[go: up one dir, main page]

WO2013112009A1 - Apparatus and method for performing random access in wireless communication system - Google Patents

Apparatus and method for performing random access in wireless communication system Download PDF

Info

Publication number
WO2013112009A1
WO2013112009A1 PCT/KR2013/000641 KR2013000641W WO2013112009A1 WO 2013112009 A1 WO2013112009 A1 WO 2013112009A1 KR 2013000641 W KR2013000641 W KR 2013000641W WO 2013112009 A1 WO2013112009 A1 WO 2013112009A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
response message
serving cell
terminal
access response
Prior art date
Application number
PCT/KR2013/000641
Other languages
French (fr)
Korean (ko)
Inventor
권기범
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013112009A1 publication Critical patent/WO2013112009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for performing random access in a wireless communication system.
  • the bandwidth between uplink and downlink is set differently, only one carrier is considered.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • the number of carriers constituting uplink and downlink is one, and the bandwidth of the uplink and the downlink are generally symmetrical to each other. to be.
  • random access is performed using one carrier.
  • random access can be implemented through multiple component carriers.
  • the multi-component carrier system refers to a wireless communication system capable of supporting carrier aggregation.
  • Carrier aggregation is a technique for efficiently using fragmented small bands in order to combine physically non-continuous bands in the frequency domain and to have the same effect as using logically large bands.
  • the UE In order to access the network, the UE goes through a random access process.
  • the random access process may be divided into a contention based random access procedure and a non-contention based random access procedure.
  • the biggest difference between the contention-based random access process and the non- contention-based random access process is whether a random access preamble is assigned to one UE.
  • contention-free random access process since the terminal uses a dedicated random access preamble designated only to the terminal, contention (or collision) with another terminal does not occur.
  • contention refers to two or more terminals attempting a random access procedure using the same random access preamble through the same resource.
  • contention-based random access process there is a possibility of contention because the terminal uses a randomly selected random access preamble.
  • the purpose of the UE to perform a random access process to the network may be an initial access (initial access), handover (handover), radio resource request (Scheduling Request), timing alignment (timing alignment).
  • An object of the present invention is to provide an apparatus and method for performing random access in a wireless communication system.
  • Another technical problem of the present invention is to provide an apparatus and method for receiving a random access response message using a PDCCH received through a terminal specific search space of a secondary serving cell.
  • Another technical problem of the present invention is to provide an apparatus and method for performing a random access procedure accompanying HARQ.
  • Another technical problem of the present invention is to provide a method of determining whether a random access response message is successfully received based on a new data indicator and a random access window.
  • a method of performing random access by a terminal in a multi-component carrier system includes transmitting a random access preamble to a base station on a secondary serving cell, starting a random access window, and a new data indicator indicating new transmission or retransmission of a random access response message.
  • receiving a physical downlink control channel to which downlink control information (DCI) including a new data indicator (NDI) is mapped from the base station on the secondary serving cell and the random access response message Whether the random access response message is successfully received through the physical downlink common channel on the secondary serving cell based on whether the received data is received within a section of a random access window and whether the new data indicator indicates new transmission. Determining.
  • DCI downlink control information
  • NDI new data indicator
  • a terminal for performing random access in a multi-component carrier system receives a physical downlink control channel to which downlink control information (DCI) including a new data indicator (NDI) indicating new transmission or retransmission of a random access response message is mapped from the base station on the secondary serving cell
  • DCI downlink control information
  • NDI new data indicator
  • DCI downlink control information
  • NDI new data indicator
  • the random access procedure is overcome.
  • the parameters of the HARQ procedure that proceeds separately from the random access procedure to determine the success of the random access response message, it is possible to implement a random access procedure using a unique identifier of the terminal.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a flowchart illustrating a random access procedure according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a structure of a random access response message according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a structure of a random access response message according to another example of the present invention.
  • FIG. 5 is an explanatory diagram illustrating a method of determining, by a terminal, a successful reception of a random access response message according to an embodiment of the present invention.
  • FIG. 6 is an explanatory diagram illustrating a method of determining, by a terminal, a reception success of a random access response message according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of performing a random access procedure by a terminal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of performing a random access procedure by a base station according to an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a terminal and a base station according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • BS base station
  • Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station, a home nodeB, a relay, and the like. .
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells and femtocells.
  • downlink means communication from the base station 11 to the terminal 12, and uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • Carrier aggregation supports a plurality of carriers, also referred to as spectrum aggregation or bandwidth aggregation.
  • Individual unit carriers bound by carrier aggregation are called component carriers (CCs).
  • Each component carrier is defined by a bandwidth and a center frequency.
  • Carrier aggregation is introduced to support increased throughput, to prevent cost increase due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five component carriers are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • Carrier aggregation may be divided into contiguous carrier aggregation between continuous component carriers in the frequency domain and non-contiguous carrier aggregation between discontinuous component carriers.
  • the number of carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink component carriers and the number of uplink component carriers are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie, bandwidth) of component carriers may be different from each other. For example, assuming that 5 component carriers are used for the configuration of the 70 MHz band, a 5 MHz component carrier (carrier # 0) + 20 MHz component carrier (carrier # 1) + 20 MHz component carrier (carrier # 2) + 20 MHz component carrier (carrier # 3) + 5MHz component carrier (carrier # 4) may be configured.
  • a multiple component carrier system refers to a system supporting carrier aggregation.
  • Adjacent carrier aggregation and / or non-adjacent carrier aggregation may be used in a multi-component carrier system, and either symmetric aggregation or asymmetric aggregation may be used.
  • the component carrier may be divided into a primary component carrier (PCC) and a secondary component carrier (SCC) according to activation.
  • the major carriers are always active carriers, and the subcarrier carriers are carriers that are activated / deactivated according to specific conditions. Activation refers to the transmission or reception of traffic data being made or in a ready state. Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the terminal may use only one major carrier, or may use one or more subcomponent carriers together with the major carrier.
  • the terminal may be assigned a major carrier and / or sub-carrier carrier from the base station.
  • the primary serving cell refers to one serving cell that provides security input and NAS mobility information in an RRC connection or re-establishment state.
  • at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell.
  • the set of serving cells configured for one terminal may consist of only one main serving cell, or may consist of one main serving cell and at least one secondary serving cell.
  • the downlink component carrier corresponding to the main serving cell is called a DL PCC
  • the uplink component carrier corresponding to the main serving cell is called an UL PCC
  • the component carrier corresponding to the secondary serving cell is called a downlink sub-component carrier (DL SCC)
  • DL SCC downlink sub-component carrier
  • UL SCC uplink sub-component carrier
  • the communication between the terminal and the base station through the DL CC or the UL CC in the carrier system is a concept equivalent to the communication between the terminal and the base station through the serving cell.
  • transmitting a preamble by using a UL CC may be regarded as a concept equivalent to transmitting a preamble using a main serving cell or a secondary serving cell.
  • the UE receiving the downlink information by using the DL CC can be seen as a concept equivalent to receiving the downlink information by using the primary serving cell or secondary serving cell.
  • the main serving cell and the secondary serving cell has the following characteristics.
  • the primary serving cell is used for transmission of the PUCCH.
  • the secondary serving cell may not transmit the PUCCH, but may transmit some control information of the information in the PUCCH through the PUSCH.
  • the main serving cell is always activated, while the secondary serving cell is a carrier that is activated / deactivated according to a specific condition.
  • the specific condition may be a case where the activation / deactivation MAC control element message of the base station is received or the deactivation timer configured for each secondary serving cell in the terminal expires.
  • Radio link failure occurs when downlink performance is maintained below a threshold for a predetermined time or when a random access procedure through the main serving cell fails more than a threshold. If the random access procedure through the secondary serving cell fails more than the threshold number of times, only the corresponding random access procedure is terminated.
  • the main serving cell may be changed by a security key change or a handover procedure accompanying a random access procedure.
  • a content resolution (CR) message only a downlink control channel (hereinafter referred to as 'PDCCH') indicating a CR should be transmitted through the main serving cell, and the CR information may be transmitted through the main serving cell or the secondary serving cell. It can be transmitted through.
  • 'PDCCH' downlink control channel
  • NAS non-access stratum
  • the main serving cell is always configured with a pair of DL PCC and UL PCC.
  • a different CC may be set as a primary serving cell for each terminal.
  • RRC radio resource control
  • RRC signaling may be used to transmit system information of a dedicated secondary serving cell.
  • the main serving cell is a PDCCH (for example, downlink allocation information allocated to a UE-specific search space) configured to transmit control information only to a specific terminal in an area for transmitting control information. Or uplink grant information) and a PDCCH (for example, system information (for example, system information) allocated to a common search space configured for transmitting control information to all terminals in a cell or a plurality of terminals meeting specific conditions). SI), random access response (RAR), and transmit power control (TPC).
  • the secondary serving cell may be set only a terminal-specific search space. That is, since the terminal cannot identify the common search space through the secondary serving cell, the terminal cannot receive control information transmitted only through the common search space and data information indicated by the control information.
  • a secondary serving cell in which a common search space (CSS) can be defined may be defined, and the secondary serving cell is referred to as a special secondary serving cell (special SCell).
  • the special secondary serving cell is always configured as a scheduling cell during cross carrier scheduling.
  • the PUCCH configured in the PCell may be defined for the special secondary serving cell.
  • the PUCCH for the special secondary serving cell may be fixedly configured when the special secondary serving cell is configured, or the base station may be allocated (configured) or released by RRC signaling (RRC reconfiguration message) when the base station is reconfigured for the secondary secondary cell. have.
  • the PUCCH for the special secondary serving cell includes ACK / NACK information or channel quality information (CQI) of the secondary serving cells present in the corresponding sTAG, and as mentioned above, may be configured through RRC signaling by the base station. have.
  • CQI channel quality information
  • the base station may configure one special secondary serving cell of a plurality of secondary serving cells in the sTAG, or may not configure a special secondary serving cell.
  • the reason for not configuring the special secondary serving cell is because it is determined that CSS and PUCCH need not be set. For example, if it is determined that the contention-based random access procedure does not need to be performed in any secondary serving cell, or it is determined that the current capacity of the PUCCH of the primary serving cell is sufficient, it is not necessary to set the PUCCH for the additional secondary serving cell. Corresponding.
  • a propagation delay occurs while a radio wave propagates at a transmitter and is transmitted from a receiver. Therefore, even if both transmitters and receivers know exactly the time when radio waves propagate in the transmitter, the time that a signal arrives at the receiver is affected by the transmission / reception period distance, the surrounding radio wave environment, and changes with time when the receiver moves. If the receiver does not know exactly when the signal transmitted by the transmitter is received, even if the signal reception fails or is received, the receiver receives the distorted signal and communication is impossible.
  • synchronization between a base station and a terminal must be made in advance in order to receive an information signal regardless of downlink and uplink.
  • synchronization there are various types of synchronization, such as frame synchronization, information symbol synchronization, and sampling period synchronization.
  • Sampling period synchronization is the most basic synchronization to be obtained in order to distinguish physical signals.
  • Downlink synchronization acquisition is performed in the terminal based on the signal of the base station.
  • the base station transmits a specific signal mutually promised to facilitate downlink synchronization acquisition in the terminal.
  • the terminal should be able to accurately discern the time when the specific signal transmitted from the base station is transmitted.
  • the terminals can independently acquire synchronization.
  • the base station receives signals transmitted from a plurality of terminals.
  • the signals received by each base station has a different transmission delay time, and when the uplink information is transmitted based on the downlink synchronization obtained respectively, the information of each terminal is different time Is received at the base station.
  • the base station cannot obtain synchronization based on any one terminal. Therefore, uplink sync acquisition requires a different procedure from downlink.
  • a random access procedure is performed to obtain uplink synchronization, and the terminal acquires uplink synchronization based on a timing alignment value transmitted from the base station during the random access procedure.
  • the terminal starts a time alignment timer.
  • the time alignment timer is in operation, the terminal and the base station are in a state of uplink synchronization with each other. If the time alignment timer expires or does not operate, the UE and the base station report that they are not synchronized with each other, and the UE does not perform uplink transmission other than the transmission of the random access preamble.
  • one terminal communicates with a base station through a plurality of component carriers or a plurality of serving cells. If the signals of the plurality of serving cells configured in the terminal all have the same time delay, the terminal may acquire uplink synchronization for all the serving cells with only one time alignment value. On the other hand, if the signals of the plurality of serving cells have different time delays, different time alignment values are required for each serving cell. That is, multiple timing alignment values are required. If the UE performs random access for each serving cell in order to obtain multi-time alignment values, overhead may be generated for limited uplink resources, and complexity of random access may increase. To reduce this overhead and complexity, a timing alignment group (TAG) is defined.
  • TAG timing alignment group
  • the time alignment group is a group including at least one serving cell, and the same time alignment value is applied to the serving cells in the time alignment group. For example, when the first serving cell and the second serving cell belong to the same time alignment group TAG1, the same time alignment value TA 1 is applied to the first serving cell and the second serving cell. On the other hand, when the first serving cell and the second serving cell belong to different time alignment groups TAG1 and TAG2, different time alignment values TA 1 and TA 2 are applied to the first serving cell and the second serving cell, respectively.
  • the time alignment group may include a main serving cell, may include at least one secondary serving cell, and may include a primary serving cell and at least one secondary serving cell.
  • the time alignment group is determined by the base station, the initial group configuration and group reorganization is transmitted to the terminal through the RRC signaling.
  • the main serving cell does not change the TAG.
  • the terminal should be able to support at least two TAG when a multi-time forward value is required.
  • TAGs divided into pTAGs (primary TAGs) including the primary serving cell and sTAGs (secondary TAGs) not including the primary serving cell.
  • pTAGs primary TAGs
  • sTAGs secondary TAGs
  • only one pTAG may exist at any time, and at least one sTAG may exist if a multi-time forward value is required.
  • the serving base station and the terminal may proceed as follows to obtain and maintain a time advance (TA) value for each time alignment group.
  • TA time advance
  • TA value acquisition and maintenance of pTAG always proceed through the main serving cell.
  • a timing reference as a reference of downlink synchronization for calculating a TA value of pTAG is always a downlink CC in a main serving cell.
  • the RA procedure initialized by the base station must be used to obtain the initial uplink time alignment value for the sTAG.
  • the timing reference for the sTAG is an uplink CC and a system information block 2 (SIB2) linked downlink CC of the secondary serving cell that transmitted the random access preamble in the most recent RA procedure.
  • SIB2 is one of system information blocks transmitted through a broadcasting channel, and the SIB2 information is transmitted from the base station to the terminal through an RRC reconfiguration procedure when configuring the corresponding secondary serving cell.
  • Uplink center frequency information is included in SIB2 and downlink center frequency information is included in SIB1. Therefore, the SIB2 connection setup means a connection setup between the downlink CC configured based on information in the SIB1 of the secondary serving cell and the uplink CC configured based on the information in the SIB2.
  • Each TAG has one timing reference and one time alignment timer (TAT), and each TAT can be configured with a different timer expiration value.
  • TAT starts or restarts immediately after acquiring the time alignment value from the serving base station to determine whether the time alignment value obtained and applied by each time alignment group is valid.
  • the terminal initializes (flush) HARQ buffers of all serving cells. It also clears the resource allocation configuration for all downlinks and uplinks. For example, if the periodic resource allocation is configured without control information transmitted for resource allocation for downlink / uplink such as PDCCH, such as semi-persistent scheduling (SPS), the SPS configuration is initialized. In addition, the configuration of the PUCCH and type 0 (periodic) SRS of all serving cells is released.
  • PDCCH such as semi-persistent scheduling
  • Type 0 (cyclic) SRS configuration.
  • Type 1 (aperiodic) SRS configuration is maintained.
  • the random access procedure for the secondary serving cell may be performed by the base station transmitting the PDCCH order for the activated secondary serving cell. It may proceed in the form of a contention free random access procedure or contention random access procedure.
  • the PDCCH for RAR transmission may be transmitted through a serving cell other than the secondary serving cell that transmitted the random access preamble.
  • the path loss reference of the pTAG may be a main serving cell or a secondary serving cell in the pTAG, and the base station may set differently through RRC signaling for each serving cell in the pTAG.
  • the path loss reference of the uplink CCs of each serving cell in the sTAG is each an SIB2 connected downlink CC.
  • FIG. 2 is a flowchart illustrating a random access procedure according to an embodiment of the present invention. This is a contention free random access procedure.
  • the base station selects one of the reserved random access preambles previously reserved for the non-contention based random access procedure among all available random access preambles, and the index and available time / of the selected random access preamble /
  • the preamble assignment information including the frequency resource information is transmitted to the terminal (S500).
  • the UE needs to be allocated a dedicated random access preamble with no possibility of collision from the base station for a non-contention based random access procedure.
  • the UE may obtain a dedicated random access preamble from the handover command message.
  • the UE may obtain a dedicated random access preamble through PDCCH, that is, physical layer signaling.
  • the physical layer signaling is downlink control information (DCI) format 1A and may include fields shown in Table 1 below.
  • the preamble index is an index indicating a preamble selected from among dedicated random access preambles reserved for the contention-free random access procedure
  • the PRACH mask index is available time / frequency resource information.
  • the available time / frequency resource information is indicated again according to a frequency division duplex (FDD) system and a time division duplex (TDD) system, as shown in Table 2 below.
  • FDD frequency division duplex
  • TDD time division duplex
  • the terminal transmits the allocated dedicated random access preamble to the base station (S505).
  • the random access preamble may be transmitted through the representative serving cell.
  • the representative serving cell is a serving cell selected to transmit a random access preamble in a time alignment group configured in the terminal.
  • the representative serving cell may be selected for each time alignment group.
  • the UE may transmit a random access preamble on a representative serving cell in any one time alignment group among a plurality of time alignment groups, or may transmit a random access preamble on each representative serving cell in two or more time alignment groups. .
  • the representative serving cell may be called a special SCell, a reference SCell, or a timing reference serving cell.
  • the base station transmits a preamble through a random access procedure indicator such as a PDCCH order (order) and SIB2 connection establishment ( linked)
  • a DL CC is defined as a DL CC as a timing reference
  • a serving cell including the timing reference DL CC is defined as a timing reference serving cell.
  • the random access procedure may proceed after the representative serving cell is activated.
  • the random access procedure for the secondary serving cell may be initiated by the PDCCH order (order) transmitted by the base station.
  • the terminal may use the representative time alignment value as the time alignment value of another serving cell. This is because the same time alignment value is applied to the serving cells belonging to the same time alignment group. By blocking unnecessary random access procedures in a specific serving cell, duplication, complexity, and overhead of the random access procedure can be reduced.
  • the base station may determine which terminal transmits the random access preamble through which serving cell based on the received random access preamble and time / frequency resources.
  • the UE proceeds with a random access procedure for the secondary serving cell according to the PDCCH order of the base station, the UE already has a unique identifier of the UE in the main serving cell, for example, a C-RNTI (Cell-Radio Network). Temporary Identifier) is secured.
  • the base station may use the C-RNTI of the terminal as needed, and may transmit downlink information to the terminal using the C-RNTI.
  • the downlink information includes a random access response message that is a response to the reception of the random access preamble.
  • the base station sets a value of a new data indicator (NDI) (S510).
  • the new data indicator is a parameter used to perform HARQ and indicates whether a transport block (TB) for a terminal is first transmitted or retransmitted.
  • the transport block includes a random access response message.
  • a transport block may be defined as a variable number of bits based on downlink resource allocation in a single subframe.
  • the new data indicator may be transmitted in a subframe period.
  • the new data indicator may correspond to the transport block either 1: 1 or 1: 2 (in case of spatial multiplexing).
  • the new data indicator is, for example, 1 bit, and its value may or may not be toggled every subframe period.
  • the toggle means that the corresponding transport block is new transmission.
  • the base station transmits the random access response message to the terminal for the first time, the base station sets to toggle the new data indicator corresponding to the random access response message.
  • the value of the new data indicator when the value of the new data indicator is not toggled when compared to the previous value, it means that the corresponding transport block is retransmitted in the HARQ process.
  • the base station when the base station retransmits the random access response message to the terminal, the base station sets not to toggle the value of the new data indicator corresponding to the random access response message.
  • the terminal transmits the transmission block for the corresponding transport block regardless of the toggle. It is determined that this is a new transmission. For example, when the base station first transmits a random access response message to the terminal, the base station sets the first new data indicator corresponding to the random access response message.
  • the base station generates a DCI including the new data indicator (S515).
  • DCI including the new data indicator may be defined as shown in the following table.
  • Resource allocation header (Resource allocation type 0 / Type 1)-1 bit. If the downlink bandwidth is less than or equal to 10PRB, no resource allocation header is present and resource allocation type 0 is assumed.
  • Resource block assignment field Resource allocation type 0 - Bits provide resource allocation Resource allocation type 1 -For this field Bits are used as headers specific to this resource allocation type, indicating the selected resource block subset. 1 bit indicates the shift of resource allocation span - Bits provide resource allocation. In value, the value of P depends on the number of downlink resources.
  • DAI Downlink assignment index
  • DCI is Format 1, and resource allocation header, resource block allocation field, modulation and coding scheme / duplicate version, HARQ process number, new data indicator, repetitive version, TPC command, carrier indicator, downlink allocation index It includes.
  • Each field of the DCI is sequentially mapped to A information bits a 0 to a A-1 . For example, if DCI is mapped to information bits of a total of 44 bits in length, each DCI field is sequentially mapped to a 0 to a 43 .
  • DCI formats 0, 1A, 3, and 3A may all have the same payload size. DCI may be called PDCCH payload.
  • the terminal adds a cyclic redundancy check (CRC) parity bit to the generated DCI (S520), and scrambles the added CRC as its own C-RNTI (S525). Scrambled may also be called masking.
  • the PDCCH to which the CRC scrambled with DCI and C-RNTI is mapped is called PDCCH scambled with C-RNTI.
  • the specific process of scrambling is as follows. Let the payloads of the PDCCH be a 0 , a 1 , a 2 , ..., a A-1 , and let the CRC parity bits be p 0 , p 1 , p 2 , ..., p L-1 .
  • the base station transmits the scrambled PDCCH and the PDSCH to which the random access response message is mapped to the terminal (S530).
  • the random access response message may be mapped to the PDSCH alone, or may be multiplexed with other data in a single MAC PDU and mapped to the PDSCH.
  • the random access response message is transmitted to the terminal through the PDSCH indicated by the PDCCH scrambled with the C-RNTI of the terminal.
  • the random access response message may be transmitted on the secondary serving cell.
  • the resource used for transmission of the PDSCH to which the random access response message is mapped is indicated by the resource block allocation field in the DCI of Table 3.
  • the random access response message may be transmitted through a scheduling cell for the secondary serving cell.
  • the common search space is allocated a PDCCH scrambled by random access (RA) -RNTI. Since the common search space is not defined in the secondary serving cell and only the UE-specific search space is defined, the terminal may receive the PDCCH scrambled by the RA-RNTI and the random access response message indicated by the PDCCH on the secondary serving cell. Can not.
  • RA random access
  • the terminal in order to receive a random access response message in the secondary serving cell, the terminal has no choice but to use the terminal-specific search space. Since the PDCCH scrambled by the C-RNTI is allocated in the UE-specific search space, the base station indicates the PDSCH for the random access response message as the PDCCH scrambled by the C-RNTI.
  • the random access response message may include a timing advance command (TAC) field.
  • TAC timing advance command
  • the base station measures a relative change in the current uplink time relative to the reference time based on the random access preamble received from the terminal, and reflects the measured value in a timing advance command field (TACF).
  • the measured change in the uplink time may be an integer multiple of the sampling time T s , for example 16T s .
  • the time advance command field indicates a time alignment value for equally adjusting the uplink time of all the serving cells in the time alignment group.
  • the time alignment value can be given by a specific index.
  • the reference time may be determined differently for each downlink and uplink by the base station.
  • the reference time may be, for example, the transmission reference time point of the downlink signal transmitted by the base station and the reception reference time point of the uplink signal expected by the base station.
  • the downlink transmission reference time of each serving cell may vary within 0 ⁇ s to 1.3 ⁇ s.
  • EPDCCH Extended PDCCH
  • RB pair may be defined as an RB for each of two slots constituting one subframe, and may be defined as a pair when each RB is configured as one pair.
  • each RB constituting the RB pair may not be configured with slots having the same time.
  • it may be composed of RBs existing in the same frequency band or may be composed of RBs existing in different frequency bands.
  • the terminal determines whether a random access response message (RAR) has been successfully received (S535).
  • the following conditions i) and ii) must be met for successful reception of a random access response message.
  • a random access response message will be received during a given RA window period.
  • the receiving of the random access response message may include receiving a PDCCH scrambled with C-RNTI using a C-RNTI in a terminal-specific search space of a secondary serving cell, and receiving the PDCCH scrambled with the C-RNTI.
  • the UE receives the PDCCH scrambled with the C-RNTI, the UE searches for the PDCCH in the UE-specific search space of the secondary serving cell, performs channel decoding, descrambling with the C-RNTI, CRC Removing the parity bit.
  • the terminal may determine whether the random access response message is new by using the new data indicator.
  • the new data indicator is included in the DCI of the PDCCH scrambled with C-RNTI. If the new data indicator is initially transmitted for the random access response message, or if the value of the new data indicator is toggled compared to the previous value, the terminal considers the random access response message to be new. Otherwise, the terminal assumes that the random access response message has been resent.
  • the terminal receives the random access response message within the random access window interval and the random access response message is due to new transmission, the terminal is considered to have successfully received the random access response message.
  • the terminal does not receive the random access response message within the random access window interval, or if the random access response message is retransmission, the terminal is considered to have failed to receive the random access response message. In this case, the terminal ignores the received random access response message and transmits a new random access preamble to the base station.
  • the terminal transmits an ACK / NACK signal indicating the success or failure of decoding of the PDSCH itself to which the random access response message is mapped, to the base station. This is performed separately from the progress of the random access procedure. Since the random access response message is indicated by the PDCCH scrambled with the C-RNTI, and the random access response message itself is also downlink data, the HARQ procedure can be equally applied. Accordingly, the UE transmits an ACK signal when the decoding of the PDSCH to which the random access response message is mapped is successful, and transmits an NACK signal when decoding of the PDSCH to which the random access response message is mapped is failed.
  • Successful decoding of the PDSCH to which the random access response message is mapped is different from successful reception of the random access response message.
  • Successful reception of the random access response message is defined in terms of the success of the random access procedure rather than HARQ, and the conditions of i) and ii) must be satisfied.
  • the UE checks the time advance command field in the random access response message and adjusts an uplink time for the corresponding secondary serving cell by a time alignment value according to the time advance command (S540). .
  • the uplink time TA adjusted by the time alignment value may be calculated by Equation 1 below.
  • N TA is a time alignment value, which is variably controlled by a time advance command of a base station
  • N TA offset is a value fixed by a frame structure.
  • T s is the sampling period.
  • N TA when the time alignment value N TA is positive, it indicates adjusting to advance the uplink time, and when it is negative, it adjusts to delaying the uplink time.
  • N TA be the maximum value.
  • M may be defined as 2047.
  • the maximum value of the time alignment value defined by K bits is not always fixed to (2 K -1). That is, the maximum value of the time alignment value defined by K bits may be one of 2 K-1 to (2 K- 1) values.
  • the maximum value of the time alignment value defined by 11 bits may be 1282, which is one of values in the range of 1024 to 2047.
  • N TA time alignment value
  • N TA-old N TA value
  • N TA-new new N TA value
  • T i is an index value, and 0, 1, 2, ..., 63.
  • the time alignment value N TA may be determined as a difference value with respect to the time alignment value of the TAG included in the main serving cell as shown in Equation 3.
  • N TA-TAG (Sn) is a time alignment value for a time alignment group having an index value of n without including a main serving cell (PCell), and N TA-TAG (p) is a main serving.
  • T in T i is the value for the time alignment of the group index value n.
  • M the maximum value of the time alignment value
  • the maximum value of the time alignment value defined by K bits is not always fixed to (2 K -1). That is, the maximum value of the time alignment value defined by K bits may be one of 2 K-1 to 2 K- 1 values. For example, the maximum value of the time alignment value defined by 11 bits may be 1282, which is one of values in the range of 1024 to 2047.
  • the time alignment value NTA may be determined as shown in Equation 4. Where the constant value 31 is replaced with zero.
  • the terminal may adjust the uplink time for all serving cells using the propagation delay time of the downlink transmission.
  • the UE If there is a time advance command and / or a time alignment group index for a plurality of time alignment groups in the random access response message, the UE transmits an uplink time for the serving cell (s) of each time alignment group to the corresponding time advance command. Adjust by time alignment value accordingly.
  • step S500 is not performed.
  • step S505 the terminal does not use the dedicated random access preamble. Instead, the UE randomly selects one preamble signature from the random access preamble signature set and transmits a random access preamble according to the selected preamble signature to the base station through the secondary serving cell using the PRACH resource.
  • the BS may additionally transmit a contention resolution message indicating that the random access is successfully terminated to the UE. This is to inform that random access is successfully terminated because contention-based transmission of random access preambles may collide when contention-based.
  • FIG. 3 is a block diagram illustrating a structure of a random access response message according to an embodiment of the present invention.
  • the random access response message may be configured in the format of the MAC PDU 600.
  • MAC PDU 600 is contained within a single transport block.
  • the MAC PDU 600 includes a MAC header 610, at least one MAC control element (CE), 620-1, ..., 620-n, and at least one MAC SDU (Service Data Unit). , 630-1,..., 630-m) and padding 640.
  • CE MAC control element
  • 620-1 MAC control element
  • 620-n MAC control element
  • MAC SDU Service Data Unit
  • MAC control elements 620-1, ..., 620-n are control messages generated by the MAC layer.
  • the MAC header 610 includes at least one subheader 610-1, 610-2, 610-3, 610-4,..., 610-k, each subheader 610-k. 1, 610-2, 610-3, 610-4, ..., 610-k correspond to one MAC SDU or one MAC control element or padding 640.
  • the order of subheaders 610-1, 610-2, 610-3, 610-4,..., 610-k is the corresponding MAC SDUs 630-1, 630 in the MAC PDU 600. m), MAC control elements 620-1, ..., 620-n) or padding 640 in the same order.
  • Each subheader 610-1, 610-2, 610-3, 610-4,..., 610-k includes four fields such as R, R, E, LCID, or R, R, E It can contain six fields: LCID, F, L.
  • Subheaders containing four fields are subheaders corresponding to MAC control elements 620-1, ..., 620-n or padding 640, and subheaders containing six fields are MAC SDUs 630.
  • the Logical Channel ID (LCID) field may identify a logical channel corresponding to the MAC SDUs 630-1,..., 630-m, or may include a MAC control element 620,.
  • An identification field for identifying the type of padding, and each subheader 610-1, 610-2, 610-3, 610-4, ..., 610-k has an octet structure.
  • the LCID field may be 5 bits.
  • the LCID field indicates whether the MAC control elements 620-1, ..., 620-n are MAC control elements for indicating activation / deactivation of the serving cell as shown in Table 4, or contention for contention resolution between terminals.
  • Contention Resolution Identity Identifies whether it is a MAC control element or a MAC control element for time advance commands.
  • the MAC control element for the time forward command is the MAC control element used for time alignment in random access.
  • the corresponding MAC control element is a MAC control element for the time forward command.
  • the MAC control element for the time advance command may be 8 bits as one octet structure, and the number of bits used in the time advance command field TACF may be 6 bits. The remaining two bits are reserved bits.
  • the LCID field may be given as shown in Table 5.
  • LCID Index LCID value 00000 CCCH 00001-01010 Logical channel identifier 01011-11001 Reserved 11010 Extended Timing Advance Command 11011 Activation / deactivation 11100 UE contention resolution identifier 11101 Time Forward Command (TAC) 11110 DRX command 11111 padding
  • the corresponding MAC control element is a MAC control element for time advance commands for the plurality of serving cells.
  • the MAC control element for the time advance command is, for example, six octets and has a total of 48 bits, and the number of bits used in the time advance command field (TACF) may be 11 bits. The remaining bits are used as reserved bits, uplink grants or as temporary C-RNTIs.
  • the LCID field may identify that the MAC control elements 620-1,..., 620-n are MAC control elements for the random access response as shown in Table 6.
  • the corresponding MAC control element is a MAC control element for the random access response of the secondary serving cell.
  • the MAC control element for the random access response is, for example, p octets, and includes only 11-bit time forward command field (TACF), or in addition to the time forward command field, a backoff indicator field and an uplink grant. (uplink grant) may be included.
  • TACF time forward command field
  • Padding 640 is a predetermined number of bits added to make the size of MAC PDU 600 constant.
  • the MAC control elements 620-1,..., 620-n, the MAC SDUs 630-1,..., 630-m and the padding 640 together are also referred to as MAC payloads.
  • FIG. 4 is a block diagram illustrating a structure of a random access response message according to another example of the present invention.
  • the random access response message may be configured in the format of the RAR MAC PDU 700.
  • the RAR MAC PDU 700 includes a MAC header 710, at least one MAC RAR field 715-1,..., 715-n, and padding 740.
  • the MAC header 710 includes at least one subheader 705-1, 705-2,..., 705-n, each subheader 705-1, 705-2,... .705-n corresponds to each MAC RAR field 715-1,..., 715-n.
  • the order of subheaders 705-1, 705-2, ..., 705-n is the corresponding MAC RAR fields 715-1, 715-2, ..., 715- in RAR MAC PDU 700. n) may be arranged in the same order.
  • the MAC header 710 may further include a backoff indicator (BI) subheader 701.
  • the backoff indicator (BI) subheader 701 includes a backoff indicator.
  • the MAC RAR field corresponding to the backoff indicator subheader 701 is not present in the RAR MAC PDU 700.
  • the backoff indicator subheader 701 is a parameter that is commonly applied to all terminals that receive the random access response message. If the UE has never received the backoff indicator, the backoff parameter becomes '0ms' as an initial value or a default value.
  • the backoff indicator subheader 701 may be included in the RAR MAC PDU 700 only when the base station needs to change the backoff parameter for the corresponding serving cell. For example, when the random access preamble transmission through the serving cell is more than a predetermined level or when the base station continuously fails to receive the random access preamble, the base station uses a backoff indicator subheader 701 that increases the backoff parameter value. It can be included in the RAR MAC PDU 700 and transmitted.
  • the backoff indicator subheader 701 may include five fields, such as E, T, R, R, and BI.
  • E field is a field indicating whether the corresponding subheader is the last subheader or not.
  • the T field is a field indicating whether the corresponding subheader is a subheader including a random access preamble ID (RAPID) or a backoff indicator subheader.
  • RAPID random access preamble ID
  • the R field indicates a reserved bit.
  • the BI field is defined with 4 bits. The BI field value indicates one of 16 index values as shown in Table 5 below.
  • the BI field may be applied when the terminal determines that the random access procedure is not successful. For example, when the terminal fails to receive the random access response message when the terminal proceeds with the random access procedure later, including the current random access procedure, the terminal increases the number of random access procedure retries by one. If the increased number of random access procedure retries is less than or equal to the maximum number of retries set by the base station, the terminal may retry the random access procedure. In this case, when the UE receives the BI field and the backoff parameter value is not 0, the UE selects one of the value between the backoff parameter value and 0 based on the uniform probability distribution function.
  • the terminal delays the start or restart of the random access procedure by the selected value. For example, when the BI field value is '1000', this corresponds to a value of 8, so the backoff parameter value is 160ms according to Table 5 below. Therefore, the terminal selects one of the values within 0 to 160ms with the same probability. If the terminal selects 83ms, the terminal delays restart of the random access procedure for 83ms when it determines that the random access has failed, and restarts the random access procedure in the fastest subframe where the random access procedure is possible after 83ms.
  • the RAPID is information for confirming whether or not the RAR MAC PDU for the random access preamble transmitted by the corresponding terminal among the random access preambles transmitted through the same time / frequency resource by the multiple terminals.
  • the subheaders 705-1, 705-2, ..., 705-n including the RAPID may include three fields, E, T, and RAPID.
  • the E field is a field indicating whether the corresponding subheader is the last subheader or not.
  • the T field is a field indicating whether the corresponding subheader is a subheader including a RAPID or a backoff indicator subheader.
  • the RAPID field is defined by 6 bits and represents information about a random access preamble allocated by the base station or a random access preamble selected by the terminal.
  • FIG. 5 is an explanatory diagram illustrating a method of determining, by a terminal, a successful reception of a random access response message according to an embodiment of the present invention. This is a case where the terminal succeeds in receiving a random access response message.
  • a terminal receives a random access start indicator indicating a start of a random access procedure from a base station in a specific serving cell.
  • the random access start indicator is also called a PDCCH order.
  • the terminal transmits the random access preamble to the base station through the PRACH in subframe # 0 where the random access preamble can be transmitted based on the PRACH configuration information for the specific serving cell. This can be applied to both contention-based random access procedures or non- contention-based random access procedures.
  • T CP is a parameter representing a section of a cyclic prefix (CP) of a PRACH symbol
  • T SEQ is a parameter representing a sequence section
  • T S represents a sampling time.
  • the number of subframes occupied by the PRACH may be variably defined.
  • the sum of the CP and the sequence is smaller than that of the subframe, and the maximum cell size (two times the radius) that can consider propagation delay is the smallest.
  • the sum of the CP and the sequence is one or more subframes.
  • two occupied subframes of the PRACH two occupied subframes of the PRACH
  • preamble format 3 three occupied subframes of the PRACH.
  • the UE starts a random access window for checking whether a random access response message is received in subframe # 3 plus 3 from subframe # 0 through which the random access preamble is transmitted.
  • the random access window period is defined as a total of five subframes from subframe # 3 to subframe # 7.
  • the length of the random access window interval may be smaller or larger than five subframes.
  • the random access window interval is a parameter determined by the base station and a cell specific parameter. Generally it has a length of 3ms to 10ms.
  • the UE receives the PDCCH scrambled with the C-RNTI and receives the PDSCH indicated by the PDCCH.
  • the terminal checks whether a random access response message exists in the data of the received PDSCH. This is called the processing time for P1.
  • the random access response message may have a MAC PDU structure as shown in FIG. 3.
  • the terminal determines whether the random access response message has been successfully received. To this end, the terminal i) confirms whether the random access response message was received during the random access window period, and ii) confirms that the random access response message was received by the new transmission from the value of the new data indicator in the DCI mapped to the PDCCH. do. If all of the conditions i) and ii) are satisfied, the terminal is considered to have successfully received the random access response message.
  • an additional processing section for determining whether there is a random access response message for the random access preamble transmitted by the UE through the secondary serving cell in the MAC PDU may be required.
  • the processing interval required to confirm whether the random access response message is received during the random access window interval may be larger than the processing interval for P1. For example, a total of 6 ms processing interval may be required by adding 3 ms of processing interval for P1 and 3 ms for checking whether a random access response message is present in the MAC layer.
  • the terminal transmits an ACK signal indicating that the PDSCH has been successfully received to the base station in subframe # 9, which is a time point determined by the HARQ rule.
  • FIG. 6 is an explanatory diagram illustrating a method of determining, by a terminal, a reception success of a random access response message according to another embodiment of the present invention. This is a case where the terminal fails to receive the random access response message.
  • a terminal receives a random access start indicator indicating a start of a random access procedure from a base station in a specific serving cell.
  • the terminal transmits the random access preamble P1 to the base station through the PRACH in subframe # 0 where the random access preamble can be transmitted based on the PRACH configuration information about the specific serving cell. This can be applied to both contention-based random access procedures or non- contention-based random access procedures.
  • the UE starts a random access window for confirming whether a random access response message is received in subframe # 3 plus 3 from subframe # 0 through which the random access preamble P1 is transmitted.
  • the random access window period is defined as a total of five subframes from subframe # 3 to subframe # 7.
  • the base station receives the P1, checks the C-RNTI of the terminal from the P1, and transmits the PDCCH1 scrambled with the C-RNTI and the PDSCH1 mapped with the random access response message to the terminal in subframe # 4.
  • the new data indicator in the DCI mapped to PDCCH1 indicates that the random access response message is a new transmission.
  • the UE In connection with performing HARQ, the UE receives the PDCCH1 scrambled with the C-RNTI and fails to decode the PDSCH2 indicated by the PDCCH1. Accordingly, the terminal transmits the NACK signal to the base station in subframe # 8, which is a time point determined by the HARQ rule.
  • the UE fails to decode the PDSCH and cannot know whether the PDSCH includes a random access response message. Therefore, since the condition of i) is not satisfied, the terminal is considered to have failed in receiving the random access response message.
  • the terminal transmits the random access preamble again based on the end time of the random access window. For example, the UE transmits the random access preamble P2 in subframe # 10. When the previous random access preamble is transmitted in subframe n, the UE should transmit the random access preamble in subframe n + k (k ⁇ 6) in which the first PRACH resource is a valid subframe. If the PDSCH decoding is successful, the timing at which the UE confirms that the random access response message does not exist may be after an additional processing period for determining whether the random access response message exists.
  • the success or failure of the random access response message reception may be determined 6 ms after the total random access response message reception processing interval from the most recent subframe in which the PDSCH decoding in the random access window succeeds.
  • the terminal retransmits the random access preamble based on the timing of determining whether the random access response message has been successfully received or not, rather than the type of random access window.
  • the decoding of the PDSCH indicating that the NDI is new data is successful in the last random access window subframe, a random access response message is received 6 ms later (subframe # 13) at the end of the random access window (subframe # 7). Since the UE can recognize the failure, the UE cannot transmit the random access preamble P2 in subframe # 10. Therefore, after that, the first PRACH resource is transmitted in # 20, which is a valid subframe.
  • the base station Since the base station receives the NACK signal from the terminal, the base station retransmits the random access response message transmitted in subframe # 4 in subframe # 12. At this time, the new data indicator of the PDCCH2 indicates retransmission (ReTx). In determining whether the random access response message is successfully received, since both i) requirements and ii) requirements are not satisfied, the terminal ignores the retransmitted random access response message.
  • the base station transmits the PDSCH3 indicated by the PDCCH3 and PDCCH3 scrambled with the C-RNTI for the P2 to the UE in subframe # 15.
  • the subframe # 15 belongs to the random access window section, and the new data indicator indicates new transmission, thereby satisfying both i) and ii) requirements. Accordingly, the terminal determines that the random access response message is successfully received.
  • FIG. 7 is a flowchart illustrating a method of performing a random access procedure by a terminal according to an embodiment of the present invention.
  • the terminal receives preamble allocation information from the base station (S1000).
  • the terminal selects a dedicated random access preamble based on the preamble allocation information and transmits the selected dedicated random access preamble to the base station on the secondary serving cell (S1005).
  • the terminal starts the random access window (S1010), and determines whether the reception of the random access response message (RAR) is successful (S1015).
  • Successful reception of the random access response message must satisfy the following two requirements. i) a requirement to receive the PDCCH scrambled with the C-RNTI of the UE and the PDSCH indicated by the PDCCH within the random access window interval, and ii) a requirement for the new data indicator in the PDCCH to indicate new transmission.
  • the terminal If both of the above requirements are satisfied, the terminal is considered to have successfully received the random access response message.
  • the terminal analyzes the time advance command field in the random access response message to obtain a time alignment value, and aligns the uplink times of all serving cells in the time alignment group including the corresponding secondary serving cell based on the obtained time alignment value. (S1020).
  • the terminal transmits an ACK signal to the base station according to the HARQ procedure (S1025).
  • the terminal transmits a new random access preamble to the base station at a predetermined time point (S1030). And, the terminal transmits the ACK / NACK signal to the base station according to the HARQ procedure (S1025).
  • FIG. 8 is a flowchart illustrating a method of performing a random access procedure by a base station according to an embodiment of the present invention.
  • the base station transmits preamble allocation information to the terminal (S1100).
  • the base station receives the dedicated random access preamble from the terminal on the secondary serving cell (S1105).
  • the base station sets the value of the new data indicator (NDI) corresponding to the random access response message to either new transmission or retransmission (S1110).
  • the base station generates a DCI including the new data indicator (S1115).
  • the base station adds the CRC parity bit to the generated DCI (S1120), and scrambles the CRC parity bit with a unique C-RNTI of the terminal (S1125).
  • the base station transmits the PDCCH to which the DCI scrambled with the C-RNTI is mapped and the PDSCH indicated by the PDCCH and to which the random access response message is mapped (S1130).
  • the random access response message includes a time forward command field, and the time forward command field indicates a time alignment value that is information about an uplink time to be adjusted in the secondary serving cell.
  • the base station receives an ACK / NACK signal from the terminal indicating the successful reception of the PDSCH (S1135).
  • FIG. 9 is a block diagram illustrating a terminal and a base station according to an embodiment of the present invention.
  • the terminal 1200 includes a receiver 1205, a terminal processor 1210, and a transmitter 1220.
  • the terminal processor 1210 includes an information analyzer 1211 and a random access processor 1212.
  • the receiver 1205 receives, from the base station 1250, preamble allocation information, a PDCCH scrambled with C-RNTI, and a PDSCH indicated by the PDCCH and mapped with a random access response message.
  • the DCI including the new data indicator is mapped to the PDCCH scrambled with C-RNTI.
  • PDSCH is received on the secondary serving cell.
  • the information analyzing unit 1211 interprets the indications of the fields included in the DCI. For example, the information analysis unit 1211 determines whether the new data indicator means new transmission of the random access response message or retransmission of the random access response message. The information analyzing unit 1211 then transmits the determination result regarding the new transmission or retransmission of the random access response message to the random access processing unit 1212.
  • the random access processor 1212 starts a random access window after a predetermined time or subframe has elapsed from the time when the transmitter 1220 transmits the random access preamble.
  • the receiver 1205 determines whether the time when the random access response message is received falls within the random access window section. Based on the determination result of the information analyzing unit 1211 and the determination result regarding the reception time of the random access response message, the random access processing unit 1212 determines whether the random access response message has been successfully received.
  • the random access processing unit 1212 receives the random access response. The message is considered to have been successfully received.
  • the determination result of the information analysis unit 1211 indicates retransmission of the random access response message, or if the random access response message is not received within the random access window interval, the random access processing unit 1212 determines that the random access response message is successful. As not received.
  • the information analyzer 1211 analyzes the time advance command field in the random access response message to obtain a time alignment value.
  • the random access processor 1212 sorts the uplink times in all serving cells in the time alignment group including the corresponding secondary serving cell based on the obtained time alignment value.
  • the random access processor 1212 generates a new random access preamble at the predetermined time point and sends it to the transmitter 1220, and the transmitter 1220 transmits the new random access preamble to the base station ( 1250).
  • the transmitter 1220 transmits the random access preamble to the base station 1250. In addition, the transmitter 1220 transmits an ACK / NACK signal indicating whether the PDSCH to which the random access response message is mapped is successfully received to the base station 1250 using the HARQ procedure.
  • the base station 1250 includes a transmitter 1255, a receiver 1260, and a base station processor 1270.
  • the base station processor 1270 includes an information generating unit 1271 and a random access processing unit 1272.
  • the transmitter 1255 maps the DCI scrambled by the C-RNTI generated by the information generator 1271 to the PDCCH and transmits the DCI to the terminal 1200.
  • the transmitter 1255 maps the random access response message generated by the random access processor 1272 to the PDSCH and transmits the random access response message to the terminal 1200.
  • the transmitter 1255 transmits the preamble allocation information to the terminal 1200.
  • the receiver 1260 receives a random access preamble from the terminal 1200 on the secondary serving cell. In addition, the receiver 1260 receives an ACK / NACK signal from the terminal 1200 indicating whether the PDSCH to which the random access response message is mapped is successfully received using the HARQ procedure.
  • the information generator 1271 sets the value of the new data indicator (NDI) corresponding to the random access response message to either new transmission or retransmission.
  • the information generator 1271 generates a DCI including the new data indicator.
  • the information generator 1271 adds a CRC parity bit to the generated DCI, scrambles the CRC parity bit with a unique C-RNTI of the terminal 1200, and sends the CRC parity bit to the transmitter 1255.
  • the random access processor 1272 measures an uplink time based on a random access preamble received on the secondary serving cell and calculates a time alignment value. In addition, the random access processing unit 1272 generates a random access response message including a time advance command field indicating a time alignment value, and sends the random access response message to the transmission unit 1255.
  • the random access processor 1272 regenerates a random access response message and sends it to the transmitter 1255.
  • the information generating unit 1271 sets the new data indicator to 'new transmission'.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to an apparatus and method for performing random access in a wireless communication system. The method for performing random access in the terminal of the present invention includes the steps of: transmitting a random access preamble to a base station in a sub-serving cell; starting a random access window; receiving a downlink control channel on which downlink control information including a new data indicator indicating that a new transmission or retransmission of a random access response message is mapped from the base station in the sub-serving cell; and determining whether the random access response message is received in the period of the random access window, and whether the random access response message is successfully received through a physical downlink common channel in the sub-serving cell.

Description

무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법Apparatus and Method for Performing Random Access in Wireless Communication System

본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법에 관한 것이다. The present invention relates to wireless communication, and more particularly, to an apparatus and method for performing random access in a wireless communication system.

일반적인 무선통신 시스템에서는 상향링크와 하향링크간의 대역폭은 서로 다르게 설정되더라도 주로 하나의 반송파(carrier)만을 고려하고 있다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)에서도 단일 반송파를 기반으로 하여, 상향링크와 하향링크를 구성하는 반송파의 수가 1개이고, 상향링크의 대역폭과 하향링크의 대역폭이 일반적으로 서로 대칭적이다. 이러한 단일 반송파 시스템에서 랜덤 액세스는 하나의 반송파를 이용하여 랜덤 액세스를 수행하였다. 그런데, 최근 다중 요소 반송파 시스템(multiple carrier system)이 도입됨에 따라 랜덤 액세스는 여러 개의 요소 반송파(component carrier)를 통해 구현될 수 있게 되었다. In a typical wireless communication system, even though the bandwidth between uplink and downlink is set differently, only one carrier is considered. In the 3rd Generation Partnership Project (3GPP) long term evolution (LTE), based on a single carrier, the number of carriers constituting uplink and downlink is one, and the bandwidth of the uplink and the downlink are generally symmetrical to each other. to be. In this single carrier system, random access is performed using one carrier. However, with the recent introduction of multiple carrier systems, random access can be implemented through multiple component carriers.

다중 요소 반송파 시스템은 반송파 집성(carrier aggregation)을 지원할 수 있는 무선통신 시스템을 의미한다. 반송파 집성이란 조각난 작은 대역을 효율적으로 사용하기 위한 기술로 주파수 영역에서 물리적으로 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내도록 하기 위한 것이다. The multi-component carrier system refers to a wireless communication system capable of supporting carrier aggregation. Carrier aggregation is a technique for efficiently using fragmented small bands in order to combine physically non-continuous bands in the frequency domain and to have the same effect as using logically large bands.

단말이 망(network)에 접속하기 위해서는 랜덤 액세스(random access) 과정을 거친다. 랜덤 액세스 과정은 경합 기반 랜덤 액세스 과정(contention based random access procedure)과 비경합 기반 랜덤 액세스 과정(non-contention based random access procedure)으로 구분될 수 있다. 경합 기반 랜덤 액세스 과정과 비경합 기반 랜덤 액세스 과정의 가장 큰 차이점은 랜덤 액세스 프리앰블(Random access preamble)이 하나의 단말에게 전용(dedicated)으로 지정되는지 여부에 대한 것이다. 비경합 기반 랜덤 액세스 과정에서는 단말이 자신에게만 지정된 전용 랜덤 액세스 프리앰블을 사용하기 때문에 다른 단말과의 경합(또는 충돌)이 발생하지 않는다. 여기서 경합이란 2개 이상의 단말이 동일한 자원을 통해 동일한 랜덤 액세스 프리앰블을 사용하여 랜덤 액세스 과정을 시도하는 것을 말한다. 경합기반 랜덤 액세스 과정에서는 단말이 임의로 선택한 랜덤 액세스 프리앰블을 사용하기 때문에 경합 가능성이 존재한다. In order to access the network, the UE goes through a random access process. The random access process may be divided into a contention based random access procedure and a non-contention based random access procedure. The biggest difference between the contention-based random access process and the non- contention-based random access process is whether a random access preamble is assigned to one UE. In the contention-free random access process, since the terminal uses a dedicated random access preamble designated only to the terminal, contention (or collision) with another terminal does not occur. Here, contention refers to two or more terminals attempting a random access procedure using the same random access preamble through the same resource. In the contention-based random access process, there is a possibility of contention because the terminal uses a randomly selected random access preamble.

단말이 네트워크로 랜덤 액세스 과정을 수행하는 목적은 초기 접속(initial access), 핸드오버(handover), 무선자원 요청(Scheduling Request), 시간 정렬(timing alignment) 등이 있을 수 있다. The purpose of the UE to perform a random access process to the network may be an initial access (initial access), handover (handover), radio resource request (Scheduling Request), timing alignment (timing alignment).

본 발명의 기술적 과제는 무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법을 제공함에 있다. An object of the present invention is to provide an apparatus and method for performing random access in a wireless communication system.

본 발명의 다른 기술적 과제는 부서빙셀의 단말 특정 검색 공간을 통해 수신된 PDCCH를 이용하여 랜덤 액세스 응답 메시지를 수신하는 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide an apparatus and method for receiving a random access response message using a PDCCH received through a terminal specific search space of a secondary serving cell.

본 발명의 또 다른 기술적 과제는 HARQ에 수반된 랜덤 액세스 절차의 수행 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide an apparatus and method for performing a random access procedure accompanying HARQ.

본 발명의 또 다른 기술적 과제는 신규 데이터 지시자와 랜덤 액세스 윈도우를 기반으로 랜덤 액세스 응답 메시지의 수신 성공 여부를 판별하는 방법을 제공함에 있다. Another technical problem of the present invention is to provide a method of determining whether a random access response message is successfully received based on a new data indicator and a random access window.

본 발명의 일 양태에 따르면, 다중 요소 반송파 시스템에서 단말에 의한 랜덤 액세스의 수행방법을 제공한다. 상기 방법은 랜덤 액세스 프리앰블을 부서빙셀(secondary serving cell)상에서 상기 기지국으로 전송하는 단계, 랜덤 액세스 윈도우(RA window)를 시작하는 단계, 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송을 지시하는 신규 데이터 지시자(new data indicator: NDI)를 포함하는 하향링크 제어정보(downlink control information: DCI)가 맵핑된 물리 하향링크 제어채널을 상기 부서빙셀상에서 상기 기지국으로부터 수신하는 단계, 및 상기 랜덤 액세스 응답 메시지가 상기 랜덤 액세스 윈도우의 구간내에서 수신되는지 여부와, 상기 신규 데이터 지시자가 신규 전송을 지시하는지 여부를 기반으로, 상기 랜덤 액세스 응답 메시지가 상기 부서빙셀상의 물리 하향링크 공용채널을 통해 성공적으로 수신되는지를 판단하는 단계를 포함한다. According to an aspect of the present invention, a method of performing random access by a terminal in a multi-component carrier system is provided. The method includes transmitting a random access preamble to a base station on a secondary serving cell, starting a random access window, and a new data indicator indicating new transmission or retransmission of a random access response message. receiving a physical downlink control channel to which downlink control information (DCI) including a new data indicator (NDI) is mapped from the base station on the secondary serving cell, and the random access response message Whether the random access response message is successfully received through the physical downlink common channel on the secondary serving cell based on whether the received data is received within a section of a random access window and whether the new data indicator indicates new transmission. Determining.

본 발명의 다른 양태에 따르면, 다중 요소 반송파 시스템에서 랜덤 액세스를 수행하는 단말을 제공한다. 상기 단말은 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송을 지시하는 신규 데이터 지시자(NDI)를 포함하는 하향링크 제어정보(DCI)가 맵핑된 물리 하향링크 제어채널을 부서빙셀상에서 상기 기지국으로부터 수신하는 수신부, 랜덤 액세스 프리앰블을 부서빙셀(secondary serving cell)상에서 상기 기지국으로 전송하는 전송부, 상기 신규 데이터 지시자가 신규 전송을 지시하는지 여부를 해석하는 정보 해석부, 및 상기 랜덤 액세스 프리앰블을 생성하고, 상기 할당된 랜덤 액세스 프리앰블의 전송에 의해 랜덤 액세스 윈도우(RA window)를 시작하고, 상기 랜덤 액세스 응답 메시지가 상기 랜덤 액세스 윈도우의 구간내에서 수신되는지 여부와 상기 정보 해석부의 해석결과를 기반으로 상기 랜덤 액세스 응답 메시지가 성공적으로 수신되는지를 판단하는 랜덤 액세스 처리부를 포함한다. According to another aspect of the present invention, a terminal for performing random access in a multi-component carrier system is provided. The terminal receives a physical downlink control channel to which downlink control information (DCI) including a new data indicator (NDI) indicating new transmission or retransmission of a random access response message is mapped from the base station on the secondary serving cell A transmitter for transmitting a random access preamble to the base station on a secondary serving cell, an information analyzer for interpreting whether the new data indicator indicates new transmission, and generating the random access preamble, Starts a random access window (RA window) by transmitting an allocated random access preamble, and determines whether the random access response message is received within a section of the random access window and based on an analysis result of the information analyzer; Random to determine whether the response message is received successfully And a process processing unit.

부서빙셀에서 단말 특정 검색 공간만이 정의됨으로 인해 랜덤 액세스 절차가 수행될 수 없는 한계를 극복한다. 또한, 랜덤 액세스 절차와 별개로 진행되는 HARQ 절차의 파라미터를 랜덤 액세스 응답 메시지의 성공 여부를 판별하는데 사용함으로써, 단말의 고유한 식별자를 사용한 랜덤 액세스 절차의 구현이 가능해진다. Since only the UE-specific search space is defined in the secondary serving cell, the random access procedure is overcome. In addition, by using the parameters of the HARQ procedure that proceeds separately from the random access procedure to determine the success of the random access response message, it is possible to implement a random access procedure using a unique identifier of the terminal.

도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system to which the present invention is applied.

도 2는 본 발명의 일 예에 따른 랜덤 액세스 절차를 설명하는 흐름도이다. 2 is a flowchart illustrating a random access procedure according to an embodiment of the present invention.

도 3은 본 발명의 일 예에 따른 랜덤 액세스 응답 메시지의 구조를 나타내는 블록도이다. 3 is a block diagram illustrating a structure of a random access response message according to an embodiment of the present invention.

도 4는 본 발명의 다른 예에 따른 랜덤 액세스 응답 메시지의 구조를 나타내는 블록도이다. 4 is a block diagram illustrating a structure of a random access response message according to another example of the present invention.

도 5는 본 발명의 일 예에 따른 단말이 랜덤 액세스 응답 메시지의 수신 성공을 판단하는 방법을 설명하는 설명도이다. 5 is an explanatory diagram illustrating a method of determining, by a terminal, a successful reception of a random access response message according to an embodiment of the present invention.

도 6은 본 발명의 다른 예에 따른 단말이 랜덤 액세스 응답 메시지의 수신 성공을 판단하는 방법을 설명하는 설명도이다.6 is an explanatory diagram illustrating a method of determining, by a terminal, a reception success of a random access response message according to another embodiment of the present invention.

도 7은 본 발명의 일 예에 따른 단말에 의한 랜덤 액세스 절차의 수행방법을 나타내는 순서도이다. 7 is a flowchart illustrating a method of performing a random access procedure by a terminal according to an embodiment of the present invention.

도 8은 본 발명의 일 예에 따른 기지국에 의한 랜덤 액세스 절차의 수행방법을 나타내는 순서도이다.8 is a flowchart illustrating a method of performing a random access procedure by a base station according to an embodiment of the present invention.

도 9는 본 발명의 일 예에 따른 단말과 기지국을 도시한 블록도이다. 9 is a block diagram illustrating a terminal and a base station according to an embodiment of the present invention.

이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.

또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.

도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system to which the present invention is applied.

도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 셀(cell)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. The cell can in turn be divided into a number of regions (called sectors).

단말(12; mobile station, MS)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토(femto) 기지국, 가내 기지국(Home nodeB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 셀은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station, a home nodeB, a relay, and the like. . The cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells and femtocells.

이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.In the following, downlink means communication from the base station 11 to the terminal 12, and uplink means communication from the terminal 12 to the base station 11. In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.

반송파 집성(carrier aggregation; CA)은 복수의 반송파를 지원하는 것으로서, 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(component carrier; CC)라고 한다. 각 요소 반송파는 대역폭과 중심 주파수로 정의된다. 반송파 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(radio frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 요소 반송파가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다. Carrier aggregation (CA) supports a plurality of carriers, also referred to as spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CCs). Each component carrier is defined by a bandwidth and a center frequency. Carrier aggregation is introduced to support increased throughput, to prevent cost increase due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five component carriers are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.

반송파 집성은 주파수 영역에서 연속적인 요소 반송파들 사이에서 이루어지는 인접(contiguous) 반송파 집성과 불연속적인 요소 반송파들 사이에 이루어지는 비인접(non-contiguous) 반송파 집성으로 나눌 수 있다. 하향링크와 상향링크 간에 집성되는 반송파들의 수는 다르게 설정될 수 있다. 하향링크 요소 반송파 수와 상향링크 요소 반송파 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.Carrier aggregation may be divided into contiguous carrier aggregation between continuous component carriers in the frequency domain and non-contiguous carrier aggregation between discontinuous component carriers. The number of carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink component carriers and the number of uplink component carriers are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.

요소 반송파들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 요소 반송파들이 사용된다고 할 때, 5MHz 요소 반송파(carrier #0) + 20MHz 요소 반송파(carrier #1) + 20MHz 요소 반송파(carrier #2) + 20MHz 요소 반송파(carrier #3) + 5MHz 요소 반송파(carrier #4)과 같이 구성될 수도 있다.The size (ie, bandwidth) of component carriers may be different from each other. For example, assuming that 5 component carriers are used for the configuration of the 70 MHz band, a 5 MHz component carrier (carrier # 0) + 20 MHz component carrier (carrier # 1) + 20 MHz component carrier (carrier # 2) + 20 MHz component carrier (carrier # 3) + 5MHz component carrier (carrier # 4) may be configured.

이하에서, 다중 요소 반송파(multiple component carrier) 시스템이라 함은 반송파 집성을 지원하는 시스템을 말한다. 다중 요소 반송파 시스템에서 인접 반송파 집성 및/또는 비인접 반송파 집성이 사용될 수 있으며, 또한 대칭적 집성 또는 비대칭적 집성 어느 것이나 사용될 수 있다. Hereinafter, a multiple component carrier system refers to a system supporting carrier aggregation. Adjacent carrier aggregation and / or non-adjacent carrier aggregation may be used in a multi-component carrier system, and either symmetric aggregation or asymmetric aggregation may be used.

요소 반송파는 활성화 여부에 따라 주요소 반송파(Primary Component Carrier; PCC)와 부요소 반송파(Secondary Component Carrier; SCC)로 나뉠 수 있다. 주요소 반송파는 항상 활성화되어 있는 반송파이고, 부요소 반송파는 특정 조건에 따라 활성화/비활성화되는 반송파이다. 활성화는 트래픽 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 하나의 주요소 반송파만을 사용하거나, 주요소 반송파와 더불어 하나 또는 그 이상의 부요소 반송파를 사용할 수 있다. 단말은 주요소 반송파 및/또는 부요소 반송파를 기지국으로부터 할당받을 수 있다. The component carrier may be divided into a primary component carrier (PCC) and a secondary component carrier (SCC) according to activation. The major carriers are always active carriers, and the subcarrier carriers are carriers that are activated / deactivated according to specific conditions. Activation refers to the transmission or reception of traffic data being made or in a ready state. Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible. The terminal may use only one major carrier, or may use one or more subcomponent carriers together with the major carrier. The terminal may be assigned a major carrier and / or sub-carrier carrier from the base station.

주서빙셀(primary serving cell)은 RRC 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안입력(security input)과 NAS 이동 정보(mobility information)을 제공하는 하나의 서빙셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙셀과 함께 서빙셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙셀(secondary serving cell)이라 한다. The primary serving cell refers to one serving cell that provides security input and NAS mobility information in an RRC connection or re-establishment state. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell.

따라서, 하나의 단말에 대해 설정된 서빙셀의 집합은 하나의 주서빙셀만으로 구성되거나, 또는 하나의 주서빙셀과 적어도 하나의 부서빙셀로 구성될 수 있다.Therefore, the set of serving cells configured for one terminal may consist of only one main serving cell, or may consist of one main serving cell and at least one secondary serving cell.

주서빙셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DL PCC)라 하고, 주서빙셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다. 또한, 하향링크에서, 부서빙셀에 대응하는 요소 반송파를 하향링크 부요소 반송파(DL SCC)라 하고, 상향링크에서, 부서빙셀에 대응하는 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다. 하나의 서빙셀에는 하향링크 요소 반송파만이 대응할 수도 있고, DL CC와 UL CC가 함께 대응할 수도 있다. The downlink component carrier corresponding to the main serving cell is called a DL PCC, and the uplink component carrier corresponding to the main serving cell is called an UL PCC. In the downlink, the component carrier corresponding to the secondary serving cell is called a downlink sub-component carrier (DL SCC), and in the uplink, the component carrier corresponding to the secondary serving cell is called an uplink sub-component carrier (UL SCC). do. Only one DL CC may correspond to one serving cell, and a DL CC and a UL CC may correspond together.

따라서, 반송파 시스템에서 단말과 기지국간의 통신이 DL CC 또는 UL CC를 통해 이루어지는 것은 단말과 기지국간의 통신이 서빙셀을 통해 이루어지는 것과 동등한 개념이다. 예를 들어, 본 발명에 따른 랜덤 액세스 수행방법에서, 단말이 UL CC를 이용하여 프리앰블을 전송하는 것은, 주서빙셀 또는 부서빙셀을 이용하여 프리앰블을 전송하는 것과 동등한 개념으로 볼 수 있다. 또한, 단말이 DL CC를 이용하여 하향링크 정보를 수신하는 것은, 주서빙셀 또는 부서빙셀을 이용하여 하향링크 정보를 수신하는 것과 동등한 개념으로 볼 수 있다. Therefore, the communication between the terminal and the base station through the DL CC or the UL CC in the carrier system is a concept equivalent to the communication between the terminal and the base station through the serving cell. For example, in the method of performing random access according to the present invention, transmitting a preamble by using a UL CC may be regarded as a concept equivalent to transmitting a preamble using a main serving cell or a secondary serving cell. In addition, the UE receiving the downlink information by using the DL CC, can be seen as a concept equivalent to receiving the downlink information by using the primary serving cell or secondary serving cell.

한편, 주서빙셀과 부서빙셀은 다음과 같은 특징을 가진다. On the other hand, the main serving cell and the secondary serving cell has the following characteristics.

첫째, 주서빙셀은 PUCCH의 전송을 위해 사용된다. 반면, 부서빙셀은 PUCCH를 전송할 수 없으나 PUCCH 내의 정보 중 일부 제어정보를 PUSCH를 통하여 전송할 수 있다.First, the primary serving cell is used for transmission of the PUCCH. On the other hand, the secondary serving cell may not transmit the PUCCH, but may transmit some control information of the information in the PUCCH through the PUSCH.

둘째, 주서빙셀은 항상 활성화되어 있는 반면, 부서빙셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 상기 특정 조건은 기지국의 활성화/비활성화 MAC 제어요소 메시지를 수신하였거나 단말내 각 부서빙셀마다 구성되어 있는 비활성화 타이머가 만료되는 경우가 될 수 있다.Second, the main serving cell is always activated, while the secondary serving cell is a carrier that is activated / deactivated according to a specific condition. The specific condition may be a case where the activation / deactivation MAC control element message of the base station is received or the deactivation timer configured for each secondary serving cell in the terminal expires.

셋째, 주서빙셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)되나, 부서빙셀이 RLF를 경험할 때는 RRC 재연결이 트리거링되지 않는다. 또는 부서빙셀에 대해서는 RLF를 정의하지 않는다. 무선링크실패는 하향링크 성능이 임계치 이하로 일정시간 이상 유지되는 경우 또는 주서빙셀을 통한 랜덤 액세스 절차가 임계치 이상 횟수만큼 실패했을 경우에 발생한다. 부서빙셀을 통한 랜덤 액세스 절차가 임계치 이상 횟수만큼 실패했을 경우는 해당 랜덤 액세스 절차만 종료된다.Third, when the primary serving cell experiences RLF, RRC reconnection is triggered, but when the secondary serving cell experiences RLF, RRC reconnection is not triggered. Or, do not define RLF for secondary serving cell. The radio link failure occurs when downlink performance is maintained below a threshold for a predetermined time or when a random access procedure through the main serving cell fails more than a threshold. If the random access procedure through the secondary serving cell fails more than the threshold number of times, only the corresponding random access procedure is terminated.

넷째, 주서빙셀은 보안키(security key) 변경이나 랜덤 액세스 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 단, CR(contention resolution) 메시지의 경우, CR을 지시하는 하향 링크 제어 채널(Physical Downlink Control Channel, 이하 'PDCCH'라 칭함)만 주서빙셀를 통하여 전송되어야 하고 CR 정보는 주서빙셀 또는 부서빙셀을 통하여 전송될 수 있다.Fourth, the main serving cell may be changed by a security key change or a handover procedure accompanying a random access procedure. However, in the case of a content resolution (CR) message, only a downlink control channel (hereinafter referred to as 'PDCCH') indicating a CR should be transmitted through the main serving cell, and the CR information may be transmitted through the main serving cell or the secondary serving cell. It can be transmitted through.

다섯째, NAS(non-access stratum) 정보는 주서빙셀를 통해서 수신한다.Fifth, non-access stratum (NAS) information is received through the main serving cell.

여섯째, 언제나 주서빙셀는 DL PCC와 UL PCC가 짝(pair)으로 구성된다.Sixth, the main serving cell is always configured with a pair of DL PCC and UL PCC.

일곱째, 각 단말마다 다른 CC를 주서빙셀로 설정할 수 있다.Seventh, a different CC may be set as a primary serving cell for each terminal.

여덟째, 부서빙셀의 재설정(reconfiguration), 추가(adding) 및 제거(removal)와 같은 절차는 무선 리소스 제어(RRC) 계층에 의해 수행될 수 있다. 신규 부서빙셀의 추가에 있어서, 전용(dedicated) 부서빙셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다. Eighth, procedures such as reconfiguration, adding, and removal of the secondary serving cell may be performed by the radio resource control (RRC) layer. In addition of a new secondary serving cell, RRC signaling may be used to transmit system information of a dedicated secondary serving cell.

아홉째, 주서빙셀은 제어정보를 전송하는 영역 내에서 특정 단말에 한하여 제어정보를 전송하기 위해 설정된 단말-특정 검색 공간(UE-specific search space)에 할당되는 PDCCH(예를 들어, 하향링크 할당정보 또는 상향링크 그랜트 정보) 및 셀 내 모든 단말들 또는 특정조건에 부합하는 다수의 단말들에게 제어정보를 전송하기 위해 설정된 공용 검색 공간(common search space)에 할당되는 PDCCH(예를 들어, 시스템 정보(SI), 랜덤 액세스 응답(RAR), 전송전력제어(transmit power control: TPC))를 모두 제공할 수 있다. 반면, 부서빙셀은 단말-특정 검색 공간만 설정될 수 있다. 즉, 단말은 부서빙셀을 통해서 공용 검색 공간을 확인할 수 없으므로 공용 검색 공간을 통해서만 전송되는 제어정보들 및 상기 제어정보들이 지시하는 데이터 정보들을 수신할 수 없다.Ninth, the main serving cell is a PDCCH (for example, downlink allocation information allocated to a UE-specific search space) configured to transmit control information only to a specific terminal in an area for transmitting control information. Or uplink grant information) and a PDCCH (for example, system information (for example, system information) allocated to a common search space configured for transmitting control information to all terminals in a cell or a plurality of terminals meeting specific conditions). SI), random access response (RAR), and transmit power control (TPC). On the other hand, the secondary serving cell may be set only a terminal-specific search space. That is, since the terminal cannot identify the common search space through the secondary serving cell, the terminal cannot receive control information transmitted only through the common search space and data information indicated by the control information.

부서빙셀들 중에서 공용 검색 공간(CSS)이 정의될 수 있는 부서빙셀을 정의할 수 있으며 상기 부서빙셀은 특수 부서빙셀 (special SCell)이라고 지칭한다. 상기 특수 부서빙셀은 교차 요소 반송파 스케줄링 (cross carrier scheduling) 시 언제나 스케줄링 셀로 설정된다. 또한 PCell에 설정되는 PUCCH가 상기 특수 부서빙셀에 대하여 정의될 수 있다. Among the secondary serving cells, a secondary serving cell in which a common search space (CSS) can be defined may be defined, and the secondary serving cell is referred to as a special secondary serving cell (special SCell). The special secondary serving cell is always configured as a scheduling cell during cross carrier scheduling. In addition, the PUCCH configured in the PCell may be defined for the special secondary serving cell.

상기 특수 부서빙셀에 대한 PUCCH는 특수 부서빙셀 구성 시 고정적으로 설정될 수도 있고, 또는 기지국이 해당 부서빙셀에 대한 재구성 시 RRC 시그널링(RRC 재구성 메시지)에 의해 할당(구성) 또는 해제될 수도 있다. The PUCCH for the special secondary serving cell may be fixedly configured when the special secondary serving cell is configured, or the base station may be allocated (configured) or released by RRC signaling (RRC reconfiguration message) when the base station is reconfigured for the secondary secondary cell. have.

상기 특수 부서빙셀에 대한 PUCCH는, 해당 sTAG내에 존재하는 부서빙셀들의 ACK/NACK 정보 또는 CQI(channel quality information)를 포함하며, 상기 언급한 바와 같이, 기지국에 의해 RRC 시그널링을 통해 구성될 수 있다.The PUCCH for the special secondary serving cell includes ACK / NACK information or channel quality information (CQI) of the secondary serving cells present in the corresponding sTAG, and as mentioned above, may be configured through RRC signaling by the base station. have.

또한, 기지국은 sTAG내에 다수의 부서빙셀들 중 하나의 특수 부서빙셀을 구성하거나, 또는 특수 부서빙셀을 구성하지 않을 수도 있다. 상기 특수 부서빙셀을 구성하지 않는 이유CSS 및 PUCCH가 설정될 필요가 없다고 판단되기 때문이다. 일 예로, 경합 기반 랜덤 액세스 절차가 어떤 부서빙셀에서도 진행될 필요가 없다고 판단하거나, 또는 현재 주서빙셀의 PUCCH의 용량이 충분하다고 판단하여 추가적인 부서빙셀에 대한 PUCCH를 설정할 필요가 없는 경우가 이에 해당한다.In addition, the base station may configure one special secondary serving cell of a plurality of secondary serving cells in the sTAG, or may not configure a special secondary serving cell. The reason for not configuring the special secondary serving cell is because it is determined that CSS and PUCCH need not be set. For example, if it is determined that the contention-based random access procedure does not need to be performed in any secondary serving cell, or it is determined that the current capacity of the PUCCH of the primary serving cell is sufficient, it is not necessary to set the PUCCH for the additional secondary serving cell. Corresponding.

주서빙셀과 부서빙셀의 특징에 관한 본 발명의 기술적 사상은 반드시 상기의 설명에 한정되는 것은 아니며, 이는 예시일 뿐이고 더 많은 예를 포함할 수 있다.The technical spirit of the present invention with respect to the features of the primary serving cell and the secondary serving cell is not necessarily limited to the above description, which is merely an example and may include more examples.

무선 통신 환경에서는 송신기에서 전파가 전파되어 수신기에서 전달되는 동안에 전파지연(propagation delay)을 겪게 된다. 따라서 송수신기 모두 정확히 송신기에서 전파가 전파되는 시간을 알고 있다 하더라도 수신기에 신호가 도착하는 시간은 송수신기간 거리, 주변 전파 환경 등에 의해 영향을 받게 되고 수신기가 이동하는 경우 시간에 따라 변하게 된다. 만일 수신기가 송신기가 전달하는 신호가 수신되는 시점을 정확히 알 수 없는 경우 신호 수신이 실패하거나 수신하더라도 왜곡된 신호를 수신하게 되어 통신이 불가능하게 된다.In a wireless communication environment, a propagation delay occurs while a radio wave propagates at a transmitter and is transmitted from a receiver. Therefore, even if both transmitters and receivers know exactly the time when radio waves propagate in the transmitter, the time that a signal arrives at the receiver is affected by the transmission / reception period distance, the surrounding radio wave environment, and changes with time when the receiver moves. If the receiver does not know exactly when the signal transmitted by the transmitter is received, even if the signal reception fails or is received, the receiver receives the distorted signal and communication is impossible.

따라서, 무선 통신 시스템에서는 하향링크/상향링크를 막론하고, 정보 신호를 수신하기 위해 기지국과 단말간 동기(synchronization)가 반드시 선결되어야 한다. 동기의 종류는 프레임 동기(frame synchronization), 정보심벌 동기(information symbol synchronization), 샘플링 주기 동기(sampling period synchronization) 등 다양하다. 샘플링 주기 동기는 물리적 신호를 구분하기 위해 가장 기본적으로 획득하여야 하는 동기이다. Therefore, in a wireless communication system, synchronization between a base station and a terminal must be made in advance in order to receive an information signal regardless of downlink and uplink. There are various types of synchronization, such as frame synchronization, information symbol synchronization, and sampling period synchronization. Sampling period synchronization is the most basic synchronization to be obtained in order to distinguish physical signals.

하향링크 동기 획득은 기지국의 신호를 기반으로 단말에서 수행된다. 기지국은 단말에서 하향링크 동기 획득이 용이하도록 상호 약속된 특정 신호를 송신한다. 단말은 기지국에서 보내온 특정 신호가 송신된 시간을 정확히 분별할 수 있어야 한다. 하향링크의 경우 하나의 기지국이 다수의 단말들에게 동시에 동일한 동기신호를 송신하므로 단말들은 각각 독립적으로 동기를 획득할 수 있다.Downlink synchronization acquisition is performed in the terminal based on the signal of the base station. The base station transmits a specific signal mutually promised to facilitate downlink synchronization acquisition in the terminal. The terminal should be able to accurately discern the time when the specific signal transmitted from the base station is transmitted. In the case of downlink, since one base station simultaneously transmits the same synchronization signal to a plurality of terminals, the terminals can independently acquire synchronization.

상향링크의 경우 기지국은 다수의 단말들로부터 송신된 신호를 수신한다. 각 단말과 기지국간 거리가 상이한 경우 각 기지국이 수신하는 신호들은 서로 다른 송신지연 시간을 갖게 되고, 각각 획득한 하향링크 동기를 기준으로 상향링크 정보를 송신하는 경우, 각 단말의 정보가 서로 다른 시간에 해당 기지국에서 수신되게 된다. 이러한 경우, 기지국은 어느 하나의 단말을 기준으로 동기를 획득할 수가 없다. 따라서 상향링크 동기 획득은 하향링크와는 다른 절차가 필요하다. In the case of uplink, the base station receives signals transmitted from a plurality of terminals. When the distance between each terminal and the base station is different, the signals received by each base station has a different transmission delay time, and when the uplink information is transmitted based on the downlink synchronization obtained respectively, the information of each terminal is different time Is received at the base station. In this case, the base station cannot obtain synchronization based on any one terminal. Therefore, uplink sync acquisition requires a different procedure from downlink.

랜덤 액세스 절차(random access procedure)가 상향링크 동기 획득을 위해 수행되며, 랜덤 액세스 과정 중에 단말은 기지국으로부터 전송되는 시간 정렬값(timing alignment value)에 기반하여 상향링크 동기를 획득한다. 상향링크 동기가 획득되면, 단말은 시간 정렬 타이머(time alignment timer)를 시작한다. 시간 정렬 타이머가 작동 중이면 단말과 기지국은 서로 상향링크 동기가 이루어진 상태에 있다. 시간 정렬 타이머가 만료되거나 작동되지 않으면, 단말과 기지국은 서로 동기가 이루어져 있지 않은 것으로 보고, 단말은 랜덤 액세스 프리앰블의 전송 이외의 상향링크 전송은 수행하지 않는다. A random access procedure is performed to obtain uplink synchronization, and the terminal acquires uplink synchronization based on a timing alignment value transmitted from the base station during the random access procedure. When uplink synchronization is obtained, the terminal starts a time alignment timer. When the time alignment timer is in operation, the terminal and the base station are in a state of uplink synchronization with each other. If the time alignment timer expires or does not operate, the UE and the base station report that they are not synchronized with each other, and the UE does not perform uplink transmission other than the transmission of the random access preamble.

한편, 다중 요소 반송파 시스템에서는 하나의 단말이 복수의 요소 반송파 또는 복수의 서빙셀들을 통해 기지국과 통신을 수행한다. 단말에 설정되는 복수의 서빙셀의 신호들이 모두 동일한 시간지연을 가지면, 단말은 하나의 시간 정렬 값만으로도 모든 서빙셀들에 대한 상향링크 동기 획득이 가능하다. 반면 복수의 서빙셀의 신호들이 서로 다른 시간지연을 가지면, 각 서빙셀마다 다른 시간 정렬 값이 요구된다. 즉, 다중 시간 정렬 값들(multiple timing alignment values)이 요구된다. 만약 다중 시간 정렬 값들을 획득하기 위해 단말이 각 서빙셀에 대해 일일이 랜덤 액세스를 수행한다면, 한정된 상향링크 자원에 오버헤드가 발생하고, 랜덤 액세스의 복잡도가 증가할 수 있다. 이러한 오버헤드와 복잡도를 줄이기 위해 시간 정렬 그룹(timing alignment group: TAG)이 정의된다. Meanwhile, in a multi-component carrier system, one terminal communicates with a base station through a plurality of component carriers or a plurality of serving cells. If the signals of the plurality of serving cells configured in the terminal all have the same time delay, the terminal may acquire uplink synchronization for all the serving cells with only one time alignment value. On the other hand, if the signals of the plurality of serving cells have different time delays, different time alignment values are required for each serving cell. That is, multiple timing alignment values are required. If the UE performs random access for each serving cell in order to obtain multi-time alignment values, overhead may be generated for limited uplink resources, and complexity of random access may increase. To reduce this overhead and complexity, a timing alignment group (TAG) is defined.

시간 정렬 그룹은 적어도 하나의 서빙셀을 포함하는 그룹으로서, 시간 정렬 그룹내의 서빙셀들에 대하여는 동일한 시간 정렬 값이 적용된다. 예를 들어, 제1 서빙셀과 제2 서빙셀이 동일한 시간 정렬 그룹(TAG1)에 속하면, 제1 서빙셀과 제2 서빙셀에는 동일한 시간 정렬 값 TA1이 적용된다. 반면 제1 서빙셀과 제2 서빙셀이 다른 시간 정렬 그룹(TAG1, TAG2)에 속하면, 제1 서빙셀과 제2 서빙셀에는 다른 시간 정렬 값 TA1과 TA2가 각각 적용된다. 시간 정렬 그룹은 주서빙셀을 포함할 수 있고, 적어도 하나의 부서빙셀을 포함할 수도 있으며, 주서빙셀과 적어도 하나의 부서빙셀을 포함할 수도 있다. The time alignment group is a group including at least one serving cell, and the same time alignment value is applied to the serving cells in the time alignment group. For example, when the first serving cell and the second serving cell belong to the same time alignment group TAG1, the same time alignment value TA 1 is applied to the first serving cell and the second serving cell. On the other hand, when the first serving cell and the second serving cell belong to different time alignment groups TAG1 and TAG2, different time alignment values TA 1 and TA 2 are applied to the first serving cell and the second serving cell, respectively. The time alignment group may include a main serving cell, may include at least one secondary serving cell, and may include a primary serving cell and at least one secondary serving cell.

시간 정렬 그룹은 기지국의 의해 최초 그룹설정 및 그룹 재편성이 결정되며 RRC 시그널링을 통해 단말에게 전송된다.The time alignment group is determined by the base station, the initial group configuration and group reorganization is transmitted to the terminal through the RRC signaling.

주서빙셀은 TAG를 변경하지 않는다. 또한 단말은 다중 시간 전진 값이 필요한 경우 적어도 2개의 TAG을 지원할 수 있어야 한다. 일 예로, 주서빙셀이 포함된 pTAG(primary TAG)와 주서빙셀이 포함되지 않은 sTAG(secondary TAG)로 구분된 TAG를 지원할 수 있어야 한다. 여기서 pTAG는 언제나 단 하나만 존재하고 sTAG는 다중 시간 전진 값이 필요한 경우라면 적어도 하나 이상 존재할 수 있다.The main serving cell does not change the TAG. In addition, the terminal should be able to support at least two TAG when a multi-time forward value is required. For example, it should be possible to support TAGs divided into pTAGs (primary TAGs) including the primary serving cell and sTAGs (secondary TAGs) not including the primary serving cell. Here, only one pTAG may exist at any time, and at least one sTAG may exist if a multi-time forward value is required.

서빙 기지국과 단말은 각 시간정렬그룹들에 대한 시간 전진(TA) 값 획득 및 유지를 위해 다음과 같은 동작을 진행할 수 있다.The serving base station and the terminal may proceed as follows to obtain and maintain a time advance (TA) value for each time alignment group.

1. pTAG의 TA 값 획득 및 유지는 항상 주서빙셀을 통해 진행한다. 또한 pTAG의 TA값 계산을 위한 다운링크 동기의 기준이 되는 타이밍 참조는 언제나 주서빙셀내의 다운링크 CC가 된다.1. The TA value acquisition and maintenance of pTAG always proceed through the main serving cell. In addition, a timing reference as a reference of downlink synchronization for calculating a TA value of pTAG is always a downlink CC in a main serving cell.

2. sTAG에 대한 초기 업링크 시간정렬 값을 얻기 위해서는 반드시 기지국에 의해 초기화되는 RA 절차를 사용하여야 한다.2. The RA procedure initialized by the base station must be used to obtain the initial uplink time alignment value for the sTAG.

3. sTAG에 대한 타이밍 참조는 가장 최근에 진행된 RA 절차에서 랜덤 액세스 프리엠블을 전송한 부서빙셀의 업링크 CC와 SIB2 (system information block 2) 연결설정된(linked) 다운링크 CC이다. 여기서 SIB2는 브로드캐스팅 채널을 통해 전송된 시스템 정보 블록 중 하나이며 상기 SIB2 정보는 해당 부서빙셀을 구성할 때 RRC 재구성 절차를 통해 기지국에서 단말에게 전송된다. SIB2내에는 업링크 중심 주파수 정보가 포함되어 있고 SIB1내에는 다운링크 중심 주파수 정보가 포함되어 있다. 따라서 SIB2 연결설정되었다 함은 해당 부서빙셀의 SIB1내의 정보를 기반으로 구성된 다운링크 CC와 SIB2내의 정보를 기반으로 구성된 업링크 CC간의 연결설정을 의미한다.3. The timing reference for the sTAG is an uplink CC and a system information block 2 (SIB2) linked downlink CC of the secondary serving cell that transmitted the random access preamble in the most recent RA procedure. Here, SIB2 is one of system information blocks transmitted through a broadcasting channel, and the SIB2 information is transmitted from the base station to the terminal through an RRC reconfiguration procedure when configuring the corresponding secondary serving cell. Uplink center frequency information is included in SIB2 and downlink center frequency information is included in SIB1. Therefore, the SIB2 connection setup means a connection setup between the downlink CC configured based on information in the SIB1 of the secondary serving cell and the uplink CC configured based on the information in the SIB2.

4. 각 TAG는 하나의 타이밍 참조와 하나의 시간정렬타이머 (time alignment timer: TAT)를 가지며 각 TAT는 서로 다른 타이머 만료 값으로 구성될 수 있다. TAT는 각 시간정렬그룹이 획득하고 적용한 시간정렬값의 유효성 여부를 판단하기 위해 서빙 기지국으로부터 시간정렬값을 획득한 직후부터 시작 또는 재시작한다.4. Each TAG has one timing reference and one time alignment timer (TAT), and each TAT can be configured with a different timer expiration value. The TAT starts or restarts immediately after acquiring the time alignment value from the serving base station to determine whether the time alignment value obtained and applied by each time alignment group is valid.

5. pTAG의 TAT가 만료된 경우, pTAG를 포함한 모든 TAG의 TAT가 만료된다. 그리고 단말은 모든 서빙셀들의 HARQ 버퍼들을 초기화(flush)한다. 또한 모든 다운링크 및 업링크에 대한 자원할당 구성을 초기화(clear)한다. 일 예로 semi-persistent 스케줄링(SPS) 방식처럼 PDCCH와 같은 다운링크/업링크에 대한 자원할당을 목적으로 전송되는 제어정보 없이 주기적인 자원할당이 구성되어 있는 경우, 상기 SPS 구성을 초기화한다. 또한 모든 서빙셀들의 PUCCH 및 타입 0 (주기적) SRS의 구성을 해제한다.5. If the TTAG of the pTAG has expired, the TAT of all TAGs including the pTAG expires. The terminal initializes (flush) HARQ buffers of all serving cells. It also clears the resource allocation configuration for all downlinks and uplinks. For example, if the periodic resource allocation is configured without control information transmitted for resource allocation for downlink / uplink such as PDCCH, such as semi-persistent scheduling (SPS), the SPS configuration is initialized. In addition, the configuration of the PUCCH and type 0 (periodic) SRS of all serving cells is released.

6. 만일 sTAG의 TAT만 만료된 경우는 다음과 같은 절차를 진행한다.6. If only the TAT of sTAG has expired, proceed as follows.

A. sTAG내 부서빙셀들의 업링크 CC를 통한 SRS 전송을 중지한다.A. Stop SRS transmission on the uplink CC of secondary serving cells in the sTAG.

B. 타입 0 (주기적) SRS 구성을 해제한다. 타입 1 (비주기적) SRS 구성은 유지한다.B. Disable Type 0 (cyclic) SRS configuration. Type 1 (aperiodic) SRS configuration is maintained.

C. CSI 보고에 대한 구성정보는 유지한다.C. Maintain configuration information for CSI reporting.

D. sTAG내 부서빙셀들의 업링크에 대한 HARQ 버퍼들을 초기화(flush)한다.D. Flush HARQ buffers for the uplink of secondary serving cells in sTAG.

7. sTAG내의 모든 부서빙셀들이 비활성화된 경우라도 단말은 해당 sTAG의 TAT를 중지하지 않는다.7. Even if all secondary serving cells in the sTAG are deactivated, the terminal does not stop the TAT of the corresponding sTAG.

8. 만일 sTAG내의 마지막 부서빙셀이 제거된 경우, 즉 sTAG내의 어떠한 부서빙셀도 구성되어 있지 않은 경우, 해당 sTAG내의 TAT는 중지된다.8. If the last secondary serving cell in the sTAG is removed, that is, no secondary serving cell in the sTAG is configured, the TAT in that sTAG is stopped.

9. 부서빙셀에 대한 랜덤 액세스 절차는 활성화된 부서빙셀에 대해서 기지국이 PDCCH order를 전송함으로써 진행될 수 있다. 비경합 방식의 랜덤 액세스 절차 또는 경합 방식의 랜덤 액세스 절차 형식으로 진행될 수 있다.9. The random access procedure for the secondary serving cell may be performed by the base station transmitting the PDCCH order for the activated secondary serving cell. It may proceed in the form of a contention free random access procedure or contention random access procedure.

10. RAR 전송을 위한 PDCCH는 랜덤 액세스 프리앰블을 전송했던 부서빙셀 이외의 다른 서빙셀을 통해 전송될 수 있다.10. The PDCCH for RAR transmission may be transmitted through a serving cell other than the secondary serving cell that transmitted the random access preamble.

11. pTAG의 경로감쇄 참조는 주서빙셀 또는 pTAG내의 부서빙셀이 될 수 있으며 기지국은 pTAG 내의 각 서빙셀마다 RRC 시그널링을 통해 서로 다르게 설정할 수 있다.11. The path loss reference of the pTAG may be a main serving cell or a secondary serving cell in the pTAG, and the base station may set differently through RRC signaling for each serving cell in the pTAG.

sTAG내의 각 서빙셀들의 업링크 CC들의 경로감쇄 참조는 각각 SIB2 연결설정된 다운링크 CC이다.The path loss reference of the uplink CCs of each serving cell in the sTAG is each an SIB2 connected downlink CC.

도 2는 본 발명의 일 예에 따른 랜덤 액세스 절차를 설명하는 흐름도이다. 이는 비경합 기반의 랜덤 액세스 절차이다. 2 is a flowchart illustrating a random access procedure according to an embodiment of the present invention. This is a contention free random access procedure.

도 2를 참조하면, 기지국은 가용한 전체 랜덤 액세스 프리앰블들 중에서 비경합 기반 랜덤 액세스 절차를 위해 미리 예약한 전용 랜덤 액세스 프리앰블들 중 하나를 선택하고, 상기 선택된 랜덤 액세스 프리앰블의 인덱스 및 사용 가능한 시간/주파수 자원 정보를 포함하는 프리앰블 할당 정보(RA Preamble assignment)를 단말로 전송한다(S500). 단말은 비경합 기반의 랜덤 액세스 과정을 위해서는 충돌 가능성이 없는 전용 랜덤 액세스 프리앰블을 기지국으로부터 할당받는 것이 필요하다. Referring to FIG. 2, the base station selects one of the reserved random access preambles previously reserved for the non-contention based random access procedure among all available random access preambles, and the index and available time / of the selected random access preamble / The preamble assignment information including the frequency resource information is transmitted to the terminal (S500). The UE needs to be allocated a dedicated random access preamble with no possibility of collision from the base station for a non-contention based random access procedure.

일 예로서, 랜덤 액세스 과정이 핸드오버 과정 중에 수행되는 경우, 단말은 전용 랜덤 액세스 프리앰블을 핸드오버 명령 메시지로부터 얻을 수 있다. 다른 예로서, 랜덤 액세스 과정이 기지국의 요청(PDCCH order)에 의해 수행되는 경우 단말은 전용 랜덤 액세스 프리앰블을 PDCCH, 즉 물리계층 시그널링을 통해 얻을 수 있다. 이 경우 물리계층 시그널링은 하향링크 제어정보(downlink control information: DCI) 포맷 1A로서, 표 1과 같은 필드들을 포함할 수 있다.As an example, when the random access procedure is performed during the handover procedure, the UE may obtain a dedicated random access preamble from the handover command message. As another example, when the random access procedure is performed by a request of the base station (PDCCH order), the UE may obtain a dedicated random access preamble through PDCCH, that is, physical layer signaling. In this case, the physical layer signaling is downlink control information (DCI) format 1A and may include fields shown in Table 1 below.

표 1 - 캐리어 지시자 필드(Carrier indicator field: CIF) - 0 or 3 bits. - 포맷 0/1A 식별을 위한 플래그 - 1 bit (0인 경우 포맷 0을, 1인 경우 포맷 1A를 지시함) 포맷 1A CRC가 C-RNTI에 의해 스크램블되고, 남은 필드들이 아래와 같이 설정되는 경우, 포맷 1A는 PDCCH 명령(order)에 의해 개시되는 랜덤 액세스 절차를 위해 사용된다. -아래- - 국지적/분산적(Localized/Distributed) VRB 할당 플래그 - 1 bit. 0으로 설정됨 - 자원블록할당 -

Figure PCTKR2013000641-appb-I000001
bits. 모든 비트들이 1로 설정됨 - 프리앰블 인덱스(Preamble Index) - 6 bits - PRACH 마스크 인덱스(Mask Index) - 4 bits - 하나의 PDSCH 부호어의 간이 스케줄링 할당을 위한 포맷 1A의 모든 남은 비트들이 0으로 설정됨 Table 1 Carrier indicator field (CIF)-0 or 3 bits. -Flag to identify format 0 / 1A-1 bit (format 0 if 0, format 1A if 1) If the Format 1A CRC is scrambled by the C-RNTI and the remaining fields are set as follows, Format 1A is used for the random access procedure initiated by the PDCCH order. -under- Localized / Distributed VRB allocation flag-1 bit. Set to 0 Resource block allocation
Figure PCTKR2013000641-appb-I000001
bits. All bits are set to 1
Preamble Index-6 bits PRACH Mask Index-4 bits All remaining bits of format 1A for simple scheduling allocation of one PDSCH codeword are set to 0.

표 1을 참조하면, 프리앰블 인덱스는 비경합 기반 랜덤 액세스 절차를 위해 미리 예약한 전용 랜덤 액세스 프리앰블들 중 선택된 하나의 프리앰블을 지시하는 인덱스이고, PRACH 마스크 인덱스는 사용 가능한 시간/주파수 자원 정보이다. 사용 가능한 시간/주파수 자원 정보는 다시 표 2와 같이 주파수 분할 듀플렉스(frequency division duplex: FDD) 시스템과 시간 분할 듀플렉스(time division duplex: TDD) 시스템에 따라, 지시하는 자원이 달라진다.Referring to Table 1, the preamble index is an index indicating a preamble selected from among dedicated random access preambles reserved for the contention-free random access procedure, and the PRACH mask index is available time / frequency resource information. The available time / frequency resource information is indicated again according to a frequency division duplex (FDD) system and a time division duplex (TDD) system, as shown in Table 2 below.

표 2 PRACH 마스크 인덱스 허용되는 PRACH (FDD) 허용되는 PRACH (TDD) 0 모두 모두 1 PRACH 자원 인덱스0 PRACH 자원 인덱스0 2 PRACH 자원 인덱스1 PRACH 자원 인덱스1 3 PRACH 자원 인덱스2 PRACH 자원 인덱스2 4 PRACH 자원 인덱스3 PRACH 자원 인덱스3 5 PRACH 자원 인덱스4 PRACH 자원 인덱스4 6 PRACH 자원 인덱스5 PRACH 자원 인덱스5 7 PRACH 자원 인덱스6 예비됨 8 PRACH 자원 인덱스7 예비됨 9 PRACH 자원 인덱스8 예비됨 10 PRACH 자원 인덱스9 예비됨 11 시간 영역내의 모든 짝수 PRACH 기회(opportunity),서브프레임내의 첫번째 PRACH 자원 인덱스 시간 영역내의 모든 짝수 PRACH 기회,서브프레임내의 첫번째 PRACH 자원 인덱스 12 시간 영역내의 모든 홀수 PRACH 기회,서브프레임내의 첫번째 PRACH 자원 인덱스 시간 영역내의 모든 홀수 PRACH 기회,서브프레임내의 첫번째 PRACH 자원 인덱스 13 예비됨 서브프레임내의 첫번째 PRACH 자원 인덱스 14 예비됨 서브프레임내의 두번째 PRACH 자원 인덱스 15 예비됨 서브프레임내의 세번째 PRACH 자원 인덱스 TABLE 2 PRACH mask index PRACH (FDD) allowed PRACH (TDD) allowed 0 all all One PRACH resource index 0 PRACH resource index 0 2 PRACH resource index1 PRACH resource index1 3 PRACH resource index2 PRACH resource index2 4 PRACH resource index 3 PRACH resource index 3 5 PRACH resource index 4 PRACH resource index 4 6 PRACH resource index 5 PRACH resource index 5 7 PRACH resource index 6 Reserved 8 PRACH resource index7 Reserved 9 PRACH resource index8 Reserved 10 PRACH resource index9 Reserved 11 All even PRACH opportunities in the time domain, first PRACH resource index in the subframe All even PRACH opportunities in time domain, first PRACH resource index in subframe 12 All odd PRACH opportunities in time domain, first PRACH resource index in subframe All odd PRACH opportunities in time domain, first PRACH resource index in subframe 13 Reserved First PRACH Resource Index in Subframe 14 Reserved Second PRACH Resource Index in Subframe 15 Reserved Third PRACH Resource Index in Subframe

단말은 할당된 전용 랜덤 액세스 프리앰블을 기지국으로 전송한다(S505). 랜덤 액세스 프리앰블은 대표 서빙셀을 통해 전송될 수 있다. 대표 서빙셀은 단말에 구성되는 시간 정렬 그룹에서 랜덤 액세스 프리앰블을 전송하도록 선정된 서빙셀이다. 대표 서빙셀은 시간 정렬 그룹마다 선정될 수 있다. 또한 단말은 복수의 시간 정렬 그룹들 중에서, 어느 하나의 시간 정렬 그룹내의 대표 서빙셀상으로 랜덤 액세스 프리앰블을 전송할 수도 있고, 2개 이상의 시간 정렬 그룹내의 각각의 대표 서빙셀상으로 랜덤 액세스 프리앰블을 전송할 수도 있다. 예를 들어, 단말에 구성된 시간 정렬 그룹이 TAG1, TAG2이고, TAG1=제1 서빙셀, 제2 서빙셀, 제3 서빙셀, TAG2=제4 서빙셀, 제5 서빙셀이라 하자. TAG1의 대표 서빙셀이 제2 서빙셀, TAG2의 대표 서빙셀이 제5 서빙셀이면, 단말은 할당된 전용 랜덤 액세스 프리앰블을 제2 서빙셀 또는 제5 서빙셀을 통해 기지국으로 전송한다. The terminal transmits the allocated dedicated random access preamble to the base station (S505). The random access preamble may be transmitted through the representative serving cell. The representative serving cell is a serving cell selected to transmit a random access preamble in a time alignment group configured in the terminal. The representative serving cell may be selected for each time alignment group. In addition, the UE may transmit a random access preamble on a representative serving cell in any one time alignment group among a plurality of time alignment groups, or may transmit a random access preamble on each representative serving cell in two or more time alignment groups. . For example, it is assumed that the time alignment groups configured in the terminal are TAG1 and TAG2, and TAG1 = first serving cell, second serving cell, third serving cell, TAG2 = fourth serving cell, and fifth serving cell. If the representative serving cell of TAG1 is the second serving cell and the representative serving cell of TAG2 is the fifth serving cell, the terminal transmits the allocated dedicated random access preamble to the base station through the second serving cell or the fifth serving cell.

대표 서빙셀은 특별 서빙셀(special SCell) 또는 참조 서빙셀(reference SCell) 또는 타이밍 참조 서빙셀(timing reference Cell)이라 불릴 수도 있다. 만약 상기 실시예와는 달리 시간 정렬 그룹 구성정보가 대표 서빙셀과 관련된 정보를 포함하지 않는 경우 기지국이 PDCCH 지시(order)와 같은 랜덤 액세스 절차 지시자를 통해 프리앰블을 전송한 UL CC와 SIB2 연결설정된(linked) DL CC를 타이밍 참조로 DL CC로 정의하고 상기 타이밍 참조 DL CC를 포함한 서빙셀을 타이밍 참조 서빙셀로 정의한다.The representative serving cell may be called a special SCell, a reference SCell, or a timing reference serving cell. Unlike the above embodiment, if the time alignment group configuration information does not include information related to the representative serving cell, the base station transmits a preamble through a random access procedure indicator such as a PDCCH order (order) and SIB2 connection establishment ( linked) A DL CC is defined as a DL CC as a timing reference, and a serving cell including the timing reference DL CC is defined as a timing reference serving cell.

랜덤 액세스 절차는 대표 서빙셀이 활성화된 이후에 진행될 수 있다. 또한, 부서빙셀에 대한 랜덤 액세스 절차는 기지국에 의해 전송되는 PDCCH 지시(order)에 의해서 개시될 수 있다. The random access procedure may proceed after the representative serving cell is activated. In addition, the random access procedure for the secondary serving cell may be initiated by the PDCCH order (order) transmitted by the base station.

대표 서빙셀에 관한 시간 정렬 값(이하 대표 시간 정렬 값)만 획득하면, 단말은 대표 시간 정렬 값을 다른 서빙셀의 시간 정렬 값으로 사용할 수 있다. 이는 동일한 시간 정렬 그룹에 속하는 서빙셀들에는 동일한 시간 정렬 값이 적용되기 때문이다. 특정 서빙셀에서의 불필요한 랜덤 액세스 절차를 차단함으로써 랜덤 액세스 절차의 중복, 복잡도 및 오버헤드가 줄어들 수 있다. If only the time alignment value (hereinafter, the representative time alignment value) regarding the representative serving cell is obtained, the terminal may use the representative time alignment value as the time alignment value of another serving cell. This is because the same time alignment value is applied to the serving cells belonging to the same time alignment group. By blocking unnecessary random access procedures in a specific serving cell, duplication, complexity, and overhead of the random access procedure can be reduced.

기지국은 수신된 랜덤 액세스 프리앰블 및 시간/주파수 자원을 기반으로 어느 단말이 어느 서빙셀을 통해 랜덤 액세스 프리앰블을 전송했는지 확인할 수 있다. 특히, 기지국의 PDCCH 지시(order)에 의해 단말이 부서빙셀에 대한 랜덤 액세스 절차를 진행하는 경우, 단말은 이미 주서빙셀에서 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-Radio Network Temporary Identifier)를 확보한 상태이다. 따라서 기지국은 필요에 따라 단말의 C-RNTI를 이용할 수 있고, C-RNTI를 이용하여 단말로 하향링크 정보를 전송할 수 있다. 예를 들어 하향링크 정보는 랜덤 액세스 프리앰블의 수신에 대한 응답인 랜덤 액세스 응답 메시지를 포함한다. The base station may determine which terminal transmits the random access preamble through which serving cell based on the received random access preamble and time / frequency resources. In particular, when the UE proceeds with a random access procedure for the secondary serving cell according to the PDCCH order of the base station, the UE already has a unique identifier of the UE in the main serving cell, for example, a C-RNTI (Cell-Radio Network). Temporary Identifier) is secured. Accordingly, the base station may use the C-RNTI of the terminal as needed, and may transmit downlink information to the terminal using the C-RNTI. For example, the downlink information includes a random access response message that is a response to the reception of the random access preamble.

기지국은 신규 데이터 지시자(new data indicator: NDI)의 값을 셋팅(set)한다(S510). 신규 데이터 지시자는 HARQ 수행에 사용되는 파라미터로서, 단말을 위한 전송블록(transport block: TB)이 최초로 전송되는지 재전송되는지를 지시한다. 여기서, 전송블록은 랜덤 액세스 응답 메시지를 포함한다. 전송블록은 단일 서브프레임에 하향링크 자원할당량을 기준으로 가변적인 비트 수로 정의될 수 있다. 신규 데이터 지시자는 서브프레임 주기로 전송될 수 있다. 신규 데이터 지시자는 전송블록과 1:1 또는 1:2(공간 다중화의 경우)로 대응될 수 있다. 신규 데이터 지시자는 예를 들어 1비트로서, 그 값이 매 서브프레임 주기로 토글(toggle)될 수도 있고, 토글되지 않을 수도 있다. The base station sets a value of a new data indicator (NDI) (S510). The new data indicator is a parameter used to perform HARQ and indicates whether a transport block (TB) for a terminal is first transmitted or retransmitted. Here, the transport block includes a random access response message. A transport block may be defined as a variable number of bits based on downlink resource allocation in a single subframe. The new data indicator may be transmitted in a subframe period. The new data indicator may correspond to the transport block either 1: 1 or 1: 2 (in case of spatial multiplexing). The new data indicator is, for example, 1 bit, and its value may or may not be toggled every subframe period.

일 예로서, 신규 데이터 지시자의 값이 직전의 값과 비교할 때 토글됨은 대응되는(corresponding) 전송블록이 신규 전송(new transmission)됨을 의미한다. 예를 들어, 기지국이 랜덤 액세스 응답 메시지를 최초로 단말로 전송하는 경우, 기지국은 상기 랜덤 액세스 응답 메시지에 대응되는 신규 데이터 지시자를 토글되도록 셋팅한다. As an example, when the value of the new data indicator is compared with the previous value, the toggle means that the corresponding transport block is new transmission. For example, when the base station transmits the random access response message to the terminal for the first time, the base station sets to toggle the new data indicator corresponding to the random access response message.

다른 예로서, 신규 데이터 지시자의 값이 직전의 값과 비교할 때 토글되지 않음은 대응되는 전송블록이 HARQ 프로세서(process)내에서 재전송(retransmission)됨을 의미한다. 예를 들어, 기지국이 랜덤 액세스 응답 메시지를 단말로 재전송하는 경우, 기지국은 상기 랜덤 액세스 응답 메시지에 대응되는 신규 데이터 지시자의 값을 토글되지 않게 셋팅한다.As another example, when the value of the new data indicator is not toggled when compared to the previous value, it means that the corresponding transport block is retransmitted in the HARQ process. For example, when the base station retransmits the random access response message to the terminal, the base station sets not to toggle the value of the new data indicator corresponding to the random access response message.

또 다른 예로서, 전송블록에 대응하는 신규 데이터 지시자가 최초로 단말로 전송되는 경우(즉, 전송블록에 대응하는 이전의 신규 데이터 지시자가 없는 경우), 단말은 토글과 무관하게 해당 전송블록에 대한 전송이 신규 전송이라고 판단한다. 예를 들어, 기지국이 랜덤 액세스 응답 메시지를 최초로 단말로 전송하는 경우, 기지국은 상기 랜덤 액세스 응답 메시지에 대응되는 최초의 신규 데이터 지시자를 셋팅한다. As another example, when a new data indicator corresponding to a transport block is first transmitted to the terminal (that is, there is no previous new data indicator corresponding to the transport block), the terminal transmits the transmission block for the corresponding transport block regardless of the toggle. It is determined that this is a new transmission. For example, when the base station first transmits a random access response message to the terminal, the base station sets the first new data indicator corresponding to the random access response message.

기지국은 신규 데이터 지시자를 포함하는 DCI를 생성한다(S515). 신규 데이터 지시자를 포함하는 DCI는 다음의 표와 같이 정의될 수 있다. The base station generates a DCI including the new data indicator (S515). DCI including the new data indicator may be defined as shown in the following table.

표 3 - 자원할당헤더 (자원할당타입 0/타입1) - 1비트. 만약 하향링크 대역폭이 10PRB보다 작거나 같으면, 자원할당헤더가 존재하지 않고, 자원할당타입0으로 가정됨. - 자원블록할당 필드 - 자원할당타입0 -

Figure PCTKR2013000641-appb-I000002
비트들이 자원할당을 제공함 - 자원할당타입1 - 이 필드의
Figure PCTKR2013000641-appb-I000003
비트들이 이 자원할당타입에 특정한 헤더로서 사용되며, 선택된 자원블록 서브셋을 지시함.
- 1비트는 자원할당 스팬(span)의 쉬프트(shift)를 지시함 -
Figure PCTKR2013000641-appb-I000004
비트들이 자원할당을 제공함. 영기서, P의 값은 하향링크 자원의 개수에 의존함.
- 변조 및 코딩 방식/중복버젼(redundancy version) - 5 비트 - HARQ 프로세스 번호 - 3비트(FDD), 4비트(TDD) - 신규 데이터 지시자(New data indicator) - 1 비트 - 반복 버전 - 2비트 - 스케줄링된 PUCCH를 위한 TPC 명령 -2비트 - 요소 반송파의 인덱스를 지시하는 반송파 지시자(carrier indicator: CI) - 3비트 - 하향링크 할당 인덱스(downlink assignment index: DAI) : 이 필드는 TDD에서 모든 상향링크-하향링크 설정(configurations)에 대해 존재함. - 2 비트 TABLE 3 Resource allocation header (Resource allocation type 0 / Type 1)-1 bit. If the downlink bandwidth is less than or equal to 10PRB, no resource allocation header is present and resource allocation type 0 is assumed. Resource block assignment field Resource allocation type 0 -
Figure PCTKR2013000641-appb-I000002
Bits provide resource allocation
Resource allocation type 1 -For this field
Figure PCTKR2013000641-appb-I000003
Bits are used as headers specific to this resource allocation type, indicating the selected resource block subset.
1 bit indicates the shift of resource allocation span -
Figure PCTKR2013000641-appb-I000004
Bits provide resource allocation. In value, the value of P depends on the number of downlink resources.
Modulation and coding scheme / redundancy version 5 bits HARQ process number-3 bits (FDD), 4 bits (TDD) New data indicator-1 bit -Repeated version-2 bits TPC command for scheduled PUCCH-2 bits A carrier indicator (CI) indicating the index of the component carrier-3 bits Downlink assignment index (DAI): This field is present for all uplink-downlink configurations in the TDD. -2 bits

표 3을 참조하면, DCI는 포맷 1로서, 자원할당헤더, 자원블록할당 필드, 변조 및 코딩 방식/중복버젼, HARQ 프로세스 번호, 신규 데이터 지시자, 반복 버젼, TPC 명령, 반송파 지시자, 하향링크 할당 인덱스를 포함한다. DCI의 각 필드는 A개의 정보비트(information bit) a0 내지 aA-1에 순차적으로 맵핑된다. 예를 들어, DCI가 총 44비트 길이의 정보비트에 맵핑된다고 하면, DCI 각 필드가 순차적으로 a0 내지 a43에 맵핑된다. DCI 포맷 0, 1A, 3, 3A는 모두 동일한 페이로드(payload) 크기를 가질 수 있다. DCI는 PDCCH 페이로드라 불릴 수도 있다. Referring to Table 3, DCI is Format 1, and resource allocation header, resource block allocation field, modulation and coding scheme / duplicate version, HARQ process number, new data indicator, repetitive version, TPC command, carrier indicator, downlink allocation index It includes. Each field of the DCI is sequentially mapped to A information bits a 0 to a A-1 . For example, if DCI is mapped to information bits of a total of 44 bits in length, each DCI field is sequentially mapped to a 0 to a 43 . DCI formats 0, 1A, 3, and 3A may all have the same payload size. DCI may be called PDCCH payload.

단말은 생성된 DCI에 순환 반복 검사(cyclic redundancy check: CRC) 패리티(parity) 비트를 첨가하고(S520), 상기 첨가된 CRC를 자신의 고유한 C-RNTI로써 스크램블(scramble)한다(S525). 스크램블은 마스킹(masking)이라고도 불릴 수 있다. DCI 및 C-RNTI로써 스크램블된 CRC가 맵핑되는 PDCCH를 C-RNTI로 스크램블된 PDCCH(PDCCH scambled with C-RNTI)라 한다. 스크램블링의 구체적인 과정은 다음과 같다. PDCCH의 페이로드를 a0, a1, a2,..., aA-1이라 하고, CRC 패리티 비트를 p0, p1, p2,..., pL-1이라 하자. 계산결과, CRC 패리티 비트는 시퀀스 b0, b1, b2,..., bB-1로 변환되는데, 여기서, B=A+L이다. k=0, 1, 2, ...., A-1일 경우 ck=bk와 같으며, k=A, A+1, A+2,..., A+15일 경우 ck=(bk+xRNTI,k-A)mod2이다. The terminal adds a cyclic redundancy check (CRC) parity bit to the generated DCI (S520), and scrambles the added CRC as its own C-RNTI (S525). Scrambled may also be called masking. The PDCCH to which the CRC scrambled with DCI and C-RNTI is mapped is called PDCCH scambled with C-RNTI. The specific process of scrambling is as follows. Let the payloads of the PDCCH be a 0 , a 1 , a 2 , ..., a A-1 , and let the CRC parity bits be p 0 , p 1 , p 2 , ..., p L-1 . As a result of the calculation, the CRC parity bits are converted into the sequences b 0 , b 1 , b 2 ,..., B B-1 , where B = A + L. for k = 0, 1, 2, ...., A-1, c k = b k, and for k = A, A + 1, A + 2, ..., A + 15 c k = (b k + x RNTI, kA ) mod 2.

기지국은 C-RNTI로 스크램블된 PDCCH 및 랜덤 액세스 응답 메시지가 맵핑된 PDSCH를 단말로 전송한다(S530). 랜덤 액세스 응답 메시지는 단독으로 PDSCH에 맵핑될 수도 있고, 다른 데이터들과 단일 MAC PDU내에 다중화(multiplexing)되어 PDSCH에 맵핑될 수도 있다. 랜덤 액세스 응답 메시지는 단말의 C-RNTI로 스크램블된 PDCCH가 지시하는 PDSCH를 통해 단말로 전송된다. 랜덤 액세스 응답 메시지는 부서빙셀상으로 전송될 수 있다. 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 전송에 사용되는 자원은 표 3의 DCI내의 자원블록할당 필드에 의해 지시된다. 랜덤 액세스 응답 메시지는 부서빙셀에 대한 스케줄링 셀(scheduling cell)을 통해 전송될 수 있다. The base station transmits the scrambled PDCCH and the PDSCH to which the random access response message is mapped to the terminal (S530). The random access response message may be mapped to the PDSCH alone, or may be multiplexed with other data in a single MAC PDU and mapped to the PDSCH. The random access response message is transmitted to the terminal through the PDSCH indicated by the PDCCH scrambled with the C-RNTI of the terminal. The random access response message may be transmitted on the secondary serving cell. The resource used for transmission of the PDSCH to which the random access response message is mapped is indicated by the resource block allocation field in the DCI of Table 3. The random access response message may be transmitted through a scheduling cell for the secondary serving cell.

공용 검색 공간에는 RA(random access)-RNTI에 의해 스크램블된 PDCCH가 할당된다. 부서빙셀에서는 공용 검색 공간이 정의되지 않고 단말-특정 검색 공간만이 정의되기 때문에, 단말은 부서빙셀상에서는 RA-RNTI에 의해 스크램블된 PDCCH 및, 상기 PDCCH가 지시하는 랜덤 액세스 응답 메시지를 수신할 수 없다. The common search space is allocated a PDCCH scrambled by random access (RA) -RNTI. Since the common search space is not defined in the secondary serving cell and only the UE-specific search space is defined, the terminal may receive the PDCCH scrambled by the RA-RNTI and the random access response message indicated by the PDCCH on the secondary serving cell. Can not.

따라서, 부서빙셀에서 랜덤 액세스 응답 메시지를 수신하려면, 단말은 단말-특정 검색 공간을 이용할 수 밖에 없다. 단말 특정 검색 공간에서는 C-RNTI에 의해 스크램블된 PDCCH가 할당되므로, 기지국은 C-RNTI에 의해 스크램블된 PDCCH로써 랜덤 액세스 응답 메시지에 대한 PDSCH를 지시한다. Accordingly, in order to receive a random access response message in the secondary serving cell, the terminal has no choice but to use the terminal-specific search space. Since the PDCCH scrambled by the C-RNTI is allocated in the UE-specific search space, the base station indicates the PDSCH for the random access response message as the PDCCH scrambled by the C-RNTI.

랜덤 액세스 응답 메시지는 시간 전진 명령(timing advance command: TAC) 필드를 포함할 수 있다. 기지국은 단말로부터 수신한 랜덤 액세스 프리앰블을 기준으로, 기준시간 대비 현재 상향링크 시간의 상대적인 변화를 측정하고, 측정된 값을 시간전진명령 필드(timing advance command field: TACF)에 반영한다. 측정된 상향링크 시간의 변화는 샘플링 시간(Ts)의 정수배, 예를 들어 16Ts일 수 있다. 시간전진명령 필드는 시간정렬그룹내의 전체 서빙셀의 상향링크 시간을 동일하게 조정하는 시간 정렬값을 지시한다. 시간 정렬값은 특정한 인덱스로 주어질 수 있다. The random access response message may include a timing advance command (TAC) field. The base station measures a relative change in the current uplink time relative to the reference time based on the random access preamble received from the terminal, and reflects the measured value in a timing advance command field (TACF). The measured change in the uplink time may be an integer multiple of the sampling time T s , for example 16T s . The time advance command field indicates a time alignment value for equally adjusting the uplink time of all the serving cells in the time alignment group. The time alignment value can be given by a specific index.

여기서 기준시간은 기지국에 의해 각 서빙셀마다 하향링크 및 상향링크 각각 다르게 결정될 수도 있다. 기준시간은 예를 들어 기지국에 의해 전송되는 하향링크 신호의 전송 기준시점 및 기지국에 의해 기대되는 상향링크 신호의 수신 기준시점이 동일할 수 있다. 일반적으로 각 서빙셀의 다운링크 전송 기준시점은 0μs ~ 1.3μs내로 차이가 발생할 수 있다.Here, the reference time may be determined differently for each downlink and uplink by the base station. The reference time may be, for example, the transmission reference time point of the downlink signal transmitted by the base station and the reception reference time point of the uplink signal expected by the base station. In general, the downlink transmission reference time of each serving cell may vary within 0 μs to 1.3 μs.

상기 표 3의 DCI는 EPDCCH (Extended PDCCH)로 정의되는 하위계층 제어채널을 통해서 전송될 수도 있다. EPDCCH는 RB(resource block) 쌍(pair)으로 구성된다. 여기서 RB 쌍이라 함은 하나의 서브프레임을 구성하는 2개의 슬롯 각각에 대하여 RB로 정의되며 상기 각 RB를 하나의 쌍으로 구성하는 경우 쌍이라고 정의할 수 있다. 여기서 상기 RB 쌍을 구성하는 각각의 RB는 동일한 시간을 갖는 슬롯들로 구성될 수 없다. 또한 동일한 주파수 대역에 존재 하는 RB들로 구성될 수도 있으며 서로 다른 주파수 대역에 존재하는 RB들로 구성될 수도 있다. The DCI of Table 3 may be transmitted through a lower layer control channel defined as EPDCCH (Extended PDCCH). EPDCCH consists of a resource block (RB) pair. Here, the RB pair may be defined as an RB for each of two slots constituting one subframe, and may be defined as a pair when each RB is configured as one pair. Here, each RB constituting the RB pair may not be configured with slots having the same time. In addition, it may be composed of RBs existing in the same frequency band or may be composed of RBs existing in different frequency bands.

단말은 랜덤 액세스 응답 메시지(RAR)를 성공적으로 수신하였는지 판단한다(S535). 랜덤 액세스 응답 메시지의 성공적인 수신을 위해 다음의 조건 i), ii)가 만족되어야 한다. i) 주어진 랜덤 액세스 윈도우(RA window) 구간동안 랜덤 액세스 응답 메시지가 수신될 것. 랜덤 액세스 응답 메시지의 수신을 판단하는 과정은, 부서빙셀의 단말-특정 검색 공간에서 C-RNTI로 스크램블된 PDCCH를 C-RNTI를 이용하여 수신하는 단계와, 상기 C-RNTI로 스크램블된 PDCCH에 의해 지시되는 PDSCH를 수신하는 단계와, 상기 단말에 대한 시간정렬값을 포함하는 랜덤 액세스 응답 메시지가 상기 수신된 PDSCH에 존재함을 확인하는 단계를 포함할 수 있다. C-RNTI로 스크램블된 PDCCH를 수신하는 단계는, 단말이 부서빙셀의 단말-특정 검색 공간에서 PDCCH를 검색하고, 채널 디코딩을 수행하며, C-RNTI로 디스크램블링(descrambling)을 수행하고, CRC 패리티 비트를 제거하는 과정을 포함한다. The terminal determines whether a random access response message (RAR) has been successfully received (S535). The following conditions i) and ii) must be met for successful reception of a random access response message. i) A random access response message will be received during a given RA window period. The receiving of the random access response message may include receiving a PDCCH scrambled with C-RNTI using a C-RNTI in a terminal-specific search space of a secondary serving cell, and receiving the PDCCH scrambled with the C-RNTI. Receiving a PDSCH indicated by the step, and confirming that a random access response message including a time alignment value for the terminal exists in the received PDSCH. Receiving the PDCCH scrambled with the C-RNTI, the UE searches for the PDCCH in the UE-specific search space of the secondary serving cell, performs channel decoding, descrambling with the C-RNTI, CRC Removing the parity bit.

ii) 랜덤 액세스 응답 메시지의 전송이 신규한 것일 것. 단말은 신규 데이터 지시자를 이용하여 랜덤 액세스 응답 메시지의 수신이 신규한지 판단할 수 있다. 신규 데이터 지시자는 C-RNTI로 스크램블된 PDCCH의 DCI에 포함된다. 신규 데이터 지시자가 랜덤 액세스 응답 메시지에 대하여 최초로 전송된 것이거나, 신규 데이터 지시자의 값이 이전의 값과 비교하여 토글된 것이면, 단말은 랜덤 액세스 응답 메시지가 새로운 것이라고 여긴다. 그렇지 않으면, 단말은 랜덤 액세스 응답 메시지가 재전송된 것으로 여긴다. ii) the transmission of the random access response message is new. The terminal may determine whether the random access response message is new by using the new data indicator. The new data indicator is included in the DCI of the PDCCH scrambled with C-RNTI. If the new data indicator is initially transmitted for the random access response message, or if the value of the new data indicator is toggled compared to the previous value, the terminal considers the random access response message to be new. Otherwise, the terminal assumes that the random access response message has been resent.

예를 들어, 단말이 랜덤 액세스 응답 메시지를 랜덤 액세스 윈도우 구간내에서 수신하고, 랜덤 액세스 응답 메시지가 신규 전송에 의한 것이면, 단말은 랜덤 액세스 응답 메시지를 성공적으로 수신한 것으로 여긴다. 반면, 단말이 랜덤 액세스 응답 메시지를 랜덤 액세스 윈도우 구간내에서 수신하지 않거나, 랜덤 액세스 응답 메시지가 재전송에 의한 것이면, 단말은 랜덤 액세스 응답 메시지의 수신에 실패한 것으로 여긴다. 이때 단말은 수신된 랜덤 액세스 응답 메시지를 무시하고, 새로운 랜덤 액세스 프리앰블을 기지국으로 전송한다. For example, if the terminal receives the random access response message within the random access window interval and the random access response message is due to new transmission, the terminal is considered to have successfully received the random access response message. On the other hand, if the terminal does not receive the random access response message within the random access window interval, or if the random access response message is retransmission, the terminal is considered to have failed to receive the random access response message. In this case, the terminal ignores the received random access response message and transmits a new random access preamble to the base station.

한편, 단말은 랜덤 액세스 응답 메시지가 맵핑된 PDSCH 자체의 디코딩에 대한 성공 또는 실패를 나타내는 ACK/NACK 신호를 기지국으로 전송한다. 이는 랜덤 액세스 절차의 진행과는 별도로 수행된다. 랜덤 액세스 응답 메시지가 C-RNTI로 스크램블된 PDCCH에 의해 지시되고, 랜덤 액세스 응답 메시지 자체도 하향링크 데이터이기 때문에 HARQ 절차가 동일하게 적용될 수 있다. 따라서, 단말은 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 디코딩에 성공하면 ACK 신호를 전송하고, 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 디코딩에 실패하면 NACK 신호를 전송한다. 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 디코딩에 성공하는 것은, 랜덤 액세스 응답 메시지의 성공적인 수신과는 다르다. 랜덤 액세스 응답 메시지의 성공적인 수신은 HARQ가 아닌 랜덤 액세스 절차의 성공이라는 측면에서 정의되는 것이고, 상기 i), ii)의 조건이 만족되어야 한다. Meanwhile, the terminal transmits an ACK / NACK signal indicating the success or failure of decoding of the PDSCH itself to which the random access response message is mapped, to the base station. This is performed separately from the progress of the random access procedure. Since the random access response message is indicated by the PDCCH scrambled with the C-RNTI, and the random access response message itself is also downlink data, the HARQ procedure can be equally applied. Accordingly, the UE transmits an ACK signal when the decoding of the PDSCH to which the random access response message is mapped is successful, and transmits an NACK signal when decoding of the PDSCH to which the random access response message is mapped is failed. Successful decoding of the PDSCH to which the random access response message is mapped is different from successful reception of the random access response message. Successful reception of the random access response message is defined in terms of the success of the random access procedure rather than HARQ, and the conditions of i) and ii) must be satisfied.

랜덤 액세스 응답 메시지를 성공적으로 수신한 경우, 단말은 랜덤 액세스 응답 메시지내의 시간전진명령 필드를 확인하고, 해당 부서빙셀에 관한 상향링크 시간을 시간 전진 명령에 따른 시간 정렬값만큼 조정한다(S540). 시간 정렬값에 의해 조정되는 상향링크 시간(TA)는 다음의 수학식 1과 같이 구해질 수 있다. When the random access response message is successfully received, the UE checks the time advance command field in the random access response message and adjusts an uplink time for the corresponding secondary serving cell by a time alignment value according to the time advance command (S540). . The uplink time TA adjusted by the time alignment value may be calculated by Equation 1 below.

수학식 1

Figure PCTKR2013000641-appb-M000001
Equation 1
Figure PCTKR2013000641-appb-M000001

여기서, NTA는 시간 정렬값으로서, 기지국의 시간 전진 명령에 의해 가변적으로 제어되고, NTA offset은 프레임 구조에 의해 고정되는 값이다. Ts는 샘플링 주기이다. 여기서, 시간 정렬값(NTA)이 양(+)이면 상향링크 시간을 앞서도록(advancing) 조정함을 지시하고, 음(-)이면 상향링크 시간을 뒤지도록(delaying) 조정함을 지시한다. Here, N TA is a time alignment value, which is variably controlled by a time advance command of a base station, and N TA offset is a value fixed by a frame structure. T s is the sampling period. In this case, when the time alignment value N TA is positive, it indicates adjusting to advance the uplink time, and when it is negative, it adjusts to delaying the uplink time.

NTA의 최대값이 M이라 하자. 일 예로 TAC 필드가 11비트로 정의되는 경우 M은 2047으로 정의될 수 있다. 여기서 K개의 비트로 정의되는 시간정렬값의 최대치는 항상 (2K-1)로 고정되지 않는다. 즉, K개의 비트로 정의되는 시간정렬값의 최대치는 2K-1 내지 (2K-1) 값 중 하나가 될 수 있다. 일 예로 11비트로 정의되는 시간정렬값의 최대치는 1024 ~ 2047 범위내의 값들 중 하나인 1282가 될 수도 있다.Let N TA be the maximum value. For example, when the TAC field is defined as 11 bits, M may be defined as 2047. Here, the maximum value of the time alignment value defined by K bits is not always fixed to (2 K -1). That is, the maximum value of the time alignment value defined by K bits may be one of 2 K-1 to (2 K- 1) values. For example, the maximum value of the time alignment value defined by 11 bits may be 1282, which is one of values in the range of 1024 to 2047.

한편, 시간 정렬값(NTA)은 현재 설정된 NTA값(NTA-old)으로부터 인덱스 값 의해 새로운 NTA값(NTA-new)으로 조정되는데, 새로운 NTA값은 수학식 2와 같이 구해질 수 있다. On the other hand, the time alignment value (N TA) are is adjusted from N TA value (N TA-old) are set to the new N TA value (N TA-new) by an index value, the new N TA value is obtained as equation (2) Can be done.

수학식 2

Figure PCTKR2013000641-appb-M000002
Equation 2
Figure PCTKR2013000641-appb-M000002

수학식 2를 참조하면, Ti는 인덱스 값으로서, 0, 1, 2, ..., 63이다. Referring to Equation 2, T i is an index value, and 0, 1, 2, ..., 63.

또는, 시간 정렬값(NTA)은 수학식 3과 같이 주서빙셀에 포함되는 TAG의 시간 정렬값 대비 차이값으로 결정될 수도 있다.Alternatively, the time alignment value N TA may be determined as a difference value with respect to the time alignment value of the TAG included in the main serving cell as shown in Equation 3.

수학식 3

Figure PCTKR2013000641-appb-M000003
Equation 3
Figure PCTKR2013000641-appb-M000003

수학식 3을 참조하면, NTA-TAG(Sn)는 주서빙셀(PCell)을 포함하지 않고 인덱스 값이 n인 시간정렬그룹에 대한 시간 정렬값이고, NTA-TAG(p)는 주서빙셀(PCell)을 포함하는 시간정렬그룹에 대한 시간 정렬값이다. Ti-n은 인덱스 값이 n인 시간정렬그룹에 대한 Ti 값이다. 만일 시간정렬값의 최대 값이 M인 경우, 상수값 31 대신 (M - 1)/2로 정의될 수 있다. 일 예로 TAC 필드가 11비트이면 시간정렬값의 최대치는 2047이다. 이 경우, 상수값 31은 (2047-1)/2 = 1023 값으로 대체될 수 있다. 다만 K개의 비트로 정의되는 시간정렬값의 최대치는 항상 (2K-1)로 고정되지 않는다. 즉, K개의 비트로 정의되는 시간정렬값의 최대치는 2K-1 내지 2K-1 값 중 하나가 될 수 있다. 일 예로 11비트로 정의되는 시간정렬값의 최대치는 1024 ~ 2047 범위내의 값들 중 하나인 1282가 될 수도 있다.Referring to Equation 3, N TA-TAG (Sn) is a time alignment value for a time alignment group having an index value of n without including a main serving cell (PCell), and N TA-TAG (p) is a main serving. A time alignment value for a time alignment group including a cell (PCell). T in T i is the value for the time alignment of the group index value n. If the maximum value of the time alignment value is M, it may be defined as (M-1) / 2 instead of the constant value 31. For example, if the TAC field is 11 bits, the maximum value of the time alignment value is 2047. In this case, the constant value 31 may be replaced with the value (2047-1) / 2 = 1023. However, the maximum value of the time alignment value defined by K bits is not always fixed to (2 K -1). That is, the maximum value of the time alignment value defined by K bits may be one of 2 K-1 to 2 K- 1 values. For example, the maximum value of the time alignment value defined by 11 bits may be 1282, which is one of values in the range of 1024 to 2047.

단말이 서빙셀에 대한 시간 정렬값을 최초로 수신하는 경우에는 대비할 대상 값이 없으므로, 시간 정렬값(NTA)은 수학식 4와 같이 결정될 수 있다. 여기서 상수값 31은 0으로 대체된다.When the UE first receives the time alignment value for the serving cell, since there is no target value to prepare, the time alignment value NTA may be determined as shown in Equation 4. Where the constant value 31 is replaced with zero.

수학식 4

Figure PCTKR2013000641-appb-M000004
Equation 4
Figure PCTKR2013000641-appb-M000004

이와는 다른 예로서, 하향링크 전송의 전파 지연시간과 상향링크 전송의 전파 지연시간이 동일한 경우, 단말은 하향링크 전송의 전파 지연시간을 이용하여 모든 서빙셀에 대한 상향링크 시간을 조정할 수도 있다. As another example, when the propagation delay time of the downlink transmission is the same as the propagation delay time of the uplink transmission, the terminal may adjust the uplink time for all serving cells using the propagation delay time of the downlink transmission.

만약 랜덤 액세스 응답 메시지내에 복수의 시간정렬그룹에 대한 시간 전진 명령 및/또는 시간정렬그룹 인덱스가 존재하면, 단말은 각 시간정렬그룹별 서빙셀(들)에 관한 상향링크 시간을 해당 시간 전진 명령에 따른 시간 정렬값만큼 조정한다. If there is a time advance command and / or a time alignment group index for a plurality of time alignment groups in the random access response message, the UE transmits an uplink time for the serving cell (s) of each time alignment group to the corresponding time advance command. Adjust by time alignment value accordingly.

도 2에서는 비경합 기반의 랜덤 액세스 절차에 기반하여 상향링크 시간을 조정하는 과정을 보여준다. 그러나 도 2에서의 기술적 사상은 경합 기반의 랜덤 액세스 절차에도 동일하게 적용될 수 있다. 경합 기반의 랜덤 액세스 절차에 따르면, 단계 S500는 수행되지 않는다. 또한 단계 S505에서, 단말은 전용 랜덤 액세스 프리앰블을 사용하지 않는다. 대신 단말은 랜덤 액세스 프리앰블 시그니처(signature) 집합에서 임의로 하나의 프리앰블 시그니처를 선택하고, 선택된 프리앰블 시그니처에 따른 랜덤 액세스 프리앰블을 PRACH 자원을 이용하여 부서빙셀을 통해 기지국으로 전송한다. 또한, 경합 기반의 랜덤 액세스 절차에 따를 때, 기지국이 랜덤 액세스가 성공적으로 종료됨을 알려주는 경합 해결 메시지를 단말로 추가적으로 전송하는 과정이 포함될 수 있다. 이는 경합 기반일 경우 여러 단말들의 랜덤 액세스 프리앰블 전송이 충돌할 수 있으므로, 랜덤 액세스가 성공적으로 종료됨을 알려주기 위함이다. 2 shows a process of adjusting uplink time based on a contention-free random access procedure. However, the technical idea of FIG. 2 may be equally applied to a contention-based random access procedure. According to the contention-based random access procedure, step S500 is not performed. In addition, in step S505, the terminal does not use the dedicated random access preamble. Instead, the UE randomly selects one preamble signature from the random access preamble signature set and transmits a random access preamble according to the selected preamble signature to the base station through the secondary serving cell using the PRACH resource. In addition, when the contention-based random access procedure is followed, the BS may additionally transmit a contention resolution message indicating that the random access is successfully terminated to the UE. This is to inform that random access is successfully terminated because contention-based transmission of random access preambles may collide when contention-based.

도 3은 본 발명의 일 예에 따른 랜덤 액세스 응답 메시지의 구조를 나타내는 블록도이다. 3 is a block diagram illustrating a structure of a random access response message according to an embodiment of the present invention.

도 3을 참조하면, 랜덤 액세스 응답 메시지는 MAC PDU(600)의 포맷으로 구성될 수 있다. MAC PDU(600)는 단일 전송블록내에 포함된다. Referring to FIG. 3, the random access response message may be configured in the format of the MAC PDU 600. MAC PDU 600 is contained within a single transport block.

MAC PDU(600)는 MAC 헤더(header, 610), 적어도 하나의 MAC 제어요소(MAC control element(CE), 620-1,...,620-n), 적어도 하나의 MAC SDU(Service Data Unit, 630-1,...,630-m) 및 패딩(padding, 640)을 포함한다. The MAC PDU 600 includes a MAC header 610, at least one MAC control element (CE), 620-1, ..., 620-n, and at least one MAC SDU (Service Data Unit). , 630-1,..., 630-m) and padding 640.

MAC 제어요소(620-1,..., 620-n)는 MAC 계층이 생성하는 제어메시지이다. MAC control elements 620-1, ..., 620-n are control messages generated by the MAC layer.

MAC 헤더(610)는 적어도 하나의 서브헤더(sub-header, 610-1, 610-2, 610-3, 610-4,...,610-k)를 포함하며, 각 서브헤더(610-1, 610-2, 610-3, 610-4,...,610-k)는 하나의 MAC SDU 또는 하나의 MAC 제어요소 또는 패딩(640)에 대응(corresponding)한다. 서브헤더(610-1, 610-2, 610-3, 610-4,...,610-k)의 순서는 MAC PDU(600)내에서 대응하는 MAC SDU(630-1,... 630-m), MAC 제어요소(620-1,..., 620-n) 또는 패딩(640)들의 순서와 동일하게 배치된다. The MAC header 610 includes at least one subheader 610-1, 610-2, 610-3, 610-4,..., 610-k, each subheader 610-k. 1, 610-2, 610-3, 610-4, ..., 610-k correspond to one MAC SDU or one MAC control element or padding 640. The order of subheaders 610-1, 610-2, 610-3, 610-4,..., 610-k is the corresponding MAC SDUs 630-1, 630 in the MAC PDU 600. m), MAC control elements 620-1, ..., 620-n) or padding 640 in the same order.

각 서브헤더(610-1, 610-2, 610-3, 610-4,...,610-k)는 R, R, E, LCID 이렇게 4개의 필드를 포함하거나 또는, R, R, E, LCID, F, L 이렇게 6개의 필드를 포함할 수 있다. 4개의 필드를 포함하는 서브헤더는 MAC 제어요소(620-1,..., 620-n) 또는 패딩(640)에 대응하는 서브헤더이며, 6개의 필드를 포함하는 서브헤더는 MAC SDU(630-1,...,630-m)에 대응하는 서브헤더이다. Each subheader 610-1, 610-2, 610-3, 610-4,..., 610-k includes four fields such as R, R, E, LCID, or R, R, E It can contain six fields: LCID, F, L. Subheaders containing four fields are subheaders corresponding to MAC control elements 620-1, ..., 620-n or padding 640, and subheaders containing six fields are MAC SDUs 630. Subheader corresponding to -1, ..., 630-m).

논리 채널 식별 정보(LCID, Logical Channel ID) 필드는 MAC SDU(630-1,...,630-m)에 대응하는 논리채널을 식별하거나, MAC 제어요소(620,..., 625) 또는 패딩의 종류(type)를 식별하는 식별필드이며, 각 서브헤더(610-1, 610-2, 610-3, 610-4,...,610-k)가 옥텟(octet) 구조를 가질 때, LCID 필드는 5비트일 수 있다. The Logical Channel ID (LCID) field may identify a logical channel corresponding to the MAC SDUs 630-1,..., 630-m, or may include a MAC control element 620,. An identification field for identifying the type of padding, and each subheader 610-1, 610-2, 610-3, 610-4, ..., 610-k has an octet structure. The LCID field may be 5 bits.

예를 들어, LCID 필드는 표 4와 같이 MAC 제어요소(620-1,..., 620-n)가 서빙셀의 활성화/비활성화를 지시하기 위한 MAC 제어요소인지, 단말간의 경합해결을 위한 경합해결 식별자(Contention Resolution Identity) MAC 제어요소인지 또는 시간 전진 명령을 위한 MAC 제어요소인지를 식별한다. 시간 전진 명령을 위한 MAC 제어요소는 랜덤 액세스에서 시간 정렬을 위해 사용되는 MAC 제어요소이다. For example, the LCID field indicates whether the MAC control elements 620-1, ..., 620-n are MAC control elements for indicating activation / deactivation of the serving cell as shown in Table 4, or contention for contention resolution between terminals. Contention Resolution Identity Identifies whether it is a MAC control element or a MAC control element for time advance commands. The MAC control element for the time forward command is the MAC control element used for time alignment in random access.

표 4 LCID 인덱스 LCID 값 00000 CCCH 00001-01010 논리채널의 식별자 01011-11010 예비됨 11011 활성화/비활성화 11100 단말 경합 해결 식별자 11101 시간 전진 명령(TAC) 11110 DRX 명령 11111 패딩 Table 4 LCID Index LCID value 00000 CCCH 00001-01010 Logical channel identifier 01011-11010 Reserved 11011 Activation / deactivation 11100 UE contention resolution identifier 11101 Time Forward Command (TAC) 11110 DRX command 11111 padding

표 4를 참조하면, LCID 필드의 값이 11101이면, 대응하는 MAC 제어요소는 시간 전진 명령을 위한 MAC 제어요소이다. 이때 시간전진명령을 위한 MAC 제어요소는 1개의 옥텟(octet) 구조로서 8비트이고, 시간전진명령 필드(TACF)에 사용되는 비트수는 6비트일 수 있다. 나머지 2비트는 예비 비트(reserved bit)이다. Referring to Table 4, if the value of the LCID field is 11101, the corresponding MAC control element is a MAC control element for the time forward command. In this case, the MAC control element for the time advance command may be 8 bits as one octet structure, and the number of bits used in the time advance command field TACF may be 6 bits. The remaining two bits are reserved bits.

한편, 복수의 서빙셀이 단말에 구성됨으로 인하여 시간 전진 명령이 복수의 서빙셀에 대해 주어질 때, LCID 필드는 표 5와 같이 주어질 수도 있다.On the other hand, when a plurality of serving cells are configured in the terminal, when the time advance command is given to the plurality of serving cells, the LCID field may be given as shown in Table 5.

표 5 LCID 인덱스 LCID 값 00000 CCCH 00001-01010 논리채널의 식별자 01011-11001 예비됨 11010 확장된 시간 전진 명령(Extened Timing Advance Command) 11011 활성화/비활성화 11100 단말 경합 해결 식별자 11101 시간 전진 명령(TAC) 11110 DRX 명령 11111 패딩 Table 5 LCID Index LCID value 00000 CCCH 00001-01010 Logical channel identifier 01011-11001 Reserved 11010 Extended Timing Advance Command 11011 Activation / deactivation 11100 UE contention resolution identifier 11101 Time Forward Command (TAC) 11110 DRX command 11111 padding

표 5를 참조하면, LCID 필드의 값이 11010이면, 대응하는 MAC 제어요소는 복수의 서빙셀에 대한 시간전진명령을 위한 MAC 제어요소이다. 이때 시간전진명령을 위한 MAC 제어요소는 예를 들어 6개의 옥탯 구조로서 총 48비트이고, 이 중 시간전진명령 필드(TACF)에 사용되는 비트수는 11비트일 수 있다. 나머지 비트들은 예비 비트, 상향링크 그랜트(uplink grant) 또는 임시 C-RNTI로 사용된다. Referring to Table 5, if the value of the LCID field is 11010, the corresponding MAC control element is a MAC control element for time advance commands for the plurality of serving cells. In this case, the MAC control element for the time advance command is, for example, six octets and has a total of 48 bits, and the number of bits used in the time advance command field (TACF) may be 11 bits. The remaining bits are used as reserved bits, uplink grants or as temporary C-RNTIs.

한편, LCID 필드는 표 6과 같이 MAC 제어요소(620-1,..., 620-n)가 랜덤 액세스 응답을 위한 MAC 제어요소임을 식별할 수도 있다.Meanwhile, the LCID field may identify that the MAC control elements 620-1,..., 620-n are MAC control elements for the random access response as shown in Table 6.

표 6 LCID 인덱스 LCID 값 00000 CCCH 00001-01010 논리채널의 식별자 01011-11001 예비됨 11010 부서빙셀을 위한 랜덤 액세스 응답 11011 활성화/비활성화 11100 단말 경합 해결 식별자 11101 시간 전진 명령(TAC) 11110 DRX 명령 11111 패딩 Table 6 LCID Index LCID value 00000 CCCH 00001-01010 Logical channel identifier 01011-11001 Reserved 11010 Random access response for secondary serving cell 11011 Activation / deactivation 11100 UE contention resolution identifier 11101 Time Forward Command (TAC) 11110 DRX command 11111 padding

표 6을 참조하면, LCID 필드의 값이 11010이면, 대응하는 MAC 제어요소는 부서빙셀의 랜덤 액세스 응답을 위한 MAC 제어요소이다. 이때 랜덤 액세스 응답을 위한 MAC 제어요소는 예를 들어 p개의 옥탯 구조로서, 11비트의 시간전진명령 필드(TACF)만을 포함하거나, 시간전진명령 필드 이외에도 백오프 지시자(backoff indicator) 필드와 상향링크 그랜트(uplink grant)를 포함할 수 있다. Referring to Table 6, if the value of the LCID field is 11010, the corresponding MAC control element is a MAC control element for the random access response of the secondary serving cell. In this case, the MAC control element for the random access response is, for example, p octets, and includes only 11-bit time forward command field (TACF), or in addition to the time forward command field, a backoff indicator field and an uplink grant. (uplink grant) may be included.

패딩(640)은 MAC PDU(600)의 크기를 일정하게 하도록 첨가되는 소정개수의 비트이다. MAC 제어요소(620-1,...,620-n), MAC SDU(630-1,...,630-m) 및 패딩(640)을 합쳐서 MAC 페이로드(payload)라고도 한다. Padding 640 is a predetermined number of bits added to make the size of MAC PDU 600 constant. The MAC control elements 620-1,..., 620-n, the MAC SDUs 630-1,..., 630-m and the padding 640 together are also referred to as MAC payloads.

도 4는 본 발명의 다른 예에 따른 랜덤 액세스 응답 메시지의 구조를 나타내는 블록도이다. 4 is a block diagram illustrating a structure of a random access response message according to another example of the present invention.

도 4를 참조하면, 랜덤 액세스 응답 메시지는 RAR MAC PDU(700)의 포맷으로 구성될 수 있다. RAR MAC PDU(700)는 MAC 헤더(header, 710), 적어도 하나의 MAC RAR 필드(715-1,...,715-n), 및 패딩(padding, 740)을 포함한다. Referring to FIG. 4, the random access response message may be configured in the format of the RAR MAC PDU 700. The RAR MAC PDU 700 includes a MAC header 710, at least one MAC RAR field 715-1,..., 715-n, and padding 740.

MAC 헤더(710)는 적어도 하나의 서브헤더(sub-header, 705-1, 705-2,...,705-n)를 포함하며, 각 서브헤더(705-1, 705-2,...,705-n)는 각 MAC RAR 필드(715-1,...,715-n)에 대응한다. 서브헤더(705-1, 705-2,...,705-n)의 순서는 RAR MAC PDU(700)내에서 대응하는 MAC RAR 필드(715-1, 715-2,...,715-n) 순서와 동일하게 배치될 수 있다. The MAC header 710 includes at least one subheader 705-1, 705-2,..., 705-n, each subheader 705-1, 705-2,... .705-n corresponds to each MAC RAR field 715-1,..., 715-n. The order of subheaders 705-1, 705-2, ..., 705-n is the corresponding MAC RAR fields 715-1, 715-2, ..., 715- in RAR MAC PDU 700. n) may be arranged in the same order.

한편, MAC 헤더(710)는 백오프 지시자(BI) 서브헤더(701)를 더 포함할 수 있다. 백오프 지시자(BI) 서브헤더(701)는 백오프 지시자를 포함한다. 백오프 지시자 서브헤더(701)에 대응하는 MAC RAR 필드는 RAR MAC PDU(700)내에 존재하지 않는다. 그러나 백오프 지시자 서브헤더(701)는 해당 랜덤 액세스 응답 메시지를 수신한 모든 단말들에게 공통적으로 적용되는 파라미터이다. 만일 단말이 백오프 지시자를 수신한 적이 없다면 백오프 파라미터는 최초값(initial value) 또는 디폴트 값으로 '0ms'가 된다.Meanwhile, the MAC header 710 may further include a backoff indicator (BI) subheader 701. The backoff indicator (BI) subheader 701 includes a backoff indicator. The MAC RAR field corresponding to the backoff indicator subheader 701 is not present in the RAR MAC PDU 700. However, the backoff indicator subheader 701 is a parameter that is commonly applied to all terminals that receive the random access response message. If the UE has never received the backoff indicator, the backoff parameter becomes '0ms' as an initial value or a default value.

백오프 지시자 서브헤더(701)는 기지국에 의해 해당 서빙셀에 대한 백오프 파라미터를 변경해야 할 경우에 한하여 RAR MAC PDU(700)에 포함될 수 있다. 일 예로 서빙셀을 통한 랜덤 액세스 프리앰블 전송이 일정 수준 이상으로 많거나, 기지국이 랜덤 액세스 프리앰블의 수신을 지속적으로 실패하는 경우, 기지국은 백오프 파라미터 값을 증가시키는 백오프 지시자 서브헤더(701)를 RAR MAC PDU(700)에 포함시켜 전송할 수 있다.The backoff indicator subheader 701 may be included in the RAR MAC PDU 700 only when the base station needs to change the backoff parameter for the corresponding serving cell. For example, when the random access preamble transmission through the serving cell is more than a predetermined level or when the base station continuously fails to receive the random access preamble, the base station uses a backoff indicator subheader 701 that increases the backoff parameter value. It can be included in the RAR MAC PDU 700 and transmitted.

백오프 지시자 서브헤더(701)는 E, T, R, R, BI 이렇게 5개의 필드를 포함할 수 있다. 여기서 E 필드는 해당 서브헤더가 마지막 서브헤더인지 아닌지를 나타내는 필드이다. T 필드는 해당 서브헤더가 RAPID(random access preamble ID)를 포함하는 서브헤더인지 백오프 지시자 서브헤더인지를 나타내는 필드이다. 또한 R 필드는 예비 비트를 나타낸다. BI 필드는 4비트로 정의된다. BI 필드 값은 하기 표 5와 같이 16개의 인덱스 값들 중 하나를 지시한다.The backoff indicator subheader 701 may include five fields, such as E, T, R, R, and BI. Here, the E field is a field indicating whether the corresponding subheader is the last subheader or not. The T field is a field indicating whether the corresponding subheader is a subheader including a random access preamble ID (RAPID) or a backoff indicator subheader. In addition, the R field indicates a reserved bit. The BI field is defined with 4 bits. The BI field value indicates one of 16 index values as shown in Table 5 below.

BI 필드는 단말이 랜덤 액세스 절차가 성공하지 못하였다고 판단되는 경우에 적용될 수 있다. 예를 들어, 단말이 현재 진행 중인 랜덤 액세스 절차를 포함하여 추후 랜덤 액세스 절차를 진행할 때, 랜덤 액세스 응답 메시지를 수신에 실패하면, 단말은 랜덤 액세스 절차 재시도 횟수를 1만큼 증가시킨다. 만일 증가된 랜덤 액세스 절차 재시도 횟수가 기지국에 의해 설정된 최대 재시도 횟수보다 작거나 같은 경우, 단말은 랜덤 액세스 절차를 재시도할 수 있다. 이 때 단말이 BI 필드를 수신하였으며 백오프 파라미터 값이 0이 아닌 경우, 단말은 백오프 파라미터 값과 0사이의 값 중 하나를 균일 확률분포함수를 기반으로 선택한다. The BI field may be applied when the terminal determines that the random access procedure is not successful. For example, when the terminal fails to receive the random access response message when the terminal proceeds with the random access procedure later, including the current random access procedure, the terminal increases the number of random access procedure retries by one. If the increased number of random access procedure retries is less than or equal to the maximum number of retries set by the base station, the terminal may retry the random access procedure. In this case, when the UE receives the BI field and the backoff parameter value is not 0, the UE selects one of the value between the backoff parameter value and 0 based on the uniform probability distribution function.

단말은 선택한 값만큼 랜덤 액세스 절차의 시작 또는 재시작을 지연시킨다. 예를 들어 BI 필드 값이 '1000'인 경우, 이는 8의 값에 해당되므로 하기 표 5에 따라 백오프 파라미터 값은 160ms가 된다. 따라서 단말은 0 내지 160ms 내의 값들 중 하나를 동일한 확률로 선택한다. 만약 단말이 83ms를 선택하면, 단말은 랜덤 액세스가 실패했다고 판단한 시점에서 83ms 동안 랜덤 액세스 절차의 재시작을 지연하고 83ms 이후 랜덤 액세스 절차가 가능한 가장 빠른 서브프레임에서 랜덤 액세스 절차를 재시작한다.The terminal delays the start or restart of the random access procedure by the selected value. For example, when the BI field value is '1000', this corresponds to a value of 8, so the backoff parameter value is 160ms according to Table 5 below. Therefore, the terminal selects one of the values within 0 to 160ms with the same probability. If the terminal selects 83ms, the terminal delays restart of the random access procedure for 83ms when it determines that the random access has failed, and restarts the random access procedure in the fastest subframe where the random access procedure is possible after 83ms.

RAPID는 다수의 단말들에 의해 동일한 시간/주파수 자원을 통해 전송된 랜덤 액세스 프리앰블들 중 해당 단말이 전송한 랜덤 액세스 프리앰블에 대한 RAR MAC PDU인지 아닌지를 확인하기 위한 정보이다. RAPID를 포함하는 서브헤더(705-1, 705-2,…, 705-n)는 E, T, RAPID 이렇게 3개의 필드를 포함할 수 있다. 여기서 E 필드는 해당 서브헤더가 마지막 서브헤더인지 아닌지를 나타내는 필드이다. T 필드는 해당 서브헤더가 RAPID를 포함하는 서브헤더인지 백오프 지시자 서브헤더인지를 나타내는 필드이다. RAPID 필드는 6비트로 정의되는 필드로서, 기지국이 할당한 랜덤 액세스 프리앰블 또는 단말이 선택한 랜덤 액세스 프리앰블에 대한 정보를 나타낸다.The RAPID is information for confirming whether or not the RAR MAC PDU for the random access preamble transmitted by the corresponding terminal among the random access preambles transmitted through the same time / frequency resource by the multiple terminals. The subheaders 705-1, 705-2, ..., 705-n including the RAPID may include three fields, E, T, and RAPID. Here, the E field is a field indicating whether the corresponding subheader is the last subheader or not. The T field is a field indicating whether the corresponding subheader is a subheader including a RAPID or a backoff indicator subheader. The RAPID field is defined by 6 bits and represents information about a random access preamble allocated by the base station or a random access preamble selected by the terminal.

도 5는 본 발명의 일 예에 따른 단말이 랜덤 액세스 응답 메시지의 수신 성공을 판단하는 방법을 설명하는 설명도이다. 이는 단말이 랜덤 액세스 응답 메시지의 수신에 성공하는 경우이다. 5 is an explanatory diagram illustrating a method of determining, by a terminal, a successful reception of a random access response message according to an embodiment of the present invention. This is a case where the terminal succeeds in receiving a random access response message.

도 5를 참조하면, 단말은 기지국으로부터 특정 서빙셀에서 랜덤 액세스 절차의 개시를 지시하는 랜덤 액세스 개시 지시자를 수신한다. 랜덤 액세스 개시 지시자는 PDCCH 지시(order)라고도 한다. 그리고 단말은 상기 특정 서빙셀에 관한 PRACH 구성정보를 기반으로 랜덤 액세스 프리앰블의 전송이 가능한 서브프레임 #0에서 랜덤 액세스 프리앰블을 PRACH를 통해 기지국으로 전송한다. 이는 경합 기반의 랜덤 액세스 절차 또는 비경합 기반의 랜덤 액세스 절차에 모두 적용될 수 있다. Referring to FIG. 5, a terminal receives a random access start indicator indicating a start of a random access procedure from a base station in a specific serving cell. The random access start indicator is also called a PDCCH order. The terminal transmits the random access preamble to the base station through the PRACH in subframe # 0 where the random access preamble can be transmitted based on the PRACH configuration information for the specific serving cell. This can be applied to both contention-based random access procedures or non- contention-based random access procedures.

랜덤 액세스 프리앰블은 표 7과 같이 5가지 포맷이 존재한다. There are five formats of the random access preamble as shown in Table 7.

표 7 프리앰블 포맷 TCP TSEQ 0 3168·TS 24576·TS 1 21024·TS 24576·TS 2 6240·TS 2·24576·TS 3 21024·TS 2·24576·TS 4 448·TS 4096·TS TABLE 7 Preamble format T CP T SEQ 0 3168T S 24576T S One 21024T S 24576T S 2 6240T S 2,24576, T S 3 21024T S 2,24576, T S 4 448T S 4096T S

표 7을 참조하면, TCP는 PRACH 심볼(symbol)의 CP(cyclic prefix)의 구간을 나타내는 파라미터이고, TSEQ는 시퀀스(sequence) 구간을 나타내는 파라미터이며, TS는 샘플링 시간을 나타낸다. 각 포맷에 따라 PRACH가 점유하는 서브프레임의 개수가 가변적으로 정의될 수 있다. 예를 들어, 프리앰블 포맷 0은 CP와 시퀀스의 합이 서브프레임보다 작고, 전파지연을 고려할 수 있는 최대 셀 크기(반경의 2배)가 가장 작다. 반면, 프리앰블 포맷 1, 2, 3은 CP와 시퀀스의 합이 1개의 서브프레임 이상이다. 프리앰블 포맷 1 또는 포맷 2의 경우 PRACH의 점유 서브프레임이 2개이고, 프리앰블 포맷 3의 경우 PRACH의 점유 서브프레임이 3개이다. Referring to Table 7, T CP is a parameter representing a section of a cyclic prefix (CP) of a PRACH symbol, T SEQ is a parameter representing a sequence section, and T S represents a sampling time. According to each format, the number of subframes occupied by the PRACH may be variably defined. For example, in the preamble format 0, the sum of the CP and the sequence is smaller than that of the subframe, and the maximum cell size (two times the radius) that can consider propagation delay is the smallest. In contrast, in the preamble formats 1, 2, and 3, the sum of the CP and the sequence is one or more subframes. In the preamble format 1 or the format 2, two occupied subframes of the PRACH, and in the preamble format 3, three occupied subframes of the PRACH.

단말은 랜덤 액세스 프리앰블이 전송된 서브프레임 #0으로부터 3을 더한 서브프레임 #3에서 랜덤 액세스 응답 메시지의 수신 여부를 확인하기 위한 랜덤 액세스 윈도우를 시작한다. 여기서 랜덤 액세스 윈도우 구간은 서브프레임 #3부터 서브프레임 #7까지로 총 5개 서브프레임의 길이로 정의된다. 물론, 이는 예시이며, 랜덤 액세스 윈도우 구간의 길이는 5개 서브프레임보다 작을 수도 있고, 클 수도 있다. 예를 들어, 랜덤 액세스 윈도우 구간은 기지국에 의해 결정되는 파라미터이고 셀 특정한 파라미터이다. 일반적으로 3ms 내지 10ms의 길이를 갖는다.The UE starts a random access window for checking whether a random access response message is received in subframe # 3 plus 3 from subframe # 0 through which the random access preamble is transmitted. The random access window period is defined as a total of five subframes from subframe # 3 to subframe # 7. Of course, this is an example, and the length of the random access window interval may be smaller or larger than five subframes. For example, the random access window interval is a parameter determined by the base station and a cell specific parameter. Generally it has a length of 3ms to 10ms.

단말은 C-RNTI로 스크램블된 PDCCH를 수신하고, PDCCH에 의해 지시되는 PDSCH를 수신한다. 그리고 단말은 수신된 PDSCH의 데이터에 랜덤 액세스 응답 메시지가 존재하는지 확인한다. 이를 P1을 위한 프로세싱 시간이라 한다. 랜덤 액세스 응답 메시지는 도 3과 같은 MAC PDU 구조일 수 있다. The UE receives the PDCCH scrambled with the C-RNTI and receives the PDSCH indicated by the PDCCH. The terminal then checks whether a random access response message exists in the data of the received PDSCH. This is called the processing time for P1. The random access response message may have a MAC PDU structure as shown in FIG. 3.

단말은 랜덤 액세스 응답 메시지를 성공적으로 수신한 것인지 판단한다. 이를 위해, 단말은 i) 랜덤 액세스 응답 메시지를 랜덤 액세스 윈도우 구간 동안에 수신한 것인지 확인하고, ii) PDCCH에 맵핑된 DCI내의 신규 데이터 지시자의 값으로부터 랜덤 액세스 응답 메시지가 신규 전송에 의해 수신된 것임을 확인한다. 만약 상기 i), ii) 조건이 모두 만족되면, 단말은 랜덤 액세스 응답 메시지를 성공적을 수신한 것으로 여긴다. 여기서 상기 P1을 위한 프로세싱 구간 이외에 MAC PDU내에 해당 단말이 부서빙셀을 통해 전송한 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답 메시지가 존재하는지 여부를 판단하기 위한 추가적인 프로세싱 구간이 필요할 수 있다. 따라서 랜덤 액세스 응답 메시지를 랜덤 액세스 윈도우 구간 동안에 수신한 것인지 확인하기 위해 필요한 프로세싱 구간은 P1을 위한 프로세싱 구간보다 클 수 있다. 일 예로 P1을 위한 프로세싱 구간 3ms와 MAC 계층에서 랜덤 액세스 응답 메시지의 존재여부 확인을 위한 3ms를 더하여 총 6ms의 프로세싱 구간이 필요할 수 있다.The terminal determines whether the random access response message has been successfully received. To this end, the terminal i) confirms whether the random access response message was received during the random access window period, and ii) confirms that the random access response message was received by the new transmission from the value of the new data indicator in the DCI mapped to the PDCCH. do. If all of the conditions i) and ii) are satisfied, the terminal is considered to have successfully received the random access response message. Here, in addition to the processing section for the P1, an additional processing section for determining whether there is a random access response message for the random access preamble transmitted by the UE through the secondary serving cell in the MAC PDU may be required. Therefore, the processing interval required to confirm whether the random access response message is received during the random access window interval may be larger than the processing interval for P1. For example, a total of 6 ms processing interval may be required by adding 3 ms of processing interval for P1 and 3 ms for checking whether a random access response message is present in the MAC layer.

한편, 단말은 PDSCH의 수신에 성공하였음을 나타내는 ACK 신호를 HARQ 규칙에 의해 결정된 시점인 서브프레임 #9에서 기지국으로 전송한다. Meanwhile, the terminal transmits an ACK signal indicating that the PDSCH has been successfully received to the base station in subframe # 9, which is a time point determined by the HARQ rule.

도 6은 본 발명의 다른 예에 따른 단말이 랜덤 액세스 응답 메시지의 수신 성공을 판단하는 방법을 설명하는 설명도이다. 이는 단말이 랜덤 액세스 응답 메시지의 수신에 실패하는 경우이다. 6 is an explanatory diagram illustrating a method of determining, by a terminal, a reception success of a random access response message according to another embodiment of the present invention. This is a case where the terminal fails to receive the random access response message.

도 6을 참조하면, 단말은 기지국으로부터 특정 서빙셀에서 랜덤 액세스 절차의 개시를 지시하는 랜덤 액세스 개시 지시자를 수신한다. 그리고 단말은 상기 특정 서빙셀에 관한 PRACH 구성정보를 기반으로 랜덤 액세스 프리앰블의 전송이 가능한 서브프레임 #0에서 랜덤 액세스 프리앰블 P1을 PRACH를 통해 기지국으로 전송한다. 이는 경합 기반의 랜덤 액세스 절차 또는 비경합 기반의 랜덤 액세스 절차에 모두 적용될 수 있다. Referring to FIG. 6, a terminal receives a random access start indicator indicating a start of a random access procedure from a base station in a specific serving cell. The terminal transmits the random access preamble P1 to the base station through the PRACH in subframe # 0 where the random access preamble can be transmitted based on the PRACH configuration information about the specific serving cell. This can be applied to both contention-based random access procedures or non- contention-based random access procedures.

단말은 랜덤 액세스 프리앰블 P1이 전송된 서브프레임 #0으로부터 3을 더한 서브프레임 #3에서 랜덤 액세스 응답 메시지의 수신 여부를 확인하기 위한 랜덤 액세스 윈도우를 시작한다. 여기서 랜덤 액세스 윈도우 구간은 서브프레임 #3부터 서브프레임 #7까지로 총 5개 서브프레임의 길이로 정의된다. The UE starts a random access window for confirming whether a random access response message is received in subframe # 3 plus 3 from subframe # 0 through which the random access preamble P1 is transmitted. The random access window period is defined as a total of five subframes from subframe # 3 to subframe # 7.

기지국은 P1을 수신하고, P1으로부터 단말의 C-RNTI를 확인하며, C-RNTI로 스크램블된 PDCCH1 및 랜덤 액세스 응답 메시지가 맵핑된 PDSCH1을 서브프레임 #4에서 단말로 전송한다. 이때, PDCCH1에 맵핑된 DCI내의 신규 데이터 지시자는 상기 랜덤 액세스 응답 메시지가 신규 전송임을 나타낸다. The base station receives the P1, checks the C-RNTI of the terminal from the P1, and transmits the PDCCH1 scrambled with the C-RNTI and the PDSCH1 mapped with the random access response message to the terminal in subframe # 4. In this case, the new data indicator in the DCI mapped to PDCCH1 indicates that the random access response message is a new transmission.

HARQ 수행과 관련하여, 단말은 C-RNTI로 스크램블된 PDCCH1을 수신하고, PDCCH1이 지시하는 PDSCH2의 디코딩에 실패한다. 따라서, 단말은 NACK 신호를 HARQ 규칙에 의해 결정된 시점인 서브프레임 #8에서 기지국으로 전송한다. In connection with performing HARQ, the UE receives the PDCCH1 scrambled with the C-RNTI and fails to decode the PDSCH2 indicated by the PDCCH1. Accordingly, the terminal transmits the NACK signal to the base station in subframe # 8, which is a time point determined by the HARQ rule.

여기서, 랜덤 액세스 응답 메시지의 성공적인 수신을 판단하기 위해 i) 랜덤 액세스 윈도우 구간 동안에 랜덤 액세스 응답 메시지가 수신되었는지 확인하고, ii) PDCCH에 맵핑된 DCI내의 신규 데이터 지시자의 값으로부터 랜덤 액세스 응답 메시지가 신규 전송에 의해 수신된 것임을 확인한다. 확인 결과, 단말은 PDSCH의 디코딩에 실패하여, PDSCH가 랜덤 액세스 응답 메시지를 포함하는지를 알 수 없다. 따라서 i)의 조건이 만족되지 않으므로, 단말은 랜덤 액세스 응답 메시지의 수신에 실패한 것으로 여긴다. Here, in order to determine successful reception of the random access response message, i) check whether a random access response message has been received during the random access window period, and ii) the random access response message is new from the value of the new data indicator in the DCI mapped to the PDCCH. Confirm that it was received by transmission. As a result of the check, the UE fails to decode the PDSCH and cannot know whether the PDSCH includes a random access response message. Therefore, since the condition of i) is not satisfied, the terminal is considered to have failed in receiving the random access response message.

랜덤 액세스 윈도우 구간동안 랜덤 액세스 응답 메시지의 수신 성공조건을 만족하지 못하면, 단말은 랜덤 액세스 윈도우의 종료 시점을 기준으로 랜덤 액세스 프리앰블을 다시 전송한다. 예를 들어, 단말은 랜덤 액세스 프리앰블 P2를 서브프레임 #10에서 전송한다. 이전 랜덤 액세스 프리앰블이 서브프레임n에서 전송된 경우, 단말은 첫번째 PRACH 자원이 유효한 서브프레임인 서브프레임 n+k(k≥6)에서 랜덤 액세스 프리앰블을 전송하여야 한다. 만일 PDSCH 디코딩에 성공한 경우 단말이 랜덤 액세스 응답 메시지가 존재하지 않음을 확인하는 타이밍은 랜덤 액세스 응답 메시지가 존재하는지 여부를 판단하기 위한 추가적인 프로세싱 구간 이후가 될 수 있다. 즉, 랜덤 액세스 윈도우내 PDSCH 디코딩이 성공한 가장 최근의 서브프레임에서부터 총 랜덤 액세스 응답 메시지 수신 프로세싱 구간인 6ms 이후에 랜덤 액세스 응답 메시지 수신 성공 또는 실패를 판단할 수 있다. 이 경우, 단말은 랜덤 액세스 윈도우의 종류 시점이 아닌 상기 랜덤 액세스 응답 메시지 수신 성공 또는 실패를 판단하는 타이밍을 기준으로 랜덤 액세스 프리앰블을 다시 전송한다. If the reception success condition of the random access response message is not satisfied during the random access window period, the terminal transmits the random access preamble again based on the end time of the random access window. For example, the UE transmits the random access preamble P2 in subframe # 10. When the previous random access preamble is transmitted in subframe n, the UE should transmit the random access preamble in subframe n + k (k ≧ 6) in which the first PRACH resource is a valid subframe. If the PDSCH decoding is successful, the timing at which the UE confirms that the random access response message does not exist may be after an additional processing period for determining whether the random access response message exists. That is, the success or failure of the random access response message reception may be determined 6 ms after the total random access response message reception processing interval from the most recent subframe in which the PDSCH decoding in the random access window succeeds. In this case, the terminal retransmits the random access preamble based on the timing of determining whether the random access response message has been successfully received or not, rather than the type of random access window.

예를 들어, 마지막 랜덤 액세스 윈도우 서브프레임에서 NDI가 신규데이터임을 나타내는 PDSCH의 디코딩이 성공한 경우, 랜덤 액세스 윈도우 종료 시점(서브프레임 #7)에서 6ms 이후(서브프레임 #13)에 랜덤 액세스 응답 메시지 수신 실패를 인지할 수 있으므로 단말은 랜덤 액세스 프리앰블 P2를 서브프레임 #10에서 전송할 수 없다. 따라서 그 이후 첫번째 PRACH 자원이 유효한 서브프레임인 #20에서 전송한다.For example, if the decoding of the PDSCH indicating that the NDI is new data is successful in the last random access window subframe, a random access response message is received 6 ms later (subframe # 13) at the end of the random access window (subframe # 7). Since the UE can recognize the failure, the UE cannot transmit the random access preamble P2 in subframe # 10. Therefore, after that, the first PRACH resource is transmitted in # 20, which is a valid subframe.

기지국은 단말로부터 NACK 신호를 수신하였으므로, 서브프레임 #4에서 전송했던 랜덤 액세스 응답 메시지를 서브프레임 #12에서 재전송한다. 이때, PDCCH2의 신규 데이터 지시자는 재전송(ReTx)을 나타낸다. 랜덤 액세스 응답 메시지의 성공적인 수신인지를 판단해보면, i)요건과 ii) 요건이 모두 만족되지 않으므로, 단말은 재전송된 랜덤 액세스 응답 메시지를 무시한다. Since the base station receives the NACK signal from the terminal, the base station retransmits the random access response message transmitted in subframe # 4 in subframe # 12. At this time, the new data indicator of the PDCCH2 indicates retransmission (ReTx). In determining whether the random access response message is successfully received, since both i) requirements and ii) requirements are not satisfied, the terminal ignores the retransmitted random access response message.

한편, 기지국은 P2에 관한 C-RNTI로 스크램블된 PDCCH3 및 PDCCH3에 의해 지시되는 PDSCH3을 서브프레임 #15에서 단말로 전송한다. 랜덤 액세스 응답 메시지의 성공적인 수신인지를 판단해보면, 서브프레임 #15는 랜덤 액세스 윈도우 구간에 속하고, 신규 데이터 지시자가 신규 전송을 나타내므로, i)요건과 ii)요건을 모두 만족한다. 따라서, 단말은 랜덤 액세스 응답 메시지의 성공적인 수신으로 판단한다. On the other hand, the base station transmits the PDSCH3 indicated by the PDCCH3 and PDCCH3 scrambled with the C-RNTI for the P2 to the UE in subframe # 15. In determining whether the random access response message is successfully received, the subframe # 15 belongs to the random access window section, and the new data indicator indicates new transmission, thereby satisfying both i) and ii) requirements. Accordingly, the terminal determines that the random access response message is successfully received.

도 7은 본 발명의 일 예에 따른 단말에 의한 랜덤 액세스 절차의 수행방법을 나타내는 순서도이다. 7 is a flowchart illustrating a method of performing a random access procedure by a terminal according to an embodiment of the present invention.

도 7을 참조하면, 단말은 기지국으로부터 프리앰블 할당 정보를 수신한다(S1000). 단말은 프리앰블 할당 정보에 기반하여 전용 랜덤 액세스 프리앰블을 선택하고, 선택된 전용 랜덤 액세스 프리앰블을 부서빙셀상에서 기지국으로 전송한다(S1005). Referring to FIG. 7, the terminal receives preamble allocation information from the base station (S1000). The terminal selects a dedicated random access preamble based on the preamble allocation information and transmits the selected dedicated random access preamble to the base station on the secondary serving cell (S1005).

단말은 랜덤 액세스 윈도우를 시작하고(S1010), 랜덤 액세스 응답 메시지(RAR)의 수신에 성공하는지 여부를 판단한다(S1015). 랜덤 액세스 응답 메시지의 수신에 성공함은, 다음의 2가지 요건을 만족하여야 한다. i) 랜덤 액세스 윈도우 구간내에서 단말의 C-RNTI로 스크램블된 PDCCH 및 상기 PDCCH에 의해 지시되는 PDSCH를 수신할 요건 및 ii) PDCCH내의 신규 데이터 지시자가 신규 전송을 나타낼 요건이다. The terminal starts the random access window (S1010), and determines whether the reception of the random access response message (RAR) is successful (S1015). Successful reception of the random access response message must satisfy the following two requirements. i) a requirement to receive the PDCCH scrambled with the C-RNTI of the UE and the PDSCH indicated by the PDCCH within the random access window interval, and ii) a requirement for the new data indicator in the PDCCH to indicate new transmission.

상기 2가지 요건이 모두 만족되면, 단말은 랜덤 액세스 응답 메시지의 수신에 성공한 것으로 본다. 단말은 랜덤 액세스 응답 메시지내의 시간전진명령 필드를 분석하여 시간정렬값을 획득하고, 획득된 시간정렬값에 기반하여 해당 부서빙셀을 포함하는 시간정렬그룹 내의 모든 서빙셀들의 상향링크 시간을 정렬한다(S1020). 그리고 단말은 HARQ 절차에 따라 ACK 신호를 기지국으로 전송한다(S1025). If both of the above requirements are satisfied, the terminal is considered to have successfully received the random access response message. The terminal analyzes the time advance command field in the random access response message to obtain a time alignment value, and aligns the uplink times of all serving cells in the time alignment group including the corresponding secondary serving cell based on the obtained time alignment value. (S1020). The terminal transmits an ACK signal to the base station according to the HARQ procedure (S1025).

반면, 상기 2가지 요건 중 어느 하나라도 만족하지 않으면, 단말은 랜덤 액세스 응답 메시지의 수신에 실패한 것으로 본다. 따라서, 단말은 정해진 시점에 새로운 랜덤 액세스 프리앰블을 기지국으로 전송한다(S1030). 그리고, 단말은 HARQ 절차에 따라 ACK/NACK 신호를 기지국으로 전송한다(S1025). On the other hand, if either of the two requirements are not satisfied, the terminal is considered to have failed in receiving the random access response message. Therefore, the terminal transmits a new random access preamble to the base station at a predetermined time point (S1030). And, the terminal transmits the ACK / NACK signal to the base station according to the HARQ procedure (S1025).

도 8은 본 발명의 일 예에 따른 기지국에 의한 랜덤 액세스 절차의 수행방법을 나타내는 순서도이다.8 is a flowchart illustrating a method of performing a random access procedure by a base station according to an embodiment of the present invention.

도 8을 참조하면, 기지국은 프리앰블 할당 정보를 단말로 전송한다(S1100). 기지국은 전용 랜덤 액세스 프리앰블을 부서빙셀상에서 단말로부터 수신한다(S1105). 기지국은 랜덤 액세스 응답 메시지에 대응하는 신규 데이터 지시자(NDI)의 값을 신규 전송 또는 재전송 중 어느 하나로 설정한다(S1110). 그리고 기지국은 상기 신규 데이터 지시자를 포함하는 DCI를 생성한다(S1115). 기지국은 생성된 DCI에 CRC 패리티 비트를 첨가하고(S1120), CRC 패리티 비트를 단말의 고유한 C-RNTI로 스크램블링한다(S1125). Referring to FIG. 8, the base station transmits preamble allocation information to the terminal (S1100). The base station receives the dedicated random access preamble from the terminal on the secondary serving cell (S1105). The base station sets the value of the new data indicator (NDI) corresponding to the random access response message to either new transmission or retransmission (S1110). The base station generates a DCI including the new data indicator (S1115). The base station adds the CRC parity bit to the generated DCI (S1120), and scrambles the CRC parity bit with a unique C-RNTI of the terminal (S1125).

기지국은 C-RNTI로 스크램블된 DCI가 맵핑된 PDCCH와, 상기 PDCCH에 의해 지시되고 랜덤 액세스 응답 메시지가 맵핑된 PDSCH를 단말로 전송한다(S1130). 랜덤 액세스 응답 메시지는 시간전진명령 필드를 포함하고, 시간전진명령 필드는 부서빙셀에서 조정되어야 할 상향링크 시간에 관한 정보인 시간정렬값을 지시한다. The base station transmits the PDCCH to which the DCI scrambled with the C-RNTI is mapped and the PDSCH indicated by the PDCCH and to which the random access response message is mapped (S1130). The random access response message includes a time forward command field, and the time forward command field indicates a time alignment value that is information about an uplink time to be adjusted in the secondary serving cell.

기지국은 PDSCH에 관한 성공적인 수신여부를 나타내는 ACK/NACK 신호를 단말로부터 수신한다(S1135). The base station receives an ACK / NACK signal from the terminal indicating the successful reception of the PDSCH (S1135).

도 9는 본 발명의 일 예에 따른 단말과 기지국을 도시한 블록도이다. 9 is a block diagram illustrating a terminal and a base station according to an embodiment of the present invention.

도 9를 참조하면, 단말(1200)은 수신부(1205), 단말 프로세서(1210) 및 전송부(1220)를 포함한다. 단말 프로세서(1210)는 정보 해석부(1211) 및 랜덤 액세스 처리부(1212)를 포함한다. Referring to FIG. 9, the terminal 1200 includes a receiver 1205, a terminal processor 1210, and a transmitter 1220. The terminal processor 1210 includes an information analyzer 1211 and a random access processor 1212.

수신부(1205)는 프리앰블 할당 정보, C-RNTI로 스크램블된 PDCCH 및, PDCCH에 의해 지시되고 랜덤 액세스 응답 메시지가 맵핑된 PDSCH를 기지국(1250)으로부터 수신한다. C-RNTI로 스크램블된 PDCCH에는 신규 데이터 지시자를 포함하는 DCI가 맵핑된다. PDSCH는 부서빙셀상으로 수신된다. The receiver 1205 receives, from the base station 1250, preamble allocation information, a PDCCH scrambled with C-RNTI, and a PDSCH indicated by the PDCCH and mapped with a random access response message. The DCI including the new data indicator is mapped to the PDCCH scrambled with C-RNTI. PDSCH is received on the secondary serving cell.

정보 해석부(1211)는 DCI에 포함된 필드의 지시하는 바를 해석한다. 예를 들어, 정보 해석부(1211)는 신규 데이터 지시자가 랜덤 액세스 응답 메시지의 신규 전송을 의미하는지, 또는 랜덤 액세스 응답 메시지의 재전송을 의미하는지를 판단한다. 그리고 정보 해석부(1211)는 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송에 관한 판단 결과를 랜덤 액세스 처리부(1212)로 보낸다. The information analyzing unit 1211 interprets the indications of the fields included in the DCI. For example, the information analysis unit 1211 determines whether the new data indicator means new transmission of the random access response message or retransmission of the random access response message. The information analyzing unit 1211 then transmits the determination result regarding the new transmission or retransmission of the random access response message to the random access processing unit 1212.

랜덤 액세스 처리부(1212)는 전송부(1220)가 랜덤 액세스 프리앰블을 전송한 시점으로부터 일정한 시간 또는 서브프레임이 경과된 이후에 랜덤 액세스 윈도우를 시작한다. 그리고, 수신부(1205)가 랜덤 액세스 응답 메시지를 수신한 시점이 랜덤 액세스 윈도우 구간내에 속하는지 판단한다. 정보 해석부(1211)의 판단 결과와, 랜덤 액세스 응답 메시지의 수신 시점에 관한 판단 결과에 기반하여, 랜덤 액세스 처리부(1212)는 랜덤 액세스 응답 메시지의 수신 성공 여부를 판단한다. The random access processor 1212 starts a random access window after a predetermined time or subframe has elapsed from the time when the transmitter 1220 transmits the random access preamble. The receiver 1205 determines whether the time when the random access response message is received falls within the random access window section. Based on the determination result of the information analyzing unit 1211 and the determination result regarding the reception time of the random access response message, the random access processing unit 1212 determines whether the random access response message has been successfully received.

예를 들어, 정보 해석부(1211)의 판단 결과가 랜덤 액세스 응답 메시지의 신규 전송을 지시하는 것이고, 랜덤 액세스 응답 메시지가 랜덤 액세스 윈도우 구간내에 수신된 경우, 랜덤 액세스 처리부(1212)는 랜덤 액세스 응답 메시지가 성공적으로 수신된 것으로 본다. 반면, 정보 해석부(1211)의 판단 결과가 랜덤 액세스 응답 메시지의 재전송을 지시하거나, 랜덤 액세스 응답 메시지가 랜덤 액세스 윈도우 구간내에 수신되지 않은 경우, 랜덤 액세스 처리부(1212)는 랜덤 액세스 응답 메시지가 성공적으로 수신되지 않은 것으로 본다. For example, when the determination result of the information analysis unit 1211 indicates new transmission of the random access response message, and the random access response message is received within the random access window section, the random access processing unit 1212 receives the random access response. The message is considered to have been successfully received. On the other hand, when the determination result of the information analysis unit 1211 indicates retransmission of the random access response message, or if the random access response message is not received within the random access window interval, the random access processing unit 1212 determines that the random access response message is successful. As not received.

한편, 랜덤 액세스 응답 메시지의 수신에 성공하면, 정보 해석부(1211)는 랜덤 액세스 응답 메시지내의 시간전진명령 필드를 분석하여 시간정렬값을 획득한다. 그리고 랜덤 액세스 처리부(1212)는 획득된 시간정렬값에 기반하여 해당 부서빙셀을 포함하는 시간정렬그룹내의 모든 서빙셀들에서의 상향링크 시간을 정렬한다. On the other hand, upon successful reception of the random access response message, the information analyzer 1211 analyzes the time advance command field in the random access response message to obtain a time alignment value. The random access processor 1212 sorts the uplink times in all serving cells in the time alignment group including the corresponding secondary serving cell based on the obtained time alignment value.

반면, 랜덤 액세스 응답 메시지의 수신에 실패하면, 랜덤 액세스 처리부(1212)는 정해진 시점에 새로운 랜덤 액세스 프리앰블을 생성하여 전송부(1220)로 보내고, 전송부(1220)는 새로운 랜덤 액세스 프리앰블을 기지국(1250)으로 전송한다. On the contrary, if the random access response message fails to be received, the random access processor 1212 generates a new random access preamble at the predetermined time point and sends it to the transmitter 1220, and the transmitter 1220 transmits the new random access preamble to the base station ( 1250).

전송부(1220)는 랜덤 액세스 프리앰블을 기지국(1250)으로 전송한다. 또한, 전송부(1220)는 HARQ 절차를 이용하여, 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 성공적인 수신 여부를 나타내는 ACK/NACK 신호를 기지국(1250)으로 전송한다. The transmitter 1220 transmits the random access preamble to the base station 1250. In addition, the transmitter 1220 transmits an ACK / NACK signal indicating whether the PDSCH to which the random access response message is mapped is successfully received to the base station 1250 using the HARQ procedure.

기지국(1250)은 전송부(1255), 수신부(1260) 및 기지국 프로세서(1270)를 포함한다. 기지국 프로세서(1270)는 정보 생성부(1271) 및 랜덤 액세스 처리부(1272)를 포함한다. The base station 1250 includes a transmitter 1255, a receiver 1260, and a base station processor 1270. The base station processor 1270 includes an information generating unit 1271 and a random access processing unit 1272.

전송부(1255)는 정보 생성부(1271)에 의해 생성된 C-RNTI로 스크램블된 DCI를 PDCCH에 맵핑하여 단말(1200)로 전송한다. 그리고 전송부(1255)는 랜덤 액세스 처리부(1272)에 의해 생성된 랜덤 액세스 응답 메시지를 PDSCH에 맵핑하여 단말(1200)로 전송한다. 또한, 전송부(1255)는 프리앰블 할당 정보를 단말(1200)로 전송한다. The transmitter 1255 maps the DCI scrambled by the C-RNTI generated by the information generator 1271 to the PDCCH and transmits the DCI to the terminal 1200. The transmitter 1255 maps the random access response message generated by the random access processor 1272 to the PDSCH and transmits the random access response message to the terminal 1200. In addition, the transmitter 1255 transmits the preamble allocation information to the terminal 1200.

수신부(1260)는 부서빙셀상에서 랜덤 액세스 프리앰블을 단말(1200)로부터 수신한다. 또한, 수신부(1260)는 HARQ 절차를 이용하여, 랜덤 액세스 응답 메시지가 맵핑된 PDSCH의 성공적인 수신 여부를 나타내는 ACK/NACK 신호를 단말(1200)로부터 수신한다.The receiver 1260 receives a random access preamble from the terminal 1200 on the secondary serving cell. In addition, the receiver 1260 receives an ACK / NACK signal from the terminal 1200 indicating whether the PDSCH to which the random access response message is mapped is successfully received using the HARQ procedure.

정보 생성부(1271)는 랜덤 액세스 응답 메시지에 대응하는 신규 데이터 지시자(NDI)의 값을 신규 전송 또는 재전송 중 어느 하나로 설정한다. 그리고 정보 생성부(1271)는 신규 데이터 지시자를 포함하는 DCI를 생성한다. 정보 생성부(1271)는 생성된 DCI에 CRC 패리티 비트를 첨가하고, CRC 패리티 비트를 단말(1200)의 고유한 C-RNTI로 스크램블링하여 전송부(1255)로 보낸다. The information generator 1271 sets the value of the new data indicator (NDI) corresponding to the random access response message to either new transmission or retransmission. The information generator 1271 generates a DCI including the new data indicator. The information generator 1271 adds a CRC parity bit to the generated DCI, scrambles the CRC parity bit with a unique C-RNTI of the terminal 1200, and sends the CRC parity bit to the transmitter 1255.

랜덤 액세스 처리부(1272)는 부서빙셀상에서 수신된 랜덤 액세스 프리앰블에 기반하여, 상향링크 시간을 측정하고, 시간정렬값을 계산한다. 또한, 랜덤 액세스 처리부(1272)는 시간정렬값을 지시하는 시간전진명령 필드를 포함하는 랜덤 액세스 응답 메시지를 생성하여 전송부(1255)로 보낸다. The random access processor 1272 measures an uplink time based on a random access preamble received on the secondary serving cell and calculates a time alignment value. In addition, the random access processing unit 1272 generates a random access response message including a time advance command field indicating a time alignment value, and sends the random access response message to the transmission unit 1255.

수신부(1260)에 의해 수신된 ACK/NACK 신호가 NACK 신호인 경우, 랜덤 액세스 처리부(1272)는 랜덤 액세스 응답 메시지를 재생성하여 전송부(1255)로 보낸다. 이때, 정보 생성부(1271)는 신규 데이터 지시자를 '신규 전송'으로 설정한다. When the ACK / NACK signal received by the receiver 1260 is a NACK signal, the random access processor 1272 regenerates a random access response message and sends it to the transmitter 1255. At this time, the information generating unit 1271 sets the new data indicator to 'new transmission'.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited thereto. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (18)

다중 요소 반송파 시스템에서 단말에 의한 랜덤 액세스의 수행방법으로서,A method for performing random access by a terminal in a multi-component carrier system, 랜덤 액세스 프리앰블을 부서빙셀(secondary serving cell)상에서 상기 기지국으로 전송하는 단계;Transmitting a random access preamble to the base station on a secondary serving cell; 랜덤 액세스 윈도우(RA window)를 시작하는 단계;Starting a random access window (RA window); 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송을 지시하는 신규 데이터 지시자(new data indicator: NDI)를 포함하는 하향링크 제어정보(downlink control information: DCI)가 맵핑된 물리 하향링크 제어채널을 상기 부서빙셀상에서 상기 기지국으로부터 수신하는 단계; 및On the secondary serving cell, a physical downlink control channel to which downlink control information (DCI) is mapped, including a new data indicator (NDI) indicating new transmission or retransmission of a random access response message, is mapped. Receiving from the base station; And 상기 랜덤 액세스 응답 메시지가 상기 랜덤 액세스 윈도우의 구간내에서 수신되는지 여부와, 상기 신규 데이터 지시자가 신규 전송을 지시하는지 여부를 기반으로, 상기 랜덤 액세스 응답 메시지가 상기 부서빙셀상의 물리 하향링크 공용채널을 통해 성공적으로 수신되는지를 판단하는 단계를 포함함을 특징으로 하는, 랜덤 액세스의 수행방법. Based on whether the random access response message is received within the interval of the random access window and whether the new data indicator indicates new transmission, the random access response message is a physical downlink shared channel on the secondary serving cell And determining whether the reception is successful via the random access. 제 1 항에 있어서,The method of claim 1, 상기 랜덤 액세스 응답 메시지는 상기 부서빙셀에서의 상향링크 시간을 조정하는 시간정렬값을 지시하는 시간전진명령(timing advance command: TAC) 필드를 포함함을 특징으로 하는, 랜덤 액세스의 수행방법.The random access response message includes a timing advance command (TAC) field indicating a time alignment value for adjusting an uplink time in the secondary serving cell. 제 2 항에 있어서,The method of claim 2, 상기 랜덤 액세스 응답 메시지가 성공적으로 수신되는 것으로 판단되면, 상기 시간정렬값을 이용하여 상기 부서빙셀에서의 상향링크 시간을 조정하는 단계를 더 포함함을 특징으로 하는, 랜덤 액세스의 수행방법. If it is determined that the random access response message is successfully received, adjusting the uplink time in the secondary serving cell by using the time alignment value. 제 1 항에 있어서,The method of claim 1, 상기 물리 하향링크 제어채널은 상기 단말의 고유한 식별자인 셀-무선 네트워크 임시 식별자(cell-radio network temporary identifier: C-RNTI)로 스크램블된(scrambled) 것을 특징으로 하는, 랜덤 액세스의 수행방법.And the physical downlink control channel is scrambled with a cell-radio network temporary identifier (C-RNTI) which is a unique identifier of the terminal. 제 1 항에 있어서,The method of claim 1, 상기 랜덤 액세스 응답 메시지는 상기 기지국의 매체접근제어(medium access control: MAC) 계층에서 생성되는 프로토콜 데이터 유닛(protocol data unit: PDU)인 것을 특징으로 하는, 랜덤 액세스의 수행방법.The random access response message is a method of performing a random access, characterized in that the protocol data unit (PDU) generated in the medium access control (MAC) layer of the base station. 제 1 항에 있어서,The method of claim 1, 프리앰블 인덱스 및 시간/주파수 자원 정보를 포함하는 프리앰블 할당 정보를 상기 기지국으로부터 수신하는 단계를 더 포함하되;Receiving preamble allocation information from the base station including preamble index and time / frequency resource information; 상기 랜덤 액세스 프리앰블은 상기 프리앰블 인덱스 및 상기 시간/주파수 자원 정보를 기반으로 전송됨을 특징으로 하는, 랜덤 액세스의 수행방법.The random access preamble is transmitted based on the preamble index and the time / frequency resource information. 다중 요소 반송파 시스템에서 랜덤 액세스를 수행하는 단말로서,A terminal for performing random access in a multi-component carrier system, 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송을 지시하는 신규 데이터 지시자(NDI)를 포함하는 하향링크 제어정보(DCI)가 맵핑된 물리 하향링크 제어채널을 부서빙셀상에서 상기 기지국으로부터 수신하는 수신부;A receiving unit receiving a physical downlink control channel to which downlink control information (DCI) including a new data indicator (NDI) indicating new transmission or retransmission of a random access response message is mapped, from the base station on a secondary serving cell; 랜덤 액세스 프리앰블을 부서빙셀(secondary serving cell)상에서 상기 기지국으로 전송하는 전송부; A transmitter for transmitting a random access preamble to the base station on a secondary serving cell; 상기 신규 데이터 지시자가 신규 전송을 지시하는지 여부를 해석하는 정보 해석부; 및An information analyzer for analyzing whether the new data indicator indicates new transmission; And 상기 랜덤 액세스 프리앰블을 생성하고, 상기 할당된 랜덤 액세스 프리앰블의 전송에 의해 랜덤 액세스 윈도우(RA window)를 시작하고, 상기 랜덤 액세스 응답 메시지가 상기 랜덤 액세스 윈도우의 구간내에서 수신되는지 여부와 상기 정보 해석부의 해석결과를 기반으로 상기 랜덤 액세스 응답 메시지가 성공적으로 수신되는지를 판단하는 랜덤 액세스 처리부를 포함함을 특징으로 하는, 단말.Generate the random access preamble, start a random access window (RA window) by transmitting the allocated random access preamble, and interpret the information and whether the random access response message is received within the interval of the random access window And a random access processing unit for determining whether the random access response message is successfully received based on a negative analysis result. 제 7 항에 있어서, The method of claim 7, wherein 상기 수신부는 프리앰블 인덱스 및 시간/주파수 자원 정보를 포함하는 프리앰블 할당 정보를 상기 기지국으로부터 수신하고,The receiving unit receives preamble allocation information including a preamble index and time / frequency resource information from the base station, 상기 랜덤 액세스 처리부는 상기 프리앰블 인덱스 및 상기 시간/주파수 자원 정보를 기반으로 상기 랜덤 액세스 프리앰블을 생성하며, The random access processor generates the random access preamble based on the preamble index and the time / frequency resource information. 상기 전송부는 상기 프리앰블 인덱스 및 시간/주파수 자원 정보를 기반으로 상기 랜덤 액세스 프리앰블을 전송함을 특징으로 하는, 단말.The transmitter is characterized in that for transmitting the random access preamble based on the preamble index and time / frequency resource information. 제 8 항에 있어서,The method of claim 8, 상기 랜덤 액세스 응답 메시지는 상기 부서빙셀에서의 상향링크 시간을 조정하는 시간정렬값을 지시하는 시간전진명령(TAC) 필드를 포함함을 특징으로 하는, 단말.The random access response message, characterized in that it comprises a time advance command (TAC) field indicating a time alignment value for adjusting the uplink time in the secondary serving cell. 제 9 항에 있어서,The method of claim 9, 상기 랜덤 액세스 응답 메시지가 성공적으로 수신되는 것으로 판단되면, If it is determined that the random access response message is successfully received, 상기 랜덤 액세스 처리부는 상기 시간정렬값을 이용하여 상기 부서빙셀에서의 상향링크 시간을 조정함을 특징으로 하는, 단말.The random access processing unit, characterized in that for adjusting the uplink time in the secondary serving cell using the time alignment value. 제 8 항에 있어서,The method of claim 8, 상기 물리 하향링크 제어채널은 상기 단말의 고유한 식별자인 셀-무선 네트워크 임시 식별자(C-RNTI)로 스크램블된 것을 특징으로 하는, 단말.Wherein the physical downlink control channel is scrambled with a Cell-Wireless Network Temporary Identifier (C-RNTI) which is a unique identifier of the terminal. 제 8 항에 있어서,The method of claim 8, 상기 랜덤 액세스 응답 메시지는 상기 기지국의 매체접근제어(MAC) 계층에서 생성되는 프로토콜 데이터 유닛(PDU)인 것을 특징으로 하는, 단말.The random access response message is a terminal, characterized in that the protocol data unit (PDU) generated in the medium access control (MAC) layer of the base station. 다중 요소 반송파 시스템에서 기지국에 의한 랜덤 액세스의 수행방법으로서,A method of performing random access by a base station in a multi-component carrier system, 랜덤 액세스 프리앰블을 부서빙셀(secondary serving cell)상에서 단말로부터 수신하는 단계;Receiving a random access preamble from a terminal on a secondary serving cell; 랜덤 액세스 윈도우(RA window)를 시작하는 단계; 및Starting a random access window (RA window); And 랜덤 액세스 응답 메시지의 신규 전송 또는 재전송을 지시하는 신규 데이터 지시자(new data indicator: NDI)를 포함하는 하향링크 제어정보(downlink control information: DCI)가 맵핑된 물리 하향링크 제어채널을 상기 부서빙셀상에서 상기 단말로 전송하는 단계를 포함하되, On the secondary serving cell, a physical downlink control channel to which downlink control information (DCI) is mapped, including a new data indicator (NDI) indicating new transmission or retransmission of a random access response message, is mapped. Including the step of transmitting to the terminal, 상기 랜덤 액세스 응답 메시지가 상기 부서빙셀상의 물리 하향링크 공용채널을 통해 성공적으로 전송되는지는, 상기 랜덤 액세스 응답 메시지가 상기 랜덤 액세스 윈도우의 구간내에서 수신되는지 여부와 상기 신규 데이터 지시자가 신규 전송을 지시하는지 여부를 기반으로 판단됨을 특징으로 하는, 랜덤 액세스의 수행방법. Whether the random access response message is successfully transmitted through the physical downlink shared channel on the secondary serving cell is determined whether the random access response message is received within the interval of the random access window and whether the new data indicator indicates a new transmission. Characterized in that it is determined based on whether or not to indicate. 제 13 항에 있어서,The method of claim 13, 상기 랜덤 액세스 응답 메시지는 상기 부서빙셀에서의 상향링크 시간을 조정하는 시간정렬값을 지시하는 시간전진명령(timing advance command: TAC) 필드를 포함함을 특징으로 하는, 랜덤 액세스의 수행방법.The random access response message includes a timing advance command (TAC) field indicating a time alignment value for adjusting an uplink time in the secondary serving cell. 제 14 항에 있어서,The method of claim 14, 상기 랜덤 액세스 응답 메시지가 성공적으로 전송되는 것으로 판단되면, If it is determined that the random access response message is successfully transmitted, 상기 단말은 상기 시간정렬값을 이용하여 상기 부서빙셀에서의 상향링크 시간을 조정함을 특징으로 하는, 랜덤 액세스의 수행방법. And the terminal adjusts an uplink time in the secondary serving cell using the time alignment value. 제 13 항에 있어서,The method of claim 13, 상기 물리 하향링크 제어채널은 상기 단말의 고유한 식별자인 셀-무선 네트워크 임시 식별자(cell-radio network temporary identifier: C-RNTI)로 스크램블된(scrambled) 것을 특징으로 하는, 랜덤 액세스의 수행방법.And the physical downlink control channel is scrambled with a cell-radio network temporary identifier (C-RNTI) which is a unique identifier of the terminal. 제 13 항에 있어서,The method of claim 13, 상기 랜덤 액세스 응답 메시지는 상기 기지국의 매체접근제어(medium access control: MAC) 계층에서 생성되는 프로토콜 데이터 유닛(protocol data unit: PDU)인 것을 특징으로 하는, 랜덤 액세스의 수행방법.The random access response message is a method of performing a random access, characterized in that the protocol data unit (PDU) generated in the medium access control (MAC) layer of the base station. 제 13 항에 있어서,The method of claim 13, 프리앰블 인덱스 및 시간/주파수 자원 정보를 포함하는 프리앰블 할당 정보를 상기 단말로 전송하는 단계를 더 포함하되;Transmitting preamble allocation information including a preamble index and time / frequency resource information to the terminal; 상기 랜덤 액세스 프리앰블은 상기 프리앰블 인덱스 및 상기 시간/주파수 자원 정보를 기반으로 전송됨을 특징으로 하는, 랜덤 액세스의 수행방법.The random access preamble is transmitted based on the preamble index and the time / frequency resource information.
PCT/KR2013/000641 2012-01-27 2013-01-25 Apparatus and method for performing random access in wireless communication system WO2013112009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0008557 2012-01-27
KR1020120008557A KR20130087308A (en) 2012-01-27 2012-01-27 Apparatus and method for performing random access in wireless communication system

Publications (1)

Publication Number Publication Date
WO2013112009A1 true WO2013112009A1 (en) 2013-08-01

Family

ID=48873686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000641 WO2013112009A1 (en) 2012-01-27 2013-01-25 Apparatus and method for performing random access in wireless communication system

Country Status (2)

Country Link
KR (1) KR20130087308A (en)
WO (1) WO2013112009A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081126A1 (en) * 2014-11-19 2016-05-26 Intel IP Corporation High-efficiency wi-fi (hew) station and access point (ap) and method for random access contention
WO2018048182A1 (en) * 2016-09-12 2018-03-15 Lg Electronics Inc. Multiple random access preamble transmission for a single random access procedure
CN110710320A (en) * 2017-06-07 2020-01-17 三星电子株式会社 System and method for identifying random access response
CN111279786A (en) * 2018-04-05 2020-06-12 联发科技股份有限公司 Random Access Channel Parameter Set with Bandwidth Partial Operation
WO2020167083A1 (en) * 2019-02-15 2020-08-20 엘지전자 주식회사 Method by which terminal performs random access procedure in wireless communication system, and device therefor
CN112106430A (en) * 2018-05-10 2020-12-18 三星电子株式会社 Method and apparatus for controlling uplink time alignment in a broadband wireless communication system
CN114928872A (en) * 2019-04-30 2022-08-19 中兴通讯股份有限公司 System and method for enhanced random access procedure
WO2024164336A1 (en) * 2023-02-10 2024-08-15 深圳传音控股股份有限公司 Processing method, communication device, and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394199B1 (en) 2015-05-26 2022-05-04 삼성전자주식회사 Method and apparatus for performing random access in wireless communication system
WO2018012833A1 (en) * 2016-07-11 2018-01-18 삼성전자 주식회사 Method for effectively transmitting control message for random access
KR102317012B1 (en) 2016-07-11 2021-10-25 삼성전자 주식회사 Method of control message transmission for efficient random access
KR102460782B1 (en) 2018-01-10 2022-10-31 삼성전자 주식회사 The method for efficient system information request in the next generation wireless communication systems
WO2022149629A1 (en) * 2021-01-06 2022-07-14 엘지전자 주식회사 Multidimensional syndrome-based ir method and device in qkd system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175292A1 (en) * 2008-01-01 2009-07-09 Lg Electronics Inc. Method for transmitting and receiving random access request and transmitting and receiving random access response
EP2141852A1 (en) * 2008-07-03 2010-01-06 LG Electronics Inc. Method for processing NDI in random access procedure and a method for transmitting and receiving a signal using the same
KR20110014566A (en) * 2008-04-10 2011-02-11 리니 베이 스포츠웨어 Counting and displaying device and its use
EP2375848A1 (en) * 2010-04-09 2011-10-12 Acer Incorporated Wireless apparatuses, wireless systems, and methods for managing multiple component carriers
US20110280210A1 (en) * 2005-08-23 2011-11-17 Interdigital Technology Corporation Method and apparatus for accessing an uplink random access channel in a singular carrier frequency division multiple access system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280210A1 (en) * 2005-08-23 2011-11-17 Interdigital Technology Corporation Method and apparatus for accessing an uplink random access channel in a singular carrier frequency division multiple access system
US20090175292A1 (en) * 2008-01-01 2009-07-09 Lg Electronics Inc. Method for transmitting and receiving random access request and transmitting and receiving random access response
KR20110014566A (en) * 2008-04-10 2011-02-11 리니 베이 스포츠웨어 Counting and displaying device and its use
EP2141852A1 (en) * 2008-07-03 2010-01-06 LG Electronics Inc. Method for processing NDI in random access procedure and a method for transmitting and receiving a signal using the same
EP2375848A1 (en) * 2010-04-09 2011-10-12 Acer Incorporated Wireless apparatuses, wireless systems, and methods for managing multiple component carriers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10440740B2 (en) 2014-11-19 2019-10-08 Intel IP Corporation High-efficiency wi-fi (HEW) station and access point (AP) and method for random access contention
CN106797658A (en) * 2014-11-19 2017-05-31 英特尔Ip公司 For efficient WI FI (HEW) stations and access point (AP) and method of Stochastic accessing competition
US9699807B2 (en) 2014-11-19 2017-07-04 Intel IP Corporation High-efficiency Wi-Fi (HEW) station and access point (AP) and method for random access contention
CN106797658B (en) * 2014-11-19 2020-08-28 英特尔Ip公司 High efficiency WI-fi (hew) stations and access points, apparatus, media and methods
WO2016081126A1 (en) * 2014-11-19 2016-05-26 Intel IP Corporation High-efficiency wi-fi (hew) station and access point (ap) and method for random access contention
WO2018048182A1 (en) * 2016-09-12 2018-03-15 Lg Electronics Inc. Multiple random access preamble transmission for a single random access procedure
US10271357B2 (en) 2016-09-12 2019-04-23 Lg Electronics Inc. Multiple random access preamble transmission for prioritized events
US11297651B2 (en) 2016-09-12 2022-04-05 Lg Electronics Inc. Multiple random access preamble transmission for a single random access procedure
CN110710320A (en) * 2017-06-07 2020-01-17 三星电子株式会社 System and method for identifying random access response
CN110710320B (en) * 2017-06-07 2023-11-03 三星电子株式会社 System and method for identifying random access response
CN111279786A (en) * 2018-04-05 2020-06-12 联发科技股份有限公司 Random Access Channel Parameter Set with Bandwidth Partial Operation
CN112106430A (en) * 2018-05-10 2020-12-18 三星电子株式会社 Method and apparatus for controlling uplink time alignment in a broadband wireless communication system
CN112106430B (en) * 2018-05-10 2024-04-19 三星电子株式会社 Method and device for controlling uplink time alignment in broadband wireless communication system
WO2020167083A1 (en) * 2019-02-15 2020-08-20 엘지전자 주식회사 Method by which terminal performs random access procedure in wireless communication system, and device therefor
CN114928872A (en) * 2019-04-30 2022-08-19 中兴通讯股份有限公司 System and method for enhanced random access procedure
WO2024164336A1 (en) * 2023-02-10 2024-08-15 深圳传音控股股份有限公司 Processing method, communication device, and storage medium

Also Published As

Publication number Publication date
KR20130087308A (en) 2013-08-06

Similar Documents

Publication Publication Date Title
WO2013112009A1 (en) Apparatus and method for performing random access in wireless communication system
WO2012169837A2 (en) Apparatus and method for performing random access in wireless communication system
WO2020060371A1 (en) Method and apparatus for supporting multiple message a sizes and uplink coverage for two step random access procedure
WO2012169840A2 (en) Apparatus and method for performing uplink synchronization in multiple component carrier system
WO2012169772A2 (en) Apparatus and method for performing uplink synchronization in multi-component carrier system
WO2013168938A1 (en) A method and apparatus of controlling cell deactivation in a wireless communication system
WO2016028103A1 (en) Method and apparatus for transmitting signal in wireless communication system
WO2013066102A1 (en) Apparatus and method for performing uplink synchronization in multiple component carrier system
WO2019031864A1 (en) Method for performing random access process and device therefor
WO2013125890A1 (en) Device and method for effecting random access procedure in multiple component carrier system
WO2016108673A1 (en) Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
WO2012173424A2 (en) Apparatus and method for receiving a control channel in a multi-component carrier system
WO2017023066A1 (en) Method for performing random access and mtc apparatus
WO2014003339A1 (en) Method and terminal for random access to small cell
WO2014098384A1 (en) Method and terminal for applying changed system information
WO2016163746A1 (en) Method for performing a random access procedure in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor
WO2017119791A2 (en) Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2018203698A1 (en) Method for performing random access procedure and device therefor
WO2018203696A1 (en) Method for performing random access process and device therefor
WO2016056843A1 (en) Method for transmitting synchronization signal for device-to-device communication in wireless communication system and apparatus therefor
WO2014081241A1 (en) Method for transceiving control signal, and apparatus therefor
WO2020045920A1 (en) Method and device for processing channel access failure in unlicensed band
WO2016204590A1 (en) Method for setting reference signal for v2v communication in wireless communication system and device for same
WO2016018046A1 (en) Method and apparatus for transceiving wireless signal in wireless communication system
WO2015076501A1 (en) Method for performing random access procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740692

Country of ref document: EP

Kind code of ref document: A1