなかったため、低伸長時の伸長性又は伸び止まり感にやや劣り、風合いは多少硬かった。しかし、機械的収縮処理及びヒートセットを施したことにより、タテ方向の伸縮性に優れ、柔軟な風合いを併せ持ち、高密度で機械的物性に優れていながら柔軟であり、かつ屈曲すると細かな皺が均一に生じ、衣料用、スポーツシューズ用の人工皮革としてある程度優れた素材であった。
 一方で第2、4表から明らかなように、比較例の人工皮革は、実施例1~7の伸縮性人工皮革と比較してタテ方向の伸長性や伸び止まり感に乏しく、風合いの硬いものであった。
本発明によれば、タテ方向に適度な伸長性と伸び止まり感を有する伸縮性人工皮革を得ることができ、着用感や成形加工性に優れることから、衣料、家具、カーシート、靴、スポーツシューズ、その他の皮革製品の製造に好適に使用することができる。
  1 人工皮革
  2 ドラム
  3 ベルト
  4 プレッシャーローラ
  5a、5b ターンローラ
  6 収縮した人工皮革
  11 金属ローラ
  12 肉厚ゴム部
  13 ゴムローラ
  14 収縮した人工皮革

Claims (30)

  1.  極細化可能繊維をウェブにする工程、
     得られたウェブを絡合して絡合不織布を製造する工程、
     前記不織布中の極細化可能繊維を極細化し、人工皮革用基体を製造する工程、
     得られた人工皮革用基体を用いて人工皮革を製造する工程、及び
     得られた人工皮革をタテ方向に5~40%伸張させた弾性体シートに密着させ、該弾性体シートの伸張状態を緩和することにより弾性体シートをタテ方向に収縮させると共に該人工皮革をタテ方向に収縮させ、該人工皮革を収縮状態で加熱処理し、次いで、該人工皮革を弾性体シートから引き離す工程
     を含む伸縮性人工皮革の製造方法。
  2.  前記絡合不織布又は人工皮革用基体に高分子弾性体を含浸し、固化する工程をさらに備える請求項1に記載の伸縮性人工皮革の製造方法。
  3.  前記弾性体シートが天然ゴムまたは合成ゴムのシートである請求項1又は2に記載の伸縮性人工皮革の製造方法。
  4.  前記弾性体シートをローラの表面に接しながら走行させ、湾曲した弾性体シートの内外周差を利用し、又は前記弾性体シートを圧縮した際の伸びを利用して弾性シートをタテ方向に伸長させ、次いで、伸張状態を緩和することにより該弾性体シートをタテ方向に収縮させることで、前記人工皮革を進行方向に収縮させる請求項1又は2に記載の伸縮性人工皮革の製造方法。
  5.  前記弾性体シートの厚みが40~75mmである請求項1~4のいずれか1項に記載の伸縮性人工皮革の製造方法。
  6.  前記弾性体シートは、前記人工皮革を間に把持するようにシリンダーに沿って走行しつつ、前記人工皮革側の面がタテ方向に収縮する請求項4又は5に記載の伸縮性人工皮革の製造方法。
  7.  前記弾性体シートと人工皮革の見掛けの動摩擦係数が0.8~1.7、前記シリンダーと人工皮革の動摩擦係数が0.5以下である請求項6に記載の伸縮性人工皮革の製造方法。
  8.  前記シリンダーが加熱シリンダーである請求項6又は7に記載の伸縮性人工皮革の製造方法。
  9.  人工皮革を弾性体シートに密着させる前に、人工皮革を予熱処理、加湿処理、又はその双方の処理をする請求項1~8のいずれか1項に記載の伸縮性人工皮革の製造方法。
  10.  前記高分子弾性体がポリウレタン水系エマルジョンの固化物である請求項2に記載の伸縮性人工皮革の製造方法。
  11.  極細繊維が非弾性繊維である請求項1~10のいずれか1項に記載の伸縮性人工皮革の製造方法。
  12.  前記人工皮革を弾性体シートから引き離した直後に人工皮革を85℃以下に冷却し、またはベルト搬送する請求項1~11のいずれか1項に記載の伸縮性人工皮革の製造方法。
  13.  平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、その厚み方向とタテ方向に共に平行な断面において、前記極細繊維より構成されるミクロなうねり構造をタテ方向に有し、タテ方向1mm中に存在する前記うねり構造のピッチ数が2.2個以上であるとともに、前記うねり構造の平均高さが50~350μmである伸縮性人工皮革。
  14.  前記繊維絡合体が高分子弾性体を含有する請求項13に記載の伸縮性人工皮革。
  15.  前記高分子弾性体が、ポリウレタン水系エマルジョンの固化物である請求項14に記載の伸縮性人工皮革。
  16.  前記極細繊維が非弾性繊維である請求項13~15のいずれか1項に記載の伸縮性人工皮革。
  17.  前記非弾性繊維がポリエステル繊維である請求項16に記載の伸縮性人工皮革。
  18.  前記ミクロなうねり構造が、タテ方向に収縮させ加熱処理することにより形成されたものである請求項13~17のいずれか1項に記載の伸縮性人工皮革。
  19.  平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度が0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下である伸縮性人工皮革。
    伸び係数=タテ方向の5%円形モジュラス/厚さ   (1)
  20.  タテ方向における5%伸長時の荷重に対する30%伸長時の荷重の比を5以上とする請求項19に記載の伸縮性人工皮革。
  21.  前記繊維絡合体が高分子弾性体を含有する請求項19又は20に記載の伸縮性人工皮革。
  22.  前記高分子弾性体が、ポリウレタン水系エマルジョンの固化物である請求項21に記載の伸縮性人工皮革。
  23.  前記極細繊維が非弾性繊維である請求項19~22のいずれか1項に記載の伸縮性人工皮革。
  24.  前記非弾性繊維がポリエステル繊維である請求項23に記載の伸縮性人工皮革。
  25.  タテ方向に収縮させ加熱処理することにより形成されたものである請求項19~24のいずれか1項に記載の伸縮性人工皮革。
  26.  伸縮性を有する人工皮革において、JIS L 1096(1999)8.14.1 A法に記載された方法で測定されるタテ方向の強力伸度曲線で、下記(A)及び(B)の条件を具備する伸縮性人工皮革。
    (A)伸度5%における強力F5%が0.1~20N/2.5cmである。
    (B)伸度20%における強力F20%と上記F5%の関係において、F20%/F5%が5以上である。
  27.  下記(C)の条件を更に具備する、請求項26に記載の伸縮性人工皮革。
    (4)伸度5%における曲線の接線の傾きS5%と伸度20%における曲線の接線の傾きS20%との関係において、S20%/S5%が1.2以上である。
  28.  下記(D)の条件を更に具備する、請求項26又は27に記載の伸縮性人工皮革。
    (D)伸度0~5%までの曲線の接線の傾きの最大値S05%maxが、8以下である。
  29.  下記(E)の条件を更に具備する、請求項26~28のいずれか1項に記載の伸縮性人工皮革。
    (E)F20%が30~200N/2.5cmである。
  30.  下記(F)の条件を更に具備する、請求項26~29のいずれか1項に記載の伸縮性人工皮革。
    (F)伸度10%における強力F10%が5~60N/2.5cmである。
PCT/JP2013/054949 2012-02-29 2013-02-26 伸縮性人工皮革及びその製造方法 WO2013129388A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13755090.1A EP2821545B1 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
CN201380011648.2A CN104145058B (zh) 2012-02-29 2013-02-26 伸缩性人造革及其制造方法
KR1020147023474A KR101982372B1 (ko) 2012-02-29 2013-02-26 신축성 인공 피혁 및 그 제조 방법
KR1020197014112A KR102074112B1 (ko) 2012-02-29 2013-02-26 신축성 인공 피혁 및 그 제조 방법
US14/381,072 US10465338B2 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
EP18191768.3A EP3428340A1 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
US16/440,117 US11268237B2 (en) 2012-02-29 2019-06-13 Elastic artificial leather and production method therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012044188A JP5746074B2 (ja) 2012-02-29 2012-02-29 伸縮性人工皮革の製造方法
JP2012-044188 2012-02-29
JP2012-059385 2012-03-15
JP2012059386A JP5860737B2 (ja) 2012-03-15 2012-03-15 伸縮性人工皮革
JP2012059384A JP5903302B2 (ja) 2012-03-15 2012-03-15 伸縮性人工皮革
JP2012-059386 2012-03-15
JP2012-059384 2012-03-15
JP2012059385A JP5903303B2 (ja) 2012-03-15 2012-03-15 伸縮性人工皮革

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/381,072 A-371-Of-International US10465338B2 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
US16/440,117 Continuation US11268237B2 (en) 2012-02-29 2019-06-13 Elastic artificial leather and production method therefor

Publications (1)

Publication Number Publication Date
WO2013129388A1 true WO2013129388A1 (ja) 2013-09-06

Family

ID=49082585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054949 WO2013129388A1 (ja) 2012-02-29 2013-02-26 伸縮性人工皮革及びその製造方法

Country Status (5)

Country Link
US (2) US10465338B2 (ja)
EP (2) EP3428340A1 (ja)
KR (2) KR102074112B1 (ja)
CN (2) CN104145058B (ja)
WO (1) WO2013129388A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088597A (zh) * 2015-09-11 2015-11-25 中纺新材料科技有限公司 一种改善单面tpu复合织物平整度的方法
JPWO2015064078A1 (ja) * 2013-11-01 2017-03-09 株式会社クラレ ヌバック調皮革様シート及びその製造方法
EP3202974A4 (en) * 2014-09-29 2018-05-23 Kuraray Co., Ltd. Suede-like sheet and method for producing same
JPWO2017221961A1 (ja) * 2016-06-22 2019-04-18 株式会社クラレ 立毛調人工皮革及びその製造方法
WO2020003866A1 (ja) * 2018-06-29 2020-01-02 東レ株式会社 シート状物およびその製造方法
WO2023042782A1 (ja) * 2021-09-15 2023-03-23 東レ株式会社 人工皮革およびその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9629397B2 (en) 2012-08-31 2017-04-25 Under Armour, Inc. Articles of apparel including auxetic materials
US10426226B2 (en) 2012-08-31 2019-10-01 Under Armour, Inc. Footwear upper with dynamic and lock-out regions
US12070100B2 (en) 2012-08-31 2024-08-27 Under Armour, Inc. Laminate panel with auxetic layer
US11839253B2 (en) 2012-08-31 2023-12-12 Under Armour, Inc. Article of apparel including fabric having auxetic structure
CN104333108B (zh) * 2014-11-14 2016-08-31 国网电力科学研究院武汉南瑞有限责任公司 一种用于电动汽车的应急救援充电车电气系统及其工作方法
KR101597485B1 (ko) * 2015-02-27 2016-02-24 최규양 균일 온도의 가열이 가능한 합성 피혁 제조장치 및 이것을 이용한 합성 피혁의 제조방법
KR101597486B1 (ko) * 2015-02-27 2016-02-24 최규양 균일 온도의 가열이 가능한 합성 피혁 제조장치
EP3556933A4 (en) 2016-12-13 2020-08-19 Kuraray Co., Ltd. SCRATCHED ARTIFICIAL LEATHER, POLYESTER FIBERS, AND NON-WOVEN FABRIC
WO2019058924A1 (ja) * 2017-09-22 2019-03-28 株式会社クラレ 立毛人工皮革
CN108215401A (zh) * 2017-12-29 2018-06-29 合肥市安山涂层织物有限公司 一种伸缩性人造革的制造方法
WO2020044911A1 (ja) 2018-08-27 2020-03-05 株式会社クラレ 人工皮革基材、その製造方法及び立毛人工皮革
IT201900003121A1 (it) * 2019-03-04 2020-09-04 Red Carpet S R L Una macchina compattatrice
KR102739261B1 (ko) * 2022-03-30 2024-12-05 주식회사 휴비스 고수축 폴리시클로헥실렌디메틸렌테레프탈레이트 해도사 및 그의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544153A (ja) 1991-07-31 1993-02-23 Unitika Ltd 布帛の部分的皺づけ加工方法
JPH0931832A (ja) 1995-07-24 1997-02-04 Unitika Ltd 高密度布帛の柔軟加工方法
JP2003089983A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革とその製造方法
JP2003089984A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革およびその製造方法
JP2004197282A (ja) 2002-12-20 2004-07-15 Toray Ind Inc 伸縮性に優れた人工皮革の製造方法
JP2005076151A (ja) 2003-09-01 2005-03-24 Toray Ind Inc ストレッチ性人工皮革の製造方法
JP4116215B2 (ja) * 2000-02-02 2008-07-09 帝人コードレ株式会社 皮革様シート状物およびその製造方法
JP2010248683A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 皮革様シート状物およびその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236633A (en) * 1968-06-18 1971-06-23 Alfred Achille Candel Composite material
JPS4985204A (ja) * 1972-12-20 1974-08-15
JP3187357B2 (ja) 1997-11-10 2001-07-11 帝人株式会社 皮革様シート状物およびその製造方法
JP3727181B2 (ja) 1998-10-02 2005-12-14 帝人コードレ株式会社 人工皮革用不織布の製造方法
TWI223019B (en) * 1999-03-16 2004-11-01 Kuraray Co Artificial leather sheet substrate and production process thereof
KR100648871B1 (ko) * 2000-02-03 2006-11-24 데이진 가부시키가이샤 피혁 모양 시트 형상물 및 이의 제조방법
JP3704273B2 (ja) * 2000-05-08 2005-10-12 住江織物株式会社 車輌用内装表皮材及びその製造方法
JP2002348784A (ja) * 2001-05-29 2002-12-04 Toray Ind Inc 伸縮性に優れた人工皮革の製造方法
JP4212787B2 (ja) 2001-07-02 2009-01-21 株式会社クラレ 皮革様シート
KR100919239B1 (ko) * 2001-09-20 2009-09-30 도레이 카부시키가이샤 신축성이 뛰어난 인공피혁 및 그 제조방법
JP4110800B2 (ja) * 2002-03-04 2008-07-02 東レ株式会社 タテ方向伸縮性に優れた人工皮革及びその製造方法
TWI230216B (en) * 2002-03-11 2005-04-01 San Fang Chemical Industry Co Manufacture method for artificial leather composite reinforced with ultra-fine fiber non-woven fabric
WO2005106108A1 (ja) * 2004-04-28 2005-11-10 Kuraray Co., Ltd. 銀付き調人工皮革
TW200936843A (en) 2002-08-22 2009-09-01 Teijin Cordley Ltd Leather like sheet material and method for production the same
KR101027878B1 (ko) * 2003-05-29 2011-04-07 가부시키가이샤 구라레 피혁 모양 시트 및 그 제조 방법
US7122089B2 (en) * 2003-06-05 2006-10-17 Dzs, L.L.C. Method of making a textile laminate having pile-like surface
KR100601767B1 (ko) * 2003-08-28 2006-07-19 가부시키가이샤 구라레 인공 피혁 및 그 제조 방법
CN101057025B (zh) * 2004-10-08 2010-08-04 可乐丽股份有限公司 人造皮革用无纺布及人造皮革基体的制造方法
WO2007081003A1 (ja) 2006-01-16 2007-07-19 Kuraray Co., Ltd. 人工皮革用基材およびその製造方法
US8388809B2 (en) * 2006-02-10 2013-03-05 Akzo Nobel N.V. Microspheres
JP4967627B2 (ja) * 2006-12-01 2012-07-04 東レ株式会社 皮革様シートおよびその製造方法
JP4935721B2 (ja) * 2007-03-19 2012-05-23 東レ株式会社 伸縮性シートとその製造方法
TWI467074B (zh) * 2007-08-28 2015-01-01 Kuraray Co 仿皮革片材及其製法
CN101691681B (zh) * 2009-11-02 2011-01-12 浙江弘扬无纺新材料有限公司 一种伸缩性非织造材料的两步生产法
JP2011214196A (ja) * 2010-03-31 2011-10-27 Kuraray Co Ltd 針穴加工付銀付調人工皮革、およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544153A (ja) 1991-07-31 1993-02-23 Unitika Ltd 布帛の部分的皺づけ加工方法
JPH0931832A (ja) 1995-07-24 1997-02-04 Unitika Ltd 高密度布帛の柔軟加工方法
JP4116215B2 (ja) * 2000-02-02 2008-07-09 帝人コードレ株式会社 皮革様シート状物およびその製造方法
JP2003089983A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革とその製造方法
JP2003089984A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革およびその製造方法
JP2004197282A (ja) 2002-12-20 2004-07-15 Toray Ind Inc 伸縮性に優れた人工皮革の製造方法
JP2005076151A (ja) 2003-09-01 2005-03-24 Toray Ind Inc ストレッチ性人工皮革の製造方法
JP2010248683A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 皮革様シート状物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821545A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064078A1 (ja) * 2013-11-01 2017-03-09 株式会社クラレ ヌバック調皮革様シート及びその製造方法
EP3202974A4 (en) * 2014-09-29 2018-05-23 Kuraray Co., Ltd. Suede-like sheet and method for producing same
CN105088597A (zh) * 2015-09-11 2015-11-25 中纺新材料科技有限公司 一种改善单面tpu复合织物平整度的方法
JPWO2017221961A1 (ja) * 2016-06-22 2019-04-18 株式会社クラレ 立毛調人工皮革及びその製造方法
JP7008018B2 (ja) 2016-06-22 2022-01-25 株式会社クラレ 立毛調人工皮革及びその製造方法
WO2020003866A1 (ja) * 2018-06-29 2020-01-02 東レ株式会社 シート状物およびその製造方法
CN112218982A (zh) * 2018-06-29 2021-01-12 东丽株式会社 片状物及其制造方法
WO2023042782A1 (ja) * 2021-09-15 2023-03-23 東レ株式会社 人工皮革およびその製造方法

Also Published As

Publication number Publication date
EP3428340A1 (en) 2019-01-16
CN105926303A (zh) 2016-09-07
CN105926303B (zh) 2019-08-09
EP2821545A1 (en) 2015-01-07
US20150050460A1 (en) 2015-02-19
US10465338B2 (en) 2019-11-05
US20190292723A1 (en) 2019-09-26
KR102074112B1 (ko) 2020-03-02
US11268237B2 (en) 2022-03-08
KR20190058669A (ko) 2019-05-29
KR101982372B1 (ko) 2019-05-27
EP2821545B1 (en) 2018-11-28
CN104145058B (zh) 2016-08-24
EP2821545A4 (en) 2016-02-24
CN104145058A (zh) 2014-11-12
KR20140130447A (ko) 2014-11-10

Similar Documents

Publication Publication Date Title
WO2013129388A1 (ja) 伸縮性人工皮革及びその製造方法
JP5593379B2 (ja) 皮革様シート
JP5901468B2 (ja) 伸縮性難燃人工皮革
JP5746074B2 (ja) 伸縮性人工皮革の製造方法
WO2010098364A1 (ja) 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
JP5860737B2 (ja) 伸縮性人工皮革
KR102337556B1 (ko) 시트상물 및 그의 제조 방법
JP2018003181A (ja) 銀付人工皮革およびその製造方法
JP6583276B2 (ja) シート状物とその製造方法
JP5903302B2 (ja) 伸縮性人工皮革
JP5903303B2 (ja) 伸縮性人工皮革
JP6354337B2 (ja) シート状物
JP2013067917A (ja) 皮革様シート
JP2012017541A (ja) 銀付調人工皮革
JP2014163005A (ja) 伸縮性人工皮革の製造方法
JP5750228B2 (ja) 人工皮革およびその製造方法
JP7671150B2 (ja) 銀付調人工皮革及びその製造方法
KR20250029811A (ko) 입모 인공 피혁 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023474

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381072

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013755090

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE