WO2013114602A1 - Elevator control device - Google Patents
Elevator control device Download PDFInfo
- Publication number
- WO2013114602A1 WO2013114602A1 PCT/JP2012/052384 JP2012052384W WO2013114602A1 WO 2013114602 A1 WO2013114602 A1 WO 2013114602A1 JP 2012052384 W JP2012052384 W JP 2012052384W WO 2013114602 A1 WO2013114602 A1 WO 2013114602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus
- motor
- voltage
- inverter
- car
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 36
- 238000001514 detection method Methods 0.000 claims description 26
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 27
- 238000009413 insulation Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
Definitions
- This invention relates to an elevator control device.
- an elevator control device As an elevator control device, a device that consumes regenerative power in a discharge circuit connected to the bus when the regenerative power due to the induced voltage generated by the motor of the hoisting machine reaches the bus via the inverter has been proposed. . According to the said control apparatus, the braking capability of an elevator can be improved (for example, refer patent document 1).
- the present invention has been made in order to solve the above-described problems.
- the object of the present invention is to provide a motor without enlarging the equipment connected to the bus even without providing a protective circuit between the inverter and the motor. It is an object of the present invention to provide an elevator control device capable of protecting the equipment against the generated induced voltage.
- An elevator control device includes a bus that supplies DC power, an inverter that is connected to an output side of the bus and converts the DC power into AC power, an output that is connected to the output side of the inverter, and the AC A motor that lifts and lowers an elevator car by rotating using electric power, a device connected to the bus, and the inverter and the device depending on the speed of the car at the time of emergency stop of the car And a protection means for blocking conduction between any of the above and the bus.
- the device can be protected against the induced voltage generated in the motor without increasing the size of the device connected to the bus. .
- FIG. 1 is a block diagram of an elevator control apparatus according to Embodiment 1 of the present invention.
- 1 is a motor.
- the motor 1 is a brushless DC motor (SPM).
- the motor 1 is provided in an elevator hoist (not shown).
- a monitoring unit 2 such as an encoder is provided in the vicinity of the motor 1.
- a sheave 3 is attached to the rotating shaft 1 a of the motor 1.
- a main rope 4 is wound around the sheave 3.
- An elevator car 5 is suspended from one side of the main rope 4.
- a counterweight 6 is suspended from the other side of the main rope 4.
- a bus 7 is a bus.
- a converter (not shown) is connected to the input terminal of the bus 7.
- An inverter 8 is connected to the output terminal side of the bus 7.
- the input terminal of the motor 1 is connected to the output terminal of the inverter 8.
- a capacitor 9 is connected between the bus bars 7.
- the capacitor 9 is composed of an electrolytic capacitor or the like.
- a discharge resistor 10 is connected between the bus 7 on the inverter 8 side than the capacitor 9.
- a diode 11 is connected to the discharge resistor 10 in parallel.
- a semiconductor switch 12 is connected in series to the discharge resistor 10 and the diode 11 as a protection circuit.
- One end of a resistor 13 is connected to one of the buses 7 on the converter side of the capacitor 9.
- the other end of the resistor 13 is connected to the base of the semiconductor switch 12.
- the collectors of the insulation switches 14 and 15 are connected to the wiring between the resistor 13 and the base of the semiconductor switch 12.
- the emitters of these insulating switches 14 and 15 are connected to the other side of the bus 7 on the converter side of the semiconductor switch 12.
- the power supply voltage detection circuit 16 is a power supply voltage detection circuit.
- the power supply voltage detection circuit 16 includes a power supply generation device 17 and a detection circuit 18.
- the power generation device 17 has a function of supplying a constant voltage.
- the detection circuit 18 has a function of detecting the voltage of the power supply based on the voltage converted from the voltage of the power supply that supplies the AC voltage to the converter and the voltage supplied from the power supply generation device 17.
- the induced voltage detection circuit 19 is an induced voltage detection circuit.
- the induced voltage detection circuit 19 includes a power supply generation device 20 and a detection circuit 21.
- the power generation device 20 has a function of supplying a constant voltage.
- the detection circuit 21 has a function of detecting the voltage between the terminals of the motor 1 based on the voltage converted from the voltage between the terminals of the motor 1 and the voltage supplied from the power generation device 20.
- AC power is supplied from a power source.
- the AC power is converted into DC power by a converter.
- the DC power is transmitted to the inverter 8 via the bus 7.
- the voltage of the bus 7 is smoothed by the capacitor 9.
- the DC power is converted into AC power by the inverter 8.
- the motor 1 is rotated by the AC power. Following the rotation, the sheave 3 rotates. Following the rotation, the main rope 4 moves. Following the movement, the car 5 and the counterweight 6 move up and down in the opposite direction.
- d-axis current zero control is performed in order to rotate the motor 1 efficiently. That is, the motor 1 generates torque with only the q-axis current with the reactive power set to zero.
- the maximum value of the voltage between the terminals of the motor 1 is half of the voltage of the bus 7.
- the maximum value of the rotation speed of the motor 1 is limited.
- the detection circuit 18 detects that the value of the power supply voltage has dropped to zero. In this case, the detection circuit 18 cuts off the supply of voltage to the base of the insulation switch 14. As a result, the insulation switch 14 is turned off.
- the detection circuit 21 detects an induced voltage as a voltage between the terminals of the motor 1. In this case, the detection circuit 21 maintains the supply of voltage to the base of the insulation switch 14. As a result, the insulation switch 15 maintains the ON state.
- the detection circuit 21 cuts off the supply of voltage to the base of the insulation switch 15. As a result, the insulation switch 15 is turned off. For this reason, the voltage of the bus 7 is supplied to the base to the semiconductor switch 12 via the resistor 13. As a result, the semiconductor switch 12 is turned on. In this case, electrical conduction between the discharge resistor 10 and the semiconductor switch 12 is ensured with respect to the bus 7. As a result, the electric charge accumulated in the capacitor 9 is discharged. Due to the discharge, the voltage of the bus 7 becomes zero. For this reason, the worker can safely perform power restoration work and the like.
- the detection circuit 18 detects that the power supply voltage has been restored to a constant value. In this case, the detection circuit 18 supplies a voltage to the base of the insulation switch 14. As a result, the insulation switch 14 is turned on. In this case, the supply of voltage to the base of the semiconductor switch 12 is cut off. As a result, the semiconductor switch 12 is turned off.
- the diode 11 suppresses generation of a surge voltage due to internal inductance of the discharge resistor 10 and parasitic inductance such as wiring.
- the semiconductor switch 12 when the car 5 is in an emergency stop, the semiconductor switch 12 is kept in an OFF state until the voltage between the terminals of the motor 1 becomes zero. For this reason, the discharge resistor 10 and the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1.
- the generated torque of the motor 1 is determined by the product of the torque constant Pm of the motor 1, the magnetic flux ⁇ of the motor 1, and the current i flowing through the motor 1.
- the torque required for the motor 1 can be obtained without increasing the value of the current i flowing through the motor 1. Therefore, it is not necessary to increase the volume of the motor 1 or the capacity of the inverter 8.
- the semiconductor switch 12 and the insulation switches 14 and 15 may be configured by FETs or IGBTs. In this case, the operation of the semiconductor switch 12 and the insulation switches 14 and 15 can be controlled by controlling the voltages to the gates of the semiconductor switch 12 and the insulation switches 14 and 15.
- FIG. FIG. 2 is a diagram for explaining normal discharge by the elevator control apparatus according to Embodiment 2 of the present invention.
- FIG. 3 is a diagram for explaining discharge when an induced voltage is generated by the elevator control apparatus according to Embodiment 2 of the present invention.
- symbol is attached
- the electric charge of the capacitor 9 is drawn out by the discharge resistor 10 in normal times.
- the voltage of the bus 7 is represented by the following equation.
- the capacity of the capacitor 9 is C
- the resistance value of the discharge resistor 10 is R
- the initial voltage of the bus 7 is V 0
- the elapsed time is t
- the voltage Vn of the bus 7 is (1)
- Vn V 0 ⁇ e ⁇ t / CR (1)
- the discharge resistor 10 is a device that only generates heat using the voltage Vy of the bus 7 as a huge voltage source. In this case, after the motor 1 is completely stopped and the induced voltage becomes 0, the electric charge of the capacitor 9 is extracted to the discharge resistor 10.
- FIG. 4 is a diagram for explaining normal discharge characteristics and discharge characteristics when an induced voltage is generated by the elevator control apparatus according to Embodiment 2 of the present invention.
- the horizontal axis in FIG. 4 is time.
- the vertical axis in FIG. 4 is the voltage of the bus 7.
- A is the time when the car 5 stops.
- B is the voltage of the bus 7 when the car 5 stops normally.
- C is the voltage of the bus 7 when the car 5 comes to an emergency stop.
- the charge accumulated in the capacitor 9 can be discharged in a short time.
- FIG. 5 is a block diagram of an elevator control apparatus according to Embodiment 2 of the present invention.
- the detection circuit 21 detects the voltage between the terminals of the motor 1 and the voltage of the bus 7.
- the detection circuit 21 compares the voltage between the terminals of the motor 1 with the voltage of the bus 7.
- the detection circuit 21 supplies a voltage to the base of the insulation switch 15.
- the insulation switch 15 maintains the ON state.
- the supply of voltage to the base of the semiconductor switch 12 is cut off.
- the semiconductor switch 12 maintains the OFF state. In this case, the regenerative power due to the induced voltage is not consumed by the discharge resistor 10.
- the detection circuit 21 cuts off the supply of voltage to the base of the insulation switch 15. As a result, the insulation switch 15 is turned off. For this reason, a voltage is supplied to the base of the semiconductor switch 12. As a result, the semiconductor switch 12 is turned on. In this case, the charge of the capacitor 9 is discharged by the discharge resistor 10 in a state where regenerative power due to the induced voltage is not generated.
- the state where the connection between the bus 7 and the discharge resistor 10 is disconnected is maintained. For this reason, the discharge resistor 10 and the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1.
- the bus 7 and the discharge resistor 10 are connected. For this reason, the electric charge accumulated in the capacitor 9 can be discharged in a short time before the induced voltage becomes completely zero.
- FIG. FIG. 6 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 3 of the present invention.
- symbol is attached
- 22 is a converter.
- the input terminal of the bus 7 is connected to the output terminal of the converter 22.
- a plurality of capacitors 9 are connected in series to the bus 7 having a high voltage. These capacitors 9 are made of electrolytic capacitors. The withstand voltage of the capacitor 9 is 500V or less.
- a balance resistor 23 is connected to each capacitor 9 in parallel.
- a breaker 24 is connected in series as a protection circuit on one side of the bus 7 with respect to the capacitor 9 and the balance resistor 23.
- the circuit breaker 24 is of a normally closed type. That is, the breaker 24 is normally closed without being supplied with power.
- each capacitor 9 is balanced by the balance resistor 23.
- the voltage between the terminals of the motor 1 becomes a predetermined value or more, power is supplied to the circuit breaker 24.
- the circuit breaker 24 is opened by the electric power.
- the predetermined value is set to a value larger than the voltage value of the bus 7 in a normal state and smaller than the withstand voltage of the capacitor 9.
- the state where the connection between the bus 7 and the capacitor 9 is disconnected is maintained at the time of emergency stop of the car 5. For this reason, the capacitor 9 can be protected against the induced voltage generated in the motor 1.
- circuit breaker 24 is a normally closed type. For this reason, power is consumed only when the car 5 is in an emergency stop. As a result, wasteful power consumption can be suppressed.
- a circuit breaker 24 may be provided corresponding to the semiconductor switch 12.
- the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1.
- FIG. 7 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 4 of the present invention.
- symbol is attached
- the inverter 25 is composed of bipolar elements. Specifically, the inverter 25 is composed of a reverse blocking IGBT. At normal time, the inverter 25 always turns on an element that ensures conduction in the direction from the motor 1 toward the bus 7. In this case, the inverter 25 operates similarly to the inverter 8 of the first embodiment.
- the inverter 25 turns off the element that secures conduction in the direction from the motor 1 toward the bus 7. As a result, the regenerative power due to the induced voltage is prevented from reaching the capacitor 9.
- the inverter 8 blocks conduction in the direction from the motor 1 toward the bus 7. For this reason, the discharge resistor 10, the capacitor 9, and the inverter 8 can be protected against the induced voltage generated in the motor 1.
- the circuit breaker 24 of the third embodiment it is not necessary to use the circuit breaker 24 of the third embodiment. For this reason, size reduction and cost reduction of a control apparatus are realizable. Furthermore, the wiring from the bus 7 to the capacitor 9 can be shortened. In addition, the wiring can be thickened. For this reason, the inductance of wiring can be made small. As a result, the smoothness of the capacitor 9 can be maximized.
- the value of the induced voltage is determined by the maximum speed of the car 5 at the time of emergency stop. For this reason, according to the speed of the car 5 at the time of the emergency stop signal output of the car 5, which method is suitable among the first to fourth embodiments may be selected.
- a table may be created by actually measuring the relationship between the rotational speed of the motor 1 and the induced voltage in a state where field weakening control is not performed.
- the most suitable protection method may be selected based on the maximum speed of the car 5 set for each building where the elevator is installed.
- the priority may be increased in the order of the protection method of the first or second embodiment, the protection method of the third embodiment, and the protection method of the fourth embodiment.
- the configurations of the first to fourth embodiments may be provided.
- an appropriate protection method is selected from the protection methods of the first to fourth embodiments according to the actual speed of the motor 1 or the car 5 detected by the monitoring means 2. Just choose.
- FIG. FIG. 8 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 5 of the present invention.
- symbol is attached
- a circuit breaker 26 is connected between the inverter 25 and the motor 1.
- the circuit breaker 26 is of a normally closed type. That is, the breaker 26 is normally closed without being supplied with power.
- the breaker 26 is opened by supplying power.
- the predetermined value of the fifth embodiment is set to be larger than the predetermined value of the third embodiment and smaller than the withstand voltage value of the reverse blocking IGBT of the inverter 25.
- the state where the connection between the inverter 25 and the motor 1 is disconnected is maintained. For this reason, even if the induced voltage exceeding the withstand voltage of the reverse blocking IGBT of the inverter 8 of the fourth embodiment is generated, the discharge resistor 10, the capacitor 9, and the inverter 25 can be protected.
- the circuit breaker 26 is a normally closed type. For this reason, power is consumed only when the car 5 is in an emergency stop. As a result, wasteful power consumption can be suppressed.
- the elevator control apparatus can be used for an elevator that protects equipment connected to a bus against an induced voltage generated by a motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Elevator Control (AREA)
Abstract
Provided is an elevator control device with which, even if a protection circuit is not disposed between an inverter and a motor, it is possible, without increasing the size of an apparatus which is connected to a main line, to protect the apparatus against an induced voltage which occurs with the motor. To this end, the control device comprises: a main line which supplies DC power; an inverter which is connected to the output side of the main line and which converts the DC power to AC power; a motor which is connected to the output side of the inverter and raises and lowers an elevator car by rotating using the AC power; an apparatus which is connected to the main line; and a protection means for interrupting the transmission of electricity between either the inverter or the apparatus and the main line according to the speed of the car when the car has an emergency stop.
Description
この発明は、エレベータの制御装置に関するものである。
This invention relates to an elevator control device.
エレベータの制御装置として、巻上機のモータで発生した誘起電圧による回生電力がインバータを介して母線に到達した際に、母線に接続された放電回路で回生電力を消費するものが提案されている。当該制御装置によれば、エレベータの制動能力を向上させることができる(例えば、特許文献1参照)。
As an elevator control device, a device that consumes regenerative power in a discharge circuit connected to the bus when the regenerative power due to the induced voltage generated by the motor of the hoisting machine reaches the bus via the inverter has been proposed. . According to the said control apparatus, the braking capability of an elevator can be improved (for example, refer patent document 1).
しかしながら、弱め界磁制御を行うエレベータにおいては、大きな誘起電圧が発生する。この誘起電力に耐え得るように、インバータや放電回路等、母線に接続された機器の定格を大きくする必要がある。このため、母線に接続された機器が大きくなる。
However, a large induced voltage is generated in an elevator that performs field-weakening control. In order to withstand this induced power, it is necessary to increase the rating of equipment connected to the bus such as an inverter and a discharge circuit. For this reason, the apparatus connected to the bus becomes large.
これに対し、インバータとモータとの間に、保護回路を設けた制御装置が提案されている。当該制御装置によれば、誘起電力が発生した際、保護回路がインバータとモータとの接続を切り離す。このため、母線に接続された機器を大きくすることなく、当該機器を保護することができる(例えば、特許文献2参照)。
On the other hand, a control device in which a protection circuit is provided between the inverter and the motor has been proposed. According to the control device, when the induced power is generated, the protection circuit disconnects the connection between the inverter and the motor. For this reason, the said apparatus can be protected, without enlarging the apparatus connected to the bus-line (for example, refer patent document 2).
しかしながら、誘起電圧に耐え得るよう、上記保護回路の定格を大きくする必要がある。このため、保護回路の体積が大きくなる。
However, it is necessary to increase the rating of the protection circuit so as to withstand the induced voltage. For this reason, the volume of a protection circuit becomes large.
この発明は、上述の課題を解決するためになされたもので、その目的は、インバータとモータとの間に保護回路を設けなくても、母線に接続された機器を大きくすることなく、モータで発生した誘起電圧に対し、当該機器を保護することができるエレベータの制御装置を提供することである。
The present invention has been made in order to solve the above-described problems. The object of the present invention is to provide a motor without enlarging the equipment connected to the bus even without providing a protective circuit between the inverter and the motor. It is an object of the present invention to provide an elevator control device capable of protecting the equipment against the generated induced voltage.
この発明に係るエレベータの制御装置は、直流電力を供給する母線と、前記母線の出力側に接続され、前記直流電力を交流電力に変換するインバータと、前記インバータの出力側に接続され、前記交流電力を用いて回転することにより、エレベータのかごを昇降させるモータと、前記母線に接続された機器と、前記かごの緊急停止時に、前記かごの速度に応じて、前記インバータと前記機器とのうちのいずれかと前記母線との導通を遮断する保護手段と、を備えたものである。
An elevator control device according to the present invention includes a bus that supplies DC power, an inverter that is connected to an output side of the bus and converts the DC power into AC power, an output that is connected to the output side of the inverter, and the AC A motor that lifts and lowers an elevator car by rotating using electric power, a device connected to the bus, and the inverter and the device depending on the speed of the car at the time of emergency stop of the car And a protection means for blocking conduction between any of the above and the bus.
この発明によれば、インバータとモータとの間に保護回路を設けなくても、母線に接続された機器を大きくすることなく、モータで発生した誘起電圧に対し、当該機器を保護することができる。
According to this invention, even if a protective circuit is not provided between the inverter and the motor, the device can be protected against the induced voltage generated in the motor without increasing the size of the device connected to the bus. .
この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.
実施の形態1.
図1はこの発明の実施の形態1におけるエレベータの制御装置の構成図である。Embodiment 1 FIG.
1 is a block diagram of an elevator control apparatus according toEmbodiment 1 of the present invention.
図1はこの発明の実施の形態1におけるエレベータの制御装置の構成図である。
1 is a block diagram of an elevator control apparatus according to
図1において、1はモータである。モータ1は、ブラシレスDCモータ(SPM)からなる。モータ1は、エレベータの巻上機(図示せず)に設けられる。モータ1の近傍には、エンコーダ等の監視手段2が設けられる。モータ1の回転軸1aには、綱車3が取り付けられる。綱車3には、主索4が巻き掛けられる。主索4の一側には、エレベータのかご5が吊るされる。主索4の他側には、つり合いおもり6が吊るされる。
In FIG. 1, 1 is a motor. The motor 1 is a brushless DC motor (SPM). The motor 1 is provided in an elevator hoist (not shown). A monitoring unit 2 such as an encoder is provided in the vicinity of the motor 1. A sheave 3 is attached to the rotating shaft 1 a of the motor 1. A main rope 4 is wound around the sheave 3. An elevator car 5 is suspended from one side of the main rope 4. A counterweight 6 is suspended from the other side of the main rope 4.
7は母線である。母線7の入力端子には、コンバータ(図示せず)が接続される。母線7の出力端子側には、インバータ8が接続される。インバータ8の出力端子には、モータ1の入力端子が接続される。母線7間には、コンデンサ9が接続される。コンデンサ9は、電解コンデンサ等からなる。コンデンサ9よりもインバータ8側の母線7間には、放電抵抗10が接続される。放電抵抗10には、ダイオード11が並列に接続される。放電抵抗10とダイオード11とには、保護回路として、半導体スイッチ12が直列に接続される。
7 is a bus. A converter (not shown) is connected to the input terminal of the bus 7. An inverter 8 is connected to the output terminal side of the bus 7. The input terminal of the motor 1 is connected to the output terminal of the inverter 8. A capacitor 9 is connected between the bus bars 7. The capacitor 9 is composed of an electrolytic capacitor or the like. A discharge resistor 10 is connected between the bus 7 on the inverter 8 side than the capacitor 9. A diode 11 is connected to the discharge resistor 10 in parallel. A semiconductor switch 12 is connected in series to the discharge resistor 10 and the diode 11 as a protection circuit.
コンデンサ9よりもコンバータ側の母線7の一方には、抵抗13の一端が接続される。抵抗13の他端は、半導体スイッチ12のベースに接続される。抵抗13と半導体スイッチ12のベースとの間の配線には、絶縁スイッチ14、15のコレクタが接続される。これらの絶縁スイッチ14、15のエミッタは、半導体スイッチ12よりもコンバータ側で母線7の他方に接続される。
One end of a resistor 13 is connected to one of the buses 7 on the converter side of the capacitor 9. The other end of the resistor 13 is connected to the base of the semiconductor switch 12. The collectors of the insulation switches 14 and 15 are connected to the wiring between the resistor 13 and the base of the semiconductor switch 12. The emitters of these insulating switches 14 and 15 are connected to the other side of the bus 7 on the converter side of the semiconductor switch 12.
16は電源電圧検出回路である。電源電圧検出回路16は、電源生成装置17、検出回路18を備える。電源生成装置17は、一定の電圧を供給する機能を備える。検出回路18は、コンバータへ交流電圧を供給する電源の電圧から変換された電圧と電源生成装置17から供給された電圧とに基づいて、電源の電圧を検出する機能を備える。
16 is a power supply voltage detection circuit. The power supply voltage detection circuit 16 includes a power supply generation device 17 and a detection circuit 18. The power generation device 17 has a function of supplying a constant voltage. The detection circuit 18 has a function of detecting the voltage of the power supply based on the voltage converted from the voltage of the power supply that supplies the AC voltage to the converter and the voltage supplied from the power supply generation device 17.
19は誘起電圧検出回路である。誘起電圧検出回路19は、電源生成装置20、検出回路21を備える。電源生成装置20は、一定の電圧を供給する機能を備える。検出回路21は、モータ1の端子間の電圧から変換された電圧と電源生成装置20から供給された電圧とに基づいて、モータ1の端子間の電圧を検出する機能を備える。
19 is an induced voltage detection circuit. The induced voltage detection circuit 19 includes a power supply generation device 20 and a detection circuit 21. The power generation device 20 has a function of supplying a constant voltage. The detection circuit 21 has a function of detecting the voltage between the terminals of the motor 1 based on the voltage converted from the voltage between the terminals of the motor 1 and the voltage supplied from the power generation device 20.
上記エレベータにおいては、電源から交流電力が供給される。当該交流電力は、コンバータにより直流電力に変換される。当該直流電力は、母線7を介してインバータ8に伝達される。この際、母線7の電圧は、コンデンサ9により平滑化される。当該直流電力は、インバータ8により交流電力に変換される。当該交流電力により、モータ1が回転する。当該回転に追従して、綱車3が回転する。当該回転に追従して、主索4が移動する。当該移動に追従して、かご5とつり合いおもり6とが反対方向に昇降する。
In the above elevator, AC power is supplied from a power source. The AC power is converted into DC power by a converter. The DC power is transmitted to the inverter 8 via the bus 7. At this time, the voltage of the bus 7 is smoothed by the capacitor 9. The DC power is converted into AC power by the inverter 8. The motor 1 is rotated by the AC power. Following the rotation, the sheave 3 rotates. Following the rotation, the main rope 4 moves. Following the movement, the car 5 and the counterweight 6 move up and down in the opposite direction.
通常、モータ1を効率よく回転させるために、d軸電流0制御が実施される。すなわち、モータ1は、無効電力を0にした状態で、q軸電流のみでトルクを発生させている。この場合、モータ1の端子間の電圧の最大値は、母線7の電圧の半分である。当該電圧の最大値に対応して、モータ1の回転速度の最大値が制限される。
Normally, d-axis current zero control is performed in order to rotate the motor 1 efficiently. That is, the motor 1 generates torque with only the q-axis current with the reactive power set to zero. In this case, the maximum value of the voltage between the terminals of the motor 1 is half of the voltage of the bus 7. Corresponding to the maximum value of the voltage, the maximum value of the rotation speed of the motor 1 is limited.
モータ1の高速回転を実現するためには、弱め界磁制御が実施される。この場合、d軸電流を流すことで、モータ1の端子間の実効電圧が上がる。このため、モータ1の端子間の電圧は、有効電圧分となる。この際、モータ1の端子間の電圧の最大値と最小値の差は、母線7の電圧を超えない。
In order to realize high speed rotation of the motor 1, field weakening control is performed. In this case, the effective voltage between the terminals of the motor 1 is increased by passing the d-axis current. For this reason, the voltage between the terminals of the motor 1 is an effective voltage. At this time, the difference between the maximum value and the minimum value of the voltage between the terminals of the motor 1 does not exceed the voltage of the bus 7.
上記エレベータにおいては、停電が発生すると、かご5が緊急停止する。この場合、モータ1の端子間には、誘起電圧が発生する。当該誘起電圧の値は、モータ1の磁束φと角速度ωと定数αとの積となる。当該誘起電圧が母線7の電圧を超えると、当該誘起電圧による回生電力がインバータ8を介して母線7に伝達される。
In the above elevator, when a power failure occurs, the car 5 is stopped urgently. In this case, an induced voltage is generated between the terminals of the motor 1. The value of the induced voltage is a product of the magnetic flux φ, the angular velocity ω, and the constant α of the motor 1. When the induced voltage exceeds the voltage of the bus 7, regenerative power due to the induced voltage is transmitted to the bus 7 via the inverter 8.
この際、検出回路18は、電源の電圧の値が0まで低下したことを検出する。この場合、検出回路18は、絶縁スイッチ14のベースへの電圧の供給を遮断する。その結果、絶縁スイッチ14がOFFになる。これに対し、検出回路21は、モータ1の端子間の電圧として、誘起電圧を検出する。この場合、検出回路21は、絶縁スイッチ14のベースへの電圧の供給を維持する。その結果、絶縁スイッチ15は、ON状態を維持する。
At this time, the detection circuit 18 detects that the value of the power supply voltage has dropped to zero. In this case, the detection circuit 18 cuts off the supply of voltage to the base of the insulation switch 14. As a result, the insulation switch 14 is turned off. On the other hand, the detection circuit 21 detects an induced voltage as a voltage between the terminals of the motor 1. In this case, the detection circuit 21 maintains the supply of voltage to the base of the insulation switch 14. As a result, the insulation switch 15 maintains the ON state.
この場合、半導体スイッチ12のベースの電圧への供給が遮断される。その結果、半導体スイッチ12は、OFFの状態を維持する。すなわち、母線7に対し、放電抵抗10と半導体スイッチ12との導通が遮断される。このため、モータ1から誘起電圧が発生している間は、放電抵抗10と半導体スイッチ12とに母線7から電流は流れない。
In this case, supply to the base voltage of the semiconductor switch 12 is cut off. As a result, the semiconductor switch 12 maintains the OFF state. That is, the conduction between the discharge resistor 10 and the semiconductor switch 12 is interrupted with respect to the bus 7. For this reason, while the induced voltage is generated from the motor 1, no current flows from the bus 7 to the discharge resistor 10 and the semiconductor switch 12.
その後、モータ1の端子間の電圧の値が0まで低下すると、検出回路21は、絶縁スイッチ15のベースへの電圧の供給を遮断する。その結果、絶縁スイッチ15がOFFとなる。このため、半導体スイッチ12へのベースに対し、母線7の電圧が抵抗13を介して供給される。その結果、半導体スイッチ12がONとなる。この場合、母線7に対し、放電抵抗10、半導体スイッチ12の導通が確保される。その結果、コンデンサ9に蓄積された電荷が放電される。当該放電により、母線7の電圧が0となる。このため、作業員は電源の復旧作業等を安全に行うことができる。
Thereafter, when the value of the voltage between the terminals of the motor 1 drops to 0, the detection circuit 21 cuts off the supply of voltage to the base of the insulation switch 15. As a result, the insulation switch 15 is turned off. For this reason, the voltage of the bus 7 is supplied to the base to the semiconductor switch 12 via the resistor 13. As a result, the semiconductor switch 12 is turned on. In this case, electrical conduction between the discharge resistor 10 and the semiconductor switch 12 is ensured with respect to the bus 7. As a result, the electric charge accumulated in the capacitor 9 is discharged. Due to the discharge, the voltage of the bus 7 becomes zero. For this reason, the worker can safely perform power restoration work and the like.
電源が復旧すると、検出回路18は、電源の電圧が一定値に復旧したことを検出する。この場合、検出回路18は、絶縁スイッチ14のベースへ電圧を供給する。その結果、絶縁スイッチ14がONの状態となる。この場合、半導体スイッチ12のベースへの電圧の供給が遮断される。その結果、半導体スイッチ12がOFFとなる。
When the power supply is restored, the detection circuit 18 detects that the power supply voltage has been restored to a constant value. In this case, the detection circuit 18 supplies a voltage to the base of the insulation switch 14. As a result, the insulation switch 14 is turned on. In this case, the supply of voltage to the base of the semiconductor switch 12 is cut off. As a result, the semiconductor switch 12 is turned off.
このとき、ダイオード11は、放電抵抗10の内部インダクタンスや配線等の寄生インダクタンスによるサージ電圧の発生を抑制する。
At this time, the diode 11 suppresses generation of a surge voltage due to internal inductance of the discharge resistor 10 and parasitic inductance such as wiring.
以上で説明した実施の形態1によれば、かご5の緊急停止時に、モータ1の端子間の電圧が0になるまで、半導体スイッチ12がOFFの状態を維持する。このため、モータ1で発生した誘起電圧に対し、放電抵抗10と半導体スイッチ12とを保護することができる。
According to the first embodiment described above, when the car 5 is in an emergency stop, the semiconductor switch 12 is kept in an OFF state until the voltage between the terminals of the motor 1 becomes zero. For this reason, the discharge resistor 10 and the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1.
なお、モータ1の発生トルクは、モータ1のトルク定数Pmとモータ1の磁束φとモータ1に流れる電流iとの積で決まる。これに対し、本実施の形態においては、モータ1の磁束φが大きくても、放電抵抗10と半導体スイッチ12とを保護することができる。このため、モータ1に流れる電流iの値を大きくしなくても、モータ1に必要なトルクを得ることができる。従って、モータ1の体積やインバータ8の容量を大きくする必要がない。
The generated torque of the motor 1 is determined by the product of the torque constant Pm of the motor 1, the magnetic flux φ of the motor 1, and the current i flowing through the motor 1. On the other hand, in this embodiment, even if the magnetic flux φ of the motor 1 is large, the discharge resistor 10 and the semiconductor switch 12 can be protected. For this reason, the torque required for the motor 1 can be obtained without increasing the value of the current i flowing through the motor 1. Therefore, it is not necessary to increase the volume of the motor 1 or the capacity of the inverter 8.
また、半導体スイッチ12、絶縁スイッチ14、15は、FETやIGBTで構成される場合もある。この場合、半導体スイッチ12、絶縁スイッチ14、15のゲートへの電圧を制御することで、半導体スイッチ12、絶縁スイッチ14、15の動作を制御することができる。
Further, the semiconductor switch 12 and the insulation switches 14 and 15 may be configured by FETs or IGBTs. In this case, the operation of the semiconductor switch 12 and the insulation switches 14 and 15 can be controlled by controlling the voltages to the gates of the semiconductor switch 12 and the insulation switches 14 and 15.
実施の形態2.
図2はこの発明の実施の形態2におけるエレベータの制御装置による通常時の放電を説明するための図である。図3はこの発明の実施の形態2におけるエレベータの制御装置による誘起電圧発生時の放電を説明するための図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。Embodiment 2. FIG.
FIG. 2 is a diagram for explaining normal discharge by the elevator control apparatus according toEmbodiment 2 of the present invention. FIG. 3 is a diagram for explaining discharge when an induced voltage is generated by the elevator control apparatus according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to Embodiment 1 and an equivalent part, and description is abbreviate | omitted.
図2はこの発明の実施の形態2におけるエレベータの制御装置による通常時の放電を説明するための図である。図3はこの発明の実施の形態2におけるエレベータの制御装置による誘起電圧発生時の放電を説明するための図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
FIG. 2 is a diagram for explaining normal discharge by the elevator control apparatus according to
図2に示すように、通常時は、コンデンサ9の電荷は、放電抵抗10に引き抜かれる。この際、母線7の電圧は、コンデンサ9の容量をC、放電抵抗10の抵抗値をR、母線7の初期電圧をV0、経過時間をtとすると、母線7の電圧Vnは、次の(1)式となる。
Vn=V0・e-t/CR (1) As shown in FIG. 2, the electric charge of thecapacitor 9 is drawn out by the discharge resistor 10 in normal times. At this time, the voltage of the bus 7 is represented by the following equation. When the capacity of the capacitor 9 is C, the resistance value of the discharge resistor 10 is R, the initial voltage of the bus 7 is V 0 , and the elapsed time is t, the voltage Vn of the bus 7 is (1)
Vn = V 0 · e −t / CR (1)
Vn=V0・e-t/CR (1) As shown in FIG. 2, the electric charge of the
Vn = V 0 · e −t / CR (1)
図3に示すように、かご5の緊急停止時に誘起電圧Vy(=α・ω・φ)が母線7の電圧を超えると、当該誘起電圧による回生電力は、インバータ8を介して母線7に到達する。この場合、母線7の電圧は、誘起電圧Vyまで上昇する。このとき、放電抵抗10は、母線7の電圧Vyを巨大な電圧源として発熱するだけの機器となる。この場合、モータ1が完全に停止し、誘起電圧が0となった後、コンデンサ9の電荷が放電抵抗10に引き抜かれる。
As shown in FIG. 3, when the induced voltage Vy (= α · ω · φ) exceeds the voltage of the bus 7 during the emergency stop of the car 5, the regenerative power due to the induced voltage reaches the bus 7 via the inverter 8. To do. In this case, the voltage of the bus 7 rises to the induced voltage Vy. At this time, the discharge resistor 10 is a device that only generates heat using the voltage Vy of the bus 7 as a huge voltage source. In this case, after the motor 1 is completely stopped and the induced voltage becomes 0, the electric charge of the capacitor 9 is extracted to the discharge resistor 10.
次に、図4を用いて、通常時の放電特性と誘起電圧発生時の放電特性とを説明する。
図4はこの発明の実施の形態2におけるエレベータの制御装置による通常時の放電特性と誘起電圧発生時の放電特性を説明するための図である。図4の横軸は時間である。図4の縦軸は母線7の電圧である。 Next, with reference to FIG. 4, the normal discharge characteristics and the discharge characteristics when an induced voltage is generated will be described.
FIG. 4 is a diagram for explaining normal discharge characteristics and discharge characteristics when an induced voltage is generated by the elevator control apparatus according toEmbodiment 2 of the present invention. The horizontal axis in FIG. 4 is time. The vertical axis in FIG. 4 is the voltage of the bus 7.
図4はこの発明の実施の形態2におけるエレベータの制御装置による通常時の放電特性と誘起電圧発生時の放電特性を説明するための図である。図4の横軸は時間である。図4の縦軸は母線7の電圧である。 Next, with reference to FIG. 4, the normal discharge characteristics and the discharge characteristics when an induced voltage is generated will be described.
FIG. 4 is a diagram for explaining normal discharge characteristics and discharge characteristics when an induced voltage is generated by the elevator control apparatus according to
図4において、Aはかご5が停止した際の時刻である。Bはかご5が通常に停止した際の母線7の電圧である。Cはかご5が緊急停止した際の母線7の電圧である。
In FIG. 4, A is the time when the car 5 stops. B is the voltage of the bus 7 when the car 5 stops normally. C is the voltage of the bus 7 when the car 5 comes to an emergency stop.
図4に示すように、時刻Aにおいて、かご5が通常に停止すると、母線7の電圧Bは急激に減少する。その結果、母線7の電圧Bは、短時間でほぼ0になる。これに対し、時刻Aにおいて、かご5が緊急停止すると、母線7の電圧Cは、モータ1で発生した誘起電圧Vyまで上昇する。その後、母線7の電圧Cは、一定の変化率で徐々に減少する。このため、母線7の電圧Bが0になるまでには、時間がかかる。
As shown in FIG. 4, when the car 5 stops normally at time A, the voltage B of the bus 7 decreases rapidly. As a result, the voltage B of the bus 7 becomes almost 0 in a short time. On the other hand, when the car 5 comes to an emergency stop at time A, the voltage C of the bus 7 rises to the induced voltage Vy generated by the motor 1. Thereafter, the voltage C of the bus 7 gradually decreases at a constant rate of change. For this reason, it takes time until the voltage B of the bus 7 becomes zero.
そこで、実施の形態2においては、モータ1で誘起電圧が発生した場合であっても短時間でコンデンサ9に蓄積された電荷を放電できるようにする。
Therefore, in the second embodiment, even when an induced voltage is generated in the motor 1, the charge accumulated in the capacitor 9 can be discharged in a short time.
以下、図5を用いて、実施の形態2を具体的に説明する。
図5はこの発明の実施の形態2におけるエレベータの制御装置の構成図である。 Hereinafter, the second embodiment will be specifically described with reference to FIG.
FIG. 5 is a block diagram of an elevator control apparatus according toEmbodiment 2 of the present invention.
図5はこの発明の実施の形態2におけるエレベータの制御装置の構成図である。 Hereinafter, the second embodiment will be specifically described with reference to FIG.
FIG. 5 is a block diagram of an elevator control apparatus according to
図5において、検出回路21は、モータ1の端子間の電圧と母線7の電圧とを検出する。検出回路21は、モータ1の端子間の電圧と母線7の電圧とを比較する。モータ1の端子間の電圧が母線7の電圧以上の場合、検出回路21は、絶縁スイッチ15のベースへの電圧を供給する。その結果、絶縁スイッチ15はONの状態を維持する。このため、半導体スイッチ12のベースへの電圧の供給は遮断される。その結果、半導体スイッチ12はOFFの状態を維持する。この場合、誘起電圧による回生電力が放電抵抗10で消費されることはない。
5, the detection circuit 21 detects the voltage between the terminals of the motor 1 and the voltage of the bus 7. The detection circuit 21 compares the voltage between the terminals of the motor 1 with the voltage of the bus 7. When the voltage between the terminals of the motor 1 is equal to or higher than the voltage of the bus 7, the detection circuit 21 supplies a voltage to the base of the insulation switch 15. As a result, the insulation switch 15 maintains the ON state. For this reason, the supply of voltage to the base of the semiconductor switch 12 is cut off. As a result, the semiconductor switch 12 maintains the OFF state. In this case, the regenerative power due to the induced voltage is not consumed by the discharge resistor 10.
これに対し、モータ1の端子間の電圧が母線7の電圧よりも小さくなると、検出回路21は、絶縁スイッチ15のベースへの電圧の供給を遮断する。その結果、絶縁スイッチ15はOFFの状態となる。このため、半導体スイッチ12のベースへ電圧が供給される。その結果、半導体スイッチ12はONとなる。この場合、誘起電圧による回生電力が発生しない状態で、コンデンサ9の電荷が放電抵抗10で放電される。
On the other hand, when the voltage between the terminals of the motor 1 becomes smaller than the voltage of the bus 7, the detection circuit 21 cuts off the supply of voltage to the base of the insulation switch 15. As a result, the insulation switch 15 is turned off. For this reason, a voltage is supplied to the base of the semiconductor switch 12. As a result, the semiconductor switch 12 is turned on. In this case, the charge of the capacitor 9 is discharged by the discharge resistor 10 in a state where regenerative power due to the induced voltage is not generated.
以上で説明した実施の形態2によれば、モータ1の端子間の電圧が母線7の電圧以上の場合は、母線7と放電抵抗10との接続を切り離した状態が維持される。このため、モータ1で発生した誘起電圧に対し、放電抵抗10と半導体スイッチ12とを保護することができる。これに対し、モータ1の端子間の電圧が母線7の電圧よりも小さくなると、母線7と放電抵抗10とが接続される。このため、誘起電圧が完全に0になる前に短時間でコンデンサ9に蓄積された電荷を放電させることができる。
According to the second embodiment described above, when the voltage between the terminals of the motor 1 is equal to or higher than the voltage of the bus 7, the state where the connection between the bus 7 and the discharge resistor 10 is disconnected is maintained. For this reason, the discharge resistor 10 and the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1. On the other hand, when the voltage between the terminals of the motor 1 becomes smaller than the voltage of the bus 7, the bus 7 and the discharge resistor 10 are connected. For this reason, the electric charge accumulated in the capacitor 9 can be discharged in a short time before the induced voltage becomes completely zero.
実施の形態3.
図6はこの発明の実施の形態3におけるエレベータの制御装置の要部の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。 Embodiment 3 FIG.
FIG. 6 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected toEmbodiment 1 and an equivalent part, and description is abbreviate | omitted.
図6はこの発明の実施の形態3におけるエレベータの制御装置の要部の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。 Embodiment 3 FIG.
FIG. 6 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected to
図6において、22はコンバータである。コンバータ22の出力端子には、母線7の入力端子が接続される。電圧の高い母線7には、複数のコンデンサ9が直列に接続される。これらのコンデンサ9は、電解コンデンサからなる。コンデンサ9の耐圧は、500V以下である。各コンデンサ9には、バランス抵抗23が並列に接続される。コンデンサ9とバランス抵抗23よりも母線7の一方側には、保護回路として、遮断機24が直列に接続される。遮断機24は、ノーマリークローズ型のものである。すなわち、遮断機24は、通常は電力を供給されることなく閉じている。
In FIG. 6, 22 is a converter. The input terminal of the bus 7 is connected to the output terminal of the converter 22. A plurality of capacitors 9 are connected in series to the bus 7 having a high voltage. These capacitors 9 are made of electrolytic capacitors. The withstand voltage of the capacitor 9 is 500V or less. A balance resistor 23 is connected to each capacitor 9 in parallel. A breaker 24 is connected in series as a protection circuit on one side of the bus 7 with respect to the capacitor 9 and the balance resistor 23. The circuit breaker 24 is of a normally closed type. That is, the breaker 24 is normally closed without being supplied with power.
この場合、バランス抵抗23により各コンデンサ9の電圧のバランスがとられる。モータ1の誘起電圧がさらに上昇した場合、各コンデンサ9に大きな電圧がかかり得る。そこで、本実施の形態においては、モータ1の端子間の電圧が所定値以上になると、遮断機24に電力が供給される。当該電力により、遮断機24が開く。その結果、母線7とコンデンサ9との接続が物理的に切り離される。なお、所定値は、通常時における母線7の電圧の値よりも大きく、コンデンサ9の耐圧よりも小さな値に設定される。
In this case, the voltage of each capacitor 9 is balanced by the balance resistor 23. When the induced voltage of the motor 1 further increases, a large voltage can be applied to each capacitor 9. Therefore, in the present embodiment, when the voltage between the terminals of the motor 1 becomes a predetermined value or more, power is supplied to the circuit breaker 24. The circuit breaker 24 is opened by the electric power. As a result, the connection between the bus 7 and the capacitor 9 is physically disconnected. Note that the predetermined value is set to a value larger than the voltage value of the bus 7 in a normal state and smaller than the withstand voltage of the capacitor 9.
以上で説明した実施の形態3によれば、かご5の緊急停止時に、母線7とコンデンサ9との接続を切り離した状態が維持される。このため、モータ1で発生した誘起電圧に対し、コンデンサ9を保護することができる。
According to the third embodiment described above, the state where the connection between the bus 7 and the capacitor 9 is disconnected is maintained at the time of emergency stop of the car 5. For this reason, the capacitor 9 can be protected against the induced voltage generated in the motor 1.
また、遮断機24は、ノーマリークローズ型である。このため、かご5の緊急停止時のみ電力を消費する。その結果、無駄な電力消費を抑制することができる。
Moreover, the circuit breaker 24 is a normally closed type. For this reason, power is consumed only when the car 5 is in an emergency stop. As a result, wasteful power consumption can be suppressed.
なお、半導体スイッチ12に対応して遮断機24を設けてもよい。この場合、モータ1で発生した誘起電圧に対し、半導体スイッチ12を保護することができる。
A circuit breaker 24 may be provided corresponding to the semiconductor switch 12. In this case, the semiconductor switch 12 can be protected against the induced voltage generated in the motor 1.
実施の形態4.
図7はこの発明の実施の形態4におけるエレベータの制御装置の要部の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。 Embodiment 4 FIG.
FIG. 7 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 4 of the present invention. In addition, the same code | symbol is attached | subjected toEmbodiment 1 and an equivalent part, and description is abbreviate | omitted.
図7はこの発明の実施の形態4におけるエレベータの制御装置の要部の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。 Embodiment 4 FIG.
FIG. 7 is a configuration diagram of a main part of an elevator control apparatus according to Embodiment 4 of the present invention. In addition, the same code | symbol is attached | subjected to
図7において、インバータ25は、両極性素子で構成される。具体的には、インバータ25は、逆阻止IGBTからなる。通常時、インバータ25は、モータ1から母線7に向かう方向の導通を確保する素子を常時ONとする。この場合、インバータ25は、実施の形態1のインバータ8と同様の動作となる。
In FIG. 7, the inverter 25 is composed of bipolar elements. Specifically, the inverter 25 is composed of a reverse blocking IGBT. At normal time, the inverter 25 always turns on an element that ensures conduction in the direction from the motor 1 toward the bus 7. In this case, the inverter 25 operates similarly to the inverter 8 of the first embodiment.
これに対し、かご5が緊急停止した場合、インバータ25は、モータ1から母線7に向かう方向の導通を確保する素子をOFFにする。その結果、誘起電圧による回生電力がコンデンサ9へ到達することを防止する。
On the other hand, when the car 5 is brought to an emergency stop, the inverter 25 turns off the element that secures conduction in the direction from the motor 1 toward the bus 7. As a result, the regenerative power due to the induced voltage is prevented from reaching the capacitor 9.
以上で説明した実施の形態4によれば、かご5の緊急停止時に、インバータ8は、モータ1から母線7に向かう方向の導通を遮断する。このため、モータ1で発生した誘起電圧に対し、放電抵抗10、コンデンサ9、インバータ8を保護することができる。
According to the fourth embodiment described above, when the car 5 is in an emergency stop, the inverter 8 blocks conduction in the direction from the motor 1 toward the bus 7. For this reason, the discharge resistor 10, the capacitor 9, and the inverter 8 can be protected against the induced voltage generated in the motor 1.
また、実施の形態3の遮断機24を用いる必要がない。このため、制御装置の小型化及び低コスト化を実現することができる。さらに、母線7からコンデンサ9までの配線を短くすることができる。また、当該配線を太くすることができる。このため、配線のインダクタンスを小さくすることができる。その結果、コンデンサ9の平滑能等を最大限に発揮することができる。
Further, it is not necessary to use the circuit breaker 24 of the third embodiment. For this reason, size reduction and cost reduction of a control apparatus are realizable. Furthermore, the wiring from the bus 7 to the capacitor 9 can be shortened. In addition, the wiring can be thickened. For this reason, the inductance of wiring can be made small. As a result, the smoothness of the capacitor 9 can be maximized.
なお、誘起電圧の値は、かご5の緊急停止時における瞬間の最高速度で決まる。このため、かご5の緊急停止の信号出力時におけるかご5の速度に応じて、実施の形態1~実施の形態4のうち、どの方法が適切かを選択してもよい。
Note that the value of the induced voltage is determined by the maximum speed of the car 5 at the time of emergency stop. For this reason, according to the speed of the car 5 at the time of the emergency stop signal output of the car 5, which method is suitable among the first to fourth embodiments may be selected.
この場合、まず、弱め界磁制御をしていない状態で、モータ1の回転速度と誘起電圧との関係を実測して、テーブルを作成すればよい。次に、エレベータを設置するビル毎に設定されたかご5の最高速度に基づいて、最も適した保護方法を選択すればよい。
In this case, first, a table may be created by actually measuring the relationship between the rotational speed of the motor 1 and the induced voltage in a state where field weakening control is not performed. Next, the most suitable protection method may be selected based on the maximum speed of the car 5 set for each building where the elevator is installed.
このとき、コストパフォーマンスと省スペース性を考慮し、実施の形態1又は2の保護方法、実施の形態3の保護方法、実施の形態4の保護方法の順で、優先順位を高くすればよい。
At this time, in consideration of cost performance and space saving, the priority may be increased in the order of the protection method of the first or second embodiment, the protection method of the third embodiment, and the protection method of the fourth embodiment.
また、汎用性を高めるために、実施の形態1~4の構成を全て備えてもよい。この場合、かご5の緊急停止時において、監視手段2が検出したモータ1又はかご5の実速度に応じて、実施の形態1~実施の形態4の保護方法の中から、適切な保護方法を選択すればよい。
Further, in order to improve versatility, all the configurations of the first to fourth embodiments may be provided. In this case, at the time of emergency stop of the car 5, an appropriate protection method is selected from the protection methods of the first to fourth embodiments according to the actual speed of the motor 1 or the car 5 detected by the monitoring means 2. Just choose.
実施の形態5.
図8はこの発明の実施の形態5におけるエレベータの制御装置の要部の構成図である。なお、実施の形態4と同一又は相当部分には同一符号を付して説明を省略する。Embodiment 5. FIG.
FIG. 8 is a configuration diagram of a main part of an elevator control apparatus according toEmbodiment 5 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 4, or an equivalent part, and description is abbreviate | omitted.
図8はこの発明の実施の形態5におけるエレベータの制御装置の要部の構成図である。なお、実施の形態4と同一又は相当部分には同一符号を付して説明を省略する。
FIG. 8 is a configuration diagram of a main part of an elevator control apparatus according to
図8に示すように、インバータ25とモータ1との間には、遮断機26が接続される。遮断機26は、ノーマリークローズ型のものである。すなわち、遮断機26は、通常は電力を供給されることなく閉じている。遮断機26は、モータ1の端子間の電圧が所定値以上になると、電力が供給されることにより開く。その結果、インバータ25とモータ1との接続が物理的に切り離される。なお、実施の形態5の所定値は、実施の形態3の所定値よりも大きく、インバータ25の逆阻止IGBTの耐圧の値よりも小さく設定される。
As shown in FIG. 8, a circuit breaker 26 is connected between the inverter 25 and the motor 1. The circuit breaker 26 is of a normally closed type. That is, the breaker 26 is normally closed without being supplied with power. When the voltage between the terminals of the motor 1 becomes equal to or higher than a predetermined value, the breaker 26 is opened by supplying power. As a result, the connection between the inverter 25 and the motor 1 is physically disconnected. The predetermined value of the fifth embodiment is set to be larger than the predetermined value of the third embodiment and smaller than the withstand voltage value of the reverse blocking IGBT of the inverter 25.
以上で説明した実施の形態5によれば、モータ1の端子間の電圧が所定値以上の場合、インバータ25とモータ1との接続を切り離した状態が維持される。このため、実施の形態4のインバータ8の逆阻止IGBTの耐圧を超える誘起電圧が発生しても、放電抵抗10、コンデンサ9、インバータ25を保護することができる。
According to the fifth embodiment described above, when the voltage between the terminals of the motor 1 is equal to or higher than a predetermined value, the state where the connection between the inverter 25 and the motor 1 is disconnected is maintained. For this reason, even if the induced voltage exceeding the withstand voltage of the reverse blocking IGBT of the inverter 8 of the fourth embodiment is generated, the discharge resistor 10, the capacitor 9, and the inverter 25 can be protected.
また、遮断機26は、ノーマリークローズ型である。このため、かご5の緊急停止時のみ電力を消費する。その結果、無駄な電力消費を抑制することができる
The circuit breaker 26 is a normally closed type. For this reason, power is consumed only when the car 5 is in an emergency stop. As a result, wasteful power consumption can be suppressed.
以上のように、この発明に係るエレベータの制御装置は、モータで発生した誘起電圧に対し、母線に接続された機器を保護するエレベータに利用できる。
As described above, the elevator control apparatus according to the present invention can be used for an elevator that protects equipment connected to a bus against an induced voltage generated by a motor.
1 モータ
1a 回転軸
2 監視手段
3 綱車
4 主索
5 かご
6 つり合いおもり
7 母線
8 インバータ
9 コンデンサ
10 放電抵抗
11 ダイオード
12 半導体スイッチ
13 抵抗
14 絶縁スイッチ
15 絶縁スイッチ
16 電源電圧検出回路
17 電源生成装置
18 検出回路
19 誘起電圧検出回路
20 電源生成装置
21 検出回路
22 コンバータ
23 バランス抵抗
24 遮断機
25 インバータ
26 遮断機 DESCRIPTION OFSYMBOLS 1 Motor 1a Rotating shaft 2 Monitoring means 3 Sheave 4 Main rope 5 Car 6 Balance weight 7 Busbar 8 Inverter 9 Capacitor 10 Discharge resistance 11 Diode 12 Semiconductor switch 13 Resistance 14 Insulation switch 15 Insulation switch 16 Power supply voltage detection circuit 17 Power supply generation device DESCRIPTION OF SYMBOLS 18 Detection circuit 19 Induced voltage detection circuit 20 Power supply generator 21 Detection circuit 22 Converter 23 Balance resistor 24 Breaker 25 Inverter 26 Breaker
1a 回転軸
2 監視手段
3 綱車
4 主索
5 かご
6 つり合いおもり
7 母線
8 インバータ
9 コンデンサ
10 放電抵抗
11 ダイオード
12 半導体スイッチ
13 抵抗
14 絶縁スイッチ
15 絶縁スイッチ
16 電源電圧検出回路
17 電源生成装置
18 検出回路
19 誘起電圧検出回路
20 電源生成装置
21 検出回路
22 コンバータ
23 バランス抵抗
24 遮断機
25 インバータ
26 遮断機 DESCRIPTION OF
Claims (8)
- 直流電力を供給する母線と、
前記母線の出力側に接続され、前記直流電力を交流電力に変換するインバータと、
前記インバータの出力側に接続され、前記交流電力を用いて回転することにより、エレベータのかごを昇降させるモータと、
前記母線に接続された機器と、
前記かごの緊急停止時に、前記かごの速度に応じて、前記インバータと前記機器とのうちのいずれかと前記母線との導通を遮断する保護手段と、
を備えたことを特徴とするエレベータの制御装置。 A bus for supplying DC power;
An inverter connected to the output side of the bus and converting the DC power into AC power;
A motor connected to the output side of the inverter and rotating up and down the elevator car by using the AC power;
A device connected to the bus;
Protection means for interrupting conduction between the bus and any of the inverter and the device according to the speed of the car at the time of emergency stop of the car;
An elevator control device comprising: - 前記モータの端子間の電圧を検出する検出回路、
を備え、
前記機器は、放電回路からなり、
前記保護手段は、前記母線と前記放電回路との間に接続され、前記モータの端子間の電圧が0になるまで、前記母線と前記放電回路との接続を切り離した状態を維持する保護回路からなることを特徴とする請求項1記載のエレベータの制御装置。 A detection circuit for detecting a voltage between terminals of the motor;
With
The device comprises a discharge circuit,
The protection means is connected between the bus and the discharge circuit, and maintains a disconnected state between the bus and the discharge circuit until the voltage between the motor terminals becomes zero. The elevator control device according to claim 1. - 前記検出回路は、前記母線の電圧を検出し、
前記保護回路は、前記モータの端子間の電圧が前記母線の電圧以上の場合は、前記母線と前記放電回路との接続を切り離した状態を維持し、前記モータの端子間の電圧が母線の電圧よりも小さくなると、前記母線と前記放電回路とを接続することを特徴とする請求項2記載のエレベータの制御装置。 The detection circuit detects a voltage of the bus;
When the voltage between the terminals of the motor is equal to or higher than the voltage of the bus, the protection circuit maintains a disconnected state between the bus and the discharge circuit, and the voltage between the terminals of the motor is the voltage of the bus. The elevator control device according to claim 2, wherein the bus bar and the discharge circuit are connected when the value is smaller. - 前記機器は、コンデンサからなり、
前記保護手段は、前記母線と前記コンデンサとの間に接続され、前記かごの緊急停止時に、前記母線と前記コンデンサとの接続を切り離した状態を維持する保護回路からなることを特徴とする請求項1記載のエレベータの制御装置。 The device comprises a capacitor,
The protection means comprises a protection circuit that is connected between the bus bar and the capacitor and maintains a state where the connection between the bus bar and the capacitor is disconnected at the time of emergency stop of the car. The elevator control apparatus according to 1. - 前記インバータは、両極性素子で構成され、
前記保護手段は、前記かごの緊急停止時に、前記モータから前記母線に向かう方向の導通を確保する両極性素子をOFFにすることを特徴とする請求項1記載のエレベータの制御装置。 The inverter is composed of bipolar elements,
2. The elevator control device according to claim 1, wherein the protection unit turns off a bipolar element that secures conduction in a direction from the motor toward the bus when the car is emergency stopped. 3. - 前記モータ又前記かごの実速度を監視する監視手段、
を備え、
前記機器は、放電回路とコンデンサとからなり、
前記保護手段は、前記モータ又は前記かごの実速度に応じて、前記インバータと前記放電回路と前記コンデンサとのうち、前記母線との導通を遮断するものを選択することを特徴とする請求項1記載のエレベータの制御装置。 Monitoring means for monitoring the actual speed of the motor or the car;
With
The device comprises a discharge circuit and a capacitor,
The said protection means selects the thing which interrupts | blocks conduction with the said bus | bath among the said inverter, the said discharge circuit, and the said capacitor according to the actual speed of the said motor or the said car. The elevator control device described. - 前記モータの端子間の電圧を検出する検出回路と
前記インバータと前記モータとの間に接続され、前記モータの端子間の電圧が所定値以上の場合は、前記インバータと前記モータとの接続を切り離した状態を維持する保護回路と、
を備えたことを特徴とする請求項1記載のエレベータの制御装置。 A detection circuit for detecting a voltage between terminals of the motor is connected between the inverter and the motor. When the voltage between the terminals of the motor is a predetermined value or more, the connection between the inverter and the motor is disconnected. A protection circuit to maintain
The elevator control device according to claim 1, further comprising: - 前記保護回路は、通常は電力を供給されることなく閉じており、前記かごが緊急停止した際に、電力が供給されることにより開くことを特徴とする請求項4又は請求項7に記載のエレベータの制御装置。 8. The protection circuit according to claim 4, wherein the protection circuit is normally closed without being supplied with electric power, and is opened when electric power is supplied when the car is stopped in an emergency. Elevator control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/052384 WO2013114602A1 (en) | 2012-02-02 | 2012-02-02 | Elevator control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/052384 WO2013114602A1 (en) | 2012-02-02 | 2012-02-02 | Elevator control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013114602A1 true WO2013114602A1 (en) | 2013-08-08 |
Family
ID=48904678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052384 WO2013114602A1 (en) | 2012-02-02 | 2012-02-02 | Elevator control device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013114602A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018203504A (en) * | 2017-06-08 | 2018-12-27 | 東芝エレベータ株式会社 | Passenger conveyor |
US11424696B2 (en) * | 2019-10-30 | 2022-08-23 | Fanuc Corporation | Motor drive device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731001A (en) * | 1993-07-05 | 1995-01-31 | Toshiba Toransupooto Eng Kk | Power converter for AC electric vehicle and protective operation method thereof |
JPH11252706A (en) * | 1998-02-26 | 1999-09-17 | Mitsubishi Electric Corp | Power converter |
JP2005263409A (en) * | 2004-03-18 | 2005-09-29 | Toshiba Elevator Co Ltd | Elevator control device |
JP3849131B2 (en) * | 1997-11-22 | 2006-11-22 | 株式会社安川電機 | Inverter device |
-
2012
- 2012-02-02 WO PCT/JP2012/052384 patent/WO2013114602A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731001A (en) * | 1993-07-05 | 1995-01-31 | Toshiba Toransupooto Eng Kk | Power converter for AC electric vehicle and protective operation method thereof |
JP3849131B2 (en) * | 1997-11-22 | 2006-11-22 | 株式会社安川電機 | Inverter device |
JPH11252706A (en) * | 1998-02-26 | 1999-09-17 | Mitsubishi Electric Corp | Power converter |
JP2005263409A (en) * | 2004-03-18 | 2005-09-29 | Toshiba Elevator Co Ltd | Elevator control device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018203504A (en) * | 2017-06-08 | 2018-12-27 | 東芝エレベータ株式会社 | Passenger conveyor |
US11424696B2 (en) * | 2019-10-30 | 2022-08-23 | Fanuc Corporation | Motor drive device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10090795B2 (en) | Motor drive having function of protecting dynamic braking circuit | |
JP4647684B2 (en) | Power converter | |
CN102055394B (en) | Power converter device | |
EP2833543B1 (en) | Alternating-current electric system and control method thereof | |
JP6356716B2 (en) | Motor control device having torque command limiter | |
CN104181472A (en) | Method of detecting state of power cable in inverter system | |
CN103023424B (en) | Low-voltage protection method and there is the crane of under-voltage protection function | |
JP2012010568A (en) | Vehicle control system | |
CN106788002A (en) | Vidacare corp and electrical equipment | |
WO2014174865A1 (en) | Power conversion device and method for controlling power conversion device | |
CN106712641A (en) | Motor drive fault-tolerant control device and electric device | |
JP2012196143A (en) | Motor control device | |
CN102055393A (en) | Motor control apparatus | |
JPH04223987A (en) | Braking method and device for elevator cage motor | |
JP2014155393A (en) | Ac electric machine system and control method therefor | |
JP6289597B1 (en) | VEHICLE POWER DEVICE AND CONTROL METHOD FOR VEHICLE POWER DEVICE | |
JP5172122B2 (en) | Permanent magnet synchronous motor drive system for railway vehicles | |
JP6250090B2 (en) | AC rotating machine control device and control method | |
WO2013114602A1 (en) | Elevator control device | |
JP2012115143A (en) | Power conversion apparatus | |
WO2018066733A1 (en) | Device for controlling motor for electric vehicle and method for controlling same | |
CN102464235A (en) | Improved new-energy elevator | |
KR101191292B1 (en) | Converter device for power regeneration | |
JP2017055499A (en) | Railroad vehicle control device and control method | |
JP2016073065A (en) | Motor controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867115 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867115 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |