WO2013100086A1 - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- WO2013100086A1 WO2013100086A1 PCT/JP2012/083959 JP2012083959W WO2013100086A1 WO 2013100086 A1 WO2013100086 A1 WO 2013100086A1 JP 2012083959 W JP2012083959 W JP 2012083959W WO 2013100086 A1 WO2013100086 A1 WO 2013100086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- crystal display
- display device
- electrode
- pixel
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 305
- 239000003990 capacitor Substances 0.000 claims abstract description 131
- 239000011159 matrix material Substances 0.000 claims abstract description 7
- 230000007704 transition Effects 0.000 claims description 84
- 239000004065 semiconductor Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 description 71
- 239000000758 substrate Substances 0.000 description 35
- 238000010586 diagram Methods 0.000 description 20
- FCGHXNFPSZTBIQ-UHFFFAOYSA-N methyl 4,5,6,7-tetrahydro-1h-indazole-3-carboxylate Chemical compound C1CCCC2=C1NN=C2C(=O)OC FCGHXNFPSZTBIQ-UHFFFAOYSA-N 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 230000003071 parasitic effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 6
- 101100270422 Rattus norvegicus Arhgef7 gene Proteins 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- RRIGVQQUVAETIG-UHFFFAOYSA-N 1,2,3,4,6,7,8,9-octahydro-[1,2,4,5]tetrazino[1,2-a][1,2,4,5]tetrazine Chemical compound C1NNCN2CNNCN21 RRIGVQQUVAETIG-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0876—Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
Definitions
- the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device excellent in viewing angle characteristics.
- liquid crystal display devices in vertical alignment mode VA mode
- lateral electric field mode including IPS mode and FFS mode
- the transverse electric field mode is sometimes referred to as an IPS mode.
- the VA mode liquid crystal display device has a larger viewing angle dependency of the ⁇ characteristic than the IPS mode liquid crystal display device.
- the ⁇ characteristic is a gradation-luminance characteristic.
- the observation direction is represented by an angle (polar angle) from the normal to the display surface and an azimuth indicating the azimuth in the display surface.
- the ⁇ characteristics of the VA mode liquid crystal display device are particularly highly dependent on the polar angle in the observation direction. That is, since the ⁇ characteristic when observed from the front (normal direction of the display surface) and the ⁇ characteristic when observed from the oblique direction are different from each other, the gradation display state differs depending on the observation direction (polar angle).
- a multi-pixel structure refers to a structure in which one pixel has a plurality of sub-pixels having different brightness.
- pixel refers to a minimum unit for display by a liquid crystal display device, and in the case of a color liquid crystal display device, a minimum for displaying individual primary colors (typically R, G, or B). It is a unit and is sometimes called “dot”.
- a pixel of a liquid crystal display device having a multi-pixel structure has a plurality of sub-pixels that can apply different voltages to the liquid crystal layer.
- the multi-pixel structure is also called a pixel division structure, and various types are known.
- an auxiliary capacitor is provided for each of a plurality of subpixels in one pixel, and is connected to an auxiliary capacitor electrode (CS bus line) constituting the auxiliary capacitor.
- CS bus line constituting the auxiliary capacitor.
- Is electrically independent for each sub-pixel and is applied to the liquid crystal layers of a plurality of sub-pixels using capacitive division by changing the voltage supplied to the auxiliary capacitor counter electrode (referred to as the auxiliary capacitor counter voltage).
- the effective voltages are different from each other.
- the display quality of the VA mode liquid crystal display device also depends on the viewing direction.
- a method of forming liquid crystal domains having different alignment directions (director directions) of liquid crystal molecules in one pixel It has been adopted.
- four types of domains are formed in one pixel, and the four types of domains have four orientations that bisect the angle formed by the polarization axes of a pair of polarizing plates arranged in a crossed Nicol state. It is arranged to face.
- the two polarization axes are set at 3 o'clock -9 o'clock and 6 o'clock -12 o'clock.
- the directors of the four types of liquid crystal domains are set to face 45 °, 135 °, 225 °, and 315 °. In this way, a structure having a plurality of domains with different director directions in one pixel is called an orientation division structure or a multi-domain structure.
- Patent Document 1 discloses a liquid crystal display device in which each of a plurality of subpixels in a pixel has four types of liquid crystal domains.
- the conventional multi-pixel structure is not necessarily suitable for a liquid crystal display device for mobile use.
- the multi-pixel structure described in Patent Document 1 has a problem that the circuit becomes complicated because it is necessary to supply different auxiliary capacitor counter voltages to the auxiliary capacitors provided for each sub-pixel. Also. Since it is necessary to provide CS bus lines that are electrically independent from each other in order to supply the auxiliary capacitor counter voltage, there is a problem that the number of CS bus lines increases and the aperture ratio decreases. In addition, since a voltage having a waveform oscillating at a constant cycle is used as the auxiliary capacitor counter voltage, there is a problem that power consumption increases.
- An object of the present invention is to provide a liquid crystal display device more suitable for mobile use than a liquid crystal display device having a conventional multi-pixel structure by solving at least one of the above problems.
- the liquid crystal display device of the present invention is not limited to mobile use, but can be used for other purposes.
- a liquid crystal display device includes a plurality of pixels arranged in a matrix having rows and columns, a plurality of TFTs, a plurality of gate bus lines, and a plurality of source bus lines.
- Each of the plurality of pixels includes a first subpixel having a first subpixel electrode, a second subpixel having a second subpixel electrode, and a first electrode and a second electrode facing each other through a dielectric layer.
- the first transition capacitor of the certain pixel, the first electrode of the first transition capacitor of the certain pixel is connected to the second subpixel electrode of the certain pixel, and the first transition capacitor of the certain pixel.
- the second electrode is connected to an electrode to which a display signal voltage is supplied next to the certain pixel.
- the second electrode of the first transition capacitor of the certain pixel is connected to the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction.
- the display signal voltage supplied to the certain pixel and the display signal voltage supplied next to the certain pixel have opposite polarities.
- the display signal voltage supplied to the certain pixel and the display signal voltage supplied next to the certain pixel have the same polarity.
- the first subpixel electrode and the second subpixel electrode of the certain pixel, and the first subpixel electrode and the second subpixel electrode of a pixel adjacent to the certain pixel in the column direction are Are connected to the same source bus line.
- the first subpixel electrode and the second subpixel electrode of a plurality of pixels constituting a certain column are connected to different source bus lines for every k consecutive rows (k is an integer of 2 or more). Yes.
- display signal voltages having different polarities are simultaneously supplied to two pixels adjacent in the column direction from different source bus lines, and the second electrode of the first transition capacitor of the certain pixel is supplied to the second pixel. Is supplied with a display signal voltage that is supplied to two pixels separated in the column direction of the certain pixel.
- the plurality of pixels arranged in the column direction are divided into an even number of groups, and each of the even number of groups has pixels arranged in a row, and from one end in the column direction.
- display signal voltages having different polarities are supplied from different source bus lines to the pixels belonging to the odd numbered group and the pixels belonging to the even numbered group, The display signal voltages having different polarities are simultaneously supplied to one pixel belonging to the group and one pixel belonging to the even-numbered group.
- each of the plurality of pixels includes a third subpixel having a third subpixel electrode, and a second transition capacitor having a third electrode and a fourth electrode facing each other through a dielectric layer. Further, the third electrode of the second transition capacitor of the certain pixel is connected to the third sub-pixel electrode of the certain pixel, and the fourth electrode of the second transition capacitor of the certain pixel Is connected to the first electrode or the second subpixel electrode of the first transition capacitor.
- the liquid crystal display device is connected to a first auxiliary capacitor connected to the first subpixel electrode and the first auxiliary capacitance line, and to the second subpixel electrode and the second auxiliary capacitance line. And a second auxiliary capacitor.
- the first auxiliary capacitor and the second auxiliary capacitor have different capacitance values.
- the first auxiliary capacitance line and the second auxiliary capacitance line are electrically independent from each other.
- the liquid crystal display device includes: a first GD capacitor connected to the first subpixel electrode; and a gate bus line connected to a TFT to which the first subpixel electrode is connected; A second subpixel electrode; and a second GD capacitor connected to the gate bus line connected to the TFT to which the second subpixel electrode is connected.
- the TFT includes a first TFT connected to the first subpixel electrode and a second TFT connected to the second subpixel electrode, and the first TFT and the second TFT have a common gate bus line. It is connected to the.
- a first TFT connected to the first subpixel electrode and a second TFT connected to the second subpixel electrode, wherein the first TFT and the second TFT are a common source bus line. It is connected to the.
- one of the first TFT and the second TFT is connected to the common source bus line via the other.
- the plurality of TFTs include an oxide semiconductor layer.
- the liquid crystal display device further includes a drive circuit, the drive circuit receiving an input video signal and generating a display signal based on the input video signal, wherein the display signal is The display signal voltage supplied to the certain pixel including the display signal voltage corresponding to each pixel is obtained as a function of the display signal voltage supplied next to the certain pixel.
- a liquid crystal display device more suitable for mobile use is provided than a liquid crystal display device having a conventional multi-pixel structure.
- the liquid crystal display device according to the embodiment of the present invention is not limited to the mobile use but is also used for other uses, and provides the advantage of high aperture ratio or low power consumption.
- (A) And (b) is a figure which shows typically the structure of liquid crystal display device 100 A1, (a) is a typical top view of the TFT substrate which liquid crystal display device 100 A1 has, (b) is ( It is a typical sectional view of liquid crystal display device 100A1 along the AA 'line in a). (A) And (b) is a figure which shows typically the structure of liquid crystal display device 100A2, (a) is a typical top view of the TFT substrate which liquid crystal display device 100A2 has, (b) is ( It is a typical sectional view of liquid crystal display device 100A2 along the BB 'line in a). It is a figure which shows the equivalent circuit of the liquid crystal display device 100E by other embodiment of this invention.
- FIG. 1 It is a figure which shows typically the scanning signal voltage in the liquid crystal display device 100G, a display signal voltage, and the voltage applied to a subpixel. It is a typical top view of the TFT substrate which liquid crystal display device 100G1 has. It is a typical top view of the TFT substrate which liquid crystal display device 100G2 has.
- (A) is a figure which shows the equivalent circuit corresponding to 1 pixel of 200 A of liquid crystal display devices by further another embodiment of this invention
- (b) is the liquid crystal display device by further another embodiment of this invention. It is a figure which shows the equivalent circuit corresponding to 1 pixel of 200B.
- (A) is a typical top view of the TFT substrate which liquid crystal display device 200A1 has
- (b) is a typical top view of the TFT substrate which liquid crystal display device 200B1 has.
- (A) is a figure which shows the equivalent circuit of the liquid crystal display device 300 by further another embodiment of this invention
- (b) is the source bus line SL and TFT (T1, T2) in the liquid crystal display device 300a.
- It is a schematic diagram which shows a connection relationship (series)
- (c) is a schematic diagram which shows the connection relationship (parallel) of source bus line SL and TFT (T1, T2) in all the previous embodiment.
- (A) And (b) is a schematic diagram for demonstrating the example of the method of calculating
- each pixel has two subpixels
- each pixel may have three or more subpixels as will be exemplified later.
- the aperture ratio decreases as the number of subpixels included in one pixel increases, the number of subpixels included in each pixel is preferably 2 from the viewpoint of the aperture ratio.
- FIG. 1 shows an equivalent circuit corresponding to one pixel of the liquid crystal display device 100 according to the embodiment of the present invention.
- equivalent components are denoted by common reference numerals, and description thereof may be omitted.
- the liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having rows and columns, a plurality of TFTs, a plurality of gate bus lines, and a plurality of source bus lines.
- Each of the plurality of pixels includes a first subpixel having a first subpixel electrode and a second subpixel having a second subpixel electrode.
- the pixel Pix (n, m) includes a first subpixel pix (n) A and a second subpixel pix (n) B.
- the first subpixel pix (n) A is represented by a first liquid crystal capacitor CLC (n) A
- the second subpixel pix (n) B is represented by a second liquid crystal capacitor CLC (n) B. Is done.
- One of the pair of electrodes of the first liquid crystal capacitor CLC (n) A is the first subpixel electrode
- one of the pair of electrodes of the second liquid crystal capacitor CLC (n) B is the second subpixel. Electrode.
- the first subpixel electrode of the first liquid crystal capacitor CLC (n) A is connected to the drain electrode of the TFT (n) A, and the second subpixel electrode of the second liquid crystal capacitor CLC (n) B is connected to the TFT ( n) Connected to the B drain electrode.
- the other electrode of the first liquid crystal capacitor CLC (n) A and the second liquid crystal capacitor CLC (n) B is a common counter electrode. That is, the first liquid crystal capacitor CLC (n) A includes a first subpixel electrode, a liquid crystal layer, and a counter electrode.
- the first liquid crystal capacitor CLC (n) A includes the first subpixel electrode. And a liquid crystal layer and a counter electrode.
- a display signal voltage is supplied to the first subpixel of the first subpixel pix (n) A from the source bus line SL (m) via the TFT (n) A, and the second subpixel pix (n) B A display signal voltage is supplied to the second subpixel from the source bus line SL (m) via the TFT (n) B.
- the display signal voltage supplied to the pixel from the source bus line is “voltage applied to the liquid crystal layer” when the voltage (Vcom) of the counter electrode com is used as a reference.
- TFT (n) A and TFT (n) B are connected to the gate bus line GL (n), and are turned on / off according to the scanning signal voltage supplied from the gate bus line GL (n).
- the present invention is not limited to this. As long as a desired display signal voltage and a desired scanning signal voltage can be supplied, there is no need to provide a common bus line. That is, a plurality of gate bus lines or a plurality of source bus lines may be provided as long as the same scanning signal voltage or the same display signal voltage can be supplied.
- TFT (n) A and TFT (n) B are connected in parallel to a common source bus line SL (m), which will be described later with reference to FIG.
- either one of the TFT (n) A and the TFT (n) B may be connected to a common source bus line through the other. That is, TFT (n) A and TFT (n) B may be connected in series to one source bus line SL (m).
- the liquid crystal display device 100 is different from a conventional liquid crystal display device having a multi-pixel structure (for example, Patent Document 1) in that it has a first transition capacitance Ctr (n).
- the first transition capacitor Ctr (n) has a first electrode and a second electrode that face each other with the dielectric layer and the dielectric layer interposed therebetween.
- the dielectric layer of the first transition capacitor Ctr (n) can be formed using various insulating layers formed on the TFT substrate.
- the first electrode and the second electrode of the first transition capacitance Ctr (n) can be formed using the same conductive layer as various electrodes and bus lines formed on the TFT substrate.
- As the TFT a well-known TFT can be widely used.
- a TFT having an oxide semiconductor layer is preferably used because the liquid crystal capacitance and the transition capacitance can be charged in a short time.
- the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (hereinafter abbreviated as “IGZO-based semiconductor”).
- IGZO-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is not particularly limited.
- Ga: Zn 2: 2: 1
- In: Ga: Zn 1: 1: 1: 1: 2
- the IGZO semiconductor may be amorphous or crystalline.
- a crystalline IGZO-based semiconductor having a c-axis oriented substantially perpendicular to the layer surface is preferable.
- Such a crystal structure of an IGZO-based semiconductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-134475.
- the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
- a first electrode of a first transition capacitor (eg, Ctr (n)) of a pixel is connected to a second subpixel electrode of the pixel (eg, Pix (n, m)).
- the second electrode of the first transition capacitor (eg, Ctr (n)) of the pixel is supplied with the display signal voltage next to the pixel (eg, Pix (n, m)). Connected to the electrode. All the liquid crystal display devices of the embodiments exemplified below have this connection relationship.
- the electrode to which the display signal voltage is supplied is, for example, the first subpixel electrode (first pixel) of the pixel (for example, Pix (n + 1, m)) in the next row as in the liquid crystal display device 100 illustrated in FIG. Sub-pixel pix (n + 1) A). That is, the second electrode of the first transition capacitor (for example, Ctr (n)) of a certain pixel (for example, Pix (n, m)) is adjacent to the pixel (for example, Pix (n, m)) in the column direction (for example, Pix (n, m)). For example, Pix (n + 1, m)) is connected to the first subpixel electrode (refer to the following liquid crystal display devices 100, 100A, 100B, 100C and 100D, 100A1, 100A2).
- the electrode to which the display signal voltage is supplied next is a pixel (Pix (n + 2,..., Pix (n + 2,.
- the first subpixel electrode of m) may be used. That is, the second electrode of the first transition capacitor (eg, Ctr (n)) of a certain pixel (eg, Pix (n, m)) is separated by two in the column direction of the pixel (eg, Pix (n, m)). It may be connected to the first subpixel electrode of the pixel (Pix (n + 2, m)) (see the following liquid crystal display devices 100E, 100E1, and 100E2).
- the polarity (direction of electric field) of a voltage applied to a liquid crystal layer of a pixel is constant every time.
- the polarity of the voltage applied to the pixel is typically “1 V” in one frame period (vertical scanning period: a period from when a gate bus line is selected to when the gate bus line is selected again. Is inverted every time (frame inversion drive).
- frame inversion drive the period from the selection of the first row of pixels arranged in a matrix to the selection of the first row.
- One frame is a period for writing a display signal voltage for forming one image to all pixels (including strictly vertical blanking), and one frame period has the same length as one frame. In contrast, one frame has a fixed starting point.
- the driving is performed so that the polarity of the voltage applied to the liquid crystal layer of the adjacent pixel is different in one frame period.
- row inversion drive gate bus line inversion drive
- Column inversion driving source bus line inversion driving
- driving in which the polarities of voltages applied to adjacent pixels in the column and row directions are different dot inversion driving
- the first electrode of the first transition capacitor Ctr (n) of the pixel Pix (n, m) is the second subpixel of the pixel Pix (n, m).
- the second electrode of the first transition capacitor Ctr (n) of Pix (n, m) is connected to the electrode to which the display signal voltage is supplied next to the pixel Pix (n, m), for example. ing.
- the liquid crystal layer of the second subpixel of the pixel Pix (n, m) may be smaller or larger than the voltage Vpix (n) A applied to the liquid crystal layer of the first subpixel. Therefore, the liquid crystal display device according to the embodiment of the present invention can form a bright sub-pixel and a dark sub-pixel in one pixel. Note that the voltage applied to the liquid crystal layer of each subpixel may be referred to as “voltage applied to the subpixel” for the sake of simplicity.
- FIG. 2 is a diagram showing an equivalent circuit of the liquid crystal display device 100A according to the embodiment of the present invention.
- FIG. 3 schematically shows the scanning signal voltage, the display signal voltage, and the voltage applied to the subpixel in the liquid crystal display device 100A.
- the first subpixel electrode of the first subpixel pix (n) A and the second subpixel electrode of the second subpixel pix (n) B are respectively connected to the corresponding TFTs (TFT (n) A and TFT (n ) Corresponding to B) to the source bus line SL (m).
- the first electrode of the first transition capacitor Ctr (n) of the pixel Pix (n, m) is connected to the second subpixel electrode of the pixel Pix (n, m), and the first electrode of the pixel Pix (n, m).
- the second electrode of the one transfer capacitor Ctr (n) is connected to the first subpixel electrode of the pixel Pix (n + 1, m) adjacent to the pixel Pix (n, m) in the column direction.
- the first subpixel electrode and the second subpixel electrode of the pixel Pix (n, m), and the first subpixel electrode and the second subpixel electrode of the pixel Pix (n + 1, m) adjacent to the pixel Pix (n, m) in the column direction The sub-pixel electrode is connected to the same source bus line.
- the equivalent circuit of the liquid crystal display device 100A is the same as the equivalent circuit of the liquid crystal display device 100 shown in FIG.
- the liquid crystal display device 100A is driven by dot inversion. With reference to FIG. 3, the scanning signal voltage, the display signal voltage, and the voltage applied to the sub-pixel in the liquid crystal display device 100A will be described.
- VGL (n) and VGL (n + 1) indicate scanning signal voltages supplied from the gate bus lines GL (n) and GL (n + 1), respectively, and VSL (m) is supplied from the source bus line SL (m). Display signal voltage.
- Vpix (n) A and Vpix (n) B and Vpix (n + 1) A are respectively referred to as the first subpixel pix (n) and the second subpixel pix (n) B of the pixel Pix (n, m).
- the voltage applied and the voltage applied to the first sub-pixel pix (n + 1) A of the pixel Pix (n + 1, m) are shown.
- the display signal voltage and the voltage applied to the subpixel are based on the voltage of the counter electrode (common voltage Vcom). Therefore, the voltage applied to each subpixel is synonymous with the voltage of the subpixel electrode of each subpixel with respect to the common voltage Vcom.
- FIG. 3 shows each voltage in two consecutive frames of the liquid crystal display device 100A.
- the polarities of the display signal voltage VSL (m) (Vcom is set to 0V) are opposite to each other in two consecutive frames (frame inversion driving).
- the polarity of the display signal voltage VSL (m) may be expressed as “1H” in one horizontal scanning period (a period from selection of a certain gate bus line to selection of the next gate bus line). )),
- the time changes so as to be reversed between adjacent pixel rows (n and n + 1 rows). That is, the polarity of the display signal voltage supplied to a certain pixel and the display signal voltage supplied next to that pixel (that is, in the horizontal scanning period next to the horizontal scanning period in which the pixel is selected) are reversed. It is.
- the polarity of the display signal voltage VSL (m + 1) is opposite to that of the display signal voltage VSL (m). That is, the liquid crystal display device 100A is driven by dot inversion.
- the display signal voltage VSL (m) is applied to the first and second subpixels of the pixel Pix (n, m) while the scanning signal voltage VGL (n) is high (the TFT is on).
- the voltage Vpix (n) A of one subpixel and the voltage Vpix (n) B of the second subpixel are increased (because the display signal voltage VSL (m) in the above period is positive).
- the TFT When the scanning signal voltage VGL (n) switches from high to low, the TFT is turned off, and the first subpixel and the second subpixel of the pixel Pix (n, m) are electrically connected from the source bus line SL (m). Insulated. Accordingly, the voltage Vpix (n) A of the first subpixel of the pixel Pix (n, m) is maintained.
- the second subpixel of the pixel Pix (n, m) is connected to the first subpixel electrode of the pixel Pix (n + 1, m) via the first transfer capacitor Ctr (n) (scanning).
- the scanning signal voltage VGL (n + 1) becomes high, thereby affecting the influence of the voltage change of the first subpixel electrode of the pixel Pix (n + 1, m). receive.
- the voltage corresponding to the (n + 1) th row of the display signal voltage VSL (m) supplied to the pixel Pix (n + 1, m) is negative, the voltage of Vpix (n + 1) A becomes negative as shown in FIG. .
- This voltage affects the voltage Vpix (n) B of the second subpixel of the pixel Pix (n, m) via the first transition capacitor Ctr (n), and Vpix (n) B decreases.
- the display signal voltage supplied from the source bus line is VSL (m)
- the capacitance of the liquid crystal capacitance of the second subpixel is CLCB
- the capacitance of the first transition capacitance is Ctr
- other capacitance for example, an auxiliary capacitance provided optionally
- Vpix (n) A and Vpix (n) B are respectively expressed by the following equations. The following formula is established when a still image is displayed.
- Vpix (n) A VSL (m) (1)
- Vpix (n) B VSL (m) + ⁇ ⁇ 2 ⁇ Vpix (n + 1)
- ⁇ Ctr / (CLCB + Ctr + Cp) (3)
- Vpix (n) A is positive and Vpix (n + 1) A is negative
- the luminance is lower than the luminance of the first subpixel pix (n) A. That is, the luminance to be displayed by the pixel Pix (n, m) is the first subpixel pix (n) A having a higher luminance than the luminance to be displayed and the second subpixel pix having a lower luminance than the luminance to be displayed. (N) Expressed as B. As a result, the viewing angle dependency of the ⁇ characteristic is reduced as in the case of a liquid crystal display device having a conventional multi-pixel structure.
- the difference in luminance between two subpixels (the difference in the magnitude (absolute value) of the voltage applied to the two subpixels is supplied next to the pixel.
- the driving circuit (not shown) included in the liquid crystal display device according to the embodiment of the present invention receives the input video signal and receives the input video signal.
- the display signal is generated based on the signal, the display signal voltage supplied to a certain pixel can be obtained as a function of the display signal voltage supplied next to the certain pixel.
- the liquid crystal according to the embodiment of the present invention includes the liquid crystal display device exemplified below. All the driving circuits of the display device have this function.
- FIG. 4 is a diagram showing an equivalent circuit of a liquid crystal display device 100B according to another embodiment of the present invention.
- FIG. 5 shows scanning signal voltages, display signal voltages, and voltages applied to sub-pixels in the liquid crystal display device 100B. It is a figure shown typically.
- the liquid crystal display device 100B is so-called pseudo-dot inversion driven, and the polarity of the voltage applied to the adjacent pixels in the column direction and the row direction is different in each frame period as in the liquid crystal display device 100A.
- Transistors in a pixel column of the liquid crystal display device 100B are alternately connected to different ones of two source bus lines arranged on both sides of the pixel column for each pixel row. For example, in FIG. 4, attention is focused on m pixel columns. A source bus line SL (m) and a source bus line SL (m + 1) are arranged on both sides of the m pixel columns. The TFT of the pixel Pix (n, m) is connected to the source bus line SL (m), and the TFT of the pixel Pix (n + 1, m) in the next row is connected to the source bus line SL (m + 1). . In the liquid crystal display device 100B, the connection relationship between the TFT (that is, the sub-pixel electrode) and the source bus line is different from that in the liquid crystal display device 100A.
- the liquid crystal display device 100B As shown in FIG. 5, in the liquid crystal display device 100B, adjacent source bus lines, for example, the source bus line SL (m) and the source bus line SL (m + 1) are displayed with opposite polarities over one frame period. Signal voltages (VSL (m), VSL (m + 1)) are supplied, and the polarity of each display signal voltage does not change during one frame period. This is different from the fact that the polarity of the display signal voltage VSL (m) in the liquid crystal display device 100A shown in FIG. 3 is reversed every horizontal scanning period. That is, in the liquid crystal display device 100B, the TFTs of each pixel column are connected to different source bus lines alternately (zigzag) for each row with respect to two source bus lines within one frame period. Inversion of the polarity of the display signal voltage can be eliminated. As a result, the liquid crystal display device 100B has an advantage that it can be driven with lower power consumption than the liquid crystal display device 100A.
- FIG. 6 is a diagram showing an equivalent circuit of a liquid crystal display device 100C according to still another embodiment of the present invention
- FIG. 7 is a diagram schematically showing a connection relationship between source bus lines and pixels in the liquid crystal display device 100C. It is.
- FIG. 8 is a diagram schematically illustrating a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100C.
- the equivalent circuit of the liquid crystal display device 100C shown in FIG. 6 is substantially the same as the equivalent circuit of the liquid crystal display device 100A shown in FIG.
- the liquid crystal display device 100A is driven by dot inversion
- the liquid crystal display device 100C is different in that it is driven by column inversion (source bus line inversion driving). That is, in the liquid crystal display device 100A of FIG. 1, “+” is added to each subpixel of the pixel Pix (n, m), and “ ⁇ ” is added to each subpixel of the pixel Pix (n + 1, m).
- “+” is added to both subpixels of the pixel Pix (n, m) and the pixel Pix (n + 1, m).
- the display signal voltage supplied to a certain pixel and the display signal voltage supplied next to the pixel have the same polarity. Therefore, as shown in FIG. 8, for example, the second subpixel pix (1) B of the pixel Pix (1, m) is affected by VSL (m) applied to the pixel Pix (2, m). The voltage is boosted to
- the liquid crystal display device 100C has a problem that display luminance varies depending on pixel rows. This problem will be described with reference to FIGS.
- an arbitrary pixel has a parasitic capacitance Csd1 between the pixel and a source bus line (for example, SL (m)) to which the pixel (two subpixel electrodes) is connected.
- a parasitic capacitance Csd2 is provided between the pixel and a source bus line (for example, SL (m + 1)) to which a pixel adjacent in the row direction of the pixel is connected.
- Each pixel is affected by the voltage variation of the source bus line via these parasitic capacitances Csd.
- the polarities of the voltages of the adjacent source bus lines are opposite to each other, and the polarities of the voltages of the source bus lines are inverted every frame.
- the pixels in a certain pixel column are all connected to the same source bus line (for example, SL (m)).
- the voltages of the first subpixel pix (1) A and the second subpixel pix (1) B included in the pixel Pix (1, m) in the first row, Vpix (1) A And Vpix (1) B are affected by the polarity inversion of the voltage of the source bus line at the end of one frame period.
- the voltage fluctuation at this time is assumed to be ⁇ V (Csd).
- the voltages of the first subpixel pix (n) A and the second subpixel pix (n) B included in the pixel Pix (n, m) of the nth row selected near the end of one frame, Vpix (N) A and Vpix (n) B are affected by the polarity inversion of the voltage of the source bus line at the beginning of one frame period (here, n is an integer close to N).
- ⁇ V (Csd) the polarity inversion of the voltage of the source bus line
- FIG. 9 is a diagram schematically showing a connection relationship between source bus lines and pixels in the liquid crystal display device 100D, and FIG. 10 is applied to the scanning signal voltage, the display signal voltage, and the sub-pixels in the liquid crystal display device 100D. It is a figure which shows a voltage typically.
- the first subpixel electrode and the second subpixel electrode of a plurality of pixels constituting a column are different for each successive k rows (k is an integer of 2 or more). Connected to the source bus line. Specifically, the pixels in a certain pixel column are connected to different source bus lines SL (m) or SL (m + 1) of two adjacent source bus lines for every k rows.
- the liquid crystal display device 100D has the same configuration as the liquid crystal display device 100C except for the connection relationship between the source bus lines and the pixels.
- the polarity of the display signal voltage VSL (m) supplied to the source bus line SL (m) is inverted for every k rows of pixels. That is, the display signal voltage VSL (m) is inverted every 1H (horizontal scanning period) ⁇ k hours. Then, every time the polarity of the display signal voltage VSL (m) is inverted, the voltage variation ( ⁇ V (Csd)) due to the parasitic capacitance described above occurs.
- the fluctuation of the voltage is not only the pixel in the first row (first subpixel pix (1) A and second subpixel pix (1) B), but also the pixel in the nth row (first subpixel pix (n)). This also occurs for A and the second subpixel pix (n) B), and the number of fluctuations is the same for every row. Therefore, in the liquid crystal display device 100D, occurrence of variations in display luminance in the liquid crystal display device 100C is suppressed.
- k may be an integer greater than or equal to 2, but if k is small, the polarity inversion period is short, so the effect of reducing power consumption is small. If k is large, the effect of suppressing variations in display luminance is effective. Get smaller.
- liquid crystal display devices 100A1 and 100A2 according to the embodiment of the present invention will be described with reference to FIGS.
- the liquid crystal display devices 100A1 and 100A2 exemplified here are used for the previous liquid crystal display devices 100A, 100C, and 100D. Further, if the connection relationship between the TFT and the source bus line is changed, it can be used for the liquid crystal display device 100B.
- FIG. 11A and 11B schematically show the structure of the liquid crystal display device 100A1.
- FIG. 11A is a schematic plan view of a TFT substrate included in the liquid crystal display device 100A1
- FIG. 11B is a schematic view of the liquid crystal display device 100A1 taken along the line AA ′ in FIG. FIG.
- the basic structure of the liquid crystal display device 100A1 is the same as that of a known TFT type liquid crystal display device, and can be manufactured by a known manufacturing method. Below, it demonstrates centering around a difference with a well-known TFT type liquid crystal display device.
- the TFT substrate of the liquid crystal display device 100A1 includes a gate bus line 12, a source bus line 14, TFTs 16A and 16B formed on a substrate (for example, a glass substrate), sub-pixel electrodes. 10A (n) and 10B (n).
- the gate bus line 12 is disposed between the subpixel electrodes 10A (n) and 10B (n).
- the source electrode 14SA of the TFT 16A and the source electrode 14SB of the TFT 16B are connected to the source bus line 14 (typically formed integrally).
- the drain electrode 14DA of the TFT 16A and the drain electrode 14DB of the TFT 16B are led out to substantially the center of the first subpixel pix (n) A and the second subpixel pix (n) B, respectively.
- the first subpixel electrode 10A (n) and the second subpixel electrode 10B (n) are connected.
- the first transition capacitor Ctr (n) is formed at a position overlapping the boundary between the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1).
- the first transition capacitor Ctr (n) has a first electrode 14C and a second electrode 12C.
- the first electrode 14C of the first transition capacitance Ctr (n) is formed integrally with the drain electrode 14DB and is connected to the second subpixel electrode 10B (n).
- the second electrode 12C of the first transition capacitance Ctr (n) is formed by patterning the same conductive layer as the gate bus line 12, and is connected to the first subpixel electrode 10A (n + 1) in the contact hole 13VA. ing.
- the first electrode 14C and the second electrode 12C of the first transition capacitance Ctr (n) are formed on a substantially entire surface of the substrate so as to cover the second electrode 12C. 13 are formed so as to face each other with 13 therebetween. That is, the gate insulating layer 13 is a dielectric layer of the first transition capacitance Ctr (n).
- the first electrode 14C and the drain electrode 14DB of the first transition capacitance Ctr (n) are formed by patterning the same conductive layer as the source bus line 14, and these are covered with the interlayer insulating layer 15.
- a first subpixel electrode 10A and a second subpixel electrode 10B are formed on the interlayer insulating layer 15.
- a counter electrode (also referred to as “common electrode”) 30 is disposed so as to face the first subpixel electrode 10 ⁇ / b> A and the second subpixel electrode 10 ⁇ / b> B via the liquid crystal layer 20.
- the counter electrode 30 is typically formed on a substrate (for example, a glass substrate: not shown), and the substrate having the counter electrode 30 is called a counter substrate.
- the liquid crystal layer 20 is provided between the TFT substrate and the counter substrate.
- the first subpixel electrode 10A, the second subpixel electrode 10B, and the surface of the counter electrode 30 on the liquid crystal layer 20 side are covered with an alignment film (not shown).
- a VA mode liquid crystal display device in which the liquid crystal layer 20 includes a nematic liquid crystal material having negative dielectric anisotropy, has a vertical alignment film as an alignment film, and performs display in a normally black mode is illustrated. Yes.
- a color filter layer having a color filter of three primary colors or more and a black matrix (light shielding layer) is generally formed on the counter substrate.
- FIG. 12A and 12B schematically show the structure of the liquid crystal display device 100A2.
- 12A is a schematic plan view of a TFT substrate included in the liquid crystal display device 100A2
- FIG. 12B is a schematic view of the liquid crystal display device 100A2 along the line BB ′ in FIG. FIG.
- the liquid crystal display device 100A2 is different from the liquid crystal display device 100A1 in that the first subpixel electrode 10A (n) and the second subpixel electrode 10B (n) are formed of different transparent conductive layers.
- the first transition capacitor Ctr (n) is formed in a region where the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1) overlap with each other via the interlayer insulating layer 17. That is, the first electrode of the first transition capacitor Ctr (n) is a part of the second subpixel electrode 10B (n), and the second electrode of the first transition capacitor Ctr (n) is the first subpixel electrode 10A. Part of (n + 1).
- the liquid crystal display device 100A2 has the advantage of a higher aperture ratio than the liquid crystal display device 100A1.
- the liquid crystal display device 100A2 since the first and second electrodes of the first transition capacitance Ctr (n) are formed of a transparent conductive layer (subpixel electrode), the liquid crystal layer 20 has the first transition capacitance Ctr (n). A region overlapping with can also contribute to display. Further, like the liquid crystal display device 100A1, the extension of the electrode for connecting the second electrode 12C of the first transition capacitance Ctr (n) to the first subpixel electrode 10A (n + 1) or the contact hole 13VA (FIG. 11A )) Is not required to be formed, and there is no decrease in the aperture ratio due to these.
- FIG. 13 is a diagram illustrating an equivalent circuit of the liquid crystal display device 100E
- FIG. 14 is a diagram schematically illustrating a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100E
- FIG. 15 is a diagram schematically showing the connection relationship between the source bus lines and the pixels in the liquid crystal display device 100E.
- the liquid crystal display device 100E has source bus lines SL (m) 1 and SL (m) 2 arranged on both sides of a pixel column (for example, m columns).
- this structure is called a double source structure.
- two different source bus lines SL (m) 1 and SL (m) are simultaneously applied to two pixels (for example, a pixel Pix (n, m) and a pixel Pix (n + 1, m)) adjacent to each other in the column direction.
- the display signal voltages having different polarities are supplied from 2.
- the gate bus lines to which the gate electrodes of the two TFTs are connected are GL (n), and the same scanning signal voltage VGL (n) is supplied to the two TFTs of the pixel Pix (n, m).
- VGL (n) is supplied to the two TFTs of the pixel Pix (n, m).
- SL (m) 1 is connected to the source bus line SL (m) 1
- the source electrodes of the two TFTs of the pixel Pix (n + 1, m) are connected to the source bus line SL (m) 2.
- the voltage of the second subpixel pix (n) B is set using the display signal voltage supplied to the pixels adjacent in the column direction. It cannot be changed.
- the pixel Pix (n, m) is provided with a third TFT whose gate electrode is connected to the gate bus line GL (n + 1).
- the drain electrodes of the first TFT and the second TFT are connected to the first subpixel electrode and the second subpixel electrode, respectively, while the drain electrode of the third TFT is connected to the first transition capacitor Ctr ( n) connected to the second electrode.
- the source electrode of the third TFT is connected to the source bus line SL (m) 1, and the second TFT of the first transfer capacitor Ctr (n) is connected.
- a display signal voltage supplied to the pixel Pix (n + 2, m) selected next to the pixel Pix (n, m) is supplied to the electrode.
- adjacent source bus lines for example, the source bus line SL (m) 1 and the source bus line SL (m) 2, have opposite polarities over one frame period.
- Display signal voltages VSL (m) 1, VSL (m) 2) are supplied, and the polarity of each display signal voltage does not change during one frame period.
- the display signal voltage Vpix (n + 2) is first applied to the pixel Pix (n + 2, m) that is two columns away from the pixel Pix (n, m) in the period when the scanning signal voltage VGL (n + 1) is high.
- the voltage Vpix (n) B of the second subpixel pix (n) B of the pixel Pix (n, m) is supplied through the transfer capacitor Ctr (n).
- the pixel rows to be selected simultaneously are two rows adjacent to each other in the column direction.
- the scanning signal voltage of the gate bus line GL (1) becomes high at the same time, and the display signal voltage is simultaneously supplied to the uppermost row and the two pixel rows immediately below it in FIG.
- the scanning signal voltage of the gate bus line GL (2) simultaneously becomes high, and the display signal voltage is simultaneously supplied to the third and fourth pixel rows from the top in FIG.
- the gate bus line connected to the lower side of each pixel (for example, GL (2) for the pixel in the uppermost row) is connected to the second sub-pixel electrode through the third TFT.
- a gate bus line is shown.
- the display signal voltage supplied to the pixel in the next row is used to change the voltage of the second subpixel. Therefore, it is necessary to use a display signal voltage supplied to pixels separated by two in the column direction.
- the display signal voltages supplied to each pixel have relatively small variations corresponding to adjacent pixels, and the correlation decreases as the pixels move away. Therefore, it is preferable to change the voltage supplied to the second sub-pixel using the display signal voltage supplied to the adjacent pixel.
- the display area (consisting of a plurality of pixels arranged in a matrix) is divided into, for example, an upper half (upper area) and a lower half (lower area), and at the same time.
- the display signal voltage supplied to the pixels in the next row adjacent to each other in the column direction is used.
- the voltage supplied to the pixel is changed.
- the gate bus line GL (1) is connected to the pixels in the uppermost row in the upper half and the uppermost row in the lower half, and the pixel row to which the display signal voltage is supplied next is A line immediately below the uppermost line in the upper half of the display area and a line immediately below the uppermost line in the lower half of the display area.
- the liquid crystal display device 100F can perform display with higher quality than the liquid crystal display device 100E.
- the polarity all the same, for example, negative
- the polarities are opposite to each other.
- the display area is divided into two upper and lower areas, but the display area may be divided into an even number of areas of 4 or more.
- display signal voltages having different polarities are supplied from different source bus lines to pixels belonging to the odd-numbered group and pixels belonging to the even-numbered group. .
- display signal voltages having different polarities are simultaneously supplied to one pixel belonging to the odd-numbered group and one pixel belonging to the even-numbered group.
- liquid crystal display devices 100E1 and 100E2 according to the embodiment of the present invention will be described with reference to FIGS.
- the liquid crystal display devices 100E1 and 100E2 exemplified here are used in the previous liquid crystal display device 100E. Further, if the connection relation between the TFT and the source bus line is changed, it can be used for the liquid crystal display device 100F.
- FIG. 17 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100E1. Since the basic structure of the liquid crystal display device 100E1 is the same as that of the above-described liquid crystal display device 100A1, the following description will focus on differences from the liquid crystal display device 100A1.
- the TFT substrate of the liquid crystal display device 100E1 includes gate bus lines 12 (GL (n), GL (n + 1)) formed on a substrate (for example, a glass substrate), and source bus lines. 14 (SL (m ⁇ 1) 1, SL (m ⁇ 1) 2), TFTs 16A, 16B, and 16C, and subpixel electrodes 10A (n) and 10B (n).
- the gate bus line GL (n) is disposed between the subpixel electrodes 10A (n) and 10B (n), and is connected to the gate electrodes of the TFT 16A and the TFT 16B.
- the gate bus line GL (n + 1) is disposed between the subpixel electrodes 10B (n) and 10A (n + 1), and is connected to the gate electrode of the TFT 16C.
- the drain electrode of the TFT 16A and the drain electrode of the TFT 16B are led out to substantially the center of the first sub-pixel pix (n) A and the second sub-pixel pix (n) B, respectively, and in the contact holes 15VA and 15VB, the first It is connected to the subpixel electrode 10A (n) and the second subpixel electrode 10B (n).
- the drain electrode of the TFT 16C is connected to the second electrode 12C of the first transition capacitor Ctr (n) in the contact hole 13VB.
- the first electrode of the first transition capacitor Ctr (n) is formed by the extended portion 14C of the drain electrode of the TFT 16B.
- the second electrode 12C of the first transition capacitance Ctr (n) is formed by patterning the same conductive layer as the gate bus line 12, and is covered with the gate insulating layer 13 (see FIG. 11 and FIG. 17). Not shown). Accordingly, the first transition capacitance Ctr (n) is formed at a portion where the second electrode 12C, the gate insulating layer 13, and the extended portion 14C of the drain electrode of the TFT 16B overlap.
- FIG. 18 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100E2.
- the liquid crystal display device 100E2 is different from the liquid crystal display device 100E1 in the configuration of the first transition capacitance Ctr (n).
- the second electrode of the first transition capacitance Ctr (n) is formed of the transparent conductive layer 10C (n).
- the transparent conductive layer 10C (n) is connected to the drain electrode of the TFT 16C through the contact hole 17VB.
- the first electrode of the first transition capacitor Ctr (n) is formed by the second subpixel electrode 10B (n).
- the cross-sectional structure of the first transition capacitor Ctr (n) of the liquid crystal display device 100E2 is similar to the cross-sectional structure of the first transition capacitor Ctr (n) of the liquid crystal display device 100A2 shown in FIG.
- the first transition capacitance Ctr (n) of the liquid crystal display device 100E2 is formed in a region where the transparent conductive layer 10C (n) and the second subpixel electrode 10B (n) overlap with the interlayer insulating layer 17 interposed therebetween.
- the liquid crystal display device 100E2 since the first and second electrodes of the first transition capacitor Ctr (n) are formed of a transparent conductive layer, the region where the liquid crystal layer 20 overlaps the first transition capacitor Ctr (n) It can contribute to the display. Therefore, the liquid crystal display device 100E2 has an advantage that the aperture ratio is higher than that of the liquid crystal display device 100E1.
- FIG. 19 is a diagram showing an equivalent circuit of the liquid crystal display device 100G
- FIG. 20 is a diagram schematically showing a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100G.
- the pixel Pix (n, m) of the liquid crystal display device 100G includes a third subpixel in addition to the first subpixel pix (n) A, the second subpixel pix (n) B, and the first transfer capacitor Ctr (n) 1.
- pix (n) C and a second transition capacitor Ctr (n) 2 having a third electrode and a fourth electrode facing each other with a dielectric layer interposed therebetween.
- the third electrode of the second transition capacitor Ctr (n) 2 is connected to the third subpixel electrode of the pixel, and the fourth electrode of the second transition capacitor of the pixel is the first electrode of the first transition capacitor. Alternatively, it is connected to the second subpixel electrode.
- the names of the second and third subpixels, the second and third subpixel electrodes, and the first and second transfer capacitors are connected to an electrode to which a display signal voltage is supplied next to the pixel.
- the second subpixel electrode is the second subpixel electrode
- the transition capacitor connected to the second subpixel electrode is the first transition capacitor. Therefore, the second subpixel, the second subpixel electrode, and the first transition capacitor The position in the pixel is different from the liquid crystal display device 100A shown in FIG.
- the liquid crystal display device 100G corresponds to a liquid crystal display device 100A having one TFT, one subpixel electrode, and one transition capacitor added to the liquid crystal display device 100A.
- the voltage Vpix (n) C applied to the third subpixel pix (n) C is connected in series to the first subpixel electrode of the pixel Pix (n + 1, m), and the first transfer capacitor Ctr (n) 1 and the second transition capacitor Ctr (n) 2, as shown in FIG. 20, the voltage Vpix (n) A of the first subpixel and the voltage Vpix (n) B of the second subpixel are It becomes an intermediate voltage.
- a first sub-pixel pix (n) A having a high luminance, a second sub-pixel pix (n) B having a low luminance, and a third sub-pixel pix (n) C having intermediate luminance between them are obtained.
- liquid crystal display devices 100G1 and 100G2 Next, an example of a specific structure of the liquid crystal display devices 100G1 and 100G2 according to the embodiment of the present invention will be described with reference to FIGS.
- the liquid crystal display devices 100G1 and 100G2 exemplified here are used in the previous liquid crystal display device 100G.
- FIG. 21 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100G1. Since the basic structure of the liquid crystal display device 100G1 is the same as that of the above-described liquid crystal display device 100A1, the following description will focus on differences from the liquid crystal display device 100A1.
- the TFT substrate of the liquid crystal display device 100G1 includes a gate bus line 12, a source bus line 14, TFTs 16A, 16B, and 16C formed on a substrate (for example, a glass substrate), first to first. 3 sub-pixel electrodes 10A (n), 10B (n), and 10C (n).
- the gate bus line GL (n) is provided between the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n), and between the third subpixel electrode 10C (n) and the second subpixel electrode 10B ( n) in two places.
- the gate bus line GL (n) between the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n) is connected to the gate electrodes of the TFTs 16A and 16C.
- the drain electrodes of the TFT 16A and the TFT 16C are led out to substantially the center of the first subpixel pix (n) A and the third subpixel pix (n) C, respectively.
- the contact holes 15VA and 15VC the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n).
- the gate bus line GL (n) between the third subpixel electrode 10C (n) and the second subpixel electrode 10B (n) is connected to the gate electrode of the TFT 16B.
- the drain electrode of the TFT 16B is drawn to almost the center of the second subpixel pix (n) B, and is connected to the second subpixel electrode 10B (n) in the contact hole 15VB.
- the drain electrode of the TFT 16B extends to a position overlapping the boundary between the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1), and the first electrode of the first transition capacitor Ctr (n) 1. It is used as 14C1.
- the second electrode 12C1 of the first transition capacitor Ctr (n) 1 is formed by patterning the same conductive layer as the gate bus line 12, and is covered with the gate insulating layer 13 (see FIG. 11, FIG. 21). (Not shown). The second electrode 12C1 of the first transition capacitor Ctr (n) 1 is connected to the first subpixel electrode 10A (n + 1) in the contact hole 13VA.
- the drain electrode of the TFT 16B extends to the lower part of the third subpixel electrode 10C (n), and is connected to the fourth electrode 12C2 of the second transition capacitor Ctr (n) 2 in the contact hole 13VC.
- the third electrode 14C2 of the second transition capacitor Ctr (n) 2 is an extended portion of the drain electrode of the TFT 16C.
- FIG. 22 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100G2.
- the first subpixel electrode 10A (n), the third subpixel electrode 10C (n), and the second subpixel electrode 10B (n) are formed of different transparent conductive layers. This is different from the liquid crystal display device 100G1.
- the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1) are interposed via the interlayer insulating layer 17 (see FIG. 12B, not shown in FIG. 22).
- the first transition capacitor Ctr (n) 1 is formed in the overlapping region, and the second subpixel electrode 10B (n) and the third subpixel electrode 10C (n) overlap with the interlayer insulating layer 17 therebetween.
- the second transition capacitor Ctr (n) 2 is also different from the liquid crystal display device 100G1 in that the second transition capacitor Ctr (n) 2 is formed.
- the liquid crystal display device 100G2 has an advantage of a higher aperture ratio than the liquid crystal display device 100G1.
- the first and second electrodes of the first transition capacitor Ctr (n) 1 and the third and fourth electrodes of the second transition capacitor Ctr (n) 2 are both transparent conductive layers (subpixels). Therefore, the region where the liquid crystal layer 20 overlaps the first transition capacitor Ctr (n) 1 and the first transition capacitor Ctr (n) 2 can also contribute to display.
- liquid crystal display devices 200A and 200B according to still another embodiment of the present invention will be described with reference to FIGS. This embodiment can be combined with the liquid crystal display devices of all the embodiments described above.
- FIG. 23A is a diagram illustrating an equivalent circuit corresponding to one pixel of the liquid crystal display device 200A
- FIG. 23B is a diagram illustrating an equivalent circuit corresponding to one pixel of the liquid crystal display device 200B. is there.
- the potential of the subpixel electrode is drawn by the parasitic capacitance between the gate bus line and the subpixel electrode (generally, the pixel electrode) immediately after the TFT is switched from the on state to the off state. Phenomenon occurs.
- the change in potential of the sub-pixel electrode due to this pull-in is called “feedthrough voltage”.
- the magnitude of the feedthrough voltage depends on the magnitude of the capacitance (subpixel capacitance, parasitic capacitance, transfer capacitance, etc.) electrically connected to the TFT. Therefore, when each pixel has two subpixels, it is preferable that the feedthrough voltages of the two subpixels have the same magnitude.
- the sizes of the two subpixels are appropriately set in consideration of the required ⁇ characteristics and the like, but it is generally preferable that the area of the bright subpixel is smaller than the area of the dark subpixel.
- the liquid crystal display device 200A includes a first auxiliary capacitor CcsA connected to the first subpixel electrode of the first subpixel pixA and the first auxiliary capacitor line CcsLA, the second subpixel electrode of the second subpixel pixB, and the second subpixel electrode. It further has a second auxiliary capacitance CcsB connected to the auxiliary capacitance line CcsLB.
- the magnitudes of the feedthrough voltages of the first subpixel pixA and the second subpixel pixB can be made equal.
- the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line CcsLB are illustrated as wirings that are electrically independent from each other.
- the present invention is not limited to this, and the auxiliary capacitance line (auxiliary capacitance voltage) includes two subpixels.
- the capacitance value of the first auxiliary capacitor CcsA and the capacitance value of the second auxiliary capacitor CcsB may be made different from each other to adjust only the magnitude of the capacitance value.
- a capacitor may be provided between each subpixel electrode and the gate bus line. Since this capacitance is a gate-drain capacitance, it is expressed as a GD capacitance.
- the liquid crystal display device 200B includes a first GD capacitor CgdA connected to the first subpixel electrode of the first subpixel pixA and the gate bus line GL connected to the TFT to which the first subpixel electrode is connected; It further has a second GD capacitor CgdB connected to the second subpixel electrode of the second subpixel pixB and the gate bus line GL connected to the TFT to which the second subpixel electrode is connected.
- the capacitance value of the first GD capacitor CgdA and the capacitance value of the second GD capacitor CgdB are made different from each other, and the size of the capacitance value is adjusted to thereby adjust the feedthrough voltage of the first subpixel pixA and the second subpixel pixB.
- the size can be made equal.
- the structure of the liquid crystal display device 200A and the structure of the liquid crystal display device 200B may be combined.
- FIG. 24A is a schematic plan view of a TFT substrate included in the liquid crystal display device 200A1
- FIG. 24B is a schematic plan view of a TFT substrate included in the liquid crystal display device 200B1.
- a liquid crystal display device 200A1 shown in FIG. 24A is obtained by applying the structure of the liquid crystal display device 200A to the liquid crystal display device 100A1 shown in FIG.
- the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line parallel to the gate bus line 12 are provided at approximately the center of each of the first subpixel electrode 10A (n) and the second subpixel electrode 10B (n).
- the capacitor wiring CcsLB is included.
- the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line CcsLB are formed of the same conductive layer as the gate bus line 12 and are covered with the gate insulating layer 13 (see FIG. 11).
- the first auxiliary capacitance line CcsLA has a wide portion 18A at a position overlapping the contact hole 15VA, and the extended portion of the drain electrode of the TFTA overlaps with the wide portion 18A and the gate insulating layer 13 therebetween. Yes. This portion forms the first auxiliary capacitor CcsA.
- the second auxiliary capacitance line CcsLB has a wide portion 18B at a position overlapping the contact hole 15VB, and the extended portion of the drain electrode of the TFTB with the wide portion 18B and the gate insulating layer 13 interposed therebetween. Are overlapping. This portion forms a second auxiliary capacitor CcsB.
- first auxiliary capacitor CcsA and the second auxiliary capacitor CcsB are not limited to this, and various known configurations can be applied.
- a liquid crystal display device 200B1 shown in FIG. 24B is obtained by applying the structure of the liquid crystal display device 200B to the liquid crystal display device 100A1 shown in FIG.
- the gate bus line 12 has wide portions 12A and 12B.
- a portion where the wide portion 12B of the gate bus line 12 and the extended portion of the drain electrode of the TFTB overlap with each other via the gate insulating layer 13 (see FIG. 11) forms the second GD capacitor CgdB. is doing.
- first GD capacitor CgdA and the second GD capacitor CgdB are not limited to this, and various known configurations can be applied.
- a liquid crystal display device having the first auxiliary capacitor CcsA and the second auxiliary capacitor CcsB, and the first GD capacitor CgdA and the second GD capacitor CgdB is easily manufactured. be able to.
- FIG. 25A is a diagram illustrating an equivalent circuit of a liquid crystal display device 300 according to still another embodiment of the present invention
- FIG. 25B is a diagram illustrating source bus lines SL and TFTs (T1, T1, T) in the liquid crystal display device 300a. It is a schematic diagram which shows the connection relationship (series) with T2).
- FIG. 25C is a schematic diagram showing the connection relationship (parallel) between the source bus line SL and the TFTs (T1, T2) in all the previous embodiments.
- either the first TFT (T1) or the second TFT (T2) (here, T2) is connected to the common source bus line SL via the other (here, T1). It is connected to the. That is, the TFT (T1) and the TFT (T2) are connected in series to the common source bus line SL.
- the parasitic capacitance C SG formed between the gate bus line GL and the source bus line SL can be reduced as in the liquid crystal display device 300a shown in FIG. For example, in the liquid crystal display device 100a shown in FIG.
- the TFT (T1) and the TFT (T2) are connected in parallel to the common source bus line SL, the gate bus line GL and the source bus line SL are connected.
- the parasitic capacitance C SG formed between the two is large.
- the parallel connection shown in FIG. 25 (c) is adopted. Therefore, by adopting the series connection shown in FIG. 25 (b), the parasitic capacitance C SG is adopted. Can be reduced.
- the TFT (T2) for example, a TFT having an oxide semiconductor layer containing an IGZO-based semiconductor is preferably used. Since the mobility of the oxide semiconductor layer is about 10 times that of the amorphous silicon layer, a sufficient charging capability can be obtained.
- the semiconductor layer is not limited to the oxide semiconductor layer, and a known semiconductor layer such as a microcrystalline silicon layer can be used.
- the liquid crystal display according to the embodiment of the present invention uses the display signal voltage supplied to the pixel selected next to a certain pixel to measure the magnitude of the voltage applied to the two sub-pixels ( Since the absolute values are different, the difference between the two sub-pixels depends on the magnitude (absolute value) and polarity (sign) of the display signal voltage supplied next to the pixel.
- a driving circuit included in the liquid crystal display device according to the embodiment of the present invention receives an input video signal and generates a display signal based on the input video signal, a display signal voltage supplied to a certain pixel. As a function of the display signal voltage supplied next to a pixel.
- Case A is a case where the same pixel (Pix (n)) and the next pixel (Pix (n + 1)) display the same 128 gradations.
- Case B is a case in which 128 gradations are displayed for the own pixel (Pix (n)) and 255 gradations are displayed for the next pixel (Pix (n + 1)).
- Case B1 is a case where the same gradation conversion as in case A is performed.
- the conversion for obtaining the table signal voltage described above is performed by using a look that stores data of a preset display signal voltage in accordance with the gradation data of the input video signal (gradation data of the current horizontal scanning period and the next horizontal scanning period). It may be performed using an up table, or may be performed by calculation based on the gradation data of the input video signal.
- auxiliary capacitors that are electrically independent from each other are provided for each subpixel, and the auxiliary capacitors are provided. It is not necessary to change the counter voltage so as to satisfy a predetermined condition. That is, it is possible to suppress a decrease in aperture ratio due to the provision of an electrically independent auxiliary capacity wiring and / or an increase in power consumption due to a change in the auxiliary capacity counter voltage (for example, a constant period of vibration).
- the liquid crystal display device according to the embodiment of the present invention is used for various applications, and is particularly preferably used for mobile applications.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Liquid Crystal Display Device Control (AREA)
- Liquid Crystal (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
A liquid crystal display device (100) has: a plurality of pixels arranged in a matrix form having rows and columns; a plurality of TFTs; a plurality of gate bus lines; and a plurality of source bus lines. Each of the plurality of pixels has: a first sub-pixel having a first sub-pixel electrode; a second sub-pixel having a second sub-pixel electrode; and a first transfer capacitor having a first electrode and second electrode facing each other across a dielectric layer. The first electrode (14C) of the first transfer capacitor (Ctr(n)) of a certain pixel (Pix(n,m) is connected to a second sub-pixel electrode (10B(n)) of the certain pixel, and the second electrode (12C) of the first transfer capacitor of the certain pixel is connected to the next electrode after the certain pixel to be supplied with a display signal voltage.
Description
本発明は液晶表示装置、特に、視野角特性に優れた液晶表示装置に関する。
The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device excellent in viewing angle characteristics.
現在、TV用途などの液晶表示装置として、主に、垂直配向モード(VAモード)および横電界モード(IPSモード、FFSモードを含む)の液晶表示装置が用いられている。なお、横電界モードをIPSモードということがある。
Currently, liquid crystal display devices in vertical alignment mode (VA mode) and lateral electric field mode (including IPS mode and FFS mode) are mainly used as liquid crystal display devices for TV applications and the like. Note that the transverse electric field mode is sometimes referred to as an IPS mode.
この内、VAモードの液晶表示装置は、IPSモードの液晶表示装置に比べ、γ特性の視野角依存性が大きい。γ特性とは、階調-輝度特性である。一般に、観察方向は、表示面法線からの角(極角)と、表示面内の方位を示す方位角とで表される。VAモードの液晶表示装置のγ特性は、特に、観察方向の極角に対する依存性が大きい。すなわち、正面(表示面法線方向)から観察したときのγ特性と、斜め方向から観察したときのγ特性とが互いに異なるので、階調表示状態が観察方向(極角)によって異なる。
Of these, the VA mode liquid crystal display device has a larger viewing angle dependency of the γ characteristic than the IPS mode liquid crystal display device. The γ characteristic is a gradation-luminance characteristic. In general, the observation direction is represented by an angle (polar angle) from the normal to the display surface and an azimuth indicating the azimuth in the display surface. The γ characteristics of the VA mode liquid crystal display device are particularly highly dependent on the polar angle in the observation direction. That is, since the γ characteristic when observed from the front (normal direction of the display surface) and the γ characteristic when observed from the oblique direction are different from each other, the gradation display state differs depending on the observation direction (polar angle).
そこで、VAモードの液晶表示装置におけるγ特性の視野角依存性を低減するために、例えば、本出願人による特許文献1に記載されているような、マルチ画素構造を有する液晶表示装置が実用化されている。マルチ画素構造とは、1つの画素が明るさの異なる複数の副画素を有する構造をいう。なお、本明細書において、「画素」は、液晶表示装置が表示を行う最小単位を指し、カラー液晶表示装置の場合は、個々の原色(典型的にはR、GまたはB)を表示する最小単位をいい、「ドット」と呼ばれることがある。
Therefore, in order to reduce the viewing angle dependency of the γ characteristic in the VA mode liquid crystal display device, for example, a liquid crystal display device having a multi-pixel structure as described in Patent Document 1 by the present applicant is put into practical use. Has been. A multi-pixel structure refers to a structure in which one pixel has a plurality of sub-pixels having different brightness. In the present specification, “pixel” refers to a minimum unit for display by a liquid crystal display device, and in the case of a color liquid crystal display device, a minimum for displaying individual primary colors (typically R, G, or B). It is a unit and is sometimes called “dot”.
マルチ画素構造を有する液晶表示装置の画素は、液晶層に互いに異なる電圧を印加できる複数の副画素を有している。マルチ画素構造は、画素分割構造とも呼ばれ、種々の方式のものが知られている。例えば、特許文献1に記載の液晶表示装置においては、1つの画素内の複数の副画素ごとに補助容量が設けられており、補助容量を構成する補助容量電極(CSバスラインに接続されている)を副画素ごとに電気的に独立とし、補助容量対向電極に供給する電圧(補助容量対向電圧という。)を変化させることによって、容量分割を利用して、複数の副画素の液晶層に印加される実効電圧を互いに異ならせている。
A pixel of a liquid crystal display device having a multi-pixel structure has a plurality of sub-pixels that can apply different voltages to the liquid crystal layer. The multi-pixel structure is also called a pixel division structure, and various types are known. For example, in the liquid crystal display device described in Patent Document 1, an auxiliary capacitor is provided for each of a plurality of subpixels in one pixel, and is connected to an auxiliary capacitor electrode (CS bus line) constituting the auxiliary capacitor. ) Is electrically independent for each sub-pixel, and is applied to the liquid crystal layers of a plurality of sub-pixels using capacitive division by changing the voltage supplied to the auxiliary capacitor counter electrode (referred to as the auxiliary capacitor counter voltage). The effective voltages are different from each other.
なお、VAモードの液晶表示装置の表示品位は、観察する方位にも依存する。VAモードの液晶表示装置の表示品位が観察する方位によって異なることを抑制・防止するために、1つの画素内に、液晶分子の配向方向(ディレクターの方向)が互いに異なる液晶ドメインを形成する方法が採用されている。典型的には、1つの画素内に4種類のドメインが形成され、4種類のドメインは、クロスニコル状態に配置された一対の偏光板の偏光軸が成す角を2等分する4つの方位を向くように配置されている。例えば、時計の文字盤の3時方向の方位角を0°とし、反時計回りを正とすると、2つの偏光軸が3時-9時および6時-12時の方位に設定されているとき、4種類の液晶ドメインのディレクターは、45°、135°、225°、315°を向くように設定される。このように、1つの画素内に、ディレクターの向きが異なる複数のドメインを有する構造は、配向分割構造またはマルチドメイン構造といわれる。
Note that the display quality of the VA mode liquid crystal display device also depends on the viewing direction. In order to suppress and prevent the display quality of the VA mode liquid crystal display device from being different depending on the observing direction, there is a method of forming liquid crystal domains having different alignment directions (director directions) of liquid crystal molecules in one pixel. It has been adopted. Typically, four types of domains are formed in one pixel, and the four types of domains have four orientations that bisect the angle formed by the polarization axes of a pair of polarizing plates arranged in a crossed Nicol state. It is arranged to face. For example, assuming that the azimuth angle of the clock face at 3 o'clock is 0 ° and the counterclockwise direction is positive, the two polarization axes are set at 3 o'clock -9 o'clock and 6 o'clock -12 o'clock. The directors of the four types of liquid crystal domains are set to face 45 °, 135 °, 225 °, and 315 °. In this way, a structure having a plurality of domains with different director directions in one pixel is called an orientation division structure or a multi-domain structure.
TV用途には、マルチ画素構造と配向分割構造とを備える垂直モードの液晶表示装置が広く用いられている。例えば、特許文献1には、画素内の複数の副画素のそれぞれが4種類の液晶ドメインを有する液晶表示装置が開示されている。
For TV applications, a vertical mode liquid crystal display device having a multi-pixel structure and an alignment division structure is widely used. For example, Patent Document 1 discloses a liquid crystal display device in which each of a plurality of subpixels in a pixel has four types of liquid crystal domains.
しかしながら、配向分割構造や画素分割構造を導入すると、開口率が低下するという問題がある。液晶表示装置の高精細化が進み、個々の画素のサイズが小さくなるに連れて、この問題への対策が強く望まれている。また、開口率が低下すると、バックライトの発光強度を高める必要があり、消費電力が増大するという問題がある。特に、モバイル用途の液晶表示装置においては、低消費電力化が重要な課題となっている。
However, when an alignment division structure or a pixel division structure is introduced, there is a problem that the aperture ratio decreases. As the resolution of liquid crystal display devices increases and the size of individual pixels decreases, countermeasures against this problem are strongly desired. Further, when the aperture ratio decreases, it is necessary to increase the light emission intensity of the backlight, which causes a problem of increasing power consumption. In particular, low power consumption is an important issue for liquid crystal display devices for mobile use.
従来のマルチ画素構造は、必ずしもモバイル用途の液晶表示装置に適していない。例えば、特許文献1に記載のマルチ画素構造は、副画素ごとに設けられた補助容量に、互いに異なる補助容量対向電圧を供給する必要があるので、回路が複雑になるという問題がある。また。補助容量対向電圧を供給するために、互いに電気的に独立なCSバスラインを設ける必要があるので、CSバスラインの数が増え、開口率が低下するという問題がある。また、補助容量対向電圧として、一定の周期で振動する波形を有する電圧を用いるので、消費電力が増大するという問題がある。
The conventional multi-pixel structure is not necessarily suitable for a liquid crystal display device for mobile use. For example, the multi-pixel structure described in Patent Document 1 has a problem that the circuit becomes complicated because it is necessary to supply different auxiliary capacitor counter voltages to the auxiliary capacitors provided for each sub-pixel. Also. Since it is necessary to provide CS bus lines that are electrically independent from each other in order to supply the auxiliary capacitor counter voltage, there is a problem that the number of CS bus lines increases and the aperture ratio decreases. In addition, since a voltage having a waveform oscillating at a constant cycle is used as the auxiliary capacitor counter voltage, there is a problem that power consumption increases.
本発明は、上記の問題点の少なくとも1つを解決することによって、従来のマルチ画素構造を有する液晶表示装置よりも、モバイル用途に適した液晶表示装置を提供することを目的とする。勿論、本発明の液晶表示装置は、モバイル用途に限られず、他の用途にも用いられる。
An object of the present invention is to provide a liquid crystal display device more suitable for mobile use than a liquid crystal display device having a conventional multi-pixel structure by solving at least one of the above problems. Of course, the liquid crystal display device of the present invention is not limited to mobile use, but can be used for other purposes.
本発明の実施形態による液晶表示装置は、行および列を有するマトリクス状に配列された複数の画素と、複数のTFTと、複数のゲートバスラインと、複数のソースバスラインとを有し、前記複数の画素のそれぞれは、第1副画素電極を有する第1副画素と、第2副画素電極を有する第2副画素と、誘電体層を介して互いに対向する第1電極および第2電極を有する第1転移容量とを有し、ある画素の前記第1転移容量の前記第1電極は、前記ある画素の前記第2副画素電極に接続されており、前記ある画素の前記第1転移容量の前記第2電極は、前記ある画素の次に表示信号電圧が供給される電極に接続されている。
A liquid crystal display device according to an embodiment of the present invention includes a plurality of pixels arranged in a matrix having rows and columns, a plurality of TFTs, a plurality of gate bus lines, and a plurality of source bus lines. Each of the plurality of pixels includes a first subpixel having a first subpixel electrode, a second subpixel having a second subpixel electrode, and a first electrode and a second electrode facing each other through a dielectric layer. The first transition capacitor of the certain pixel, the first electrode of the first transition capacitor of the certain pixel is connected to the second subpixel electrode of the certain pixel, and the first transition capacitor of the certain pixel. The second electrode is connected to an electrode to which a display signal voltage is supplied next to the certain pixel.
ある実施形態において、前記ある画素の前記第1転移容量の前記第2電極は、前記ある画素に列方向に隣接する画素の前記第1副画素電極に接続されている。
In one embodiment, the second electrode of the first transition capacitor of the certain pixel is connected to the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction.
ある実施形態において、前記ある画素に供給される表示信号電圧と、前記ある画素の次に供給される表示信号電圧とは、極性が逆である。
In one embodiment, the display signal voltage supplied to the certain pixel and the display signal voltage supplied next to the certain pixel have opposite polarities.
ある実施形態において、前記ある画素に供給される表示信号電圧と、前記ある画素の次に供給される表示信号電圧とは、極性が同じである。
In one embodiment, the display signal voltage supplied to the certain pixel and the display signal voltage supplied next to the certain pixel have the same polarity.
ある実施形態において、前記ある画素の前記第1副画素電極および前記第2副画素電極と、前記ある画素に列方向に隣接する画素の前記第1副画素電極および前記第2副画素電極とは、同じソースバスラインに接続されている。
In one embodiment, the first subpixel electrode and the second subpixel electrode of the certain pixel, and the first subpixel electrode and the second subpixel electrode of a pixel adjacent to the certain pixel in the column direction are Are connected to the same source bus line.
ある実施形態において、ある列を構成する複数の画素の前記第1副画素電極および第2副画素電極は、連続するk行(kは2以上の整数)毎に異なるソースバスラインに接続されている。
In one embodiment, the first subpixel electrode and the second subpixel electrode of a plurality of pixels constituting a certain column are connected to different source bus lines for every k consecutive rows (k is an integer of 2 or more). Yes.
ある実施形態において、列方向に隣接する2つの画素に、同時に、互いに異なるソースバスラインから、互いに異なる極性の表示信号電圧が供給され、前記ある画素の前記第1転移容量の前記第2電極には、前記ある画素の列方向に2つ離れた画素に供給される表示信号電圧が供給される。
In one embodiment, display signal voltages having different polarities are simultaneously supplied to two pixels adjacent in the column direction from different source bus lines, and the second electrode of the first transition capacitor of the certain pixel is supplied to the second pixel. Is supplied with a display signal voltage that is supplied to two pixels separated in the column direction of the certain pixel.
ある実施形態において、列方向に配列された複数の画素は、偶数個の群に分けられており、前記偶数個の群のそれぞれは連続して配列された画素を有し、列方向の一端から順に群に番号を割り当てたとき、奇数番の群に属する画素と、偶数番の群に属する画素とに、互いに異なるソースバスラインから、極性が互いに異なる表示信号電圧が供給され、前記奇数番の群に属する1つの画素と、前記偶数番の群に属する1つの画素とに、同時に、前記極性が互いに異なる表示信号電圧が供給される。
In one embodiment, the plurality of pixels arranged in the column direction are divided into an even number of groups, and each of the even number of groups has pixels arranged in a row, and from one end in the column direction. When assigning numbers to the groups in order, display signal voltages having different polarities are supplied from different source bus lines to the pixels belonging to the odd numbered group and the pixels belonging to the even numbered group, The display signal voltages having different polarities are simultaneously supplied to one pixel belonging to the group and one pixel belonging to the even-numbered group.
ある実施形態において、前記複数の画素のそれぞれは、第3副画素電極を有する第3副画素と、誘電体層を介して互いに対向する第3電極および第4電極を有する第2転移容量とをさらに有し、前記ある画素の前記第2転移容量の前記第3電極は、前記ある画素の前記第3副画素電極に接続されており、前記ある画素の前記第2転移容量の前記第4電極は、前記第1転移容量の前記第1電極または前記第2副画素電極に接続されている。
In one embodiment, each of the plurality of pixels includes a third subpixel having a third subpixel electrode, and a second transition capacitor having a third electrode and a fourth electrode facing each other through a dielectric layer. Further, the third electrode of the second transition capacitor of the certain pixel is connected to the third sub-pixel electrode of the certain pixel, and the fourth electrode of the second transition capacitor of the certain pixel Is connected to the first electrode or the second subpixel electrode of the first transition capacitor.
ある実施形態において、前記液晶表示装置は、前記第1副画素電極と第1補助容量配線とに接続された第1補助容量と、前記第2副画素電極と第2補助容量配線とに接続された第2補助容量とをさらに有する。
In one embodiment, the liquid crystal display device is connected to a first auxiliary capacitor connected to the first subpixel electrode and the first auxiliary capacitance line, and to the second subpixel electrode and the second auxiliary capacitance line. And a second auxiliary capacitor.
ある実施形態において、前記第1補助容量と前記第2補助容量とは互いに異なる容量値を有している。
In one embodiment, the first auxiliary capacitor and the second auxiliary capacitor have different capacitance values.
ある実施形態において、前記第1補助容量配線と前記第2補助容量配線とは互いに電気的に独立である。
In one embodiment, the first auxiliary capacitance line and the second auxiliary capacitance line are electrically independent from each other.
ある実施形態において、前記液晶表示装置は、前記第1副画素電極と、前記第1副画素電極が接続されているTFTに接続されているゲートバスラインとに接続された第1GD容量と、前記第2副画素電極と、前記第2副画素電極が接続されているTFTに接続されているゲートバスラインとに接続された第2GD容量とをさらに有する。
In one embodiment, the liquid crystal display device includes: a first GD capacitor connected to the first subpixel electrode; and a gate bus line connected to a TFT to which the first subpixel electrode is connected; A second subpixel electrode; and a second GD capacitor connected to the gate bus line connected to the TFT to which the second subpixel electrode is connected.
ある実施形態において、前記第1副画素電極に接続された第1TFTと、前記第2副画素電極に接続された第2TFTとを有し、前記第1TFTおよび前記第2TFTは、共通のゲートバスラインに接続されている。
In one embodiment, the TFT includes a first TFT connected to the first subpixel electrode and a second TFT connected to the second subpixel electrode, and the first TFT and the second TFT have a common gate bus line. It is connected to the.
ある実施形態において、前記第1副画素電極に接続された第1TFTと、前記第2副画素電極に接続された第2TFTとを有し、前記第1TFTおよび前記第2TFTは、共通のソースバスラインに接続されている。
In one embodiment, a first TFT connected to the first subpixel electrode and a second TFT connected to the second subpixel electrode, wherein the first TFT and the second TFT are a common source bus line. It is connected to the.
ある実施形態において、前記第1TFTおよび前記第2TFTのいずれか一方は、他方を介して前記共通のソースバスラインに接続されている。
In one embodiment, one of the first TFT and the second TFT is connected to the common source bus line via the other.
ある実施形態において、前記複数のTFTは、酸化物半導体層を有する。
In one embodiment, the plurality of TFTs include an oxide semiconductor layer.
ある実施形態において、前記液晶表示装置は、駆動回路をさらに有し、前記駆動回路は、入力映像信号を受け取り、前記入力映像信号に基づいて表示信号を生成する回路であって、前記表示信号は、各画素に対応する表示信号電圧を含み、前記ある画素に供給される表示信号電圧は、前記ある画素の次に供給される表示信号電圧の関数として求められる。
In one embodiment, the liquid crystal display device further includes a drive circuit, the drive circuit receiving an input video signal and generating a display signal based on the input video signal, wherein the display signal is The display signal voltage supplied to the certain pixel including the display signal voltage corresponding to each pixel is obtained as a function of the display signal voltage supplied next to the certain pixel.
本発明の実施形態によると、従来のマルチ画素構造を有する液晶表示装置よりも、モバイル用途に適した液晶表示装置が提供される。勿論、本発明の実施形態による液晶表示装置は、モバイル用途に限られず、他の用途にも用いられ、高開口率あるいは低消費電力という利点をもたらす。
According to the embodiment of the present invention, a liquid crystal display device more suitable for mobile use is provided than a liquid crystal display device having a conventional multi-pixel structure. Of course, the liquid crystal display device according to the embodiment of the present invention is not limited to the mobile use but is also used for other uses, and provides the advantage of high aperture ratio or low power consumption.
以下、図面を参照して、本発明の実施形態による液晶表示装置およびその動作を説明するが、本発明の実施形態は例示する実施形態に限られない。また、各画素が2つの副画素を有する場合を主に説明するが、後に例示するように、各画素は3つ以上の副画素を有していてもよい。ただし、1つの画素が有する副画素の数が増えると開口率が低下するので、開口率の観点からは、各画素が有する副画素の数は2がよい。
Hereinafter, a liquid crystal display device and an operation thereof according to an embodiment of the present invention will be described with reference to the drawings, but the embodiment of the present invention is not limited to the illustrated embodiment. Moreover, although the case where each pixel has two subpixels is mainly described, each pixel may have three or more subpixels as will be exemplified later. However, since the aperture ratio decreases as the number of subpixels included in one pixel increases, the number of subpixels included in each pixel is preferably 2 from the viewpoint of the aperture ratio.
図1に、本発明の実施形態による液晶表示装置100の1の画素に対応する等価回路を示す。以下の図面において、等価な構成要素は共通の参照符号で示し、説明を省略することがある。
FIG. 1 shows an equivalent circuit corresponding to one pixel of the liquid crystal display device 100 according to the embodiment of the present invention. In the following drawings, equivalent components are denoted by common reference numerals, and description thereof may be omitted.
液晶表示装置100は、行および列を有するマトリクス状に配列された複数の画素と、複数のTFTと、複数のゲートバスラインと、複数のソースバスラインとを有する。複数の画素のそれぞれは、第1副画素電極を有する第1副画素と、第2副画素電極を有する第2副画素とを有している。
The liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having rows and columns, a plurality of TFTs, a plurality of gate bus lines, and a plurality of source bus lines. Each of the plurality of pixels includes a first subpixel having a first subpixel electrode and a second subpixel having a second subpixel electrode.
ここで、n行m列の画素をPix(n、m)と表記することにする。画素Pix(n、m)は、第1副画素pix(n)Aと、第2副画素pix(n)Bとを有する。等価回路においては、第1副画素pix(n)Aは、第1液晶容量CLC(n)Aで表され、第2副画素pix(n)Bは第2液晶容量CLC(n)Bで表される。第1液晶容量CLC(n)Aが有する一対の電極の内の一方が第1副画素電極であり、第2液晶容量CLC(n)Bが有する一対の電極の内の一方が第2副画素電極である。
Here, the pixel of n rows and m columns is expressed as Pix (n, m). The pixel Pix (n, m) includes a first subpixel pix (n) A and a second subpixel pix (n) B. In the equivalent circuit, the first subpixel pix (n) A is represented by a first liquid crystal capacitor CLC (n) A, and the second subpixel pix (n) B is represented by a second liquid crystal capacitor CLC (n) B. Is done. One of the pair of electrodes of the first liquid crystal capacitor CLC (n) A is the first subpixel electrode, and one of the pair of electrodes of the second liquid crystal capacitor CLC (n) B is the second subpixel. Electrode.
第1液晶容量CLC(n)Aの第1副画素電極は、TFT(n)Aのドレイン電極に接続されており、第2液晶容量CLC(n)Bの第2副画素電極は、TFT(n)Bのドレイン電極に接続されている。第1液晶容量CLC(n)Aおよび第2液晶容量CLC(n)Bが有する他方の電極は、これらに共通の対向電極である。すなわち、第1液晶容量CLC(n)Aは、第1副画素電極と、液晶層と、対向電極とで構成されており、第1液晶容量CLC(n)Aは、第1副画素電極と、液晶層と、対向電極とで構成されている。
The first subpixel electrode of the first liquid crystal capacitor CLC (n) A is connected to the drain electrode of the TFT (n) A, and the second subpixel electrode of the second liquid crystal capacitor CLC (n) B is connected to the TFT ( n) Connected to the B drain electrode. The other electrode of the first liquid crystal capacitor CLC (n) A and the second liquid crystal capacitor CLC (n) B is a common counter electrode. That is, the first liquid crystal capacitor CLC (n) A includes a first subpixel electrode, a liquid crystal layer, and a counter electrode. The first liquid crystal capacitor CLC (n) A includes the first subpixel electrode. And a liquid crystal layer and a counter electrode.
第1副画素pix(n)Aの第1副画素には、TFT(n)Aを介してソースバスラインSL(m)から表示信号電圧が供給され、第2副画素pix(n)Bの第2副画素には、TFT(n)Bを介してソースバスラインSL(m)から表示信号電圧が供給される。なお、ソースバスラインから画素に供給される表示信号電圧は、対向電極comの電圧(Vcom)を基準に表すと、「液晶層に印加される電圧」となる。
A display signal voltage is supplied to the first subpixel of the first subpixel pix (n) A from the source bus line SL (m) via the TFT (n) A, and the second subpixel pix (n) B A display signal voltage is supplied to the second subpixel from the source bus line SL (m) via the TFT (n) B. Note that the display signal voltage supplied to the pixel from the source bus line is “voltage applied to the liquid crystal layer” when the voltage (Vcom) of the counter electrode com is used as a reference.
TFT(n)AおよびTFT(n)Bのゲートは、ゲートバスラインGL(n)に接続されており、ゲートバスラインGL(n)から供給される走査信号電圧に応じて、オン・オフされる。2つのTFT(n)AおよびTFT(n)Bが、共通のソースバスラインSL(m)および共通のゲートバスラインGL(n)に接続されている例を示したが、これに限られず、所望の表示信号電圧および所望の走査信号電圧を供給できれば、共通のバスラインを設ける必要はない。すなわち、同じ走査信号電圧または同じ表示信号電圧を供給できれば、複数のゲートバスラインまたは複数のソースバスラインを設けてもよい。もちろん、バスラインの共通化によって、開口率の向上という利点を得ることができる。また、ここでは、2つのTFT(n)AおよびTFT(n)Bは、共通のソースバスラインSL(m)に並列に接続されている例を示したが、図25を参照して、後述するように、TFT(n)AおよびTFT(n)Bのいずれか一方が他方を介して共通のソースバスラインに接続されてもよい。すなわち、TFT(n)AおよびTFT(n)Bが一本のソースバスラインSL(m)に対して直列に接続されてもよい。
The gates of TFT (n) A and TFT (n) B are connected to the gate bus line GL (n), and are turned on / off according to the scanning signal voltage supplied from the gate bus line GL (n). The Although an example in which two TFT (n) A and TFT (n) B are connected to a common source bus line SL (m) and a common gate bus line GL (n) is shown, the present invention is not limited to this. As long as a desired display signal voltage and a desired scanning signal voltage can be supplied, there is no need to provide a common bus line. That is, a plurality of gate bus lines or a plurality of source bus lines may be provided as long as the same scanning signal voltage or the same display signal voltage can be supplied. Of course, the advantage of improving the aperture ratio can be obtained by sharing the bus line. Here, an example is shown in which two TFT (n) A and TFT (n) B are connected in parallel to a common source bus line SL (m), which will be described later with reference to FIG. As described above, either one of the TFT (n) A and the TFT (n) B may be connected to a common source bus line through the other. That is, TFT (n) A and TFT (n) B may be connected in series to one source bus line SL (m).
第1副画素pix(n)Aおよび第2副画素pix(n)Bを有する画素Pix(n、m)の上記の構成は、例えば、特許文献1に記載されており、また、種々の改変が可能である。
The above configuration of the pixel Pix (n, m) having the first subpixel pix (n) A and the second subpixel pix (n) B is described in, for example, Patent Document 1, and various modifications are made. Is possible.
液晶表示装置100は、第1転移容量Ctr(n)を有する点において、従来のマルチ画素構造を有する液晶表示装置(例えば、特許文献1)と異なっている。第1転移容量Ctr(n)は、誘電体層と誘電体層を介して互いに対向する第1電極および第2電極を有する。第1転移容量Ctr(n)の誘電体層は、TFT基板に形成される種々の絶縁層を用いて形成することができる。また、第1転移容量Ctr(n)の第1電極および第2電極は、TFT基板に形成される種々の電極やバスラインと同じ導電層を用いて形成することができる。また、TFTとしては、公知のTFTを広く用いることができるが、液晶容量および転移容量を短時間で充電できる点から、酸化物半導体層を有するTFTを用いることが好ましい。
The liquid crystal display device 100 is different from a conventional liquid crystal display device having a multi-pixel structure (for example, Patent Document 1) in that it has a first transition capacitance Ctr (n). The first transition capacitor Ctr (n) has a first electrode and a second electrode that face each other with the dielectric layer and the dielectric layer interposed therebetween. The dielectric layer of the first transition capacitor Ctr (n) can be formed using various insulating layers formed on the TFT substrate. Further, the first electrode and the second electrode of the first transition capacitance Ctr (n) can be formed using the same conductive layer as various electrodes and bus lines formed on the TFT substrate. As the TFT, a well-known TFT can be widely used. However, a TFT having an oxide semiconductor layer is preferably used because the liquid crystal capacitance and the transition capacitance can be charged in a short time.
酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体(以下、「IGZO系半導体」と略する。)を含む。ここで、IGZO系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。IGZO系半導体は、アモルファスでもよいし、結晶質でもよい。結晶質IGZO系半導体としては、c軸が層面に概ね垂直に配向した結晶質IGZO系半導体が好ましい。このようなIGZO系半導体の結晶構造は、例えば、特開2012-134475号公報に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。
The oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (hereinafter abbreviated as “IGZO-based semiconductor”). Here, the IGZO-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is not particularly limited. In: Ga: Zn = 2: 2: 1, In: Ga: Zn = 1: 1: 1, In: Ga: Zn = 1: 1: 2, and the like. The IGZO semiconductor may be amorphous or crystalline. As the crystalline IGZO-based semiconductor, a crystalline IGZO-based semiconductor having a c-axis oriented substantially perpendicular to the layer surface is preferable. Such a crystal structure of an IGZO-based semiconductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-134475. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
ある画素(例えばPix(n、m))の第1転移容量(例えばCtr(n))の第1電極は、その画素(例えばPix(n、m))の第2副画素電極に接続されており、その画素(例えばPix(n、m))の第1転移容量(例えばCtr(n))の第2電極は、その画素(例えばPix(n、m))の次に表示信号電圧が供給される電極に接続されている。以下で例示する全ての実施形態の液晶表示装置がこの接続関係を備えている。
A first electrode of a first transition capacitor (eg, Ctr (n)) of a pixel (eg, Pix (n, m)) is connected to a second subpixel electrode of the pixel (eg, Pix (n, m)). The second electrode of the first transition capacitor (eg, Ctr (n)) of the pixel (eg, Pix (n, m)) is supplied with the display signal voltage next to the pixel (eg, Pix (n, m)). Connected to the electrode. All the liquid crystal display devices of the embodiments exemplified below have this connection relationship.
次に表示信号電圧が供給される電極は、例えば、図1に例示する液晶表示装置100のように、次の行の画素(例えばPix(n+1、m))の第1副画素電極(第1副画素pix(n+1)Aに含まれる)である。すなわち、ある画素(例えばPix(n、m))の第1転移容量(例えばCtr(n))の第2電極は、その画素(例えばPix(n、m))に列方向に隣接する画素(例えばPix(n+1、m))の第1副画素電極に接続されている(下記の液晶表示装置100、100A、100B、100Cおよび100D、100A1、100A2参照)。
Next, the electrode to which the display signal voltage is supplied is, for example, the first subpixel electrode (first pixel) of the pixel (for example, Pix (n + 1, m)) in the next row as in the liquid crystal display device 100 illustrated in FIG. Sub-pixel pix (n + 1) A). That is, the second electrode of the first transition capacitor (for example, Ctr (n)) of a certain pixel (for example, Pix (n, m)) is adjacent to the pixel (for example, Pix (n, m)) in the column direction (for example, Pix (n, m)). For example, Pix (n + 1, m)) is connected to the first subpixel electrode (refer to the following liquid crystal display devices 100, 100A, 100B, 100C and 100D, 100A1, 100A2).
また、後に例示するように、駆動方法によっては、次に表示信号電圧が供給される電極は、ある画素(例えばPix(n、m))の列方向に2つ離れた画素(Pix(n+2、m))の第1副画素電極であってもよい。すなわち、ある画素(例えばPix(n、m))の第1転移容量(例えばCtr(n))の第2電極は、その画素(例えばPix(n、m))の列方向に2つ離れた画素(Pix(n+2、m))の第1副画素電極に接続されてもよい(下記の液晶表示装置100E、100E1および100E2参照)。
Further, as will be exemplified later, depending on the driving method, the electrode to which the display signal voltage is supplied next is a pixel (Pix (n + 2,..., Pix (n + 2,. The first subpixel electrode of m)) may be used. That is, the second electrode of the first transition capacitor (eg, Ctr (n)) of a certain pixel (eg, Pix (n, m)) is separated by two in the column direction of the pixel (eg, Pix (n, m)). It may be connected to the first subpixel electrode of the pixel (Pix (n + 2, m)) (see the following liquid crystal display devices 100E, 100E1, and 100E2).
液晶表示装置は、一般に、画素の液晶層に印加される電圧(以下、簡単のために、「画素に印加される電圧」ということがある。)の極性(電界の向き)が一定の時間ごとに反転するように駆動される(いわゆる交流駆動)。画素に印加される電圧の極性は、典型的には、1フレーム期間(垂直走査期間:あるゲートバスラインが選択されてから、再びそのゲートバスラインが選択されるまでの期間で、「1V」と表すことがある。)ごとに反転される(フレーム反転駆動)。なお、マトリクス状に配列された画素の第1行が選択されてから、次に第1行が選択されるまでの期間を、特に「1フレーム」と言うことがある。1フレームは、1枚の画像を形成するための表示信号電圧を全ての画素に書き込むための期間(厳密には垂直ブランキングを含む)で、1フレーム期間は1フレームと同じ長さの期間を意味するのに対して、1フレームは期間の開始点も決まっている。
In a liquid crystal display device, the polarity (direction of electric field) of a voltage applied to a liquid crystal layer of a pixel (hereinafter, sometimes referred to as “voltage applied to a pixel” for the sake of simplicity) is constant every time. (So-called AC drive). The polarity of the voltage applied to the pixel is typically “1 V” in one frame period (vertical scanning period: a period from when a gate bus line is selected to when the gate bus line is selected again. Is inverted every time (frame inversion drive). Note that the period from the selection of the first row of pixels arranged in a matrix to the selection of the first row is sometimes referred to as “one frame”. One frame is a period for writing a display signal voltage for forming one image to all pixels (including strictly vertical blanking), and one frame period has the same length as one frame. In contrast, one frame has a fixed starting point.
また、1フレーム期間において、隣接する画素の液晶層に印加される電圧の極性が異なるように、駆動される。例えば、列方向に隣接する画素に印加される電圧の極性が異なるような駆動を行反転駆動(ゲートバスライン反転駆動)、行方向に隣接する画素に印加される電圧の極性が異なるような駆動を列反転駆動(ソースバスライン反転駆動)、列方向および行方向に隣接する画素に印加される電圧の極性が異なるような駆動(ドット反転駆動)が知られている。
Further, the driving is performed so that the polarity of the voltage applied to the liquid crystal layer of the adjacent pixel is different in one frame period. For example, row inversion drive (gate bus line inversion drive) drives with different voltages applied to pixels adjacent in the column direction, and drives with different voltages applied to pixels adjacent in the row direction. Column inversion driving (source bus line inversion driving) and driving in which the polarities of voltages applied to adjacent pixels in the column and row directions are different (dot inversion driving) are known.
本発明の実施形態による液晶表示装置は、上述したように、画素Pix(n、m)の第1転移容量Ctr(n)の第1電極は、画素Pix(n、m)の第2副画素電極に接続されており、Pix(n、m)の第1転移容量Ctr(n)の第2電極は、例えば画素Pix(n、m)の次に表示信号電圧が供給される電極に接続されている。従って、画素Pix(n、m)に供給される表示信号電圧と、その次に供給される表示信号電圧との極性の関係によって、画素Pix(n、m)の第2副画素の液晶層に印加される電圧Vpix(n)Bは、第1副画素の液晶層に印加される電圧Vpix(n)Aよりも小さくなることもあれば、大きくなることもある。従って、本発明の実施形態による液晶表示装置は、1つの画素内に明副画素と暗副画素とを形成することができる。なお、各副画素の液晶層に印加される電圧を簡単のために、「副画素に印加される電圧」ということがある。
As described above, in the liquid crystal display device according to the embodiment of the present invention, the first electrode of the first transition capacitor Ctr (n) of the pixel Pix (n, m) is the second subpixel of the pixel Pix (n, m). The second electrode of the first transition capacitor Ctr (n) of Pix (n, m) is connected to the electrode to which the display signal voltage is supplied next to the pixel Pix (n, m), for example. ing. Therefore, depending on the polarity relationship between the display signal voltage supplied to the pixel Pix (n, m) and the display signal voltage supplied next, the liquid crystal layer of the second subpixel of the pixel Pix (n, m) The applied voltage Vpix (n) B may be smaller or larger than the voltage Vpix (n) A applied to the liquid crystal layer of the first subpixel. Therefore, the liquid crystal display device according to the embodiment of the present invention can form a bright sub-pixel and a dark sub-pixel in one pixel. Note that the voltage applied to the liquid crystal layer of each subpixel may be referred to as “voltage applied to the subpixel” for the sake of simplicity.
図2および図3を参照して、本発明の実施形態による液晶表示装置100Aの構成およびその動作を説明する。図2は、本発明の実施形態による液晶表示装置100Aの等価回路を示す図であり、図3は、液晶表示装置100Aにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。
2 and 3, the configuration and operation of the liquid crystal display device 100A according to the embodiment of the present invention will be described. FIG. 2 is a diagram showing an equivalent circuit of the liquid crystal display device 100A according to the embodiment of the present invention. FIG. 3 schematically shows the scanning signal voltage, the display signal voltage, and the voltage applied to the subpixel in the liquid crystal display device 100A. FIG.
図2に示すように、液晶表示装置100Aの画素Pix(n、m)は、第1副画素pix(n)A(=第1液晶容量CLC(n)A)と第2副画素pix(n)B(第2液晶容量CLC(n)B)とを有している。第1副画素pix(n)Aの第1副画素電極および第2副画素pix(n)Bの第2副画素電極は、それぞれ対応するTFT(図1のTFT(n)AおよびTFT(n)Bに対応する)を介してソースバスラインSL(m)に接続されている。
As shown in FIG. 2, the pixel Pix (n, m) of the liquid crystal display device 100A includes a first subpixel pix (n) A (= first liquid crystal capacitance CLC (n) A) and a second subpixel pix (n ) B (second liquid crystal capacitance CLC (n) B). The first subpixel electrode of the first subpixel pix (n) A and the second subpixel electrode of the second subpixel pix (n) B are respectively connected to the corresponding TFTs (TFT (n) A and TFT (n ) Corresponding to B) to the source bus line SL (m).
画素Pix(n、m)の第1転移容量Ctr(n)の第1電極は、画素Pix(n、m)の第2副画素電極に接続されており、画素Pix(n、m)の第1転移容量Ctr(n)の第2電極は、画素Pix(n、m)に列方向に隣接する画素Pix(n+1、m)の第1副画素電極に接続されている。画素Pix(n、m)の第1副画素電極および第2副画素電極と、画素Pix(n、m)に列方向に隣接する画素Pix(n+1、m)の第1副画素電極および第2副画素電極とは、同じソースバスラインに接続されている。液晶表示装置100Aの等価回路は、図1に示した液晶表示装置100の等価回路と同じである。
The first electrode of the first transition capacitor Ctr (n) of the pixel Pix (n, m) is connected to the second subpixel electrode of the pixel Pix (n, m), and the first electrode of the pixel Pix (n, m). The second electrode of the one transfer capacitor Ctr (n) is connected to the first subpixel electrode of the pixel Pix (n + 1, m) adjacent to the pixel Pix (n, m) in the column direction. The first subpixel electrode and the second subpixel electrode of the pixel Pix (n, m), and the first subpixel electrode and the second subpixel electrode of the pixel Pix (n + 1, m) adjacent to the pixel Pix (n, m) in the column direction The sub-pixel electrode is connected to the same source bus line. The equivalent circuit of the liquid crystal display device 100A is the same as the equivalent circuit of the liquid crystal display device 100 shown in FIG.
液晶表示装置100Aは、ドット反転駆動される。図3を参照して、液晶表示装置100Aにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を説明する。VGL(n)およびVGL(n+1)はそれぞれゲートバスラインGL(n)およびGL(n+1)から供給される走査信号電圧を示しており、VSL(m)はソースバスラインSL(m)から供給される表示信号電圧を示している。Vpix(n)AおよびVpix(n)Bと、Vpix(n+1)Aとは、それぞれ、画素Pix(n、m)の第1副画素pix(n)および第2副画素pix(n)Bに印加される電圧と、画素Pix(n+1、m)の第1副画素pix(n+1)Aに印加される電圧とを示している。表示信号電圧および副画素に印加される電圧は、それぞれ対向電極の電圧(共通電圧Vcom)を基準にあらわしている。したがって、各副画素に印加される電圧は、共通電圧Vcomに対する、各副画素が有する副画素電極の電圧と同義である。
The liquid crystal display device 100A is driven by dot inversion. With reference to FIG. 3, the scanning signal voltage, the display signal voltage, and the voltage applied to the sub-pixel in the liquid crystal display device 100A will be described. VGL (n) and VGL (n + 1) indicate scanning signal voltages supplied from the gate bus lines GL (n) and GL (n + 1), respectively, and VSL (m) is supplied from the source bus line SL (m). Display signal voltage. Vpix (n) A and Vpix (n) B and Vpix (n + 1) A are respectively referred to as the first subpixel pix (n) and the second subpixel pix (n) B of the pixel Pix (n, m). The voltage applied and the voltage applied to the first sub-pixel pix (n + 1) A of the pixel Pix (n + 1, m) are shown. The display signal voltage and the voltage applied to the subpixel are based on the voltage of the counter electrode (common voltage Vcom). Therefore, the voltage applied to each subpixel is synonymous with the voltage of the subpixel electrode of each subpixel with respect to the common voltage Vcom.
図3には、液晶表示装置100Aの2つの連続するフレームにおける各電圧を示している。表示信号電圧VSL(m)の極性(Vcomを0Vとする)は、2つの連続するフレームにおいて互いに逆になっている(フレーム反転駆動)。また、表示信号電圧VSL(m)の極性は、1水平走査期間(あるゲートバスラインが選択されてから、次のゲートバスラインが選択されるまでの期間で、「1H」と表すことがある。)毎に、ここでは、隣接する画素行(n行とn+1行)とで逆になるように時間変化している。すなわち、ある画素に供給される表示信号電圧と、その画素の次に(すなわち、その画素が選択された水平走査期間の次の水平走査期間に)供給される表示信号電圧とは、極性が逆である。なお、図3では、図示を省略するが、表示信号電圧VSL(m+1)の極性は、表示信号電圧VSL(m)と極性が逆になっている。すなわち、液晶表示装置100Aは、ドット反転駆動される。
FIG. 3 shows each voltage in two consecutive frames of the liquid crystal display device 100A. The polarities of the display signal voltage VSL (m) (Vcom is set to 0V) are opposite to each other in two consecutive frames (frame inversion driving). The polarity of the display signal voltage VSL (m) may be expressed as “1H” in one horizontal scanning period (a period from selection of a certain gate bus line to selection of the next gate bus line). )), The time changes so as to be reversed between adjacent pixel rows (n and n + 1 rows). That is, the polarity of the display signal voltage supplied to a certain pixel and the display signal voltage supplied next to that pixel (that is, in the horizontal scanning period next to the horizontal scanning period in which the pixel is selected) are reversed. It is. Although not shown in FIG. 3, the polarity of the display signal voltage VSL (m + 1) is opposite to that of the display signal voltage VSL (m). That is, the liquid crystal display device 100A is driven by dot inversion.
画素Pix(n、m)の第1および第2副画素には、走査信号電圧VGL(n)がハイの期間(TFTがONの期間)に、表示信号電圧VSL(m)が印加され、第1副画素の電圧Vpix(n)Aおよび第2副画素の電圧Vpix(n)Bが上昇している(上記期間の表示信号電圧VSL(m)が正だから)。
The display signal voltage VSL (m) is applied to the first and second subpixels of the pixel Pix (n, m) while the scanning signal voltage VGL (n) is high (the TFT is on). The voltage Vpix (n) A of one subpixel and the voltage Vpix (n) B of the second subpixel are increased (because the display signal voltage VSL (m) in the above period is positive).
走査信号電圧VGL(n)がハイからローに切り替ると、TFTがオフ状態となり、画素Pix(n、m)の第1副画素および第2副画素は、ソースバスラインSL(m)から電気的に絶縁される。従って、画素Pix(n、m)の第1副画素の電圧Vpix(n)Aは維持される。
When the scanning signal voltage VGL (n) switches from high to low, the TFT is turned off, and the first subpixel and the second subpixel of the pixel Pix (n, m) are electrically connected from the source bus line SL (m). Insulated. Accordingly, the voltage Vpix (n) A of the first subpixel of the pixel Pix (n, m) is maintained.
一方、画素Pix(n、m)の第2副画素は、第1転移容量Ctr(n)を介して、画素Pix(n+1、m)の第1副画素電極に接続されているので、(走査信号電圧VGL(n)がハイからローに切り替った後)走査信号電圧VGL(n+1)がハイになることによって、画素Pix(n+1、m)の第1副画素電極の電圧の変化の影響を受ける。ここで、画素Pix(n+1、m)に供給される表示信号電圧VSL(m)のn+1行目に対応する電圧は負なので、Vpix(n+1)Aの電圧は図3に示すように負になる。この電圧が、第1転移容量Ctr(n)を介して、画素Pix(n、m)の第2副画素の電圧Vpix(n)Bに影響し、Vpix(n)Bが低下する。
On the other hand, the second subpixel of the pixel Pix (n, m) is connected to the first subpixel electrode of the pixel Pix (n + 1, m) via the first transfer capacitor Ctr (n) (scanning). After the signal voltage VGL (n) is switched from high to low), the scanning signal voltage VGL (n + 1) becomes high, thereby affecting the influence of the voltage change of the first subpixel electrode of the pixel Pix (n + 1, m). receive. Here, since the voltage corresponding to the (n + 1) th row of the display signal voltage VSL (m) supplied to the pixel Pix (n + 1, m) is negative, the voltage of Vpix (n + 1) A becomes negative as shown in FIG. . This voltage affects the voltage Vpix (n) B of the second subpixel of the pixel Pix (n, m) via the first transition capacitor Ctr (n), and Vpix (n) B decreases.
その結果、画素Pix(n、m)の第1副画素の電圧Vpix(n)Aと第2副画素の電圧Vpix(n)Bとの間に、ΔVの電圧差が生じる(ΔV=Vpix(n)A-Vpix(n)B>0)。
As a result, a voltage difference of ΔV is generated between the voltage Vpix (n) A of the first subpixel of the pixel Pix (n, m) and the voltage Vpix (n) B of the second subpixel (ΔV = Vpix ( n) A-Vpix (n) B> 0).
ソースバスラインから供給される表示信号電圧をVSL(m)とし、第2副画素の液晶容量のキャパシタンスをCLCB、第1転移容量のキャパシタンスをCtr、その他の容量(例えば、オプショナルに設けられる補助容量CSやゲート・ドレイン間容量CGD)および寄生容量の合計のキャパシタンスをCpとすると、Vpix(n)AおよびVpix(n)Bはそれぞれ下記の式で表される。なお、下記の式は、静止画が表示されている場合に成立する。
The display signal voltage supplied from the source bus line is VSL (m), the capacitance of the liquid crystal capacitance of the second subpixel is CLCB, the capacitance of the first transition capacitance is Ctr, and other capacitance (for example, an auxiliary capacitance provided optionally) When the total capacitance of CS and gate-drain capacitance CGD) and parasitic capacitance is Cp, Vpix (n) A and Vpix (n) B are respectively expressed by the following equations. The following formula is established when a still image is displayed.
Vpix(n)A=VSL(m) ・・・(1)
Vpix(n)B=VSL(m)+α・2・Vpix(n+1)A・・・(2)
α=Ctr/(CLCB+Ctr+Cp) ・・・(3) Vpix (n) A = VSL (m) (1)
Vpix (n) B = VSL (m) + α · 2 · Vpix (n + 1) A (2)
α = Ctr / (CLCB + Ctr + Cp) (3)
Vpix(n)B=VSL(m)+α・2・Vpix(n+1)A・・・(2)
α=Ctr/(CLCB+Ctr+Cp) ・・・(3) Vpix (n) A = VSL (m) (1)
Vpix (n) B = VSL (m) + α · 2 · Vpix (n + 1) A (2)
α = Ctr / (CLCB + Ctr + Cp) (3)
ここでは、Vpix(n)Aが正で、かつ、Vpix(n+1)Aが負なので、|Vpix(n)A|>|Vpix(n)B|となり、第2副画素pix(n+1)Bの輝度は、第1副画素pix(n)Aの輝度よりも低くなる。すなわち、画素Pix(n、m)で表示すべき輝度は、表示すべき輝度よりも高い輝度の第1副画素pix(n)Aと、表示すべき輝度よりも低い輝度の第2副画素pix(n)Bとで表現される。その結果、従来のマルチ画素構造を有する液晶表示装置と同様に、γ特性の視角依存性が低減される。
Here, since Vpix (n) A is positive and Vpix (n + 1) A is negative, | Vpix (n) A |> | Vpix (n) B |, and the second subpixel pix (n + 1) B The luminance is lower than the luminance of the first subpixel pix (n) A. That is, the luminance to be displayed by the pixel Pix (n, m) is the first subpixel pix (n) A having a higher luminance than the luminance to be displayed and the second subpixel pix having a lower luminance than the luminance to be displayed. (N) Expressed as B. As a result, the viewing angle dependency of the γ characteristic is reduced as in the case of a liquid crystal display device having a conventional multi-pixel structure.
なお、本発明の実施形態による液晶表示装置においては、2つの副画素間の輝度の差(2つの副画素に印加される電圧の大きさ(絶対値)の差は、その画素の次に供給される表示信号電圧の大きさ(絶対値)および極性(符号)に依存する。従って、本発明の実施形態による液晶表示装置が有する駆動回路(不図示)は、入力映像信号を受け取り、入力映像信号に基づいて表示信号を生成する際に、ある画素に供給される表示信号電圧を、ある画素の次に供給される表示信号電圧の関数として求めることができる。もちろん、駆動回路は、入力映像信号の階調データ(現水平走査期間および次の水平走査期間の階調データ)に応じて、予め設定された表示信号電圧のデータを格納したルックアップテーブルを備えてもよいし、入力映像信号の階調データに基づいて演算によって表示信号電圧を求めてもよい。具体的例は、図26を参照して後述する。なお、以下で例示する液晶表示装置を含む、本発明の実施形態による液晶表示装置の駆動回路は全てこの機能を有する。
In the liquid crystal display device according to the embodiment of the present invention, the difference in luminance between two subpixels (the difference in the magnitude (absolute value) of the voltage applied to the two subpixels is supplied next to the pixel. Accordingly, the driving circuit (not shown) included in the liquid crystal display device according to the embodiment of the present invention receives the input video signal and receives the input video signal. When the display signal is generated based on the signal, the display signal voltage supplied to a certain pixel can be obtained as a function of the display signal voltage supplied next to the certain pixel. According to the signal gradation data (gradation data of the current horizontal scanning period and the next horizontal scanning period), a lookup table storing data of a preset display signal voltage may be provided, or the input video signal The display signal voltage may be obtained by calculation based on the gradation data, a specific example will be described later with reference to Fig. 26. Note that the liquid crystal according to the embodiment of the present invention includes the liquid crystal display device exemplified below. All the driving circuits of the display device have this function.
次に、図4および図5を参照して、本発明の他の実施形態による液晶表示装置100Bの構成およびその動作を説明する。図4は、本発明の他の実施形態による液晶表示装置100Bの等価回路を示す図であり、図5は、液晶表示装置100Bにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。液晶表示装置100Bは、いわゆる疑似ドット反転駆動され、液晶表示装置100Aと同様に、各フレーム期間においては、列方向および行方向に隣接する画素に印加される電圧の極性が異なる。
Next, the configuration and operation of a liquid crystal display device 100B according to another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a diagram showing an equivalent circuit of a liquid crystal display device 100B according to another embodiment of the present invention. FIG. 5 shows scanning signal voltages, display signal voltages, and voltages applied to sub-pixels in the liquid crystal display device 100B. It is a figure shown typically. The liquid crystal display device 100B is so-called pseudo-dot inversion driven, and the polarity of the voltage applied to the adjacent pixels in the column direction and the row direction is different in each frame period as in the liquid crystal display device 100A.
液晶表示装置100Bのある画素列のトランジスタは、画素行ごとに、その画素列の両側に配置された2本のソースバスラインの異なる一方に交互に接続されている。例えば、図4において、m列の画素列に着目する。m列の画素列の両側には、ソースバスラインSL(m)とソースバスラインSL(m+1)とが配置されている。画素Pix(n、m)のTFTはソースバスラインSL(m)に接続されており、次の行の画素Pix(n+1、m)のTFTは、ソースバスラインSL(m+1)に接続されている。液晶表示装置100Bにおける、このTFT(すなわち副画素電極)とソースバスラインとの接続関係が、液晶表示装置100Aにおけるそれと異なっている。
Transistors in a pixel column of the liquid crystal display device 100B are alternately connected to different ones of two source bus lines arranged on both sides of the pixel column for each pixel row. For example, in FIG. 4, attention is focused on m pixel columns. A source bus line SL (m) and a source bus line SL (m + 1) are arranged on both sides of the m pixel columns. The TFT of the pixel Pix (n, m) is connected to the source bus line SL (m), and the TFT of the pixel Pix (n + 1, m) in the next row is connected to the source bus line SL (m + 1). . In the liquid crystal display device 100B, the connection relationship between the TFT (that is, the sub-pixel electrode) and the source bus line is different from that in the liquid crystal display device 100A.
図5に示すように、液晶表示装置100Bにおいては、隣接するソースバスライン、例えばソースバスラインSL(m)とソースバスラインSL(m+1)とには、1フレーム期間にわたって互いに逆の極性の表示信号電圧(VSL(m)、VSL(m+1))が供給されており、各表示信号電圧の極性は1フレーム期間の間は変化しない。これは、図3に示した液晶表示装置100Aにおける表示信号電圧VSL(m)の極性が1水平走査期間毎に逆になっていたのと異なる。すなわち、液晶表示装置100Bにおいては、各画素列のTFTを2本のソースバスラインに対して、各行ごとに交互に(ジグザグに)、異なるソースバスラインに接続することによって、1フレーム期間内における表示信号電圧の極性の反転を不要にできる。その結果、液晶表示装置100Bは、液晶表示装置100Aよりも低消費電力で駆動できるという利点を有する。
As shown in FIG. 5, in the liquid crystal display device 100B, adjacent source bus lines, for example, the source bus line SL (m) and the source bus line SL (m + 1) are displayed with opposite polarities over one frame period. Signal voltages (VSL (m), VSL (m + 1)) are supplied, and the polarity of each display signal voltage does not change during one frame period. This is different from the fact that the polarity of the display signal voltage VSL (m) in the liquid crystal display device 100A shown in FIG. 3 is reversed every horizontal scanning period. That is, in the liquid crystal display device 100B, the TFTs of each pixel column are connected to different source bus lines alternately (zigzag) for each row with respect to two source bus lines within one frame period. Inversion of the polarity of the display signal voltage can be eliminated. As a result, the liquid crystal display device 100B has an advantage that it can be driven with lower power consumption than the liquid crystal display device 100A.
なお、液晶表示装置100Bにおいて、第1副画素pix(n)Aに印加される電圧Vpix(n)Aと第2副画素pix(n)Bに印加されるVpix(n)Bとの間に電圧差ΔVが生じるメカニズムは、液晶表示装置100Aと同じである。すなわち、Vpix(n)A(=VSL(m))が正で、かつ、Vpix(n+1)A(=VSL(m+1))が負なので、|Vpix(n)A|>|Vpix(n)B|となり、第2副画素pix(n+1)Bの輝度は、第1副画素pix(n)Aの輝度よりも低くなる。
In the liquid crystal display device 100B, between the voltage Vpix (n) A applied to the first subpixel pix (n) A and Vpix (n) B applied to the second subpixel pix (n) B. The mechanism for generating the voltage difference ΔV is the same as that of the liquid crystal display device 100A. That is, since Vpix (n) A (= VSL (m)) is positive and Vpix (n + 1) A (= VSL (m + 1)) is negative, | Vpix (n) A |> | Vpix (n) B The luminance of the second subpixel pix (n + 1) B is lower than the luminance of the first subpixel pix (n) A.
次に、図6~図8を参照して、本発明のさらに他の実施形態による液晶表示装置100Cの構造と動作を説明する。図6は、本発明のさらに他の実施形態による液晶表示装置100Cの等価回路を示す図であり、図7は、液晶表示装置100Cにおけるソースバスラインと画素との接続関係を模式的に示す図である。図8は、液晶表示装置100Cにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。
Next, the structure and operation of a liquid crystal display device 100C according to still another embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a diagram showing an equivalent circuit of a liquid crystal display device 100C according to still another embodiment of the present invention, and FIG. 7 is a diagram schematically showing a connection relationship between source bus lines and pixels in the liquid crystal display device 100C. It is. FIG. 8 is a diagram schematically illustrating a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100C.
図6に示す液晶表示装置100Cの等価回路は、図2に示した液晶表示装置100Aの等価回路と実質的に同じである。ただし、液晶表示装置100Aはドット反転駆動されるのに対し、液晶表示装置100Cは、列反転駆動(ソースバスライン反転駆動)される点において異なっている。すなわち、図1の液晶表示装置100Aにおいて、画素Pix(n、m)の各副画素に「+」が付され、画素Pix(n+1、m)の各副画素に「-」が付されているのに対し、図6の液晶表示装置100Cにおいては、画素Pix(n、m)および画素Pix(n+1、m)のいずれの副画素にも「+」が付されている。すなわち、図7に示すように、ある画素列においては、1行からN行までの全ての画素に同じ極性の電圧が印加される。図6では、m列の全ての画素に正極性(+)の電圧が印加され、それに隣接するm+1列の全ての画素に負極性(-)の電圧が印加される。
The equivalent circuit of the liquid crystal display device 100C shown in FIG. 6 is substantially the same as the equivalent circuit of the liquid crystal display device 100A shown in FIG. However, the liquid crystal display device 100A is driven by dot inversion, whereas the liquid crystal display device 100C is different in that it is driven by column inversion (source bus line inversion driving). That is, in the liquid crystal display device 100A of FIG. 1, “+” is added to each subpixel of the pixel Pix (n, m), and “−” is added to each subpixel of the pixel Pix (n + 1, m). On the other hand, in the liquid crystal display device 100C of FIG. 6, “+” is added to both subpixels of the pixel Pix (n, m) and the pixel Pix (n + 1, m). That is, as shown in FIG. 7, in a certain pixel column, voltages having the same polarity are applied to all the pixels from the first row to the Nth row. In FIG. 6, a positive (+) voltage is applied to all the pixels in the m column, and a negative (−) voltage is applied to all the pixels in the m + 1 column adjacent thereto.
すなわち、液晶表示装置100Cにおいては、ある画素に供給される表示信号電圧と、その画素の次に供給される表示信号電圧とは、極性が同じである。従って、図8に示すように、例えば、画素Pix(1、m)の第2副画素pix(1)Bは、画素Pix(2、m)に印加されるVSL(m)の影響を受けて昇圧され、|Vpix(n)A|<|Vpix(n)B|となり、第2副画素pix(n+1)Bの輝度は、第1副画素pix(n)Aの輝度よりも高くなる。したがって、液晶表示装置100Aまたは100Bよりも、表示すべき階調に対する表示信号電圧の大きさを小さくすることができるので、消費電力を低減できるという利点がある。
That is, in the liquid crystal display device 100C, the display signal voltage supplied to a certain pixel and the display signal voltage supplied next to the pixel have the same polarity. Therefore, as shown in FIG. 8, for example, the second subpixel pix (1) B of the pixel Pix (1, m) is affected by VSL (m) applied to the pixel Pix (2, m). The voltage is boosted to | Vpix (n) A | <| Vpix (n) B |, and the luminance of the second subpixel pix (n + 1) B is higher than the luminance of the first subpixel pix (n) A. Therefore, compared with the liquid crystal display device 100A or 100B, since the magnitude of the display signal voltage with respect to the gradation to be displayed can be reduced, there is an advantage that power consumption can be reduced.
しかしながら、液晶表示装置100Cには、画素行によって、表示輝度にばらつきが生じるという問題がある。この問題を図7および図8を参照して説明する。
However, the liquid crystal display device 100C has a problem that display luminance varies depending on pixel rows. This problem will be described with reference to FIGS.
図7に示したように、任意の画素は、その画素とその画素(2つの副画素電極)が接続されているソースバスライン(例えばSL(m))との間に寄生容量Csd1を有し、その画素と、その画素の行方向に隣接する画素が接続されているソースバスライン(例えばSL(m+1))との間に寄生容量Csd2を有している。各画素は、これらの寄生容量Csdを介して、ソースバスラインの電圧変動の影響を受ける。液晶表示装置100Cにおいては、隣接するソースバスラインの電圧の極性は互いに逆であり、各ソースバスラインの電圧の極性はフレーム毎に反転する。
As shown in FIG. 7, an arbitrary pixel has a parasitic capacitance Csd1 between the pixel and a source bus line (for example, SL (m)) to which the pixel (two subpixel electrodes) is connected. A parasitic capacitance Csd2 is provided between the pixel and a source bus line (for example, SL (m + 1)) to which a pixel adjacent in the row direction of the pixel is connected. Each pixel is affected by the voltage variation of the source bus line via these parasitic capacitances Csd. In the liquid crystal display device 100C, the polarities of the voltages of the adjacent source bus lines are opposite to each other, and the polarities of the voltages of the source bus lines are inverted every frame.
液晶表示装置100Cにおいて、ある画素列の画素は、全て同じソースバスライン(例えばSL(m))に接続されている。このとき、図8に示すように、第1行の画素Pix(1、m)が有する第1副画素pix(1)Aおよび第2副画素pix(1)Bの電圧、Vpix(1)AおよびVpix(1)Bは、1フレーム期間の終わりに、ソースバスラインの電圧の極性反転の影響を受ける。このときの電圧の変動をΔV(Csd)とする。これに対して、1フレームの終わり近くで選択される第n行の画素Pix(n、m)が有する第1副画素pix(n)Aおよび第2副画素pix(n)Bの電圧、Vpix(n)AおよびVpix(n)Bは、1フレーム期間の最初に、ソースバスラインの電圧の極性反転の影響を受ける(ここでは、nはNに近い整数とする)。
In the liquid crystal display device 100C, the pixels in a certain pixel column are all connected to the same source bus line (for example, SL (m)). At this time, as shown in FIG. 8, the voltages of the first subpixel pix (1) A and the second subpixel pix (1) B included in the pixel Pix (1, m) in the first row, Vpix (1) A And Vpix (1) B are affected by the polarity inversion of the voltage of the source bus line at the end of one frame period. The voltage fluctuation at this time is assumed to be ΔV (Csd). On the other hand, the voltages of the first subpixel pix (n) A and the second subpixel pix (n) B included in the pixel Pix (n, m) of the nth row selected near the end of one frame, Vpix (N) A and Vpix (n) B are affected by the polarity inversion of the voltage of the source bus line at the beginning of one frame period (here, n is an integer close to N).
このように、第1行の画素Pix(1、m)と、第n行の画素Pix(n、m)とで、ソースバスラインの電圧の極性反転の影響(ΔV(Csd))を受けるタイミングが異なると、第1行の画素Pix(1、m)の1フレーム期間の実効値と、第n行の画素Pix(n、m)の1フレーム期間の実効値とに差が生じ、これは輝度の違いとして現れるので、表示品位が低下することになる。
As described above, the timing at which the pixel Pix (1, m) in the first row and the pixel Pix (n, m) in the n-th row are affected by the polarity inversion of the voltage of the source bus line (ΔV (Csd)). Are different from each other in the effective value of one frame period of the pixel Pix (1, m) in the first row and the effective value of one frame period of the pixel Pix (n, m) in the nth row. Since it appears as a difference in luminance, the display quality is lowered.
次に、図9および図10を参照して、本発明のさらに他の実施形態による液晶表示装置100Dの構造と動作を説明する。図9は、液晶表示装置100Dにおけるソースバスラインと画素との接続関係を模式的に示す図であり、図10は、液晶表示装置100Dにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。
Next, the structure and operation of a liquid crystal display device 100D according to another embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a diagram schematically showing a connection relationship between source bus lines and pixels in the liquid crystal display device 100D, and FIG. 10 is applied to the scanning signal voltage, the display signal voltage, and the sub-pixels in the liquid crystal display device 100D. It is a figure which shows a voltage typically.
図9に示すように、液晶表示装置100Dにおいて、ある列を構成する複数の画素の第1副画素電極および第2副画素電極は、連続するk行(kは2以上の整数)毎に異なるソースバスラインに接続されている。具体的には、ある画素列の画素は、k行毎に、互いに隣接する2つのソースバスラインの内の異なるソースバスラインSL(m)またはSL(m+1)に接続されている。液晶表示装置100Dは、そのソースバスラインと画素との接続関係以外は、液晶表示装置100Cと同じ構成を有している。
As shown in FIG. 9, in the liquid crystal display device 100 </ b> D, the first subpixel electrode and the second subpixel electrode of a plurality of pixels constituting a column are different for each successive k rows (k is an integer of 2 or more). Connected to the source bus line. Specifically, the pixels in a certain pixel column are connected to different source bus lines SL (m) or SL (m + 1) of two adjacent source bus lines for every k rows. The liquid crystal display device 100D has the same configuration as the liquid crystal display device 100C except for the connection relationship between the source bus lines and the pixels.
ここで、図10に示すように、ソースバスラインSL(m)に供給される表示信号電圧VSL(m)をk行の画素毎に極性を反転させる。すなわち、表示信号電圧VSL(m)を1H(水平走査期間)×k時間毎に反転させる。そうすると、表示信号電圧VSL(m)の極性が反転する毎に、上述した寄生容量による電圧の変動(ΔV(Csd))が生じる。この電圧の変動は、1行目の画素(第1副画素pix(1)Aおよび第2副画素pix(1)B)だけでなく、n行目の画素(第1副画素pix(n)Aおよび第2副画素pix(n)B)についても生じ、変動が生じる回数は、どの行についても同じである。したがって、液晶表示装置100Dにおいては、液晶表示装置100Cにおける表示輝度のばらつきの発生が抑制される。
Here, as shown in FIG. 10, the polarity of the display signal voltage VSL (m) supplied to the source bus line SL (m) is inverted for every k rows of pixels. That is, the display signal voltage VSL (m) is inverted every 1H (horizontal scanning period) × k hours. Then, every time the polarity of the display signal voltage VSL (m) is inverted, the voltage variation (ΔV (Csd)) due to the parasitic capacitance described above occurs. The fluctuation of the voltage is not only the pixel in the first row (first subpixel pix (1) A and second subpixel pix (1) B), but also the pixel in the nth row (first subpixel pix (n)). This also occurs for A and the second subpixel pix (n) B), and the number of fluctuations is the same for every row. Therefore, in the liquid crystal display device 100D, occurrence of variations in display luminance in the liquid crystal display device 100C is suppressed.
なお、図9において、各画素に、「+」または「-」を付して示したように、隣接する画素列には互いに逆極性の表示信号電圧を供給する。すわなち、ソースバスラインSL(m)に供給される表示信号電圧が正である1H×kの期間には、ソースバスラインSL(m+1)に供給される表示信号電圧は負で、逆に、ソースバスラインSL(m)に供給される表示信号電圧が負である1H×kの期間には、ソースバスラインSL(m+1)に供給される表示信号電圧は正である。
In FIG. 9, as shown by adding “+” or “−” to each pixel, display signal voltages having opposite polarities are supplied to adjacent pixel columns. In other words, in the 1H × k period in which the display signal voltage supplied to the source bus line SL (m) is positive, the display signal voltage supplied to the source bus line SL (m + 1) is negative and conversely In the 1H × k period in which the display signal voltage supplied to the source bus line SL (m) is negative, the display signal voltage supplied to the source bus line SL (m + 1) is positive.
kは2以上の整数であればよいが、kが小さいと、極性の反転周期が短くなるので、低消費電力化の効果が小さくなり、kが大きいと、表示輝度のばらつきを抑制する効果が小さくなる。
k may be an integer greater than or equal to 2, but if k is small, the polarity inversion period is short, so the effect of reducing power consumption is small. If k is large, the effect of suppressing variations in display luminance is effective. Get smaller.
次に、図11および図12を参照して、本発明の実施形態による液晶表示装置100A1および100A2の具体的な構造の例を説明する。ここで例示する液晶表示装置100A1および100A2は、先の液晶表示装置100A、100Cおよび100Dに用いられる。また、TFTとソースバスラインとの接続関係を変更すれば、液晶表示装置100Bに用いることができる。
Next, an example of a specific structure of the liquid crystal display devices 100A1 and 100A2 according to the embodiment of the present invention will be described with reference to FIGS. The liquid crystal display devices 100A1 and 100A2 exemplified here are used for the previous liquid crystal display devices 100A, 100C, and 100D. Further, if the connection relationship between the TFT and the source bus line is changed, it can be used for the liquid crystal display device 100B.
図11(a)および(b)に、液晶表示装置100A1の構造を模式的に示す。図11(a)は液晶表示装置100A1が有するTFT基板の模式的な平面図であり、図11(b)は図11(a)中のA-A’線に沿った液晶表示装置100A1の模式的な断面図である。
11A and 11B schematically show the structure of the liquid crystal display device 100A1. FIG. 11A is a schematic plan view of a TFT substrate included in the liquid crystal display device 100A1, and FIG. 11B is a schematic view of the liquid crystal display device 100A1 taken along the line AA ′ in FIG. FIG.
液晶表示装置100A1の基本的な構造は、公知のTFT型液晶表示装置と同じであり、公知の製造方法で製造することができる。以下では、主に公知のTFT型液晶表示装置との差異点を中心に説明する。
The basic structure of the liquid crystal display device 100A1 is the same as that of a known TFT type liquid crystal display device, and can be manufactured by a known manufacturing method. Below, it demonstrates centering around a difference with a well-known TFT type liquid crystal display device.
図11(a)に示すように、液晶表示装置100A1のTFT基板は、基板(例えばガラス基板)上に形成されたゲートバスライン12と、ソースバスライン14と、TFT16A、16Bと、副画素電極10A(n)、10B(n)とを有している。ゲートバスライン12は、副画素電極10A(n)と10B(n)との間に配置されている。TFT16Aのソース電極14SAおよびTFT16Bのソース電極14SBは、ソースバスライン14に接続(典型的には一体に形成)されている。TFT16Aのドレイン電極14DAおよびTFT16Bのドレイン電極14DBは、それぞれ、第1副画素pix(n)Aおよび第2副画素pix(n)Bのほぼ中央まで引き出されており、コンタクトホール15VAおよび15VBにおいて、第1副画素電極10A(n)および第2副画素電極10B(n)に接続されている。
As shown in FIG. 11A, the TFT substrate of the liquid crystal display device 100A1 includes a gate bus line 12, a source bus line 14, TFTs 16A and 16B formed on a substrate (for example, a glass substrate), sub-pixel electrodes. 10A (n) and 10B (n). The gate bus line 12 is disposed between the subpixel electrodes 10A (n) and 10B (n). The source electrode 14SA of the TFT 16A and the source electrode 14SB of the TFT 16B are connected to the source bus line 14 (typically formed integrally). The drain electrode 14DA of the TFT 16A and the drain electrode 14DB of the TFT 16B are led out to substantially the center of the first subpixel pix (n) A and the second subpixel pix (n) B, respectively. The first subpixel electrode 10A (n) and the second subpixel electrode 10B (n) are connected.
第1転移容量Ctr(n)は、第2副画素電極10B(n)と第1副画素電極10A(n+1)の境界と重なる位置に形成されている。第1転移容量Ctr(n)は、第1電極14Cと、第2電極12Cとを有している。第1転移容量Ctr(n)の第1電極14Cは、ドレイン電極14DBと一体に形成されており、第2副画素電極10B(n)に接続されている。第1転移容量Ctr(n)の第2電極12Cは、ゲートバスライン12と同じ導電層をパターニングすることによって形成されており、コンタクトホール13VAにおいて、第1副画素電極10A(n+1)と接続されている。
The first transition capacitor Ctr (n) is formed at a position overlapping the boundary between the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1). The first transition capacitor Ctr (n) has a first electrode 14C and a second electrode 12C. The first electrode 14C of the first transition capacitance Ctr (n) is formed integrally with the drain electrode 14DB and is connected to the second subpixel electrode 10B (n). The second electrode 12C of the first transition capacitance Ctr (n) is formed by patterning the same conductive layer as the gate bus line 12, and is connected to the first subpixel electrode 10A (n + 1) in the contact hole 13VA. ing.
図11(b)に示すように、第1転移容量Ctr(n)の第1電極14Cと第2電極12Cとは、第2電極12Cを覆って基板のほぼ全面に形成されているゲート絶縁層13を間に介して、互いに対向するように形成されている。すなわち、ゲート絶縁層13が、第1転移容量Ctr(n)の誘電体層となっている。第1転移容量Ctr(n)の第1電極14Cおよびドレイン電極14DBは、ソースバスライン14と同じ導電層をパターニングすることによって形成されており、これらは、層間絶縁層15で覆われている。層間絶縁層15の上に、第1副画素電極10Aおよび第2副画素電極10Bが形成されている。第1副画素電極10Aおよび第2副画素電極10Bに、液晶層20を介して対向するように対向電極(「共通電極」ともいう。)30が配置されている。
As shown in FIG. 11B, the first electrode 14C and the second electrode 12C of the first transition capacitance Ctr (n) are formed on a substantially entire surface of the substrate so as to cover the second electrode 12C. 13 are formed so as to face each other with 13 therebetween. That is, the gate insulating layer 13 is a dielectric layer of the first transition capacitance Ctr (n). The first electrode 14C and the drain electrode 14DB of the first transition capacitance Ctr (n) are formed by patterning the same conductive layer as the source bus line 14, and these are covered with the interlayer insulating layer 15. A first subpixel electrode 10A and a second subpixel electrode 10B are formed on the interlayer insulating layer 15. A counter electrode (also referred to as “common electrode”) 30 is disposed so as to face the first subpixel electrode 10 </ b> A and the second subpixel electrode 10 </ b> B via the liquid crystal layer 20.
対向電極30は、典型的には、基板(例えばガラス基板:不図示)上に形成され、対向電極30を有する基板は、対向基板と呼ばれる。液晶層20は、TFT基板と対向基板との間に設けられる。典型的には、第1副画素電極10Aおよび第2副画素電極10B、および対向電極30の液晶層20側の表面は、配向膜(不図示)によって覆われている。ここでは、液晶層20が、負の誘電異方性を有するネマチック液晶材料を含み、配向膜として垂直配向膜を有し、ノーマリブラックモードで表示を行なうVAモードの液晶表示装置を例示している。また、対向基板には、一般に、3原色またそれ以上の原色のカラーフィルタおよびブラックマトリクス(遮光層)を有するカラーフィルタ層が形成される。
The counter electrode 30 is typically formed on a substrate (for example, a glass substrate: not shown), and the substrate having the counter electrode 30 is called a counter substrate. The liquid crystal layer 20 is provided between the TFT substrate and the counter substrate. Typically, the first subpixel electrode 10A, the second subpixel electrode 10B, and the surface of the counter electrode 30 on the liquid crystal layer 20 side are covered with an alignment film (not shown). Here, a VA mode liquid crystal display device in which the liquid crystal layer 20 includes a nematic liquid crystal material having negative dielectric anisotropy, has a vertical alignment film as an alignment film, and performs display in a normally black mode is illustrated. Yes. In addition, a color filter layer having a color filter of three primary colors or more and a black matrix (light shielding layer) is generally formed on the counter substrate.
図12(a)および(b)に、液晶表示装置100A2の構造を模式的に示す。図12(a)は、液晶表示装置100A2が有するTFT基板の模式的な平面図であり、図12(b)は(a)中のB-B’線に沿った液晶表示装置100A2の模式的な断面図である。
12A and 12B schematically show the structure of the liquid crystal display device 100A2. 12A is a schematic plan view of a TFT substrate included in the liquid crystal display device 100A2, and FIG. 12B is a schematic view of the liquid crystal display device 100A2 along the line BB ′ in FIG. FIG.
液晶表示装置100A2は、第1副画素電極10A(n)と第2副画素電極10B(n)とが互いに異なる透明導電層で形成されている点において、液晶表示装置100A1と異なっている。第1転移容量Ctr(n)は、第2副画素電極10B(n)と第1副画素電極10A(n+1)とが層間絶縁層17を介して重なる領域に形成されている。すなわち、第1転移容量Ctr(n)の第1電極は、第2副画素電極10B(n)の一部であり、第1転移容量Ctr(n)の第2電極は第1副画素電極10A(n+1)の一部である。
The liquid crystal display device 100A2 is different from the liquid crystal display device 100A1 in that the first subpixel electrode 10A (n) and the second subpixel electrode 10B (n) are formed of different transparent conductive layers. The first transition capacitor Ctr (n) is formed in a region where the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1) overlap with each other via the interlayer insulating layer 17. That is, the first electrode of the first transition capacitor Ctr (n) is a part of the second subpixel electrode 10B (n), and the second electrode of the first transition capacitor Ctr (n) is the first subpixel electrode 10A. Part of (n + 1).
図12(a)と図11(b)とを比較すると分かるように、液晶表示装置100A2は、液晶表示装置100A1に比べて、開口率が高いという利点を有している。液晶表示装置100A2においては、第1転移容量Ctr(n)の第1および第2電極は透明導電層(副画素電極)で形成されているので、液晶層20が第1転移容量Ctr(n)と重なる領域も、表示に寄与することができる。また、液晶表示装置100A1のように、第1転移容量Ctr(n)の第2電極12Cを第1副画素電極10A(n+1)と接続するための電極の延長やコンタクトホール13VA(図11(a)参照)を形成する必要がないので、これらによる開口率の低下もない。
As can be seen by comparing FIG. 12A and FIG. 11B, the liquid crystal display device 100A2 has the advantage of a higher aperture ratio than the liquid crystal display device 100A1. In the liquid crystal display device 100A2, since the first and second electrodes of the first transition capacitance Ctr (n) are formed of a transparent conductive layer (subpixel electrode), the liquid crystal layer 20 has the first transition capacitance Ctr (n). A region overlapping with can also contribute to display. Further, like the liquid crystal display device 100A1, the extension of the electrode for connecting the second electrode 12C of the first transition capacitance Ctr (n) to the first subpixel electrode 10A (n + 1) or the contact hole 13VA (FIG. 11A )) Is not required to be formed, and there is no decrease in the aperture ratio due to these.
次に、図13~図15を参照して、いわゆるダブルソース構造を有する、本発明のさらに他の実施形態による液晶表示装置100Eの構造と動作を説明する。図13は、液晶表示装置100Eの等価回路を示す図であり、図14は、液晶表示装置100Eにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。また、図15は、液晶表示装置100Eにおけるソースバスラインと画素との接続関係を模式的に示す図である。
Next, the structure and operation of a liquid crystal display device 100E having a so-called double source structure according to another embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a diagram illustrating an equivalent circuit of the liquid crystal display device 100E, and FIG. 14 is a diagram schematically illustrating a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100E. FIG. 15 is a diagram schematically showing the connection relationship between the source bus lines and the pixels in the liquid crystal display device 100E.
図13に示すように、液晶表示装置100Eは、画素列(例えばm列)の両側に配置された、ソースバスラインSL(m)1とSL(m)2とを有している。ここでは、この構造をダブルソース構造という。液晶表示装置100Eでは、列方向に隣接する2つの画素(例えば画素Pix(n、m)と画素Pix(n+1、m)に、同時に、互いに異なるソースバスラインSL(m)1とSL(m)2とから、互いに異なる極性の表示信号電圧が供給される。具体的には、画素Pix(n、m)の2つのTFTのゲート電極が接続されているゲートバスラインおよび画素Pix(n+1、m)の2つのTFTのゲート電極が接続されているゲートバスラインはいずれもGL(n)であり、同じ走査信号電圧VGL(n)が供給される。画素Pix(n、m)の2つのTFTのソース電極はソースバスラインSL(m)1に接続されており、画素Pix(n+1、m)の2つのTFTのソース電極はソースバスラインSL(m)2に接続されている。
As shown in FIG. 13, the liquid crystal display device 100E has source bus lines SL (m) 1 and SL (m) 2 arranged on both sides of a pixel column (for example, m columns). Here, this structure is called a double source structure. In the liquid crystal display device 100E, two different source bus lines SL (m) 1 and SL (m) are simultaneously applied to two pixels (for example, a pixel Pix (n, m) and a pixel Pix (n + 1, m)) adjacent to each other in the column direction. The display signal voltages having different polarities are supplied from 2. The gate bus line to which the gate electrodes of the two TFTs of the pixel Pix (n, m) are connected and the pixel Pix (n + 1, m). The gate bus lines to which the gate electrodes of the two TFTs are connected are GL (n), and the same scanning signal voltage VGL (n) is supplied to the two TFTs of the pixel Pix (n, m). Are connected to the source bus line SL (m) 1, and the source electrodes of the two TFTs of the pixel Pix (n + 1, m) are connected to the source bus line SL (m) 2.
従って、液晶表示装置100Eでは、先の実施形態の液晶表示装置のように、列方向に隣接する画素に供給される表示信号電圧を利用して、第2副画素pix(n)Bの電圧を変化させることができない。
Accordingly, in the liquid crystal display device 100E, as in the liquid crystal display device of the previous embodiment, the voltage of the second subpixel pix (n) B is set using the display signal voltage supplied to the pixels adjacent in the column direction. It cannot be changed.
そこで、液晶表示装置100Eでは、画素Pix(n、m)に、ゲート電極がゲートバスラインGL(n+1)に接続された第3のTFTを設ける。第1のTFTおよび第2のTFTのドレイン電極は、第1副画素電極および第2副画素電極にそれぞれ接続されているのに対し、第3のTFTのドレイン電極は、第1転移容量Ctr(n)の第2電極に接続されている。第3のTFTのソース電極は、第1のTFTおよび第2のTFTのソース電極と同様に、ソースバスラインSL(m)1に接続されており、第1転移容量Ctr(n)の第2電極には、画素Pix(n、m)の次に選択される画素Pix(n+2、m)に供給される表示信号電圧が供給される。
Therefore, in the liquid crystal display device 100E, the pixel Pix (n, m) is provided with a third TFT whose gate electrode is connected to the gate bus line GL (n + 1). The drain electrodes of the first TFT and the second TFT are connected to the first subpixel electrode and the second subpixel electrode, respectively, while the drain electrode of the third TFT is connected to the first transition capacitor Ctr ( n) connected to the second electrode. Similar to the source electrodes of the first TFT and the second TFT, the source electrode of the third TFT is connected to the source bus line SL (m) 1, and the second TFT of the first transfer capacitor Ctr (n) is connected. A display signal voltage supplied to the pixel Pix (n + 2, m) selected next to the pixel Pix (n, m) is supplied to the electrode.
図14に示すように、液晶表示装置100Eにおいては、隣接するソースバスライン、例えばソースバスラインSL(m)1とソースバスラインSL(m)2とには、1フレーム期間にわたって互いに逆の極性の表示信号電圧(VSL(m)1、VSL(m)2)が供給されており、各表示信号電圧の極性は1フレーム期間の間は変化しない。表示信号電圧Vpix(n+2)が、走査信号電圧VGL(n+1)がハイとなっている期間に、画素Pix(n、m)から列方向に2つ離れた画素Pix(n+2、m)に第1転移容量Ctr(n)を介して供給され、画素Pix(n、m)の第2副画素pix(n)Bの電圧Vpix(n)Bが、上昇する。その結果、画素Pix(n、m)の第1副画素の電圧Vpix(n)Aと第2副画素の電圧Vpix(n)Bとの間に、ΔVの電圧差が生じる(ΔV=Vpix(n)A-Vpix(n)B<0)。
As shown in FIG. 14, in the liquid crystal display device 100E, adjacent source bus lines, for example, the source bus line SL (m) 1 and the source bus line SL (m) 2, have opposite polarities over one frame period. Display signal voltages (VSL (m) 1, VSL (m) 2) are supplied, and the polarity of each display signal voltage does not change during one frame period. The display signal voltage Vpix (n + 2) is first applied to the pixel Pix (n + 2, m) that is two columns away from the pixel Pix (n, m) in the period when the scanning signal voltage VGL (n + 1) is high. The voltage Vpix (n) B of the second subpixel pix (n) B of the pixel Pix (n, m) is supplied through the transfer capacitor Ctr (n). As a result, a voltage difference of ΔV is generated between the voltage Vpix (n) A of the first subpixel of the pixel Pix (n, m) and the voltage Vpix (n) B of the second subpixel (ΔV = Vpix ( n) A-Vpix (n) B <0).
図15に示すように、液晶表示装置100Eにおいては、同時に選択する画素行は、列方向において互いに隣接する2行である。例えば、ゲートバスラインGL(1)の走査信号電圧が同時にハイになり、図15中に最上行とその直下の、2行の画素行に同時に表示信号電圧が供給される。次に、ゲートバスラインGL(2)の走査信号電圧が同時にハイになり、図15中に上から3行目と4行目の2行の画素行に同時に表示信号電圧が供給される。なお、各画素の下側で接続されているゲートバスライン(例えば、最上行の画素に対するGL(2))は、上記の第3のTFTを介して、第2副画素電極に接続されているゲートバスラインを示している。
As shown in FIG. 15, in the liquid crystal display device 100E, the pixel rows to be selected simultaneously are two rows adjacent to each other in the column direction. For example, the scanning signal voltage of the gate bus line GL (1) becomes high at the same time, and the display signal voltage is simultaneously supplied to the uppermost row and the two pixel rows immediately below it in FIG. Next, the scanning signal voltage of the gate bus line GL (2) simultaneously becomes high, and the display signal voltage is simultaneously supplied to the third and fourth pixel rows from the top in FIG. Note that the gate bus line connected to the lower side of each pixel (for example, GL (2) for the pixel in the uppermost row) is connected to the second sub-pixel electrode through the third TFT. A gate bus line is shown.
列方向に隣接する2つの画素行を同時に選択する(表示信号電圧を供給する)と、第2副画素の電圧を変化させるために、次の行の画素に供給される表示信号電圧を用いることができず、列方向に2つ離れた画素に供給する表示信号電圧を用いる必要が生じる。ここで、各画素に供給される表示信号電圧は、隣接画素に対応するものが比較的ばらつきが小さく、画素が離れるにつれて、相関関係が低下する。従って、隣接する画素に供給される表示信号電圧を利用して、第2副画素に供給される電圧を変化させることが好ましい。
When two pixel rows adjacent in the column direction are selected simultaneously (display signal voltage is supplied), the display signal voltage supplied to the pixel in the next row is used to change the voltage of the second subpixel. Therefore, it is necessary to use a display signal voltage supplied to pixels separated by two in the column direction. Here, the display signal voltages supplied to each pixel have relatively small variations corresponding to adjacent pixels, and the correlation decreases as the pixels move away. Therefore, it is preferable to change the voltage supplied to the second sub-pixel using the display signal voltage supplied to the adjacent pixel.
そこで、図16に示す液晶表示装置100Fにおいては、表示領域(マトリクス状に配列された複数の画素で構成される)を例えば上半分(上領域)と下半分(下領域)とに分け、同時に選択される2つの画素行の一方を上領域に、他方を下領域とすることによって、それぞれ、列方向に隣接する次の行の画素に供給される表示信号電圧を利用して、第2副画素に供給される電圧を変化させる。
Therefore, in the liquid crystal display device 100F shown in FIG. 16, the display area (consisting of a plurality of pixels arranged in a matrix) is divided into, for example, an upper half (upper area) and a lower half (lower area), and at the same time. By using one of the two selected pixel rows as an upper region and the other as a lower region, the display signal voltage supplied to the pixels in the next row adjacent to each other in the column direction is used. The voltage supplied to the pixel is changed.
具体的には、ゲートバスラインGL(1)は、表示領域の上半分の最上行および下半分の最上行の画素に接続されており、その次に表示信号電圧が供給される画素行は、表示領域の上半分の最上行の直下の行、および表示領域の下半分の最上行の直下の行となる。このようにすることで、液晶表示装置100Fは、液晶表示装置100Eよりも高品位の表示を行なうことができる。なお、このとき、1フレーム期間において、各画素列の上半分に含まれる画素に書き込まれる表示信号電圧の極性(全て同じ、例えば負)と、下半分に含まれる画素に書き込まれる表示信号電圧の極性(全て同じ、例えば正)は互いに逆である。
Specifically, the gate bus line GL (1) is connected to the pixels in the uppermost row in the upper half and the uppermost row in the lower half, and the pixel row to which the display signal voltage is supplied next is A line immediately below the uppermost line in the upper half of the display area and a line immediately below the uppermost line in the lower half of the display area. In this way, the liquid crystal display device 100F can perform display with higher quality than the liquid crystal display device 100E. At this time, in one frame period, the polarity (all the same, for example, negative) of the display signal voltage written to the pixels included in the upper half of each pixel column and the display signal voltage written to the pixels included in the lower half The polarities (all the same, eg positive) are opposite to each other.
ここでは、表示領域を上下の2つの領域に分割した例を示したが、表示領域を4以上の偶数個の領域に分割してもよい。ただし、1フレーム期間において、たとえば、正の表示信号電圧が供給される領域と、負の表示信号電圧が供給される領域とを、列方向に沿って、交互に配置することが好ましい。すなわち、列方向に配列された複数の画素は、偶数個の群に分けられており、偶数個の群のそれぞれは連続して配列された画素を有し、列方向の一端から順に群に番号を割り当てたとき、奇数番の群に属する画素と、偶数番の群に属する画素とに、互いに異なるソースバスラインから、極性が互いに異なる表示信号電圧が供給されるように、構成することが好ましい。もちろん、奇数番の群に属する1つの画素と、偶数番の群に属する1つの画素とに、同時に、極性が互いに異なる表示信号電圧が供給される。
Here, an example is shown in which the display area is divided into two upper and lower areas, but the display area may be divided into an even number of areas of 4 or more. However, in one frame period, for example, it is preferable to alternately arrange a region to which a positive display signal voltage is supplied and a region to which a negative display signal voltage is supplied along the column direction. That is, the plurality of pixels arranged in the column direction are divided into an even number of groups, and each of the even number of groups has pixels arranged in succession, and the groups are sequentially numbered from one end in the column direction. Is preferably configured such that display signal voltages having different polarities are supplied from different source bus lines to pixels belonging to the odd-numbered group and pixels belonging to the even-numbered group. . Of course, display signal voltages having different polarities are simultaneously supplied to one pixel belonging to the odd-numbered group and one pixel belonging to the even-numbered group.
次に、図17および図18を参照して、本発明の実施形態による液晶表示装置100E1および100E2の具体的な構造の例を説明する。ここで例示する液晶表示装置100E1および100E2は、先の液晶表示装置100Eに用いられる。また、TFTとソースバスラインとの接続関係を変更すれば、液晶表示装置100Fに用いることができる。
Next, an example of a specific structure of the liquid crystal display devices 100E1 and 100E2 according to the embodiment of the present invention will be described with reference to FIGS. The liquid crystal display devices 100E1 and 100E2 exemplified here are used in the previous liquid crystal display device 100E. Further, if the connection relation between the TFT and the source bus line is changed, it can be used for the liquid crystal display device 100F.
図17は、液晶表示装置100E1が有するTFT基板の模式的な平面図である。液晶表示装置100E1の基本的な構造は、上述の液晶表示装置100A1と同様であるので、以下では、液晶表示装置100A1との差異点を中心に説明する。
FIG. 17 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100E1. Since the basic structure of the liquid crystal display device 100E1 is the same as that of the above-described liquid crystal display device 100A1, the following description will focus on differences from the liquid crystal display device 100A1.
図17(a)に示すように、液晶表示装置100E1のTFT基板は、基板(例えばガラス基板)上に形成されたゲートバスライン12(GL(n)、GL(n+1))と、ソースバスライン14(SL(m-1)1、SL(m-1)2)と、TFT16A、16B、16Cと、副画素電極10A(n)、10B(n)とを有している。ゲートバスラインGL(n)は、副画素電極10A(n)と10B(n)との間に配置されており、TFT16AおよびTFT16Bのゲート電極に接続されている。ゲートバスラインGL(n+1)は、副画素電極10B(n)と10A(n+1)との間に配置されており、TFT16Cのゲート電極に接続されている。
As shown in FIG. 17A, the TFT substrate of the liquid crystal display device 100E1 includes gate bus lines 12 (GL (n), GL (n + 1)) formed on a substrate (for example, a glass substrate), and source bus lines. 14 (SL (m−1) 1, SL (m−1) 2), TFTs 16A, 16B, and 16C, and subpixel electrodes 10A (n) and 10B (n). The gate bus line GL (n) is disposed between the subpixel electrodes 10A (n) and 10B (n), and is connected to the gate electrodes of the TFT 16A and the TFT 16B. The gate bus line GL (n + 1) is disposed between the subpixel electrodes 10B (n) and 10A (n + 1), and is connected to the gate electrode of the TFT 16C.
TFT16Aのドレイン電極およびTFT16Bのドレイン電極は、それぞれ、第1副画素pix(n)Aおよび第2副画素pix(n)Bのほぼ中央まで引き出されており、コンタクトホール15VAおよび15VBにおいて、第1副画素電極10A(n)および第2副画素電極10B(n)に接続されている。TFT16Cのドレイン電極は、コンタクトホール13VBにおいて、第1転移容量Ctr(n)の第2電極12Cと接続されている。第1転移容量Ctr(n)の第1電極は、TFT16Bのドレイン電極の延設部14Cで形成されている。第1転移容量Ctr(n)の第2電極12Cは、ゲートバスライン12と同じ導電層をパターニングすることによって形成されており、ゲート絶縁層13で覆われている(図11参照、図17では不図示)。従って、第1転移容量Ctr(n)は、第2電極12Cと、ゲート絶縁層13と、TFT16Bのドレイン電極の延設部14Cとが重なる部分で形成されている。
The drain electrode of the TFT 16A and the drain electrode of the TFT 16B are led out to substantially the center of the first sub-pixel pix (n) A and the second sub-pixel pix (n) B, respectively, and in the contact holes 15VA and 15VB, the first It is connected to the subpixel electrode 10A (n) and the second subpixel electrode 10B (n). The drain electrode of the TFT 16C is connected to the second electrode 12C of the first transition capacitor Ctr (n) in the contact hole 13VB. The first electrode of the first transition capacitor Ctr (n) is formed by the extended portion 14C of the drain electrode of the TFT 16B. The second electrode 12C of the first transition capacitance Ctr (n) is formed by patterning the same conductive layer as the gate bus line 12, and is covered with the gate insulating layer 13 (see FIG. 11 and FIG. 17). Not shown). Accordingly, the first transition capacitance Ctr (n) is formed at a portion where the second electrode 12C, the gate insulating layer 13, and the extended portion 14C of the drain electrode of the TFT 16B overlap.
図18は、液晶表示装置100E2が有するTFT基板の模式的な平面図である。液晶表示装置100E2は、第1転移容量Ctr(n)の構成において、液晶表示装置100E1と異なっている。
FIG. 18 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100E2. The liquid crystal display device 100E2 is different from the liquid crystal display device 100E1 in the configuration of the first transition capacitance Ctr (n).
液晶表示装置100E2では、第1転移容量Ctr(n)の第2電極は、透明導電層10C(n)で形成されている。透明導電層10C(n)は、TFT16Cのドレイン電極と、コンタクトホール17VBにおいて接続されている。第1転移容量Ctr(n)の第1電極は、第2副画素電極10B(n)によって形成されている。液晶表示装置100E2の第1転移容量Ctr(n)の断面構造は、図12に示した液晶表示装置100A2の第1転移容量Ctr(n)の断面構造に類似している。液晶表示装置100E2の第1転移容量Ctr(n)は、透明導電層10C(n)と第2副画素電極10B(n)とが層間絶縁層17を介して重なる領域に形成されている。
In the liquid crystal display device 100E2, the second electrode of the first transition capacitance Ctr (n) is formed of the transparent conductive layer 10C (n). The transparent conductive layer 10C (n) is connected to the drain electrode of the TFT 16C through the contact hole 17VB. The first electrode of the first transition capacitor Ctr (n) is formed by the second subpixel electrode 10B (n). The cross-sectional structure of the first transition capacitor Ctr (n) of the liquid crystal display device 100E2 is similar to the cross-sectional structure of the first transition capacitor Ctr (n) of the liquid crystal display device 100A2 shown in FIG. The first transition capacitance Ctr (n) of the liquid crystal display device 100E2 is formed in a region where the transparent conductive layer 10C (n) and the second subpixel electrode 10B (n) overlap with the interlayer insulating layer 17 interposed therebetween.
液晶表示装置100E2においては、第1転移容量Ctr(n)の第1および第2電極は透明導電層で形成されているので、液晶層20が第1転移容量Ctr(n)と重なる領域も、表示に寄与することができる。従って、液晶表示装置100E2は、液晶表示装置100E1に比べて、開口率が高いという利点を有している。
In the liquid crystal display device 100E2, since the first and second electrodes of the first transition capacitor Ctr (n) are formed of a transparent conductive layer, the region where the liquid crystal layer 20 overlaps the first transition capacitor Ctr (n) It can contribute to the display. Therefore, the liquid crystal display device 100E2 has an advantage that the aperture ratio is higher than that of the liquid crystal display device 100E1.
次に、図19および図20を参照して、画素が3つの副画素を有する、本発明のさらに他の実施形態による液晶表示装置100Gの構造と動作を説明する。図19は、液晶表示装置100Gの等価回路を示す図であり、図20は、液晶表示装置100Gにおける走査信号電圧、表示信号電圧および副画素に印加される電圧を模式的に示す図である。
Next, with reference to FIGS. 19 and 20, the structure and operation of a liquid crystal display device 100G according to still another embodiment of the present invention in which the pixel has three sub-pixels will be described. FIG. 19 is a diagram showing an equivalent circuit of the liquid crystal display device 100G, and FIG. 20 is a diagram schematically showing a scanning signal voltage, a display signal voltage, and a voltage applied to the sub-pixel in the liquid crystal display device 100G.
液晶表示装置100Gの画素Pix(n、m)は、第1副画素pix(n)A、第2副画素pix(n)Bおよび第1転移容量Ctr(n)1に加え、第3副画素pix(n)Cと、誘電体層を介して互いに対向する第3電極および第4電極を有する第2転移容量Ctr(n)2とをさらに有する。第2転移容量Ctr(n)2の第3電極は、その画素の第3副画素電極に接続されており、その画素の第2転移容量の第4電極は、第1転移容量の第1電極または第2副画素電極に接続されている。なお、ここで、第2、第3副画素、第2、第3副画素電極、および第1、第2転移容量の呼び名は、その画素の次に表示信号電圧が供給される電極に接続されている副画素電極を第2副画素電極とし、第2副画素電極に接続されている転移容量を第1転移容量としたので、第2副画素、第2副画素電極および第1転移容量の画素内の位置が、図2に示した液晶表示装置100Aと異なっている。
The pixel Pix (n, m) of the liquid crystal display device 100G includes a third subpixel in addition to the first subpixel pix (n) A, the second subpixel pix (n) B, and the first transfer capacitor Ctr (n) 1. pix (n) C and a second transition capacitor Ctr (n) 2 having a third electrode and a fourth electrode facing each other with a dielectric layer interposed therebetween. The third electrode of the second transition capacitor Ctr (n) 2 is connected to the third subpixel electrode of the pixel, and the fourth electrode of the second transition capacitor of the pixel is the first electrode of the first transition capacitor. Alternatively, it is connected to the second subpixel electrode. Here, the names of the second and third subpixels, the second and third subpixel electrodes, and the first and second transfer capacitors are connected to an electrode to which a display signal voltage is supplied next to the pixel. The second subpixel electrode is the second subpixel electrode, and the transition capacitor connected to the second subpixel electrode is the first transition capacitor. Therefore, the second subpixel, the second subpixel electrode, and the first transition capacitor The position in the pixel is different from the liquid crystal display device 100A shown in FIG.
液晶表示装置100Gは、上述の液晶表示装置100Aに対して、1つのTFTと、1つの副画素電極と、1つの転移容量とを追加したものに相当する。第3副画素pix(n)Cに印加される電圧Vpix(n)Cは、画素Pix(n+1、m)の第1副画素電極に直列に接続されている、第1転移容量Ctr(n)1と第2転移容量Ctr(n)2との影響を受けて、図20に示すように、第1副画素の電圧Vpix(n)Aと第2副画素の電圧Vpix(n)Bとの中間の電圧になる。その結果、輝度の高い第1副画素pix(n)Aと、輝度の低い第2副画素pix(n)Bと、これらの中間の輝度を呈する第3副画素pix(n)Cが得られる。
The liquid crystal display device 100G corresponds to a liquid crystal display device 100A having one TFT, one subpixel electrode, and one transition capacitor added to the liquid crystal display device 100A. The voltage Vpix (n) C applied to the third subpixel pix (n) C is connected in series to the first subpixel electrode of the pixel Pix (n + 1, m), and the first transfer capacitor Ctr (n) 1 and the second transition capacitor Ctr (n) 2, as shown in FIG. 20, the voltage Vpix (n) A of the first subpixel and the voltage Vpix (n) B of the second subpixel are It becomes an intermediate voltage. As a result, a first sub-pixel pix (n) A having a high luminance, a second sub-pixel pix (n) B having a low luminance, and a third sub-pixel pix (n) C having intermediate luminance between them are obtained. .
次に、図21および図22を参照して、本発明の実施形態による液晶表示装置100G1および100G2の具体的な構造の例を説明する。ここで例示する液晶表示装置100G1および100G2は、先の液晶表示装置100Gに用いられる。
Next, an example of a specific structure of the liquid crystal display devices 100G1 and 100G2 according to the embodiment of the present invention will be described with reference to FIGS. The liquid crystal display devices 100G1 and 100G2 exemplified here are used in the previous liquid crystal display device 100G.
図21は、液晶表示装置100G1が有するTFT基板の模式的な平面図である。液晶表示装置100G1の基本的な構造は、上述の液晶表示装置100A1と同様であるので、以下では、液晶表示装置100A1との差異点を中心に説明する。
FIG. 21 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100G1. Since the basic structure of the liquid crystal display device 100G1 is the same as that of the above-described liquid crystal display device 100A1, the following description will focus on differences from the liquid crystal display device 100A1.
図21に示すように、液晶表示装置100G1のTFT基板は、基板(例えばガラス基板)上に形成されたゲートバスライン12と、ソースバスライン14と、TFT16A、16B、16Cと、第1~第3副画素電極10A(n)、10B(n)、10C(n)とを有している。ゲートバスラインGL(n)は、第1副画素電極10A(n)と第3副画素電極10C(n)との間、および第3副画素電極10C(n)と第2副画素電極10B(n)との間の2か所に設けられている。
As shown in FIG. 21, the TFT substrate of the liquid crystal display device 100G1 includes a gate bus line 12, a source bus line 14, TFTs 16A, 16B, and 16C formed on a substrate (for example, a glass substrate), first to first. 3 sub-pixel electrodes 10A (n), 10B (n), and 10C (n). The gate bus line GL (n) is provided between the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n), and between the third subpixel electrode 10C (n) and the second subpixel electrode 10B ( n) in two places.
第1副画素電極10A(n)と第3副画素電極10C(n)の間のゲートバスラインGL(n)は、TFT16Aおよび16Cのゲート電極に接続されている。TFT16AおよびTFT16Cのドレイン電極は、それぞれ、第1副画素pix(n)Aおよび第3副画素pix(n)Cのほぼ中央まで引き出されており、コンタクトホール15VAおよび15VCにおいて、第1副画素電極10A(n)および第3副画素電極10C(n)に接続されている。
The gate bus line GL (n) between the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n) is connected to the gate electrodes of the TFTs 16A and 16C. The drain electrodes of the TFT 16A and the TFT 16C are led out to substantially the center of the first subpixel pix (n) A and the third subpixel pix (n) C, respectively. In the contact holes 15VA and 15VC, the first subpixel electrode 10A (n) and the third subpixel electrode 10C (n).
第3副画素電極10C(n)と第2副画素電極10B(n)との間のゲートバスラインGL(n)は、TFT16Bのゲート電極に接続されている。TFT16Bのドレイン電極は、第2副画素pix(n)Bのほぼ中央まで引き出されており、コンタクトホール15VBにおいて、第2副画素電極10B(n)に接続されている。TFT16Bのドレイン電極は、第2副画素電極10B(n)と第1副画素電極10A(n+1)の境界と重なる位置まで延設されており、第1転移容量Ctr(n)1の第1電極14C1として用いられている。第1転移容量Ctr(n)1の第2電極12C1は、ゲートバスライン12と同じ導電層をパターニングすることによって形成されており、ゲート絶縁層13で覆われている(図11参照、図21では不図示)。第1転移容量Ctr(n)1の第2電極12C1は、コンタクトホール13VAにおいて、第1副画素電極10A(n+1)と接続されている。
The gate bus line GL (n) between the third subpixel electrode 10C (n) and the second subpixel electrode 10B (n) is connected to the gate electrode of the TFT 16B. The drain electrode of the TFT 16B is drawn to almost the center of the second subpixel pix (n) B, and is connected to the second subpixel electrode 10B (n) in the contact hole 15VB. The drain electrode of the TFT 16B extends to a position overlapping the boundary between the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1), and the first electrode of the first transition capacitor Ctr (n) 1. It is used as 14C1. The second electrode 12C1 of the first transition capacitor Ctr (n) 1 is formed by patterning the same conductive layer as the gate bus line 12, and is covered with the gate insulating layer 13 (see FIG. 11, FIG. 21). (Not shown). The second electrode 12C1 of the first transition capacitor Ctr (n) 1 is connected to the first subpixel electrode 10A (n + 1) in the contact hole 13VA.
TFT16Bのドレイン電極はまた第3副画素電極10C(n)の下部まで延設されており、コンタクトホール13VCにおいて、第2転移容量Ctr(n)2の第4電極12C2と接続されている。第2転移容量Ctr(n)2の第3電極14C2は、TFT16Cのドレイン電極の延設部である。
The drain electrode of the TFT 16B extends to the lower part of the third subpixel electrode 10C (n), and is connected to the fourth electrode 12C2 of the second transition capacitor Ctr (n) 2 in the contact hole 13VC. The third electrode 14C2 of the second transition capacitor Ctr (n) 2 is an extended portion of the drain electrode of the TFT 16C.
図22は、液晶表示装置100G2が有するTFT基板の模式的な平面図である。液晶表示装置100G2は、第1副画素電極10A(n)および第3副画素電極10C(n)と、第2副画素電極10B(n)とが互いに異なる透明導電層で形成されている点において、液晶表示装置100G1と異なっている。また、液晶表示装置100G2は、第2副画素電極10B(n)と第1副画素電極10A(n+1)とが層間絶縁層17(図12(b)参照、図22では不図示)を介して重なる領域に、第1転移容量Ctr(n)1が形成されており、第2副画素電極10B(n)と第3副画素電極10C(n)とが層間絶縁層17を介して重なる領域に、第2転移容量Ctr(n)2が形成されている点においても、液晶表示装置100G1と異なっている。
FIG. 22 is a schematic plan view of a TFT substrate included in the liquid crystal display device 100G2. In the liquid crystal display device 100G2, the first subpixel electrode 10A (n), the third subpixel electrode 10C (n), and the second subpixel electrode 10B (n) are formed of different transparent conductive layers. This is different from the liquid crystal display device 100G1. Further, in the liquid crystal display device 100G2, the second subpixel electrode 10B (n) and the first subpixel electrode 10A (n + 1) are interposed via the interlayer insulating layer 17 (see FIG. 12B, not shown in FIG. 22). The first transition capacitor Ctr (n) 1 is formed in the overlapping region, and the second subpixel electrode 10B (n) and the third subpixel electrode 10C (n) overlap with the interlayer insulating layer 17 therebetween. The second transition capacitor Ctr (n) 2 is also different from the liquid crystal display device 100G1 in that the second transition capacitor Ctr (n) 2 is formed.
図22と図21とを比較すると分かるように、液晶表示装置100G2は、液晶表示装置100G1に比べて、開口率が高いという利点を有している。液晶表示装置100G2においては、第1転移容量Ctr(n)1の第1および第2電極、ならびに第2転移容量Ctr(n)2の第3および第4電極がいずれも透明導電層(副画素電極)で形成されているので、液晶層20が第1転移容量Ctr(n)1および第1転移容量Ctr(n)2と重なる領域も、表示に寄与することができる。また、液晶表示装置100G1のように、第1転移容量Ctr(n)1の第2電極12C1を第1副画素電極10A(n+1)と接続するための電極の延長やコンタクトホール13VA(図21参照)を形成する必要がなく、また、第2転移容量Ctr(n)2の第4電極12C2を第3副画素電極10C(n)と接続するための電極の延長やコンタクトホール13VC(図21参照)を形成する必要がないので、これらによる開口率の低下もない。
As can be seen from a comparison between FIG. 22 and FIG. 21, the liquid crystal display device 100G2 has an advantage of a higher aperture ratio than the liquid crystal display device 100G1. In the liquid crystal display device 100G2, the first and second electrodes of the first transition capacitor Ctr (n) 1 and the third and fourth electrodes of the second transition capacitor Ctr (n) 2 are both transparent conductive layers (subpixels). Therefore, the region where the liquid crystal layer 20 overlaps the first transition capacitor Ctr (n) 1 and the first transition capacitor Ctr (n) 2 can also contribute to display. Further, like the liquid crystal display device 100G1, the extension of the electrode for connecting the second electrode 12C1 of the first transition capacitor Ctr (n) 1 to the first subpixel electrode 10A (n + 1) or the contact hole 13VA (see FIG. 21). ), The extension of the electrode for connecting the fourth electrode 12C2 of the second transition capacitance Ctr (n) 2 to the third subpixel electrode 10C (n), and the contact hole 13VC (see FIG. 21). ) Does not need to be formed, and there is no decrease in the aperture ratio.
次に、図23(a)および(b)を参照して、本発明のさらに他の実施形態による液晶表示装置200Aおよび200Bの構造を説明する。この実施形態は、上述の全ての実施形態の液晶表示装置と組み合わせることができる。
Next, the structure of the liquid crystal display devices 200A and 200B according to still another embodiment of the present invention will be described with reference to FIGS. This embodiment can be combined with the liquid crystal display devices of all the embodiments described above.
図23(a)は、液晶表示装置200Aの1の画素に対応する等価回路を示す図であり、図23(b)は、液晶表示装置200Bの1の画素に対応する等価回路を示す図である。
FIG. 23A is a diagram illustrating an equivalent circuit corresponding to one pixel of the liquid crystal display device 200A, and FIG. 23B is a diagram illustrating an equivalent circuit corresponding to one pixel of the liquid crystal display device 200B. is there.
TFT型の液晶表示装置においては、TFTがオン状態からオフ状態に切り替わった直後に、ゲートバスラインと副画素電極(一般には画素電極)との間の寄生容量によって、副画素電極の電位が引き込まれるという現象が起こる。この引き込みによる副画素電極の電位の変化分は、「フィードスルー電圧」と呼ばれる。フィードスルー電圧の大きさは、TFTに電気的に接続されている容量(副画素の容量、寄生容量および転移容量など)の大きさに依存する。したがって、各画素が2つの副画素を有する場合には、2つの副画素のフィードスルー電圧の大きさを等しくすることが好ましい。2つの副画素の大きさは、要求されるγ特性等を考慮して適宜設定されるが、一般に、明副画素の面積が暗副画素の面積よりも小さいことが好ましい。
In the TFT type liquid crystal display device, the potential of the subpixel electrode is drawn by the parasitic capacitance between the gate bus line and the subpixel electrode (generally, the pixel electrode) immediately after the TFT is switched from the on state to the off state. Phenomenon occurs. The change in potential of the sub-pixel electrode due to this pull-in is called “feedthrough voltage”. The magnitude of the feedthrough voltage depends on the magnitude of the capacitance (subpixel capacitance, parasitic capacitance, transfer capacitance, etc.) electrically connected to the TFT. Therefore, when each pixel has two subpixels, it is preferable that the feedthrough voltages of the two subpixels have the same magnitude. The sizes of the two subpixels are appropriately set in consideration of the required γ characteristics and the like, but it is generally preferable that the area of the bright subpixel is smaller than the area of the dark subpixel.
液晶表示装置200Aは、第1副画素pixAの第1副画素電極と第1補助容量配線CcsLAとに接続された第1補助容量CcsAと、第2副画素pixBの第2副画素電極と第2補助容量配線CcsLBとに接続された第2補助容量CcsBとをさらに有する。第1補助容量CcsAおよび第2補助容量CcsBの大きさ(キャパシタンス)および/または、第1補助容量配線CcsLAおよび第2補助容量配線CcsLBから供給する第1補助容量電圧および第2補助容量電圧の大きさ(振幅)を調整することによって、第1副画素pixAと第2副画素pixBのフィードスルー電圧の大きさを等しくすることができる。ここでは、第1補助容量配線CcsLAと第2補助容量配線CcsLBとを互いに電気的に独立な配線として図示しているが、これに限られず、補助容量配線(補助容量電圧)は2つの副画素に共通として、第1補助容量CcsAの容量値と、第2補助容量CcsBの容量値とを互いに異ならせて、容量値の大きさだけを調整してもよい。
The liquid crystal display device 200A includes a first auxiliary capacitor CcsA connected to the first subpixel electrode of the first subpixel pixA and the first auxiliary capacitor line CcsLA, the second subpixel electrode of the second subpixel pixB, and the second subpixel electrode. It further has a second auxiliary capacitance CcsB connected to the auxiliary capacitance line CcsLB. The magnitude (capacitance) of the first auxiliary capacitance CcsA and the second auxiliary capacitance CcsB and / or the magnitude of the first auxiliary capacitance voltage and the second auxiliary capacitance voltage supplied from the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line CcsLB. By adjusting the height (amplitude), the magnitudes of the feedthrough voltages of the first subpixel pixA and the second subpixel pixB can be made equal. Here, the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line CcsLB are illustrated as wirings that are electrically independent from each other. However, the present invention is not limited to this, and the auxiliary capacitance line (auxiliary capacitance voltage) includes two subpixels. In common, the capacitance value of the first auxiliary capacitor CcsA and the capacitance value of the second auxiliary capacitor CcsB may be made different from each other to adjust only the magnitude of the capacitance value.
また、液晶表示装置200Bのように、各副画素電極とゲートバスラインとの間に容量を設けてもよい。この容量は、ゲート・ドレイン間容量なので、GD容量と表記する。液晶表示装置200Bは、第1副画素pixAの第1副画素電極と、第1副画素電極が接続されているTFTに接続されているゲートバスラインGLとに接続された第1GD容量CgdAと、第2副画素pixBの第2副画素電極と、第2副画素電極が接続されているTFTに接続されているゲートバスラインGLとに接続された第2GD容量CgdBとをさらに有する。第1GD容量CgdAの容量値と、第2GD容量CgdBの容量値とを互いに異ならせて、容量値の大きさを調整することによって、第1副画素pixAと第2副画素pixBのフィードスルー電圧の大きさを等しくすることができる。
Further, as in the liquid crystal display device 200B, a capacitor may be provided between each subpixel electrode and the gate bus line. Since this capacitance is a gate-drain capacitance, it is expressed as a GD capacitance. The liquid crystal display device 200B includes a first GD capacitor CgdA connected to the first subpixel electrode of the first subpixel pixA and the gate bus line GL connected to the TFT to which the first subpixel electrode is connected; It further has a second GD capacitor CgdB connected to the second subpixel electrode of the second subpixel pixB and the gate bus line GL connected to the TFT to which the second subpixel electrode is connected. The capacitance value of the first GD capacitor CgdA and the capacitance value of the second GD capacitor CgdB are made different from each other, and the size of the capacitance value is adjusted to thereby adjust the feedthrough voltage of the first subpixel pixA and the second subpixel pixB. The size can be made equal.
もちろん、液晶表示装置200Aの構造と、液晶表示装置200Bの構造とを組み合わせてもよい。
Of course, the structure of the liquid crystal display device 200A and the structure of the liquid crystal display device 200B may be combined.
次に、図24(a)および(b)を参照して、液晶表示装置200Aおよび200Bの具体的な例を説明する。図24(a)は、液晶表示装置200A1が有するTFT基板の模式的な平面図であり、図24(b)は、液晶表示装置200B1が有するTFT基板の模式的な平面図である。
Next, specific examples of the liquid crystal display devices 200A and 200B will be described with reference to FIGS. 24 (a) and 24 (b). FIG. 24A is a schematic plan view of a TFT substrate included in the liquid crystal display device 200A1, and FIG. 24B is a schematic plan view of a TFT substrate included in the liquid crystal display device 200B1.
図24(a)に示す液晶表示装置200A1は、図11に示した液晶表示装置100A1に液晶表示装置200Aの構造を適用したものである。
A liquid crystal display device 200A1 shown in FIG. 24A is obtained by applying the structure of the liquid crystal display device 200A to the liquid crystal display device 100A1 shown in FIG.
液晶表示装置200A1は、第1副画素電極10A(n)および第2副画素電極10B(n)のそれぞれのほぼ中央に、ゲートバスライン12と平行な、第1補助容量配線CcsLAおよび第2補助容量配線CcsLBを有している。第1補助容量配線CcsLAおよび第2補助容量配線CcsLBは、ゲートバスライン12と同じ導電層から形成されており、ゲート絶縁層13(図11参照)で覆われている。第1補助容量配線CcsLAは、コンタクトホール15VAと重なる位置に幅広部18Aを有しており、幅広部18Aと、ゲート絶縁層13を間に介して、TFTAのドレイン電極の延設部が重なっている。この部分が、第1補助容量CcsAを形成している。第2補助容量配線CcsLBも、同様に、コンタクトホール15VBと重なる位置に幅広部18Bを有しており、幅広部18Bと、ゲート絶縁層13を間に介して、TFTBのドレイン電極の延設部が重なっている。この部分が、第2補助容量CcsBを形成している。
In the liquid crystal display device 200A1, the first auxiliary capacitance line CcsLA and the second auxiliary capacitance line parallel to the gate bus line 12 are provided at approximately the center of each of the first subpixel electrode 10A (n) and the second subpixel electrode 10B (n). The capacitor wiring CcsLB is included. The first auxiliary capacitance line CcsLA and the second auxiliary capacitance line CcsLB are formed of the same conductive layer as the gate bus line 12 and are covered with the gate insulating layer 13 (see FIG. 11). The first auxiliary capacitance line CcsLA has a wide portion 18A at a position overlapping the contact hole 15VA, and the extended portion of the drain electrode of the TFTA overlaps with the wide portion 18A and the gate insulating layer 13 therebetween. Yes. This portion forms the first auxiliary capacitor CcsA. Similarly, the second auxiliary capacitance line CcsLB has a wide portion 18B at a position overlapping the contact hole 15VB, and the extended portion of the drain electrode of the TFTB with the wide portion 18B and the gate insulating layer 13 interposed therebetween. Are overlapping. This portion forms a second auxiliary capacitor CcsB.
第1補助容量CcsAおよび第2補助容量CcsBの構成はこれに限られず、公知の種々の構成を適用できることは言うまでもない。
It goes without saying that the configurations of the first auxiliary capacitor CcsA and the second auxiliary capacitor CcsB are not limited to this, and various known configurations can be applied.
図24(b)に示す液晶表示装置200B1は、図11に示した液晶表示装置100A1に、液晶表示装置200Bの構造を適用したものである。
A liquid crystal display device 200B1 shown in FIG. 24B is obtained by applying the structure of the liquid crystal display device 200B to the liquid crystal display device 100A1 shown in FIG.
液晶表示装置200B1は、ゲートバスライン12が幅広部12Aおよび12Bを有している。ゲートバスライン12の幅広部12Aと、TFTAのドレイン電極の延設部とがゲート絶縁層13(図11参照)を間に介して、重なっている部分が、第1GD容量CgdAを形成している。同様に、ゲートバスライン12の幅広部12Bと、TFTBのドレイン電極の延設部とがゲート絶縁層13(図11参照)を間に介して、重なっている部分が、第2GD容量CgdBを形成している。
In the liquid crystal display device 200B1, the gate bus line 12 has wide portions 12A and 12B. A portion where the wide portion 12A of the gate bus line 12 and the extended portion of the drain electrode of the TFTA overlap with each other via the gate insulating layer 13 (see FIG. 11) forms the first GD capacitor CgdA. . Similarly, a portion where the wide portion 12B of the gate bus line 12 and the extended portion of the drain electrode of the TFTB overlap with each other via the gate insulating layer 13 (see FIG. 11) forms the second GD capacitor CgdB. is doing.
第1GD容量CgdAおよび第2GD容量CgdBの構成はこれに限られず、公知の種々の構成を適用できることは言うまでもない。
It goes without saying that the configurations of the first GD capacitor CgdA and the second GD capacitor CgdB are not limited to this, and various known configurations can be applied.
また、図24(a)および(b)から明らかなように、第1補助容量CcsAおよび第2補助容量CcsBと、第1GD容量CgdAおよび第2GD容量CgdBとを有する液晶表示装置も容易に製造することができる。
Further, as is apparent from FIGS. 24A and 24B, a liquid crystal display device having the first auxiliary capacitor CcsA and the second auxiliary capacitor CcsB, and the first GD capacitor CgdA and the second GD capacitor CgdB is easily manufactured. be able to.
次に、図25(a)、(b)および(c)を参照して、本発明のさらに他の実施形態による液晶表示装置の構造を説明する。この実施形態は、上述の全ての実施形態の液晶表示装置と組み合わせることができる。
Next, the structure of a liquid crystal display device according to still another embodiment of the present invention will be described with reference to FIGS. This embodiment can be combined with the liquid crystal display devices of all the embodiments described above.
図25(a)は、本発明のさらに他の実施形態による液晶表示装置300の等価回路を示す図であり、図25(b)は、液晶表示装置300aにおけるソースバスラインSLとTFT(T1、T2)との接続関係(直列)を示す模式図である。図25(c)は、先の全ての実施形態におけるソースバスラインSLとTFT(T1、T2)との接続関係(並列)を示す模式図である。
FIG. 25A is a diagram illustrating an equivalent circuit of a liquid crystal display device 300 according to still another embodiment of the present invention, and FIG. 25B is a diagram illustrating source bus lines SL and TFTs (T1, T1, T) in the liquid crystal display device 300a. It is a schematic diagram which shows the connection relationship (series) with T2). FIG. 25C is a schematic diagram showing the connection relationship (parallel) between the source bus line SL and the TFTs (T1, T2) in all the previous embodiments.
図25(a)に示す液晶表示装置300は、第1TFT(T1)および第2TFT(T2)のいずれか一方(ここではT2)が、他方(ここではT1)を介して共通のソースバスラインSLに接続されている。すなわち、TFT(T1)とTFT(T2)は、共通のソースバスラインSLに対して直列に接続されている。このような構成を採用すると、図25(b)に示す液晶表示装置300aのように、ゲートバスラインGLとソースバスラインSLとの間に形成される寄生容量CSGを小さくすることができる。例えば図25(c)に示す液晶表示装置100aでは、TFT(T1)とTFT(T2)が共通のソースバスラインSLに対して並列に接続されているので、ゲートバスラインGLとソースバスラインSLとの間に形成される寄生容量CSGが大きい。上述した全ての実施形態の液晶表示装置においては、図25(c)に示した並列接続を採用しているので、図25(b)に示した直列接続を採用することによって、寄生容量CSGを低減することができる。
In the liquid crystal display device 300 shown in FIG. 25A, either the first TFT (T1) or the second TFT (T2) (here, T2) is connected to the common source bus line SL via the other (here, T1). It is connected to the. That is, the TFT (T1) and the TFT (T2) are connected in series to the common source bus line SL. By adopting such a configuration, the parasitic capacitance C SG formed between the gate bus line GL and the source bus line SL can be reduced as in the liquid crystal display device 300a shown in FIG. For example, in the liquid crystal display device 100a shown in FIG. 25C, since the TFT (T1) and the TFT (T2) are connected in parallel to the common source bus line SL, the gate bus line GL and the source bus line SL are connected. The parasitic capacitance C SG formed between the two is large. In the liquid crystal display devices of all the embodiments described above, the parallel connection shown in FIG. 25 (c) is adopted. Therefore, by adopting the series connection shown in FIG. 25 (b), the parasitic capacitance C SG is adopted. Can be reduced.
なお、図25(b)に示した直列接続を採用すると、並列接続の場合に比べて、TFT(T2)から第2副画素電極に供給される電流が減少することになる。このとき、TFT(T1およびT2)として、例えばIGZO系半導体を含む酸化物半導体層を有するTFTを用いることが好ましい。酸化物半導体層の移動度は、アモルファスシリコン層の移動度の10倍程度であるので、十分な充電能力を得ることができる。もちろん、酸化物半導体層に限られず、微結晶シリコン層など公知の半導体層を用いることができる。
Note that when the series connection shown in FIG. 25B is adopted, the current supplied from the TFT (T2) to the second subpixel electrode is reduced as compared with the case of the parallel connection. At this time, as the TFT (T1 and T2), for example, a TFT having an oxide semiconductor layer containing an IGZO-based semiconductor is preferably used. Since the mobility of the oxide semiconductor layer is about 10 times that of the amorphous silicon layer, a sufficient charging capability can be obtained. Needless to say, the semiconductor layer is not limited to the oxide semiconductor layer, and a known semiconductor layer such as a microcrystalline silicon layer can be used.
次に、図26を参照して、本発明の実施形態による液晶表示装置において、入力映像信号に基づいて表示信号電圧を求める方法の例を説明する。
Next, an example of a method for obtaining a display signal voltage based on an input video signal in the liquid crystal display device according to the embodiment of the present invention will be described with reference to FIG.
上述したように、本発明の実施形態による液晶表示装置は、ある画素の次に選択される画素に供給される表示信号電圧を利用して、2つの副画素に印加される電圧の大きさ(絶対値)を異ならせているので、2つの副画素の差は、その画素の次に供給される表示信号電圧の大きさ(絶対値)および極性(符号)に依存する。
As described above, the liquid crystal display according to the embodiment of the present invention uses the display signal voltage supplied to the pixel selected next to a certain pixel to measure the magnitude of the voltage applied to the two sub-pixels ( Since the absolute values are different, the difference between the two sub-pixels depends on the magnitude (absolute value) and polarity (sign) of the display signal voltage supplied next to the pixel.
従って、本発明の実施形態による液晶表示装置が有する駆動回路(不図示)は、入力映像信号を受け取り、入力映像信号に基づいて表示信号を生成する際に、ある画素に供給される表示信号電圧を、ある画素の次に供給される表示信号電圧の関数として求める。
Accordingly, when a driving circuit (not shown) included in the liquid crystal display device according to the embodiment of the present invention receives an input video signal and generates a display signal based on the input video signal, a display signal voltage supplied to a certain pixel. As a function of the display signal voltage supplied next to a pixel.
例えば、ある画素Pix(n)の明副画素が、その画素に列方向に隣接する画素Pix(n+1)の暗副画素と転移容量Ctr(n)を介して接続されている液晶表示装置において、Pix(n)で128階調を表示し、Pix(n+1)で、128階調を表示する場合と255階調を表示する場合とを考える(下記の表1のケースAおよびケースB)。なお、表示できる階調は0~255階調であり、表1中の透過率は、255階調のときの透過率を1とした相対値を示す。また、電圧は、各副画素の液晶層に最終的に印加される電圧を示し、単位はV(ボルト)である。電圧は、上記の式(1)および(2)で求められる。なお、ここでは、式(2)におけるαを0.205とした。また、明副画素と暗副画素との面積比は、1(明):2(暗)とした。
For example, in a liquid crystal display device in which a bright subpixel of a certain pixel Pix (n) is connected to a dark subpixel of a pixel Pix (n + 1) adjacent to the pixel in the column direction via a transfer capacitor Ctr (n), Consider a case where 128 gradations are displayed with Pix (n) and 128 gradations are displayed with Pix (n + 1) and 255 gradations are displayed (Case A and Case B in Table 1 below). The displayable gradations are 0 to 255 gradations, and the transmittance in Table 1 shows a relative value with the transmittance being 1 at 255 gradations. The voltage indicates a voltage finally applied to the liquid crystal layer of each sub-pixel, and the unit is V (volt). The voltage is obtained by the above formulas (1) and (2). Here, α in equation (2) was set to 0.205. The area ratio between the bright subpixel and the dark subpixel was 1 (bright): 2 (dark).
ケースAは、自画素(Pix(n))も次画素(Pix(n+1))も同じ128階調を表示する場合である。ケースAでは、VSL(n)=Vpix(n)A=Vpix(n+1)A=2.44Vであり、上記式(2)から、Vpix(n)B=2.44+0.205・2・2.44=3.44となる。すなわち、128階調を表示する際に、入力映像信号の階調データを128階調から、56階調に変換し、56階調に対応する表示信号電圧(2.44V)を自画素Pix(n)に供給する。
Case A is a case where the same pixel (Pix (n)) and the next pixel (Pix (n + 1)) display the same 128 gradations. In case A, VSL (n) = Vpix (n) A = Vpix (n + 1) A = 2.44V, and from the above equation (2), Vpix (n) B = 2.44 + 0.205 · 2.2 · 2. 44 = 3.44. That is, when displaying 128 gradations, the gradation data of the input video signal is converted from 128 gradations to 56 gradations, and the display signal voltage (2.44 V) corresponding to the 56 gradations is converted to the own pixel Pix ( n).
ケースBは、自画素(Pix(n))では128階調を表示し、次画素(Pix(n+1))では255階調を表示する場合である。ケースB1は、ケースAと同じ階調変換を行う場合である。
Case B is a case in which 128 gradations are displayed for the own pixel (Pix (n)) and 255 gradations are displayed for the next pixel (Pix (n + 1)). Case B1 is a case where the same gradation conversion as in case A is performed.
すなわち、自画素(Pix(n))が128階調を表示するとき、次画素(Pix(n+1))が255階調(対応する表示信号電圧は、5.50V)を表示する場合であっても、自画素(Pix(n))に56階調に対応する表示信号電圧(2.44V)を供給する。そうすると、上記式(2)から、Vpix(n)B=2.44+0.205・2・5.50=4.70Vとなる。その結果、図26(a)に示すように、自画素(Pix(n))の明副画素の表示階調は243階調となり、自画素(Pix(n))全体では、153階調を表示することになり、表示すべき128階調との間にずれが生じることになる。
That is, when the own pixel (Pix (n)) displays 128 gradations, the next pixel (Pix (n + 1)) displays 255 gradations (the corresponding display signal voltage is 5.50 V). Also, the display signal voltage (2.44 V) corresponding to the 56 gradations is supplied to the own pixel (Pix (n)). Then, from the above equation (2), Vpix (n) B = 2.44 + 0.205 · 2.5.50 = 4.70V. As a result, as shown in FIG. 26A, the display gradation of the bright sub-pixel of the own pixel (Pix (n)) is 243 gradations, and the entire own pixel (Pix (n)) has 153 gradations. Display is performed, and a deviation occurs from the 128 gradations to be displayed.
そこで、ケースB2に示すように、次画素(Pix(n+1))が255階調を表示する場合には、入力映像信号の階調データを128階調から、0階調に変換し、0階調に対応する表示信号電圧(1.26V)を自画素(Pix(n))に供給する。そうすると、上記式(2)から、Vpix(n)B=1.26+0.205・2・5.50=3.52となり、自画素(Pix(n))の明副画素は、211階調を表示する。その結果、図26(b)に示すように、自画素(Pix(n))全体で、128階調を表示することができる。
Therefore, as shown in case B2, when the next pixel (Pix (n + 1)) displays 255 gradations, the gradation data of the input video signal is converted from 128 gradations to 0 gradations, A display signal voltage (1.26V) corresponding to the tone is supplied to the own pixel (Pix (n)). Then, from the above equation (2), Vpix (n) B = 1.26 + 0.205 · 2 · 5.50 = 3.52, and the bright subpixel of its own pixel (Pix (n)) has 211 gradations. indicate. As a result, as shown in FIG. 26B, 128 gradations can be displayed in the entire self pixel (Pix (n)).
上述の表信号電圧を求める変換は、入力映像信号の階調データ(現水平走査期間および次の水平走査期間の階調データ)に応じて、予め設定された表示信号電圧のデータを格納したルックアップテーブルを用いて行ってもよいし、入力映像信号の階調データに基づいて演算によって行なってよい。
The conversion for obtaining the table signal voltage described above is performed by using a look that stores data of a preset display signal voltage in accordance with the gradation data of the input video signal (gradation data of the current horizontal scanning period and the next horizontal scanning period). It may be performed using an up table, or may be performed by calculation based on the gradation data of the input video signal.
上述したように、本発明の実施形態による液晶表示装置は、特許文献1に記載されている液晶表示装置のように、副画素毎に互いに電気的に独立な補助容量を設け、且つ、補助容量対向電圧を所定の条件を満足するように変化させる必要がない。すなわち、電気的に独立な補助容量配線を設けることによる開口率の低下、および/または、補助容量対向電圧を変化(例えば一定周期の振動)させることによる消費電力の増大を抑制することができる。
As described above, in the liquid crystal display device according to the embodiment of the present invention, as in the liquid crystal display device described in Patent Document 1, auxiliary capacitors that are electrically independent from each other are provided for each subpixel, and the auxiliary capacitors are provided. It is not necessary to change the counter voltage so as to satisfy a predetermined condition. That is, it is possible to suppress a decrease in aperture ratio due to the provision of an electrically independent auxiliary capacity wiring and / or an increase in power consumption due to a change in the auxiliary capacity counter voltage (for example, a constant period of vibration).
本発明の実施形態による液晶表示装置は、種々の用途に用いられるが、特に、モバイル用途に好適に用いられる。
The liquid crystal display device according to the embodiment of the present invention is used for various applications, and is particularly preferably used for mobile applications.
10A、10B 副画素電極
12 ゲートバスライン
12C 第1転移容量の第2電極
13 ゲート絶縁層
14 ソースバスライン
14C 第1転移容量の第1電極
14DA、14DB ドレイン電極
14SA、14SB ソース電極
15 層間絶縁層
15VA、15VB コンタクトホール
16A、16B TFT
20 液晶層
30 対向電極
100 液晶表示装置
Pix(n、m) 画素
pix(n)A 第1副画素
pix(n)B 第2副画素
Ctr(n) 第1転移容量 10A,10B Subpixel electrode 12 Gate bus line 12C Second electrode of first transition capacitor 13 Gate insulating layer 14 Source bus line 14C First electrode of first transition capacitor 14DA, 14DB Drain electrode 14SA, 14SB Source electrode 15 Interlayer insulating layer 15VA, 15VB Contact hole 16A, 16B TFT
20liquid crystal layer 30 counter electrode 100 liquid crystal display device Pix (n, m) pixel pix (n) A first subpixel pix (n) B second subpixel Ctr (n) first transition capacitance
12 ゲートバスライン
12C 第1転移容量の第2電極
13 ゲート絶縁層
14 ソースバスライン
14C 第1転移容量の第1電極
14DA、14DB ドレイン電極
14SA、14SB ソース電極
15 層間絶縁層
15VA、15VB コンタクトホール
16A、16B TFT
20 液晶層
30 対向電極
100 液晶表示装置
Pix(n、m) 画素
pix(n)A 第1副画素
pix(n)B 第2副画素
Ctr(n) 第1転移容量 10A,
20
Claims (18)
- 行および列を有するマトリクス状に配列された複数の画素と、複数のTFTと、複数のゲートバスラインと、複数のソースバスラインとを有し、
前記複数の画素のそれぞれは、第1副画素電極を有する第1副画素と、第2副画素電極を有する第2副画素と、誘電体層を介して互いに対向する第1電極および第2電極を有する第1転移容量とを有し、
ある画素の前記第1転移容量の前記第1電極は、前記ある画素の前記第2副画素電極に接続されており、前記ある画素の前記第1転移容量の前記第2電極は、前記ある画素の次に表示信号電圧が供給される電極に接続されている、液晶表示装置。 A plurality of pixels arranged in a matrix having rows and columns, a plurality of TFTs, a plurality of gate bus lines, and a plurality of source bus lines;
Each of the plurality of pixels includes a first subpixel having a first subpixel electrode, a second subpixel having a second subpixel electrode, and a first electrode and a second electrode facing each other through a dielectric layer. A first transition capacity having
The first electrode of the first transition capacitor of a certain pixel is connected to the second subpixel electrode of the certain pixel, and the second electrode of the first transition capacitor of the certain pixel is the certain pixel A liquid crystal display device connected to an electrode to which a display signal voltage is supplied next. - 前記ある画素の前記第1転移容量の前記第2電極は、前記ある画素に列方向に隣接する画素の前記第1副画素電極に接続されている、請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the second electrode of the first transition capacitor of the certain pixel is connected to the first subpixel electrode of a pixel adjacent to the certain pixel in a column direction.
- 前記ある画素に供給される表示信号電圧と、前記ある画素の次に供給される表示信号電圧とは、極性が逆である、請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein a display signal voltage supplied to the certain pixel and a display signal voltage supplied next to the certain pixel have opposite polarities.
- 前記ある画素に供給される表示信号電圧と、前記ある画素の次に供給される表示信号電圧とは、極性が同じである、請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the display signal voltage supplied to the certain pixel and the display signal voltage supplied next to the certain pixel have the same polarity.
- 前記ある画素の前記第1副画素電極および前記第2副画素電極と、前記ある画素に列方向に隣接する画素の前記第1副画素電極および前記第2副画素電極とは、同じソースバスラインに接続されている、請求項1から4のいずれかに記載の液晶表示装置。 The first subpixel electrode and the second subpixel electrode of the certain pixel and the first subpixel electrode and the second subpixel electrode of the pixel adjacent to the certain pixel in the column direction are the same source bus line The liquid crystal display device according to claim 1, wherein the liquid crystal display device is connected to the liquid crystal display device.
- ある列を構成する複数の画素の前記第1副画素電極および第2副画素電極は、連続するk行(kは2以上の整数)毎に異なるソースバスラインに接続されている、請求項5に記載の液晶表示装置。 The first subpixel electrode and the second subpixel electrode of a plurality of pixels constituting a certain column are connected to different source bus lines for every k consecutive rows (k is an integer of 2 or more). A liquid crystal display device according to 1.
- 列方向に隣接する2つの画素に、同時に、互いに異なるソースバスラインから、互いに異なる極性の表示信号電圧が供給され、
前記ある画素の前記第1転移容量の前記第2電極には、前記ある画素の列方向に2つ離れた画素に供給される表示信号電圧が供給される、請求項1に記載の液晶表示装置。 Display signal voltages having different polarities are simultaneously supplied from two different source bus lines to two pixels adjacent in the column direction.
2. The liquid crystal display device according to claim 1, wherein a display signal voltage supplied to two pixels separated in a column direction of the certain pixel is supplied to the second electrode of the first transition capacitor of the certain pixel. . - 列方向に配列された複数の画素は、偶数個の群に分けられており、前記偶数個の群のそれぞれは連続して配列された画素を有し、
列方向の一端から順に群に番号を割り当てたとき、奇数番の群に属する画素と、偶数番の群に属する画素とに、互いに異なるソースバスラインから、極性が互いに異なる表示信号電圧が供給され、
前記奇数番の群に属する1つの画素と、前記偶数番の群に属する1つの画素とに、同時に、前記極性が互いに異なる表示信号電圧が供給される、請求項1に記載の液晶表示装置。 The plurality of pixels arranged in the column direction are divided into an even number of groups, and each of the even number of groups has pixels arranged in succession,
When numbers are assigned to groups in order from one end in the column direction, display signal voltages having different polarities are supplied from different source bus lines to pixels belonging to the odd-numbered group and pixels belonging to the even-numbered group. ,
2. The liquid crystal display device according to claim 1, wherein display signal voltages having different polarities are simultaneously supplied to one pixel belonging to the odd-numbered group and one pixel belonging to the even-numbered group. - 前記複数の画素のそれぞれは、第3副画素電極を有する第3副画素と、誘電体層を介して互いに対向する第3電極および第4電極を有する第2転移容量とをさらに有し、
前記ある画素の前記第2転移容量の前記第3電極は、前記ある画素の前記第3副画素電極に接続されており、前記ある画素の前記第2転移容量の前記第4電極は、前記第1転移容量の前記第1電極または前記第2副画素電極に接続されている、請求項1に記載の液晶表示装置。 Each of the plurality of pixels further includes a third subpixel having a third subpixel electrode, and a second transition capacitor having a third electrode and a fourth electrode facing each other through a dielectric layer,
The third electrode of the second transition capacitor of the pixel is connected to the third subpixel electrode of the pixel, and the fourth electrode of the second transition capacitor of the pixel is the second electrode. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is connected to the first electrode or the second subpixel electrode having one transition capacitance. - 前記第1副画素電極と第1補助容量配線とに接続された第1補助容量と、前記第2副画素電極と第2補助容量配線とに接続された第2補助容量とをさらに有する、請求項1から9のいずれかに記載の液晶表示装置。 The apparatus further comprises a first auxiliary capacitor connected to the first subpixel electrode and a first auxiliary capacitor line, and a second auxiliary capacitor connected to the second subpixel electrode and a second auxiliary capacitor line. Item 10. The liquid crystal display device according to any one of Items 1 to 9.
- 前記第1補助容量と前記第2補助容量とは互いに異なる容量値を有している、請求項10に記載の液晶表示装置。 11. The liquid crystal display device according to claim 10, wherein the first auxiliary capacitor and the second auxiliary capacitor have different capacitance values.
- 前記第1補助容量配線と前記第2補助容量配線とは互いに電気的に独立である、請求項10または11に記載の液晶表示装置。 12. The liquid crystal display device according to claim 10, wherein the first auxiliary capacitance line and the second auxiliary capacitance line are electrically independent from each other.
- 前記第1副画素電極と、前記第1副画素電極が接続されているTFTに接続されているゲートバスラインとに接続された第1GD容量と、前記第2副画素電極と、前記第2副画素電極が接続されているTFTに接続されているゲートバスラインとに接続された第2GD容量とをさらに有する、請求項10から12のいずれかに記載の液晶表示装置。 A first GD capacitor connected to the first subpixel electrode and a gate bus line connected to a TFT to which the first subpixel electrode is connected; the second subpixel electrode; and the second subpixel electrode. The liquid crystal display device according to claim 10, further comprising a second GD capacitor connected to a gate bus line connected to a TFT to which a pixel electrode is connected.
- 前記第1副画素電極に接続された第1TFTと、前記第2副画素電極に接続された第2TFTとを有し、前記第1TFTおよび前記第2TFTは、共通のゲートバスラインに接続されている、請求項1から13のいずれかに記載の液晶表示装置。 A first TFT connected to the first subpixel electrode; and a second TFT connected to the second subpixel electrode. The first TFT and the second TFT are connected to a common gate bus line. The liquid crystal display device according to claim 1.
- 前記第1副画素電極に接続された第1TFTと、前記第2副画素電極に接続された第2TFTとを有し、前記第1TFTおよび前記第2TFTは、共通のソースバスラインに接続されている、請求項1から14のいずれかに記載の液晶表示装置。 A first TFT connected to the first subpixel electrode; and a second TFT connected to the second subpixel electrode. The first TFT and the second TFT are connected to a common source bus line. The liquid crystal display device according to claim 1.
- 前記第1TFTおよび前記第2TFTのいずれか一方は、他方を介して前記共通のソースバスラインに接続されている、請求項15に記載の液晶表示装置。 16. The liquid crystal display device according to claim 15, wherein one of the first TFT and the second TFT is connected to the common source bus line through the other.
- 前記複数のTFTは、酸化物半導体層を有する、請求項1から16のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the plurality of TFTs include an oxide semiconductor layer.
- 駆動回路をさらに有し、前記駆動回路は、入力映像信号を受け取り、前記入力映像信号に基づいて表示信号を生成する回路であって、前記表示信号は、各画素に対応する表示信号電圧を含み、前記ある画素に供給される表示信号電圧は、前記ある画素の次に供給される表示信号電圧の関数として求められる、請求項1から17のいずれかに記載の液晶表示装置。 And a driving circuit that receives an input video signal and generates a display signal based on the input video signal, the display signal including a display signal voltage corresponding to each pixel. The liquid crystal display device according to claim 1, wherein a display signal voltage supplied to the certain pixel is obtained as a function of a display signal voltage supplied next to the certain pixel.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011288673 | 2011-12-28 | ||
JP2011-288673 | 2011-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100086A1 true WO2013100086A1 (en) | 2013-07-04 |
Family
ID=48697565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/083959 WO2013100086A1 (en) | 2011-12-28 | 2012-12-27 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013100086A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018235139A1 (en) * | 2017-06-19 | 2018-12-27 | 堺ディスプレイプロダクト株式会社 | Liquid crystal display panel and liquid crystal display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004062146A (en) * | 2002-06-06 | 2004-02-26 | Sharp Corp | Liquid crystal display |
JP2010191462A (en) * | 2010-04-27 | 2010-09-02 | Casio Computer Co Ltd | Liquid crystal display device |
-
2012
- 2012-12-27 WO PCT/JP2012/083959 patent/WO2013100086A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004062146A (en) * | 2002-06-06 | 2004-02-26 | Sharp Corp | Liquid crystal display |
JP2010191462A (en) * | 2010-04-27 | 2010-09-02 | Casio Computer Co Ltd | Liquid crystal display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018235139A1 (en) * | 2017-06-19 | 2018-12-27 | 堺ディスプレイプロダクト株式会社 | Liquid crystal display panel and liquid crystal display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8810491B2 (en) | Liquid crystal display with color washout improvement and method of driving same | |
JP5368125B2 (en) | Display device | |
TWI393094B (en) | Liquid crystal display device and driving method | |
US9230469B2 (en) | Display device using plural gamma curves and driving method thereof | |
JP5342004B2 (en) | Liquid crystal display | |
KR20080090230A (en) | Display device and control method | |
US9230497B2 (en) | Display device having each pixel divided into sub pixels for improved view angle characteristic | |
JPWO2011104942A1 (en) | Liquid crystal display | |
CN108140353B (en) | Liquid crystal display panel and driving method thereof | |
US10732444B2 (en) | Display device | |
JP2007025644A (en) | Liquid crystal display panel driving method, liquid crystal display panel using the driving method, and driving module used for driving the liquid crystal display panel | |
JPWO2011049106A1 (en) | Liquid crystal display | |
KR20090130610A (en) | Liquid crystal display | |
US20100045884A1 (en) | Liquid Crystal Display | |
KR20140003146A (en) | Display device and driving method thereof | |
KR100890026B1 (en) | Driving device of liquid crystal display and method thereof | |
JP4592384B2 (en) | Liquid crystal display | |
KR20150077579A (en) | Display device and driving method thereof | |
JP2008203627A (en) | Liquid crystal display | |
WO2011083619A1 (en) | Liquid crystal display device | |
WO2012093630A1 (en) | Liquid crystal display device | |
WO2013179787A1 (en) | Method for driving liquid crystal display device, liquid crystal display device, and mobile instrument provided with same | |
WO2013100086A1 (en) | Liquid crystal display device | |
WO2013069559A1 (en) | Display device and drive method for same | |
KR102524416B1 (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863995 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12863995 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |