[go: up one dir, main page]

WO2013105413A1 - 音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ - Google Patents

音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ Download PDF

Info

Publication number
WO2013105413A1
WO2013105413A1 PCT/JP2012/083078 JP2012083078W WO2013105413A1 WO 2013105413 A1 WO2013105413 A1 WO 2013105413A1 JP 2012083078 W JP2012083078 W JP 2012083078W WO 2013105413 A1 WO2013105413 A1 WO 2013105413A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound source
position information
virtual sound
viewer
unit
Prior art date
Application number
PCT/JP2012/083078
Other languages
English (en)
French (fr)
Inventor
高橋 直也
西口 正之
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP12865517.2A priority Critical patent/EP2804402B1/en
Priority to CN201280066052.8A priority patent/CN104041081B/zh
Priority to US14/359,208 priority patent/US9510126B2/en
Publication of WO2013105413A1 publication Critical patent/WO2013105413A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Definitions

  • the present disclosure relates to a sound field control device, a sound field control method, a program, a sound field control system, and a server.
  • Patent Documents 1 to 3 only assume adjustment of volume, delay amount, and directivity, and do not consider the size and orientation of the head. It is difficult to adjust optimally.
  • the display object position information acquisition unit that acquires the position information of the display object corresponding to the sound source, and the virtual sound source position control that controls the virtual sound source position based on the position information of the display object And a sound field control device.
  • a transmission unit that transmits at least the position information of the display object to an external computer; and a virtual sound source reproduction correction coefficient calculated from the external computer based on the position information of the display object or the virtual sound source reproduction correction.
  • a receiving unit that receives information generated based on the coefficient.
  • the transmission unit transmits audio data together with the position information of the display object to the external computer, and the reception unit calculates the virtual data calculated based on the position information of the display object from the external computer.
  • the audio data obtained by correcting the audio data with a sound source reproduction correction coefficient may be received.
  • a viewer position information acquisition unit that acquires position information of the viewer is further provided, and the virtual sound source position control unit controls the virtual sound source position based on the position information of the display object and the position information of the viewer. It may be what performs.
  • the viewer position information acquisition unit may acquire the position information of the viewer from information obtained by imaging.
  • the position information of the display object and the position information of the viewer are transmitted to an external computer, and the external computer calculates from the position information of the display object and the position information of the viewer.
  • a receiving unit that receives the generated virtual sound source reproduction correction coefficient or information generated based on the virtual sound source reproduction correction coefficient.
  • the transmission unit transmits audio data together with the position information of the display object and the position information of the viewer to the external computer, and the reception unit receives the position of the display object from the external computer.
  • the audio data obtained by correcting the audio data with a virtual sound source reproduction correction coefficient calculated based on the information and the viewer's position information may be received.
  • the sound field includes: acquiring position information of a display object corresponding to a sound source; and controlling a virtual sound source position based on the position information of the display object.
  • a control device is provided.
  • a computer for causing a computer to function as means for acquiring position information of a display object corresponding to a sound source, and means for controlling a virtual sound source position based on the position information of the display object.
  • a program is provided.
  • the display object position information acquisition unit that acquires the position information of the display object corresponding to the sound source, the transmission unit that transmits the position information of the object to an external computer, and the external computer
  • a client terminal having a receiving unit that receives a virtual sound source reproduction correction coefficient calculated based on the position information of the object; a receiving unit that receives position information of the display object; and a position of the display object
  • a virtual sound source reproduction correction coefficient calculation unit that calculates the virtual sound source reproduction correction coefficient based on information, and a transmission that transmits information generated based on the virtual sound source reproduction correction coefficient or the virtual sound source reproduction correction coefficient to the client terminal
  • a sound field control system is provided.
  • a reception unit that receives position information of a display object corresponding to a sound source from a client terminal, and virtual sound source reproduction that calculates the virtual sound source reproduction correction coefficient based on the position information of the display object
  • a server comprising: a correction coefficient calculation unit; and the external computer including the virtual sound source reproduction correction coefficient or a transmission unit that transmits information generated based on the virtual sound source reproduction correction coefficient to the client terminal. Is done.
  • the client terminal acquires position information of the display object corresponding to the sound source, the client terminal transmits the position information of the object to an external computer, and the external computer displays the display information.
  • a receiving unit that receives position information of an object; the external computer calculating the virtual sound source reproduction correction coefficient based on the position information of the display object; and the external computer, the virtual sound source reproduction correction coefficient or Transmitting the information generated based on the virtual sound source reproduction correction coefficient to the client terminal, a sound field control method is provided.
  • a position information acquisition unit that acquires viewer position information from information obtained by imaging, and a virtual sound source position control unit that controls a virtual sound source position based on the position information are provided.
  • a sound field control device is provided.
  • the virtual sound source position control unit may control the virtual sound source position so that the localization of the sound image is fixed regardless of the position of the viewer.
  • the virtual sound source position control unit may control the virtual sound source position so that the localization of the sound image moves relatively according to the position of the viewer.
  • the virtual sound source position control unit may control the virtual sound source position by changing a head-related transfer function based on the position information.
  • the virtual sound source position control unit smoothly changes the coefficient before the viewer position changes from the coefficient before the viewer position changes to the coefficient after the viewer position changes. Control may be performed.
  • the virtual sound source position control unit may control the virtual sound source position when the movement of the viewer is a predetermined value or more based on the position information.
  • a control unit that controls volume, sound delay, or directivity based on the position information may be further provided.
  • the virtual sound source position control unit may control the virtual sound source position based on the position information and the posture information.
  • the position information acquisition unit may acquire information obtained by the imaging from another device having an imaging unit that images the viewer.
  • a sound field control method including obtaining position information of a viewer and controlling a virtual sound source position based on the position information.
  • an imaging device that captures a viewer
  • a position information acquisition unit that acquires viewer position information from information obtained from the imaging device
  • a virtual sound source position based on the position information
  • a sound field control system including a sound field control device including a virtual sound source position control unit that performs control of the sound source.
  • amendment / change part It is a schematic diagram which shows the specific structure of the sound field control apparatus of this embodiment. It is a schematic diagram which shows the position of the localization of the sound image of 1st Embodiment. It is a schematic diagram which shows the position of the localization of the sound image of 2nd Embodiment. In 3rd Embodiment, it is a schematic diagram which shows the example applied to apparatuses, such as a tablet terminal and a personal computer. It is a schematic diagram which shows the structural example of 3rd Embodiment. It is a schematic diagram which shows the structural example of 4th Embodiment.
  • First Embodiment> 1.1. Appearance example of sound field control device 1.2. Configuration example of sound field control unit 1.3. Configuration example of sound field adjustment processing section 1.4. Processing in sound field control device 1.5. Positional relationship between viewer and audio output unit 1.6. Processing in virtual sound source reproduction correction unit 1.7. Processing in the volume correction / change unit 1.8. Processing in delay amount correction / change unit 1.9. Processing in virtual sound source reproduction correction / change unit and directivity correction / change unit 1.10. 1. Specific configuration example of sound field control device Second Embodiment 2.1. Outline of Second Embodiment 2.2. 2. Processing performed in the virtual sound source reproduction correction / change unit according to the second embodiment Third Embodiment 3.1. Outline of third embodiment 3.2. 3. Configuration example of third embodiment Fourth embodiment 5. Fifth embodiment Sixth Embodiment Seventh embodiment 8. Eighth Embodiment 9 Ninth embodiment
  • FIG. 1 is a schematic diagram illustrating a configuration example of the sound field control device 100 according to the first embodiment of the present disclosure.
  • the sound field control device 100 is provided in a television receiver, an audio device, or the like that includes a speaker, and controls the sound of the speaker according to the position of the viewer.
  • the sound field control device 100 includes an imaging unit 102, a viewing position calculation unit 104, an audio control unit 106, and an audio output unit 108.
  • the configuration shown in FIG. 1 can be configured by a central processing unit such as a circuit (hardware) or a CPU and a program (software) for causing the central processing unit to function.
  • the program is stored in a recording medium such as a memory. Can.
  • the imaging unit 102 images the face and body of the viewer (user) who listens to the sound.
  • the viewing position calculation unit 104 calculates the viewer's position and face orientation from the image obtained from the imaging unit 102. Note that the imaging unit 102 (and the viewing position calculation unit 104) may be provided separately from the device in which the sound field control device 100 is provided.
  • a sound source is input to the voice control unit 106.
  • the sound control unit 106 performs processing on the sound so as to obtain good sound quality, localization, and virtual sound source reproduction (virtual surround) effect according to the position of the viewer.
  • the audio output unit 108 is a speaker that outputs the audio controlled by the audio control unit 106.
  • FIG. 2 is a schematic diagram showing the configuration of the voice control unit 106.
  • the voice control unit 106 includes a coefficient change determination unit 110, a coefficient calculation unit 112, a coefficient change / sound field adjustment processing unit 114, and a sound field adjustment processing unit 116.
  • the coefficient change determination unit 110 determines whether to change the coefficient based on the viewer's image captured by the imaging unit 102. If the coefficient is updated only by moving the viewer a little or moving the face, the timbre change at the time of the coefficient update may not be negligible. Therefore, the coefficient change determination unit 110 updates the coefficient when the movement is minute. Not performed. The coefficient change determination unit 110 determines that the coefficient is to be changed when there is a significant (predetermined or greater) position change of the viewer and the viewer's position is stabilized thereafter. In this case, the coefficient calculation unit 112 calculates an optimal sound field processing coefficient according to the changed position of the viewer.
  • the coefficient change / sound field adjustment processing unit 114 performs sound field adjustment processing while changing the coefficient.
  • the coefficient change / sound field adjustment processing unit 114 adjusts the sound field while changing the coefficient from the coefficient corresponding to the past viewer position to the coefficient of the viewer's current position newly calculated by the coefficient calculation unit 112. Process. At this time, the coefficient change / sound field adjustment processing unit 114 smoothly changes the coefficient so that noise such as sound interruption does not occur.
  • the coefficient change even if the voice control unit 106 receives a new position information calculation result sent from the viewing position calculation unit 104, the coefficient is not reset. For this reason, the coefficient is not changed without darkness, and the timing at which the position information is sent from the viewing position detection unit 104 and the timing of the audio processing may not be synchronized.
  • the sound field adjustment processing unit 116 performs a normal sound field adjustment process in accordance with the viewing position.
  • This normal sound field adjustment process corresponds to the process in step S32 of FIG.
  • FIG. 3 is a schematic diagram illustrating a configuration of the sound field adjustment processing unit 116.
  • the sound field adjustment processing unit 116 includes a virtual sound source reproduction correction unit 120, a volume correction unit 122, a delay amount correction unit 124, and a directivity characteristic correction unit 126.
  • the volume correction unit 122, the delay amount correction unit 124, and the directivity characteristic correction unit 126 when the viewer's position deviates from the assumed viewing position (trial listening assumed position), It corrects each of the volume difference, arrival time difference, and frequency characteristic change.
  • the volume correction unit 122 corrects the volume difference
  • the delay amount correction unit 124 corrects the arrival time difference
  • the directivity characteristic correction unit 126 corrects the change in the frequency characteristic.
  • the assumed viewing position (assumed viewing position) is the center position of the left and right speakers in many cases, such as a television or audio, that is, the front of the television or audio system.
  • the volume correction unit 122 Based on the position of the viewer acquired from the viewing position calculation unit 104, the volume correction unit 122 corrects the volume so that the volume reaching the viewer from each speaker becomes equal.
  • the delay amount correction unit 124 corrects the delay amount based on the viewer position acquired from the viewing position calculation unit 104 so that the arrival time from each speaker to the viewer becomes equal.
  • the directivity correction unit 126 corrects the frequency characteristics that have changed in the directivity characteristics of each speaker due to the viewing position shift to the characteristics at the assumed viewing position.
  • FIG. 19 is a graph showing the directivity characteristics of a certain speaker.
  • the axis extending radially from the center of the circle indicates the intensity of the sound, and the intensity of the sound for each direction, that is, the directivity is drawn with a solid line. Yes.
  • the upper side of the graph is the front direction (front direction) of the speaker.
  • the directivity varies depending on the frequency of the sound to be reproduced.
  • FIG. 19A the directivity characteristics of 200 Hz, 500 Hz, and 1000 Hz are plotted
  • the directivity characteristics of 2 kHz, 5 kHz, and 10 kHz are plotted.
  • the sound is strongest in the front direction of the speaker, and roughly speaking, the sound becomes weaker in the backward direction (opposite 180 degrees from the front).
  • the change differs depending on the frequency of the sound to be reproduced. The change is small at a low frequency, and the change is large as the frequency is increased.
  • the sound quality of the speaker is adjusted so that the sound balance is the best when listening in the front direction. If the position of the listener is deviated from the front direction of the speaker due to the directivity characteristics as shown in FIG. 19, the frequency characteristics of the sound to be listened to may be greatly changed from the ideal state, resulting in poor sound balance. I understand. Similar problems occur with respect to the phase characteristics of sound.
  • an equalizer that measures the directivity of the speaker and corrects the influence of the directivity is calculated in advance, and the equalizer processing is performed according to the detected direction information ⁇ h, ⁇ v, that is, the orientation of the speaker body relative to the listener. .
  • the equalizer processing is performed according to the detected direction information ⁇ h, ⁇ v, that is, the orientation of the speaker body relative to the listener.
  • FIG. 4 is a schematic diagram illustrating a configuration of the coefficient changing / sound field adjusting unit 114.
  • the coefficient change / sound field adjustment unit 114 includes a virtual sound source reproduction correction / change unit 130, a volume correction / change unit 132, a delay amount correction / change unit 134, and a directivity correction / change unit 136. Configured.
  • the basic processing in the coefficient change / sound field adjustment unit 114 is the same as that of the virtual sound source reproduction correction unit 120, volume correction unit 122, delay amount correction unit 124, and directivity characteristic correction unit 126 in FIG. However, the virtual sound source reproduction correction unit 120, the sound volume correction unit 122, the delay amount correction unit 124, and the directivity characteristic correction unit 126 in FIG. 3 perform correction using the changed coefficient, but the coefficient change / sound field adjustment unit Each component 114 performs correction while changing the previous coefficient to the target coefficient using the coefficient calculated by the coefficient calculation unit 112 as a target value.
  • the coefficient changing / sound field adjusting unit 114 is smooth so that the waveform does not become discontinuous when the coefficient is changed, and so that noise is not generated and the user does not feel uncomfortable.
  • the coefficient change / sound field adjustment unit 114 can be configured as an integral component of the sound field adjustment processing unit 116.
  • FIG. 5 is a flowchart showing the processing of this embodiment.
  • the camera calculates the position of the viewer.
  • processing for smoothing the change in the position of the viewer is performed.
  • step S20 it is determined whether or not the coefficient changing process is in transition based on the coefficient transition flag.
  • the coefficient changing process is being performed (when the coefficient shifting flag is set)
  • the process proceeds to step S22, and the coefficient shifting process is continued.
  • the coefficient transition process of step S22 corresponds to the process of the coefficient changing / sound field adjusting unit 114 described with reference to FIG.
  • step S24 it is determined whether or not the coefficient transfer has been completed. If it has been completed, the process proceeds to step S26 to cancel the coefficient transfer flag. After step S24, the process returns to the start. On the other hand, if the coefficient transition is not completed in step S24, the process returns to the start without releasing the coefficient transition flag.
  • step S28 it is determined whether or not the viewing position has changed based on the result of the position change smoothing in step S12. If the viewing position has changed, the process proceeds to step S30. In step S30, the target coefficient is changed and a coefficient transition flag is set. After step S30, the process proceeds to step S32 and normal processing is performed.
  • step S28 the process proceeds to the normal process in step S32 without setting the coefficient transition flag. After step S32, the process returns to the start.
  • FIG. 6 is a schematic diagram showing the positional relationship between the viewer and the audio output unit (speaker) 108.
  • the volume difference, the arrival time difference, and the frequency characteristic change occur for the sound that reaches from the left and right audio output units 108.
  • the volume correction unit 122, the delay amount correction unit 124, and the directivity characteristic correction unit 126 correct the volume difference, the arrival time difference, and the frequency characteristic change of the sounds that reach each speaker, the left side of FIG.
  • the sound is adjusted so as to be equivalent to the case where the sound output unit 108 of (L) is located at the virtual sound source position.
  • the virtual sound source reproduction correction / change unit 130 performs correction so as to obtain a virtual sound source reproduction effect.
  • the virtual sound source reproduction correction unit 120 changes each parameter for reproducing the virtual sound source.
  • the main parameters include head related transfer functions, direct sound, and crosstalk delay. That is, the change in the head-related transfer function due to the change in the opening angle of the speaker (volume correction unit 122), the distance between the speaker and the viewer, and the orientation of the viewer's face is corrected. In addition, it is possible to cope with a change in the orientation of the viewer's face by correcting the difference between the direct sound and the crosstalk delay amount when the sound source is actually placed at the virtual sound source position.
  • the following example shows an example from creation of a head-related transfer function to application and switching.
  • the head-related transfer function H (r, ⁇ ) is measured using a dummy head or the like at each distance and angle around the viewer.
  • H 1 LL Sound source SP at viewing position 1 Head transfer function from L to left ear H 1 LR : Sound source SP at viewing position 1 Head transfer function from L to right ear H 1 RL : Sound source SP at viewing position 1 Head transfer function from R to left ear H 1 RR : Sound source SP at viewing position 1 Head transfer function from R to right ear H 1 L : Head from virtual sound source SP 1 v at viewing position 1 to left ear Transfer function H 1 R : The virtual sound source reproduction correction coefficient is obtained for the following using a transfer function equal to or higher than the head transfer function from the virtual sound source SP 1 v to the right ear at the viewing position 1.
  • S 1 L transfer function S 1 R to correct the sound from the SP L at the listening position 1: is the transfer function for correcting the sound from SP R at viewing position 1.
  • H 2 LL Head-related transfer function from sound source SP L at viewing position 2 to left ear
  • H 2 LR Head-related transfer function from sound source SP L at viewing position 2 to right ear
  • H 2 RL Sound source SP at viewing position 2
  • Head-related transfer function H 2 RR from R to left ear Sound source SP at viewing position 2
  • Head-related transfer function H 2 L from sound source R to right ear Head from virtual sound source SP 2 v at viewing position 2 to left ear
  • Transfer function H 2 R Head transfer function S 2 L from virtual sound source SP 2 v to right ear at viewing position 2: Transfer function S 2 R for correcting sound from SPL at viewing position 2 SPR at viewing position 2 Transfer function to correct sound from
  • the processing of the volume correction unit 122, the delay amount correction unit 124, and the directivity characteristic correction unit 126 can be regarded as a change in the head-related transfer function. Since the head-related transfer function data must be retained and the tone of the tone becomes long, it is preferable to divide the data into each part.
  • FIG. 7 is a schematic diagram for explaining processing performed by the sound volume correction / change unit 132.
  • FIG. 7A shows a specific configuration of the volume correction / change unit 132.
  • FIG. 7B is a characteristic diagram showing how the volume is corrected by the volume correction / change unit 132.
  • the volume correction / change unit 132 includes a variable attenuator 132a.
  • the volume changes linearly from the value AttCurr before the change to the value AttTrgt after the change.
  • the volume output from the volume correction / change unit 132 is expressed by the following equation. Where t is time. As a result, the volume can be changed smoothly, and the viewer can be reliably prevented from feeling uncomfortable.
  • Att AttCurr + ⁇ t
  • FIG. 8 is a schematic diagram for explaining processing performed by the delay amount correction / change unit 134.
  • the delay amount correction / change unit 134 changes the delay amount by smoothly changing the ratio of mixing two signals having different delay amounts.
  • FIG. 8A shows a specific configuration of the delay amount correction / change unit 134.
  • FIG. 8B is a characteristic diagram showing how the sound volume is corrected by the delay amount correction / change unit 134.
  • the delay amount correcting / changing unit 134 includes a delay buffer 134a, variable attenuators 134b and 134c, and an adding unit 134d.
  • the attenuator 134b adjusts the gain of the past delay amount AttCurr output from the delay buffer 134a.
  • the attenuator 134c adjusts the gain of the new delay amount AttTrgt output from the delay buffer 134a.
  • the attenuator 134b controls so that the gain of the past delay amount AttCurr decreases from 1 to 0 along the sine curve as time elapses. Further, as shown in FIG. 8B, the attenuator 134c controls the gain of the new delay amount AttTrgt to increase from 0 to 1 along the sine curve as time elapses.
  • the adding unit 132d adds the past delay amount AttCurr output from the attenuator 134b and the new delay amount AttTrgt output from the attenuator 134c. Thereby, with the passage of time, the past delay amount AttCurr can be smoothly changed to the new delay amount AttTrgt.
  • FIG. 9 is a schematic diagram for explaining processing performed by the virtual sound source reproduction correction / change unit 130 and directivity correction / change unit 136.
  • the virtual sound source reproduction correction / change unit 130 and the directivity correction / change unit 136 change the characteristics by smoothly changing the ratio of mixing two signals having different characteristics. Note that this coefficient change may be performed in a plurality of ways.
  • the virtual sound source reproduction correction / change unit 130 includes a filter 130a that passes the signal before the change, a filter 130b that passes the signal after the change, an attenuator 130c, an attenuator 130d, and an adder 130e. And is configured.
  • the attenuator 130c adjusts the gain of the signal AttCurr output from the filter 130a.
  • the attenuator 130d adjusts the gain of the signal AttTrgt output from the filter 130b.
  • the attenuator 130c controls so that the gain of the past signal AttCurr decreases linearly from 1 to 0 with the passage of time. Further, as shown in FIG. 9B, the attenuator 130d performs control so that the gain of the new delay amount AttTrgt increases linearly from 0 to 1 as time passes.
  • the adding unit 130e adds the past signal AttCurr output from the attenuator 130c and the new signal AttTrgt output from the attenuator 132d. Thereby, with the passage of time, the past signal AttCurr can be smoothly changed to the new signal AttTrgt.
  • the directivity correction / change unit 136 adds a filter 136a that passes the signal before the change, a filter 136b that passes the signal after the change, an attenuator 136c, an attenuator 136d, Part 136e.
  • the process in the directivity correction / change unit 136 is the same as the process performed in the virtual sound source reproduction correction / change unit 130.
  • FIG. 10 is a schematic diagram showing a specific configuration of the sound field control device 100 of the present embodiment.
  • the input sound output from the sound sources FL, C, FR, SL, SR is the virtual sound source reproduction correction / change unit 130, the volume correction / change unit 132, the delay amount.
  • the signal is output by passing through the correction / change unit 134 and the directivity correction / change unit 136.
  • the viewer can obtain an appropriate virtual sound source reproduction effect regardless of the viewing position, and can feel appropriate localization and spatial spread.
  • each parameter is changed for virtual sound source reproduction based on the viewer's position, an appropriate virtual sound source reproduction effect can be obtained regardless of the viewing position. Appropriate localization and spatial spread can be felt.
  • the viewing position calculation unit 104 for detecting the positional relationship and angle between the viewer and the plurality of speakers in real time, a change in the positional relationship between the plurality of speakers and the viewer can be detected in real time. It can. Since the positional relationship of each of the plurality of speakers with respect to the viewer is calculated based on the calculation result from the viewing position calculation unit 104, and the audio signal output parameter for each of the plurality of speakers is set from the calculation result. The audio signal output parameter can be set in response to a real-time change in the positional relationship between the plurality of speakers and the viewer. As a result, even if the viewer moves, the volume, delay, directivity, and head-related transfer function of the sound from each speaker are corrected, and the optimal sound state and virtual sound source reproduction effect can be provided to the viewer. It becomes possible.
  • the coefficient is changed when the calculation result of the viewing position calculation unit 104 is changed by a predetermined amount or more and when the calculation result is stable for a predetermined time or more, it is possible to reduce a sense of incongruity due to excessive coefficient change and to improve control efficiency.
  • dynamic sound image localization can be changed, for example, by fixing the sound image in space.
  • the virtual sound source reproduction effect is positively changed with respect to the change in the position of the viewer. That is, as shown in FIG. 12, the localization of the sound image is absolutely stored with respect to the space, and the viewer can perceive as moving in the space by moving in the space.
  • the configuration of the sound field control apparatus 100 according to the second embodiment is the same as that in FIGS. 1 to 4 of the first embodiment, and the control method for volume, delay, and speaker directivity is the same as that of the first embodiment. It is the same. However, in the virtual sound source reproduction correction / change unit 130 of FIG. 4, the localization is changed according to the position so as to be fixed with respect to the space.
  • FIG. 18 shows an example of a method of changing the coefficient (head related transfer function) of the virtual sound source reproduction correction unit so that the localization of the virtual sound source is fixed with respect to the space with respect to the movement of the viewer. Similar to the first method, the virtual sound source reproduction correction coefficient at the viewing position is calculated.
  • H 1 L , H 1 R to H 2 L , Change to H 2 R is indispensable.
  • the virtual sound source reproduction correction / change unit 130 performs processing so that the localization of the sound image is absolutely stored with respect to the space. By moving, it can be perceived as moving in the space.
  • the third embodiment shows an example applied to a device 300 such as a tablet terminal or a personal computer.
  • a device 300 such as a tablet terminal
  • a change in the height direction or a change in the angle affects the sound, and the influence is so large that it cannot be ignored.
  • the device 300 itself equipped with the display unit and the audio reproduction unit may move and rotate without moving the viewer.
  • FIG. 14 is a schematic diagram illustrating a configuration example of the third embodiment.
  • a gyro sensor 200 and a posture information calculation unit 202 are added to the configuration example of FIG.
  • the gyro sensor 200 can be used to detect the rotation direction of the device.
  • the posture information calculation unit 202 calculates information on the posture of the device based on the detection value of the gyro sensor 200 and calculates the position and orientation of the audio output unit 108.
  • the viewing position is predicted by calculating the posture of the device 300 from the gyro sensor.
  • the sound field correction process similar to that of the first embodiment can be performed based on the viewing position.
  • the specific configuration of the voice control unit 106 is the same as that of the first embodiment shown in FIGS.
  • FIG. 15 is a schematic diagram illustrating a configuration example of the fourth embodiment.
  • the processing of the sound field control device 100 described above is performed on the cloud computer 500 side instead of the main body of the device 400 including the sound field control device 100.
  • the cloud computer 500 it is possible to maintain a huge database of head-related transfer functions and to realize rich sound field processing.
  • the imaging unit 102 (and the viewing position calculation unit 104) in the first embodiment may be provided separately from the device in which the sound field control device 100 is provided.
  • the imaging unit 102 is provided in a device different from the device in which the sound field control device 100 is provided will be described.
  • FIG. 20 is a schematic diagram illustrating a configuration example of a system in the fifth embodiment.
  • the imaging unit 102 is provided in a device 600 different from the sound field control device 100.
  • the device 600 may be a device that records video / audio of the television receiver when the sound field control device 100 is a television receiver, such as a DVD player. Further, the device 600 may be a single imaging device (camera).
  • the viewer's image captured by the image capturing unit 102 is sent to the sound field control device 100.
  • the viewing position calculation unit 104 calculates the position of the viewer based on the viewer's image.
  • the subsequent processing is the same as in the first embodiment.
  • the sound field control device 100 can control the sound field based on the image captured by the other device 600.
  • the position of the sound source may move according to the position of the display object (display object) on the screen.
  • the display object such as a character, a car, or an airplane moves on the screen
  • the presence of the sound source of the display object can be increased by moving the display object.
  • the sense of reality can be enhanced by moving the position of the sound source in accordance with the movement of the display object in the three-dimensional direction.
  • Such movement of the display object occurs as the game progresses, and also occurs due to a user operation.
  • the virtual sound source reproduction effect is positively changed.
  • the virtual sound source reproduction effect is changed according to the position of the display object, and the position of the display object is sounded as the virtual sound source position.
  • an appropriate HRTF is dynamically calculated in consideration of the relative position of the virtual sound source position in addition to the information on the position of the viewer (user) and the reproduced sound source position.
  • H L the virtual sound source position SPv changes in real time in FIG. 17, H L, sequentially changing the H R, to calculate the virtual sound source reproduction correction coefficient (virtual sound source reproduction filter) by the following equation. That is, the virtual sound source position SPv corresponds to the position of the display object, and in the following expression, in Expression 1 (Equation 1) described in the first embodiment, H L and H R are functions of time H L (t ), H R (t). Thereby, the position of the virtual sound source can be changed in real time according to the position of the display object.
  • FIG. 21 is a schematic diagram illustrating a configuration example of the sound field control apparatus 100 according to the sixth embodiment.
  • the sound field control device 100 includes a user operation detection unit 140, an image information acquisition unit 142, and a virtual sound source position calculation unit 144 in addition to the configuration of FIG. 1.
  • the user operation detection unit 140 detects a user operation by an operation member such as a button, a touch panel, a keyboard, or a mouse.
  • the image information acquisition unit 142 acquires information such as the position and movement of the display object.
  • the image information acquisition unit 142 acquires the two-dimensional position of the display object in the display screen.
  • the image information acquisition unit 142 determines the position (depth position) of the display object in the direction perpendicular to the display screen based on the parallax between the left-eye image and the right-eye image. get.
  • the virtual sound source position calculation unit 144 calculates the position of the virtual sound source on the basis of user operation information or information such as the position and movement of the display object.
  • the voice control unit 106 performs the same control as in the first embodiment.
  • the virtual sound source reproduction correction unit 120 included in the audio control unit 106 is based on the position of the virtual sound source calculated by the virtual sound source position calculation unit 144 according to the above formula, H L (t), H R (t) Are sequentially changed over time, and a virtual sound source reproduction correction coefficient is calculated. Thereby, the position of the virtual sound source can be changed in real time according to the position of the display object.
  • the position of the virtual sound source can be changed in real time according to the position of the display object. Therefore, it is possible to provide a realistic sound field according to the position of the display object.
  • a seventh embodiment of the present disclosure will be described.
  • the sixth embodiment for example, when the virtual sound source position is controlled in accordance with the position of the display object of the game, the calculation amount of the CPU increases. For this reason, it may be assumed that the CPU mounted on the tablet terminal, the smartphone, or the like is overloaded and desired control cannot be performed. Therefore, the sixth embodiment described above is more preferably realized by the cloud computing described in the fourth embodiment.
  • the seventh embodiment an example will be described in which the processing content is changed according to the communication speed of the server (cloud computer 500) and the client (device 400) and the processing capability of the client.
  • FIG. 22 is a sequence diagram illustrating an example of communication between the cloud computer 500 and the device 400.
  • the device 400 notifies the cloud computer 500 of the processing method. More specifically, according to the CPU specifications (processing speed, power), memory capacity, communication speed, and the like, the device 400 sends what information to the cloud computer 500 and what the cloud computer 500 does. Information to be returned to the device 400.
  • the cloud computer 500 in response to the notification from the device 400, the cloud computer 500 notifies the device 400 that the notification has been accepted.
  • the device 400 transmits a processing request to the cloud computer 500.
  • the device 400 transmits the audio data and information such as the viewer position, the sound source position, and the virtual sound source position information to the cloud computer 500 and requests processing.
  • the cloud computer 500 performs processing according to the processing method notified from the device 400 in step S30, and in the next step S36, the cloud computer 500 transmits a response to the processing request to the device 400. In step S36, the cloud computer 500 returns a response such as processed audio data or a coefficient necessary for the processing to the device 400.
  • step S34 metadata such as audio data, viewer position, sound source position, virtual sound source position, and the like is obtained.
  • the data is sent from the device 400 to the cloud computer 500.
  • the device 400 requests the cloud computer 500 to select an appropriate HRTF from a large amount of databases, perform virtual sound source reproduction processing, and return the processed audio data to the device 400.
  • step S ⁇ b> 36 the cloud computer 500 transmits the processed audio data to the device 400.
  • the device 400 can perform rich sound field processing with higher accuracy with less CPU capability.
  • the cloud computer 500 returns an appropriate coefficient such as HRTF from a large amount of database to the device 400 in step S36, and performs virtual sound source reproduction processing on the client side.
  • the device 400 does not send the position information itself such as the current viewer position, sound source position, virtual sound source position, etc. in step S34, but HRTF data in the vicinity of the position information or difference information of the position information sent before. For example, by preloading supplemental data for predicting position information into the cloud computer 500, a faster response is possible.
  • FIG. 23 is a schematic diagram showing merits regarding the types of metadata sent from the cloud computer 500 to the device 400, the transmission band, and the load on the device 400.
  • metadata (1) when a feature value of the head related transfer function HRTF (or virtual sound source reproduction correction coefficient) is sent, (2) when HRTF is sent, (3) a sound source is folded into HRTF.
  • HRTF head related transfer function
  • FIG. 23 the merits of the transmission bandwidth and the CPU load of the device 400 are shown for the following three types.
  • the HRTF calculated from the position information or the like is not sent sequentially from the cloud computer 500 to the device 400.
  • the difference with respect to HRTF and the amount of change are transmitted. This makes it possible to minimize the amount of transmission after sending the HRTF once, thereby reducing the transmission band.
  • the HRTF is sequentially calculated based on the difference and the amount of change on the device 400 side, the CPU load on the device 400 increases.
  • the HRTF calculated from the position information or the like is sent from the cloud computer 500 to the device 400 sequentially.
  • the transmission band becomes larger than the case of (1).
  • the CPU load on the device 400 is smaller than in the case (1).
  • information (voice information) in which the sound source is further convoluted is sequentially sent from the cloud computer 500 to the device 400 with respect to the HRTF calculated from the position information or the like. That is, the cloud computer 500 performs processing up to the voice control unit 106 of the sound field control device 100. In this case, since the amount of information sent from the cloud computer 500 to the device 400 becomes large, the transmission band becomes larger than (1) and (2). On the other hand, on the device 400 side, voice can be output by using the received information as it is, so the CPU load on the device 400 is the smallest.
  • Information on which processing (1) to (3) is to be performed is included in the notification of the processing method sent by the device 400 in step S30 in FIG.
  • the user can specify which process (1) to (3) is to be performed by operating the device 400. Also, which of the processes (1) to (3) is performed may be automatically determined by the device 400 or the cloud computer 500 according to the transmission band or the CPU capability of the device 400.
  • FIG. 24 is a schematic diagram showing the configuration of the device 400 and the cloud computer 500.
  • the device 400 includes a communication unit 420 that communicates with the cloud computer 500 via a network in addition to the configuration of the sound field control device 100 of FIG.
  • the cloud computer 500 includes a communication unit 520 that communicates with the device 400 via a network.
  • the processing of the sound field control device 100 is distributed to the device 400 and the cloud computer 500 according to the transmission band and the CPU load of the device 400.
  • the sound field control device 100 of the cloud computer 500 may not include the imaging unit 102.
  • the sound field control device 100 may include the communication unit 420 or the communication unit 520.
  • FIG. 25 is a schematic diagram illustrating an example of a system including the head tracking headphone 600.
  • the basic configuration of this system is the same as that described in Japanese Patent Laid-Open No. 2003-111197, and the outline of the system will be described below.
  • the headphone 600 is provided with an angular velocity sensor 609.
  • the output signal of the angular velocity sensor 9 is band-limited by a band-limiting filter 645 and further A / D (Analog to digital) is converted into digital data by the converter 646, taken into the microprocessor 647, and integrated by the microprocessor 647 to detect the rotation angle (orientation) ⁇ of the listener's head wearing the headphones 600.
  • a / D Analog to digital
  • the input analog audio signal Ai corresponding to the signal of the sound source 605 supplied to the terminal 611 is converted into a digital audio signal Di by the A / D converter 621, and the digital audio signal Di is supplied to the signal processing unit 630.
  • the signal processing unit 630 includes a digital filter 631, 632, a time difference setting circuit 638, and a level difference setting function as a hardware circuit including software (processing program) by a dedicated DSP (Digital signal processor) or the like.
  • the digital audio signal Di from the A / D converter 621 is supplied to the digital filters 631 and 632.
  • the digital filters 631 and 632 are impulses corresponding to transfer functions HLc and HRc from the sound source 605 to the left ear 1L and the right ear 1R of the listener 1 when the listener is facing a predetermined direction, for example, the direction of the sound source 605.
  • the response is convolved, and is constituted by, for example, an FIR filter.
  • each of the digital filters 631 and 632 the audio signal supplied to the input terminal is sequentially delayed by a delay circuit connected in multiple stages with a delay time of the sampling period ⁇ , and is supplied to the input terminal in each multiplier circuit.
  • the resultant audio signal and the output signal of each delay circuit are multiplied by an impulse response coefficient, and each adder circuit sequentially adds the output signal of each multiplier circuit to obtain a filtered audio signal at the output terminal.
  • the audio signals L1 and R1 output from the digital filters 631 and 632 are supplied to the time difference setting circuit 638, and the audio signals L2 and R2 output from the time difference setting circuit 638 are supplied to the level difference setting circuit 639.
  • the audio signals L3 and R3 output from the level difference setting circuit 639 are D / A converted by the D / A converters 641R and 641L and supplied to the speakers 603R and 603L via the elements 642R and 642L.
  • the orientation of the face of the user wearing the headphones 600 can be detected by information obtained from the gyro sensor provided in the headphones.
  • the virtual sound source position can be controlled in accordance with the direction of the headphones 600.
  • the virtual sound source position can be controlled so as not to change.
  • the user wearing the headphones 600 can recognize that the sound is generated from the same place even if the face direction is changed, and the presence can be enhanced.
  • the structure which controls a virtual sound source position based on the information obtained from a gyro sensor can be comprised similarly to 3rd Embodiment.
  • an eighth embodiment of the present disclosure when the sound field control device 100 is mounted on a small device such as a smartphone, a virtual sound source is reproduced using an ultrasonic speaker.
  • a small device such as a smartphone
  • the distance between the left and right speakers is narrowed, making it difficult to cancel crosstalk in which left and right sounds are mixed.
  • FIG. 26 is a schematic diagram showing an outline of the ninth embodiment. As shown in FIG. 26, when the user is listening to the sound generated from the external speaker 800, it is assumed that the user holds a device 700 that senses the position and orientation of a smartphone, a tablet terminal, and the like. As shown in FIG. 26,
  • FIG. 27 is a schematic diagram showing the configuration of the sound field control device 100 of the ninth embodiment.
  • the sound field control device 100 is provided in the device 700.
  • the sound field control device 100 of the ninth embodiment includes a sound source position information acquisition unit 150, a gyro sensor 152, and a viewing position calculation unit 154 in addition to the configuration of FIG.
  • the sound source position information acquisition unit 150 acquires the position of the external speaker 800 with respect to the device 700.
  • the viewing position calculation unit 154 calculates the absolute position and direction of the user based on the detection value of the gyro sensor 152.
  • the sound control unit 106 controls the virtual sound source position based on the information acquired by the sound source position information acquisition unit and the information calculated by the viewing position calculation unit 154. As a result, the virtual sound source position can be controlled based on the absolute position and direction of the user.
  • a display object position information acquisition unit that acquires position information of a display object corresponding to a sound source
  • a virtual sound source position control unit for controlling a virtual sound source position based on the position information of the display object
  • a sound field control device comprising: (2) a transmission unit that transmits at least position information of the display object to an external computer; A reception unit that receives a virtual sound source reproduction correction coefficient calculated based on position information of the display object from the external computer or information generated based on the virtual sound source reproduction correction coefficient, The sound field control device according to 1).
  • the transmission unit transmits audio data together with position information of the display object to the external computer
  • the said receiving part receives the audio
  • a viewer position information acquisition unit that acquires the position information of the viewer is further provided, The sound field control device according to (1), wherein the virtual sound source position control unit controls a virtual sound source position based on position information of the display object and position information of the viewer. (5) The sound field control device according to (4), wherein the viewer position information acquisition unit acquires the position information of the viewer from information obtained by imaging.
  • (6) a transmission unit that transmits the position information of the display object and the position information of the viewer to an external computer;
  • a receiving unit that receives, from the external computer, a virtual sound source reproduction correction coefficient calculated based on the position information of the display object and the position information of the viewer, or information generated based on the virtual sound source reproduction correction coefficient;
  • the sound field control device according to (4), further comprising: (7)
  • the transmission unit transmits audio data together with the position information of the display object and the position information of the viewer to the external computer,
  • the receiving unit receives audio data obtained by correcting the audio data from a virtual sound source reproduction correction coefficient calculated based on position information of the display object and position information of the viewer from the external computer.
  • the sound field control device according to (6).
  • a sound field control device comprising: (9) means for acquiring position information of a display object corresponding to the sound source; Means for controlling the position of the virtual sound source based on the position information of the display object; As a program to make the computer function.
  • a display object position information acquisition unit that acquires position information of a display object corresponding to the sound source;
  • a transmitter for transmitting the position information of the object to an external computer;
  • a receiving unit that receives a virtual sound source reproduction correction coefficient calculated based on the position information of the object from the external computer;
  • a receiving unit for receiving position information of the display object;
  • a virtual sound source reproduction correction coefficient calculating unit that calculates the virtual sound source reproduction correction coefficient based on position information of the display object;
  • the external computer comprising: a transmission unit that transmits the virtual sound source reproduction correction coefficient or information generated based on the virtual sound source reproduction correction coefficient to the client terminal;
  • a sound field control system comprising: (11) a receiving unit that receives position information of a display object corresponding to a sound source from a client terminal;
  • a virtual sound source reproduction correction coefficient calculating unit that calculates the virtual sound source reproduction correction coefficient based on position information of the display object;
  • the external computer comprising: a transmission unit that transmits the virtual sound source reproduction correction coefficient or
  • the client terminal acquires position information of a display object corresponding to the sound source;
  • the client terminal transmits the position information of the object to an external computer;
  • a receiving unit for receiving position information of the display object by the external computer;
  • the external computer calculates the virtual sound source reproduction correction coefficient based on the position information of the display object;
  • the external computer transmitting the virtual sound source reproduction correction coefficient or information generated based on the virtual sound source reproduction correction coefficient to the client terminal;
  • a sound field control method comprising: (13) a position information acquisition unit that acquires position information of a viewer from information obtained by imaging;
  • a virtual sound source position control unit for controlling the virtual sound source position based on the position information;
  • a sound field control device comprising: (14) The sound field control device according to (13), wherein the virtual sound source position control unit controls the virtual sound source position so that the localization of the sound image is fixed regardless of the position of the viewer.
  • the sound field control device controls the virtual sound source position so that the localization of the sound image relatively moves according to the position of the viewer.
  • the virtual sound source position control unit controls the virtual sound source position by changing a head-related transfer function based on the position information.
  • the virtual sound source position control unit smoothly changes the coefficient before the viewer position changes from the coefficient before the viewer position changes to the coefficient after the viewer position changes.
  • the sound field control device is controlled.
  • the virtual sound source position control unit controls the virtual sound source position when the movement of the viewer is a predetermined value or more based on position information.
  • the sound field control device further including a control unit that controls a sound volume, a sound delay amount, or a directivity based on the position information.
  • the sound field control device further including an imaging unit that acquires position information of the viewer.
  • a posture information acquisition unit that acquires posture information is provided.
  • the sound source control device wherein the virtual sound source position control unit controls a virtual sound source position based on the position information and the posture information.
  • a sound field control method comprising: (24) means for acquiring viewer position information; Means for controlling a virtual sound source position based on the position information; As a program to make the computer function. (25) an imaging device for imaging a viewer; A sound field control device comprising: a position information acquisition unit that acquires position information of a viewer from information obtained from the imaging device; and a virtual sound source position control unit that controls a virtual sound source position based on the position information.
  • a sound field control system comprising:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

 本開示に係る音場制御装置は、撮像により得られた情報から視聴者の位置情報を取得する位置情報取得部と、前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を備える。これにより、頭部の大きさや向きを考慮して仮想音源再生を最適に調整することが可能となる。従って、視聴者に対して違和感のない音場を提供することが可能となる。

Description

音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ
 本開示は、音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバに関する。
 従来、例えば下記の特許文献1~3に記載されているように、視聴者の位置に応じて音量、遅延、スピーカの指向特性を補正し、正面位置から外れた場所でも最適な音声を視聴者に提供する装置を提案している。
特開2005-049656号公報 特開2007-214897号公報 特開2010-206451号公報
 スピーカ再生において、想定された視聴位置(通常はすべてのスピーカから等距離にある位置、すなわち正面位置)からずれた位置で試聴すると、各スピーカからの到達する音量バランスやタイミングがずれ、音質が劣化したり、定位がずれたりする。また、視聴者が移動すると、仮想音源再生効果も失われてしまう問題がある。
 しかしながら、特許文献1~3に記載された技術では、音量や遅延量、指向特性を調整することを想定してのみであり、頭部の大きさや向きを考慮していないため、仮想音源再生は最適に調整することは困難である。
 また、携帯機器、タブレット端末でゲームなどを行う場合、音源となる表示対象物が移動すると、表示対象物の移動とユーザが聴く音声との間で違和感が生じることがある。
 そこで、仮想音源再生を最適に調整することが求められていた。
 本開示によれば、音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を備える、音場制御装置が提供される。
 また、少なくとも前記表示対象物の位置情報を外部のコンピュータへ送信する送信部と、前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備えるものであっても良い。
 また、前記送信部は、前記表示対象物の位置情報とともに音声データを前記外部のコンピュータへ送信し、前記受信部は、前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信するものであっても良い。
 また、視聴者の位置情報を取得する視聴者位置情報取得部を更に備え、前記仮想音源位置制御部は、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて仮想音源位置の制御を行うものであっても良い。
 また、前記視聴者位置情報取得部は、撮像により得られた情報から前記視聴者の位置情報を取得するものであっても良い。
 また、前記表示対象物の位置情報及び前記視聴者の位置情報を外部のコンピュータへ送信する送信部と、前記外部のコンピュータから前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備えるものであっても良い。
 また、前記送信部は、前記表示対象物の位置情報及び前記視聴者の位置情報とともに音声データを前記外部のコンピュータへ送信し、前記受信部は、前記外部のコンピュータから、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信するものであっても良い。
 また、本開示によれば、音源に対応する表示対象物の位置情報を取得することと、前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行うことと、を備える、音場制御装置が提供される。
 また、本開示によれば、音源に対応する表示対象物の位置情報を取得する手段、前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う手段、としてコンピュータを機能させるためのプログラムが提供される。
 また、本開示によれば、音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、前記対象物の位置情報を外部コンピュータへ送信する送信部と、前記外部コンピュータから前記対象物の位置情報に基づいて算出された仮想音源再生補正係数を受信する受信部と、を有するクライアント端末と、前記表示対象物の位置情報を受信する受信部と、前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、を備える、音場制御システムが提供される。
 また、本開示によれば、クライアント端末から音源に対応する表示対象物の位置情報を受信する受信部と、前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、を備える、サーバが提供される。
 また、本開示によれば、クライアント端末が音源に対応する表示対象物の位置情報を取得することと、クライアント端末が前記対象物の位置情報を外部コンピュータへ送信すること、前記外部コンピュータが前記表示対象物の位置情報を受信する受信部と、前記外部コンピュータが前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出することと、前記外部コンピュータが、前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信することと、を備える、音場制御方法が提供される。
 本開示によれば、撮像により得られた情報から視聴者の位置情報を取得する位置情報取得部と、前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を備える、音場制御装置が提供される。
 前記仮想音源位置制御部は、前記視聴者の位置に係わらず音像の定位が固定されるように仮想音源位置の制御を行うものであってもよい。
 前記仮想音源位置制御部は、前記視聴者の位置に応じて音像の定位が相対的に移動するように仮想音源位置の制御を行うものであってもよい。
 前記仮想音源位置制御部は、前記位置情報に基づいて、頭部伝達関数を変化させることで前記仮想音源位置の制御を行うものであってもよい。
 前記仮想音源位置制御部は、前記視聴者の位置が変化する前の係数から前記視聴者の位置が変化した後の係数へ滑らかに変化させることで、位置情報に基づいて、前記仮想音源位置の制御を行うものであってもよい。
 前記仮想音源位置制御部は、位置情報に基づいて、前記視聴者の移動が所定値以上の場合に前記仮想音源位置の制御を行うものであってもよい。
 前記位置情報に基づいて、音量、音の遅延量、又は指向特性を制御する制御部を更に備えるものであってもよい。
 前記視聴者の位置情報を取得する撮像部を備えるものであってもよい。
 姿勢情報を取得する姿勢情報取得部を備え、
 前記仮想音源位置制御部は、前記位置情報及び前記姿勢情報に基づいて、仮想音源位置の制御を行うものであってもよい。
 前記位置情報取得部は、前記視聴者を撮像する撮像部を有する他の機器から前記撮像により得られた情報を取得するものであってもよい。
 また、本開示によれば、視聴者の位置情報を取得することと、前記位置情報に基づいて、仮想音源位置の制御を行うことと、を備える、音場制御方法が提供される。
 また、本開示によれば、視聴者の位置情報を取得する手段、前記位置情報に基づいて、仮想音源位置の制御を行う手段、としてコンピュータを機能させるためのプログラムが提供される。
 また、本開示によれば、視聴者を撮像する撮像装置と、前記撮像装置から得られた情報から視聴者の位置情報を取得する位置情報取得部と、前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を有する音場制御装置と、を備える、音場制御システムが提供される。
 本開示によれば、仮想音源再生を最適に調整することが可能となる。
本開示の第1の実施形態に係る音場制御装置の構成例を示す模式図である。 音声制御部の構成を示す模式図である。 音場調整処理部の構成を示す模式図である。 係数変更・音場調整部の構成を示す模式図である。 第1の実施形態の処理を示すフローチャートである。 視聴者と音声出力部(スピーカ)の位置関係を示す模式図である。 音量補正・変更部で行われる処理を説明するための模式図である。 遅延量補正・変更部で行われる処理を説明するための模式図である。 仮想音源再生補正・変更部、指向特性補正・変更部で行われる処理を説明するための模式図である。 本実施形態の音場制御装置の具体的な構成を示す模式図である。 第1の実施形態の音像の定位の位置を示す模式図である。 第2の実施形態の音像の定位の位置を示す模式図である。 第3の実施形態において、タブレット端末やパーソナルコンピュータなどの機器に適用した例を示す模式図である。 第3の実施形態の構成例を示す模式図である。 第4の実施形態の構成例を示す模式図である。 視聴者の周りでの各距離、角度においてダミーヘッド等を用いて頭部伝達関数H(r,θ)を測定する様子を示す模式図である。 仮想音源再生補正係数の算出を説明するための模式図である。 視聴者の移動に対して仮想音源の定位が空間に対して固定されるように仮想音源再生補正部の係数(頭部伝達関数)を変更する方法を示す模式図である。 スピーカの指向特性の一例を示す特性図である。 第5の実施形態におけるシステムの構成例を示す模式図である。 第6の実施形態に係る音場制御装置の構成例を示す模式図である。 クラウドコンピュータと機器の通信の例を示すシーケンス図である。 クラウドコンピュータから機器へ送るメタデータの種類と、伝送帯域、及び機器の負荷についてのメリットを示す模式図である。 機器とクラウドコンピュータの構成を示す模式図である。 ヘッドトラッキングヘッドフォンを含むシステムの一例を示す模式図である。 第9の実施形態の概要を示す模式図である。 第9の実施形態の音場制御装置の構成を示す模式図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
1.第1の実施形態>
 1.1.音場制御装置の外観例
 1.2.音場制御部の構成例
 1.3.音場調整処理部の構成例
 1.4.音場制御装置における処理
 1.5.視聴者と音声出力部の位置関係について
 1.6.仮想音源再生補正部における処理
 1.7.音量補正・変更部における処理
 1.8.遅延量補正・変更部における処理
 1.9.仮想音源再生補正・変更部、指向特性補正・変更部における処理
 1.10.音場制御装置の具体的な構成例
2.第2の実施形態
 2.1.第2の実施形態の概要
 2.2.第2の実施形態の仮想音源再生補正・変更部で行われる処理
3.第3の実施形態
 3.1.第3の実施形態の概要
 3.2.第3の実施形態の構成例
4.第4の実施形態
5.第5の実施形態
6.第6の実施形態
7.第7の実施形態
8.第8の実施形態
9.第9の実施形態
 <1.第1の実施形態>
 [1.1.音場制御装置の外観例]
 図1は、本開示の第1の実施形態に係る音場制御装置100の構成例を示す模式図である。音場制御装置100は、スピーカを備えるテレビ受像機、オーディオ機器等に設けられ、視聴者の位置に応じてスピーカの音声を制御する。図1に示すように、音場制御装置100は、撮像部102、視聴位置算出部104、音声制御部106、音声出力部108を有して構成される。図1に示す構成は、回路(ハードウェア)またはCPUなどの中央演算処理装置と、これを機能させるためのプログラム(ソフトウェア)によって構成することができ、そのプログラムはメモリなどの記録媒体に格納されることができる。以下に説明する図3等の構成要素、各実施形態の構成においても同様である。
 撮像部102は、音声を聴く視聴者(ユーザ)の顔、身体を撮像する。視聴位置算出部104は、撮像部102から得られる画像から、視聴者の位置、顔の向きを算出する。なお、撮像部102(および視聴位置算出部104)は、音場制御装置100が設けられた装置とは別体に設けられていても良い。音声制御部106には、音源が入力される。音声制御部106は、視聴者の位置に応じて良好な音質、定位、仮想音源再生(バーチャルサラウンド)効果が得られるように音声に対して処理を行う。音声出力部108は、音声制御部106で制御された音声を出力するスピーカである。
 [1.2.音場制御部の構成例]
 図2は、音声制御部106の構成を示す模式図である。図2に示すように、音声制御部106は、係数変更判定部110、係数算出部112、係数変更・音場調整処理部114、音場調整処理部116を有して構成される。
 係数変更判定部110は、撮像部102が撮像した視聴者の画像に基づいて、係数を変更するか否かを判定する。視聴者が少し動いたり顔を動かしたりするだけで係数を更新すると、係数更新時の音色の変化が無視できない可能性があるため、係数変更判定部110は、動きが微小な場合は係数更新を行わない。係数変更判定部110は、視聴者の有意な(所定以上)の位置の変更があり、その後に視聴者の位置が安定すると、係数変更を行う旨を判定する。この場合、係数算出部112は、視聴者の変更後の位置に応じた最適な音場処理係数を計算する。
 係数変更・音場調整処理部114は、係数を変更しながら音場調整処理を行う。係数変更・音場調整処理部114は、過去の視聴者の位置に対応した係数から、係数算出部112が新たに算出した視聴者の現在の位置の係数へ、係数変更を行いながら音場調整処理を行う。この際、係数変更・音場調整処理部114は、音切れなどのノイズが発生しないよう滑らかに係数変更を行う。
 なお、係数変更中においては、視聴位置算出部104から送られた新たな位置情報算出結果を音声制御部106が受信したとしても、係数の再設定は行わない。このため、無闇に係数が変更されることがなく、視聴位置検出部104から位置情報が送られてくるタイミングと、音声処理のタイミングは同期していなくても良い。
 一方、視聴者の位置が変化せず、係数変更判定部110で係数を変更しないと判定された場合、音場調整処理部116は、視聴位置に合わせた通常の音場調整処理を行う。この通常の音場調整処理は、後述する図10のステップS32の処理に対応する。
 [1.3.音場調整処理部の構成例]
 次に、音場調整処理部116の構成について説明する。図3は、音場調整処理部116の構成を示す模式図である。図3に示すように、音場調整処理部116は、仮想音源再生補正部120、音量補正部122、遅延量補正部124、及び指向特性補正部126を有して構成される。
 音量補正部122、遅延量補正部124、及び指向特性補正部126は、視聴者の位置が想定した視聴位置(試聴想定位置)からずれた場合に、そのずれにより生じる各スピーカから到達する音の音量差、到達時間差、及び周波数特性の変化をそれぞれ補正するものである。音量補正部122は音量差を補正し、遅延量補正部124は到達時間差を補正し、指向特性補正部126は周波数特性の変化を補正する。ここで、想定した視聴位置(視聴想定位置)とは、テレビやオーディオ等の、多くの場合は左右のスピーカの中心位置、すなわちテレビやオーディオシステムの正面である。
 音量補正部122は、視聴位置算出部104から取得した視聴者の位置に基づいて、各スピーカから視聴者へ到達する音量が等しくなるように音量を補正する。音量Aは、各スピーカから視聴者頭部中心までの距離rに比例し、下式が成立する。下式において、Attは、試聴想定位置とスピーカとの距離である。
Att= r/r
 遅延量補正部124では、視聴位置算出部104から取得した視聴者の位置に基づいて、各スピーカから視聴者への到達時間が等しくなるように遅延量を補正する。各スピーカの遅延量tは、各スピーカから視聴者頭部中心までの距離をrとし、rのうち最大のものをrmaxとすると以下の式で表される。但し、cは音速である。
=(rmax-r)/c
 指向特性補正部126では、視聴位置算出部104から取得した視聴者の位置に基づいて、視聴位置のずれにより各スピーカの指向特性で変化した周波数特性を、想定視聴位置での特性に補正する。想定視聴位置でのスピーカiの周波数特性をHとし、
視聴位置での周波数特性をGとすると、補正する周波数特性Iは以下の式で求められる。
I=H/G
 以下では、指向特性補正部126における処理をより詳細に説明する。図19は、あるスピーカの指向特性を示すグラフである。図19(a)、図19(b)のそれぞれにおいて、円の中心から放射線状に広がる軸は音の強さを示しており、方向毎の音の強さすなわち指向特性が実線で描かれている。グラフの上側がスピーカの正面方向(前方向)である。指向特性は再生する音の周波数によって異なる。図19(a)では200Hz,500Hz,1000Hzの、図19(b)では2kHz,5kHz,10kHzの指向特性がそれぞれプロットされている。
 図19から分かるように、スピーカの正面方向が最も音が強くなり、おおまかに言って、後方向(正面から180度反対方向)に向かうにつれて音が弱くなる。またその変化は、再生する音の周波数によって異なり、低い周波数では変化が少なく、周波数が高くなると変化が大きくなる。スピーカは一般に、正面方向で聴いたときに音のバランスが最も良くなるように音質調整されている。図19に示すような指向特性から、受聴者の位置がスピーカの正面方向からずれている場合、受聴する音の周波数特性が理想状態から大きく変わってしまい、音のバランスが悪くなってしまうことが分かる。同様の問題は、音の位相特性に関しても生じる。
 そこで、スピーカの指向特性を測定し、指向特性の影響を補正するようなイコライザを予め算出しておき、検出した方向情報θh,θv、すなわち受聴者に対するスピーカ本体の向きに応じてイコライザ処理を行う。これにより、受聴者に対するスピーカの向きに依らない,バランスのよい再生を実現することが可能となる。
 補正フィルタの例としては、理想視聴位置での周波数特性をHideal,とし、そこから離れた位置での特性をHとすると、補正フィルタSは以下の式で求められる。
S=Hideal,/H
 次に、図4の係数変更・音場調整部114の構成について説明する。係数算出部112が算出した係数に基づいて係数を変更し、音場調整を行う。図4は、係数変更・音場調整部114の構成を示す模式図である。図4に示すように、係数変更・音場調整部114は、仮想音源再生補正・変更部130、音量補正・変更部132、遅延量補正・変更部134、指向特性補正・変更部136を有して構成される。
 係数変更・音場調整部114における基本的な処理は、図3の仮想音源再生補正部120、音量補正部122、遅延量補正部124、及び指向特性補正部126と同様である。但し、図3の仮想音源再生補正部120、音量補正部122、遅延量補正部124、及び指向特性補正部126は、変更された後の係数によって補正を行うが、係数変更・音場調整部114の各構成要素は、係数算出部112が算出した係数を目標値として、以前の係数から目標の係数に変更しながら補正を行う。この際、係数変更・音場調整部114は、係数を変更する際に波形が不連続にならにように、また、ノイズが発生したりユーザが違和感を覚えたりすることがないように、滑らかに係数を変更させる。係数変更・音場調整部114は、音場調整処理部116と一体の構成要素として構成することができる。
 [1.4.音場制御装置における処理]
 次に、本実施形態に係る音場制御装置100における処理について説明する。図5は、本実施形態の処理を示すフローチャートである。ステップS10では、カメラが視聴者の位置を算出する。次のステップS12では、視聴者の位置の変化を平滑化する処理を行う。
 また、ステップS20では、係数移行中フラグに基づいて、係数変更の処理が移行中であるか否かが判定される。係数変更の処理が行われている場合(係数移行中フラグが設定されている場合)は、ステップS22へ進み、係数移行処理を引き続き行う。ステップS22の係数移行処理は、図4で説明した係数変更・音場調整部114の処理に相当する。
 ステップS22の後はステップS24へ進む。ステップS24では、係数の移行が終了したか否かを判定し、終了した場合はステップS26へ進み、係数移行中フラグを解除する。ステップS24の後はスタートに戻る。一方、ステップS24で係数の移行が終了していない場合は、係数移行中フラグを解除することなくスタートへ戻る。
 また、ステップS20において係数移行中でない場合(係数移行中フラグが解除されている場合)は、ステップS28へ進む。ステップS28では、ステップS12における位置変化平滑化の結果に基づいて、視聴位置が変わったか否かを判定する。視聴位置が変わった場合はステップS30へ進む。ステップS30では、目標となる係数を変更し、係数移行中フラグを設定する。ステップS30の後はステップS32へ進み、通常処理を行う。
 一方、ステップS28において、視聴位置が変わっていない場合は、係数移行中フラグを設定することなく、ステップS32の通常処理に進む。ステップS32の後はスタートに戻る。
 [1.5.視聴者と音声出力部の位置関係について]
 図6は、視聴者と音声出力部(スピーカ)108の位置関係を示す模式図である。図6の視聴想定位置に視聴者が存在する場合、左右の音声出力部108から到達する音について、音量差、到達時間差、及び周波数特性の変化は生じない。一方、図6に示す移動後の視聴者位置に視聴者が移動すると、左右の音声出力部108から到達する音について、音量差、到達時間差、及び周波数特性の変化が生じる。
 音量補正部122、遅延量補正部124、及び指向特性補正部126の処理により、各スピーカから到達する音の音量差、到達時間差、及び周波数特性の変化がそれぞれ補正されると、図6の左側(L)の音声出力部108が仮想音源位置に位置した場合と等価になるように音声が調整される。
 しかしながら、音量補正部122、遅延量補正部124、及び指向特性補正部126の処理のみでは、スピーカの開き角、スピーカと視聴者の距離、視聴者の顔の向きは変化しているため、仮想音源再生効果は十分に補正できない。そこで、本実施形態に係る仮想音源再生補正・変更部130は、仮想音源再生効果が得られるように補正を行う。
 [1.6.仮想音源再生補正部における処理]
 仮想音源再生補正部120では、仮想音源再生のため各パラメータを変更する。主なパラメータとしては、頭部伝達関数や、直接音、クロストークの遅延量などがある。すわわち、スピーカ(音量補正部122)の開き角や、スピーカと視聴者の距離、視聴者の顔の向きの変化による頭部伝達関数の変化を補正する。また、仮想音源位置に実際に音源を置いた場合と、直接音、クロストークの遅延量の差分を補正することで視聴者の顔の向きの変化に対応することができる。
 以下では、第1の実施形態の仮想音源再生補正部120による、頭部伝達関数の作成方法と、視聴者の位置に応じた頭部伝達関数の切り替え方法を説明する。以下に示す例は、頭部伝達関数の作成から適用、切り替えまでの一例を示す。
(1)頭部伝達関数の測定
 図16に示すように、視聴者の周りでの各距離、角度においてダミーヘッド等を用いて頭部伝達関数H(r,θ)を測定する。
(2)仮想音源再生補正係数の算出
 例えば、図17の視聴位置1に置ける仮想音源再生補正係数の算出を説明する。視聴位置算出部で求めた位置情報に応じて(1)であらかじめ測定しておいた頭部伝達関数のデータから以下に対応するものを使用する。
LL:視聴位置1における音源SPから左耳までの頭部伝達関数
LR:視聴位置1における音源SPから右耳までの頭部伝達関数
RL:視聴位置1における音源SPから左耳までの頭部伝達関数
RR:視聴位置1における音源SPから右耳までの頭部伝達関数
:視聴位置1における仮想音源SP から左耳までの頭部伝達関数
:視聴位置1における仮想音源SP から右耳までの頭部伝達関数
以上の伝達関数を用いて仮想音源再生補正係数は以下の用に求められる。
Figure JPOXMLDOC01-appb-M000001
 
 但し、上式において、
: 視聴位置1におけるSPからの音を補正する伝達関数
: 視聴位置1におけるSPからの音を補正する伝達関数
である。
 なお、音量補正部、遅延補正部、指向特性補正部によりSP、SPは等距離・同角度に補正されたと近似的に考えることができるため、H LL=H RR , H LR=H RLと近似することができる。従って、以下に示すように、より少ないテーブルから仮想音源再生補正係数を求めることもできる。
Figure JPOXMLDOC01-appb-M000002
 
(3)頭部伝達関数の切り替え
 例えば、図17において視聴者が視聴位置2に移動し、係数変更判定部において係数を変更すると判定された場合、上記と同様の方法で仮想音源再生補正係数を算出する。但し、視聴者に対する仮想音源位置は不変なためH =H  , H =H とおくことができる。
Figure JPOXMLDOC01-appb-M000003
 
LL:視聴位置2における音源SPから左耳までの頭部伝達関数
LR:視聴位置2における音源SPから右耳までの頭部伝達関数
RL:視聴位置2における音源SPから左耳までの頭部伝達関数
RR:視聴位置2における音源SPから右耳までの頭部伝達関数
:視聴位置2における仮想音源SPvから左耳までの頭部伝達関数
:視聴位置2における仮想音源SPvから右耳までの頭部伝達関数
: 視聴位置2におけるSPLからの音を補正する伝達関数
: 視聴位置2におけるSPRからの音を補正する伝達関数
 なお、上記と同様の理由でH LL=H RR ,H LR=H RLと近似することが可能である。従って、以下に示すように、より少ないテーブルから仮想音源再生補正係数を求めることもできる。
Figure JPOXMLDOC01-appb-M000004
 
 なお、音量補正部122、遅延量補正部124、及び指向特性補正部126の処理は、頭部伝達関数の変化として捉えることができるが、頭部伝達関数のみで補正する際は各位置に応じた頭部伝達関数のデータを保持しなければならず、語調も長くなるため、各部に分けることが好適である。
 [1.7.音量補正・変更部における処理]
 図7は、音量補正・変更部132で行われる処理を説明するための模式図である。ここで、図7(A)は、音量補正・変更部132の具体的な構成を示している。また、図7(B)は、音量補正・変更部132によって音量が補正される様子を示す特性図である。
 図7(A)に示すように、音量補正・変更部132は、可変のアッテネーター132aによって構成される。図7(B)に示すように、音量は、変更前の値AttCurrから変更後の値AttTrgtまで線形に変化する。音量補正・変更部132から出力される音量は、以下の式で表される。但し、tは時間である。これにより、音量を滑らかに変化させることができ、視聴者が違和感を覚えることを確実に抑止できる。
Att=AttCurr+αt
 [1.8.遅延量補正・変更部における処理]
 図8は、遅延量補正・変更部134で行われる処理を説明するための模式図である。遅延量補正・変更部134は、遅延量の異なる2つの信号をミックスさせる割合を滑らかに変化させて遅延量を変更する。ここで、図8(A)は、遅延量補正・変更部134の具体的な構成を示している。また、図8(B)は、遅延量補正・変更部134によって音量が補正される様子を示す特性図である。
 図8(A)に示すように、遅延量補正・変更部134は、遅延バッファ134aと、可変のアッテネーター134b,134cと、加算部134dによって構成される。アッテネーター134bは、遅延バッファ134aから出力された過去の遅延量AttCurrのゲインを調整する。また、アッテネーター134cは、遅延バッファ134aから出力された新規の遅延量AttTrgtのゲインを調整する。
 図8(B)に示すように、アッテネーター134bは、時間の経過に伴い、過去の遅延量AttCurrのゲインがサインカーブに沿って1から0まで減少するように制御する。また、図8(B)に示すように、アッテネーター134cは、時間の経過に伴い、新規の遅延量AttTrgtのゲインがサインカーブに沿って0から1まで増加するように制御する。
 加算部132dは、アッテネーター134bから出力された過去の遅延量AttCurrと、アッテネーター134cから出力された新規の遅延量AttTrgtとを加算する。これにより、時間の経過に伴い、過去の遅延量AttCurrから新規の遅延量AttTrgtへ滑らかに変化させることができる。
 [1.9.仮想音源再生補正・変更部、指向特性補正・変更部における処理]
 図9は、仮想音源再生補正・変更部130、指向特性補正・変更部136で行われる処理を説明するための模式図である。仮想音源再生補正・変更部130、及び指向特性補正・変更部136では、特性の異なる2つの信号をミックスさせる割合を滑らかに変化させて特性を変更する。なお、この係数変更は、複数個に分けて行われても良い。
 図9に示すように、仮想音源再生補正・変更部130は、変更前の信号を通過させるフィルタ130aと、変更後の信号を通過させるフィルタ130bと、アッテネーター130cと、アッテネーター130dと、加算部130eと、を有して構成されている。アッテネーター130cは、フィルタ130aから出力された信号AttCurrのゲインを調整する。アッテネーター130dは、フィルタ130bから出力された信号AttTrgtのゲインを調整する。
 図9(B)に示すように、アッテネーター130cは、時間の経過に伴い、過去の信号AttCurrのゲインが線形的に1から0まで減少するように制御する。また、図9(B)に示すように、アッテネーター130dは、時間の経過に伴い、新規の遅延量AttTrgtのゲインが線形的に0から1まで増加するように制御する。
 加算部130eは、アッテネーター130cから出力された過去の信号AttCurrと、アッテネーター132dから出力された新規の信号AttTrgtとを加算する。これにより、時間の経過に伴い、過去の信号AttCurrから新規の信号AttTrgtへ滑らかに変化させることができる。
 同様に、図9に示すように、指向特性補正・変更部136は、変更前の信号を通過させるフィルタ136aと、変更後の信号を通過させるフィルタ136bと、アッテネーター136cと、アッテネーター136dと、加算部136eと、を有して構成されている。指向特性補正・変更部136における処理は、仮想音源再生補正・変更部130で行われる処理と同様である。
 [1.10.音場制御装置の具体的な構成例]
 図10は、本実施形態の音場制御装置100の具体的な構成を示す模式図である。図10に示すように、音場制御装置100は、音源FL,C,FR,SL,SRから出力された入力の音声が仮想音源再生補正・変更部130、音量補正・変更部132、遅延量補正・変更部134、指向特性補正・変更部136を通過することによって出力される。
 以上の構成により、視聴者は、視聴位置に関わらず適切な仮想音源再生効果を得ることができ、適切な定位や空間的広がりを感じることができる。
 なお、複数スピーカを用いて、複数人に対して補正処理を行うことも可能である。複数人の場合は、特に仮想音源再生補正を行うことが効果的である。
 以上説明したように第1の実施形態によれば、視聴者の位置に基づいて仮想音源再生のため各パラメータを変更するため、視聴位置に関わらず適切な仮想音源再生効果を得ることができ、適切な定位や空間的広がりを感じることが可能となる。
 また、視聴者及び複数のスピーカの位置関係、および角度をリアルタイムで検出するための視聴位置算出部104を設けたことにより、複数のスピーカ及び視聴者の位置関係の変化をリアルタイムに検出することができる。そして、この視聴位置算出部104からの算出結果を基に、視聴者に対する複数のスピーカそれぞれの位置関係が算出され、当該算出結果から複数のスピーカそれぞれに対する音声信号出力パラメータが設定されているために、複数のスピーカ及び視聴者の位置関係のリアルタイムな変化に対応させて、音声信号出力パラメータを設定することができる。これにより、視聴者が移動したとしても、各スピーカからの音声の音量、遅延、指向特性、頭部伝達関数を修正し、最適な音声状態、及び仮想音源再生効果を視聴者に提供することが可能となる。
 また、視聴位置算出部104の算出結果が所定量以上変化した場合、かつ所定時間以上安定した場合に係数が変更されるため、過度の係数変更による違和感の低減や制御効率を向上できる。
 更に、係数は不連続な波形が生じないよう滑らかに変更されるため、ノイズが発生せず、違和感なく視聴位置変化に追従してリアルタイムに適切な音場を提供し続けることができる。
 また、仮想音源再生のターゲットとなる音像定位位置を自由に変更できるため、たとえば音像を空間に固定するような、動的な音像定位の変更を行うこともできる。
 <2.第1の実施形態>
 [2.1.第2の実施形態の概要]
 次に、本開示の第2の実施形態について説明する。上述した第1の実施形態では、視聴位置がずれた場合に、仮想音源再生効果が保たれるように補正を行う構成を示した。すなわち、図11に示すように、視聴者が移動しても音像の定位は視聴者に対して相対的に保存され、音像の定位は視聴者とともに移動する。
 これに対して、第2の実施形態では、視聴者の位置の変化に対して、積極的に仮想音源再生効果を変化させる例を示す。すなわち、図12に示すように、音像の定位は空間に対して絶対的に保存され、視聴者は空間を移動することによってその空間を移動しているように知覚することができる。
 第2の実施形態に係る音場制御装置100の構成は、第1の実施形態の図1~図4と同様であり、音量、遅延、スピーカ指向特性についての制御方法は第1の実施形態と同様である。但し、図4の仮想音源再生補正・変更部130では、定位が空間に対して固定されるように位置に応じて変更される。
 [2.2.第2の実施形態の仮想音源再生補正・変更部で行われる処理]
 以下では、第2の実施形態における、頭部伝達関数の作成方法と、視聴者の位置に応じた頭部伝達関数の切り替え方法を説明する。
 図18では、視聴者の移動に対して仮想音源の定位が空間に対して固定されるよう仮想音源再生補正部の係数(頭部伝達関数)を変更する方法について一例を示す。第1の方法と同様に、視聴位置での仮想音源再生補正係数を算出する。
Figure JPOXMLDOC01-appb-M000005
 
 ここで視聴者が視聴位置2に移動した場合、実施例1とは異なり視聴者に対する相対的な仮想音源の位置は大きく変化するため、H
, H からH
,H への変更は必要不可欠となる。
Figure JPOXMLDOC01-appb-M000006
 以上説明したように第2の実施形態によれば、音像の定位が空間に対して絶対的に保存されるように仮想音源再生補正・変更部130が処理を行うため、視聴者は、空間を移動することによってその空間を移動しているように知覚することができる。
 <3.第3の実施形態>
 [3.1.第3の実施形態の概要]
 次に、本開示の第3の実施形態について説明する。図13に示すように、第3の実施形態では、タブレット端末やパーソナルコンピュータなどの機器300に適用した例を示す。特にタブレット端末のようなモバイル等の機器300では、本体を視聴者が手で保持する場合があるため、高さ方向の変化や角度の変化が音声に影響を与え、その影響が無視できないほど大きくなる場合がある。また、視聴者は動かずに、表示部、音声再生部を搭載した機器300自体が移動、回転することもある。
 [3.2.第3の実施形態の構成例]
 図14は、第3の実施形態の構成例を示す模式図である。図1の構成例に対して、ジャイロセンサ200と姿勢情報算出部202が追加されている。図14に示すように、機器の回転方向の検出に関しては、ジャイロセンサ200を利用して検出することができる。姿勢情報算出部202は、ジャイロセンサ200の検出値に基づいて、機器の姿勢に関する情報を算出し、音声出力部108の位置、向きを算出する。
 これにより、例えば機器300にカメラが搭載されていなかったり、機能がオフ(OFF)にされている場合であっても、ジャイロセンサから機器300の姿勢を算出することで、視聴位置を予測することができ、視聴位置に基づいて第1の実施形態と同様の音場補正処理を行うことができる。音声制御部106の具体的な構成は、図2~図4で示した第1の実施形態と同様である。
 <4.第4の実施形態>
 次に、本開示の第4の実施形態について説明する。図15は、第4の実施形態の構成例を示す模式図である。第4の実施形態は、上述した音場制御装置100の処理を、音場制御装置100を備える機器400本体ではなくクラウドコンピュータ500側で行うものである。クラウドコンピュータ500を用いることで膨大量の頭部伝達関数のデータベースを保持したり、リッチな音場処理を実現することが可能である。
 <5.第5の実施形態>
 次に、本開示の第5の実施形態について説明する。上述したように、第1の実施形態における撮像部102(および視聴位置算出部104)は、音場制御装置100が設けられた装置とは別体に設けられていても良い。第5の実施形態では、音場制御装置100が設けられた装置とは別の機器に撮像部102が設けられた構成について説明する。
 図20は、第5の実施形態におけるシステムの構成例を示す模式図である。図20に示すように、第5の実施形態では、音場制御装置100とは別の機器600に撮像部102が設けられている。機器600は、例えばDVDプレーヤーなど、音場制御装置100がテレビ受像器の場合に、テレビ受像器の映像・音声を記録する装置であっても良い。また、機器600は、単体の撮像装置(カメラ)であっても良い。
 図20にシステムにおいて、撮像部102が撮像した視聴者の画像は、音場制御装置100へ送られる。音場制御装置100では、視聴者の画像に基づいて、視聴位置算出部104が視聴者の位置を算出する。以降の処理は第1の実施形態と同様である。以上により、音場制御装置100は、他の機器600が撮像した画像に基づいて音場を制御することができる。
 <6.第6の実施形態>
 次に、本開示の第6の実施形態について説明する。第6の実施形態では、パーソナルコンピュータやタブレット端末上でゲームを行う場合などの様に、ユーザの操作によりリアルタイムに音の定位が変わる場合について説明する。
 ゲームを行う場合、画面上の表示対象物(表示オブジェクト)の位置に応じて音源の位置が移動する場合がある。例えば、画面上でキャラクター、自動車、飛行機などの表示対象物が移動する場合、移動に伴ってその表示対象物の音源の位置を移動させることで、臨場感を高めることができる。表示対象物が3次元表示される場合も、表示対象物の3次元方向の移動に伴って音源の位置を移動させることで、臨場感を高めることができる。
 このような表示対象物の移動は、ゲームの進行に伴って発生し、また、ユーザの操作によっても発生する。
 ゲームの場合、図12と同様に、積極的に仮想音源再生効果を変化させる。この際、表示対象物の位置に応じて仮想音源再生効果を変化させ、表示対象物の位置が仮想音源位置となって発音するようにする。
 このように、リアルタイムに音の定位が変わる場合、視聴者(ユーザ)の位置、再生音源位置の情報に加え、仮想音源位置の相対位置を考慮して動的に適切なHRTFを計算する。図17において仮想音源位置SPvがリアルタイムに変わるため、H,Hを逐次変更し、以下の式により仮想音源再生補正係数(仮想音源再生フィルタ)を計算する。すなわち、仮想音源位置SPvは表示対象物の位置に相当し、以下の式では、第1の実施形態で説明した数式1(数1)において、H,Hが時間の関数H(t),H(t)とされている。これにより、表示対象物の位置に応じて仮想音源の位置をリアルタイムに変更することができる。
Figure JPOXMLDOC01-appb-M000007
 図21は、第6の実施形態に係る音場制御装置100の構成例を示す模式図である。図21に示すように、音場制御装置100は、図1の構成に加えて、ユーザ操作検知部140、画像情報取得部142、仮想音源位置算出部144を有して構成される。ユーザ操作検知部140は、ボタン、タッチパネル、キーボード、マウスなどの操作部材によるユーザの操作を検知する。画像情報取得部142は、表示対象物の位置、動きなどの情報を取得する。画像情報取得部142は、表示画面内の表示対象物の2次元の位置を取得する。また、画像情報取得部142は、3次元の表示が行われる場合は、左目用画像と右目用画像の視差に基づいて、表示画面に対して垂直方向における表示対象物の位置(奥行き位置)を取得する。仮想音源位置算出部144は、ユーザ操作の情報、または表示対象物の位置、動きなどの情報に基づいて、仮想音源の位置を算出する。
 音声制御部106は、第1の実施形態と同様の制御を行う。ここで、音声制御部106に含まれる仮想音源再生補正部120は、仮想音源位置算出部144が算出した仮想音源の位置に基づいて、上記数式により、H(t),H(t)を時間の経過に伴って逐次変更し、仮想音源再生補正係数を算出する。これにより、表示対象物の位置に応じて仮想音源の位置をリアルタイムに変更することができる。
 以上説明したように第6の実施形態によれば、ゲームなど表示対象物が発音しながら移動する場合に、表示対象物の位置に応じて仮想音源の位置をリアルタイムに変更することができる。従って、表示対象物の位置に応じた臨場感のある音場を提供することが可能となる。
 <7.第7の実施形態>
 次に、本開示の第7の実施形態について説明する。第6の実施形態で説明したような、例えばゲームの表示対象物の位置に応じて仮想音源位置を制御する場合、CPUの演算量が大きくなる。このため、タブレット端末、スマートフォン等に搭載されているCPUでは負荷が過大となり、所望の制御ができない場合も想定される。従って、上述した第6の実施形態は、第4の実施形態で説明したクラウドコンピューティングにより実現することがより好ましい。第7の実施形態では、この場合において、サーバ(クラウドコンピュータ500)とクライアント(機器400)の通信速度、クライアントの処理能力に応じて処理内容を変更する例について説明する。
 図22は、クラウドコンピュータ500と機器400の通信の例を示すシーケンス図である。先ず、ステップS30では、機器400がクラウドコンピュータ500へ処理方法を通知する。より詳細には、機器400のCPUの仕様(処理速度、パワー)、メモリの容量、通信速度といった状況に応じて、機器400がどのような情報をクラウドコンピュータ500へ送り、クラウドコンピュータ500がどのような情報を機器400へ返すかを通知する。ステップS32では、機器400からの通知に対して、クラウドコンピュータ500が通知を受け付けた旨を機器400へ通知する
 次のステップS34では、機器400が処理要求をクラウドコンピュータ500へ送信する。ここで、機器400は、音声データと、視聴者位置、音源位置、仮想音源位置情報等の情報をクラウドコンピュータ500へ送信し、処理要求をする。
 クラウドコンピュータ500は、ステップS30で機器400から通知された処理方法に従って処理を行い、次のステップS36では、クラウドコンピュータ500が機器400へ処理要求に対する応答を送信する。ステップS36では、クラウドコンピュータ500は、処理後の音声データ、又は処理に必要な係数などの応答を機器400に返信する。
 例えば、機器400のCPUの能力が不足しているが、クラウドコンピュータ500との通信速度が比較的速い場合、ステップS34では、音声データ、視聴者位置、音源位置、仮想音源位置などのメタデータを機器400からクラウドコンピュータ500へ送る。そして、機器400はクラウドコンピュータ500に対して、大量のデータベースから適切なHRTFを選択し、仮想音源再生処理を行い、処理後の音声データを機器400へ戻すように要求する。ステップS36では、クラウドコンピュータ500が処理後の音声データを機器400へ送信する。これにより、機器400では、少ないCPU能力でより精度の高いリッチな音場処理が可能となる。
 一方、機器400のCPU能力が十分な場合は、ステップS34において、位置情報、またはその差分のみを機器400からクラウドコンピュータ500へ送る。そして、クラウドコンピュータ500は、機器400からの要求に応じて、ステップS36において、大量のデータベースから適切なHRTF等の係数を機器400へ返し、クライアント側で仮想音源再生処理を行う。また、機器400は、ステップS34において現在の視聴者位置、音源位置、仮想音源位置などの位置情報そのものを送るのではなく、位置情報の近傍のHRTFデータ、若しくは以前に送った位置情報の差分情報など、位置情報を予測するための補足データをクラウドコンピュータ500へプリロードしておくことで、より高速なレスポンスが可能となる。
 図23は、クラウドコンピュータ500から機器400へ送るメタデータの種類と、伝送帯域、及び機器400の負荷についてのメリットを示す模式図である。図23に示す例では、メタデータとして、(1)頭部伝達関数HRTF(または仮想音源再生補正係数)の特徴量を送る場合、(2)HRTFを送る場合、(3)HRTFに音源を畳み込んだ情報を送る場合、の3通りについて、伝送帯域及び機器400のCPU負荷のメリットを示している。
 (1)HRTFの特徴量を送る場合では、位置情報等から算出したHRTFをクラウドコンピュータ500から機器400へ逐次送るのではなく、HRTFを1回送った後、次に送る際には前回送ったHRTFに対する差分、変化量を送信する。これにより、HRTFを1回送った後は伝送量を最小限に抑えることが可能となり、伝送帯域を低減することができる。一方、機器400側では、差分、変化量に基づいて逐次HRTFを算出するため、機器400のCPU負荷は大きくなる。
 (2)HRTFを送る場合では、位置情報等から算出したHRTFをクラウドコンピュータ500から機器400へ逐次送る。この場合、1回毎にHRTFを送るため、伝送帯域は(1)の場合よりも大きくなる。一方、機器400側では、クラウドコンピュータ500から逐次HRTFそのものを受信することができるため、機器400のCPU負荷は(1)の場合よりも小さくなる。
 (3)HRTFに音源を畳み込んだ情報を送る場合は、位置情報等から算出したHRTFに対して、更に音源を畳み込んだ情報(音声情報)をクラウドコンピュータ500から機器400へ逐次送る。つまり、クラウドコンピュータ500は、音場制御装置100の音声制御部106までの処理を行う。この場合、クラウドコンピュータ500から機器400へ送る情報量が大きくなるため、伝送帯域は(1),(2)に比べて大きくなる。一方、機器400側では、受信した情報をそのまま用いることで音声を出力することができるため、機器400のCPU負荷は最も小さくなる。
 (1)~(3)のいずれの処理を行うかについての情報は、図22のステップS30にて機器400が送る処理方法の通知に含まれている。ユーザは、機器400を操作することで、(1)~(3)のいずれの処理を行うかについて指定することができる。また、(1)~(3)のいずれの処理を行うかについては、伝送帯域、または機器400のCPU能力に応じて、機器400又はクラウドコンピュータ500が自動的に決定しても良い。
 図24は、機器400とクラウドコンピュータ500の構成を示す模式図である。機器400は、図1の音場制御装置100の構成に加えて、クラウドコンピュータ500とネットワークを介して通信を行う通信部420を有している。また、クラウドコンピュータ500は、図1の音場制御装置100の構成に加えて、機器400とネットワークを介して通信を行う通信部520を有している。そして、上述したように、伝送帯域、機器400のCPU負荷に応じて、音場制御装置100の処理は、機器400とクラウドコンピュータ500とに分散される。なお、クラウドコンピュータ500の音場制御装置100は、撮像部102を備えていなくても良い。また、機器400とクラウドコンピュータ500のそれぞれにおいて、音場制御装置100が通信部420又は通信部520を含んでいても良い。
 次に、音場制御装置100がヘッドトラッキングヘッドフォンの場合について説明する。図25は、ヘッドトラッキングヘッドフォン600を含むシステムの一例を示す模式図である。このシステムの基本構成は、特開2003-111197号公報に記載されているものと同様であり、以下にシステムの概要を説明する。ヘッドフォン600には、角速度センサ609を設ける。角速度センサ9の出力信号は、帯域制限フィルタ645で帯域制限し、さらにA/D(Analog
to Digital)コンバータ646でデジタルデータに変換して、マイクロプロセッサ647に取り込み、マイクロプロセッサ647で積分して、ヘッドフォン600を装着したリスナ頭部の回転角(向き)θを検出する。
 端子611に供給される、音源605の信号に相当する入力アナログ音声信号Aiを、A/Dコンバータ621でデジタル音声信号Diに変換し、そのデジタル音声信号Diを、信号処理部630に供給する。
 信号処理部630は、専用のDSP(Digital Signal Processor)などによってソフトウェア(処理プログラム)を含むものとして、またはハードウェア回路として、機能的に、デジタルフィルタ631,632、時間差設定回路638およびレベル差設定回路639によって構成し、A/Dコンバータ621からのデジタル音声信号Diを、デジタルフィルタ631および632に供給する。
 デジタルフィルタ631および632は、リスナが所定の方向、例えば音源605の方向を向いているときの、音源605からリスナ1の左耳1Lおよび右耳1Rに至る伝達関数HLcおよびHRcに相当する、インパルス応答を畳み込むもので、例えばFIRフィルタによって構成する。
 すなわち、デジタルフィルタ631および632では、それぞれ、入力端子に供給された音声信号を、そのサンプリング周期τの遅延時間の、多段接続された遅延回路によって順次遅延し、各乗算回路において、入力端子に供給された音声信号および各遅延回路の出力信号にインパルス応答の係数を乗じ、各加算回路において、各乗算回路の出力信号を順次加算し、出力端子にフィルタリング後の音声信号を得る。
 このデジタルフィルタ631および632の出力の音声信号L1およびR1は、時間差設定回路638に供給し、時間差設定回路638の出力の音声信号L2およびR2は、レベル差設定回路639に供給する。レベル差設定回路639の出力の音声信号L3およびR3は、D/Aコンバータ641R,641LでD/A変換されて、要素642R,642Lを介してスピーカ603R,603Lに供給される。
 以上の構成において、ヘッドフォン600を装着するユーザの顔の向きは、ヘッドフォンが備えるジャイロセンサから得られる情報によって検知することができる。これにより、ヘッドフォン600の向きに応じて、仮想音源位置を制御することができる。例えば、ヘッドフォン600の向きが変わった場合に、仮想音源位置は変化しないように制御することができる。これにより、ヘッドフォン600を装着しているユーザは顔の向きを変えても同一の場所から音が発生していると認識することができ、臨場感を高めることができる。なお、ジャイロセンサから得られる情報に基づいて仮想音源位置を制御する構成は、第3の実施形態と同様に構成できる。
 <8.第8の実施形態>
 次に、本開示の第8の実施形態について説明する。第8の実施形態では、音場制御装置100をスマートフォンの様な小型の機器に搭載した場合に、超音波スピーカを用いて仮想音源を再生する。スマートフォンの様な小型の機器では、左右のスピーカの間隔が狭くなるため、左右の音が混ざるクロストークをキャンセルすることが困難になる。この様な場合に、スマートフォンの様な小型の機器に超音波スピーカを用いることで、クロストークをキャンセルすることが可能である。
 <9.第9の実施形態>
 次に、本開示の第9の実施形態について説明する。第9の実施形態では、カメラや超音波センサ、ジャイロセンサなど、視聴者の位置や向きをセンシングするデバイスと音源を別のデバイスで構成した場合について説明する。図26は、第9の実施形態の概要を示す模式図である。図26に示すように、外部スピーカ800から発音される音をユーザが聴いている場合に、ユーザがスマートフォン、タブレット端末などの位置、姿勢をセンシングする機器700を保持しているものとする。図26に示すように、機器700を保持しながらユーザが向きを変えた場合、機器700が備えるカメラ(撮像部)とユーザとの位置関係は変わらないが、ユーザと外部スピーカ800との位置関係が変化する。このため、機器700が備えるジャイロセンサ等を用いて、ユーザの絶対的な位置、方向の変化を推定する。
 図27は、第9の実施形態の音場制御装置100の構成を示す模式図である。第9の実施形態において、音場制御装置100は、機器700に備えられている。図27に示すように、第9の実施形態の音場制御装置100は、図1の構成に加えて、音源位置情報取得部150、ジャイロセンサ152、視聴位置算出部154を有して構成される。音源位置情報取得部150は、機器700に対する外部スピーカ800の位置を取得する。視聴位置算出部154は、ジャイロセンサ152の検出値に基づいて、ユーザの絶対的な位置、方向を算出する。音声制御部106は、音源位置情報取得部が取得した情報、視聴位置算出部154が算出した情報に基づいて、仮想音源位置を制御する。これにより、ユーザの絶対的な位置、方向に基づいて仮想音源位置を制御することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、
 前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、
 を備える、音場制御装置。
(2)少なくとも前記表示対象物の位置情報を外部のコンピュータへ送信する送信部と、
 前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備える、前記(1)に記載の音場制御装置。
(3)前記送信部は、前記表示対象物の位置情報とともに音声データを前記外部のコンピュータへ送信し、
 前記受信部は、前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信する、前記(2)に記載の音場制御装置。
(4)視聴者の位置情報を取得する視聴者位置情報取得部を更に備え、
 前記仮想音源位置制御部は、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて仮想音源位置の制御を行う、前記(1)に記載の音場制御装置。
(5)前記視聴者位置情報取得部は、撮像により得られた情報から前記視聴者の位置情報を取得する、前記(4)に記載の音場制御装置。
(6)前記表示対象物の位置情報及び前記視聴者の位置情報を外部のコンピュータへ送信する送信部と、
 前記外部のコンピュータから前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備える、前記(4)に記載の音場制御装置。
(7)前記送信部は、前記表示対象物の位置情報及び前記視聴者の位置情報とともに音声データを前記外部のコンピュータへ送信し、
 前記受信部は、前記外部のコンピュータから、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信する、前記(6)に記載の音場制御装置。
(8)音源に対応する表示対象物の位置情報を取得することと、
 前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行うことと、
 を備える、音場制御装置。
(9)音源に対応する表示対象物の位置情報を取得する手段、
 前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う手段、
 としてコンピュータを機能させるためのプログラム。
(10)音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、
 前記対象物の位置情報を外部コンピュータへ送信する送信部と、
 前記外部コンピュータから前記対象物の位置情報に基づいて算出された仮想音源再生補正係数を受信する受信部と、を有するクライアント端末と、
 前記表示対象物の位置情報を受信する受信部と、
 前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、
 前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、
 を備える、音場制御システム。
(11)クライアント端末から音源に対応する表示対象物の位置情報を受信する受信部と、
 前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、
 前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、
 を備える、サーバ。
(12)クライアント端末が音源に対応する表示対象物の位置情報を取得することと、
 クライアント端末が前記対象物の位置情報を外部コンピュータへ送信すること、
 前記外部コンピュータが前記表示対象物の位置情報を受信する受信部と、
 前記外部コンピュータが前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出することと、
 前記外部コンピュータが、前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信することと、
 を備える、音場制御方法。
(13)撮像により得られた情報から視聴者の位置情報を取得する位置情報取得部と、
 前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、
 を備える、音場制御装置。
(14)前記仮想音源位置制御部は、前記視聴者の位置に係わらず音像の定位が固定されるように仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(15)前記仮想音源位置制御部は、前記視聴者の位置に応じて音像の定位が相対的に移動するように仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(16)前記仮想音源位置制御部は、前記位置情報に基づいて、頭部伝達関数を変化させることで前記仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(17)前記仮想音源位置制御部は、前記視聴者の位置が変化する前の係数から前記視聴者の位置が変化した後の係数へ滑らかに変化させることで、位置情報に基づいて、前記仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(18)前記仮想音源位置制御部は、位置情報に基づいて、前記視聴者の移動が所定値以上の場合に前記仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(19)前記位置情報に基づいて、音量、音の遅延量、又は指向特性を制御する制御部を更に備える、前記(13)に記載の音場制御装置。
(20)前記視聴者の位置情報を取得する撮像部を備える、前記(13)に記載の音場制御装置。
(21)姿勢情報を取得する姿勢情報取得部を備え、
 前記仮想音源位置制御部は、前記位置情報及び前記姿勢情報に基づいて、仮想音源位置の制御を行う、前記(13)に記載の音場制御装置。
(22)前記位置情報取得部は、前記視聴者を撮像する撮像部を有する他の機器から前記撮像により得られた情報を取得する、前記(13)に記載の音場制御装置。
(23)視聴者の位置情報を取得することと、
 前記位置情報に基づいて、仮想音源位置の制御を行うことと、
 を備える、音場制御方法。
(24)視聴者の位置情報を取得する手段、
 前記位置情報に基づいて、仮想音源位置の制御を行う手段、
 としてコンピュータを機能させるためのプログラム。
(25)視聴者を撮像する撮像装置と、
 前記撮像装置から得られた情報から視聴者の位置情報を取得する位置情報取得部と、前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を有する音場制御装置と、
 を備える、音場制御システム。
 100  音場制御装置
 102  撮像部
 106  音声制御部
 120  仮想音源再生補正部
 130  仮想音源再生補正・変更部
 400  機器(クライアント端末)
 500  クラウドコンピュータ(サーバ)
 

Claims (25)

  1.  音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、
     前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、
     を備える、音場制御装置。
  2.  少なくとも前記表示対象物の位置情報を外部のコンピュータへ送信する送信部と、
     前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備える、請求項1に記載の音場制御装置。
  3.  前記送信部は、前記表示対象物の位置情報とともに音声データを前記外部のコンピュータへ送信し、
     前記受信部は、前記外部のコンピュータから前記表示対象物の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信する、請求項2に記載の音場制御装置。
  4.  視聴者の位置情報を取得する視聴者位置情報取得部を更に備え、
     前記仮想音源位置制御部は、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて仮想音源位置の制御を行う、請求項1に記載の音場制御装置。
  5.  前記視聴者位置情報取得部は、撮像により得られた情報から前記視聴者の位置情報を取得する、請求項4に記載の音場制御装置。
  6.  前記表示対象物の位置情報及び前記視聴者の位置情報を外部のコンピュータへ送信する送信部と、
     前記外部のコンピュータから前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を受信する受信部と、を更に備える、請求項4に記載の音場制御装置。
  7.  前記送信部は、前記表示対象物の位置情報及び前記視聴者の位置情報とともに音声データを前記外部のコンピュータへ送信し、
     前記受信部は、前記外部のコンピュータから、前記表示対象物の位置情報及び前記視聴者の位置情報に基づいて算出された仮想音源再生補正係数によって前記音声データを補正して得られる音声データを受信する、請求項6に記載の音場制御装置。
  8.  音源に対応する表示対象物の位置情報を取得することと、
     前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行うことと、
     を備える、音場制御方法。
  9.  音源に対応する表示対象物の位置情報を取得する手段、
     前記表示対象物の位置情報に基づいて、仮想音源位置の制御を行う手段、
     としてコンピュータを機能させるためのプログラム。
  10.  音源に対応する表示対象物の位置情報を取得する表示対象物位置情報取得部と、
     前記対象物の位置情報を外部コンピュータへ送信する送信部と、
     前記外部コンピュータから前記対象物の位置情報に基づいて算出された仮想音源再生補正係数を受信する受信部と、を有するクライアント端末と、
     前記表示対象物の位置情報を受信する受信部と、
     前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、
     前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、
     を備える、音場制御システム。
  11.  クライアント端末から音源に対応する表示対象物の位置情報を受信する受信部と、
     前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出する仮想音源再生補正係数算出部と、
     前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信する送信部と、を有する前記外部コンピュータと、
     を備える、サーバ。
  12.  クライアント端末が音源に対応する表示対象物の位置情報を取得することと、
     クライアント端末が前記対象物の位置情報を外部コンピュータへ送信すること、
     前記外部コンピュータが前記表示対象物の位置情報を受信する受信部と、
     前記外部コンピュータが前記表示対象物の位置情報に基づいて前記仮想音源再生補正係数を算出することと、
     前記外部コンピュータが、前記仮想音源再生補正係数又は前記仮想音源再生補正係数に基づいて生成された情報を前記クライアント端末へ送信することと、
     を備える、音場制御方法。
  13.  撮像により得られた情報から視聴者の位置情報を取得する位置情報取得部と、
     前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、
     を備える、音場制御装置。
  14.  前記仮想音源位置制御部は、前記視聴者の位置に係わらず音像の定位が固定されるように仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  15.  前記仮想音源位置制御部は、前記視聴者の位置に応じて音像の定位が相対的に移動するように仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  16.  前記仮想音源位置制御部は、前記位置情報に基づいて、頭部伝達関数を変化させることで前記仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  17.  前記仮想音源位置制御部は、前記視聴者の位置が変化する前の係数から前記視聴者の位置が変化した後の係数へ滑らかに変化させることで、位置情報に基づいて、前記仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  18.  前記仮想音源位置制御部は、位置情報に基づいて、前記視聴者の移動が所定値以上の場合に前記仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  19.  前記位置情報に基づいて、音量、音の遅延量、又は指向特性を制御する制御部を更に備える、請求項13に記載の音場制御装置。
  20.  前記視聴者の位置情報を取得する撮像部を備える、請求項13に記載の音場制御装置。
  21.  姿勢情報を取得する姿勢情報取得部を備え、
     前記仮想音源位置制御部は、前記位置情報及び前記姿勢情報に基づいて、仮想音源位置の制御を行う、請求項13に記載の音場制御装置。
  22.  前記位置情報取得部は、前記視聴者を撮像する撮像部を有する他の機器から前記撮像により得られた情報を取得する、請求項13に記載の音場制御装置。
  23.  視聴者の位置情報を取得することと、
     前記位置情報に基づいて、仮想音源位置の制御を行うことと、
     を備える、音場制御方法。
  24.  視聴者の位置情報を取得する手段、
     前記位置情報に基づいて、仮想音源位置の制御を行う手段、
     としてコンピュータを機能させるためのプログラム。
  25.  視聴者を撮像する撮像装置と、
     前記撮像装置から得られた情報から視聴者の位置情報を取得する位置情報取得部と、前記位置情報に基づいて、仮想音源位置の制御を行う仮想音源位置制御部と、を有する音場制御装置と、
     を備える、音場制御システム。
PCT/JP2012/083078 2012-01-11 2012-12-20 音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ WO2013105413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12865517.2A EP2804402B1 (en) 2012-01-11 2012-12-20 Sound field control device, sound field control method and program
CN201280066052.8A CN104041081B (zh) 2012-01-11 2012-12-20 声场控制装置、声场控制方法、程序、声场控制系统和服务器
US14/359,208 US9510126B2 (en) 2012-01-11 2012-12-20 Sound field control device, sound field control method, program, sound control system and server

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012003266 2012-01-11
JP2012-003266 2012-01-11
JP2012158022 2012-07-13
JP2012-158022 2012-07-13

Publications (1)

Publication Number Publication Date
WO2013105413A1 true WO2013105413A1 (ja) 2013-07-18

Family

ID=48781371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083078 WO2013105413A1 (ja) 2012-01-11 2012-12-20 音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ

Country Status (5)

Country Link
US (1) US9510126B2 (ja)
EP (1) EP2804402B1 (ja)
JP (1) JPWO2013105413A1 (ja)
CN (1) CN104041081B (ja)
WO (1) WO2013105413A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103627A1 (ja) * 2012-12-28 2014-07-03 ヤマハ株式会社 通信方法、音響装置、および通信装置
WO2015029205A1 (ja) * 2013-08-30 2015-03-05 共栄エンジニアリング株式会社 音響処理装置、音響処理方法、及び音響処理プログラム
WO2016009863A1 (ja) * 2014-07-18 2016-01-21 ソニー株式会社 サーバ装置、およびサーバ装置の情報処理方法、並びにプログラム
US20160100253A1 (en) * 2014-10-07 2016-04-07 Nokia Corporation Method and apparatus for rendering an audio source having a modified virtual position
JP2018023104A (ja) * 2016-08-04 2018-02-08 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー ウェアラブルスピーカ装置を操作するシステム及び方法
US10152476B2 (en) 2015-03-19 2018-12-11 Panasonic Intellectual Property Management Co., Ltd. Wearable device and translation system
WO2020026864A1 (ja) * 2018-07-30 2020-02-06 ソニー株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
US10560795B1 (en) 2018-10-26 2020-02-11 Sqand Co. Ltd. Forming method for personalized acoustic space considering characteristics of speakers and forming system thereof
WO2020090456A1 (ja) * 2018-10-29 2020-05-07 ソニー株式会社 信号処理装置、信号処理方法、および、プログラム
JP2020519175A (ja) * 2017-05-03 2020-06-25 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオプロセッサ、システム、オーディオレンダリングのための方法およびコンピュータプログラム
WO2020213375A1 (ja) * 2019-04-16 2020-10-22 ソニー株式会社 表示装置、制御方法、およびプログラム
JP2022546926A (ja) * 2019-07-29 2022-11-10 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 空間変換領域における音場表現を処理するための装置、方法、またはコンピュータプログラム
WO2022249594A1 (ja) * 2021-05-24 2022-12-01 ソニーグループ株式会社 情報処理装置、情報処理方法、情報処理プログラム、及び情報処理システム
JP7563939B2 (ja) 2020-10-16 2024-10-08 株式会社Nttドコモ 体積像表示システム

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903606B (zh) 2014-03-10 2020-03-03 北京智谷睿拓技术服务有限公司 一种噪声控制方法及设备
CN103886857B (zh) * 2014-03-10 2017-08-01 北京智谷睿拓技术服务有限公司 一种噪声控制方法及设备
CN103886731B (zh) 2014-03-10 2017-08-22 北京智谷睿拓技术服务有限公司 一种噪声控制方法及设备
CN104284268A (zh) * 2014-09-28 2015-01-14 北京塞宾科技有限公司 一种可采集数据信息的耳机及数据采集方法
CN104394499B (zh) * 2014-11-21 2016-06-22 华南理工大学 基于视听交互的虚拟声重放校正装置及方法
CN104618796B (zh) * 2015-02-13 2019-07-05 京东方科技集团股份有限公司 一种调节音量的方法及显示设备
JP6434333B2 (ja) * 2015-02-19 2018-12-05 クラリオン株式会社 位相制御信号生成装置、位相制御信号生成方法及び位相制御信号生成プログラム
US10085107B2 (en) * 2015-03-04 2018-09-25 Sharp Kabushiki Kaisha Sound signal reproduction device, sound signal reproduction method, program, and recording medium
US9530426B1 (en) 2015-06-24 2016-12-27 Microsoft Technology Licensing, Llc Filtering sounds for conferencing applications
US10739737B2 (en) * 2015-09-25 2020-08-11 Intel Corporation Environment customization
EP3657822A1 (en) * 2015-10-09 2020-05-27 Sony Corporation Sound output device and sound generation method
WO2017098949A1 (ja) * 2015-12-10 2017-06-15 ソニー株式会社 音声処理装置および方法、並びにプログラム
WO2017153872A1 (en) 2016-03-07 2017-09-14 Cirrus Logic International Semiconductor Limited Method and apparatus for acoustic crosstalk cancellation
US10979843B2 (en) * 2016-04-08 2021-04-13 Qualcomm Incorporated Spatialized audio output based on predicted position data
CN106572425A (zh) * 2016-05-05 2017-04-19 王杰 音频处理装置及方法
CN106658344A (zh) * 2016-11-15 2017-05-10 北京塞宾科技有限公司 一种全息音频渲染控制方法
WO2018107372A1 (zh) * 2016-12-14 2018-06-21 深圳前海达闼云端智能科技有限公司 一种声音处理方法、装置、电子设备及计算机程序产品
US11096004B2 (en) 2017-01-23 2021-08-17 Nokia Technologies Oy Spatial audio rendering point extension
US10133544B2 (en) 2017-03-02 2018-11-20 Starkey Hearing Technologies Hearing device incorporating user interactive auditory display
US10531219B2 (en) 2017-03-20 2020-01-07 Nokia Technologies Oy Smooth rendering of overlapping audio-object interactions
US11074036B2 (en) 2017-05-05 2021-07-27 Nokia Technologies Oy Metadata-free audio-object interactions
CN107231599A (zh) * 2017-06-08 2017-10-03 北京奇艺世纪科技有限公司 一种3d声场构建方法和vr装置
WO2019026597A1 (ja) 2017-07-31 2019-02-07 ソニー株式会社 情報処理装置、情報処理方法、並びにプログラム
WO2019055572A1 (en) * 2017-09-12 2019-03-21 The Regents Of The University Of California DEVICES AND METHODS FOR BINAURAL SPATIAL PROCESSING AND AUDIO SIGNAL PROJECTION
US11395087B2 (en) * 2017-09-29 2022-07-19 Nokia Technologies Oy Level-based audio-object interactions
JP7047850B2 (ja) * 2017-12-19 2022-04-05 株式会社ソシオネクスト 音響システム、音響制御装置及び制御プログラム
CN114531640A (zh) 2018-12-29 2022-05-24 华为技术有限公司 一种音频信号处理方法及装置
CN110312198B (zh) * 2019-07-08 2021-04-20 雷欧尼斯(北京)信息技术有限公司 用于数字影院的虚拟音源重定位方法及装置
US11234095B1 (en) * 2020-05-21 2022-01-25 Facebook Technologies, Llc Adjusting acoustic parameters based on headset position
US11997470B2 (en) * 2020-09-07 2024-05-28 Samsung Electronics Co., Ltd. Method and apparatus for processing sound effect
CN114697808B (zh) * 2020-12-31 2023-08-08 成都极米科技股份有限公司 声音定向控制方法及声音定向控制装置
US11971476B2 (en) * 2021-06-30 2024-04-30 Texas Instruments Incorporated Ultrasonic equalization and gain control for smart speakers
CN113596705B (zh) * 2021-06-30 2023-05-16 华为技术有限公司 一种发声装置的控制方法、发声系统以及车辆
CN113608449B (zh) * 2021-08-18 2023-09-15 四川启睿克科技有限公司 一种智慧家庭场景下语音设备定位系统及自动定位方法
CN115379339A (zh) * 2022-08-29 2022-11-22 歌尔科技有限公司 音频处理方法、装置和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990963A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 音情報提供装置、及び音情報選択方法
JP2003111197A (ja) 2001-09-28 2003-04-11 Sony Corp 音声信号処理方法および音声再生システム
JP2005049656A (ja) 2003-07-29 2005-02-24 Nec Plasma Display Corp 表示システムおよび位置推測システム
JP2005295181A (ja) * 2004-03-31 2005-10-20 Victor Co Of Japan Ltd 音声情報生成装置
JP2006094315A (ja) * 2004-09-27 2006-04-06 Hitachi Ltd 立体音響再生システム
JP2007081928A (ja) * 2005-09-15 2007-03-29 Yamaha Corp Avアンプ装置
JP2007214897A (ja) 2006-02-09 2007-08-23 Kenwood Corp 音響システム
JP2010206451A (ja) 2009-03-03 2010-09-16 Panasonic Corp カメラ付きスピーカ、信号処理装置、およびavシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490359B1 (en) 1992-04-27 2002-12-03 David A. Gibson Method and apparatus for using visual images to mix sound
JPH1155800A (ja) * 1997-08-08 1999-02-26 Sanyo Electric Co Ltd 情報表示装置
JP2004151229A (ja) * 2002-10-29 2004-05-27 Matsushita Electric Ind Co Ltd 音声情報変換方法、映像・音声フォーマット、エンコーダ、音声情報変換プログラム、および音声情報変換装置
JP2005341384A (ja) * 2004-05-28 2005-12-08 Sony Corp 音場補正装置、音場補正方法
US20060064300A1 (en) * 2004-09-09 2006-03-23 Holladay Aaron M Audio mixing method and computer software product
US8031891B2 (en) * 2005-06-30 2011-10-04 Microsoft Corporation Dynamic media rendering
GB2457508B (en) * 2008-02-18 2010-06-09 Ltd Sony Computer Entertainmen System and method of audio adaptaton
KR100934928B1 (ko) * 2008-03-20 2010-01-06 박승민 오브젝트중심의 입체음향 좌표표시를 갖는 디스플레이장치
JP4557035B2 (ja) * 2008-04-03 2010-10-06 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び記録媒体
JP4849121B2 (ja) * 2008-12-16 2012-01-11 ソニー株式会社 情報処理システムおよび情報処理方法
US8571192B2 (en) * 2009-06-30 2013-10-29 Alcatel Lucent Method and apparatus for improved matching of auditory space to visual space in video teleconferencing applications using window-based displays
JP2011223549A (ja) 2010-03-23 2011-11-04 Panasonic Corp 音声出力装置
CN102860041A (zh) * 2010-04-26 2013-01-02 剑桥机电有限公司 对收听者进行位置跟踪的扬声器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990963A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 音情報提供装置、及び音情報選択方法
JP2003111197A (ja) 2001-09-28 2003-04-11 Sony Corp 音声信号処理方法および音声再生システム
JP2005049656A (ja) 2003-07-29 2005-02-24 Nec Plasma Display Corp 表示システムおよび位置推測システム
JP2005295181A (ja) * 2004-03-31 2005-10-20 Victor Co Of Japan Ltd 音声情報生成装置
JP2006094315A (ja) * 2004-09-27 2006-04-06 Hitachi Ltd 立体音響再生システム
JP2007081928A (ja) * 2005-09-15 2007-03-29 Yamaha Corp Avアンプ装置
JP2007214897A (ja) 2006-02-09 2007-08-23 Kenwood Corp 音響システム
JP2010206451A (ja) 2009-03-03 2010-09-16 Panasonic Corp カメラ付きスピーカ、信号処理装置、およびavシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2804402A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941021A4 (en) * 2012-12-28 2016-11-16 Yamaha Corp COMMUNICATION METHOD, SOUND DEVICE AND COMMUNICATION DEVICE
WO2014103627A1 (ja) * 2012-12-28 2014-07-03 ヤマハ株式会社 通信方法、音響装置、および通信装置
US10524081B2 (en) 2013-08-30 2019-12-31 Cear, Inc. Sound processing device, sound processing method, and sound processing program
WO2015029205A1 (ja) * 2013-08-30 2015-03-05 共栄エンジニアリング株式会社 音響処理装置、音響処理方法、及び音響処理プログラム
JPWO2015029205A1 (ja) * 2013-08-30 2017-03-02 共栄エンジニアリング株式会社 音響処理装置、音響処理方法、及び音響処理プログラム
WO2016009863A1 (ja) * 2014-07-18 2016-01-21 ソニー株式会社 サーバ装置、およびサーバ装置の情報処理方法、並びにプログラム
US20160100253A1 (en) * 2014-10-07 2016-04-07 Nokia Corporation Method and apparatus for rendering an audio source having a modified virtual position
US10469947B2 (en) * 2014-10-07 2019-11-05 Nokia Technologies Oy Method and apparatus for rendering an audio source having a modified virtual position
US10152476B2 (en) 2015-03-19 2018-12-11 Panasonic Intellectual Property Management Co., Ltd. Wearable device and translation system
JP7144131B2 (ja) 2016-08-04 2022-09-29 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー ウェアラブルスピーカ装置を操作するシステム及び方法
JP2018023104A (ja) * 2016-08-04 2018-02-08 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー ウェアラブルスピーカ装置を操作するシステム及び方法
JP2020519175A (ja) * 2017-05-03 2020-06-25 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオプロセッサ、システム、オーディオレンダリングのための方法およびコンピュータプログラム
JP7019723B2 (ja) 2017-05-03 2022-02-15 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオプロセッサ、システム、オーディオレンダリングのための方法およびコンピュータプログラム
US11032646B2 (en) 2017-05-03 2021-06-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio processor, system, method and computer program for audio rendering
JP7494732B2 (ja) 2018-07-30 2024-06-04 ソニーグループ株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
JPWO2020026864A1 (ja) * 2018-07-30 2021-08-12 ソニーグループ株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
WO2020026864A1 (ja) * 2018-07-30 2020-02-06 ソニー株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
US10560795B1 (en) 2018-10-26 2020-02-11 Sqand Co. Ltd. Forming method for personalized acoustic space considering characteristics of speakers and forming system thereof
KR20200046919A (ko) * 2018-10-26 2020-05-07 주식회사 에스큐그리고 스피커 음향 특성을 고려한 독립음장 구현 방법 및 구현 시스템
KR102174168B1 (ko) * 2018-10-26 2020-11-04 주식회사 에스큐그리고 스피커 음향 특성을 고려한 독립음장 구현 방법 및 구현 시스템
WO2020090456A1 (ja) * 2018-10-29 2020-05-07 ソニー株式会社 信号処理装置、信号処理方法、および、プログラム
WO2020213375A1 (ja) * 2019-04-16 2020-10-22 ソニー株式会社 表示装置、制御方法、およびプログラム
JPWO2020213375A1 (ja) * 2019-04-16 2020-10-22
JP7605102B2 (ja) 2019-04-16 2024-12-24 ソニーグループ株式会社 表示装置、制御方法、およびプログラム
US12185071B2 (en) 2019-04-16 2024-12-31 Sony Group Corporation Synchronizing sound with position of sound source in image
JP2022546926A (ja) * 2019-07-29 2022-11-10 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 空間変換領域における音場表現を処理するための装置、方法、またはコンピュータプログラム
JP7378575B2 (ja) 2019-07-29 2023-11-13 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 空間変換領域における音場表現を処理するための装置、方法、またはコンピュータプログラム
US12022276B2 (en) 2019-07-29 2024-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method or computer program for processing a sound field representation in a spatial transform domain
JP7563939B2 (ja) 2020-10-16 2024-10-08 株式会社Nttドコモ 体積像表示システム
WO2022249594A1 (ja) * 2021-05-24 2022-12-01 ソニーグループ株式会社 情報処理装置、情報処理方法、情報処理プログラム、及び情報処理システム

Also Published As

Publication number Publication date
EP2804402B1 (en) 2021-05-19
CN104041081A (zh) 2014-09-10
JPWO2013105413A1 (ja) 2015-05-11
US9510126B2 (en) 2016-11-29
US20140321680A1 (en) 2014-10-30
EP2804402A4 (en) 2015-08-19
CN104041081B (zh) 2017-05-17
EP2804402A1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2013105413A1 (ja) 音場制御装置、音場制御方法、プログラム、音場制御システム及びサーバ
JP6961007B2 (ja) 複合現実デバイスにおける仮想および実オブジェクトの記録
EP2922313B1 (en) Audio signal processing device and audio signal processing system
US11877135B2 (en) Audio apparatus and method of audio processing for rendering audio elements of an audio scene
JP3385725B2 (ja) 映像を伴うオーディオ再生装置
US8472653B2 (en) Sound processing apparatus, sound image localized position adjustment method, video processing apparatus, and video processing method
KR101011543B1 (ko) 바이노럴 오디오 시스템에서 사용하기 위한 다-차원 통신 공간을 생성하는 방법 및 장치
EP3363212A1 (en) Distributed audio capture and mixing
CN111492342B (zh) 音频场景处理
JP7170069B2 (ja) オーディオ装置及びその動作方法
KR20040019343A (ko) 음상정위 장치
US10848890B2 (en) Binaural audio signal processing method and apparatus for determining rendering method according to position of listener and object
JP2018110366A (ja) 3dサウンド映像音響機器
CN114424583A (zh) 混合近场/远场扬声器虚拟化
JP2023164284A (ja) 音声生成装置、音声再生装置、音声生成方法、及び音声信号処理プログラム
CN112752190A (zh) 音频调整方法以及音频调整装置
WO2022014308A1 (ja) 情報処理装置、情報処理方法および端末装置
US12177650B2 (en) Audio signal output method, audio signal output device, and audio system
US20230199426A1 (en) Audio signal output method, audio signal output device, and audio system
JP2014003432A (ja) 信号処理装置、コンテンツ出力装置、コンテンツ視聴システム
JP2025058570A (ja) 信号伝送方法、信号生成方法、信号再生方法、音声信号処理プログラム、音声伝送装置、音声再生装置、及び音声伝送再生システム
WO2023210699A1 (ja) 音声生成装置、音声再生装置、音声生成方法、及び音声信号処理プログラム
CN116723229A (zh) 一种身临其境的远程音频传输系统及方法
JP2003061195A (ja) 音声信号再生装置
Werner et al. Use of Position-Dynamic Binaural Synthesis in an Exemplary Auditory Augmented Reality Installation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359208

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012865517

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013553232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE