[go: up one dir, main page]

WO2013085021A1 - Composition for enhancing antibody production - Google Patents

Composition for enhancing antibody production Download PDF

Info

Publication number
WO2013085021A1
WO2013085021A1 PCT/JP2012/081752 JP2012081752W WO2013085021A1 WO 2013085021 A1 WO2013085021 A1 WO 2013085021A1 JP 2012081752 W JP2012081752 W JP 2012081752W WO 2013085021 A1 WO2013085021 A1 WO 2013085021A1
Authority
WO
WIPO (PCT)
Prior art keywords
tnf
antigen
administration
adjuvant
administered
Prior art date
Application number
PCT/JP2012/081752
Other languages
French (fr)
Japanese (ja)
Inventor
利夫 有安
まどか 谷合
大樹 長友
恒孝 太田
Original Assignee
株式会社林原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原 filed Critical 株式会社林原
Publication of WO2013085021A1 publication Critical patent/WO2013085021A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers

Definitions

  • the present invention relates to an adjuvant and a composition for enhancing antibody production containing such an adjuvant and an antigen. More specifically, the present invention relates to a safe and safe composition containing a Thumor necrosis factor- ⁇ -cholesterol pullulan complex as an active ingredient. The present invention relates to an adjuvant for mucosal administration for efficient enhancement of immune activity and a composition for mucosal administration for enhancement of antibody production containing such an adjuvant and an antigen.
  • Vaccines are most effective in preventing infection with pathogenic microorganisms.
  • conventionally used vaccines for subcutaneous inoculation mainly use serum immunoglobulin G antibody (hereinafter, immunoglobulin is abbreviated as “Ig”).
  • Ig serum immunoglobulin G antibody
  • the prevention of the onset and the prevention of the seriousness are more important than the prevention of infection.
  • mucosal immune vaccines antigens are secreted in systemic mucosal tissues such as the nasal cavity and respiratory tract by administration through the mucosal tissue route such as the oral cavity and nasal cavity (hereinafter referred to as “mucosal administration”)
  • Type immunoglobulin A antibody (hereinafter sometimes simply referred to as “secreted IgA antibody”) is produced.
  • IgA antibodies are said to have higher cross-protective ability than IgG antibodies, and the main infection site of pathogenic microorganisms is the mucosa. Therefore, mucosal immune vaccines that excel in secretory IgA antibody production are also effective in protecting infections. Exhibits excellent effects.
  • Non-patent Document 1 which is a causative bacterium such as respiratory tract infections
  • Streptococcus mutans which is a causative bacterium of dental caries
  • Non-Patent Document 2 is known to induce immune responses in both mucosal and systemic systems by nasal administration, and these proteins are immune responses against pathogenic microorganisms in mucosal systems. Since it can be induced, clinical application is expected as a new vaccine for protection against infection.
  • antigens used as vaccines are shifting from conventional attenuated live vaccines and whole cell vaccines to component vaccines and component vaccines in terms of safety.
  • mucosal vaccines are weakly immunogenic and require administration of a larger amount of antigen compared to subcutaneous vaccines.
  • administration of a large amount of antigen to mucosal tissue may cause tolerance (unresponsiveness) of the immune response. From these points, in order to induce an effective immune response by mucosal administration, it is indispensable to use an adjuvant in combination with a safe and effective immune response.
  • cytokines such as interferon or Tsumore necrosis factor-alpha (hereinafter abbreviated as “TNF- ⁇ ”) as an adjuvant has also been proposed.
  • TNF- ⁇ Tsumore necrosis factor-alpha
  • cytokines are proteins / peptides, they are rapidly deactivated or disappeared in vivo in the order of minutes to hours, and lack a sustained action.
  • a method of frequently administering cytokines to a living body and a method of administering antigens and cytokines in a DDS format using a colloidal dispersion system such as a polymer or liposome have been proposed, Specifically disclosed is a systematic immune enhancement method in which cytokines such as granulocyte / monocyte-colony stimulating factor (GM-CSF) and interferon- ⁇ are encapsulated in microspheres prepared by crosslinking gelatin and used as DDS.
  • GM-CSF granulocyte / monocyte-colony stimulating factor
  • interferon- ⁇ interferon- ⁇
  • TNF- ⁇ is not susceptible to degradation when administered to a living body by replacing the lysine residue in the molecule with another amino acid, and has a mucosal administration adjuvant activity similar to that of cholera toxin B subunit. It is known (Non-Patent Document 4). However, since such a mutant TNF- ⁇ has higher antigenicity to humans than the wild type, when administered to humans as an adjuvant, an antibody against the mutant TNF- ⁇ is produced, and as a result, an adjuvant with the mutant TNF- ⁇ . Risks that the effect is reduced or disappeared, and that when mutant TNF- ⁇ is administered again as an adjuvant, side effects such as inflammation and allergic symptoms are more likely to be induced than when wild type is used. There is.
  • Patent Document 1 Japanese Translation of PCT International Publication No. 2008-546658
  • Patent Document 2 JP 2003-321392
  • Patent Document 3 JP 2010-502679
  • Patent Document 4 US Patent No. 5,861,159 5: International Publication WO98 / 09650 Pamphlet
  • Patent Document 6 International Publication WO2006 / 077724 Pamphlet
  • Non-Patent Document 1 Kurono, Y. et al. et al. , “J. Immunol. 161, 4115-4121 (1998)
  • Non-Patent Document 2 Saito, M .; et al. , “J. Infect. Dis. 183, 823-826 (2001)
  • Non-Patent Document 3 Adlelet al. , “Cancer Biother. 10: 293-306 (1995)
  • Non-Patent Document 4 Hiroyuki Amuro et al., “YAKUGAKU ZASSHI”, Vol. 130, No. 1, 55-61 (2010)
  • the present invention enhances mucosal immunity efficiently when an antigen is administered to a mucosal tissue (hereinafter referred to as “mucosal administration”), thereby producing an antibody specific to the antigen. It is an object of the present invention to provide a novel adjuvant for mucosal administration that can be enhanced and that is stable and safe when applied to a living body. Another object of the present invention is to provide a composition for enhancing antibody production comprising such an adjuvant and an antigen as active ingredients.
  • TNF- ⁇ not only lacks stability in a solution state
  • TNF- ⁇ -cholesterol pullulan complex a complex of TNF- ⁇ and cholesterol pullulan
  • TNF- ⁇ -cholesterol pullulan complex a complex of TNF- ⁇ and cholesterol pullulan
  • TNF / CHP cholesterol pullulan
  • uncomplexed TNF- ⁇ hereinafter referred to as uncomplexed TNF- ⁇ is simply referred to as “ As compared with the case of using “TNF- ⁇ ”), it has been found that it exhibits a strong adjuvant effect that enhances the production of a specific antibody against an antigen in a living body.
  • the potentiation effect is known as the mucosal administration adjuvant, and the strength of the action effect is known, and when developing the mucosal administration vaccine, it was found to be equal to or greater than the cholera toxin B subunit that is widely used as a positive control. .
  • the present inventor has found that when a composition containing an antigen used for a vaccine or the like and a TNF- ⁇ -cholesterol pullulan complex is administered to a living body, particularly when administered intranasally, such antigen-specific IgG And IgA antibody production, in particular, secretory IgA antibody production, and when a component derived from a pathogenic microorganism is used as an antigen, the body to which it is administered is protected against infection against the pathogenic microorganism. It was found that the ability (including cross-protection ability) and / or the ability to prevent serious infection can be effectively imparted.
  • TNF- ⁇ in the state of TNF- ⁇ -cholesterol pullulan complex is stable even in the state of an aqueous solution and is used alone or as an antigen or one pharmaceutically acceptable one. It has been found that it is extremely stable even in a preparation containing two or more components.
  • the present inventor has confirmed that the TNF- ⁇ -cholesterol pullulan complex and the preparation containing the same are safe compositions that do not induce serious side effects even when applied to a living body.
  • the invention has been completed.
  • the present invention provides a mucosal adjuvant containing the TNF- ⁇ -cholesterol pullulan complex as an active ingredient, and a composition for enhancing antibody production for mucosal administration containing such an adjuvant and an antigen.
  • the present invention solves the above problems.
  • the TNF- ⁇ -cholesterol pullulan complex of the present invention may be administered subcutaneously, intradermally, intramuscularly or the like simultaneously with the antigen or before and after the antigen administration.
  • the skin route By administering to a site other than mucosal tissue by the skin route, it can be used as an adjuvant that effectively enhances the production of antibodies against antigens, particularly IgG antibodies.
  • Intravascular administration is also possible, but when TNF- ⁇ -cholesterol pullulan complex is excessively administered intravascularly, if the amount of TNF- ⁇ released from the complex into the blood is large, side effects may occur.
  • TNF- ⁇ -cholesterol pullulan complex When the administration site is mucosal tissue and the production of secretory IgA antibody specific for the administered antigen is enhanced in the mucosal tissue other than the administration site and the administration site, when the administration site is mucosal tissue, the administration route Regardless of the case, in this specification, all are included in mucosal administration (administration to mucosal tissue).
  • the antigen used together with the adjuvant for mucosal administration comprising the TNF- ⁇ -cholesterol pullulan complex of the present invention as an active ingredient is usually used as a vaccine for transdermal administration to humans, for example, influenza, Japanese encephalitis, measles, rubella , Antigens derived from pathogenic microorganisms such as viruses such as yellow fever, lassa and dengue, bacteria such as tuberculosis, protozoa such as malaria, tetanus, diphtheria, pertussis, hemorrhagic colitis, meningitis, etc.
  • an antigen derived from a substance having cytotoxicity such as a toxin derived from the causative bacteria of bacterium and amyloid ⁇ peptide.
  • the antigen derived from pathogenic microorganisms such as foot-and-mouth disease and Newcastle disease used for the purpose of infection prevention etc. with respect to animals other than a human, can be mentioned.
  • the adjuvant for mucosal administration of the present invention is the nasal cavity, eye, throat, trachea, bronchi, lung, vagina, oral cavity, digestive tract, and body cavity at the same time as or before and after the antigen is administered to humans or non-human vertebrates.
  • composition containing the adjuvant for mucosal administration of the present invention and the antigen is used in human or non-human vertebrates such as mucous membranes in the nasal cavity, eyes, throat, trachea, bronchi, lungs, vagina, oral cavity, digestive tract, and body cavity.
  • the adjuvant for mucosal administration of the present invention is not only against pathogenic microorganisms having antigens administered simultaneously or before or after administration to mucosal tissues, but also against closely related (subtype) pathogenic microorganisms. Cross defense ability can be induced.
  • composition containing TNF- ⁇ -cholesterol pullulan complex or TNF- ⁇ -cholesterol pullulan complex and antigen which is an active ingredient of the adjuvant for mucosal administration of the present invention, is applied to humans and non-human vertebrates.
  • the immune response to the administered antigen can be enhanced by administering a relatively low dose of the antigen, the problem of tolerance of the immune response that may be induced when a large amount of antigen is administered can be avoided.
  • composition containing TNF- ⁇ -cholesterol pullulan complex or TNF- ⁇ -cholesterol pullulan complex and antigen which is an adjuvant for mucosal administration of the present invention, can be applied to humans and animals other than humans. It is a safe composition that does not cause inactivation or disappearance in a short time as when TNF- ⁇ is administered, is stable, and does not induce serious side effects.
  • adjuvant refers to a substance having a function of enhancing a specific immune response to an antigen by nonspecifically stimulating the immune mechanism.
  • “mucosal administration adjuvant” refers to those having an action of specifically enhancing an immune response to an antigen when administered to a mucosal tissue simultaneously with an antigen or before and after administration of the antigen. And those having the effect of enhancing the production of antigen-specific antibodies in the blood.
  • mucosal tissue refers to mucosal tissue present on the body surface that is in direct contact with the outside world. Specific examples include the nasal cavity, eyes, throat, trachea, bronchi, lungs, vagina, mucous tissue of the gastrointestinal tract from the oral cavity and esophagus to the large intestine, and further inside the body cavity such as the thoracic cavity, abdominal cavity and inner ear cavity. Including mucosal tissue.
  • TNF- ⁇ refers to a human-derived polypeptide consisting of 157 amino acids and having a molecular weight of about 17.3 kilodaltons (kD) (GenBank Accession Number M16441 and 2251 (refer to the amino acid sequence of wild-type TNF- ⁇ represented by SEQ ID NO: 1) in the sequence listing described in the publication No.-2251, and includes both natural and recombinant types.
  • TNF- ⁇ molecules are in the form of trimers under physiological conditions.
  • mutant TNF- ⁇ refers to a polypeptide in which 1 to 6 of the amino acids constituting the TNF- ⁇ are deleted or substituted with other amino acids,
  • the biological activity has the same adjuvant activity as wild-type TNF- ⁇ .
  • the 11th, 65th, 90th, 98th, 112th and 128th lysines from the N-terminal of the amino acid sequence of the wild-type TNF- ⁇ peptide disclosed in JP-A-2004-2251 are all included. Examples include peptides substituted with any of asparagine, alanine, arginine, serine, threonine, purine, methionine, or leucine. All of these peptides have an adjuvant activity equal to or greater than that of the wild type.
  • TNF- ⁇ activity is based on a Japanese standard product (LotNo. J-PS5K01) supplied by the National Institute of Infectious Diseases (former National Institute of Preventive Health). It is measured by a bioassay using the cytotoxic activity against a blast cell line (mouse LM cell) as an index. The specific activity of pure human TNF- ⁇ is approximately 2 ⁇ 10 6 JRU / mg protein.
  • cholesterol pullulan refers to a compound in which a cholesteryl group is introduced into a part of the OH group of pullulan of a water-soluble polysaccharide. Such cholesterol pullulan forms monodisperse nanoparticles having a particle size of about 20 to 100 nm by self-association between several molecules using a cholesteryl group as a non-covalent cross-linking point in an aqueous solution.
  • a complex can be formed with a protein (see, for example, Patent Documents 5 and 6).
  • pullulan in which an analog of a cholesteryl group in which an alkyl group or the like is further introduced into a cholesteryl group, which can form a nanoparticle and form a complex with a spherical protein.
  • pullulan into which a cholesteryl group is introduced is most desirable.
  • TNF- ⁇ -cholesterol pullulan complex refers to other than covalent bonds such as hydrophobic bonds in which TNF- ⁇ protein is incorporated into cholesterol pullulan nanoparticles formed by self-association in an aqueous solution.
  • a complex formed according to the binding mode is that, as described later, methyl ⁇ -cyclodextrin having a high affinity for a cholesteryl group is added to a solution containing TNF- ⁇ -cholesterol pullulan.
  • TNF- ⁇ is released, and TNF- ⁇ activity that was not observed before the addition of methyl- ⁇ -cyclodextrin can be easily confirmed.
  • DDS conversion refers to a dosage form that can control the release of a drug using a DDS technique for precisely controlling the dynamics of the drug in vivo. .
  • antigen refers to a substance that induces specific antibody production when administered to humans or non-human vertebrates, and has no ability to induce antibody production when administered alone. Also include those that elicit antibody production when administered with an adjuvant. Also included are those capable of inducing antibody-producing ability by binding to substances such as polysaccharides.
  • the present invention relates to a mucosal administration adjuvant containing a TNF- ⁇ -cholesterol pullulan complex as an active ingredient, and a composition for enhancing antibody production against the antigen containing such a mucosal administration adjuvant and an antigen. It is.
  • TNF- ⁇ itself used in the present invention is a known cytokine, and its use as an adjuvant has also been proposed (Patent Document 3).
  • Patent Document 3 it has been found that even if TNF- ⁇ is administered to the mucosa together with the antigen, the effect as an adjuvant is not so much exhibited.
  • the TNF- ⁇ used in the present invention may be a natural type, regardless of its origin or origin, and may be a recombinant TNF- ⁇ (hereinafter referred to as “rec-TNF- ⁇ ”) produced by genetically modified DNA technology. May be abbreviated), may be chemically synthesized from amino acids as raw materials, and for example, amino acids constituting TNF- ⁇ as disclosed in Non-Patent Document 4 Mutant TNF- ⁇ in which a part of the amino acid is substituted with another amino acid may be used.
  • rec-TNF- ⁇ recombinant TNF- ⁇
  • Mutant TNF- ⁇ in which a part of the amino acid is substituted with another amino acid may be used.
  • TNF- ⁇ is usually present in trimeric form under physiological conditions.
  • TNF- ⁇ derived from a target administration animal can also be used.
  • the pullulan used for the preparation of cholesterol pullulan in the present invention has a mass average molecular weight of 10,000 to 1,000,000 daltons, preferably 50,000 to 500,000 daltons, 75,000 to 250,000 daltons. Things are more desirable. Considering that the TNF- ⁇ -cholesterol pullulan complex of the present invention shown below is for pharmaceutical use, it is desirable that the molecular weight is uniform, and the value obtained by dividing the mass average molecular weight by the number average molecular weight is more than 2.5. Small ones are desirable, 2.0 or less are more desirable, and 1.5 or less are particularly desirable.
  • the pullulan used for the preparation of cholesterol pullulan in the present invention can be prepared by a method such as a fermentation method or a synthesis method regardless of its origin or origin. From the viewpoint of economy, the fermentation method is desirable.
  • Commercially available pullulan manufactured by Hayashibara Co., Ltd.
  • gel filtration chromatography or fractional precipitation described in JP-A-57-141401 is applied to such pullulan as a raw material.
  • the molecular weight distribution may be narrowed.
  • a part of the hydroxyl group of the glycosyl group constituting the pullulan molecule has the following formula: —O— (CH 2 ) m CONH (CH 2 ) n NH—CO—O—R (wherein R Is a cholesteryl group or an analog thereof; m is 0 or 1; n is an integer of 2 to 6).
  • R Is a cholesteryl group or an analog thereof; m is 0 or 1; n is an integer of 2 to 6 a cholesteryl group or an analog thereof; m is 0 or 1; n is an integer of 2 to 6.
  • cholesteryl group 0.5 or more and 10 or less introduced per 100 glycosyl groups constituting the pullulan molecule are used, preferably 1 or more and 3 or less are introduced, and 1 or more and 2 or less are introduced. This is particularly desirable.
  • the amount of cholesteryl group introduced per 100 glucosyl groups of the pullulan molecule can be determined from the proton integration ratio of
  • or its analog should just be introduce
  • commercially available cholesterol pullulan (trade name “PUREBRIGHT CP-100T”, sold by NOF Corporation) can also be used.
  • this commercially available cholesterol pullulan has the following formula: —O—CONH (CH 2 ) 6 NH—CO—O— per 100 hydroxyl groups at the 6-position of a glycosyl group constituting a pullulan molecule having a molecular weight of about 100,000 daltons. It has a structure having 1 or more and 2 or less groups represented by R (wherein R is cholesterol).
  • a complex of cholesterol pullulan and an antigen is usually used to enhance an immune response to the antigen (see, for example, Patent Document 5 and Patent Document 6), for example, a complex of TNF- ⁇ and cholesterol pullulan is used.
  • TNF- ⁇ -cholesterol pullulan complex production of antibody against TNF- ⁇ is not induced even if it is administered to mucosal tissue multiple times. It was found that suppression of adjuvant activity did not occur.
  • the method for preparing the TNF- ⁇ -cholesterol pullulan complex according to the present invention is not particularly limited.
  • the cholesterol pullulan 100 hydroxyl groups at the 6-position of the glucosyl group constituting the pullulan molecule having a molecular weight of 100,000 daltons.
  • the cholesterol pullulan is added to an aqueous solvent such as phosphate buffered saline (PBS) at 50 to 60 ° C. in advance, and the mixture is stirred and mixed. Dissolve completely.
  • PBS phosphate buffered saline
  • TNF- ⁇ dissolved in an aqueous solvent such as PBS is added, and stirred and mixed to be uniform, and then kept at room temperature to 40 ° C., preferably 25 ° C. to 37 ° C. for 2 days to 7 days.
  • one TNF- ⁇ trimer is usually incorporated into the nanoparticles formed by cholesterol pullulan to form a TNF- ⁇ -cholesterol pullulan complex. Is done.
  • the TNF- ⁇ -cholesterol pullulan complex thus prepared can be used as an adjuvant as it is.
  • the TNF- ⁇ -cholesterol pullulan complex used in the present invention is usually prepared by mixing TNF- ⁇ and cholesterol pullulan at a molar ratio of 1: 1 to 30, and more efficiently TNF- ⁇ - A ratio of 1: 2 to 20 is desirable for preparing cholesterol pullulan complex, and a ratio of 1: 3 to 15 is particularly desirable. In the case of such a mixing ratio, almost the entire amount of TNF- ⁇ can be complexed. If the mixing ratio of TNF- ⁇ to cholesterol pullulan is higher than this ratio, the amount of TNF- ⁇ increases. Therefore, there is a high possibility that side effects caused by TNF- ⁇ will occur depending on the dose when used as an adjuvant.
  • a purification step using a gel filtration method or the like is required.
  • the mixing ratio of cholesterol pullulan is higher than this ratio, the proportion of TNF- ⁇ -cholesterol pullulan complex in the total nanoparticles decreases, and the proportion of nanoparticles that do not contain unnecessary TNF- ⁇ as an adjuvant increases. Since it increases, it is not preferable.
  • the particle size of the nanoparticles formed by cholesterol pullulan complexed with TNF- ⁇ prepared by such a method is determined by a commercially available particle size distribution measuring device (trade name “Shimadzu Laser Diffraction Particle Size Distribution Measuring Device (SALD-7100)”). ”, Manufactured by Shimadzu Corporation), it is about 20-100 nm.
  • SALD-7100 Shimadzu Laser Diffraction Particle Size Distribution Measuring Device
  • the formation of the TNF- ⁇ -cholesterol pullulan complex is due to the fact that the peak of TNF- ⁇ protein used as a raw material decreased or disappeared by gel filtration chromatography, and a new single molecule was found on the polymer side of cholesterol pullulan. This can be confirmed by the appearance of a peak.
  • TNF- ⁇ and cholesterol pullulan are mixed at the appropriate ratio to form a complex, most of TNF- ⁇ forms a complex. Therefore, when the TNF- ⁇ activity of such a solution is measured, Is not detected or only slightly detected. Further, as shown in the examples described later, by adding PBS containing methyl- ⁇ -cyclodextrin to the solution, TNF- ⁇ is released from the complex, and its activity can be detected. .
  • antigen used together with the mucosal administration adjuvant of the present invention but in particular, the target pathogenic microorganism and / or its target by transdermal administration or mucosal administration in humans or non-human vertebrates to be administered.
  • Antigens that can be confirmed to have the ability to induce antibody production effective against infection against subtype pathogenic microorganisms and can be confirmed to be safe even when administered are desirable.
  • antigens include antigens derived from pathogenic microorganisms conventionally used as vaccines for transdermal administration, and antigens derived from allergens that cause allergies used in allergy desensitization therapy. be able to.
  • vaccines such as inactivated vaccines, live vaccines, component (component) vaccines, multivalent vaccines, mixed vaccines, and DNA recombinant vaccines, and antibody production that neutralizes cytotoxins produced by pathogenic microorganisms
  • Antigens such as toxoids that are used for the purpose of induction of the disease are desirable, and vaccines for protecting against infection of pathogenic microorganisms that are infected by the mucosal tissue route according to the properties of the adjuvant of the present invention, which is excellent in the secretory IgA antibody production enhancing action in the mucosal tissue
  • the antigen used as is particularly desirable.
  • respiratory diseases such as influenza, cold, pneumonia, wind shin, measles, otafukaze, yellow fever, dengue fever, Lassa fever, Japanese encephalitis, polio, chickenpox, AIDS, severe acute Respiratory syndrome (SARS), hepatitis such as hepatitis A, hepatitis B, hepatitis C, herpes, cervical cancer, pneumonia, rabies, antigens derived from viruses such as diarrhea and other diseases, tuberculosis Bacteria, Shigella, Cholera, Salmonella typhi, Pest, Haemophilus influenzae, Streptococcus mutans, Polyphyromonas gingivalis, Porphyromonas pathogen Bacteria and ma Pathogenic protozoa, such as the rear, and the like outer membrane proteins such as mycoplasma.
  • respiratory diseases such as influenza, cold, pneumonia, wind shin, measles, otafukaze, yellow fever, dengue
  • surface proteins involved in infection are mutated every year, such as influenza viruses, and existing transdermal vaccines are unable or insufficient to induce blood IgG antibody production that is effective in protecting against infection. It is useful as a pre-pandemic vaccine for rapidly inducing infection-protective ability based on cross-protection reaction against pathogenic microorganisms that cause a global pandemic.
  • it has antigenicity, not only complex proteins such as glycoproteins, but also nucleic acids, polysaccharides, lipids, etc., and partial degradation products containing epitopes that have the ability to induce antibody production effective for infection protection should be used. You can also.
  • the inactivated vaccine includes, for example, cholera vaccine, pertussis diphtheria mixed vaccine, pertussis diphtheria tetanus mixed vaccine, Weil disease autumn gonorrhea mixed vaccine, influenza vaccine, Japanese encephalitis vaccine, dry Japanese encephalitis vaccine, inactivated rabies disease
  • the vaccine include dry tissue culture inactivated rabies vaccine.
  • a live vaccine a pressure ulcer vaccine, a dry pressure ulcer vaccine, a dry cell culture pressure ulcer vaccine, an oral live polio vaccine, a dry attenuated live wind shin vaccine, a dry attenuated otafukase vaccine can be illustrated, for example.
  • Japanese encephalitis vaccine, measles vaccine, rubella vaccine, mycoplasma vaccine, papillomavirus vaccine, rotavirus vaccine and toxoids include, for example, diphtheria toxoid, adult precipitated diphtheria toxoid, precipitated tetanus toxoid, diphtheria tetanus mixed toxoid, precipitated diphtheria tetanus Examples thereof include mixed toxoids and precipitated hub toxoids. These are all antigens and toxoids that are usually used as vaccines for protection against infection and / or prevention of the onset and severity of clinical symptoms due to infected pathogenic microorganisms.
  • allergens include pollen-derived allergens such as cedar and ragweed and mites.
  • antigens to be applied when applied to animals other than humans include antigens derived from pathogenic microorganisms such as foot-and-mouth disease virus, Newcastle disease virus, influenza virus that infects various animals, rabies virus, and anthrax be able to.
  • antigens other than those described above include enzymes, cell surface markers, tumor markers, antibodies and the like used as reagents and clinical diagnostic agents.
  • an antigenic determinant (epitope) portion in an antigen or a substance containing the same may be used.
  • the antigen is a protein or peptide, it is disclosed in, for example, International Publication No. 2004/87767 pamphlet.
  • Synthetic peptides capable of inducing antibody production against B cell epitopes by artificially linking such T cell epitopes having the ability to induce immune responses and B cell epitopes of antigens intended for antibody production Synthetic peptides in which a B cell epitope is linked to a carrier molecule as disclosed in Japanese Patent No. 515006 / may be used.
  • the substance itself is a substance that does not have the ability to induce antibody production even when administered alone, it can induce antibody production when used in combination with the TNF- ⁇ -cholesterol pullulan complex of the present invention.
  • those that have been combined with a carrier molecule or the like to impart antigenicity, or those that can induce antibody production when used in combination with other adjuvants can also be used.
  • the antigen used together with the adjuvant for mucosal administration of the present invention is not limited in its production method or origin, and microorganisms expressing the antigen and products containing the antigen produced by the microorganism can be used. It is also possible to use those produced by chemical synthesis or those chemically synthesized. When the target antigen itself is toxic to the living body, such as tetanus, diphtheria toxin, amyloid- ⁇ peptide, or when it is necessary to use infectious microorganisms such as polio, these are usually used. Detoxified or attenuated or peptides having a partial sequence thereof can also be used.
  • antigens may be used as a crude extract, a partially purified product, or a highly purified product as long as it does not cause serious damage when administered to a living body.
  • a purified product of the target antigen for the purpose of producing antibodies against only a specific antigen, or from the viewpoint of reducing the occurrence of side effects, it is desirable to use a purified product of the target antigen as highly as possible.
  • a T cell epitope linked or bound to a carrier molecule or the like to enhance antigenicity is used.
  • an adjuvant other than the TNF- ⁇ -cholesterol pullulan complex can be used in combination.
  • the antigen used for the production of a commercially available vaccine preparation may be used as it is. In particular, when an inactivated vaccine or a live attenuated vaccine is used as an antigen, it is desirable to use it as it is.
  • the administration route in the case of separately administering the mucosal administration adjuvant and antigen according to the present invention may be either a mucosal tissue route or a transdermal route, but for pathogenic microorganisms whose infection route is mucosal tissue,
  • mucosal administration into the nasal cavity or oral cavity is desirable.
  • Intranasal administration is more desirable.
  • administration by mucosal tissue or transdermal route such as subcutaneous, intradermal, intramuscular can be selected depending on the situation.
  • the dose of the antigen is not particularly limited as long as it is a dose that can enhance antibody production to the living body by using the TNF- ⁇ -cholesterol pullulan complex of the present invention in combination. Depending on the strength, it may be adjusted as appropriate.
  • 0.01 ⁇ g to 100 ⁇ g, preferably 0.1 ⁇ g to 10 ⁇ g may be administered as an antigen mass per adult with a body weight of 50 kg.
  • the dose of antigen is less than 0.01 ⁇ g, antibody production may not be induced, and even when doses exceeding 100 ⁇ g are administered, an effect commensurate with the dose may not be observed.
  • the administration target is a vertebrate other than a human, the dosage may be appropriately adjusted in consideration of the volume of the administration site based on the dosage to human.
  • antigen used when mixed with the mucosal administration adjuvant according to the present invention is a method that can enhance the production of a specific antibody against the antigen. It may be appropriately determined in consideration of the administration route, administration method, animal to be administered and the like. Usually, when an antigen used in an existing vaccine is used, once to several times a day to once a week to What is necessary is just to administer about 1 to 5 times at intervals of about once a month. Usually, sensitization necessary for protection against infection is established by a single administration, but when used in the epidemic of highly contagious pathogenic microorganisms such as influenza virus, or antigenicity has been mutated to cause a pandemic.
  • the adjuvant for mucosal administration of the present invention when administering an antigen to a human or an animal by mucosal administration or other site by a transdermal route, before or after administration of the antigen, more preferably simultaneously with administration of the antigen, even when administered to a mucosal tissue other than the administration site of the antigen, or transdermally administered to other sites, it can exert an excellent adjuvant effect, but the enhancement effect of antibody production is strong From this point, it is desirable to administer to the antigen administration site. From the viewpoint of enhancing production of secretory IgA antibody, ease of administration, and reducing the risk of inducing side effects, mucosal administration is desirable, nasal or buccal administration is desirable, and nasal administration is particularly desirable.
  • the antigen When administered separately from the antigen, it is preferably administered within 0 to 4 hours before administration of the antigen, more preferably within 0 to 2 hours, and particularly preferably at the same time as possible. It is possible to administer after antigen administration, but in this case as well, it is necessary to administer as soon as possible after antigen administration, preferably within 0 to 3 hours. Adjuvant effect may not be fully exerted if administration is carried out after an antigen administration for a long time.
  • the mucosal administration adjuvant of the present invention is provided in the form of a composition containing TNF- ⁇ -cholesterol pullulan complex as an active ingredient, or in the form of a composition mixed with an antigen for the purpose of enhancing antibody production. . Moreover, it is good also as a form of the composition which mixed the appropriate quantity with the antigen at the time of use.
  • the mucosal administration adjuvant according to the present invention or the composition containing the mucosal administration adjuvant and antigen is used for one or more pharmaceutically acceptable formulations other than these components.
  • Pharmaceutical compositions can also be prepared by combining additives.
  • pharmaceutical additives include water, physiological saline, phosphate buffered saline (PBS), solvents such as alcohol, reducing carbohydrates such as glucose and maltose, ⁇ , ⁇ -trehalose, sucrose, and cyclos.
  • Non-reducing carbohydrates such as dextrin, or ⁇ , ⁇ -trehalose carbohydrate derivatives such as ⁇ -glucosyl ⁇ , ⁇ -trehalose, ⁇ -maltosyl ⁇ , ⁇ -trehalose, sorbitol, mannitol, maltitol, maltotriitol Sugar alcohols such as agar, pullulan, guar gum, gum arabic, methyl cellulose, polyvinylpyrrolidone and other water-soluble polymers, lipids, amino acids such as sodium L-glutamate and salts thereof, buffers, stabilizers, antibacterial agents, absorption promotion Agent, surfactant, preservative, antioxidant, solubilizer, pH adjuster, fragrance, nutritional functional food, Examples include quasi-drugs or active ingredients of pharmaceuticals, foods other than those mentioned above, food additives, quasi-drug additives, pharmaceutical additives, etc., and one or more of these may be used in appropriate combination Can do.
  • an adjuvant other than TNF- ⁇ -cholesterol pullulan according to the present invention can be blended.
  • ⁇ , ⁇ -trehalose and ⁇ , ⁇ -trehalose saccharide derivatives which have a high stabilizing effect on TNF- ⁇ and other additives, are preferred.
  • a component having a high affinity for a cholesteryl group such as a protein other than an antigen or a carbohydrate such as methyl ⁇ -cyclodextrin, releases TNF- ⁇ from the TNF- ⁇ -cholesterol pullulan complex. It is not preferable as an additive.
  • the TNF- ⁇ -cholesterol pullulan complex resulting from the large amount of the antigen at the time of preparation.
  • the concentration of the antigen mixed with the TNF- ⁇ -coreterol pullulan complex needs to be as low as possible so that the release of TNF- ⁇ from the mixture does not occur.
  • the antigen concentration in the composition is 10 mg / ml or less. What is necessary is just to mix so that it may become 5 mg / ml or less, and it is more desirable to set it as 1 mg / ml or less.
  • the mucosal administration adjuvant of the present invention or the composition containing such a mucosal administration adjuvant and an antigen includes solutions, syrups, freeze-dried products, powders, granules, tablets, troches, sublingual tablets, creams. From the dosage forms such as ointments and gels, it may be appropriately selected in consideration of the administration subject, administration method, storage method of the preparation and transport method. Further, the mucosal administration adjuvant according to the present invention or the composition containing the same can be penetrated into the site where the antigen-presenting cells exist by using a penetration enhancer or iontophoresis method into the skin or tissue as necessary. Can also be promoted. Moreover, the formulation which concerns on this invention can also be administered transmucosally by making it into the form of various food / beverage products, such as tablet confectionery, a candy, and a soft drink, if it is taken orally.
  • the method of administering the pharmaceutical composition containing the adjuvant for mucosal administration according to the present invention as an active ingredient, or the pharmaceutical composition containing such an adjuvant for mucosal administration and an antigen as active ingredients Any method may be used as long as the mucosal administration adjuvant according to the present invention or the composition containing the adjuvant and the antigen as active ingredients can reliably reach the administration site.
  • an appropriate amount may be dropped on the mucous membrane using a syringe or syringe, orally taken, applied to the mucosa in the form of a cream or gel, or guided to the administration site with a catheter or the like.
  • sprayed in the form of a mist with a spray or nebulizer on the nose or throat or may be aspirated into the trachea, bronchus or lung, or administered into the large intestine in the form of a suppository.
  • a spray or nebulizer on the nose or throat
  • nebulizer on the nose or throat
  • trachea trachea
  • bronchus or lung or administered into the large intestine in the form of a suppository.
  • an appropriate administration method depending on the administration site and administration route, such as a syringe, catheter, infusion, etc. Can do.
  • composition containing the adjuvant for mucosal administration of the present invention as an active ingredient or the composition for enhancing antibody production containing such an adjuvant for mucosal administration and an antigen as active ingredients is one or more other pharmaceutical compositions It can also be used simultaneously or sequentially.
  • a pharmaceutical composition containing the mucosal administration adjuvant according to the present invention as an active ingredient may be administered, and after administering the pharmaceutical composition, another pharmaceutical composition may be administered.
  • the pharmaceutical composition and the chemotherapeutic agent may be administered simultaneously.
  • Other pharmaceutical compositions vary depending on the target disease, but examples include other vaccines, chemotherapeutic agents, antibody drugs, antisense nucleic acid drugs, siRNA drugs, and the like.
  • the use of the adjuvant for mucosal administration according to the present invention may be determined as appropriate in consideration of the ability to induce antibody production of the antigen, the type of disease, administration route, administration method, animal to be administered, etc. Administered. Specifically, for example, when using an antigen used in an existing vaccine, the usage of the vaccine may be followed, usually once to several times a day, preferably at intervals of 1 to 30 days, preferably The administration may be performed 1 to 14 days, particularly preferably 1 to 14 days, and 1 to 5 times, preferably 2 to 4 times.
  • the dosage is 0.1 to 5,000 ⁇ g / time, preferably 0.1 to 2,500 ⁇ g / time as TNF- ⁇ protein for an adult weighing 50 kg as TNF- ⁇ protein. Multiple doses, more preferably 0.1-100 ⁇ g / dose.
  • the adjuvant effect may not be exhibited at doses less than 0.1 ⁇ g / dose, and even if doses exceeding 5,000 ⁇ g / dose are administered, the dose will be commensurate with the dose. Adjuvant effect may not be obtained.
  • the dosage may be appropriately adjusted in consideration of the volume in the nasal cavity based on the dosage to human.
  • the adjuvant of the present invention is highly versatile and can be administered to mucosal tissues and blood in the whole body such as saliva and nasal fluid by administration to mucosa such as nasal administration together with various antigens including antigens used as vaccines. Furthermore, the production of antibodies specific to the administered antigen, in particular, secretory IgA antibodies, is significantly enhanced. Since the secretory IgA antibody has a high cross-protective ability, it is extremely effective as an adjuvant for enhancing antibody production against an antigen for mucosal administration, and can induce the cross-protective ability.
  • the organism When used in combination, the organism can protect against such microorganisms and closely related (subtype) microorganisms and / or develop diseases caused by microbial infection (including diseases caused by toxic substances derived from microorganisms) Severe prevention can be efficiently imparted. Moreover, in the case of mucosal administration, the risk of inducing antibody production against TNF- ⁇ itself is extremely low.
  • the adjuvant of the present invention is administered together with the antigen to a site other than the mucosal tissue by a transdermal route, the IgG and / or IgM antibody specific to the administered antigen and the production of IgA antibody are produced in the blood. Therefore, the adjuvant of the present invention is extremely effective as an adjuvant for enhancing antibody production against various antigens administered by a transdermal route to a site other than mucosal tissue.
  • the TNF- ⁇ -cholesterol pullulan complex of the present invention is not only useful as an adjuvant, but can maintain sustained release even when administered by a transdermal route to a site other than a mucosal tissue. Compared to the administration of ⁇ , the same effect can be achieved at a low dose and the occurrence of side effects can be reduced. Therefore, breast cancer, liver cancer, renal cancer alone or in combination with other therapeutic agents For the treatment of TNF- ⁇ -sensitive diseases such as malignant tumors and viral diseases such as melanoma and mycosis fungoides, and also as a biological preparation for improving vascular permeability Can do.
  • TNF- ⁇ may diffuse into the tissue quickly from the administration site. From these preliminary experiments, it was suggested that even when TNF- ⁇ was administered intranasally, TNF- ⁇ was inactivated or disappeared in a short time at the administration site, so that sufficient adjuvant activity could not be exhibited. . Therefore, in order to stably hold TNF- ⁇ on the mucosal tissue for a long period of time during mucosal administration, studies were made on its DDS (drug delivery system) or stabilization method. That is, for the DDS conversion or stabilization of TNF- ⁇ , a complex with cholesterol pullulan was prepared by the following method.
  • adsorption to a bioabsorbable hydrogel which is widely used as a DDS or stabilizer
  • encapsulation in a subcutaneously absorbable lyotropic liquid crystal Nacocube
  • encapsulation in a liposome were performed.
  • TNF- ⁇ was converted to DDS by randomly modifying the amino group of the TNF- ⁇ molecule using water-soluble high-molecular polyethylene glycol (hereinafter referred to as “PEG”).
  • PEG water-soluble high-molecular polyethylene glycol
  • MEM medium containing 1% by volume FCS fetal serum
  • TNF- ⁇ bioabsorbable hydrogel inclusion preparation Sheets of two types of commercially available gelatin-based bioabsorbable hydrogels (trade names “MedGel” PI5 and PI9, sold by Medgel Co., Ltd.) used for DDS conversion of physiologically active substances are about 4 mm ⁇ about 12 mm each ( The weight was measured with a microbalance and placed in a polypropylene tube (trade name “Falcon 2059 tube”, sold by Becton Dickinson). TNF- ⁇ (1.454 mg / ml) was dripped onto a sheet at 20 ⁇ l / gel (30 ⁇ g / gel as TNF- ⁇ protein) and allowed to stand at 4 ° C. overnight. Was prepared.
  • TNF- ⁇ subcutaneously absorbable lyotropic liquid crystal inclusion body preparation 30 ml of TNF- ⁇ (manufactured by Hayashibara Biochemical Laboratories, Inc., 7.54 mg / ml TNF- ⁇ protein) and 39.57 ⁇ l of glycerin dissolved in PBS are added to a 1.5 ml polypropylene tube (trade name “Eppendorf tube”) , Sold by Eppendorf), and vigorously stirred and mixed using a vortex mixer.
  • Eppendorf tube polypropylene tube
  • the subcutaneously absorbable lyotropic liquid crystal inclusion body is used as a gel base for cosmetics having a transdermal absorption promoting action (for example, Yamaguchi Y. et al., “Pharmacizie”, Vol. 61, pages 112-116 (2006). Year)).
  • TNF- ⁇ (manufactured by Hayashibara Biochemical Laboratories, Inc., TNF- ⁇ protein 1.454 mg / ml) was diluted with PBS not containing potassium (PBS (K-)), and the concentration of TNF- ⁇ protein was 363.5 ⁇ g. 2 ml each of an aqueous solution having a concentration of 632 ⁇ g / ml and 632 ⁇ g / ml was prepared.
  • Triton-X100 solution 0.04 ml of a 1.05 mass% Triton-X100 solution was added to 0.1 ml of the liposome-encapsulated TNF- ⁇ -containing solution subjected to the gel filtration column chromatography and 0.1 ml of the liposome fraction eluted from the column, respectively.
  • fetal calf serum (FCS) -containing MEM medium trade name “Eagle MEM medium“ Nissui ”, code number 05902
  • FCS fetal calf serum
  • the titer of TNF- ⁇ in each solution was measured by a bioassay based on cytotoxic activity against mouse LM cells after dilution with kanamycin and phenol red (not available from Nissui Pharmaceutical Co., Ltd.).
  • the DDS conversion rate (mass%) of TNF- ⁇ in the preparation prepared by DDS conversion of the five types of TNF- ⁇ prepared above, and a half of the DDS-converted TNF- ⁇ protein are released in physiological saline.
  • Time excluding encapsulated TNF- ⁇ and PEG-modified TNF- ⁇ in liposomes
  • Table 1 The storage stability when stored is summarized in Table 1.
  • the DDS conversion rate was obtained by dividing the amount of TNF- ⁇ protein in the preparation DDS converted by Bradford method by the amount of TNF- ⁇ protein used for DDS conversion and multiplying by 100.
  • the deactivation rate (%) at the time of DDS conversion was determined by adding TDS- ⁇ converted to DDS, methyl- ⁇ -cyclodextrin in the case of TNF- ⁇ -cholesterol pullulan complex, and physiological saline in the case of lyotropic liquid crystals.
  • an emulsifier is added and TNF- ⁇ is released.
  • the physiological activity and the protein amount are measured by the Bradford method, the physiological activity is divided by the protein amount, and the released TNF is released.
  • Specific activity of - ⁇ JRU / mg protein
  • This specific activity was calculated by dividing by the specific activity of TNF- ⁇ (2 ⁇ 10 6 JRU / mg protein) in the absence of inactivation, multiplying by 100, and subtracting from 100.
  • the PEG-modified TNF- ⁇ preparation was similarly calculated based on the results of directly measuring its physiological activity and protein amount. In this case, when there is no deactivation of TNF- ⁇ at the time of DDS conversion, the deactivation rate is 0%.
  • the storage stability is determined by storing the DDS sample at the temperature conditions shown in Table 1, sampling every 7 days, measuring the TNF- ⁇ activity, and measuring the activity measured for each sample immediately after the DDS conversion to 100. %, The period during which the activity is maintained at 90% or more.
  • TNF- ⁇ since PEG-modified TNF- ⁇ is covalently bonded to PEG and TNF- ⁇ , TNF- ⁇ is not released, so a release time measurement test was not performed. In addition, since most of TNF- ⁇ was inactivated when encapsulated in liposomes, the release time measurement test was not performed. Furthermore, in the adsorption to the hydrogel, the total amount of the added TNF- ⁇ solution was absorbed by the gel, so that the DDS conversion rate seemed to be 100%, but the DDS-converted TNF- ⁇ protein was 2 min. The time until one amount is released in physiological saline is 0.5 hours or less. Actually, TNF- ⁇ was not DDS-converted. Also, TNF- ⁇ was not included in liposome encapsulation and PEG modification. Most of ⁇ was inactivated. Therefore, all of these methods were judged to be unsuitable for TDS- ⁇ conversion to DDS, and no storage stability test was conducted.
  • TNF- ⁇ As is apparent from Table 1, in the method of forming a complex of TNF- ⁇ and cholesterol pullulan, almost the entire amount of TNF- ⁇ protein becomes a complex, and the inactivation of TNF- ⁇ at the time of complex formation is also physiological. There was no release of TNF- ⁇ protein in saline, and its storage stability was excellent (Test Group 1). In contrast, when adsorbed to the hydrogel, almost all of the TNF- ⁇ protein used was adsorbed, but TNF- ⁇ was released from the gel in a short time in the physiological saline (Test Group 2).
  • TNF- ⁇ When encapsulated in lyotropic liquid crystal, almost the entire amount of TNF- ⁇ was converted to DDS, and there was no inactivation during conversion to DDS, and the storage stability was excellent (Test Group 3).
  • TNF- ⁇ When encapsulated in lyotropic liquid crystal, TNF- ⁇ was released in a short time because the liquid crystal was easily dissolved in physiological saline.
  • the amount of TNF- ⁇ to be encapsulated was as extremely low as 2% or less of the TNF- ⁇ protein used, and about 60% by mass of TNF- ⁇ was inactivated at the time of encapsulation (test group). 4).
  • TNF- ⁇ protein used was modified with PEG, but the inactivation rate of TNF- ⁇ was 90% or more, and cells per TNF- ⁇ protein amount.
  • the disorder activity (specific activity) was reduced to 1/10 or less compared to TNF- ⁇ before PEG modification (Test Group 5). From this result, since TNF- ⁇ was not adsorbed to the gel by adsorption to the hydrogel, it was judged unsuitable as a DDS conversion method for TNF- ⁇ . In addition, the efficiency of encapsulating in liposomes was extremely low, and TNF- ⁇ was inactivated at the time of encapsulating. Therefore, it was judged unsuitable as a DDS conversion method for TNF- ⁇ .
  • the present inventor confirmed by another experiment that PBS containing methyl- ⁇ -cyclodextrin at a concentration of 200 mg / ml was used to release TNF- ⁇ encapsulated in cholesterol pullulan complex from the complex.
  • PBS containing methyl- ⁇ -cyclodextrin at a concentration of 200 mg / ml was used to release TNF- ⁇ encapsulated in cholesterol pullulan complex from the complex.
  • PBS containing methyl- ⁇ -cyclodextrin at a concentration of 200 mg / ml was used to release TNF- ⁇ encapsulated in cholesterol pullulan complex from the complex.
  • PBS containing methyl- ⁇ -cyclodextrin at a concentration of 200 mg / ml was used to release TNF- ⁇ encapsulated in cholesterol pullulan complex from the complex.
  • 12 mg / ml in the case of interferon- ⁇ -cholesterol pullulan complex and about 20 times the concentration in the case of TNF- ⁇ -cholesterol
  • the TNF- ⁇ -cholesterol pullulan complex prepared above is about 5% in order to release 50% of TNF- ⁇ from the TNF- ⁇ -cholesterol pullulan complex in a high concentration protein solution such as serum.
  • the interferon is completely released within an extremely short time within 30 minutes, and TNF- ⁇ Since the DDS effect as in the case of the complex was not observed, the DDS conversion of the cytokine by complexing with cholesterol pullulan has selectivity for the cytokine used, and TNF- ⁇ is a cholesterol pullulan complex. It was found that this is a suitable cytokine for DDS conversion.
  • the DDS-modified TNF- ⁇ prepared in Example 1 is administered to the mucosa simultaneously with the antigen.
  • the effect on antigen-specific antibody production was investigated.
  • an infection model system for such pathogenic microorganisms to humans assuming infection protection in the nasal mucosa and upper respiratory tract mucosa as typical natural infection routes of pathogenic microorganisms, representative pathogenic microorganisms of such infection path As an influenza virus selected.
  • influenza HA vaccine As an antigen, commercially available influenza HA vaccine (trade name “influenza HA vaccine”, as production strains, A / Brisbane / 59/2007 (H1N1) (A USSR type), A / ought / 716/2007 (H3N2) strain (A Hong Kong type), a preparation using B / Brisbane / 60/2008 strain, sold by Denka Seken Co., Ltd.) and diluted with physiological saline.
  • ⁇ Test method> ⁇ Nasal administration> Seventy seven BALB / c mice (Charles River Japan, female, 8 weeks old) were randomly divided into 11 groups of 7 mice, and after 1 week of pre-breeding, each of the 5 groups had 7 mice Influenza HA vaccine used (hereinafter sometimes referred to as “influenza vaccine”), TNF- ⁇ -cholesterol pullulan complex preparation prepared in Example 1 used as an adjuvant, TNF- ⁇ lyotropic liquid crystal inclusion body sample And PEG-modified TNF- ⁇ preparation (Test Groups 5, 7, and 8).
  • influenza vaccine TNF- ⁇ -cholesterol pullulan complex preparation prepared in Example 1 used as an adjuvant
  • cholera toxin B subunit confirmed to have an influenza vaccine and mucosal adjuvant activity (sold by Wako Pure Chemical Industries, Ltd., lot number CDH6462 (hereinafter, cholera toxin B subunit may be abbreviated as “CTB” in some cases).
  • Test group 9 The administration was performed by mixing the adjuvant and the influenza vaccine so that the TNF- ⁇ protein, the cholera toxin B subunit and the influenza vaccine protein were in the dosages shown in Table 2, The administration schedule was once a week for 4 weeks (4 administrations), and 15 ⁇ l each was administered into the right and left nasal cavities (total 30 ⁇ l / animal / dose). The control was mixed with saline and administered, combined with rec-TNF- ⁇ and this.
  • Rec-TNF- ⁇ was used to prepare rec-TNF- ⁇ -cholesterol pullulan complex under the same reaction conditions as the preparation of TNF- ⁇ -cholesterol pullulan complex in Example 1, and nasally administered using these preparations
  • the test for confirming the adjuvant activity was carried out (Test group 4 and Test group 6).
  • Rec-TNF- ⁇ is a DNA encoding wild-type TNF- ⁇ (see, for example, the DNA sequence of wild-type TNF- ⁇ represented by SEQ ID NO: 1 in the sequence listing described in JP-A No. 2004-2251) Is introduced into a commercially available plasmid vector, this plasmid is introduced into Escherichia coli (BL21DE3 strain) according to a conventional method, the resulting transformant is cultured, and the culture is subjected to affinity chromatography, ion exchange chromatography, gel What was purified using filtration chromatography or the like (manufactured by Hayashibara Biochemical Laboratories, Inc., specific activity of about 2 ⁇ 10 6 JRU / mg protein) was used.
  • mice (Nippon Charles River Co., Ltd., female, 8 weeks old) were randomly divided into 2 groups of 7 mice, and after 1 week of preliminary breeding, As an influenza vaccine (test group 10). The remaining 7 mice per group were administered adjuvant TNF- ⁇ -cholesterol pullulan complex and influenza vaccine (Study Group 11).
  • the adjuvant and influenza vaccine were mixed so that the TNF- ⁇ protein and the influenza vaccine protein were in the dosages shown in Table 2, and the 2nd and 4th weeks after the start of breeding (the first time in the case of nasal administration) And 100 ⁇ l / animal / dose subcutaneously in the back of the mice (study group 11) in the same administration schedule as the third administration, twice the number of administrations).
  • physiological saline and influenza vaccine were mixed so that the dosage shown in Table 2 was obtained, and the second and fourth weeks after the start of breeding (the same administration as the first and third administration in the case of nasal administration) 100 ⁇ l / animal / dose was administered subcutaneously to the back of the mice (study group 10).
  • Example 1 From the results of Example 1, among the TNF- ⁇ converted to DDS, it was not converted to DDS by adsorption to hydrogel, and the encapsulation in liposome had a very high DDS conversion rate (encapsulation rate in liposome). Since it was found that TNF- ⁇ was inactivated, it was considered difficult to convert TNF- ⁇ into DDS by these methods, and the adjuvant action was not tested. In addition, when encapsulated in lyotropic liquid crystals, TNF- ⁇ is encapsulated in lyotropic liquid crystals, unlike adsorption to hydrogel, and in mucosal administration that can be administered without mixing with an aqueous solvent, the liquid crystals are in mucosal tissue. Since the ratio of contact with body fluid (mucus) is low above, it was considered that TNF- ⁇ could be retained at the site of administration for a relatively long period of time, and was subjected to an adjuvant action test.
  • mice After 4 weeks of nasal administration or 1 week after the end of the second subcutaneous administration, mice were anesthetized with ether and blood and nasal washes were collected in the usual manner.
  • IgA antibody specific for the contained influenza vaccine and Enzyme antibody method (EIA) based on HRPO color development reaction using influenza vaccine protein as solid phase, horseradish peroxidase (HRPO) -labeled anti-mouse IgG antibody or IgA antibody, and orthophenylenediamine as color development reagent ).
  • Influenza vaccine protein-specific IgG antibody (hereinafter sometimes referred to as “blood IgG antibody”) in the serum of mice of test groups 1 to 9 and influenza vaccine protein-specific IgA antibody in the nasal lavage fluid (antibody titer) : U / ml) was calculated based on the antigen-specific antibody amount of a standard product prepared by the following method. The results are shown in Table 2. The collected blood was centrifuged (5,000 rpm, 8 minutes), and serum was collected and used for measurement. For the nasal wash, 250 ⁇ l of physiological saline was injected into the left and right nasal cavities of each mouse (total 500 ⁇ l / mouse), collected, and then centrifuged (5,000 rpm, 8 minutes), and the supernatant was measured. Using.
  • influenza vaccine protein was 0.3 ⁇ g / 30 ⁇ l and cholera toxin B subunit was 0.8 ⁇ g / 30 ⁇ l.
  • 1 week after Freund's solution was mixed continuously into the right and left nasal cavities at 15 ⁇ l / animal / dose each (total 30 ⁇ l / animal / dose), once a week for 4 weeks (4 times in total).
  • Influenza vaccine suspended in complete adjuvant was intraperitoneally administered as an influenza vaccine protein at 0.3 ⁇ g / 300 ⁇ l / animal.
  • an influenza vaccine suspended in Freund's incomplete adjuvant was intraperitoneally administered as an influenza vaccine protein at 0.3 ⁇ g / 300 ⁇ l / mouse.
  • both mice were blood-collected under ether anesthesia, serum was separated and mixed, and this was used as a standard for influenza vaccine protein-specific IgG antibody.
  • intranasal washings were collected from both mice and mixed to obtain a standard product of influenza vaccine protein-specific IgA antibody.
  • these standards are appropriately diluted and subjected to EIA for quantification of specific IgG antibody or IgA antibody against influenza vaccine protein using the above-described influenza vaccine protein as a solid phase, the color development value (absorbance) by HRPO is 0.1.
  • the amount of influenza vaccine protein-specific IgG antibody or IgA antibody contained in a standard product with a dilution ratio of 1 was defined as 1 unit / ml (antibody titer: U / ml), respectively.
  • the specific IgG antibody amount was 1 U / ml when the serum was diluted 2 million times
  • the specific IgA antibody amount was 1 U / ml when the nasal wash was diluted 192 times.
  • the detection limit of the antibody in this measurement system is 6 U / ml for IgA antibody and 21 U / ml for IgG antibody.
  • Detection of IgA antibody and IgG antibody is also possible in the antibody titer measurement system for various antigens in the following examples.
  • the sensitivity was a detection limit value almost the same as that in this example.
  • the antibody titer was expressed as “0 U / ml”.
  • influenza vaccine In terms of IgA antibody production, nasal administration of influenza vaccine and TNF- ⁇ -cholesterol pullulan complex was the highest, and influenza vaccine was administered without TNF- ⁇ and other adjuvants simultaneously and without adjuvant. It was significantly enhanced for any of the cases.
  • IgG antibodies in blood the highest was when influenza vaccine and TNF- ⁇ -cholesterol pullulan complex were administered (Study Group 5), followed by TNF- ⁇ -lyotropic liquid crystal inclusions administered simultaneously via nasal administration (Test group 7). Even when the influenza vaccine was administered without an adjuvant (Test Group 2), production of secretory IgA antibody was observed although it was weak.
  • the production of secretory IgA antibody was observed either when the influenza vaccine was administered without an adjuvant (Test Group 10) or when administered simultaneously with the TNF- ⁇ -cholesterol pullulan complex (Test Group 11).
  • the production of blood IgG antibody was enhanced in all cases, and was significantly enhanced by co-administration with TNF- ⁇ -cholesterol pullulan complex (Test Group 11).
  • an influenza vaccine and TNF- ⁇ -cholesterol pullulan (test group 5) or rec-TNF- ⁇ -cholesterol pullulan (test group 6) are administered simultaneously via the nasal route, specific intranasal IgA antibodies and blood There was no difference in the amount of specific IgG antibody produced.
  • Example 2 ⁇ Effect of frequency of administration of TNF- ⁇ -cholesterol pullulan complex on antibody production>
  • TNF / CHP the TNF- ⁇ -cholesterol pullulan complex among the TDS- ⁇ converted to DDS used in the test showed the strongest adjuvant action, and Since it was also excellent in terms of safety, the influence of the number of administrations on antigen-specific antibody production was examined. That is, Example 2 except that the number of administrations of the preparation in which the TNF- ⁇ -cholesterol pullulan complex and the antigen (influenza vaccine) were mixed was 1 to 4 times and nasally administered using the combinations shown in Table 3. Under the same conditions, the amount of secretory IgA antibody and blood IgG antibody in the nasal lavage fluid specific to influenza vaccine when administered to BALB / c mice were measured in the same manner as in Example 2. The results are shown in Table 3.
  • TNF- ⁇ -cholesterol pullulan complex is used as an adjuvant (Study Group 14)
  • antigen alone Test Group 6
  • TNF- ⁇ is used as an adjuvant
  • the shortening of the period necessary for inducing production of secretory IgA antibody effective for such infection protection can impart infection protection ability to the administered individual in a short period of time, and is therefore used as a means for suppressing the spread of infectious diseases. It has been shown to be extremely useful as an adjuvant for vaccines.
  • TNF- ⁇ -cholesterol pullulan complex and antigen The effect of the dose of TNF- ⁇ -cholesterol pullulan complex and antigen on the production of antigen-specific IgA antibody and IgG antibody was examined. That is, using the combination shown in Table 4 for the dosage of the preparation prepared by mixing the TNF- ⁇ -cholesterol pullulan complex prepared in Example 1 and the antigen (influenza vaccine), the administration schedule once a week for 3 weeks Except for intranasal administration (3 times in total), the amount of IgA antibody and blood IgG antibody in the nasal lavage fluid specific for influenza vaccine when administered to BALB / c mice under the same conditions as in Example 2. The measurement was performed in the same manner as in Example 2. The results are shown in Table 4.
  • TNF- ⁇ -cholesterol pullulan complex (as TNF- ⁇ protein) / mouse at a dose of 0.1 to 10 ⁇ g / animal / dose of antigen. It was found that co-administration of / times had better efficiency in enhancing antibody production. When the antigen amount was 0.1 ⁇ g or more / animal / dose, no enhancement of antibody production commensurate with the dose was observed.
  • the TNF- ⁇ -cholesterol pullulan complex and the antigen Only weak antibody production was observed compared to the case of administration of.
  • the volume of the nasal cavity of mice is usually about 30 ⁇ l, and the volume of the human nasal cavity is said to be 2 ml (dwarf) to 4 ml (adult). Therefore, considering the ratio of nasal volume, antigen and TNF- ⁇ -cholesterol When the pullulan complex is applied to a human as a vaccine, the dose per administration is about 100 times the effective dose in mice.
  • mice administered with TNF- ⁇ and the antigen TNF- ⁇ and the antigen
  • mice administered with TNF- ⁇ , cholesterol pullulan and the antigen Test Group 35
  • the hairs were fuzzy, weak and seemingly abnormal.
  • no abnormal appearance or death in mice treated with TNF- ⁇ -cholesterol pullulan complex and antigen was found throughout the administration period. It has been clarified that no serious side effects occur even when the antigen and the TNF- ⁇ -cholesterol pullulan complex are administered nasally at the same time.
  • cholesterol pullulan itself has no adjuvant activity (see, for example, “Nature materials”, Vol. 9, No. 7, pages 572-578 (2010)), although it is weak in this test system. It became clear that there was an adjuvant activity.
  • the TNF- ⁇ -cholesterol pullulan complex is extremely useful as an adjuvant for nasal administration of an antigen, and is an excellent antigen-specific blood IgG antibody and / or secretory IgA antibody. Since it was confirmed to have a production enhancing action, the effect of the antibody whose production was induced by such an adjuvant action on hemagglutination inhibition, which is a direct indicator of the ability to protect against influenza virus infection, was examined.
  • Example 2 administration of the physiological saline simultaneously with administration of the antigen (influenza vaccine) (test group 2), TNF- ⁇ administration group (test group 3), administration of TNF- ⁇ -cholesterol pullulan complex Sera collected from the group (test group 5) and the cholera toxin B subunit administration group (test group 9) were used to measure the hemagglutination inhibition activity using a commercially available in-vitro diagnostic drug (trade name “influenza virus”). HI reagent “Seiken” (sold by Denka Seiken Co., Ltd.) was used.
  • the determination is that the hemagglutination inhibitory activity is observed when the dilution ratio of the serum is 10 times or more (“Yes”), and the inhibitory activity is not detected if it is not observed ( "No”).
  • the results are shown in Table 5. Except for the term of hemagglutination inhibition activity in Table 5, the values in Table 2 were directly transferred.
  • TNF- ⁇ -cholesterol pullulan complex is extremely useful as an adjuvant for nasal administration of an antigen, and is useful for preventing infection and preventing onset of disease and its seriousness.
  • the adjuvant action of the TNF- ⁇ -cholesterol pullulan complex is actually in vivo. It was confirmed by using a mouse infection model that is widely used as a model animal for human influenza virus infection that it is useful for induction of the protective ability against infection.
  • mice (Nippon Charles River Co., Ltd., female, 8 weeks old) were randomly divided into 9 groups of 5 each, and the influenza vaccine solution and TNF- ⁇ -cholesterol pullulan complex were simultaneously administered.
  • the administration schedule was 1 to 2 times per week (2 to 4 times in test groups 7 to 9).
  • physiological saline was simultaneously administered once a week, 2 to 4 times (test groups 1 to 3).
  • test groups 1 to 3 As a control 2, an influenza vaccine solution and physiological saline instead of the TNF- ⁇ -cholesterol pullulan complex were simultaneously administered once a week, 2 to 4 times (test groups 4 to 6).
  • the doses of TNF- ⁇ -cholesterol pullulan complex, influenza vaccine and physiological saline were administered nasally at 30 ⁇ l / animal / dose.
  • Influenza vaccine solutions used as antigens are commercially available influenza vaccines (trade name “influenza HA vaccine”, sold by Denka Seiken Co., Ltd., manufactured as A / Brisbane / 59/2007 (H1N1 type) (A Soviet type), A / convinced / 716/2007 (H3N2 type) strain (formulation using A Hong Kong type) and B / Brisbane / 60/2008 strain) as a virus-derived protein of each strain to be 0.3 ⁇ g / 30 ⁇ l Dilute with saline and administer.
  • the TNF- ⁇ protein prepared by the method of Example 1 was diluted with physiological saline to be 5 ⁇ g / 30 ⁇ l and administered. After 1 week of preliminary breeding, administration is started from mice set to 4 doses, administration start time is delayed by 1 week, and administration is also started to mice set to 3 and 2 doses. Was the same in all test groups.
  • influenza virus PR8 strain (H1N1 type), 160 pfu / 50 ⁇ l (corresponding to 10 times the LD 50 amount for 6 to 7-week-old mice) was administered nasally, and then Confirmation of survival and body weight measurement were carried out daily, relative values were determined with the number of mice at the time of virus administration being 100%, and the average value of each group is shown in Table 6.
  • the body weight at the time of virus administration is also shown in Table 6.
  • the relative value of the body weight when it is 100% is obtained, subtracted from 100%, and the average value of each group is shown as the rate of change in body weight in Table 7. In this example, the value of the body weight change rate in Table 7 is negative.
  • Example 6 ⁇ Influence 2 on influenza virus infection by nasal administration of influenza vaccine and TNF- ⁇ -cholesterol pullulan complex>
  • Example 6 it was clarified that the influenza vaccine and TNF- ⁇ -cholesterol pullulan complex can be effectively administered at the same time by nasal administration, so that the ability to protect against influenza virus can be effectively enhanced.
  • a test was conducted in which the usefulness of the TNF- ⁇ -cholesterol pullulan complex as an adjuvant for mucosal administration was compared with that of cholera toxin B subunit, which has been confirmed to be excellent in action and effect as an adjuvant for mucosal administration.
  • mice (Charles River Japan Inc., female, 8 weeks old) were randomly divided into 5 groups of 10 mice and administered nasally with combinations of antigens and adjuvants shown in Tables 8 and 9 And the effects on influenza virus infection were evaluated.
  • adjuvant and antigen were administered 3 times in a once weekly administration schedule
  • influenza virus was administered 1 week after the 3rd administration, and the observation period after virus administration was 15
  • the same method as in Example 6 was performed except that the period was one day.
  • the survival rate is shown in Table 8, and the weight change rate is shown in Table 9.
  • the cholera toxin B subunit used as a positive control (Wako Pure Chemical Industries, Ltd., lot number CDH6462) was diluted with physiological saline to a protein concentration of 0.8 ⁇ g / 30 ⁇ l, and then 0.8 ⁇ g / 30 ⁇ l / The animals / nasal administration was performed.
  • the rate was extremely high at 90% and the rate of change in body weight was also extremely low at about -7% (Test Group 4).
  • the nasal administration of the influenza vaccine and nasal administration of cholera toxin B subunit instead of the TNF- ⁇ -cholesterol pullulan complex the survival rate of the mice was as high as 90%, and the rate of change in body weight was also ⁇ It is extremely low, about 5% (Study Group 5), and there was no significant difference in survival rate or change in body weight between the two groups.
  • TNF- ⁇ -cholesterol pullulan complex was administered with cholera toxin B subunit. The strong adjuvant activity similar to the case was confirmed.
  • influenza virus PR8 strain H1N1 type
  • a / Brisbane / 59/2007 H1N1 type
  • a Soviet type virus contained in the influenza vaccine administered as an antigen differ in antigenicity.
  • the serum of mice immunized with an influenza vaccine that does not contain a protein derived from the influenza virus PR8 strain Since the induction of an IgG antibody that inhibits aggregation was confirmed, the TNF- ⁇ -cholesterol pullulan complex is useful as a mucosal adjuvant that induces cross-protection ability, and causes an antigenic mutation that causes a pandemic.
  • the adjuvant effect by nasal administration of TNF- ⁇ -cholesterol pullulan complex was compared with the adjuvant effect when cholera toxin B subunit was used.
  • the antigen used for the test and the preparation method thereof are shown below.
  • HAV dry tissue culture inactivated hepatitis A vaccine
  • Commercially available dry tissue culture inactivated hepatitis A vaccine (trade name “Aimgen”, manufactured by Chemical and Serum Therapy Laboratories, may be abbreviated as “HAV”). Diluted by adding 0.7 ml. HAV was stored at 4 ° C. after preparation. Immediately before administration, 80 ⁇ l of TNF / CHP (250 ⁇ g / ml as TNF- ⁇ protein) or CTB (40 ⁇ g / ml) was mixed with 40 ⁇ l of HAV (1 ⁇ g / ml as HAV-derived protein) and administered at 30 ⁇ l / animal ( As HAV, 0.01 ⁇ g / animal / time). Nasal administration was performed continuously for 4 weeks (total 4 times) on a once-weekly administration schedule.
  • the administration frequency, administration method, and administration schedule were the same for all antigens.
  • DT diphtheria toxoid
  • DT solution 0.1 mg / ml as diphtheria toxoid protein
  • 80 ⁇ l of TNF / CHP 250 ⁇ g / ml as TNF- ⁇ protein
  • 80 ⁇ l of CTB 40 ⁇ g / ml
  • 30 ⁇ l / animal 1 ⁇ g / animal / dose as diphtheria toxoid protein
  • the mouse was dissected under ether anesthesia, blood and nasal washes were collected, and the antigen-specific IgA antibody and IgG antibody amounts were administered to the mouse in the solid phase. It measured by the enzyme antibody method. The amount of the antibody was separately mixed for each antigen with the antigen used for the test in BALB / c mice and cholera toxin B subunit, and each left and right nasal cavity was 15 ⁇ l / unit (total 30 ⁇ l / unit / unit), Administer once a week for 4 weeks (4 times in total). Similarly, blood and nasal lavage fluid are collected.
  • TNF- ⁇ -cholesterol pullulan complex administration on antibody production against antigens derived from various pathogenic microorganisms 2> Simultaneously, these antigens were administered intranasally in the same manner as in Example 8, except that various commercially available vaccines shown in Table 11 were used as antigens, and TNF- ⁇ -cholesterol pullulan complex or TNF- ⁇ was used as an adjuvant. Then, the effects of nasal administration of TNF- ⁇ -cholesterol pullulan complex as an adjuvant on the production of antigen-specific secretory IgA antibody and blood IgG antibody against the administered antigen were examined. The following antigens were used for the test.
  • Pneumococcal vaccine (trade name “Pneumobax NP”, manufactured by MSD Co., Ltd.), dry BCG vaccine (trade name “dry BCG vaccine”, manufactured by Nippon BCG Co., Ltd.), dry rabies vaccine (trade name “inactivated dry tissue culture” Rabies vaccine ”, manufactured by Astellas Pharma Inc.), dry attenuated varicella vaccine (trade name“ Dry attenuated varicella vaccine “Biken” ”, Osaka University Microbial Disease Research Association) and Japanese encephalitis vaccine (trade name“ Jebic ”) V ”(produced by the Osaka University Microbial Diseases Research Association) were diluted with physiological saline so that the concentrations shown in Table 11 were used. The results are also shown in Table 11.
  • TNF- ⁇ -cholesterol pullulan complex ⁇ Effect of administration of TNF- ⁇ -cholesterol pullulan complex on antibody production by nasal administration of antigen (allergen)>
  • administration of TNF- ⁇ -cholesterol pullulan complex can effectively enhance the production of secretory IgA antibody, blood IgG antibody or IgM antibody by nasal administration of various vaccines, Since it was clarified that the enhancement effect was superior to that of TNF- ⁇ , in this example, the effect on the antibody production when allergen was administered as an antigen was determined using cholera toxin B subunit as an adjuvant. Compared to the case.
  • allergen a representative cedar pollen-derived allergen (hereinafter referred to as “SBP”) was used.
  • the standard for antigen-specific secretory IgA antibody and blood IgG antibody was prepared by the same method as the method for preparing the standard product of IgA antibody and IgG antibody. The results are shown in Table 12.
  • TNF- ⁇ -cholesterol pullulan complex was administered nasally simultaneously with administration of the antigen (cedar pollen-derived allergen: SBP) (test group 2)
  • antigen-specific blood Production of IgG and IgA antibodies as well as IgA antibodies in intranasal lavage fluid was enhanced.
  • CTB cholera toxin B subunit
  • TNF- ⁇ -cholesterol pullulan complex is a versatile mucosal administration adjuvant for enhancing antibody production against vaccines, toxic components, allergens and the like. It is useful.
  • TNF- ⁇ -cholesterol pullulan complex As an active ingredient. That is, BALB / c mice (Nippon Charles River Co., Ltd., 8 weeks old, male and female, average body weight 20 g) each 35 were randomly divided into 7 groups of 5 each, and 5 males and 2 females each. The same TNF- ⁇ -cholesterol pullulan complex as used in Example 1 was diluted with physiological saline and administered orally or subcutaneously at 200 ⁇ l / animal (Test Groups 5 and 6).
  • TNF- ⁇ -cholesterol pullulan complex was diluted in physiological saline and administered to both nasal cavities in a volume of 15 ⁇ l for each group of 5 mice per group (total 30 ⁇ l).
  • 15 ⁇ l of saline containing no adjuvant was administered intranasally (total 30 ⁇ l / mouse) (Test group 4). The remaining 5 males and 1 female were left untreated as a control (Test Group 1).
  • mice After observing the appearance of these mice for 48 hours after administration of physiological saline with or without TNF- ⁇ -cholesterol pullulan complex, the mice were necropsied by a conventional method, and administration sites of antigen and adjuvant, and pathological tissues of major organs In addition to confirming the presence or absence of abnormalities by observing the blood, blood and urine were collected, and clinical tests were performed as indicators of bone marrow function, kidney function, and liver function. In addition, the untreated mice were similarly observed for appearance and histopathology, and were subjected to clinical examination as an index of bone marrow function, kidney function and liver function. Table 13 also shows the presence or absence of abnormalities when compared with untreated mice. Since the test results showed no difference between males and females, the results are summarized in Table 13 when administered to males and females.
  • ⁇ Adjuvant formulation solution form> Weigh an appropriate amount of cholesterol pullulan (trade name “PUREBRIGHT CP-100T”, sold by NOF Corporation) and suspend it in Dulbecco's phosphate buffered saline (D-PBS ( ⁇ )) to 20 mg / ml. After dissolution in a warm water bath at 55 ° C. for 16 hours, the solution was sterilized by filtration using a membrane filter having a pore size of 0.22 ⁇ m. Either 7 ml of this cholesterol pullulan solution and 2 ml of TNF- ⁇ used in Example 1 or rec-TNF- ⁇ used in Example 2 (both TNF- ⁇ protein amount: 1.454 mg / ml) dissolved in D-PBS.
  • D-PBS Dulbecco's phosphate buffered saline
  • the heels were mixed, sterilized by filtration using a membrane filter having a pore size of 0.22 ⁇ m, and then reacted at 37 ° C. for 5 days to prepare two TNF- ⁇ -cholesterol pullulan complex-containing solutions.
  • Each of these solutions is diluted with physiological saline for injection (trade name “Otsuka Seikatsu”, sold by Otsuka Pharmaceutical Co., Ltd.) to obtain 2.5, 25 and 250 ⁇ g / ml solutions as TNF- ⁇ protein.
  • An adjuvant for mucosal administration was prepared by filling with 0.5 ml / vial.
  • This product is used for mucosal administration of these antigens for the purpose of enhancing antibody production against antigens such as vaccines, toxic components, and allergens used to prevent infection of pathogenic microorganisms in vertebrates, particularly humans.
  • antigens such as vaccines, toxic components, and allergens used to prevent infection of pathogenic microorganisms in vertebrates, particularly humans.
  • 0.01 ml to 0.2 ml per adult is administered to the mucosa simultaneously with or before or after the antigen, whereby the antigen-specific blood IgG antibody and / or IgM antibody administered, and Since the production of secretory IgA antibody in the mucosal tissue can be effectively enhanced, it is extremely useful for acquiring infection protection ability (including cross-protection ability) against pathogenic microorganisms in vertebrates, especially humans, and for allergic diseases. Useful.
  • this product is a highly safe adjuvant preparation that does not cause serious side effects even when administered to a living body together with various antigens.
  • TNF- ⁇ -cholesterol pullulan complex and rec-TNF- ⁇ -cholesterol pullulan complex were made into TNF- ⁇ protein solutions of 1, 10 and 100 ⁇ g / ml, respectively. It was filled with 0.5 ml / vial and freeze-dried by a conventional method to prepare an adjuvant for mucosal administration.
  • This product dissolves in purified water for injection at the time of use, and aims to enhance the production of antibodies against antigens such as vaccines, toxic components and allergens used to prevent infection of pathogenic microorganisms in vertebrates, especially humans
  • antigens such as vaccines, toxic components and allergens used to prevent infection of pathogenic microorganisms in vertebrates, especially humans
  • 0.01 ml to 0.2 ml of the antigen is administered to the mucosa simultaneously with or before or after the antigen, whereby the antigen-specific blood IgG antibody and / or IgM administered Since it is possible to effectively enhance the production of antibodies and secretory IgA antibodies in mucosal tissues, it is possible to acquire the ability to prevent infection (including cross-protection ability) against pathogenic microorganisms in vertebrates, particularly humans, It is extremely useful for diseases.
  • this product is a highly safe adjuvant preparation that does not cause serious side effects even when administered to a living body together with various antigens.
  • ⁇ Vaccine preparation for mucosal administration solution form>
  • the TNF- ⁇ -cholesterol pullulan complex and the rec-TNF- ⁇ -cholesterol pullulan complex were each made into solutions of 2, 20, and 200 ⁇ g / ml as TNF- ⁇ protein, A solution obtained by diluting each of the components shown in Table 14 below as an antigen with physiological saline and mixing an equal amount of any one of vaccines, toxoid, amyloid ⁇ peptide or allergen diluted to the protein concentration shown in Table 14 Each was filled with 0.5 ml / vial to prepare a composition for enhancing antibody production for mucosal administration.
  • each composition contained the antigen contained therein.
  • Production of specific, secretory IgA antibody, blood IgG antibody and / or blood IgM antibody was enhanced, and the production amount of these antibodies was enhanced depending on the number of administrations.
  • This product is usually antigen-specific to the combined antigen by mucosal administration of 0.01 ml to 0.2 ml per adult or adult, about 1 to 4 times, preferably 3 to 4 times.
  • the administered antigen is a vaccine, infection with a pathogenic microorganism from which the antigen is derived It is extremely useful for obtaining protective ability (including cross-protective ability), and for preventing the onset of infection or suppressing its seriousness.
  • the administered antigen is a toxoid, the onset of the infection by the toxin from which the antigen originates can be prevented effectively.
  • the administered antigen is amyloid ⁇ peptide
  • the administered antigen is an allergen, it is useful for suppressing the onset of allergies caused by such allergens or reducing the symptoms.
  • This product is a highly safe composition for mucosal administration that does not cause serious side effects even when administered to a living body.
  • ⁇ Vaccine preparation for mucosal administration lyophilized product form>
  • the TNF- ⁇ -cholesterol pullulan complex and the rec-TNF- ⁇ -cholesterol pullulan complex were each made into solutions of 2.5, 25, and 250 ⁇ g / ml as TNF- ⁇ protein, respectively.
  • any of the vaccines, toxoid, amyloid ⁇ peptide, or allergen that are diluted with physiological saline and diluted to the protein concentration shown in Table 14 except for the oral live polio vaccine shown in Table 14 above as antigens.
  • Each solution mixed with an equal amount of seeds was filled in 0.5 ml / vial, and this was freeze-dried by a conventional method to prepare a vaccine preparation for mucosal administration.
  • This product was dissolved in 0.5 ml of purified water for injection and administered nasally 2 to 4 times at 15 ⁇ l / dose / mouse into the right and left nasal cavities of mice according to the method of Example 2.
  • the production of antigen-specific, secretory IgA antibody, blood IgG antibody and / or blood IgM antibody contained in the composition is enhanced, and the production amount of these antibodies depends on the number of administrations.
  • This product dissolves in purified water for injection at the time of use. Usually, 0.01 ml to 0.2 ml of adult or adult animal is administered to mucous membranes 1 to 4 times, preferably 3 to 4 times.
  • this product can effectively enhance the production of blood IgG antibodies specific to the administered antigen by administering to the site other than the mucosal tissue by a transdermal route.
  • vaccines for infection protection against microorganisms it is extremely useful for acquiring infection protection ability (including cross-protection ability) against pathogenic microorganisms from which the antigen is derived, as well as preventing the onset of infections and suppressing their severity. It is.
  • the administered antigen when the administered antigen is a toxoid, the onset of the disease by the toxin from which the antigen is derived can be effectively prevented.
  • the administered antigen is amyloid ⁇ peptide, it is useful for preventing the onset of various diseases caused by cytotoxicity of amyloid ⁇ peptide such as Alzheimer's disease or for suppressing the seriousness.
  • the administered antigen is an allergen, it is useful for suppressing the onset of allergies caused by such allergens or reducing the symptoms.
  • This product is a highly safe composition for mucosal administration that does not cause serious side effects even when administered to a living body.
  • the transmucosal adjuvant of the present invention containing TNF- ⁇ -cholesterol pullulan complex as an active ingredient effectively enhances antibody production against an antigen administered to the mucosa or to other sites by a transdermal route.
  • a composition for enhancing antibody production comprising an adjuvant that can be used as an active ingredient and such an adjuvant and an antigen as an active ingredient is a composition that can effectively enhance antibody production against an antigen administered to a mucosa or other site by a transdermal route.
  • it can be used in the industry for producing pharmaceuticals such as vaccines and in the industry for producing antibodies for reagents and clinical diagnostics.
  • the present invention is an invention that exhibits such remarkable effects, and is a truly significant invention that contributes greatly to the world.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention addresses the problem of providing a novel mucosal adjuvant that is able to enhance antibody production, including that of antigen-specific secreted immunoglobulin A antibodies, by effectively enhancing mucosal immunity when an antigen is administered to the mucosal tissue, and that is stable and safe even when applied in vivo; and of providing a composition for enhancing antibody production in which the active ingredient is the adjuvant and an antigen. The problem is solved by providing a mucosal adjuvant in which the active ingredient is a tumor necrosis factor-α (TNF-α)-cholesterol pullulan complex, and a composition for enhancing antibody production in which the active ingredient is the adjuvant and an antigen.

Description

抗体産生増強用の組成物Composition for enhancing antibody production
 本発明はアジュバント、及び、斯かるアジュバントと抗原とを含有する抗体産生増強用組成物に関し、より詳細には、ツモア・ネクローシス・ファクター-α-コレステロールプルラン複合体を有効成分として含有する、安全かつ効率的な免疫活性増強のための粘膜投与アジュバント、及び、斯かるアジュバントと抗原とを含有する抗体産生増強のための粘膜投与用組成物に関する。 The present invention relates to an adjuvant and a composition for enhancing antibody production containing such an adjuvant and an antigen. More specifically, the present invention relates to a safe and safe composition containing a Thumor necrosis factor-α-cholesterol pullulan complex as an active ingredient. The present invention relates to an adjuvant for mucosal administration for efficient enhancement of immune activity and a composition for mucosal administration for enhancement of antibody production containing such an adjuvant and an antigen.
 近年、粘膜面における免疫機構が解明されてきたのに伴い、有効性の高い粘膜免疫ワクチンの開発が進められている。病原性微生物の感染予防にもっとも効果を発揮するのはワクチンであるが、従来から用いられている皮下接種型のワクチンでは主に血清イムノグロブリンG抗体(以下、イムノグロブリンを「Ig」と略記する場合がある。)の産生が増強されるので、感染の予防というよりも、発症の予防や重症化の予防が中心となる。これに対し、粘膜免疫ワクチンの場合には、抗原を口腔、鼻腔などの粘膜組織経路で投与(以下、「粘膜投与」という)することにより、鼻腔や気道などの全身の粘膜系組織において、分泌型イムノグロブリンA抗体(以下、単に「分泌型IgA抗体」という場合がある)が産生される。しかも、IgA抗体はIgG抗体に比べ交叉防御能が高いといわれており、病原性微生物の主たる感染部位は粘膜であることから、分泌型IgA抗体産生増強に優れる粘膜免疫ワクチンは、感染防御にも優れた効果を発揮する。例えば、気道感染症などの原因菌であるヘモフィラス・インフルエンザ(Haemophilus influenzae)菌(非特許文献1)や、歯のう蝕の原因菌であるストレプトコッカス・ミュータンス(Streptococcus mutans)菌の外膜タンパク質(非特許文献2)は、経鼻投与により、粘膜系及び全身系の両方で免疫応答が誘導されることが知られており、これらのタンパク質は、病原性微生物に対して粘膜系で免疫応答を誘導できるため、感染防御用の新たなワクチンとして臨床への応用が期待されている。また、ワクチンとして用いられる抗原は、安全性の点で、従来の弱毒化した生ワクチンや全細胞ワクチンから、成分ワクチンやコンポーネントワクチンへとシフトしている。 In recent years, with the elucidation of the immune mechanism on the mucosal surface, development of highly effective mucosal immune vaccines has been promoted. Vaccines are most effective in preventing infection with pathogenic microorganisms. However, conventionally used vaccines for subcutaneous inoculation mainly use serum immunoglobulin G antibody (hereinafter, immunoglobulin is abbreviated as “Ig”). In some cases, the prevention of the onset and the prevention of the seriousness are more important than the prevention of infection. In contrast, in the case of mucosal immune vaccines, antigens are secreted in systemic mucosal tissues such as the nasal cavity and respiratory tract by administration through the mucosal tissue route such as the oral cavity and nasal cavity (hereinafter referred to as “mucosal administration”) Type immunoglobulin A antibody (hereinafter sometimes simply referred to as “secreted IgA antibody”) is produced. In addition, IgA antibodies are said to have higher cross-protective ability than IgG antibodies, and the main infection site of pathogenic microorganisms is the mucosa. Therefore, mucosal immune vaccines that excel in secretory IgA antibody production are also effective in protecting infections. Exhibits excellent effects. For example, the outer membrane proteins of Haemophilus influenzae (Non-patent Document 1), which is a causative bacterium such as respiratory tract infections, and Streptococcus mutans, which is a causative bacterium of dental caries ( Non-Patent Document 2) is known to induce immune responses in both mucosal and systemic systems by nasal administration, and these proteins are immune responses against pathogenic microorganisms in mucosal systems. Since it can be induced, clinical application is expected as a new vaccine for protection against infection. In addition, antigens used as vaccines are shifting from conventional attenuated live vaccines and whole cell vaccines to component vaccines and component vaccines in terms of safety.
 しかしながら、粘膜投与ワクチン、とりわけ、成分ワクチンやコンポーネントワクチンは免疫原性が弱く、皮下投与ワクチンに比較し多量の抗原の投与が必要となる。また、粘膜組織への抗原の大量投与は免疫応答の寛容(不応答化)を引き起こす場合もある。これらの点から、粘膜投与により効果的な免疫応答を誘導するためには、安全で、且つ、免疫反応を効果的に増強するためのアジュバントとの併用が必要不可欠となる。 However, mucosal vaccines, particularly component vaccines and component vaccines, are weakly immunogenic and require administration of a larger amount of antigen compared to subcutaneous vaccines. In addition, administration of a large amount of antigen to mucosal tissue may cause tolerance (unresponsiveness) of the immune response. From these points, in order to induce an effective immune response by mucosal administration, it is indispensable to use an adjuvant in combination with a safe and effective immune response.
 粘膜投与アジュバントとしては、コレラ毒素や微生物の菌体成分をはじめとする種々のものが提案されている(例えば、特許文献1参照)。また、毒性を低減した大腸菌の易熱性毒素やベロ毒素1のBサブユニットの利用なども提案されている(例えば、特許文献2参照)。 Various mucosal administration adjuvants including cholera toxin and microbial cell components have been proposed (see, for example, Patent Document 1). In addition, utilization of heat-resistant toxins of Escherichia coli with reduced toxicity and B subunit of verotoxin 1 has been proposed (see, for example, Patent Document 2).
 しかしながら、これらの既知の粘膜投与アジュバントは、免疫増強の点では優れているものの、その毒性や、神経麻痺などの副作用との因果関係が完全には否定されていないなどの問題がある。また、生体内で代謝分解される菌体成分では、サイトカイン類に代表される多種多様な生理活性物質を放出させる一方で、逆に免疫反応を特定の方向に誘導するために一定の種類の生理活性物質のみを放出させるという特異性に乏しい。 However, although these known mucosal administration adjuvants are excellent in terms of immunity enhancement, there are problems such as the toxicity and the causal relationship with side effects such as nerve paralysis have not been completely denied. In addition, bacterial cell components that are metabolized and decomposed in vivo release a wide variety of physiologically active substances typified by cytokines, while conversely, to induce an immune response in a specific direction, Poor specificity of releasing only active substance.
 斯かる欠点を解消するため、インターフェロンやツモア・ネクローシス・ファクター-α(tumor necrosis factor-alpha、以下、「TNF-α」と略記する。)などのサイトカイン類をアジュバントとして用いる方法も提案されている(例えば、特許文献3及び特許文献4参照)。しかしながら、サイトカイン類はタンパク質/ペプチドであるため、数分から数時間のオーダーで、生体内で速やかに失活乃至消失し、持続的作用に欠けている。この問題を解決するため、サイトカインを生体に頻回投与する方法、さらには、抗原とサイトカインとを、高分子やリポソーム等のコロイド分散システムを用いてDDS化して投与する方法が提案されており、ゼラチンを架橋して調製したミクロスフェアに顆粒球/単球-コロニー刺激因子(GM-CSF)やインターフェロン-γなどのサイトカインを封入しDDS化して用いるシステマテックな免疫増強方法が具体的に開示されている(特許文献4)ものの、これらの方法や製剤は安全性、安定性に問題がある場合がある。 In order to eliminate such drawbacks, a method of using cytokines such as interferon or Tsumore necrosis factor-alpha (hereinafter abbreviated as “TNF-α”) as an adjuvant has also been proposed. (For example, refer to Patent Document 3 and Patent Document 4). However, since cytokines are proteins / peptides, they are rapidly deactivated or disappeared in vivo in the order of minutes to hours, and lack a sustained action. In order to solve this problem, a method of frequently administering cytokines to a living body, and a method of administering antigens and cytokines in a DDS format using a colloidal dispersion system such as a polymer or liposome have been proposed, Specifically disclosed is a systematic immune enhancement method in which cytokines such as granulocyte / monocyte-colony stimulating factor (GM-CSF) and interferon-γ are encapsulated in microspheres prepared by crosslinking gelatin and used as DDS. However, there are cases where these methods and preparations have problems in safety and stability.
 また、TNF-αではその分子中のリジン残基を別のアミノ酸に置き換えることにより、生体に投与したとき分解を受けにくく、コレラトキシンBサブユニットと同様に強い粘膜投与アジュバント活性を有する変異体も知られている(非特許文献4)。しかし、斯かる変異体TNF-αは野生型に比べヒトに対する抗原性が高いので、アジュバントとしてヒトに投与すると、変異体TNF-αに対する抗体が産生され、その結果、変異体TNF-αによるアジュバント効果が低下乃至消滅したり、変異体TNF-αをアジュバントとして再度投与した場合には、野生型を用いた場合に比べ、炎症やアレルギー症状などの副作用が誘発される可能性が高いなどのリスクがある。 In addition, TNF-α is not susceptible to degradation when administered to a living body by replacing the lysine residue in the molecule with another amino acid, and has a mucosal administration adjuvant activity similar to that of cholera toxin B subunit. It is known (Non-Patent Document 4). However, since such a mutant TNF-α has higher antigenicity to humans than the wild type, when administered to humans as an adjuvant, an antibody against the mutant TNF-α is produced, and as a result, an adjuvant with the mutant TNF-α. Risks that the effect is reduced or disappeared, and that when mutant TNF-α is administered again as an adjuvant, side effects such as inflammation and allergic symptoms are more likely to be induced than when wild type is used. There is.
特許文献1:特表2008-546658号公報
特許文献2:特開2003-321392号公報
特許文献3:特開2010-502679号公報
特許文献4:米国特許第5,861,159号明細書
特許文献5:国際公開WO98/09650号パンフレット
特許文献6:国際公開WO2006/077724号パンフレット
Patent Document 1: Japanese Translation of PCT International Publication No. 2008-546658 Patent Document 2: JP 2003-321392 A Patent Document 3: JP 2010-502679 A Patent Document 4: US Patent No. 5,861,159 5: International Publication WO98 / 09650 Pamphlet Patent Document 6: International Publication WO2006 / 077724 Pamphlet
非特許文献1:Kurono, Y. et al., 『J. Immunol.』、第161巻、4115-4121頁(1998年)
非特許文献2:Saito, M. et al., 『J. Infect. Dis.』、第183巻、823-826頁(2001年)
非特許文献3:Adleret al.,『Cancer Biother.』, 10:293-306頁(1995年)
非特許文献4:萱室裕之等、『YAKUGAKU ZASSHI』、第130巻、第1号、55-61(2010年)
Non-Patent Document 1: Kurono, Y. et al. et al. , “J. Immunol. 161, 4115-4121 (1998)
Non-Patent Document 2: Saito, M .; et al. , “J. Infect. Dis. 183, 823-826 (2001)
Non-Patent Document 3: Adlelet al. , “Cancer Biother. 10: 293-306 (1995)
Non-Patent Document 4: Hiroyuki Amuro et al., “YAKUGAKU ZASSHI”, Vol. 130, No. 1, 55-61 (2010)
 本発明は、上記のような事情に鑑み、抗原を粘膜組織に投与(以下、「粘膜投与」という。)したとき、効率よく粘膜免疫を増強することにより、その抗原に特異的な抗体産生を増強することができ、しかも、生体に適用しても安定で、且つ、安全な新規粘膜投与アジュバントを提供することを課題とする。また、本発明は、斯かるアジュバントと抗原とを有効成分とする抗体産生増強用組成物を提供することを課題とする。 In view of the above circumstances, the present invention enhances mucosal immunity efficiently when an antigen is administered to a mucosal tissue (hereinafter referred to as “mucosal administration”), thereby producing an antibody specific to the antigen. It is an object of the present invention to provide a novel adjuvant for mucosal administration that can be enhanced and that is stable and safe when applied to a living body. Another object of the present invention is to provide a composition for enhancing antibody production comprising such an adjuvant and an antigen as active ingredients.
 本発明者は、上記課題を解決するためにTNF-αに着目し、鋭意研究を重ね、種々試行錯誤を繰り返す中で、TNF-αは溶液状態での安定性に欠けるだけでなく、これを粘膜投与した場合には速やかに失活し、弱いアジュバント効果しか発揮できないという問題があることを見いだした。 In order to solve the above problems, the present inventor has paid attention to TNF-α, and has conducted extensive research and repeated various trials and errors, so that TNF-α not only lacks stability in a solution state, It was found that there was a problem that when it was administered to mucosa, it was rapidly deactivated and only a weak adjuvant effect could be exhibited.
 本発明者は、斯かる問題点を解決するため、さらに研究を重ねたところ、TNF-αとコレステロールプルランとの複合体(以下、「TNF-α-コレステロールプルラン複合体」或いは「TNF/CHP」という場合がある。)が、抗原と同時、或いは、抗原投与の前後に粘膜投与することにより、複合体化されていないTNF-α(以下、複合体化されていないTNF-αを、単に「TNF-α」という。)を用いた場合と比べ、生体の抗原に対する特異的な抗体産生を増強する強いアジュバント効果を発揮することを見出した。さらに、その増強効果は、粘膜投与アジュバントとしてその作用効果の強さが公知で、粘膜投与ワクチン開発の際に、陽性対照として汎用されているコレラトキシンBサブユニットと同等以上であることを見出した。さらに、本発明者は、ワクチンなどに用いる抗原とTNF-α-コレステロールプルラン複合体とを含有する組成物が、生体に投与したとき、とりわけ、経鼻投与したとき、斯かる抗原特異的なIgG及びIgA抗体の産生、とりわけ分泌型IgA抗体産生を効果的に増強すること、及び、抗原として病原性微生物由来の成分を用いた場合、これを投与した生体に、斯かる病原性微生物に対する感染防御能(交叉防御能を含む)及び/又は感染症の重篤化の予防能を効果的に賦与できることを見出した。 The present inventor conducted further research to solve such problems, and as a result, a complex of TNF-α and cholesterol pullulan (hereinafter referred to as “TNF-α-cholesterol pullulan complex” or “TNF / CHP”). However, by performing mucosal administration at the same time as the antigen or before and after antigen administration, uncomplexed TNF-α (hereinafter referred to as uncomplexed TNF-α is simply referred to as “ As compared with the case of using “TNF-α”), it has been found that it exhibits a strong adjuvant effect that enhances the production of a specific antibody against an antigen in a living body. Furthermore, the potentiation effect is known as the mucosal administration adjuvant, and the strength of the action effect is known, and when developing the mucosal administration vaccine, it was found to be equal to or greater than the cholera toxin B subunit that is widely used as a positive control. . Furthermore, the present inventor has found that when a composition containing an antigen used for a vaccine or the like and a TNF-α-cholesterol pullulan complex is administered to a living body, particularly when administered intranasally, such antigen-specific IgG And IgA antibody production, in particular, secretory IgA antibody production, and when a component derived from a pathogenic microorganism is used as an antigen, the body to which it is administered is protected against infection against the pathogenic microorganism. It was found that the ability (including cross-protection ability) and / or the ability to prevent serious infection can be effectively imparted.
 さらに、本発明者は、TNF-α-コレステロールプルラン複合体の状態のTNF-αは、水溶液の状態でも安定で、かつ、それ単独、或いは、抗原や、製剤学的に許容される1種又は2種以上の成分を含有する製剤中でも極めて安定であることを見出した。 Furthermore, the present inventor has shown that TNF-α in the state of TNF-α-cholesterol pullulan complex is stable even in the state of an aqueous solution and is used alone or as an antigen or one pharmaceutically acceptable one. It has been found that it is extremely stable even in a preparation containing two or more components.
 さらに、本発明者は、TNF-α-コレステロールプルラン複合体及びこれを含む製剤が、生体に適用しても、重篤な副作用を誘発することがない安全な組成物であることを確認し本発明を完成するに至った。 Furthermore, the present inventor has confirmed that the TNF-α-cholesterol pullulan complex and the preparation containing the same are safe compositions that do not induce serious side effects even when applied to a living body. The invention has been completed.
 すなわち、本発明は、TNF-α-コレステロールプルラン複合体を有効成分とする粘膜投与アジュバント、及び、斯かるアジュバントと抗原とを含有する粘膜投与用の抗体産生増強用の組成物を提供することにより上記課題を解決するものである。 That is, the present invention provides a mucosal adjuvant containing the TNF-α-cholesterol pullulan complex as an active ingredient, and a composition for enhancing antibody production for mucosal administration containing such an adjuvant and an antigen. The present invention solves the above problems.
 また、粘膜組織への投与とは別の一態様において、本発明のTNF-α-コレステロールプルラン複合体は、抗原と同時に、或いは、抗原投与の前後に、皮下、皮内、筋肉内などの経皮経路により粘膜組織以外の部位へ投与することにより、抗原に対する抗体、とりわけIgG抗体の産生を効果的に増強するアジュバントとして用いることができる。血管内投与も可能であるが、TNF-α-コレステロールプルラン複合体を過剰に血管内投与した場合、複合体から血液中に放出されたTNF-α量が多いと、副作用が生じる懸念があるので、適宜、投与回数や投与量を調整し、TNF-αの血中濃度の急激な上昇を抑制する必要がある。なお、腹腔、胸腔、中耳腔などの体腔内にある粘膜組織ヘの抗原の投与は、注射、カテーテル、内視鏡などを用いる経皮経路となるものの、TNF-α-コレステロールプルラン複合体の投与部位が粘膜組織で、かつ、投与した抗原に特異的な分泌型IgA抗体の産生が、投与部位及び投与部位以外の粘膜組織において増強されるので、投与部位が粘膜組織の場合、投与経路のいかんに関わらず、本明細書では、全て粘膜投与(粘膜組織への投与)に含めることとする。 In another aspect different from administration to mucosal tissue, the TNF-α-cholesterol pullulan complex of the present invention may be administered subcutaneously, intradermally, intramuscularly or the like simultaneously with the antigen or before and after the antigen administration. By administering to a site other than mucosal tissue by the skin route, it can be used as an adjuvant that effectively enhances the production of antibodies against antigens, particularly IgG antibodies. Intravascular administration is also possible, but when TNF-α-cholesterol pullulan complex is excessively administered intravascularly, if the amount of TNF-α released from the complex into the blood is large, side effects may occur. Therefore, it is necessary to adjust the number of administrations and the dose as appropriate to suppress the rapid increase in the blood concentration of TNF-α. Although administration of antigen to mucosal tissues in body cavities such as the abdominal cavity, thoracic cavity, and middle ear cavity is a percutaneous route using injection, catheter, endoscope, etc., TNF-α-cholesterol pullulan complex When the administration site is mucosal tissue and the production of secretory IgA antibody specific for the administered antigen is enhanced in the mucosal tissue other than the administration site and the administration site, when the administration site is mucosal tissue, the administration route Regardless of the case, in this specification, all are included in mucosal administration (administration to mucosal tissue).
 本発明のTNF-α-コレステロールプルラン複合体を有効成分とする粘膜投与アジュバントと共に用いる抗原としては、通常、ヒトに対し経皮投与用のワクチンとして用いられる、例えば、インフルエンザ、日本脳炎、麻しん、風しん、黄熱、ラッサ、デング等のウイルス、結核菌等の細菌、マラリアなどの原虫等の病原性微生物に由来する抗原や、破傷風菌、ジフテリア菌、百日咳菌、出血性大腸炎、髄膜炎等の原因菌に由来する毒素やアミロイドβペプチドのような細胞毒性を有する物質由来の抗原等を挙げることができる。また、ヒト以外の動物に対し、感染防御等の目的で用いる口蹄疫やニューカッスル病などの病原性微生物に由来する抗原を挙げることができる。 The antigen used together with the adjuvant for mucosal administration comprising the TNF-α-cholesterol pullulan complex of the present invention as an active ingredient is usually used as a vaccine for transdermal administration to humans, for example, influenza, Japanese encephalitis, measles, rubella , Antigens derived from pathogenic microorganisms such as viruses such as yellow fever, lassa and dengue, bacteria such as tuberculosis, protozoa such as malaria, tetanus, diphtheria, pertussis, hemorrhagic colitis, meningitis, etc. And an antigen derived from a substance having cytotoxicity, such as a toxin derived from the causative bacteria of bacterium and amyloid β peptide. Moreover, the antigen derived from pathogenic microorganisms, such as foot-and-mouth disease and Newcastle disease used for the purpose of infection prevention etc. with respect to animals other than a human, can be mentioned.
 本発明の粘膜投与アジュバントは、ヒト或いはヒト以外の脊椎動物において、抗原を粘膜投与すると同時、或いは、その前後に、鼻腔、眼、喉、気管、気管支、肺、膣、口腔、消化管や体腔内などにある粘膜組織に投与することにより、斯かる抗原を有する病原性微生物の感染防御や毒性を有する物質の中和に有効なIgA抗体及びIgG抗体の産生を効果的に増強することができる。 The adjuvant for mucosal administration of the present invention is the nasal cavity, eye, throat, trachea, bronchi, lung, vagina, oral cavity, digestive tract, and body cavity at the same time as or before and after the antigen is administered to humans or non-human vertebrates. By administering it to mucosal tissues in the inside, it is possible to effectively enhance the production of IgA antibodies and IgG antibodies effective in protecting against pathogenic microorganisms having such antigens and neutralizing toxic substances. .
 さらに、本発明の粘膜投与アジュバントと抗原を含む組成物は、ヒト或いはヒト以外の脊椎動物において、鼻腔、眼、喉、気管、気管支、肺、膣、口腔、消化管や体腔内などにある粘膜組織に投与することにより、斯かる抗原を有する病原性微生物の感染防御や毒性を有する物質の中和に有効なIgA抗体及びIgG抗体の産生を効果的に増強することができる。 Further, the composition containing the adjuvant for mucosal administration of the present invention and the antigen is used in human or non-human vertebrates such as mucous membranes in the nasal cavity, eyes, throat, trachea, bronchi, lungs, vagina, oral cavity, digestive tract, and body cavity. By administering to a tissue, it is possible to effectively enhance the production of IgA antibodies and IgG antibodies that are effective in protecting against pathogenic microorganisms having such antigens and neutralizing toxic substances.
 さらに、本発明の粘膜投与アジュバントは、粘膜組織に投与することにより、同時或いはその前後に投与した抗原を有する病原性微生物に対してのみでなく、その近縁(亜型)の病原性微生物に対する交叉防御能を誘導することができる。 Further, the adjuvant for mucosal administration of the present invention is not only against pathogenic microorganisms having antigens administered simultaneously or before or after administration to mucosal tissues, but also against closely related (subtype) pathogenic microorganisms. Cross defense ability can be induced.
 さらに、本発明の粘膜投与アジュバントの有効成分であるTNF-α-コレステロールプルラン複合体、或いは、TNF-α-コレステロールプルラン複合体と抗原とを含む組成物は、ヒトやヒト以外の脊椎動物に適用した場合、比較的低用量の抗原投与により、投与した抗原に対する免疫応答を増強できるので、抗原を大量に投与したとき誘導される場合がある免疫応答の寛容の問題を回避することができる。また、プレパンデミックワクチンのように短期間に大量のワクチンを調製することが要求される場合、従来の経皮投与ワクチンよりも少量の抗原量で対応できるので、大規模接種に必要な十分量のワクチンを製造する期間を短縮することができる。 Furthermore, the composition containing TNF-α-cholesterol pullulan complex or TNF-α-cholesterol pullulan complex and antigen, which is an active ingredient of the adjuvant for mucosal administration of the present invention, is applied to humans and non-human vertebrates. In this case, since the immune response to the administered antigen can be enhanced by administering a relatively low dose of the antigen, the problem of tolerance of the immune response that may be induced when a large amount of antigen is administered can be avoided. In addition, when it is required to prepare a large amount of vaccine in a short period of time, such as a pre-pandemic vaccine, it can be handled with a smaller amount of antigen than the conventional transdermal vaccine, so a sufficient amount necessary for large-scale vaccination The period for producing the vaccine can be shortened.
 さらに、本発明の粘膜投与アジュバントであるTNF-α-コレステロールプルラン複合体、或いは、TNF-α-コレステロールプルラン複合体と抗原とを含む組成物は、ヒトやヒト以外の動物に適用しても、TNF-αを投与したときのようにTNF-αが短時間で失活乃至消失することがなく、安定で、且つ、重篤な副作用を誘発することのない安全な組成物である。 Furthermore, the composition containing TNF-α-cholesterol pullulan complex or TNF-α-cholesterol pullulan complex and antigen, which is an adjuvant for mucosal administration of the present invention, can be applied to humans and animals other than humans. It is a safe composition that does not cause inactivation or disappearance in a short time as when TNF-α is administered, is stable, and does not induce serious side effects.
1.用語の定義:
 本明細書において以下の用語は以下の意味を有している。
1. Definition of terms:
In this specification, the following terms have the following meanings.
<アジュバント>
 本明細書でいう「アジュバント」とは、免疫機構を非特異的に刺激することによって、抗原に対する特異的免疫反応を増強する機能をもつ物質をいう。
<Adjuvant>
The term “adjuvant” as used herein refers to a substance having a function of enhancing a specific immune response to an antigen by nonspecifically stimulating the immune mechanism.
<粘膜投与アジュバント>
 本明細書でいう「粘膜投与アジュバント」とは、抗原と同時、或いは、抗原の投与前後に、粘膜組織に投与した場合、斯かる抗原に対する免疫反応を特異的に増強する作用を有するものをいい、抗原特異的な血液中の抗体の産生を増強する作用を有するものを含む。
<Mucosal administration adjuvant>
As used herein, “mucosal administration adjuvant” refers to those having an action of specifically enhancing an immune response to an antigen when administered to a mucosal tissue simultaneously with an antigen or before and after administration of the antigen. And those having the effect of enhancing the production of antigen-specific antibodies in the blood.
 <粘膜組織>
 本明細書でいう「粘膜組織」とは、外界と直接接している体表に存在する粘膜組織をいう。具体的には、鼻腔、眼、喉、気管、気管支、肺、膣、口腔や食道から大腸までの消化管の粘膜組織などを挙げることができ、さらに、胸腔、腹腔や内耳腔などの体腔内にある粘膜組織を含む。
<Mucosa tissue>
As used herein, “mucosal tissue” refers to mucosal tissue present on the body surface that is in direct contact with the outside world. Specific examples include the nasal cavity, eyes, throat, trachea, bronchi, lungs, vagina, mucous tissue of the gastrointestinal tract from the oral cavity and esophagus to the large intestine, and further inside the body cavity such as the thoracic cavity, abdominal cavity and inner ear cavity. Including mucosal tissue.
<TNF-α>
 本明細書でいう「TNF-α」は、特にことわりのない限り、157個のアミノ酸からなる、分子量約17.3キロダルトン(kD)のヒト由来のポリペプチド(GenBank Accession Number M16441や特開2004-2251号公報に記載の配列表における配列番号1で表される野生型TNF-αのアミノ酸配列参照)をいい、天然型及び組換型の両方を含む。通常、TNF-α分子は、生理的条件下では3量体の形態にある。
<TNF-α>
Unless otherwise specified, “TNF-α” as used herein refers to a human-derived polypeptide consisting of 157 amino acids and having a molecular weight of about 17.3 kilodaltons (kD) (GenBank Accession Number M16441 and 2251 (refer to the amino acid sequence of wild-type TNF-α represented by SEQ ID NO: 1) in the sequence listing described in the publication No.-2251, and includes both natural and recombinant types. Usually, TNF-α molecules are in the form of trimers under physiological conditions.
<変異体TNF-α>
 本明細書でいう「変異体TNF-α」とは、前記TNF-αを構成するアミノ酸の1乃至6個が、欠失又は他のアミノ酸で置換されたポリペプチドであって、TNF-αの生理活性が野生型のTNF-αと同様のアジュバント活性を有するものをいう。具体的には、特開2004-2251号公報に開示された野生型TNF-αペプチドのアミノ酸配列のN末端から11番目、65番目、90番目、98番目、112番目及び128番目のリジンが全てアスパラギン、アラニン、アルギニン、セリン、トレオニン、プリン、メチオニン又はロイシンの何れかで置換されたペプチドを例示することができる。斯かるペプチドはいずれも野生型と同等以上のアジュバント活性を有している。
<Variant TNF-α>
The term “mutant TNF-α” used herein refers to a polypeptide in which 1 to 6 of the amino acids constituting the TNF-α are deleted or substituted with other amino acids, The biological activity has the same adjuvant activity as wild-type TNF-α. Specifically, the 11th, 65th, 90th, 98th, 112th and 128th lysines from the N-terminal of the amino acid sequence of the wild-type TNF-α peptide disclosed in JP-A-2004-2251 are all included. Examples include peptides substituted with any of asparagine, alanine, arginine, serine, threonine, purine, methionine, or leucine. All of these peptides have an adjuvant activity equal to or greater than that of the wild type.
<TNF-αの活性(JRU)>
 本明細書でいう「TNF-αの活性(JRU)」は、国立感染症研究所(旧国立予防衛生研究所)が供給する日本標準品(LotNo.J-PS5K01)に基づき、マウス由来の線維芽細胞株(マウスLM細胞)に対する細胞障害活性を指標とするバイオアッセイにより測定される。純粋なヒトTNF-αの比活性は、約2×10JRU/mgタンパク質である。
<Activity of TNF-α (JRU)>
As used herein, “TNF-α activity (JRU)” is based on a Japanese standard product (LotNo. J-PS5K01) supplied by the National Institute of Infectious Diseases (former National Institute of Preventive Health). It is measured by a bioassay using the cytotoxic activity against a blast cell line (mouse LM cell) as an index. The specific activity of pure human TNF-α is approximately 2 × 10 6 JRU / mg protein.
<コレステロールプルラン>
 本明細書でいう「コレステロールプルラン」とは、水溶性多糖類のプルランのもつOH基の一部に、コレステリル基を導入した化合物をいう。斯かるコレステロールプルランは、水溶液中では、コレステリル基を非共有結合の架橋点として数分子間で自己会合することにより、粒径が20乃至100nm程度の単分散的なナノ微粒子を形成し、球状のタンパク質と複合体を形成することができる(例えば、特許文献5及び6参照)。また、同様に、ナノ微粒子を形成し、球状のタンパク質と複合体を形成することが可能な、コレステリル基にさらにアルキル基などを導入したコレステリル基の類縁体を導入したプルランを含む。TNF-α複合体としてのアジュバント活性の強さの点では、コレステリル基を導入したプルランが最も望ましい。
<Cholesterol pullulan>
As used herein, “cholesterol pullulan” refers to a compound in which a cholesteryl group is introduced into a part of the OH group of pullulan of a water-soluble polysaccharide. Such cholesterol pullulan forms monodisperse nanoparticles having a particle size of about 20 to 100 nm by self-association between several molecules using a cholesteryl group as a non-covalent cross-linking point in an aqueous solution. A complex can be formed with a protein (see, for example, Patent Documents 5 and 6). Similarly, it includes pullulan in which an analog of a cholesteryl group in which an alkyl group or the like is further introduced into a cholesteryl group, which can form a nanoparticle and form a complex with a spherical protein. In view of the strength of adjuvant activity as a TNF-α complex, pullulan into which a cholesteryl group is introduced is most desirable.
<TNF-α-コレステロールプルラン複合体>
 本明細書でいう「TNF-α-コレステロールプルラン複合体」とは、水溶液中で自己会合し形成されたコレステロールプルランのナノ微粒子中に、TNF-αタンパク質が取り込まれ、疎水結合などの共有結合以外の結合様式により複合体を形成したものをいう。斯かる複合体位の結合様式が共有結合以外のものであることは、後述のように、TNF-α-コレステロールプルランを含む溶液に、コレステリル基に対する親和性の高いメチルβ-シクロデキストリンを添加することにより、TNF-αが放出され、メチル-β-シクロデキストリン添加前には認められなかったTNF-αの活性が出現することで容易に確認することができる。
<TNF-α-cholesterol pullulan complex>
The term “TNF-α-cholesterol pullulan complex” as used herein refers to other than covalent bonds such as hydrophobic bonds in which TNF-α protein is incorporated into cholesterol pullulan nanoparticles formed by self-association in an aqueous solution. A complex formed according to the binding mode. The fact that the binding mode of such a complex is other than a covalent bond is that, as described later, methyl β-cyclodextrin having a high affinity for a cholesteryl group is added to a solution containing TNF-α-cholesterol pullulan. Thus, TNF-α is released, and TNF-α activity that was not observed before the addition of methyl-β-cyclodextrin can be easily confirmed.
<DDS化>
 本明細書でいう「DDS化」とは、生体内での薬剤の動態を精密に制御することを目的とするDDS技術を用い、薬剤の放出を制御することのできる投与形態とすることをいう。
<DDS conversion>
The term “DDS conversion” as used herein refers to a dosage form that can control the release of a drug using a DDS technique for precisely controlling the dynamics of the drug in vivo. .
<抗原>
 本明細書でいう「抗原」とは、ヒト或いはヒト以外の脊椎動物に投与したとき、それに特異的な抗体産生を誘発するものをいい、単独投与では抗体産生の誘導能が無いものであっても、アジュバントと共に投与したとき抗体産生を誘発するものを含む。また、多糖類などのような物質に結合させることにより抗体産生能の誘導が可能なものを含む。
<Antigen>
The term “antigen” as used herein refers to a substance that induces specific antibody production when administered to humans or non-human vertebrates, and has no ability to induce antibody production when administered alone. Also include those that elicit antibody production when administered with an adjuvant. Also included are those capable of inducing antibody-producing ability by binding to substances such as polysaccharides.
2.本発明について:
 上記のとおり、本発明は、TNF-α-コレステロールプルラン複合体を有効成分として含有する粘膜投与アジュバント、及び、斯かる粘膜投与アジュバントと抗原とを含有する当該抗原に対する抗体産生増強用組成物に関するものである。
2. About the present invention:
As described above, the present invention relates to a mucosal administration adjuvant containing a TNF-α-cholesterol pullulan complex as an active ingredient, and a composition for enhancing antibody production against the antigen containing such a mucosal administration adjuvant and an antigen. It is.
 本発明で用いるTNF-α自体は公知のサイトカインであり、アジュバントとしての利用も提案されている(特許文献3)。しかしながら、後述の実施例で示すように、TNF-αを抗原と共に粘膜投与してもアジュバントとしての効果はさほど発揮されないことが判明した。 TNF-α itself used in the present invention is a known cytokine, and its use as an adjuvant has also been proposed (Patent Document 3). However, as shown in the Examples described later, it has been found that even if TNF-α is administered to the mucosa together with the antigen, the effect as an adjuvant is not so much exhibited.
 本発明で用いるTNF-αは、その起源や由来を問わず、天然型であっても、遺伝子組換DNA技術により製造された組換型TNF-α(以下、「rec-TNF-α」と略記する場合がある。)であってもよく、アミノ酸を原料に化学的に合成したものであってもよいし、例えば、非特許文献4に開示されているようなTNF-αを構成するアミノ酸の一部を他のアミノ酸で置換した変異体TNF-αを用いてもよいが、とりわけ、ヒトに投与する場合は、ヒトに対する抗原性が低く、アジュバント効果の低下乃至消失や、副作用誘発のリスクの低さの点においてヒトの野生型のTNF-αが望ましい。TNF-αは生理的条件下では、通常、3量体の形態で存在している。また、ヒト以外の動物に用いる場合には、対象とする投与動物由来のTNF-αを用いることもできる。 The TNF-α used in the present invention may be a natural type, regardless of its origin or origin, and may be a recombinant TNF-α (hereinafter referred to as “rec-TNF-α”) produced by genetically modified DNA technology. May be abbreviated), may be chemically synthesized from amino acids as raw materials, and for example, amino acids constituting TNF-α as disclosed in Non-Patent Document 4 Mutant TNF-α in which a part of the amino acid is substituted with another amino acid may be used. However, particularly when administered to humans, the antigenicity to humans is low, and the risk of reducing or disappearing the adjuvant effect and inducing side effects. Therefore, human wild-type TNF-α is desirable. TNF-α is usually present in trimeric form under physiological conditions. In addition, when used for animals other than humans, TNF-α derived from a target administration animal can also be used.
 本発明でコレステロールプルランの調製に用いるプルランは、その質量平均分子量が、1万乃至100万ダルトンのものが用いられ、5万乃至50万ダルトンのものが望ましく、7.5万乃至25万ダルトンのものがより望ましい。以下に示す本発明のTNF-α-コレステロールプルラン複合体が医薬用途であることを勘案すると、その分子量はそろったものが望ましく、質量平均分子量を数平均分子量で除した値が2.5よりも小さいものが望ましく、2.0以下のものがより望ましく、1.5以下のものが特に望ましい。 The pullulan used for the preparation of cholesterol pullulan in the present invention has a mass average molecular weight of 10,000 to 1,000,000 daltons, preferably 50,000 to 500,000 daltons, 75,000 to 250,000 daltons. Things are more desirable. Considering that the TNF-α-cholesterol pullulan complex of the present invention shown below is for pharmaceutical use, it is desirable that the molecular weight is uniform, and the value obtained by dividing the mass average molecular weight by the number average molecular weight is more than 2.5. Small ones are desirable, 2.0 or less are more desirable, and 1.5 or less are particularly desirable.
 本発明でコレステロールプルランの調製に用いるプルランは、その起源や由来を問わず、発酵法、合成法などの方法により調製することができる。経済性の点からは、発酵法が望ましい。又、市販のプルラン(株式会社林原製造)を用いてもよく、斯かるプルランを原料に、例えば、特開昭57-141401号公報に記載のゲル濾過クロマトグラフィーや分別沈殿法などの方法を適用し、分子量分布の幅を狭めて用いればよい。 The pullulan used for the preparation of cholesterol pullulan in the present invention can be prepared by a method such as a fermentation method or a synthesis method regardless of its origin or origin. From the viewpoint of economy, the fermentation method is desirable. Commercially available pullulan (manufactured by Hayashibara Co., Ltd.) may be used. For example, gel filtration chromatography or fractional precipitation described in JP-A-57-141401 is applied to such pullulan as a raw material. However, the molecular weight distribution may be narrowed.
 本発明で用いるコレステロールプルランは、プルラン分子を構成するグリコシル基の水酸基の一部が、次式:-O-(CHCONH(CHNH-CO-O-R(式中Rはコレステリル基又はその類縁体;mは0又は1;nは2乃至6の整数)で表される基を有するものいう。斯かるコレステリル基は、プルラン分子を構成するグリコシル基100個あたり0.5個以上10個以下導入したものが用いられ、1個以上3個以下導入したものが望ましく、1個以上2個以下導入したものが特に望ましい。ちなみに、プルラン分子のグルコシル基100個あたりのコレステリル基の導入量は、H-NMR測定によるプルランとコレステリル基とのプロトン積分比から求めることができる。 In the cholesterol pullulan used in the present invention, a part of the hydroxyl group of the glycosyl group constituting the pullulan molecule has the following formula: —O— (CH 2 ) m CONH (CH 2 ) n NH—CO—O—R (wherein R Is a cholesteryl group or an analog thereof; m is 0 or 1; n is an integer of 2 to 6). As such cholesteryl group, 0.5 or more and 10 or less introduced per 100 glycosyl groups constituting the pullulan molecule are used, preferably 1 or more and 3 or less are introduced, and 1 or more and 2 or less are introduced. This is particularly desirable. Incidentally, the amount of cholesteryl group introduced per 100 glucosyl groups of the pullulan molecule can be determined from the proton integration ratio of pullulan and cholesteryl group by 1 H-NMR measurement.
 本発明で用いるコレステロールプルランの製法に特に制限はなく、常法により、プルランにコレステリル基乃至その類縁体を導入すればよい。また、例えば、市販のコレステロールプルラン(商品名『PUREBRIGHT CP-100T』、日油株式会社販売)を用いることもできる。ちなみに、この市販のコレステロールプルランは、分子量約100,000ダルトンのプルラン分子を構成するグリコシル基の6位の水酸基100個あたり、次式:-O-CONH(CHNH-CO-O-R(式中Rはコレステロール)で表される基を1個以上2個以下有する構造を有している。 There is no restriction | limiting in particular in the manufacturing method of the cholesterol pullulan used by this invention, A cholesteryl group thru | or its analog should just be introduce | transduced into a pullulan by a conventional method. Further, for example, commercially available cholesterol pullulan (trade name “PUREBRIGHT CP-100T”, sold by NOF Corporation) can also be used. Incidentally, this commercially available cholesterol pullulan has the following formula: —O—CONH (CH 2 ) 6 NH—CO—O— per 100 hydroxyl groups at the 6-position of a glycosyl group constituting a pullulan molecule having a molecular weight of about 100,000 daltons. It has a structure having 1 or more and 2 or less groups represented by R (wherein R is cholesterol).
 前記のように、コレステロールプルラン自体は公知の疎水化多糖類であり、コレステロールプルランと抗原との複合体は、抗体産生能をもつ動物に投与すると斯かる抗原に対する免疫応答が増強されるので、コレステロールプルランについてはワクチン用のアジュバントとしての利用も提案されている(特許文献5及び特許文献6)。しかしながら、後述の実施例で示すように、コレステロールプルランと抗原とを混合し、同時に粘膜投与しても、短時間では、通常、抗原との複合体が形成されることはないので、そのような投与形態では、コレステロールプルラン自体のアジュバントとしての効果はさほど発揮されないことが判明した。 As described above, cholesterol pullulan itself is a known hydrophobized polysaccharide, and when a cholesterol pullulan-antigen complex is administered to an animal having an antibody-producing ability, an immune response to the antigen is enhanced. The use of pullulan as an adjuvant for vaccines has also been proposed (Patent Documents 5 and 6). However, as shown in the examples below, even if cholesterol pullulan and antigen are mixed and simultaneously administered to mucosa, a complex with antigen is not usually formed in a short time. In the dosage form, it has been found that the effect of cholesterol pullulan itself as an adjuvant is not so great.
 さらに、コレステロールプルランと抗原との複合体は、通常、その抗原に対する免疫応答の増強に用いられるので(例えば特許文献5及び特許文献6参照)、例えば、TNF-αとコレステロールプルランとの複合体を投与すると、TNF-αに対する抗体の産生が増強され、TNF-αのアジュバント活性が中和されるリスクの増大が懸念される。しかし、本発明者等が見出したところによれば、TNF-α-コレステロールプルラン複合体の場合、これを粘膜組織に複数回投与しても、TNF-αに対する抗体産生が誘導されることはなく、アジュバント活性の抑制は起こらないことが判明した。 Furthermore, since a complex of cholesterol pullulan and an antigen is usually used to enhance an immune response to the antigen (see, for example, Patent Document 5 and Patent Document 6), for example, a complex of TNF-α and cholesterol pullulan is used. When administered, the production of antibodies against TNF-α is enhanced, and there is a concern that the risk of neutralizing the adjuvant activity of TNF-α is increased. However, the present inventors have found that in the case of TNF-α-cholesterol pullulan complex, production of antibody against TNF-α is not induced even if it is administered to mucosal tissue multiple times. It was found that suppression of adjuvant activity did not occur.
 本発明に係るTNF-α-コレステロールプルラン複合体の調製方法に特に制限はないが、例えば、コレステロールプルランとして、前記分子量100,000ダルトンのプルランの分子を構成するグルコシル基の6位の水酸基100個あたり、次式:-O-CONH(CHNH-CO-O-R(式中Rはコレステロール)で表される基を1個以上2個以下有する構造を有しているものを用いる場合、予め、50乃至60℃としたリン酸緩衝生理食塩水(PBS)などの水性溶媒に斯かるコレステロールプルランを加えて撹拌混合した後、1日程度振盪することにより、コレステロールプルランを水性溶媒に完全に溶解させる。このコレステロールプルラン溶液に、PBSなどの水性溶媒に溶解したTNF-αを加え、均一になるよう撹拌混合した後、室温乃至40℃、望ましくは25℃乃至37℃を維持しつつ、2日乃至7日間、望ましくは4日乃至6日間静置することにより、コレステロールプルランが形成するナノ粒子内に、通常、TNF-αの3量体が1個取り込まれ、TNF-α-コレステロールプルラン複合体が形成される。このようにして調製したTNF-α-コレステロールプルラン複合体は、そのままアジュバントとして用いることができる。本発明で用いるTNF-α-コレステロールプルラン複合体の調製は、通常、TNF-αとコレステロールプルランとを、モル比で1:1乃至30の比率で混合すればよく、より効率よくTNF-α-コレステロールプルラン複合体を調製するには1:2乃至20の比率が望ましく、1:3乃至15の比率が特に望ましい。斯かる混合比率の場合、ほぼ全量のTNF-αを複合体化することができる。この比率よりもコレステロールプルランに対するTNF-αの混合比率が高くなると、TNF-α量が増加するため、アジュバントとして用いる際にその投与量によっては、TNF-αによる副作用が生じる可能性が高くなるので、ゲル濾過法などを用いる精製工程が必要となる場合がある。逆に、この比率よりもコレステロールプルランの混合比率が高くなると、TNF-α-コレステロールプルラン複合体の全ナノ粒子に占める割合が低下し、アジュバントとして不要なTNF-αを含まないナノ粒子の割合が増加するので好ましくない。 The method for preparing the TNF-α-cholesterol pullulan complex according to the present invention is not particularly limited. For example, as the cholesterol pullulan, 100 hydroxyl groups at the 6-position of the glucosyl group constituting the pullulan molecule having a molecular weight of 100,000 daltons. The one having a structure having one or more and two or less groups represented by the following formula: —O—CONH (CH 2 ) 6 NH—CO—O—R (wherein R is cholesterol) is used. In this case, the cholesterol pullulan is added to an aqueous solvent such as phosphate buffered saline (PBS) at 50 to 60 ° C. in advance, and the mixture is stirred and mixed. Dissolve completely. To this cholesterol pullulan solution, TNF-α dissolved in an aqueous solvent such as PBS is added, and stirred and mixed to be uniform, and then kept at room temperature to 40 ° C., preferably 25 ° C. to 37 ° C. for 2 days to 7 days. By allowing to stand for 4 days, preferably 4 to 6 days, one TNF-α trimer is usually incorporated into the nanoparticles formed by cholesterol pullulan to form a TNF-α-cholesterol pullulan complex. Is done. The TNF-α-cholesterol pullulan complex thus prepared can be used as an adjuvant as it is. The TNF-α-cholesterol pullulan complex used in the present invention is usually prepared by mixing TNF-α and cholesterol pullulan at a molar ratio of 1: 1 to 30, and more efficiently TNF-α- A ratio of 1: 2 to 20 is desirable for preparing cholesterol pullulan complex, and a ratio of 1: 3 to 15 is particularly desirable. In the case of such a mixing ratio, almost the entire amount of TNF-α can be complexed. If the mixing ratio of TNF-α to cholesterol pullulan is higher than this ratio, the amount of TNF-α increases. Therefore, there is a high possibility that side effects caused by TNF-α will occur depending on the dose when used as an adjuvant. In some cases, a purification step using a gel filtration method or the like is required. Conversely, when the mixing ratio of cholesterol pullulan is higher than this ratio, the proportion of TNF-α-cholesterol pullulan complex in the total nanoparticles decreases, and the proportion of nanoparticles that do not contain unnecessary TNF-α as an adjuvant increases. Since it increases, it is not preferable.
 斯かる方法により調製されたTNF-αと複合体化したコレステロールプルランが形成するナノ粒子の粒径は、市販の粒度分布測定装置(商品名『島津レーザ回折式粒度分布測定装置(SALD-7100)』、島津製作所製造)で測定したとき、約20乃100nmである。TNF-α-コレステロールプルラン複合体が形成されたことは、ゲル濾過クロマトグラフィーにより、原料として用いたTNF-αタンパク質のピークが減少乃至消失し、コレステロールプルランよりも高分子側に、新たな単一ピークが出現することで確認できる。また、TNF-αとコレステロールプルランを上記適正な比率で混合し複合体とした場合、TNF-αの大部分が複合体を形成するので、斯かる溶液のTNF-α活性を測定した場合、活性は検出されないか、僅かに検出される程度となる。また、この溶液に、後述の実施例で示すように、メチル-β-シクロデキストリンを含有するPBSを加えることにより、複合体からTNF-αが放出され、その活性が検出されることでも確認できる。 The particle size of the nanoparticles formed by cholesterol pullulan complexed with TNF-α prepared by such a method is determined by a commercially available particle size distribution measuring device (trade name “Shimadzu Laser Diffraction Particle Size Distribution Measuring Device (SALD-7100)”). ”, Manufactured by Shimadzu Corporation), it is about 20-100 nm. The formation of the TNF-α-cholesterol pullulan complex is due to the fact that the peak of TNF-α protein used as a raw material decreased or disappeared by gel filtration chromatography, and a new single molecule was found on the polymer side of cholesterol pullulan. This can be confirmed by the appearance of a peak. In addition, when TNF-α and cholesterol pullulan are mixed at the appropriate ratio to form a complex, most of TNF-α forms a complex. Therefore, when the TNF-α activity of such a solution is measured, Is not detected or only slightly detected. Further, as shown in the examples described later, by adding PBS containing methyl-β-cyclodextrin to the solution, TNF-α is released from the complex, and its activity can be detected. .
 本発明の粘膜投与アジュバントと共に用いる抗原に特に制限はないが、とりわけ、投与の対象となるヒト或いはヒト以外の脊椎動物において、経皮投与や粘膜投与により、目的とする病原性微生物及び/又はその亜型の病原性微生物に対し、感染防御に有効な抗体産生の誘導能を有することが確認でき、且つ、投与しても安全であることが確認できる抗原が望ましい。斯かる抗原としては、例えば、従来から経皮投与用のワクチンとして用いられる病原性微生物由来の抗原や、アレルギーの減感作療法で用いられるアレルギーの原因物質であるアレルゲンに由来する抗原などを挙げることができる。より具体的には、不活化ワクチン、生ワクチン、成分(コンポーネント)ワクチン、多価ワクチン、混合ワクチン、DNA組換ワクチンなどのワクチン類や、病原性微生物が産生する細胞毒を中和する抗体産生の誘導を目的として用いられるトキソイド類などの抗原が望ましく、粘膜組織における分泌型IgA抗体の産生増強作用に優れる本発明のアジュバントの特性からすると粘膜組織経路で感染する病原性微生物の感染防御用ワクチンとして用いられる抗原が特に望ましい。より具体的には、例えば、ヒトに適用する場合、インフルエンザ、風邪、肺炎などの呼吸器疾患、風しん、麻しん、オタフクカゼ、黄熱病、デング熱、ラッサ熱、日本脳炎、ポリオ、水痘、エイズ、重症急性呼吸器症候群(SARS)、A型肝炎、B型肝炎、C型肝炎などの肝炎、ヘルペス、子宮頸ガン、肺炎、狂犬病、下痢などの消化器疾患などの各種疾患の原因ウイルス由来の抗原、結核菌、赤痢菌、コレラ菌、チフス菌、ペスト菌、ヘモフィラス・インフルエンザ(Haemophilus influenzae)菌、ストレプトコッカス・ミュータンス(Streptococcus mutans)菌、ポリフィロモナス・ギンギバリス(Porphyromonas gingivalis)菌、肺炎球菌等の病原性細菌やマラリアなどの病原性原虫、マイコプラズマなどの外膜タンパク質などを挙げることができる。とりわけ、インフルエンザウイルスのように、毎年、感染に関与する表面タンパク質が変異し、既存の経皮投与ワクチンでは、その感染防御に有効な血中IgG抗体の産生誘導が不可能乃至不十分で、時として、世界的な大流行をもたらすような病原性微生物に対し迅速に交叉防御反応に基づく感染防御能を誘導するためのプレパンデミックワクチンとして有用である。また、抗原性を有するのであれば糖タンパク質等複合タンパク質はもとより、核酸、多糖類、脂質などや、感染防御に有効な抗体産生の誘導能を有するエピトープを含むそれらの部分分解物などを用いることもできる。より具体的には、不活化ワクチンとしては、例えば、コレラワクチン、百日咳ジフテリア混合ワクチン、百日咳ジフテリア破傷風混合ワクチン、ワイル病秋やみ病混合ワクチン、インフルエンザワクチン、日本脳炎ワクチン、乾燥日本脳炎ワクチン、不活化狂犬病ワクチン、乾燥組織培養不活化狂犬病ワクチンなどを例示することができる。また、生ワクチンとしては、例えば、痘瘡ワクチン、乾燥痘瘡ワクチン、乾燥細胞培養痘瘡ワクチン、経口生ポリオワクチン、乾燥弱毒生風しんワクチン、乾燥弱毒オタフクカゼワクチンを例示することができる。日本脳炎ワクチン、麻しんワクチン、風しんワクチン、マイコプラズマワクチン、パピローマウイルスワクチン、ロタウイルスワクチンまた、トキソイド類としては、例えば、ジフテリアトキソイド、成人用沈降ジフテリアトキソイド、沈降破傷風トキソイド、ジフテリア破傷風混合トキソイド、沈降ジフテリア破傷風混合トキソイド、沈降ハブトキソイドなどを例示することができる。これらは、いずれも通常、感染防御及び/又は感染した病原性微生物による臨床症状の発症や重篤化の防止用のワクチンとして用いられる抗原やトキソイドである。さらに、ベロ毒素などの出血性大腸炎の原因毒素やアミロイドβペプチドなどの細胞毒性を有するタンパク質やペプチドであってもよい。また、アレルゲンとしては、スギやブタクサなどの花粉由来やダニ由来のアレルギーの原因物質などを挙げることができる。 There is no particular limitation on the antigen used together with the mucosal administration adjuvant of the present invention, but in particular, the target pathogenic microorganism and / or its target by transdermal administration or mucosal administration in humans or non-human vertebrates to be administered. Antigens that can be confirmed to have the ability to induce antibody production effective against infection against subtype pathogenic microorganisms and can be confirmed to be safe even when administered are desirable. Examples of such antigens include antigens derived from pathogenic microorganisms conventionally used as vaccines for transdermal administration, and antigens derived from allergens that cause allergies used in allergy desensitization therapy. be able to. More specifically, vaccines such as inactivated vaccines, live vaccines, component (component) vaccines, multivalent vaccines, mixed vaccines, and DNA recombinant vaccines, and antibody production that neutralizes cytotoxins produced by pathogenic microorganisms Antigens such as toxoids that are used for the purpose of induction of the disease are desirable, and vaccines for protecting against infection of pathogenic microorganisms that are infected by the mucosal tissue route according to the properties of the adjuvant of the present invention, which is excellent in the secretory IgA antibody production enhancing action in the mucosal tissue The antigen used as is particularly desirable. More specifically, for example, when applied to humans, respiratory diseases such as influenza, cold, pneumonia, wind shin, measles, otafukaze, yellow fever, dengue fever, Lassa fever, Japanese encephalitis, polio, chickenpox, AIDS, severe acute Respiratory syndrome (SARS), hepatitis such as hepatitis A, hepatitis B, hepatitis C, herpes, cervical cancer, pneumonia, rabies, antigens derived from viruses such as diarrhea and other diseases, tuberculosis Bacteria, Shigella, Cholera, Salmonella typhi, Pest, Haemophilus influenzae, Streptococcus mutans, Polyphyromonas gingivalis, Porphyromonas pathogen Bacteria and ma Pathogenic protozoa, such as the rear, and the like outer membrane proteins such as mycoplasma. In particular, surface proteins involved in infection are mutated every year, such as influenza viruses, and existing transdermal vaccines are unable or insufficient to induce blood IgG antibody production that is effective in protecting against infection. It is useful as a pre-pandemic vaccine for rapidly inducing infection-protective ability based on cross-protection reaction against pathogenic microorganisms that cause a global pandemic. In addition, if it has antigenicity, not only complex proteins such as glycoproteins, but also nucleic acids, polysaccharides, lipids, etc., and partial degradation products containing epitopes that have the ability to induce antibody production effective for infection protection should be used. You can also. More specifically, the inactivated vaccine includes, for example, cholera vaccine, pertussis diphtheria mixed vaccine, pertussis diphtheria tetanus mixed vaccine, Weil disease autumn gonorrhea mixed vaccine, influenza vaccine, Japanese encephalitis vaccine, dry Japanese encephalitis vaccine, inactivated rabies disease Examples of the vaccine include dry tissue culture inactivated rabies vaccine. Moreover, as a live vaccine, a pressure ulcer vaccine, a dry pressure ulcer vaccine, a dry cell culture pressure ulcer vaccine, an oral live polio vaccine, a dry attenuated live wind shin vaccine, a dry attenuated otafukase vaccine can be illustrated, for example. Japanese encephalitis vaccine, measles vaccine, rubella vaccine, mycoplasma vaccine, papillomavirus vaccine, rotavirus vaccine and toxoids include, for example, diphtheria toxoid, adult precipitated diphtheria toxoid, precipitated tetanus toxoid, diphtheria tetanus mixed toxoid, precipitated diphtheria tetanus Examples thereof include mixed toxoids and precipitated hub toxoids. These are all antigens and toxoids that are usually used as vaccines for protection against infection and / or prevention of the onset and severity of clinical symptoms due to infected pathogenic microorganisms. Furthermore, it may be a protein or peptide having cytotoxicity such as a toxin causing hemorrhagic colitis such as verotoxin or amyloid β peptide. Examples of allergens include pollen-derived allergens such as cedar and ragweed and mites.
 また、ヒト以外の動物に適用する場合に対象となる抗原として、例えば、口蹄疫ウイルス、ニューカッスル病ウイルス、各種動物に感染するインフルエンザウイルス、狂犬病ウイルス、炭疽病菌などの病原性微生物由来の抗原を例示することができる。前記以外の抗原としては、試薬や臨床診断薬として用いられる、酵素、細胞表面マーカー、腫瘍マーカー、抗体等を例示することができる。 Examples of antigens to be applied when applied to animals other than humans include antigens derived from pathogenic microorganisms such as foot-and-mouth disease virus, Newcastle disease virus, influenza virus that infects various animals, rabies virus, and anthrax be able to. Examples of antigens other than those described above include enzymes, cell surface markers, tumor markers, antibodies and the like used as reagents and clinical diagnostic agents.
 また、抗原中の抗原決定基(エピトープ)部分やそれを含むものを用いてもよく、さらには、抗原がタンパク質或いはペプチドの場合、例えば、国際公開第2004/87767号パンフレットなどに開示されているような免疫反応誘導能を有するT細胞エピトープと、抗体産生を目的とする抗原のB細胞エピトープとを人為的に連結した、B細胞エピトープに対する抗体産生を誘導可能な合成ペプチドや、特表平11-515006号公報などに開示されているようなキャリアー分子にB細胞エピトープを連結した合成ペプチドなどを用いてもよい。また、それ自体は、単独で投与しても抗体産生の誘導能を有さない物質であっても、本発明のTNF-α-コレステロールプルラン複合体と併用することにより抗体産生を誘導できるものは言うに及ばず、キャリアー分子などに結合して抗原性を賦与したものや、他のアジュバントとの併用により抗体産生を誘導できるものも用いることもできる。 Further, an antigenic determinant (epitope) portion in an antigen or a substance containing the same may be used. Furthermore, when the antigen is a protein or peptide, it is disclosed in, for example, International Publication No. 2004/87767 pamphlet. Synthetic peptides capable of inducing antibody production against B cell epitopes by artificially linking such T cell epitopes having the ability to induce immune responses and B cell epitopes of antigens intended for antibody production, Synthetic peptides in which a B cell epitope is linked to a carrier molecule as disclosed in Japanese Patent No. 515006 / may be used. In addition, even if the substance itself is a substance that does not have the ability to induce antibody production even when administered alone, it can induce antibody production when used in combination with the TNF-α-cholesterol pullulan complex of the present invention. Needless to say, those that have been combined with a carrier molecule or the like to impart antigenicity, or those that can induce antibody production when used in combination with other adjuvants can also be used.
 本発明の粘膜投与アジュバントと共に用いる抗原は、その製造方法や由来に制限はなく、抗原を発現している微生物や、その微生物が産生する抗原を含む産生物を用いることができ、DNA組換技術により製造したものや化学合成したものを用いることもできる。破傷風、ジフテリアの毒素、アミロイド-βペプチドなどのように、対象とする抗原自体に生体に対する毒性がある場合や、ポリオのように感染性のある微生物を用いる必要がある場合には、通常、これらを無毒化乃至弱毒化したものやその部分配列を有するペプチドを用いることもできる。これらの抗原は、生体に投与した際に、重篤な障害を引き起こさない限り、粗抽出物や、それを部分的に精製したもの或いは高度に精製したものを用いてもよい。特定の抗原のみに対する抗体産生を目的とする場合や、副作用発生の低減の点からは、目的とする抗原をできるだけ高度に精製したものを用いるのが望ましい。また、それ単独投与では抗体産生の誘導能が低い乃至ない成分の場合には、前述のように、T細胞エピトープを連結したり、キャリアー分子などに結合して、抗原性を増強したものを用いることもできるし、TNF-α-コレステロールプルラン複合体以外のアジュバントをさらに併用することもできる。また、市販のワクチン製剤の製造に用いられている抗原をそのまま用いてもよく、とりわけ、不活化ワクチンや弱毒生ワクチンを抗原とする場合は、そのまま用いるのが望ましい。 The antigen used together with the adjuvant for mucosal administration of the present invention is not limited in its production method or origin, and microorganisms expressing the antigen and products containing the antigen produced by the microorganism can be used. It is also possible to use those produced by chemical synthesis or those chemically synthesized. When the target antigen itself is toxic to the living body, such as tetanus, diphtheria toxin, amyloid-β peptide, or when it is necessary to use infectious microorganisms such as polio, these are usually used. Detoxified or attenuated or peptides having a partial sequence thereof can also be used. These antigens may be used as a crude extract, a partially purified product, or a highly purified product as long as it does not cause serious damage when administered to a living body. For the purpose of producing antibodies against only a specific antigen, or from the viewpoint of reducing the occurrence of side effects, it is desirable to use a purified product of the target antigen as highly as possible. In addition, in the case of a component that does not have a low ability to induce antibody production when administered alone, as described above, a T cell epitope linked or bound to a carrier molecule or the like to enhance antigenicity is used. In addition, an adjuvant other than the TNF-α-cholesterol pullulan complex can be used in combination. In addition, the antigen used for the production of a commercially available vaccine preparation may be used as it is. In particular, when an inactivated vaccine or a live attenuated vaccine is used as an antigen, it is desirable to use it as it is.
 本発明に係わる粘膜投与アジュバントと抗原とを別々に投与する場合の投与経路は、粘膜組織経路或いは経皮経路の何れであってもよいが、感染経路が粘膜組織である病原性微生物に対し、その感染防御に特に有効な分泌型IgA抗体の産生を惹起するためには、粘膜組織経由で投与するのが望ましく、投与の容易さや確実さからは、鼻腔内又は口腔内への粘膜投与が望ましく、鼻腔内への投与がより望ましい。血中IgG抗体やIgA抗体の産生を増強するためには粘膜組織か、或いは、状況に応じ、皮下、皮内、筋肉内などの経皮経路での投与も選択することができる。その際の、抗原の投与量は、本発明のTNF-α-コレステロールプルラン複合体を併用することにより、生体に対し抗体産生を増強できる用量であれば、特に制限はなく、用いる抗原の抗原性の強さに応じ、適宜調整すればよい。粘膜投与の場合、通常は、抗原質量として、体重50kgの成人1回当たり、0.01μg~100μg、好ましくは0.1μg~10μg投与すればよい。抗原の投与量が0.01μg未満では抗体産生を誘導できない場合があり、100μg回を越える量を投与しても投与量に見合う効果が認められない場合がある。また、投与の対象が、ヒト以外の脊椎動物の場合、ヒトへの投与量に基づき、投与部位の容積を勘案して、適宜、その投与量を調整すればよい。 The administration route in the case of separately administering the mucosal administration adjuvant and antigen according to the present invention may be either a mucosal tissue route or a transdermal route, but for pathogenic microorganisms whose infection route is mucosal tissue, In order to induce the production of secretory IgA antibody particularly effective for the protection of infection, it is desirable to administer via mucosal tissue, and in view of ease and certainty of administration, mucosal administration into the nasal cavity or oral cavity is desirable. Intranasal administration is more desirable. In order to enhance the production of blood IgG antibody or IgA antibody, administration by mucosal tissue or transdermal route such as subcutaneous, intradermal, intramuscular can be selected depending on the situation. In this case, the dose of the antigen is not particularly limited as long as it is a dose that can enhance antibody production to the living body by using the TNF-α-cholesterol pullulan complex of the present invention in combination. Depending on the strength, it may be adjusted as appropriate. In the case of mucosal administration, usually, 0.01 μg to 100 μg, preferably 0.1 μg to 10 μg, may be administered as an antigen mass per adult with a body weight of 50 kg. When the dose of antigen is less than 0.01 μg, antibody production may not be induced, and even when doses exceeding 100 μg are administered, an effect commensurate with the dose may not be observed. In addition, when the administration target is a vertebrate other than a human, the dosage may be appropriately adjusted in consideration of the volume of the administration site based on the dosage to human.
 本発明に係わる粘膜投与アジュバントと混合して投与する場合の抗原の用法は、抗原に対する特異的抗体の産生を増強できる用法であれば制限はなく、その抗原の抗体産生誘導能、疾患の種類、投与経路、投与方法、投与対象動物などを考慮して適宜決定すればよく、通常、既存のワクチンに用いられている抗原を用いる場合は、1日1回乃至複数回、1週間に1回乃至略1ヶ月に1回の間隔で、1乃至5回程度投与すればよい。通常、1回の投与で感染防御に必要な感作は成立するものの、インフルエンザウイルスなどのように伝染性の強い病原性微生物の流行期に用いる場合や、抗原性がパンデミックを引き起こすように変異した亜型の病原性微生物の場合のように短期間で効率良く交叉防御能を増強する必要がある場合は、1日1回乃至複数回、1週間に1回乃至1ヶ月に1回の間隔で、2乃至5回程度、望ましくは、2乃至4回、さらに望ましくは3又は4回投与すればよい。他の抗原を用いる場合の用法用量は、上記に準じるか、適宜の方法で、抗原特異的な抗体の産生の有無やその産生量を確認しながら、適宜調整すればよい。また、粘膜組織以外の部位へ経皮経路で投与する場合、投与量によっては投与部位に炎症反応を誘発する場合があるので、炎症反応の重篤度を勘案し、粘膜投与の場合よりも投与量を適宜減じる必要がある。 There are no limitations on the method of antigen used when mixed with the mucosal administration adjuvant according to the present invention, as long as it is a method that can enhance the production of a specific antibody against the antigen. It may be appropriately determined in consideration of the administration route, administration method, animal to be administered and the like. Usually, when an antigen used in an existing vaccine is used, once to several times a day to once a week to What is necessary is just to administer about 1 to 5 times at intervals of about once a month. Usually, sensitization necessary for protection against infection is established by a single administration, but when used in the epidemic of highly contagious pathogenic microorganisms such as influenza virus, or antigenicity has been mutated to cause a pandemic. When it is necessary to effectively enhance the cross-protection ability in a short period of time, as in the case of subtype pathogenic microorganisms, once to several times a day, once a week to once a month It may be administered 2 to 5 times, preferably 2 to 4 times, more preferably 3 or 4 times. The dosage in the case of using other antigens may be appropriately adjusted while confirming the presence / absence of the production of antigen-specific antibodies and the production amount thereof according to the above or by an appropriate method. In addition, when administered by a transdermal route to a site other than mucosal tissue, an inflammatory reaction may be induced at the site of administration depending on the dose. The amount needs to be reduced accordingly.
 本発明の粘膜投与アジュバントは、ヒトや動物に対し、粘膜投与或いはそれ以外の部位へ経皮経路で抗原を投与した際に、抗原を投与する前後或いは同時に、より好ましくは抗原の投与と同時に、抗原の投与部位、或いは、投与部位以外の粘膜組織へ投与した場合やそれ以外の部位へ経皮投与した場合でも、優れたアジュバント効果を発揮することができるが、抗体産生の増強効果の強さの点からは、抗原投与部位に投与するのが望ましい。分泌型IgA抗体の産生増強、投与の容易さ及び副作用の誘発のリスクの低減の点からは、粘膜投与が望ましく、経鼻又は口腔内投与が望ましく、経鼻投与が特に望ましい。抗原と別々に投与する場合は、抗原の投与前0乃至4時間以内に投与するのが望ましく、0乃至2時間以内に投与するのがより望ましく、可能な限り同時に投与するのが特に望ましい。抗原投与後に投与することも可能であるが、その場合も、抗原投与後できるだけ速やかに、望ましくは、0乃至3時間以内に投与する必要がある。抗原投与後、余り時間をおいて投与すると、アジュバント効果が十分発揮されない場合がある。 The adjuvant for mucosal administration of the present invention, when administering an antigen to a human or an animal by mucosal administration or other site by a transdermal route, before or after administration of the antigen, more preferably simultaneously with administration of the antigen, Even when administered to a mucosal tissue other than the administration site of the antigen, or transdermally administered to other sites, it can exert an excellent adjuvant effect, but the enhancement effect of antibody production is strong From this point, it is desirable to administer to the antigen administration site. From the viewpoint of enhancing production of secretory IgA antibody, ease of administration, and reducing the risk of inducing side effects, mucosal administration is desirable, nasal or buccal administration is desirable, and nasal administration is particularly desirable. When administered separately from the antigen, it is preferably administered within 0 to 4 hours before administration of the antigen, more preferably within 0 to 2 hours, and particularly preferably at the same time as possible. It is possible to administer after antigen administration, but in this case as well, it is necessary to administer as soon as possible after antigen administration, preferably within 0 to 3 hours. Adjuvant effect may not be fully exerted if administration is carried out after an antigen administration for a long time.
 本発明の粘膜投与アジュバントは、有効成分であるTNF-α-コレステロールプルラン複合体を含有する組成物の形態、又は、抗体産生の増強を目的とする抗原と混合した組成物の形態で提供される。また、用時に適量を抗原と混合した組成物の形態としてもよい。 The mucosal administration adjuvant of the present invention is provided in the form of a composition containing TNF-α-cholesterol pullulan complex as an active ingredient, or in the form of a composition mixed with an antigen for the purpose of enhancing antibody production. . Moreover, it is good also as a form of the composition which mixed the appropriate quantity with the antigen at the time of use.
 本発明の効果を妨げない限り、本発明に係る粘膜投与アジュバント、或いは、粘膜投与アジュバントと抗原を含む組成物は、これらの成分以外の製剤学的に許容できる1種又は2種以上の製剤用添加剤を組み合わせて医薬組成物を調製することもできる。製剤用添加剤としては、例えば、水、生理食塩水、リン酸緩衝生理食塩水(PBS)、アルコールなどの溶媒、グルコース、マルトースなどの還元性糖質、α,α-トレハロース、ショ糖、サイクロデキストリンなどの非還元性糖質、或いは、α-グルコシルα,α-トレハロース、α-マルトシルα,α-トレハロースなどのα,α-トレハロースの糖質誘導体、ソルビトール、マンニトール、マルチトール、マルトトリイトールなどの糖アルコール、寒天、プルラン、グアガム、アラビアガム、メチルセルロース、ポリビニルピロリドンなどの水溶性高分子、脂質、L-グルタミン酸ナトリウムなどのアミノ酸やその塩類、緩衝剤、安定化剤、抗菌剤、吸収促進剤、界面活性剤、保存剤、抗酸化剤、溶解剤、pH調整剤、香料、栄養機能食品、医薬部外品或いは医薬品の有効成分や上記以外の食品、食品添加物、医薬部外品添加物、医薬品添加物などを挙げることができ、これらの1種又は2種以上を適宜組み合わせて用いることができる。また、必要に応じ、本発明に斯かるTNF-α-コレステロールプルラン以外のアジュバントを配合することもできる。なかでも、TNF-αや他の添加剤に対する安定化効果の高い、α,α-トレハロース及びα,α-トレハロースの糖質誘導体が好ましい。なお、抗原以外のタンパク質やメチルβ-シクロデキストリンなどの糖質のように、コレステリル基に対する親和性の高い成分の添加は、TNF-α-コレステロールプルラン複合体からTNF-αが放出されるので、添加剤として好ましくない。 As long as the effect of the present invention is not hindered, the mucosal administration adjuvant according to the present invention or the composition containing the mucosal administration adjuvant and antigen is used for one or more pharmaceutically acceptable formulations other than these components. Pharmaceutical compositions can also be prepared by combining additives. Examples of pharmaceutical additives include water, physiological saline, phosphate buffered saline (PBS), solvents such as alcohol, reducing carbohydrates such as glucose and maltose, α, α-trehalose, sucrose, and cyclos. Non-reducing carbohydrates such as dextrin, or α, α-trehalose carbohydrate derivatives such as α-glucosyl α, α-trehalose, α-maltosyl α, α-trehalose, sorbitol, mannitol, maltitol, maltotriitol Sugar alcohols such as agar, pullulan, guar gum, gum arabic, methyl cellulose, polyvinylpyrrolidone and other water-soluble polymers, lipids, amino acids such as sodium L-glutamate and salts thereof, buffers, stabilizers, antibacterial agents, absorption promotion Agent, surfactant, preservative, antioxidant, solubilizer, pH adjuster, fragrance, nutritional functional food, Examples include quasi-drugs or active ingredients of pharmaceuticals, foods other than those mentioned above, food additives, quasi-drug additives, pharmaceutical additives, etc., and one or more of these may be used in appropriate combination Can do. If necessary, an adjuvant other than TNF-α-cholesterol pullulan according to the present invention can be blended. Of these, α, α-trehalose and α, α-trehalose saccharide derivatives, which have a high stabilizing effect on TNF-α and other additives, are preferred. It should be noted that addition of a component having a high affinity for a cholesteryl group, such as a protein other than an antigen or a carbohydrate such as methyl β-cyclodextrin, releases TNF-α from the TNF-α-cholesterol pullulan complex. It is not preferable as an additive.
 ちなみに、本発明に係る粘膜投与アジュバントと抗原とを含む組成物の場合、抗原はタンパク質やペプチドの場合が多いので、その調製時に、抗原量が多いことに起因するTNF-α-コレステロールプルラン複合体からのTNF-αの放出がおこらないよう、TNF-α-コレテロールプルラン複合体と混合する抗原の濃度はできるだけ低くする必要があり、通常は、組成物中の抗原濃度が10mg/ml以下となるように混合すればよく、5mg/ml以下が望ましく、1mg/ml以下とすることがより望ましい。 Incidentally, in the case of the composition containing the adjuvant for mucosal administration and the antigen according to the present invention, since the antigen is often a protein or peptide, the TNF-α-cholesterol pullulan complex resulting from the large amount of the antigen at the time of preparation. The concentration of the antigen mixed with the TNF-α-coreterol pullulan complex needs to be as low as possible so that the release of TNF-α from the mixture does not occur. Usually, the antigen concentration in the composition is 10 mg / ml or less. What is necessary is just to mix so that it may become 5 mg / ml or less, and it is more desirable to set it as 1 mg / ml or less.
 また、本発明の粘膜投与アジュバント、或いは、斯かる粘膜投与アジュバントと抗原とを含有する組成物の形態としては、溶液、シラップ、凍結乾燥品、粉末、顆粒、錠剤、トローチ、舌下錠、クリーム、軟膏、ジェルなどの剤形から、投与対象、投与方法、製剤の保存方法や輸送方法を考慮して適宜選択すればよい。また、本発明に係わる粘膜投与アジュバント又はそれを含有する組成物は、必要に応じ、皮膚、組織への浸透促進剤やイオン導入法などを併用することにより、抗原提示細胞の存在部位への浸透を促進させることもできる。また、本発明に係る製剤は、必要に応じ、錠菓、飴、清涼飲料などの各種飲食品の形態とし、これを経口的に摂取することにより、経粘膜的に投与することもできる。 The mucosal administration adjuvant of the present invention or the composition containing such a mucosal administration adjuvant and an antigen includes solutions, syrups, freeze-dried products, powders, granules, tablets, troches, sublingual tablets, creams. From the dosage forms such as ointments and gels, it may be appropriately selected in consideration of the administration subject, administration method, storage method of the preparation and transport method. Further, the mucosal administration adjuvant according to the present invention or the composition containing the same can be penetrated into the site where the antigen-presenting cells exist by using a penetration enhancer or iontophoresis method into the skin or tissue as necessary. Can also be promoted. Moreover, the formulation which concerns on this invention can also be administered transmucosally by making it into the form of various food / beverage products, such as tablet confectionery, a candy, and a soft drink, if it is taken orally.
 本発明に係る粘膜投与アジュバントを有効成分として含有する医薬組成物、又は、斯かる粘膜投与アジュバントと抗原とを有効成分として含有する医薬組成物のヒトへの投与方法には、特に制限はなく、本発明に係る粘膜投与アジュバント、又は、アジュバントと抗原とを有効成分として含有する組成物が、投与部位へ確実に到達できる方法であれば何れであってもよい。粘膜投与する場合、例えば、スポイトや注射器を用いて適量を粘膜上に滴下してもよく、経口摂取や、クリーム或いはジェル状にして粘膜に塗布したり、カテーテルなどで投与部位に誘導してもよく、さらには、鼻や喉にスプレーやネブライザーなどにより霧状にして吹き付けたり、気管、気管支、或いは、肺へ吸引させてもよいし、座剤の形態で大腸内に投与することもできる。また、皮下、皮内、筋肉内、血管内、腹腔内や胸腔内などの体腔内への投与には、注射器、カテーテル、点滴など、投与部位や投与経路に応じて適宜の投与方法を用いることができる。 There is no particular limitation on the method of administering the pharmaceutical composition containing the adjuvant for mucosal administration according to the present invention as an active ingredient, or the pharmaceutical composition containing such an adjuvant for mucosal administration and an antigen as active ingredients, Any method may be used as long as the mucosal administration adjuvant according to the present invention or the composition containing the adjuvant and the antigen as active ingredients can reliably reach the administration site. In the case of mucosal administration, for example, an appropriate amount may be dropped on the mucous membrane using a syringe or syringe, orally taken, applied to the mucosa in the form of a cream or gel, or guided to the administration site with a catheter or the like. Moreover, it may be sprayed in the form of a mist with a spray or nebulizer on the nose or throat, or may be aspirated into the trachea, bronchus or lung, or administered into the large intestine in the form of a suppository. In addition, for administration into body cavities such as subcutaneous, intradermal, intramuscular, intravascular, intraperitoneal and intrathoracic, use an appropriate administration method depending on the administration site and administration route, such as a syringe, catheter, infusion, etc. Can do.
 本発明の粘膜投与アジュバントを有効成分として含有する組成物、又は、斯かる粘膜投与アジュバントと抗原とを有効成分として含有する抗体産生増強用組成物は、1つ又は2つ以上の他の医薬組成物と同時にあるいは順番に用いることもできる。他の医薬組成物を投与した後に本発明に係る粘膜投与アジュバントを有効成分として含む医薬組成物を投与してもよいし、当該医薬組成物を投与した後に、他の医薬組成物を投与してもよく、更に、当該医薬組成物と化学療法剤を同時に投与してもよい。他の医薬組成物としては、対象とする疾患によって異なるが、一例としては他のワクチン、化学療法剤、抗体医薬、アンチセンス核酸医薬、siRNA医薬等を挙げることができる。 The composition containing the adjuvant for mucosal administration of the present invention as an active ingredient or the composition for enhancing antibody production containing such an adjuvant for mucosal administration and an antigen as active ingredients is one or more other pharmaceutical compositions It can also be used simultaneously or sequentially. After administering another pharmaceutical composition, a pharmaceutical composition containing the mucosal administration adjuvant according to the present invention as an active ingredient may be administered, and after administering the pharmaceutical composition, another pharmaceutical composition may be administered. In addition, the pharmaceutical composition and the chemotherapeutic agent may be administered simultaneously. Other pharmaceutical compositions vary depending on the target disease, but examples include other vaccines, chemotherapeutic agents, antibody drugs, antisense nucleic acid drugs, siRNA drugs, and the like.
 本発明に係わる粘膜投与アジュバントの用法は、抗原の抗体産生誘導能、疾患の種類、投与経路、投与方法、投与対象動物などを考慮して適宜決定すればよく、通常、抗原の投与スケジュールにあわせて投与される。具体的には、例えば、既存のワクチン類に用いられている抗原を用いる場合、そのワクチンの用法に従えばよく、通常は、1日1回乃至複数回、1乃至30日間隔で、望ましくは1乃至14日間隔で、特に望ましくは1乃至14日間隔で、1乃至5回、好ましくは2乃至4回程度投与すればよい。ワクチン類以外の抗原と用いる場合、上記に準ずるか、用いる抗原の抗原性の強さに応じ、適宜の方法で、抗原特異的な抗体産生の増強の有無や抗体の産生量を確認しながら、適宜調整すればよい。粘膜投与の場合、その用量は、体重50kgの成人に対し、TNF-α-コレステロールプルラン複合体をTNF-αタンパク質として0.1~5,000μg/回、好ましくは0.1~2,500μg/回投与、より好ましくは0.1~100μg/回投与すればよい。用いる抗原の免疫原性の強さや投与量によっては、0.1μg/回未満の投与量ではアジュバント効果が発揮されない場合があり、5,000μg/回を越える量を投与しても投与量に見合うアジュバント効果が得られない場合がある。また、投与の対象が、ヒト以外の脊椎動物の場合、ヒトへの投与量に基づき、鼻腔内の容積を勘案して、適宜、その投与量を調整すればよい。 The use of the adjuvant for mucosal administration according to the present invention may be determined as appropriate in consideration of the ability to induce antibody production of the antigen, the type of disease, administration route, administration method, animal to be administered, etc. Administered. Specifically, for example, when using an antigen used in an existing vaccine, the usage of the vaccine may be followed, usually once to several times a day, preferably at intervals of 1 to 30 days, preferably The administration may be performed 1 to 14 days, particularly preferably 1 to 14 days, and 1 to 5 times, preferably 2 to 4 times. When using with antigens other than vaccines, according to the above or depending on the antigenic strength of the antigen to be used, while confirming the presence or absence of antigen-specific antibody production and the amount of antibody production by an appropriate method, What is necessary is just to adjust suitably. In the case of mucosal administration, the dosage is 0.1 to 5,000 μg / time, preferably 0.1 to 2,500 μg / time as TNF-α protein for an adult weighing 50 kg as TNF-α protein. Multiple doses, more preferably 0.1-100 μg / dose. Depending on the immunogenicity of the antigen used and the dose, the adjuvant effect may not be exhibited at doses less than 0.1 μg / dose, and even if doses exceeding 5,000 μg / dose are administered, the dose will be commensurate with the dose. Adjuvant effect may not be obtained. In addition, when the administration target is a vertebrate other than a human, the dosage may be appropriately adjusted in consideration of the volume in the nasal cavity based on the dosage to human.
 本発明のアジュバントは、汎用性が高く、ワクチンとして用いられている抗原をはじめとする種々の抗原と共に経鼻投与などの粘膜投与することにより、唾液、鼻腔液等の全身の粘膜組織および血液中に、投与した抗原に特異的な抗体、とりわけ、分泌型IgA抗体の産生が著しく増強される。分泌型IgA抗体は交叉防御能が高いので、粘膜投与用抗原に対する抗体産生増強用のアジュバントとして極めて有効であり、交叉防御能を誘導することができるので、その結果、病原性微生物由来の抗原と併用した場合には、生体に対し、斯かる微生物やその近縁(亜型)の微生物に対する感染防御能及び/又は微生物感染による病気(微生物由来の毒性物質に起因する病気を含む)の発症や重篤化の予防能を効率よく賦与することができる。しかも、粘膜投与の場合、TNF-α自体に対する抗体の産生誘導のリスクは極めて低い。なお、本発明のアジュバントは、抗原と共に粘膜組織以外の部位へ経皮経路で投与した場合には、血液中に、投与した抗原に特異的なIgG抗体及び又はIgM抗体、並びに、IgA抗体の産生が増強されるので、本発明のアジュバントは、粘膜組織以外の部位へ経皮経路で投与する種々の抗原に対する抗体産生増強用のアジュバントとしても極めて有効である。 The adjuvant of the present invention is highly versatile and can be administered to mucosal tissues and blood in the whole body such as saliva and nasal fluid by administration to mucosa such as nasal administration together with various antigens including antigens used as vaccines. Furthermore, the production of antibodies specific to the administered antigen, in particular, secretory IgA antibodies, is significantly enhanced. Since the secretory IgA antibody has a high cross-protective ability, it is extremely effective as an adjuvant for enhancing antibody production against an antigen for mucosal administration, and can induce the cross-protective ability. When used in combination, the organism can protect against such microorganisms and closely related (subtype) microorganisms and / or develop diseases caused by microbial infection (including diseases caused by toxic substances derived from microorganisms) Severe prevention can be efficiently imparted. Moreover, in the case of mucosal administration, the risk of inducing antibody production against TNF-α itself is extremely low. When the adjuvant of the present invention is administered together with the antigen to a site other than the mucosal tissue by a transdermal route, the IgG and / or IgM antibody specific to the administered antigen and the production of IgA antibody are produced in the blood. Therefore, the adjuvant of the present invention is extremely effective as an adjuvant for enhancing antibody production against various antigens administered by a transdermal route to a site other than mucosal tissue.
 本発明のTNF-α-コレステロールプルラン複合体は、アジュバントとして有用であるだけで無く、粘膜組織以外の部位へ経皮経路で投与しても、徐放性を維持することができるので、TNF-αを投与する場合に比べ、低用量で同様の効果を発揮することができ、副作用の発生を低減できることから、単独で、或いは、他の治療剤と併用して、乳ガン、肝ガン、腎ガン、メラノーマ、菌状息肉症などの悪性腫瘍やウイルス性疾患をはじめとするTNF-α感受性疾患の治療用として、さらには、血管透過性改善用などの生物学的製剤としても有利に利用することができる。 The TNF-α-cholesterol pullulan complex of the present invention is not only useful as an adjuvant, but can maintain sustained release even when administered by a transdermal route to a site other than a mucosal tissue. Compared to the administration of α, the same effect can be achieved at a low dose and the occurrence of side effects can be reduced. Therefore, breast cancer, liver cancer, renal cancer alone or in combination with other therapeutic agents For the treatment of TNF-α-sensitive diseases such as malignant tumors and viral diseases such as melanoma and mycosis fungoides, and also as a biological preparation for improving vascular permeability Can do.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
<DDS化した各種TNF-α標品の調製>
 本発明者が、予備実験により、生理食塩水に溶解したTNF-αを、鼻腔内の粘膜組織に投与しても弱いアジュバント作用しか示さないことが判明した。その原因を究明するため、生理食塩水に溶解したTNF-αをアジュバントとして用いたところ、生理食塩水に溶解した状態ではTNF-αは、比較的短時間で活性が失活することが判明した。さらに、本発明者が、別の実験において、蛍光色素で標識したTNF-αを生理食塩水に溶解し、マウスの皮下に投与したところ、投与部位からの蛍光色素の急速な消失が認められたことから、TNF-αは投与部位から速やかに組織中に拡散する可能性があることも判明した。これらの予備実験から、TNF-αを経鼻投与した場合も、その投与部位において、TNF-αが短時間で失活乃至消失することにより、充分なアジュバント活性を発揮できない可能性が示唆された。そこで、粘膜投与時に、TNF-αを長期間粘膜組織上で安定に保持するために、そのDDS(ドラッグデリバリーシステム)化乃至安定化方法の検討を行った。すなわち、TNF-αのDDS化乃至安定化のために、下記に示す方法により、コレステロールプルランとの複合体化を調製した。また、対照として、DDS化乃至安定化剤として汎用されている生体吸収性ハイドロゲルへの吸着、皮下吸収性リオトロピック液晶(Nanocube)への封入、及び、リポソームへの封入を行った。さらに、水溶性高分子ポリエチレングリコール(以下、「PEG」という。)を用い、TNF-α分子のアミノ基へのランダムな修飾によるTNF-αのDDS化を試みた。なお、以下の実施例では、センダイウイルスを誘導剤として用いヒトリンパ芽球様細胞株BALL-1細胞に産生させ、常法により精製した天然型ヒトTNF-α(株式会社林原生物化学研究所製造、比活性約2×10JRU/mgタンパク質)を用いた。
<Preparation of various DNF-modified TNF-α preparations>
The present inventor has shown through preliminary experiments that even if TNF-α dissolved in physiological saline is administered to mucosal tissues in the nasal cavity, it exhibits only a weak adjuvant effect. In order to investigate the cause, TNF-α dissolved in physiological saline was used as an adjuvant, and it was found that TNF-α was deactivated in a relatively short time when dissolved in physiological saline. . Furthermore, in another experiment, when the present inventor dissolved TNF-α labeled with a fluorescent dye in physiological saline and administered it subcutaneously to mice, rapid disappearance of the fluorescent dye from the administration site was observed. From this, it was also found that TNF-α may diffuse into the tissue quickly from the administration site. From these preliminary experiments, it was suggested that even when TNF-α was administered intranasally, TNF-α was inactivated or disappeared in a short time at the administration site, so that sufficient adjuvant activity could not be exhibited. . Therefore, in order to stably hold TNF-α on the mucosal tissue for a long period of time during mucosal administration, studies were made on its DDS (drug delivery system) or stabilization method. That is, for the DDS conversion or stabilization of TNF-α, a complex with cholesterol pullulan was prepared by the following method. Further, as a control, adsorption to a bioabsorbable hydrogel, which is widely used as a DDS or stabilizer, encapsulation in a subcutaneously absorbable lyotropic liquid crystal (Nanocube), and encapsulation in a liposome were performed. Furthermore, TNF-α was converted to DDS by randomly modifying the amino group of the TNF-α molecule using water-soluble high-molecular polyethylene glycol (hereinafter referred to as “PEG”). In the following examples, natural human TNF-α produced by human lymphoblastoid cell line BALL-1 cells using Sendai virus as an inducer and purified by a conventional method (manufactured by Hayashibara Biochemical Laboratories, Inc., Specific activity of about 2 × 10 6 JRU / mg protein) was used.
<TNF-α-コレステロールプルラン複合体標品の調製>
 コレステロールプルラン(商品名『PUREBRIGHT CP-100T』、日油株式会社販売)適量を秤量後、20mg/mlとなるようにダルベッコのPBS(商品名『ダルベッコPBS(-)粉末「ニッスイ」』、日水製薬株式会社販売)(以下、「D-PBS」という。)に懸濁し、55℃の温水浴中で16時間振盪し溶解した後、ポアサイズが0.22μmの膜フィルターを用い濾過滅菌した。このコレステロールプルラン溶液7mlとD-PBS(-)に溶解したTNF-α(TNF-αタンパク質量1.454mg/ml)2mlとを混合し、ポアサイズが0.22μmの膜フィルターを用い濾過滅菌した後、37℃で5日間反応することにより、TNF-α-コレステロールプルラン複合体標品を調製した。この溶液のTNF-α活性をマウスLM細胞を用いた細胞障害活性に基づくバイオアッセイにより測定したところ活性は検出されなかった。また、この溶液に200mg/mlのメチル-β-シクロデキストリンを含有するD-PBSを等量混合し、37℃で2時間反応させTNF-αをコレステロールプルランのナノゲル外に放出させた後、ウシ胎児血清(FCS)を1容積%含有するMEM培地(以下、「1容積%FCS含有MEM培地」という。)で希釈し、同様に活性を測定したところ、複合体調製に用いたTNF-αとほぼ同量の活性が確認された。
<Preparation of TNF-α-cholesterol pullulan complex preparation>
Cholesterol pullulan (trade name “PUREBRIGHT CP-100T”, sold by NOF Corporation) weighs an appropriate amount, and then Dulbecco ’s PBS (trade name “Dulbecco PBS (−) powder“ Nissui ””, Nissui to 20 mg / ml. Suspended in Pharmaceutical Co., Ltd. (hereinafter referred to as “D-PBS”), dissolved in a warm water bath at 55 ° C. for 16 hours, and then sterilized by filtration using a membrane filter having a pore size of 0.22 μm. After mixing 7 ml of this cholesterol pullulan solution and 2 ml of TNF-α (TNF-α protein amount 1.454 mg / ml) dissolved in D-PBS (−), the mixture was sterilized by filtration using a membrane filter having a pore size of 0.22 μm. By reacting at 37 ° C. for 5 days, a TNF-α-cholesterol pullulan complex preparation was prepared. When the TNF-α activity of this solution was measured by a bioassay based on cytotoxic activity using mouse LM cells, no activity was detected. In addition, an equal amount of D-PBS containing 200 mg / ml methyl-β-cyclodextrin was mixed with this solution and reacted at 37 ° C. for 2 hours to release TNF-α out of the cholesterol pullulan nanogel. When diluted with MEM medium containing 1% by volume of fetal serum (FCS) (hereinafter referred to as “MEM medium containing 1% by volume FCS”), the activity was measured in the same manner. Almost the same amount of activity was confirmed.
<TNF-αの生体吸収性ハイドロゲル封入体標品の調製>
 生理活性物質のDDS化に用いられている市販のゼラチンベースの生体吸収性ハイドロジェル2種(商品名『MedGel』PI5及びPI9、株式会社メドジェル販売)のシートを、各々、約4mm×約12mm(約2mgに相当)にカットし、微量天秤で質量を測定後、ポリプロピレン製のチューブ(商品名『ファルコン2059チューブ』、ベクトンディッキンソン社販売)に入れた。TNF-α(1.454mg/ml)を20μl/ゲル(TNF-αタンパク質として30μg/ゲル)でシート上に滴下し、4℃で一晩静置し、TNF-αのハイドロゲル封入体標品を調製した。
<Preparation of TNF-α bioabsorbable hydrogel inclusion preparation>
Sheets of two types of commercially available gelatin-based bioabsorbable hydrogels (trade names “MedGel” PI5 and PI9, sold by Medgel Co., Ltd.) used for DDS conversion of physiologically active substances are about 4 mm × about 12 mm each ( The weight was measured with a microbalance and placed in a polypropylene tube (trade name “Falcon 2059 tube”, sold by Becton Dickinson). TNF-α (1.454 mg / ml) was dripped onto a sheet at 20 μl / gel (30 μg / gel as TNF-α protein) and allowed to stand at 4 ° C. overnight. Was prepared.
<TNF-αの皮下吸収性リオトロピック液晶封入体標品の調製>
 PBSに溶解したTNF-α(株式会社林原生物化学研究所製造、TNF-αタンパク質7.54mg/ml)30μlとグリセリン39.57μlとを、1.5ml容のポリプロピレンチューブ(商品名『エッペンドルフチューブ』、エッペンドルフ社販売)に入れ、ボルテックスミキサーを用い強く撹拌、混合した。さらに、ポリオキシエチレン(20)オクチルドデシルエーテル(商品名『エマルゲン2020G-HA』、HLB13、花王株式会社販売)49.26mgを加え、ボルテックスミキサーを用いて強く撹拌、混合した後、スクワラン49.02μlを加え、ボルテックスミキサーを用いて強く撹拌、混合することにより、TNF-αのリオトロピック液晶封入体を調製した。ちなみに、皮下吸収性リオトロピック液晶封入体は、経皮吸収促進作用のある化粧品用ジェル基材として用いられている(例えば、Yamaguchi Y.等、『Pharmazie』、第61巻、112-116頁(2006年)参照)。
<Preparation of TNF-α subcutaneously absorbable lyotropic liquid crystal inclusion body preparation>
30 ml of TNF-α (manufactured by Hayashibara Biochemical Laboratories, Inc., 7.54 mg / ml TNF-α protein) and 39.57 μl of glycerin dissolved in PBS are added to a 1.5 ml polypropylene tube (trade name “Eppendorf tube”) , Sold by Eppendorf), and vigorously stirred and mixed using a vortex mixer. Furthermore, 49.26 mg of polyoxyethylene (20) octyldodecyl ether (trade name “Emulgen 2020G-HA”, HLB13, sold by Kao Corporation) was added, and the mixture was vigorously stirred and mixed using a vortex mixer, and then 49.02 μl of squalane. Was added, and vigorously stirred and mixed using a vortex mixer to prepare a TNF-α lyotropic liquid crystal inclusion body. Incidentally, the subcutaneously absorbable lyotropic liquid crystal inclusion body is used as a gel base for cosmetics having a transdermal absorption promoting action (for example, Yamaguchi Y. et al., “Pharmacizie”, Vol. 61, pages 112-116 (2006). Year)).
<リポソーム内封TNF-α標品の調製>
 TNF-α(株式会社林原生物化学研究所製造、TNF-αタンパク質1.454mg/ml)をカリウムを含まないPBS(PBS(K-))で希釈し、TNF-αタンパク質の濃度が363.5μg/ml及び632μg/mlである水溶液を、各々、2ml調製した。これらの溶液を、注射器に充填し、それぞれ、市販の凍結乾燥型中空リポソーム粉末入りバイアル(商品名『COATSOME EL-01-N』、脂質として、L-α-ジパルミトイルホスファチジルコリン(DPPC)54μmol、コレステロール40μmol、L-α-ジパルミトイルホスファチジルグリセロール(DPPG)6μmol入り、日油株式会社販売)に注入した。バイアルを、3乃至5回振盪し、リポソーム内封TNF-α含有溶液を調製した。この溶液をゲル濾過カラムクロマトグラフィー(商品名『セファクリル-S300HR』、カラムサイズ:φ15mm×500mm、リージェントコンセントレイト株式会社販売)に供し、PBS(K-)で溶出し、溶出画分中のタンパク質量とコレステロール量とを、各々、市販のブラッドフォード試薬(商品名『プロテインアッセイダイ』、バイオラッド株式会社販売)及びコレステロール検出試薬(商品名『コレステロールテストワコー』、和光純薬工業株式会社販売)を用いて測定し、遊離TNF-α画分(タンパク質含有画分)、リポソーム画分(コレステロール含有画分)をそれぞれ回収した。上記ゲル濾過カラムクロマトグラフィーに供したリポソーム内封TNF-α含有溶液及びカラムから溶出されたリポソーム画分0.1mlに、各々、1.05質量%トリトン-X100溶液0.04mlを加え、ローテーターで30分間振盪することによりリポソームを破壊し内封されたTNF-αを放出させた後、1容積%ウシ胎児血清(FCS)含有MEM培地(商品名『イーグルMEM培地「ニッスイ』、コード番号05902、カナマイシン及びフェノールレッド不含有、日水製薬株式会社販売)で希釈し、マウスLM細胞に対する細胞障害活性に基づくバイオアッセイにより、各溶液中のTNF-αの力価を測定した。
<Preparation of liposome-encapsulated TNF-α preparation>
TNF-α (manufactured by Hayashibara Biochemical Laboratories, Inc., TNF-α protein 1.454 mg / ml) was diluted with PBS not containing potassium (PBS (K-)), and the concentration of TNF-α protein was 363.5 μg. 2 ml each of an aqueous solution having a concentration of 632 μg / ml and 632 μg / ml was prepared. These solutions are filled into a syringe, and each is a commercially available vial with freeze-dried hollow liposome powder (trade name “COATSOME EL-01-N”, as lipid, L-α-dipalmitoylphosphatidylcholine (DPPC) 54 μmol, cholesterol 40 μmol, 6 μmol of L-α-dipalmitoylphosphatidylglycerol (DPPG) was added, and sold to NOF Corporation. The vial was shaken 3 to 5 times to prepare a liposome-encapsulated TNF-α-containing solution. This solution was subjected to gel filtration column chromatography (trade name “Sephacryl-S300HR”, column size: φ15 mm × 500 mm, sold by Regent Concentrate Co., Ltd.), eluted with PBS (K−), and the amount of protein in the eluted fraction was determined. Using the commercially available Bradford reagent (trade name “Protein Assay Dye”, sold by Bio-Rad Co., Ltd.) and cholesterol detection reagent (trade name “Cholesterol Test Wako”, sold by Wako Pure Chemical Industries, Ltd.) The free TNF-α fraction (protein-containing fraction) and the liposome fraction (cholesterol-containing fraction) were each collected. 0.04 ml of a 1.05 mass% Triton-X100 solution was added to 0.1 ml of the liposome-encapsulated TNF-α-containing solution subjected to the gel filtration column chromatography and 0.1 ml of the liposome fraction eluted from the column, respectively. After 30 minutes of shaking, the liposomes were broken to release the encapsulated TNF-α, and then 1% by volume fetal calf serum (FCS) -containing MEM medium (trade name “Eagle MEM medium“ Nissui ”, code number 05902, The titer of TNF-α in each solution was measured by a bioassay based on cytotoxic activity against mouse LM cells after dilution with kanamycin and phenol red (not available from Nissui Pharmaceutical Co., Ltd.).
<PEG修飾TNF-α標品の調製>
 TNF-α(1.11mg/ml、1.98×10JRU/ml)のPBS溶液1.67mgと、PEG試薬(methoxy-PEG-Succinimidylpropionate;商品名『MPEG-SPA-20k』、ネクター社販売)6.68mgとを混合し、37℃の水浴で15分間ゆっくり攪拌した。さらに、PEG試薬6.68mgを添加し、37℃の水浴で15分間ゆっくり攪拌、混合した。反応を停止するために、ε-アミノカプロン酸0.876mg(MPEG-SPA-20kの10倍モル)を添加し、37℃の水浴で、10分間ゆっくり攪拌した。この反応液停止後の溶液を、ゲル濾過クロマトグラフィー(商品名『Superdex200』、カラムサイズφ16mm×600mm、ゲル容積120ml、GEヘルスケア株式会社販売)に供し、TNF-α1分子当たり分子量が20キロダルトンのPEGが1~3個付加したと考えられる分子量の分子が溶出される画分を回収し、PEG修飾TNF-αを調製した。ゲル濾過クロマトグラフィーの溶出パターンから、本方法により調製し、回収した大部分のPEG修飾TNF-αは、TNF-α1分子に対しPEG1分子が結合していると判断した。
<Preparation of PEG-modified TNF-α preparation>
1.67 mg of TNF-α (1.11 mg / ml, 1.98 × 10 6 JRU / ml) in PBS and PEG reagent (method-PEG-Succinimidylpropionate; trade name “MPEG-SPA-20k”, sold by Nectar) ) 6.68 mg was mixed and slowly stirred in a 37 ° C. water bath for 15 minutes. Furthermore, 6.68 mg of PEG reagent was added, and the mixture was slowly stirred and mixed in a 37 ° C. water bath for 15 minutes. In order to stop the reaction, 0.876 mg of ε-aminocaproic acid (10-fold mol of MPEG-SPA-20k) was added, and the mixture was slowly stirred for 10 minutes in a 37 ° C. water bath. The solution after stopping the reaction solution is subjected to gel filtration chromatography (trade name “Superdex200”, column size φ16 mm × 600 mm, gel volume 120 ml, sold by GE Healthcare Co., Ltd.), and the molecular weight per molecule of TNF-α is 20 kilodaltons. Fractions from which molecules having a molecular weight considered to have added 1 to 3 of PEG were eluted were collected to prepare PEG-modified TNF-α. From the elution pattern of gel filtration chromatography, most of the PEG-modified TNF-α prepared and recovered by this method was judged to have PEG1 molecules bound to TNF-α1 molecules.
 上記調製した5種類のTNF-αをDDS化した標品におけるTNF-αのDDS化率(質量%)、DDS化されたTNF-αタンパク質の2分の1量が生理食塩水中で放出されるまでの時間(リポソームへの内封TNF-α、PEG修飾TNF-αを除く)、及び、DDS化されたTNF-αを、蓋付きのポリプロピレンチューブに入れて4℃又は25℃の恒温条件で保存したときの保存安定性につき、表1に纏めた。なお、DDS化率は、ブラッドフォード法によりDDS化された標品中のTNF-αタンパク質量をDDS化に用いたTNF-αタンパク質量で除し100倍して求めた。DDS化時の失活率(%)は、DDS化したTNF-αを、TNF-α-コレステロールプルラン複合体の場合は、メチル-β-シクロデキストリンを加えて、リオトロピック液晶の場合は生理食塩水を加え、リポソームへの内封の場合は乳化剤を加え、TNF-αを放出させた後、その生理活性とブラッドフォード法によりタンパク質量を測定し、生理活性をタンパク質量で除し放出されたTNF-αの比活性(JRU/mgタンパク質)を求めた。この比活性を、失活が無い場合のTNF-αの比活性(2×10JRU/mgタンパク質)で除し、100倍し、100から減じて算出した。PEG修飾TNF-α標品は、直接その生理活性とタンパク質量を測定した結果に基づき、同様に算出した。この場合、DDS化時にTNF-αの失活がない場合には、失活率は0%となる。保存安定性は、DDS化した試料を表1に示す温度条件に保存し、7日毎にサンプリングして、TNF-αの活性を測定し、DDS化直後の各々の標品について測定した活性を100%として、その活性が90%以上維持されている期間とした。なお、PEG修飾TNF-αはPEGとTNF-αとが共有結合しているのでTNF-αが放出されることはないので放出時間の測定試験は実施しなかった。また、リポソームへの内封ではTNF-αの大部分が失活したため放出時間の測定試験は実施しなかった。さらに、ハイドロゲルへの吸着では、添加したTNF-α溶液全量がゲルに吸収されたので、そのDDS化率は見かけ上100%となったものの、DDS化されたTNF-αタンパク質の2分の1量が生理食塩水中で放出されるまでの時間は0.5時間以下であり、実際には、TNF-αはDDS化されていなかった、また、リポソームへの内封及びPEG修飾ではTNF-αの大部分が失活していた。それゆえ、これらの方法は何れもTNF-αのDDS化には不適と判断し、保存安定性の試験は実施しなかった。 The DDS conversion rate (mass%) of TNF-α in the preparation prepared by DDS conversion of the five types of TNF-α prepared above, and a half of the DDS-converted TNF-α protein are released in physiological saline. Time (excluding encapsulated TNF-α and PEG-modified TNF-α in liposomes) and DDS-modified TNF-α in a polypropylene tube with a lid under constant temperature conditions of 4 ° C. or 25 ° C. The storage stability when stored is summarized in Table 1. The DDS conversion rate was obtained by dividing the amount of TNF-α protein in the preparation DDS converted by Bradford method by the amount of TNF-α protein used for DDS conversion and multiplying by 100. The deactivation rate (%) at the time of DDS conversion was determined by adding TDS-α converted to DDS, methyl-β-cyclodextrin in the case of TNF-α-cholesterol pullulan complex, and physiological saline in the case of lyotropic liquid crystals. In the case of encapsulation in liposomes, an emulsifier is added and TNF-α is released. Then, the physiological activity and the protein amount are measured by the Bradford method, the physiological activity is divided by the protein amount, and the released TNF is released. Specific activity of -α (JRU / mg protein) was determined. This specific activity was calculated by dividing by the specific activity of TNF-α (2 × 10 6 JRU / mg protein) in the absence of inactivation, multiplying by 100, and subtracting from 100. The PEG-modified TNF-α preparation was similarly calculated based on the results of directly measuring its physiological activity and protein amount. In this case, when there is no deactivation of TNF-α at the time of DDS conversion, the deactivation rate is 0%. The storage stability is determined by storing the DDS sample at the temperature conditions shown in Table 1, sampling every 7 days, measuring the TNF-α activity, and measuring the activity measured for each sample immediately after the DDS conversion to 100. %, The period during which the activity is maintained at 90% or more. In addition, since PEG-modified TNF-α is covalently bonded to PEG and TNF-α, TNF-α is not released, so a release time measurement test was not performed. In addition, since most of TNF-α was inactivated when encapsulated in liposomes, the release time measurement test was not performed. Furthermore, in the adsorption to the hydrogel, the total amount of the added TNF-α solution was absorbed by the gel, so that the DDS conversion rate seemed to be 100%, but the DDS-converted TNF-α protein was 2 min. The time until one amount is released in physiological saline is 0.5 hours or less. Actually, TNF-α was not DDS-converted. Also, TNF-α was not included in liposome encapsulation and PEG modification. Most of α was inactivated. Therefore, all of these methods were judged to be unsuitable for TDS-α conversion to DDS, and no storage stability test was conducted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、TNF-αとコレステロールプルランとの複合体を形成させる方法では、TNF-αタンパク質のほぼ全量が複合体となり、複合体形成時のTNF-αの失活も、生理食塩水中でのTNF-αタンパク質の放出もなく、その保存安定性に優れていた(試験群1)。これに対し、ハイドロゲルへ吸着させた場合は、用いたTNF-αタンパク質のほぼ全量を吸着したものの、生理食塩水中でTNF-αが、短時間でゲルから放出された(試験群2)。リオトロピック液晶へ封入にしたものは、TNF-αのほぼ全量がDDS化され、DDS化の際の失活もなく、その保存安定性に優れていた(試験群3)。また、リオトロピック液晶へ封入した場合は、液晶が生理食塩水中で容易に溶解するので、TNF-αが短時間で放出された。リポソームへの内封法では、内封されるTNF-α量が、用いたTNF-αタンパク質の2%以下と極めて低く、内封時に約60質量%のTNF-αが失活した(試験群4)。PEGによる修飾の場合は、用いたTNF-αタンパク質の1分子に1個以上の割合でPEG修飾されたものの、TNF-αの失活率が90%以上となり、TNF-αタンパク質量当たりの細胞障害活性(比活性)がPEG修飾前のTNF-αに比し10分の1以下に低下した(試験群5)。この結果から、ハイドロゲルへの吸着ではTNF-αがゲルに吸着されなかったためTNF-αのDDS化方法としては不適と判断した。また、リポソームへの内封は効率が極めて低く、内封時にTNF-αの失活も認められたため、TNF-αのDDS化方法としては不適と判断した。 As is apparent from Table 1, in the method of forming a complex of TNF-α and cholesterol pullulan, almost the entire amount of TNF-α protein becomes a complex, and the inactivation of TNF-α at the time of complex formation is also physiological. There was no release of TNF-α protein in saline, and its storage stability was excellent (Test Group 1). In contrast, when adsorbed to the hydrogel, almost all of the TNF-α protein used was adsorbed, but TNF-α was released from the gel in a short time in the physiological saline (Test Group 2). When encapsulated in lyotropic liquid crystal, almost the entire amount of TNF-α was converted to DDS, and there was no inactivation during conversion to DDS, and the storage stability was excellent (Test Group 3). When encapsulated in lyotropic liquid crystal, TNF-α was released in a short time because the liquid crystal was easily dissolved in physiological saline. In the encapsulating method in liposomes, the amount of TNF-α to be encapsulated was as extremely low as 2% or less of the TNF-α protein used, and about 60% by mass of TNF-α was inactivated at the time of encapsulation (test group). 4). In the case of modification with PEG, one molecule or more of the TNF-α protein used was modified with PEG, but the inactivation rate of TNF-α was 90% or more, and cells per TNF-α protein amount. The disorder activity (specific activity) was reduced to 1/10 or less compared to TNF-α before PEG modification (Test Group 5). From this result, since TNF-α was not adsorbed to the gel by adsorption to the hydrogel, it was judged unsuitable as a DDS conversion method for TNF-α. In addition, the efficiency of encapsulating in liposomes was extremely low, and TNF-α was inactivated at the time of encapsulating. Therefore, it was judged unsuitable as a DDS conversion method for TNF-α.
 ちなみに、本発明者が別の実験により確認しところ、コレステロールプルラン複合体に封入されたTNF-αを複合体から放出させるためには200mg/mlの濃度のメチル-β-シクロデキストリンを含有するPBSと等量混合する必要があるのに対し、例えば、インターフェロン-α-コレステロールプルラン複合体の場合は12mg/mlと、TNF-α-コレステロールプルラン複合体の場合の約20分の1の濃度のメチル-β-シクロデキストリンを含有するPBSと等量混合することにより、容易にインターフェロン-αを放出させることができる。また、上記調製のTNF-α-コレステロールプルラン複合体は血清のような高濃度タンパク質溶液中では、そのTNF-α-コレステロールプルラン複合体から50%のTNF-αが放出されるためには約5時間を要したのに対し、インターフェロン-α-コレステロールプルラン複合体やインターフェロン-γ-コレステロールプルラン複合体の場合には、30分以内と、極めて短時間で完全にインターフェロンが放出され、TNF-αとの複合体の場合のようなDDS化効果は認められなかったことから、コレステロールプルランとの複合体化によるサイトカインのDDS化には、用いるサイトカインに対する選択性があり、TNF-αはコレステロールプルラン複合体によるDDS化に好適なサイトカインであることが判明した。 Incidentally, the present inventor confirmed by another experiment that PBS containing methyl-β-cyclodextrin at a concentration of 200 mg / ml was used to release TNF-α encapsulated in cholesterol pullulan complex from the complex. For example, 12 mg / ml in the case of interferon-α-cholesterol pullulan complex and about 20 times the concentration in the case of TNF-α-cholesterol pullulan complex. Interferon-α can be easily released by mixing an equal amount with PBS containing -β-cyclodextrin. In addition, the TNF-α-cholesterol pullulan complex prepared above is about 5% in order to release 50% of TNF-α from the TNF-α-cholesterol pullulan complex in a high concentration protein solution such as serum. In the case of interferon-α-cholesterol pullulan complex or interferon-γ-cholesterol pullulan complex, the interferon is completely released within an extremely short time within 30 minutes, and TNF-α Since the DDS effect as in the case of the complex was not observed, the DDS conversion of the cytokine by complexing with cholesterol pullulan has selectivity for the cytokine used, and TNF-α is a cholesterol pullulan complex. It was found that this is a suitable cytokine for DDS conversion.
 ワクチンなどの抗原をヒトに投与した場合の抗体産生増強効果を確認するモデルとして汎用されているマウスを用い、実施例1で調製のDDS化したTNF-αが、抗原と同時に粘膜投与した場合における抗原特異的な抗体産生に及ぼす影響を調べた。斯かるヒトへの病原性微生物の感染モデル系として、病原性微生物の自然感染経路として代表的な鼻腔粘膜及び上気道粘膜での感染防御を想定し、斯かる感染経路の代表的な病原性微生物としてインフルエンザウイルスを選択した。 Using a mouse widely used as a model for confirming the antibody production enhancement effect when an antigen such as a vaccine is administered to humans, the DDS-modified TNF-α prepared in Example 1 is administered to the mucosa simultaneously with the antigen. The effect on antigen-specific antibody production was investigated. As an infection model system for such pathogenic microorganisms to humans, assuming infection protection in the nasal mucosa and upper respiratory tract mucosa as typical natural infection routes of pathogenic microorganisms, representative pathogenic microorganisms of such infection path As an influenza virus selected.
<抗原>
 抗原として、市販のインフルエンザHAワクチン(商品名『インフルエンザHAワクチン』、製造株として、A/ブリスベン/59/2007(H1N1)(Aソ連型)、A/ウルグアイ/716/2007(H3N2)株(A香港型)、B/ブリスベン/60/2008株を用いた製剤、デンカ生研株式会社販売)を生理食塩水で希釈し用いた。
<Antigen>
As an antigen, commercially available influenza HA vaccine (trade name “influenza HA vaccine”, as production strains, A / Brisbane / 59/2007 (H1N1) (A USSR type), A / Uruguay / 716/2007 (H3N2) strain (A Hong Kong type), a preparation using B / Brisbane / 60/2008 strain, sold by Denka Seken Co., Ltd.) and diluted with physiological saline.
<試験方法>
<経鼻投与>
 BALB/cマウス(日本チャールスリバー株式会社販売、雌、8週齢)77匹を、無作為に7匹ずつ11群に分け、1週間の予備飼育後、5群各7匹には、抗原として用いたインフルエンザHAワクチン(以下、「インフルエンザワクチン」という場合がある。)と、アジュバントとして用いた実施例1で調製したTNF-α-コレステロールプルラン複合体標品、TNF-αのリオトロピック液晶封入体標品、及び、PEG修飾TNF-α標品の何れかとを投与した(試験群5、7、8)。対照1として、生理食塩水のみを投与した(試験群1)。対照2として、インフルエンザワクチンを含む生理食塩水を投与した(試験群2)。対照3として、インフルエンザワクチンと、DDS化処理をしていないTNF-αをアジュバントとして投与した(試験群3)。陽性対照として、インフルエンザワクチンと粘膜アジュバント活性が確認されているコレラトキシンBサブユニット(和光純薬工業株式会社販売、ロット番号CDH6462(以下、コレラトキシンBサブユニットを「CTB」と略記する場合がある。)とを投与した(試験群9)。投与は、TNF-αタンパク質、コレラトキシンBサブユニット及びインフルエンザワクチンタンパク質が表2に示す投与量となるように、アジュバントとインフルエンザワクチンとを混合し、1週間に1回の投与スケジュールで、4週間(投与回数4回)連続して、マウスの左右の鼻腔内に15μlずつ投与した(合計30μl/匹/回)。アジュバント又は抗原の投与量が0の対照は生理食塩水を混合し、投与した。併せて、rec-TNF-α、及び、このrec-TNF-αを用い、実施例1におけるTNF-α-コレステロールプルラン複合の調製と同じ反応条件によりrec-TNF-α-コレステロールプルラン複合体を調製し、これらの標品を用いて経鼻投与によるアジュバント活性の確認試験を実施した(試験群4及び試験群6)。
<Test method>
<Nasal administration>
Seventy seven BALB / c mice (Charles River Japan, female, 8 weeks old) were randomly divided into 11 groups of 7 mice, and after 1 week of pre-breeding, each of the 5 groups had 7 mice Influenza HA vaccine used (hereinafter sometimes referred to as “influenza vaccine”), TNF-α-cholesterol pullulan complex preparation prepared in Example 1 used as an adjuvant, TNF-α lyotropic liquid crystal inclusion body sample And PEG-modified TNF-α preparation (Test Groups 5, 7, and 8). As a control 1, only physiological saline was administered (test group 1). As a control 2, physiological saline containing influenza vaccine was administered (test group 2). As a control 3, influenza vaccine and TNF-α not treated with DDS were administered as adjuvants (Study Group 3). As a positive control, cholera toxin B subunit confirmed to have an influenza vaccine and mucosal adjuvant activity (sold by Wako Pure Chemical Industries, Ltd., lot number CDH6462 (hereinafter, cholera toxin B subunit may be abbreviated as “CTB” in some cases). (Test group 9) The administration was performed by mixing the adjuvant and the influenza vaccine so that the TNF-α protein, the cholera toxin B subunit and the influenza vaccine protein were in the dosages shown in Table 2, The administration schedule was once a week for 4 weeks (4 administrations), and 15 μl each was administered into the right and left nasal cavities (total 30 μl / animal / dose). The control was mixed with saline and administered, combined with rec-TNF-α and this. Rec-TNF-α was used to prepare rec-TNF-α-cholesterol pullulan complex under the same reaction conditions as the preparation of TNF-α-cholesterol pullulan complex in Example 1, and nasally administered using these preparations The test for confirming the adjuvant activity was carried out (Test group 4 and Test group 6).
 なお、rec-TNF-αは野生型TNF-αをコードするDNA(例えば、特開2004-2251号公報に記載の配列表における配列番号1で表される野生型TNF-αのDNA配列参照)を、市販のプラスミドベクターへ導入した後、常法に従い、このプラスミドを大腸菌(BL21DE3株)に導入し、得られた形質転換体を培養し、培養物をアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどを用いて精製したもの(株式会社林原生物化学研究所製造、比活性約2×10JRU/mgタンパク質)を用いた。 Rec-TNF-α is a DNA encoding wild-type TNF-α (see, for example, the DNA sequence of wild-type TNF-α represented by SEQ ID NO: 1 in the sequence listing described in JP-A No. 2004-2251) Is introduced into a commercially available plasmid vector, this plasmid is introduced into Escherichia coli (BL21DE3 strain) according to a conventional method, the resulting transformant is cultured, and the culture is subjected to affinity chromatography, ion exchange chromatography, gel What was purified using filtration chromatography or the like (manufactured by Hayashibara Biochemical Laboratories, Inc., specific activity of about 2 × 10 6 JRU / mg protein) was used.
<皮下投与>
 BALB/cマウス(日本チャールスリバー株式会社販売、雌、8週齢)14匹を、無作為に7匹ずつ2群に分け、1週間の予備飼育後、1群7匹のマウスには、抗原としてインフルエンザワクチンを投与した(試験群10)。残りの1群7匹には、アジュバントであるTNF-α-コレステロールプルラン複合体とインフルエンザワクチンとを投与した(試験群11)。投与は、TNF-αタンパク質及びインフルエンザワクチンタンパク質が表2に示す投与量となるように、アジュバントとインフルエンザワクチンとを混合し、飼育開始2週目及び4週目(経鼻投与の場合の1回目及び3回目の投与と同じ投与スケジュール、投与回数2回)に、100μl/匹/回、マウスの背部皮下に投与した(試験群11)。対照として表2に示す投与量となるように、生理食塩水とインフルエンザワクチンとを混合し、飼育開始2週目及び4週目(経鼻投与の場合の1回目及び3回目の投与と同じ投与スケジュール、投与回数2回)に、100μl/匹/回、マウスの背部皮下に投与した(試験群10)。なお、実施例1の結果から、DDS化したTNF-αのうち、ハイドロゲルへの吸着ではDDS化されず、又、リポソームへの封入は、DDS化率(リポソーム内への封入率)が極めて低く、TNF-αの失活が起こることが判明したので、これらの方法によるTNF-αのDDS化は困難と見なし、アジュバント作用の試験は行わなかった。また、リオトロピック液晶へ封入した場合、ハイドロゲルへの吸着とは異なりTNF-αは、リオトロピック液晶に封入されており、水性溶媒と混合しない状態で投与することができる粘膜投与では、液晶が粘膜組織上で体液(粘液)に接触する割合が低いので、TNF-αを比較的長期間投与部位に保持できる可能性があると考え、アジュバント作用の試験に供した。
<Subcutaneous administration>
14 BALB / c mice (Nippon Charles River Co., Ltd., female, 8 weeks old) were randomly divided into 2 groups of 7 mice, and after 1 week of preliminary breeding, As an influenza vaccine (test group 10). The remaining 7 mice per group were administered adjuvant TNF-α-cholesterol pullulan complex and influenza vaccine (Study Group 11). For administration, the adjuvant and influenza vaccine were mixed so that the TNF-α protein and the influenza vaccine protein were in the dosages shown in Table 2, and the 2nd and 4th weeks after the start of breeding (the first time in the case of nasal administration) And 100 μl / animal / dose subcutaneously in the back of the mice (study group 11) in the same administration schedule as the third administration, twice the number of administrations). As a control, physiological saline and influenza vaccine were mixed so that the dosage shown in Table 2 was obtained, and the second and fourth weeks after the start of breeding (the same administration as the first and third administration in the case of nasal administration) 100 μl / animal / dose was administered subcutaneously to the back of the mice (study group 10). From the results of Example 1, among the TNF-α converted to DDS, it was not converted to DDS by adsorption to hydrogel, and the encapsulation in liposome had a very high DDS conversion rate (encapsulation rate in liposome). Since it was found that TNF-α was inactivated, it was considered difficult to convert TNF-α into DDS by these methods, and the adjuvant action was not tested. In addition, when encapsulated in lyotropic liquid crystals, TNF-α is encapsulated in lyotropic liquid crystals, unlike adsorption to hydrogel, and in mucosal administration that can be administered without mixing with an aqueous solvent, the liquid crystals are in mucosal tissue. Since the ratio of contact with body fluid (mucus) is low above, it was considered that TNF-α could be retained at the site of administration for a relatively long period of time, and was subjected to an adjuvant action test.
 経鼻投与の4回目或いは皮下投与の2回目終了の1週間後に、マウスをエーテル麻酔下で、常法により、血液と鼻腔洗浄液とを採取し、含まれるインフルエンザワクチンに特異的なIgA抗体量及びIgG抗体量を、インフルエンザワクチンタンパク質を固相とし、ホースラディッシュパーオキシダーゼ(HRPO)標識抗マウスIgG抗体或いはIgA抗体を用い、発色試薬としてオルトフェニレンジアミンを用いるHRPOによる発色反応に基づく酵素抗体法(EIA)により測定した。試験群1乃至9のマウスの血清中のインフルエンザワクチンタンパク質特異的IgG抗体(以下、「血中IgG抗体」という場合がある)量及び鼻腔内洗浄液中のインフルエンザワクチンタンパク質特異的IgA抗体量(抗体価:U/ml)を、下記方法により調製した標準品の抗原特異的抗体量に基づき算出した。結果を表2に示す。なお、採取した血液は、遠心分離(5,000rpm、8分)し、血清を採取し測定に用いた。鼻腔内洗浄液は、生理食塩水を250μlずつマウスの左右の鼻腔内に注入し(合計500μl/匹)これを回収した後、遠心分離(5,000rpm、8分)し、その上清を測定に用いた。 After 4 weeks of nasal administration or 1 week after the end of the second subcutaneous administration, mice were anesthetized with ether and blood and nasal washes were collected in the usual manner. The amount of IgA antibody specific for the contained influenza vaccine and Enzyme antibody method (EIA) based on HRPO color development reaction using influenza vaccine protein as solid phase, horseradish peroxidase (HRPO) -labeled anti-mouse IgG antibody or IgA antibody, and orthophenylenediamine as color development reagent ). Influenza vaccine protein-specific IgG antibody (hereinafter sometimes referred to as “blood IgG antibody”) in the serum of mice of test groups 1 to 9 and influenza vaccine protein-specific IgA antibody in the nasal lavage fluid (antibody titer) : U / ml) was calculated based on the antigen-specific antibody amount of a standard product prepared by the following method. The results are shown in Table 2. The collected blood was centrifuged (5,000 rpm, 8 minutes), and serum was collected and used for measurement. For the nasal wash, 250 μl of physiological saline was injected into the left and right nasal cavities of each mouse (total 500 μl / mouse), collected, and then centrifuged (5,000 rpm, 8 minutes), and the supernatant was measured. Using.
<EIAによるIgA抗体、IgG抗体定量用の標準品の調製>
 BALB/cマウス(日本チャールスリバー株式会社販売、雌、8週齢)2匹を1週間の予備飼育後、インフルエンザワクチンタンパク質が0.3μg/30μlとコレラトキシンBサブユニットが0.8μg/30μlとなるように混合した溶液を、右左の鼻腔に各々15μl/匹/回(計30μl/匹/回)、週1回の投与スケジュールで4週間(合計4回)連続投与した1週間後、フロイントのコンプリートアジュバントに懸濁したインフルエンザワクチンを、インフルエンザワクチンタンパク質として0.3μg/300μl/匹、腹腔内投与した。さらに、その1週間後に、フロイントのインコンプリートアジュバントに懸濁したインフルエンザワクチンを、インフルエンザワクチンタンパク質として0.3μg/300μl/匹、腹腔内投与した。その1週間後に、両マウスを、エーテル麻酔下で、血液を採取し、血清を分離し混合して、これをインフルエンザワクチンタンパク質特異的IgG抗体の標準品とした。また、両マウスより鼻腔内洗浄液を採取し、これを混合して、インフルエンザワクチンタンパク質特異的IgA抗体の標準品とした。これらの標準品を適宜稀釈し、上記インフルエンザワクチンタンパク質を固相とする、インフルエンザワクチンタンパク質に対する特異的IgG抗体又はIgA抗体定量用のEIAに供したとき、HRPOによる発色値(吸光度)が0.1となる稀釈率の標準品に含まれるインフルエンザワクチンタンパク質特異的IgG抗体量又はIgA抗体量を、各々1単位/ml(抗体価:U/ml)と定義した。ちなみに、これらの標準品は、血清は200万倍稀釈したとき特異的なIgG抗体量が1U/mlとなり、鼻腔内洗浄液は192倍稀釈したとき特異的IgA抗体量が1U/mlとなった。なお、本測定系における抗体の検出限界は、IgA抗体が6U/ml、IgG抗体が21U/mlであり、以下の実施例における各種抗原に対する抗体価測定系においても、IgA抗体及びIgG抗体の検出感度は、本実施例の場合とほぼ同程度の検出限界値であった。以下の実施例における試験結果を示す表では、抗体量が検出限界以下であった場合、抗体価は「0U/ml」と表記した。
<Preparation of standard for quantification of IgA antibody and IgG antibody by EIA>
After pre-breeding two BALB / c mice (Charles River Japan, female, 8 weeks old) for 1 week, influenza vaccine protein was 0.3 μg / 30 μl and cholera toxin B subunit was 0.8 μg / 30 μl. 1 week after Freund's solution was mixed continuously into the right and left nasal cavities at 15 μl / animal / dose each (total 30 μl / animal / dose), once a week for 4 weeks (4 times in total). Influenza vaccine suspended in complete adjuvant was intraperitoneally administered as an influenza vaccine protein at 0.3 μg / 300 μl / animal. Further, one week later, an influenza vaccine suspended in Freund's incomplete adjuvant was intraperitoneally administered as an influenza vaccine protein at 0.3 μg / 300 μl / mouse. One week later, both mice were blood-collected under ether anesthesia, serum was separated and mixed, and this was used as a standard for influenza vaccine protein-specific IgG antibody. In addition, intranasal washings were collected from both mice and mixed to obtain a standard product of influenza vaccine protein-specific IgA antibody. When these standards are appropriately diluted and subjected to EIA for quantification of specific IgG antibody or IgA antibody against influenza vaccine protein using the above-described influenza vaccine protein as a solid phase, the color development value (absorbance) by HRPO is 0.1. The amount of influenza vaccine protein-specific IgG antibody or IgA antibody contained in a standard product with a dilution ratio of 1 was defined as 1 unit / ml (antibody titer: U / ml), respectively. By the way, in these standards, the specific IgG antibody amount was 1 U / ml when the serum was diluted 2 million times, and the specific IgA antibody amount was 1 U / ml when the nasal wash was diluted 192 times. The detection limit of the antibody in this measurement system is 6 U / ml for IgA antibody and 21 U / ml for IgG antibody. Detection of IgA antibody and IgG antibody is also possible in the antibody titer measurement system for various antigens in the following examples. The sensitivity was a detection limit value almost the same as that in this example. In the tables showing the test results in the following Examples, when the antibody amount was below the detection limit, the antibody titer was expressed as “0 U / ml”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、インフルエンザワクチンとTNF-α-コレステロールプルラン複合体とを同時に経鼻投与した場合、インフルエンザワクチンタンパク質に対する特異的IgA抗体の産生が鼻腔内に認められ、特異的IgG抗体の産生が血中に認められた(試験群5)。インフルエンザワクチンと、TNF-α(試験群3)、TNF-α-リオトロピック液晶封入体(試験群7)、PEG修飾TNF-α(試験群8)或いはコレラトキシンBサブユニット(試験群9)の何れかとを、同時に経鼻投与した場合、インフルエンザワクチンタンパク質に対する特異的IgA抗体の産生が鼻腔内に認められ、特異的IgG抗体の産生が血中に認められた。IgA抗体の産生量でみると、インフルエンザワクチンとTNF-α-コレステロールプルラン複合体を同時に経鼻投与した場合が最も高く、TNF-α、その他のアジュバント同時投与群及びアジュバントなしでインフルエンザワクチンを投与した場合の何れに対しても有意に増強された。血中IgG抗体についてみると、インフルエンザワクチンとTNF-α-コレステロールプルラン複合体を投与した場合が最も高く(試験群5)、次いでTNF-α-リオトロピック液晶封入体を同時に経鼻投与した場合が高かった(試験群7)。アジュバントなしでインフルエンザワクチンを投与した場合(試験群2)にも弱いながら分泌型IgA抗体の産生が認められた。皮下投与群では、分泌型IgA抗体の産生は、アジュバントなしでインフルエンザワクチンを投与した場合(試験群10)、或いは、TNF-α-コレステロールプルラン複合体と同時に投与した場合(試験群11)の何れでも認められなかったのに対し、血中IgG抗体の産生は、何れの場合にも増強され、TNF-α-コレステロールプルラン複合体との同時投与で、顕著に増強された(試験群11)。また、インフルエンザワクチンと、TNF-α-コレステロールプルラン(試験群5)又はrec-TNF-α-コレステロールプルラン(試験群6)とを同時に経鼻投与した場合、鼻腔内の特異的IgA抗体及び血中の特異的IgG抗体産生量に差は認められなかった。インフルエンザワクチンと、TNF-α(試験群3)又はrec-TNF-α(試験群4)とを同時に経鼻投与した場合、鼻腔内の特異的IgA抗体及び血中の特異的IgG抗体産生量に差は認められなかった。試験期間中、TNF-α-リオトロピック液晶封入体投与群マウスは(試験群7)、立毛し衰弱気味で、生理食塩水投与群(試験群1)に比して、体重減少が認められたのに対し、他のインフルエンザワクチン及び/又はアジュバント投与群では、生理食塩水投与群と同様の体重の推移を示し、外観的な異常も認められなかった。 As shown in Table 2, when the influenza vaccine and the TNF-α-cholesterol pullulan complex were administered nasally at the same time, production of specific IgA antibody against the influenza vaccine protein was observed in the nasal cavity, and production of specific IgG antibody Was found in the blood (Study Group 5). Influenza vaccine, TNF-α (Test group 3), TNF-α-lyotropic liquid crystal inclusion body (Test group 7), PEG-modified TNF-α (Test group 8) or cholera toxin B subunit (Test group 9) When the heel was administered nasally at the same time, production of specific IgA antibody against influenza vaccine protein was observed in the nasal cavity and production of specific IgG antibody was observed in blood. In terms of IgA antibody production, nasal administration of influenza vaccine and TNF-α-cholesterol pullulan complex was the highest, and influenza vaccine was administered without TNF-α and other adjuvants simultaneously and without adjuvant. It was significantly enhanced for any of the cases. Regarding IgG antibodies in blood, the highest was when influenza vaccine and TNF-α-cholesterol pullulan complex were administered (Study Group 5), followed by TNF-α-lyotropic liquid crystal inclusions administered simultaneously via nasal administration (Test group 7). Even when the influenza vaccine was administered without an adjuvant (Test Group 2), production of secretory IgA antibody was observed although it was weak. In the subcutaneous administration group, the production of secretory IgA antibody was observed either when the influenza vaccine was administered without an adjuvant (Test Group 10) or when administered simultaneously with the TNF-α-cholesterol pullulan complex (Test Group 11). On the other hand, the production of blood IgG antibody was enhanced in all cases, and was significantly enhanced by co-administration with TNF-α-cholesterol pullulan complex (Test Group 11). In addition, when an influenza vaccine and TNF-α-cholesterol pullulan (test group 5) or rec-TNF-α-cholesterol pullulan (test group 6) are administered simultaneously via the nasal route, specific intranasal IgA antibodies and blood There was no difference in the amount of specific IgG antibody produced. When nasal administration of influenza vaccine and TNF-α (Test Group 3) or rec-TNF-α (Test Group 4) at the same time, the amount of specific IgA antibody in the nasal cavity and specific IgG antibody production in the blood There was no difference. During the test period, the mice treated with TNF-α-lyotropic liquid crystal inclusion bodies (test group 7) were puffed and weakened, and a decrease in body weight was observed compared to the saline-treated group (test group 1). On the other hand, other influenza vaccine and / or adjuvant administration groups showed the same body weight transition as the physiological saline administration group, and no abnormal appearance was observed.
 この結果は、TNF-αを粘膜投与アジュバントとして用いる場合、既知のサイトカイン類の安定化方法を適用しても、用いた方法によりTNF-αの安定化乃至DDS化効果は大きく異なり、コレステロールプルランとの複合体を形成するDDS化、安定化法により、最も好ましいアジュバント作用が得られることを示している。また、そのアジュバント作用は、粘膜アジュバントとして顕著な作用を発揮することが公知のコレラトキシンBサブユニットよりも強いことから、TNF-α-コレステロールプルラン複合体は粘膜アジュバントとして極めて有用であることを示している。さらに、斯かる粘膜アジュバント活性は、TNF-α-コレステロールプルランとrec-TNF-α-コレステロールプルランとでは差異が無いことが判明した。また、TNF-α-リオトロピック液晶封入体の投与では、マウスの体重減少、体調不良が発生したことから、この方法でDDS化したTNF-αを粘膜投与アジュバントとして用いる場合の安全性には問題があることを示している。 This result shows that when TNF-α is used as an adjuvant for mucosal administration, the effect of stabilizing TNF-α or DDS varies greatly depending on the method used, even if a known method for stabilizing cytokines is applied. It is shown that the most preferable adjuvant action can be obtained by the DDS formation / stabilization method for forming the complex. In addition, since the adjuvant action is stronger than the cholera toxin B subunit known to exert a remarkable action as a mucosal adjuvant, it indicates that TNF-α-cholesterol pullulan complex is extremely useful as a mucosal adjuvant. ing. Furthermore, it was found that such mucosal adjuvant activity is not different between TNF-α-cholesterol pullulan and rec-TNF-α-cholesterol pullulan. In addition, the administration of TNF-α-lyotropic liquid crystal inclusions caused weight loss and poor physical condition in mice. Therefore, there was a problem in safety when TNF-α converted to DDS by this method was used as an adjuvant for mucosal administration. It shows that there is.
<TNF-α-コレステロールプルラン複合体の投与回数の抗体産生に及ぼす影響>
 実施例2において、試験に用いたDDS化したTNF-αのなかで、TNF-α-コレステロールプルラン複合体(以下、「TNF/CHP」という場合がある。)が最も強いアジュバント作用を示し、且つ、安全性の点でも優れていたので、その投与の回数が、抗原特異的な抗体産生に及ぼす影響を調べた。すなわち、TNF-α-コレステロールプルラン複合体と抗原(インフルエンザワクチン)とを混合した標品の投与回数を1乃至4回とし、表3に示す組み合わせを用い経鼻投与した以外は、実施例2と同じ条件で、BALB/cマウスに投与したときの、インフルエンザワクチン特異的な鼻腔内洗浄液中の分泌型IgA抗体量及び血中IgG抗体量を、実施例2と同じ方法で測定した。結果を表3に示す。
<Effect of frequency of administration of TNF-α-cholesterol pullulan complex on antibody production>
In Example 2, the TNF-α-cholesterol pullulan complex (hereinafter sometimes referred to as “TNF / CHP”) among the TDS-α converted to DDS used in the test showed the strongest adjuvant action, and Since it was also excellent in terms of safety, the influence of the number of administrations on antigen-specific antibody production was examined. That is, Example 2 except that the number of administrations of the preparation in which the TNF-α-cholesterol pullulan complex and the antigen (influenza vaccine) were mixed was 1 to 4 times and nasally administered using the combinations shown in Table 3. Under the same conditions, the amount of secretory IgA antibody and blood IgG antibody in the nasal lavage fluid specific to influenza vaccine when administered to BALB / c mice were measured in the same manner as in Example 2. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、抗原(インフルエンザワクチン)とTNF-α-コレステロールプルラン複合体とを1乃至4回投与すると、投与回数に依存して、抗原特異的な鼻腔内洗浄液中のIgA抗体量が上昇し、2乃至4回投与すると、投与回数に依存して、抗原特異的な血中IgG抗体量が上昇し、何れの抗体量も4回投与で最も高くなった(試験群14乃至16)。これに対し、抗原とTNF-α溶液(試験群10乃至12)、或いは、抗原のみ(試験群6乃至8)を投与した場合にも、投与回数に依存して、抗原特異的な鼻腔内洗浄液中のIgA抗体量及び血中IgG抗体量が上昇したものの、その抗体産生量は、TNF-α-コレステロールプルラン複合体をアジュバントとして用いた場合に比べ、2乃至4回の何れの投与回数においても、有意に低かった。生理食塩水を投与した場合には、抗原特異的な鼻腔内洗浄液中のIgA抗体及び血中IgG抗体の産生は、何れの投与回数においても認められなかった。この結果は、新規抗原とTNF-α-コレステロールプルラン複合体とを生体に投与する場合、抗原特異的なIgA抗体及びIgG抗体の産生を増強するためには、2回以上、望ましくは3回以上の投与が必要であることを示している。又、既に免疫記憶が成立している抗原乃至それと交叉反応性のある抗原を投与する場合は、TNF-α-コレステロールプルラン複合体を同時に経鼻投与することにより、1回の投与でも抗体産生の増強が可能であり、2回以上の投与でより効率よく投与した抗原に特異的な抗体の産生を増強できると推測される。さらに、TNF-α-コレステロールプルラン複合体をアジュバントとして用いた場合(試験群14)、2回目の投与において、抗原単独投与(試験群6)或いはTNF-αをアジュバントとして用いた場合(試験群10)では認められなかった、鼻腔内洗浄液中の分泌型IgA抗体の産生が既に認められた。斯かる感染防御に有効な分泌型IgA抗体の産生誘導に必要な期間の短縮は、投与した個体に短期間で感染防御能を賦与できることから、感染症の拡大を抑制するための手段として用いられるワクチン類のアジュバントとして極めて有用であることを示している。また、投与期間を通じて、マウスに外観的な異常や死亡個体は見出せなかったので、この実施例で用いた用量、用法では、抗原とTNF-α-コレステロールプルラン複合体とを同時に経鼻投与しても、何ら重篤な副作用は発生しないことが明らかとなった。 As shown in Table 3, when the antigen (influenza vaccine) and TNF-α-cholesterol pullulan complex were administered 1 to 4 times, depending on the number of administrations, the amount of IgA antibody in the antigen-specific intranasal lavage fluid was increased. After 2 to 4 administrations, the antigen-specific blood IgG antibody level increased depending on the number of administrations, and the amount of any antibody was the highest after 4 administrations (test groups 14 to 16). . In contrast, when an antigen and a TNF-α solution (test groups 10 to 12) or an antigen alone (test groups 6 to 8) were administered, an antigen-specific intranasal washing solution depending on the number of administrations Although the amount of IgA antibody and the amount of IgG antibody in blood increased, the amount of antibody produced was 2 to 4 times as compared with the case where TNF-α-cholesterol pullulan complex was used as an adjuvant. Was significantly lower. When physiological saline was administered, production of IgA antibody and blood IgG antibody in the antigen-specific intranasal washing solution was not observed at any number of administrations. This result shows that when a novel antigen and TNF-α-cholesterol pullulan complex are administered to a living body, in order to enhance the production of antigen-specific IgA antibody and IgG antibody, it is preferably performed twice or more, preferably three times or more. Is necessary. In addition, when administering an antigen for which immunological memory has already been established or an antigen cross-reactive with it, the TNF-α-cholesterol pullulan complex can be administered nasally at the same time to produce antibody even in a single administration. It is speculated that the production of antibodies specific to the antigen administered more efficiently can be enhanced by administration of two or more times. Further, when TNF-α-cholesterol pullulan complex is used as an adjuvant (Study Group 14), in the second administration, antigen alone (Test Group 6) or when TNF-α is used as an adjuvant (Study Group 10) Production of secretory IgA antibody in the nasal lavage fluid, which was not observed in (1), was already observed. The shortening of the period necessary for inducing production of secretory IgA antibody effective for such infection protection can impart infection protection ability to the administered individual in a short period of time, and is therefore used as a means for suppressing the spread of infectious diseases. It has been shown to be extremely useful as an adjuvant for vaccines. In addition, since no abnormalities in appearance or death were found in the mice throughout the administration period, the antigen and TNF-α-cholesterol pullulan complex were administered nasally at the same time in the dosage and usage used in this example. However, it became clear that no serious side effects occurred.
<TNF-α-コレステロールプルラン複合体及び抗原の投与量>
 TNF-α-コレステロールプルラン複合体及び抗原の投与量が、抗原特異的IgA抗体及びIgG抗体産生に及ぼす影響を調べた。すなわち、実施例1で調製したTNF-α-コレステロールプルラン複合体と抗原(インフルエンザワクチン)とを混合した標品の投与量を表4に示す組み合わせを用い、週1回の投与スケジュールで、3週間経鼻投与した(合計3回)以外は、実施例2と同じ条件で、BALB/cマウスに投与したときの、インフルエンザワクチン特異的な鼻腔内洗浄液中のIgA抗体量及び血中IgG抗体量を、実施例2と同じ方法で測定した。結果を表4に示す。
<Dose of TNF-α-cholesterol pullulan complex and antigen>
The effect of the dose of TNF-α-cholesterol pullulan complex and antigen on the production of antigen-specific IgA antibody and IgG antibody was examined. That is, using the combination shown in Table 4 for the dosage of the preparation prepared by mixing the TNF-α-cholesterol pullulan complex prepared in Example 1 and the antigen (influenza vaccine), the administration schedule once a week for 3 weeks Except for intranasal administration (3 times in total), the amount of IgA antibody and blood IgG antibody in the nasal lavage fluid specific for influenza vaccine when administered to BALB / c mice under the same conditions as in Example 2. The measurement was performed in the same manner as in Example 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、抗原(インフルエンザワクチンタンパク質)0.001乃至10μg/匹/回と、TNF-α-コレステロールプルラン複合体0.01乃至50μg(TNF-αタンパク質として)/匹/回を同時に、経鼻投与することにより、抗原特異的なIgA抗体及びIgG抗体の産生が誘導され、分泌型IgAの産生量でみると、抗原0.01乃至10μg/匹/回の投与量において、TNF-α-コレステロールプルラン複合体0.1乃至50μg(TNF-αタンパク質として)/匹/回の同時投与が、より抗体産生の増強効率がよいことが判明した。また、血中IgG量の産生量も併せてみると、抗原0.1乃至10μg/匹/回の投与量において、TNF-α-コレステロールプルラン複合体1乃至50μg(TNF-αタンパク質として)/匹/回の同時投与が、より抗体産生の増強効率がよいことが判明した。抗原量が0.1μg以上/匹/回では投与量に見合う抗体産生の増強は認められなかった。また、TNF-αと抗原とを投与したマウス(試験群33)及び、TNF-α、コレステロールプルランと抗原とを投与したマウス(試験群35)では、TNF-α-コレステロールプルラン複合体と抗原とを投与した場合と比べ弱い抗体産生しか認められなかった。ちなみに、通常、マウスの鼻腔の容積は30μl程度、ヒトの鼻腔の容積は2ml(小人)乃至4ml(成人)といわれているので、鼻腔容積の比率を考慮すると、抗原及びTNF-α-コレステロールプルラン複合体をワクチンとしてヒトに適用する場合、1回当たりの投与量は、マウスにおける有効投与量の約100倍となる。また、TNF-αと抗原とを投与したマウス(試験群33)及び、TNF-α、コレステロールプルランと抗原とを投与したマウス(試験群35)では、立毛し衰弱気味で、外見的な異常が観察されたのに対し、TNF-α-コレステロールプルラン複合体と抗原とを投与したマウスに外観的な異常や死亡個体は、投与期間を通じて見出せなかったので、この実施例で用いた用量、用法では、抗原とTNF-α-コレステロールプルラン複合体とを同時に経鼻投与しても、何ら重篤な副作用は発生しないことが明らかとなった。また、コレステロールプルラン自体にはアジュバント活性はないとの報告もあるが(例えば、『nature materials』、第9巻、第7号、572-578頁(2010年)参照)、この試験系では弱いながらアジュバント活性があることが明らかとなった。 As shown in Table 4, 0.001 to 10 μg / animal / dose of antigen (influenza vaccine protein) and 0.01 to 50 μg of TNF-α-cholesterol pullulan complex (as TNF-α protein) / animal / dose simultaneously By nasal administration, production of antigen-specific IgA antibody and IgG antibody is induced, and in terms of the production amount of secretory IgA, at a dose of 0.01 to 10 μg / animal / dose, TNF- It was found that 0.1 to 50 μg of α-cholesterol pullulan complex (as TNF-α protein) / animal / dose was more effective in enhancing antibody production. In addition, when the production amount of IgG in the blood is taken together, 1 to 50 μg of TNF-α-cholesterol pullulan complex (as TNF-α protein) / mouse at a dose of 0.1 to 10 μg / animal / dose of antigen. It was found that co-administration of / times had better efficiency in enhancing antibody production. When the antigen amount was 0.1 μg or more / animal / dose, no enhancement of antibody production commensurate with the dose was observed. In addition, in the mice administered with TNF-α and antigen (Test Group 33) and the mice administered with TNF-α, cholesterol pullulan and antigen (Test Group 35), the TNF-α-cholesterol pullulan complex and the antigen Only weak antibody production was observed compared to the case of administration of. By the way, the volume of the nasal cavity of mice is usually about 30 μl, and the volume of the human nasal cavity is said to be 2 ml (dwarf) to 4 ml (adult). Therefore, considering the ratio of nasal volume, antigen and TNF-α-cholesterol When the pullulan complex is applied to a human as a vaccine, the dose per administration is about 100 times the effective dose in mice. Further, in the mice administered with TNF-α and the antigen (Test Group 33) and the mice administered with TNF-α, cholesterol pullulan and the antigen (Test Group 35), the hairs were fuzzy, weak and seemingly abnormal. In contrast to the observation, no abnormal appearance or death in mice treated with TNF-α-cholesterol pullulan complex and antigen was found throughout the administration period. It has been clarified that no serious side effects occur even when the antigen and the TNF-α-cholesterol pullulan complex are administered nasally at the same time. There is also a report that cholesterol pullulan itself has no adjuvant activity (see, for example, “Nature materials”, Vol. 9, No. 7, pages 572-578 (2010)), although it is weak in this test system. It became clear that there was an adjuvant activity.
 実施例2乃至4において、TNF-α-コレステロールプルラン複合体が、抗原を経鼻投与する際のアジュバントとして極めて有用であり、優れた抗原特異的な血中IgG抗体及び/又は分泌型IgA抗体の産生増強作用を有することが確認されたので、斯かるアジュバント作用により産生が誘導される抗体が、インフルエンザウイルス感染防御能の直接の指標となる赤血球凝集阻害に及ぼす影響について調べた。すなわち、実施例2において、抗原(インフルエンザワクチン)の投与と同時に、生理食塩水を投与した群(試験群2)、TNF-α投与群(試験群3)、TNF-α-コレステロールプルラン複合体投与群(試験群5)及びコレラトキシンBサブユニット投与群(試験群9)から採血して得た血清を用い、その赤血球凝集阻害活性の測定を、市販の体外診断用医薬品(商品名『インフルエンザウイルスHI試薬「生研」』、デンカ生研株式会社販売)を用いて行った。判定は、添付された添付文書の記載に従い、血清の稀釈倍率が10倍以上で赤血球凝集阻害活性が認められた場合を阻害活性有り(「有」)、認められなかった場合を阻害活性無し(「無」)と判定した。結果を表5に示す。表5の赤血球凝集阻害活性の項以外は表2の値をそのまま転記した。 In Examples 2 to 4, the TNF-α-cholesterol pullulan complex is extremely useful as an adjuvant for nasal administration of an antigen, and is an excellent antigen-specific blood IgG antibody and / or secretory IgA antibody. Since it was confirmed to have a production enhancing action, the effect of the antibody whose production was induced by such an adjuvant action on hemagglutination inhibition, which is a direct indicator of the ability to protect against influenza virus infection, was examined. That is, in Example 2, administration of the physiological saline simultaneously with administration of the antigen (influenza vaccine) (test group 2), TNF-α administration group (test group 3), administration of TNF-α-cholesterol pullulan complex Sera collected from the group (test group 5) and the cholera toxin B subunit administration group (test group 9) were used to measure the hemagglutination inhibition activity using a commercially available in-vitro diagnostic drug (trade name “influenza virus”). HI reagent “Seiken” (sold by Denka Seiken Co., Ltd.) was used. In accordance with the description in the attached package insert, the determination is that the hemagglutination inhibitory activity is observed when the dilution ratio of the serum is 10 times or more (“Yes”), and the inhibitory activity is not detected if it is not observed ( "No"). The results are shown in Table 5. Except for the term of hemagglutination inhibition activity in Table 5, the values in Table 2 were directly transferred.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、抗原(インフルエンザワクチン)の投与と同時にTNF-α-コレステロールプルラン複合体を投与した場合には、抗原として用いたワクチンに含まれるA型(H1N1及びH3N2)及びB型インフルエンザウイルス全てに対し、赤血球凝集反応の阻害活性有りと判定された(試験群5)。これに対し、抗原(インフルエンザワクチン)の投与と同時にコレラトキシンBサブユニットを投与した場合には、A型インフルエンザウイルスに対する赤血球凝集反応に対してのみ阻害活性有りと判定された(試験群9)。生理食塩水、または、TNF-αを同時に投与した場合には、何れの型のインフルエンザウイルスに対する赤血球凝集反応の阻害活性も無しと判定された(試験群2及び3)。この結果は、抗原と同時にTNF-α-コレステロールプルラン複合体を経鼻投与することにより、抗原として投与した3種の型のインフルエンザウイルス全てに対する感染防御能を効率よく賦与できることを示している。アジュバントとしてコレラトキシンBサブユニットを用いた場合、血中抗体価は上昇しているものの、3種の型全てのインフルエンザウイルスに対する赤血球凝集反応の阻害には不十分であった。ちなみに、実施例4で得た血清につき同様に赤血球凝集反応の阻害活性の有無を確認したところ、IgG抗体量が20,000U/mlを越える場合に、いずれも3種の型全てのインフルエンザウイルスに対する赤血球凝集反応の阻害活性が認められた。 As shown in Table 5, when the TNF-α-cholesterol pullulan complex was administered simultaneously with the administration of the antigen (influenza vaccine), type A (H1N1 and H3N2) and type B influenza contained in the vaccine used as the antigen It was determined that all viruses had inhibitory activity on hemagglutination (Test Group 5). On the other hand, when the cholera toxin B subunit was administered simultaneously with the administration of the antigen (influenza vaccine), it was determined that there was an inhibitory activity only for the hemagglutination reaction against influenza A virus (Test Group 9). When physiological saline or TNF-α was administered at the same time, it was determined that there was no inhibitory activity on hemagglutination reaction against any type of influenza virus (Test Groups 2 and 3). This result indicates that the nasal administration of the TNF-α-cholesterol pullulan complex simultaneously with the antigen can efficiently confer infection protection against all three types of influenza viruses administered as the antigen. When cholera toxin B subunit was used as an adjuvant, although the antibody titer in the blood was increased, it was insufficient for inhibiting the hemagglutination reaction against all three types of influenza viruses. Incidentally, the serum obtained in Example 4 was similarly checked for the presence or absence of hemagglutination inhibition activity. When the IgG antibody amount exceeded 20,000 U / ml, all of the three types of influenza viruses were tested. Inhibitory activity of hemagglutination was observed.
<インフルエンザワクチンとTNF-α-コレステロールプルラン複合体との経鼻投与によるインフルエンザウイルス感染に及ぼす影響1>
 実施例2乃至5において、TNF-α-コレステロールプルラン複合体が、抗原を経鼻投与する際のアジュバントとして極めて有用であり、感染防御乃至感染後の発病やその重篤化を阻止するために有用な、抗原特異的な血中IgG抗体及び/又は分泌型IgA抗体の産生増強作用に優れていることが確認されたので、TNF-α-コレステロールプルラン複合体のアジュバント作用が、実際に、生体における感染防御能の誘導に有用であることを、ヒトインフルエンザウイルス感染症のモデル動物として汎用されているマウス感染モデルを用いて確認した。すなわち、BALB/cマウス(日本チャールスリバー株式会社販売、雌、8週齢)45匹を、無作為に5匹ずつ9群に分け、インフルエンザワクチン溶液及びTNF-α-コレステロールプルラン複合体を、同時に、1週間に1回の投与スケジュールで、2乃至4回投与した(試験群7乃至9)。対照1として、インフルエンザワクチン溶液及びTNF-α-コレステロールプルラン複合体に換えて生理食塩水を、同時に、1週間に1回、2乃至4回投与した(試験群1乃至3)。対照2として、インフルエンザワクチン溶液と、TNF-α-コレステロールプルラン複合体に換えて生理食塩水とを、同時に、1週間に1回、2乃至4回投与した(試験群4乃至6)。TNF-α-コレステロールプルラン複合体、インフルエンザワクチン及び生理食塩水の投与量は、何れも、30μl/匹/回で、経鼻投与した。
<Effects of nasal administration of influenza vaccine and TNF-α-cholesterol pullulan complex on influenza virus infection 1>
In Examples 2 to 5, the TNF-α-cholesterol pullulan complex is extremely useful as an adjuvant for nasal administration of an antigen, and is useful for preventing infection and preventing onset of disease and its seriousness. In addition, since it was confirmed that the production of the antigen-specific blood IgG antibody and / or secretory IgA antibody is excellent, the adjuvant action of the TNF-α-cholesterol pullulan complex is actually in vivo. It was confirmed by using a mouse infection model that is widely used as a model animal for human influenza virus infection that it is useful for induction of the protective ability against infection. In other words, 45 BALB / c mice (Nippon Charles River Co., Ltd., female, 8 weeks old) were randomly divided into 9 groups of 5 each, and the influenza vaccine solution and TNF-α-cholesterol pullulan complex were simultaneously administered. The administration schedule was 1 to 2 times per week (2 to 4 times in test groups 7 to 9). As a control 1, in place of the influenza vaccine solution and the TNF-α-cholesterol pullulan complex, physiological saline was simultaneously administered once a week, 2 to 4 times (test groups 1 to 3). As a control 2, an influenza vaccine solution and physiological saline instead of the TNF-α-cholesterol pullulan complex were simultaneously administered once a week, 2 to 4 times (test groups 4 to 6). The doses of TNF-α-cholesterol pullulan complex, influenza vaccine and physiological saline were administered nasally at 30 μl / animal / dose.
 抗原として用いたインフルエンザワクチン溶液は、市販のインフルエンザワクチン(商品名『インフルエンザHAワクチン』、デンカ生研株式会社販売、製造株として、A/ブリスベン/59/2007(H1N1型)(Aソ連型)、A/ウルグアイ/716/2007(H3N2型)株(A香港型)、B/ブリスベン/60/2008株を用いた製剤)を、各々の株のウイルス由来のタンパク質として0.3μg/30μlとなるよう生理食塩水で希釈し投与した。 Influenza vaccine solutions used as antigens are commercially available influenza vaccines (trade name “influenza HA vaccine”, sold by Denka Seiken Co., Ltd., manufactured as A / Brisbane / 59/2007 (H1N1 type) (A Soviet type), A / Uruguay / 716/2007 (H3N2 type) strain (formulation using A Hong Kong type) and B / Brisbane / 60/2008 strain) as a virus-derived protein of each strain to be 0.3 μg / 30 μl Dilute with saline and administer.
 アジュバントとして用いたTNF-α-コレステロールプルラン複合体は、実施例1の方法で調製したものを、TNF-αタンパク質として5μg/30μlとなるよう生理食塩水で希釈し投与した。1週間の予備飼育後、4回投与に設定したマウスから投与を開始し、投与開始時期を1週間ずつ遅らせて、3回及び2回投与に設定したマウスにも投与を開始し、投与終了時点を全ての試験群で同じとした。 As the TNF-α-cholesterol pullulan complex used as an adjuvant, the TNF-α protein prepared by the method of Example 1 was diluted with physiological saline to be 5 μg / 30 μl and administered. After 1 week of preliminary breeding, administration is started from mice set to 4 doses, administration start time is delayed by 1 week, and administration is also started to mice set to 3 and 2 doses. Was the same in all test groups.
 所定の投与回数終了の1週間後に、インフルエンザウイルス(PR8株(H1N1型)、160pfu/50μl(6乃至7週齢マウスに対するLD50量の10倍量に相当)を50μl経鼻投与し、その後の生存の確認と体重測定を毎日行った。ウイルス投与時のマウス個体数を100%とする相対値を求め、各群の平均値を生存率として表6に示す。また、ウイルス投与時の体重を100%としたときの体重の相対値を求め、100%から減じ、各群の平均値を体重の変化率として表7に示す。本実施例では、表7において体重変化率がマイナスの値は体重の減少を意味している。変化率がプラス乃至0に近いほど、体重に対する影響が少なく、ウイルス感染が阻止された乃至感染しても症状が軽度であったことを意味する。なお、体重が、ウイルス感染前と比較して25%(変化率:-25%)より減少した場合、マウスは死亡したとみなし、安楽死させた。 One week after the end of the prescribed number of administrations, influenza virus (PR8 strain (H1N1 type), 160 pfu / 50 μl (corresponding to 10 times the LD 50 amount for 6 to 7-week-old mice) was administered nasally, and then Confirmation of survival and body weight measurement were carried out daily, relative values were determined with the number of mice at the time of virus administration being 100%, and the average value of each group is shown in Table 6. The body weight at the time of virus administration is also shown in Table 6. The relative value of the body weight when it is 100% is obtained, subtracted from 100%, and the average value of each group is shown as the rate of change in body weight in Table 7. In this example, the value of the body weight change rate in Table 7 is negative. It means that the lower the rate of change, the smaller the effect on the body weight, the less the influence on the body weight, and the milder the symptoms were even when the virus infection was stopped or infected. 25% compared to before virus infection (rate of change: -25%) when decreased from, mice considered to have died were euthanized.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6及び7に示すように、1週間に1回の投与スケジュールで、3又は4回、インフルエンザワクチンを経鼻投与すると同時に、TNF-α-コレステロールプルラン複合体をアジュバントとして経鼻投与した場合、マウスに死亡個体は発生せず、体重の変化率も-5%程度と極めて低かった(試験群8及び9)。1週間に1回の投与スケジュールで2回、インフルエンザワクチンを経鼻投与すると同時にTNF-α-コレステロールプルラン複合体を経鼻投与した場合、マウスに死亡個体は発生せず、ウイルス投与後6及び7日目に、最大12%(変化率:-12%)の体重の減少が認められたものの、8日目以降は増加に転じた(試験群7)。これに対し、インフルエンザワクチンと生理食塩水を同時に、2回(試験群4)又は3回(試験群5)経鼻投与した場合、ウイルスを投与後8乃至9日目に死亡個体が発生し、それぞれ60%、80%の個体が死亡した。この場合、ウイルス投与10日目以降も生存した個体の体重は、ウイルス投与後7及び8日目に20%(変化率:-20%)以上減少し、その後増加に転じた。インフルエンザワクチンのみを4回投与した場合(試験群6)、及び、生理食塩水のみを投与した場合(試験群1乃至3)は、ウイルスを投与後7乃至9日目までに全個体が死亡した。この結果は、インフルエンザワクチンと同時にTNF-α-コレステロールプルラン複合体を経鼻投与することにより、ワクチンの単独投与よりもインフルエンザウイルスに対する感染防御能が飛躍的に増強されることを示している。体重の変化率の程度も勘案すると、本実施例で用いた投与量では、インフルエンザワクチンとTNF-α-コレステロールプルラン複合体とを、2回投与するよりは3回又は4回投与する方がより効果的に、生体に対し感染防御能を誘導できることを示している。 As shown in Tables 6 and 7, when the influenza vaccine was administered intranasally 3 or 4 times per week on an administration schedule once a week, and the TNF-α-cholesterol pullulan complex was administered intranasally as an adjuvant, There were no dead animals in the mice, and the rate of change in body weight was extremely low at about -5% (Test Groups 8 and 9). When the influenza vaccine was administered nasally twice at the same time as the once-weekly administration schedule, and the TNF-α-cholesterol pullulan complex was administered nasally, mice did not die, and 6 and 7 after virus administration Although a decrease in body weight of up to 12% (change rate: -12%) was observed on the day, it started to increase after the 8th day (Study Group 7). On the other hand, when the influenza vaccine and physiological saline were administered nasally at the same time two times (test group 4) or three times (test group 5), a dead individual occurred 8 to 9 days after the virus was administered, 60% and 80% of the individuals died, respectively. In this case, the body weight of the individuals that survived even after the 10th day of virus administration decreased by 20% or more (change rate: -20%) on the 7th and 8th days after the virus administration, and then started to increase. When only the influenza vaccine was administered four times (Test Group 6) and when only the physiological saline was administered (Test Groups 1 to 3), all individuals died within 7 to 9 days after the virus was administered. . This result shows that nasal administration of the TNF-α-cholesterol pullulan complex simultaneously with the influenza vaccine dramatically enhances the ability to protect against influenza virus compared to the single administration of the vaccine. Considering the degree of change in body weight, the dose used in this example is more likely to be administered 3 or 4 times than the influenza vaccine and TNF-α-cholesterol pullulan complex twice. It shows that the ability to protect against infection can be effectively induced in the living body.
<インフルエンザワクチンとTNF-α-コレステロールプルラン複合体との経鼻投与によるインフルエンザウイルス感染に及ぼす影響2>
 実施例6において、インフルエンザワクチンとTNF-α-コレステロールプルラン複合体とを、同時に経鼻投与することにより、インフルエンザウイルスに対する感染防御能を効果的に増強できることが明らかとなったので、本実施例では、TNF-α-コレステロールプルラン複合体の粘膜投与アジュバントとしての有用性を、粘膜投与アジュバントとしての作用効果に優れていることが確認されているコレラトキシンBサブユニットと比較する試験を行った。すなわち、BALB/cマウス(日本チャールスリバー株式会社販売、雌、8週齢)50匹を、無作為に10匹ずつ5群に分け、表8及び9に示す抗原とアジュバントの組み合わせで経鼻投与し、インフルエンザウイルス感染に及ぼす影響を評価した。試験は、マウスを1週間予備飼育後、アジュバントと抗原を、週1回の投与スケジュールで、3回投与し、3回目の投与1週間後にインフルエンザウイルスを投与し、ウイルス投与後の観察期間を15日間とした以外は実施例6と同じ方法により行った。生存率を表8に、体重変化率を表9に示す。なお、陽性対照として用いたコレラトキシンBサブユニット(和光純薬工業株式会社販売、ロット番号CDH6462)は、タンパク質として0.8μg/30μlとなるよう生理食塩水で希釈し、0.8μg/30μl/匹/回経鼻投与した。
<Influence 2 on influenza virus infection by nasal administration of influenza vaccine and TNF-α-cholesterol pullulan complex>
In Example 6, it was clarified that the influenza vaccine and TNF-α-cholesterol pullulan complex can be effectively administered at the same time by nasal administration, so that the ability to protect against influenza virus can be effectively enhanced. A test was conducted in which the usefulness of the TNF-α-cholesterol pullulan complex as an adjuvant for mucosal administration was compared with that of cholera toxin B subunit, which has been confirmed to be excellent in action and effect as an adjuvant for mucosal administration. That is, 50 BALB / c mice (Charles River Japan Inc., female, 8 weeks old) were randomly divided into 5 groups of 10 mice and administered nasally with combinations of antigens and adjuvants shown in Tables 8 and 9 And the effects on influenza virus infection were evaluated. In the test, after pre-breeding the mice for 1 week, adjuvant and antigen were administered 3 times in a once weekly administration schedule, influenza virus was administered 1 week after the 3rd administration, and the observation period after virus administration was 15 The same method as in Example 6 was performed except that the period was one day. The survival rate is shown in Table 8, and the weight change rate is shown in Table 9. The cholera toxin B subunit used as a positive control (Wako Pure Chemical Industries, Ltd., lot number CDH6462) was diluted with physiological saline to a protein concentration of 0.8 μg / 30 μl, and then 0.8 μg / 30 μl / The animals / nasal administration was performed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表8及び9で示すように、1週間に1回の投与スケジュールで3回、インフルエンザワクチンを経鼻投与すると同時に、TNF-α-コレステロールプルラン複合体をアジュバントとして経鼻投与した場合、マウスの生存率は90%と極めて高く、体重の変化率も-7%程度と極めて低かった(試験群4)。インフルエンザワクチンを経鼻投与すると同時に、TNF-α-コレステロールプルラン複合体に代えてコレラトキシンBサブユニットを経鼻投与した場合も、マウスの生存率は90%と極めて高く、体重の変化率も-5%程度と極めて低く(試験群5)、両群間では、生存率や体重の変化率に有意な差は認められず、TNF-α-コレステロールプルラン複合体はコレラトキシンBサブユニットを投与した場合と同様の強いアジュバント活性が確認された。生理食塩水のみを3回投与した場合(試験群1)、TNF-α-コレステロールプルラン複合体と生理食塩水とを同時に3回経鼻投与した場合(試験群2)、及び、インフルエンザワクチンと生理食塩水とを同時に3回経鼻投与した場合(試験群3)は、何れも、インフルエンザウイルス投与後10日までに全ての個体が死滅した。この結果は、インフルエンザワクチンと同時にTNF-αコレステロールプルラン複合体を経鼻投与することにより、ワクチンの単独投与よりも、インフルエンザウイルスに対する感染防御能が効果的に誘導されることを示している。さらに、感染に用いたインフルエンザウイルスPR8株(H1N1型)と抗原として投与したインフルエンザワクチンに含まれているA/ブリスベン/59/2007(H1N1型)(Aソ連型)ウイルスとは抗原性が異なるにもかかわらず(例えば、『Journal of Virology』、Mar.、2910-2919頁(2005年)参照)、インフルエンザウイルスPR8株由来のタンパク質を含まないインフルエンザワクチンで免疫したマウスの血清において、PR8株による赤血球凝集を阻害するIgG抗体の誘導が確認されたことから、TNF-α-コレステロールプルラン複合体は、交叉防御能を誘導する粘膜投与アジュバントとして有用であり、パンデミックを引き起こすような抗原性の変異を起こした亜型のインフルエンザウイルスに対する感染防御能の誘導にも有用であることが明らかとなった。また、TNF-α-コレステロールプルラン複合体のアジュバント作用は、コレラトキシンBサブユニットと同等であり、経鼻投与アジュバントとして極めて有用であることを示している。さらに、これらの結果は、実施例2における抗原特異的な血中IgG抗体及び/又は分泌型IgA抗体産生の増強に係る結果及び実施例5における赤血球凝集阻害活性の結果とよく一致していることから、TNF-α-コレステロールプルラン複合体のアジュバント作用により増強される病原性微生物に対する感染防御能の増強は、斯かる微生物由来の抗原に対する抗原特異的な血中IgG抗体及び/又は分泌型IgA抗体の産生の増強によると判断した。 As shown in Tables 8 and 9, mice survived when the influenza vaccine was administered nasally three times on a once weekly dosing schedule and simultaneously with nasal administration of TNF-α-cholesterol pullulan complex as an adjuvant. The rate was extremely high at 90% and the rate of change in body weight was also extremely low at about -7% (Test Group 4). When the nasal administration of the influenza vaccine and nasal administration of cholera toxin B subunit instead of the TNF-α-cholesterol pullulan complex, the survival rate of the mice was as high as 90%, and the rate of change in body weight was also − It is extremely low, about 5% (Study Group 5), and there was no significant difference in survival rate or change in body weight between the two groups. TNF-α-cholesterol pullulan complex was administered with cholera toxin B subunit. The strong adjuvant activity similar to the case was confirmed. When only physiological saline was administered three times (Test Group 1), when TNF-α-cholesterol pullulan complex and physiological saline were administered nasally three times simultaneously (Test Group 2), and influenza vaccine and physiological In the case of nasally administering the saline solution three times at the same time (Test Group 3), all individuals died by 10 days after the influenza virus administration. This result shows that nasal administration of TNF-α cholesterol pullulan complex at the same time as the influenza vaccine induces more effective protection against influenza virus than administration of the vaccine alone. Furthermore, the influenza virus PR8 strain (H1N1 type) used for the infection and the A / Brisbane / 59/2007 (H1N1 type) (A Soviet type) virus contained in the influenza vaccine administered as an antigen differ in antigenicity. Regardless (see, for example, “Journal of Virology”, Mar., pages 2910-2919 (2005)), in the serum of mice immunized with an influenza vaccine that does not contain a protein derived from the influenza virus PR8 strain, Since the induction of an IgG antibody that inhibits aggregation was confirmed, the TNF-α-cholesterol pullulan complex is useful as a mucosal adjuvant that induces cross-protection ability, and causes an antigenic mutation that causes a pandemic. Sub-type I To be useful in the induction of infection defenses against influenza virus it revealed. In addition, the adjuvant action of TNF-α-cholesterol pullulan complex is equivalent to that of cholera toxin B subunit, indicating that it is extremely useful as a nasal adjuvant. Furthermore, these results are in good agreement with the results relating to the enhancement of antigen-specific blood IgG antibody and / or secretory IgA antibody production in Example 2 and the results of hemagglutination inhibition activity in Example 5. From the above, the enhancement of infection-protecting ability against pathogenic microorganisms enhanced by the adjuvant action of TNF-α-cholesterol pullulan complex is achieved by antigen-specific blood IgG antibody and / or secretory IgA antibody against antigens derived from such microorganisms It was judged to be due to the enhancement of production.
<TNF-α-コレステロールプルラン複合体投与の各種病原性微生物由来の抗原に対する抗体産生に及ぼす影響1>
 実施例2乃至7の結果から、生体にTNF-α-コレステロールプルラン複合体の経鼻投与により、経鼻投与した抗原に対する抗原特異的な分泌型IgA抗体及び血清中のIgG抗体産生が増強され、その結果、投与した抗原を有する病原性微生物に対し、強い感染防御能を効率よく誘導できることが明らかになったので、TNF-α-コレステロールプルラン複合体投与の、インフルエンザ以外の病原性微生物由来の抗原投与時の抗体産生に及ぼす影響を調べた。下記に示す、A型肝炎ワクチン及びジフテリアトキソイドを用い、TNF-α-コレステロールプルラン複合体の経鼻投与によるアジュバント効果を、コレラトキシンBサブユニットを用いた場合のアジュバント効果と比較を行った。試験に用いた抗原及びその調製方法を以下に示す。
<Effect of TNF-α-cholesterol pullulan complex administration on antibody production against antigens derived from various pathogenic microorganisms 1>
From the results of Examples 2 to 7, nasal administration of the TNF-α-cholesterol pullulan complex to the living body enhanced the production of antigen-specific secretory IgA antibody against the nasally administered antigen and IgG antibody in the serum, As a result, it has been clarified that a strong infection-protective ability can be efficiently induced against pathogenic microorganisms having the administered antigen. Thus, antigens derived from pathogenic microorganisms other than influenza administered with TNF-α-cholesterol pullulan complex The effect on antibody production at the time of administration was examined. Using the hepatitis A vaccine and diphtheria toxoid shown below, the adjuvant effect by nasal administration of TNF-α-cholesterol pullulan complex was compared with the adjuvant effect when cholera toxin B subunit was used. The antigen used for the test and the preparation method thereof are shown below.
<A型肝炎ワクチン>
 市販の乾燥組織培養不活化A型肝炎ワクチン(商品名「エイムゲン」、化学及血清療法研究所製、以下「HAV」と略記する場合がある。)添付の説明書に従い、滅菌水を1バイアルあたり0.7ml加えて希釈した。調製後HAVは4℃に保存した。投与直前にHAV(HAV由来タンパク質として1μg/ml)40μlに対して、TNF/CHP(TNF-αタンパク質として250μg/ml)、もしくはCTB(40μg/ml)を80μl混和し、30μl/匹投与した(HAVとして0.01μg/匹/回)。週1回の投与スケジュールで4週間(合計4回)連続して点鼻投与した。以下、投与回数、投与方法、投与スケジュールはいずれの抗原の場合も同様とした。
<Hepatitis A vaccine>
Commercially available dry tissue culture inactivated hepatitis A vaccine (trade name “Aimgen”, manufactured by Chemical and Serum Therapy Laboratories, may be abbreviated as “HAV”). Diluted by adding 0.7 ml. HAV was stored at 4 ° C. after preparation. Immediately before administration, 80 μl of TNF / CHP (250 μg / ml as TNF-α protein) or CTB (40 μg / ml) was mixed with 40 μl of HAV (1 μg / ml as HAV-derived protein) and administered at 30 μl / animal ( As HAV, 0.01 μg / animal / time). Nasal administration was performed continuously for 4 weeks (total 4 times) on a once-weekly administration schedule. Hereinafter, the administration frequency, administration method, and administration schedule were the same for all antigens.
<ジフテリアトキソイド>
 市販のジフテリアトキソイド(LIST BIOLOGICAL LABORATORIES INC社販売、以下「DT」と略記する場合がある。)の凍結乾燥品0.5mgを滅菌水で0.1mg/mlに希釈し、4℃に保存した。投与直前にDT溶液(ジフテリアトキソイドタンパク質として0.1mg/ml)40μlに対し、TNF/CHP(TNF-αタンパク質として250μg/ml)80μl、もしくはCTB(40μg/ml)80μlを混和し、30μl/匹投与した(ジフテリアトキソイドタンパク質として1μg/匹/回)。
<Diphtheria toxoid>
0.5 mg of a lyophilized product of a commercially available diphtheria toxoid (sold by LIST BIOLOGICAL LABORATORIES INC., Hereinafter sometimes abbreviated as “DT”) was diluted to 0.1 mg / ml with sterilized water and stored at 4 ° C. Immediately before administration, 40 μl of DT solution (0.1 mg / ml as diphtheria toxoid protein) was mixed with 80 μl of TNF / CHP (250 μg / ml as TNF-α protein) or 80 μl of CTB (40 μg / ml), and 30 μl / animal (1 μg / animal / dose as diphtheria toxoid protein).
<試験方法>
 BALB/cマウス(日本チャールスリバー株式会社販売、8週齢、雌)72匹を無作為に、8匹ずつ9群に分けた。1週間の予備飼育後、上記調製の2種の抗原の何れか1種と、アジュバントとしてTNF/CHPの何れかと含む被験試料を、鼻の右穴と左穴に各15μl/匹/回(計30μl/匹/回)、週1回の投与スケジュールで4週間(合計4回)投与した。また、アジュバントのコントロールとして、生理食塩水を用いた。被験試料の4回目の投与の1週後、マウスをエーテル麻酔下で切開し、血液、鼻腔内洗浄液を採取し、抗原特異的なIgA抗体及びIgG抗体量を、マウスに投与した抗原を固相とする酵素抗体法により測定した。抗体量は、別途、各抗原につき、BALB/cマウスに試験に用いた抗原とコレラトキシンBサブユニットとを混合して、左右の鼻腔に各15μl匹/回(計30μl/匹/回)、週1回の投与スケジュールで4週間(合計4回)投与し、同様に、血液、鼻腔内洗浄液を採取し、抗原特異的なIgA抗体及び、抗原としてA型肝炎ワクチンを用いた場合は血中IgM抗体量を、ジフテリアトキソイドを用いた場合は血中IgG抗体量を、マウスに投与した抗原を固相とする酵素抗体法により測定した。結果を表10に併せて示す。なお、A型肝炎では、通常血中IgM抗体の産生がその感染の指標として用いられるので(例えば、『日本臨床検査自動化学会誌』、第16巻、第3号、194-200頁(1991年)参照)、本実施例においても、抗原特異的な血中IgM抗体の産生量を測定して、アジュバント効果を判定した。本実施例におけるA型肝炎ワクチン特異的IgM抗体の検出限界は21U/mlであり、他の実施例で用いた抗原特異的IgG抗体検出法の感度と同程度であった。
<Test method>
72 BALB / c mice (Nippon Charles River Co., Ltd., 8 weeks old, female) were randomly divided into 9 groups of 8 mice. After one week of preliminary breeding, a test sample containing any one of the two antigens prepared above and either TNF / CHP as an adjuvant was placed in each of the right and left holes of the nose at 15 μl / animal / dose (total). 30 μl / animal / dose), administered once a week for 4 weeks (4 times in total). In addition, physiological saline was used as an adjuvant control. One week after the fourth administration of the test sample, the mouse was dissected under ether anesthesia, blood and nasal washes were collected, and the antigen-specific IgA antibody and IgG antibody amounts were administered to the mouse in the solid phase. It measured by the enzyme antibody method. The amount of the antibody was separately mixed for each antigen with the antigen used for the test in BALB / c mice and cholera toxin B subunit, and each left and right nasal cavity was 15 μl / unit (total 30 μl / unit / unit), Administer once a week for 4 weeks (4 times in total). Similarly, blood and nasal lavage fluid are collected. In the case of using antigen-specific IgA antibody and hepatitis A vaccine as the antigen, blood The amount of IgM antibody, and the amount of IgG antibody in blood when diphtheria toxoid was used, were measured by an enzyme antibody method using an antigen administered to mice as a solid phase. The results are also shown in Table 10. In hepatitis A, the production of IgM antibody in blood is usually used as an indicator of infection (for example, “Journal of the Japan Society for Clinical Laboratory Automation”, Vol. 16, No. 3, pp. 194-200 (1991). Also in this example, the amount of antigen-specific blood IgM antibody produced was measured to determine the adjuvant effect. The detection limit of the hepatitis A vaccine-specific IgM antibody in this example was 21 U / ml, which was comparable to the sensitivity of the antigen-specific IgG antibody detection method used in other examples.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、抗原であるA型肝炎ワクチン或いはジフテリアトキソイドの何れかと、アジュバントとしてTNF-α-コレステロールプルラン複合体とを、経鼻投与した場合、投与した各々の抗原に特異的な分泌型IgA抗体量及び血中IgM抗体量又はIgG抗体量が上昇した。これに対し、これら抗原と共に、アジュバントとしてコレラトキシンBサブユニット或いはTNF-αを経鼻投与した場合、投与した各々の抗原に特異的な分泌型IgA抗体量及び血中IgM抗体量又はIgG抗体量が上昇したものの、その上昇は、アジュバントとしてTNF-α-コレステロールプルラン複合体を投与した場合と比較すると有意に低かった。抗原と共に、アジュバントに替えて生理食塩水を投与した場合には、投与した各々の抗原に特異的な分泌型IgA抗体量及び血中IgM抗体量又はIgG抗体量の上昇は認められなかった。また、投与期間を通じて、マウスに外観的な異常や死亡個体は見出せなかったので、この実施例で用いた用量、用法では、試験に用いたこれらの抗原とTNF-α-コレステロールプルラン複合体とを同時に経鼻投与しても、何ら重篤な副作用は発生しないことが明らかとなった。 As shown in Table 10, when either the hepatitis A vaccine or diphtheria toxoid as an antigen and TNF-α-cholesterol pullulan complex as an adjuvant are administered nasally, specific secretion for each administered antigen The amount of type IgA antibody and blood IgM antibody or IgG antibody increased. On the other hand, when cholera toxin B subunit or TNF-α is administered nasally as an adjuvant together with these antigens, the amount of secretory IgA antibody and the amount of IgM antibody or IgG antibody in the blood specific to each administered antigen However, the increase was significantly lower than when TNF-α-cholesterol pullulan complex was administered as an adjuvant. When physiological saline was administered together with the antigen in place of the adjuvant, an increase in the amount of secretory IgA antibody and blood IgM antibody or IgG antibody specific to each administered antigen was not observed. In addition, since no abnormal appearance or death was found in the mice throughout the administration period, these antigens used in the test and the TNF-α-cholesterol pullulan complex were used in the dosage and usage used in this Example. At the same time, it became clear that no serious side effects occurred even when administered intranasally.
<TNF-α-コレステロールプルラン複合体投与の各種病原性微生物由来の抗原に対する抗体産生に及ぼす影響2>
 表11に示す市販の各種ワクチンを抗原として用い、アジュバントとしてTNF-α-コレステロールプルラン複合体又はTNF-αを用いた以外は、実施例8と同じ方法により、これらの抗原を経鼻投与すると同時に、アジュバントとしてTNF-α-コレステロールプルラン複合体の経鼻投与した場合の、投与した抗原に対する抗原特異的な分泌型IgA抗体及び血中IgG抗体産生に及ぼす影響を調べた。試験には以下に示す抗原を用いた。
<Effect of TNF-α-cholesterol pullulan complex administration on antibody production against antigens derived from various pathogenic microorganisms 2>
Simultaneously, these antigens were administered intranasally in the same manner as in Example 8, except that various commercially available vaccines shown in Table 11 were used as antigens, and TNF-α-cholesterol pullulan complex or TNF-α was used as an adjuvant. Then, the effects of nasal administration of TNF-α-cholesterol pullulan complex as an adjuvant on the production of antigen-specific secretory IgA antibody and blood IgG antibody against the administered antigen were examined. The following antigens were used for the test.
<抗原>
 肺炎球菌ワクチン(商品名『ニューモバックスNP』、MSD株式会社製)、乾燥BCGワクチン(商品名『乾燥BCGワクチン』、日本ビーシージー製造株式会社製)、乾燥狂犬病ワクチン(商品名『乾燥組織培養不活化狂犬病ワクチン』、アステラス製薬株式会社製)、乾燥弱毒性水痘ワクチン(商品名『乾燥弱毒性水痘ワクチン「ビケン」』、財団法人阪大微生物病研究会製)及び日本脳炎ワクチン(商品名『ジェービックV』、財団法人阪大微生物病研究会製)を、表11に示す濃度となるように各々生理食塩水で稀釈し用いた。結果を表11に併せて示す。
<Antigen>
Pneumococcal vaccine (trade name “Pneumobax NP”, manufactured by MSD Co., Ltd.), dry BCG vaccine (trade name “dry BCG vaccine”, manufactured by Nippon BCG Co., Ltd.), dry rabies vaccine (trade name “inactivated dry tissue culture” Rabies vaccine ”, manufactured by Astellas Pharma Inc.), dry attenuated varicella vaccine (trade name“ Dry attenuated varicella vaccine “Biken” ”, Osaka University Microbial Disease Research Association) and Japanese encephalitis vaccine (trade name“ Jebic ”) V ”(produced by the Osaka University Microbial Diseases Research Association) were diluted with physiological saline so that the concentrations shown in Table 11 were used. The results are also shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、肺炎球菌ワクチン(試験群3)、乾燥BCGワクチン(試験群6)、乾燥狂犬病ワクチン(試験群9)、乾燥弱毒性水痘ワクチン(試験群12)及び日本脳炎ワクチン(試験群15)の何れかと共に、アジュバントとしてTNF-α-コレステロールプルラン複合体を投与した場合、何れも、投与した各々の抗原に特異的な分泌型IgA抗体量及び血中IgG抗体量が上昇した。これに対し、TNF-αをアジュバントとして用いた場合は、何れの抗原を用いた場合も、抗原に特異的な分泌型IgA抗体量及び血中IgG抗体量の上昇はごく僅かしか認められなかった。アジュバントに替えて、生理食塩水を投与した場合の抗原特異的な抗体価の上昇は認められなかった。また、投与期間を通じて、マウスに外観的な異常や死亡個体は見出せなかったので、この実施例で用いた用量、用法では、試験に用いたこれらの抗原とTNF-α-コレステロールプルラン複合体とを同時に経鼻投与しても、何ら重篤な副作用は発生しないことが明らかとなった。 As shown in Table 11, pneumococcal vaccine (Test group 3), dry BCG vaccine (Test group 6), dry rabies vaccine (Test group 9), dry attenuated varicella vaccine (Test group 12) and Japanese encephalitis vaccine (Test) When the TNF-α-cholesterol pullulan complex was administered as an adjuvant together with any of the groups 15), the amount of secretory IgA antibody and the amount of blood IgG antibody specific to each administered antigen increased. In contrast, when TNF-α was used as an adjuvant, only a slight increase in the amount of secretory IgA antibody and blood IgG antibody specific to the antigen was observed in any antigen. . An antigen-specific antibody titer was not increased when physiological saline was administered instead of the adjuvant. In addition, since no abnormal appearance or death was found in the mice throughout the administration period, these antigens used in the test and the TNF-α-cholesterol pullulan complex were used in the dosage and usage used in this Example. At the same time, it became clear that no serious side effects occurred even when administered intranasally.
<抗原(アレルゲン)の経鼻投与による抗体産生に及ぼすTNF-α-コレステロールプルラン複合体投与の影響>
 実施例8及び9において、TNF-α-コレステロールプルラン複合体投与が、種々のワクチン類を経鼻投与による分泌型IgA抗体や、血中IgG抗体又はIgM抗体の産生を効果的に増強できること、その増強効果はTNF-αに比べて優れていることが明らかとなったので、本実施例では、抗原としてアレルゲンを投与した場合の抗体産生に及ぼす影響を、コレラトキシンBサブユニットをアジュバントとして用いた場合と比較した。アレルゲンとして、代表的なスギ花粉由来のアレルゲン(以下、「SBP」という。)を用いた。
<試験方法>
 病原性微生物由来の抗原にかえて、表12に示す投与量のスギ花粉由来のアレルゲンを抗原として用い、アジュバントとしてTNF-α-コレステロールプルラン複合体又はコレラトキシンBサブユニットを経鼻投与した4時間後に、抗原としてスギ花粉由来アレルゲンを経鼻投与した以外は、実施例9と同一の方法により感作試験を実施し、投与した抗原特異的な鼻腔内洗浄液中の分泌型IgA抗体量及び分泌型IgG抗体量、血中IgA抗体量及び血中IgG抗体量を測定した。なお、抗原特異的な分泌型IgA抗体及び血中IgG抗体に対する標準品は、前記IgA抗体及びIgG抗体の標準品の調製方法と同様の方法で調製した。結果を表12に示す。
<Effect of administration of TNF-α-cholesterol pullulan complex on antibody production by nasal administration of antigen (allergen)>
In Examples 8 and 9, administration of TNF-α-cholesterol pullulan complex can effectively enhance the production of secretory IgA antibody, blood IgG antibody or IgM antibody by nasal administration of various vaccines, Since it was clarified that the enhancement effect was superior to that of TNF-α, in this example, the effect on the antibody production when allergen was administered as an antigen was determined using cholera toxin B subunit as an adjuvant. Compared to the case. As the allergen, a representative cedar pollen-derived allergen (hereinafter referred to as “SBP”) was used.
<Test method>
4 hours after nasal administration of TNF-α-cholesterol pullulan complex or cholera toxin B subunit as an adjuvant, using allergens derived from cedar pollen in the doses shown in Table 12 instead of antigens derived from pathogenic microorganisms Thereafter, a sensitization test was carried out by the same method as in Example 9 except that cedar pollen-derived allergen was administered as an antigen nasally, and the amount of secretory IgA antibody and secretory type in the administered antigen-specific intranasal washing solution The amount of IgG antibody, the amount of IgA antibody in blood, and the amount of IgG antibody in blood were measured. In addition, the standard for antigen-specific secretory IgA antibody and blood IgG antibody was prepared by the same method as the method for preparing the standard product of IgA antibody and IgG antibody. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、抗原(スギ花粉由来アレルゲン:SBP)の投与と同時に、TNF-α-コレステロールプルラン複合体を、経鼻投与した場合(試験群2)には、抗原特異的な血中IgG抗体及びIgA抗体、並びに、鼻腔内洗浄液中のIgA抗体の産生が増強された。コレラトキシンBサブユニット(CTB)を経鼻投与した場合(試験群4)にも、血中のIgG抗体及びIgA抗体、並びに、鼻腔内洗浄液中のIgA抗体の産生が増強された。分泌型IgA抗体及び血中IgA抗体の産生量は、アジュバントとしてTNF-α-コレステロールプルラン複合体を投与した場合とCTBを投与した場合とで有意差は認められなかったものの、抗原特異的な血中IgG抗体量は、TNF-α-コレステロールプルラン複合体を投与した場合の方が遥かに高かった。斯かる抗体価の推移は、TNF-α-コレステロールプルラン複合体は、抗原としてアレルゲンを用いる場合のアジュバントとしても有用であることを示している。さらに、これらの実施例1乃至10の試験結果は、TNF-α-コレステロールプルラン複合体が、ワクチン類や毒性を有する成分、アレルゲンなどに対する抗体産生を増強するための汎用性の粘膜投与用アジュバントとして有用であることを示している。また、投与期間を通じて、マウスに外観的な異常や死亡個体は見出せなかったので、この実施例で用いた用量、用法では、抗原とTNF-α-コレステロールプルラン複合体とを同時に経鼻投与しても、何ら重篤な副作用は発生しないことが明らかとなった。 As shown in Table 12, when TNF-α-cholesterol pullulan complex was administered nasally simultaneously with administration of the antigen (cedar pollen-derived allergen: SBP) (test group 2), antigen-specific blood Production of IgG and IgA antibodies as well as IgA antibodies in intranasal lavage fluid was enhanced. Also when cholera toxin B subunit (CTB) was administered nasally (Test Group 4), production of IgG antibody and IgA antibody in blood and IgA antibody in nasal lavage fluid was enhanced. The amount of secretory IgA antibody and blood IgA antibody produced was not significantly different between administration of TNF-α-cholesterol pullulan complex and CTB as an adjuvant, but antigen-specific blood The amount of medium IgG antibody was much higher when the TNF-α-cholesterol pullulan complex was administered. Such a transition in antibody titer indicates that TNF-α-cholesterol pullulan complex is also useful as an adjuvant when using an allergen as an antigen. Furthermore, the test results of these Examples 1 to 10 show that TNF-α-cholesterol pullulan complex is a versatile mucosal administration adjuvant for enhancing antibody production against vaccines, toxic components, allergens and the like. It is useful. In addition, since no abnormalities in appearance or death were found in the mice throughout the administration period, the antigen and TNF-α-cholesterol pullulan complex were administered nasally at the same time in the dosage and usage used in this example. However, it became clear that no serious side effects occurred.
<急性毒性試験>
 TNF-α-コレステロールプルラン複合体を有効成分とする本発明による粘膜投与アジュバントの安全性を確認する試験を実施した。すなわち、BALB/cマウス(日本チャールスリバー株式会社販売、8週齢、雄及び雌、平均体重20g)各35匹を無作為に、5匹ずつ7群に分け、雌雄各2群各5匹には、実施例1で用いたと同じTNF-α-コレステロールプルラン複合体を、生理食塩水で希釈して、200μl/匹で経口又は皮下投与した(試験群5及び6)。雌雄各2群各5匹にはアジュバントを含まない生理食塩水200μl/匹で経口又は皮下投与した(試験群2及び3)。また、雌雄各1群5匹には、実施例1で用いたのと同じTNF-α-コレステロールプルラン複合体を、生理食塩水で希釈して、15μlずつ両方の鼻腔内に投与した(合計30μl/匹)で投与した(試験群7)。雌雄各1群5匹にはアジュバントを含まない生理食塩水を15μlずつ両方の鼻腔内に投与した(合計30μl/匹)で投与した(試験群4)。残りの雌雄各1群5匹には、対照として、無処置のまま放置した(試験群1)。TNF-α-コレステロールプルラン複合体含有又は含有しない生理食塩水投与48時間、これらのマウスの外観を観察した後、常法により、剖検し、抗原及びアジュバントの投与部位、並びに、主要臓器の病理組織学的観察により異常の有無の確認をすると共に、血液及び尿を採取し、骨髄機能、腎機能及び肝機能の指標となる臨床検査を行った。無処置マウスも、同様に外観及び病理組織学的観察を行うと共に、骨髄機能、腎機能及び肝機能の指標となる臨床検査を行った。無処置マウスと比較した場合の異常の有無を表13に併せて示す。試験結果に雌雄による差異は認められなかったので、結果は雌雄に投与した場合をまとめ、表13に示す。
<Acute toxicity test>
A test was conducted to confirm the safety of the adjuvant for mucosal administration according to the present invention containing TNF-α-cholesterol pullulan complex as an active ingredient. That is, BALB / c mice (Nippon Charles River Co., Ltd., 8 weeks old, male and female, average body weight 20 g) each 35 were randomly divided into 7 groups of 5 each, and 5 males and 2 females each. The same TNF-α-cholesterol pullulan complex as used in Example 1 was diluted with physiological saline and administered orally or subcutaneously at 200 μl / animal (Test Groups 5 and 6). Five males and two females each were orally or subcutaneously administered with 200 μl / mouse of saline containing no adjuvant (Test Groups 2 and 3). The same TNF-α-cholesterol pullulan complex as used in Example 1 was diluted in physiological saline and administered to both nasal cavities in a volume of 15 μl for each group of 5 mice per group (total 30 μl). (Study group 7). In each group of 5 males and 5 males, 15 μl of saline containing no adjuvant was administered intranasally (total 30 μl / mouse) (Test group 4). The remaining 5 males and 1 female were left untreated as a control (Test Group 1). After observing the appearance of these mice for 48 hours after administration of physiological saline with or without TNF-α-cholesterol pullulan complex, the mice were necropsied by a conventional method, and administration sites of antigen and adjuvant, and pathological tissues of major organs In addition to confirming the presence or absence of abnormalities by observing the blood, blood and urine were collected, and clinical tests were performed as indicators of bone marrow function, kidney function, and liver function. In addition, the untreated mice were similarly observed for appearance and histopathology, and were subjected to clinical examination as an index of bone marrow function, kidney function and liver function. Table 13 also shows the presence or absence of abnormalities when compared with untreated mice. Since the test results showed no difference between males and females, the results are summarized in Table 13 when administered to males and females.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13から明らかなように、TNF-α-コレステロールプルラン複合体を、経口及び経鼻投与しても、投与直後から観察終了まで、外観的な変化は認められず、その投与部位や主要臓器の病理組織学的な異常は認められず、骨髄機能、腎機能及び肝機能の指標となる臨床検査値についても、対照のマウス(試験群1)と差は認められず、何れの検討項目においても、毒性学的に問題となる所見は認められなかった。この結果は、TNF-α-コレステロールプルラン複合体は、ヒトに経口及び経鼻投与しても、その安全性は極めて高いことを示している。また、TNF-α-コレステロールプルラン複合体を皮下投与した場合(試験群6)、毒性学的に全身性の異常とは判定されなかったものの、病理組織学的な観察により好中球の軽度の浸潤が観察されたことから、この投与量では、投与部位に軽微な炎症が誘発されているのではないかと推測される。なお、rec-TNF-αを用いた以外は、実施例11と同じ条件で急性毒性試験を実施したところ、その結果は、野生型を用いた実施例11の場合と有意な差は認められなかった。 As is apparent from Table 13, even when the TNF-α-cholesterol pullulan complex was administered orally or nasally, no change in appearance was observed from immediately after administration until the end of observation, and the site of administration and major organs were not observed. There were no histopathological abnormalities, and there were no differences in the laboratory test values as indices of bone marrow function, kidney function and liver function from the control mice (Test Group 1). No toxicologically significant findings were found. This result shows that the TNF-α-cholesterol pullulan complex is extremely safe even when administered orally and nasally to humans. In addition, when TNF-α-cholesterol pullulan complex was administered subcutaneously (Study Group 6), although it was not determined that the systemic abnormality was toxicologically, neutrophils were observed to be mild by histopathological observation. Since infiltration was observed, it is presumed that slight inflammation is induced at the administration site at this dose. An acute toxicity test was conducted under the same conditions as in Example 11 except that rec-TNF-α was used. As a result, no significant difference was observed from that in Example 11 using the wild type. It was.
<アジュバント製剤:溶液形態>
 コレステロールプルラン(商品名『PUREBRIGHT CP-100T』、日油株式会社販売)の適量を秤量後、20mg/mlとなるようにダルベッコのリン酸緩衝生理食塩水(D-PBS(-))に懸濁し、55℃の温水浴中で16時間振盪し溶解した後、ポアサイズが0.22μmの膜フィルターを用い濾過滅菌した。このコレステロールプルラン溶液7mlとD-PBSに溶解した実施例1で用いたTNF-α又は実施例2で用いたrec-TNF-α(何れもTNF-αタンパク質量1.454mg/ml)2mlのいずれかとを混合し、ポアサイズが0.22μmの膜フィルターを用い濾過滅菌した後、37℃で5日間反応することにより、2種のTNF-α-コレステロールプルラン複合体含有溶液を調製した。この溶液を、各々注射用生理食塩水(商品名『大塚生食注』、大塚製薬株式会社販売)で稀釈し、TNF-αタンパク質として2.5、25及び250μg/mlの溶液とし、その各々を0.5ml/バイアルで充填し、粘膜投与用のアジュバント剤を調製した。
<Adjuvant formulation: solution form>
Weigh an appropriate amount of cholesterol pullulan (trade name “PUREBRIGHT CP-100T”, sold by NOF Corporation) and suspend it in Dulbecco's phosphate buffered saline (D-PBS (−)) to 20 mg / ml. After dissolution in a warm water bath at 55 ° C. for 16 hours, the solution was sterilized by filtration using a membrane filter having a pore size of 0.22 μm. Either 7 ml of this cholesterol pullulan solution and 2 ml of TNF-α used in Example 1 or rec-TNF-α used in Example 2 (both TNF-α protein amount: 1.454 mg / ml) dissolved in D-PBS. The heels were mixed, sterilized by filtration using a membrane filter having a pore size of 0.22 μm, and then reacted at 37 ° C. for 5 days to prepare two TNF-α-cholesterol pullulan complex-containing solutions. Each of these solutions is diluted with physiological saline for injection (trade name “Otsuka Seikatsu”, sold by Otsuka Pharmaceutical Co., Ltd.) to obtain 2.5, 25 and 250 μg / ml solutions as TNF-α protein. An adjuvant for mucosal administration was prepared by filling with 0.5 ml / vial.
 本品は、脊椎動物、とりわけ、ヒトにおける病原性微生物の感染防止に用いられるワクチン類、毒性を有する成分、アレルゲンなどの抗原に対する抗体産生の増強を目的として、これらの抗原を粘膜投与する際、通常、成人1回当たり、その0.01ml乃至0.2mlを、抗原と同時に、或いは、その前後に粘膜投与することにより、投与した抗原特異的な血中IgG抗体及び/又はIgM抗体、並びに、粘膜組織における分泌型IgA抗体の産生を効果的に増強することができるので、脊椎動物、とりわけ、ヒトにおける病原性微生物に対する感染防御能(交叉防御能を含む)の獲得や、アレルギー疾患などに極めて有用である。また、本品は、種々の抗原と共に生体に投与しても、重篤な副作用の発生のない安全性の高いアジュバント製剤である。 This product is used for mucosal administration of these antigens for the purpose of enhancing antibody production against antigens such as vaccines, toxic components, and allergens used to prevent infection of pathogenic microorganisms in vertebrates, particularly humans. Usually, 0.01 ml to 0.2 ml per adult is administered to the mucosa simultaneously with or before or after the antigen, whereby the antigen-specific blood IgG antibody and / or IgM antibody administered, and Since the production of secretory IgA antibody in the mucosal tissue can be effectively enhanced, it is extremely useful for acquiring infection protection ability (including cross-protection ability) against pathogenic microorganisms in vertebrates, especially humans, and for allergic diseases. Useful. In addition, this product is a highly safe adjuvant preparation that does not cause serious side effects even when administered to a living body together with various antigens.
<アジュバント製剤:凍結乾燥形態>
 実施例12と同様の方法で、TNF-α-コレステロールプルラン複合体及びrec-TNF-α-コレステロールプルラン複合体を、各々TNF-αタンパク質として1、10及び100μg/mlの溶液とし、その各々を0.5ml/バイアルで充填し、これを常法により、凍結乾燥して、粘膜投与用のアジュバント剤を調製した。
<Adjuvant formulation: lyophilized form>
In the same manner as in Example 12, TNF-α-cholesterol pullulan complex and rec-TNF-α-cholesterol pullulan complex were made into TNF-α protein solutions of 1, 10 and 100 μg / ml, respectively. It was filled with 0.5 ml / vial and freeze-dried by a conventional method to prepare an adjuvant for mucosal administration.
 本品は、用時に、注射用精製水に溶解し、脊椎動物、とりわけ、ヒトにおける病原性微生物の感染防止に用いられるワクチン類、毒性を有する成分、アレルゲンなどの抗原に対する抗体産生の増強を目的として、これらの抗原を粘膜投与する際、その0.01ml乃至0.2mlを、抗原と同時に、或いは、その前後に粘膜投与することにより、投与した抗原特異的な血中IgG抗体及び/又はIgM抗体、並びに、粘膜組織における分泌型IgA抗体の産生を効果的に増強することができるので、脊椎動物、とりわけ、ヒトにおける病原性微生物に対する感染防御能(交叉防御能を含む)の獲得や、アレルギー疾患などに極めて有用である。また、本品は、種々の抗原と共に生体に投与しても、重篤な副作用の発生のない安全性の高いアジュバント製剤である。 This product dissolves in purified water for injection at the time of use, and aims to enhance the production of antibodies against antigens such as vaccines, toxic components and allergens used to prevent infection of pathogenic microorganisms in vertebrates, especially humans When these antigens are administered to the mucosa, 0.01 ml to 0.2 ml of the antigen is administered to the mucosa simultaneously with or before or after the antigen, whereby the antigen-specific blood IgG antibody and / or IgM administered Since it is possible to effectively enhance the production of antibodies and secretory IgA antibodies in mucosal tissues, it is possible to acquire the ability to prevent infection (including cross-protection ability) against pathogenic microorganisms in vertebrates, particularly humans, It is extremely useful for diseases. In addition, this product is a highly safe adjuvant preparation that does not cause serious side effects even when administered to a living body together with various antigens.
<粘膜投与用ワクチン製剤:溶液形態>
 実施例12と同様の方法で、TNF-α-コレステロールプルラン複合体及びrec-TNF-α-コレステロールプルラン複合体を、各々TNF-αタンパク質として2、20及び200μg/mlの溶液とした何れかと、抗原として下記表14に示す成分を、各々生理食塩水で稀釈し、表14に示すタンパク質濃度に稀釈したワクチン類、トキソイド、アミロイドβペプチド或いはアレルゲンの何れか1種とを等量混合した溶液を、それぞれ、0.5ml/バイアルで充填して、粘膜投与用の抗体産生増強用組成物を調製した。
<Vaccine preparation for mucosal administration: solution form>
In the same manner as in Example 12, the TNF-α-cholesterol pullulan complex and the rec-TNF-α-cholesterol pullulan complex were each made into solutions of 2, 20, and 200 μg / ml as TNF-α protein, A solution obtained by diluting each of the components shown in Table 14 below as an antigen with physiological saline and mixing an equal amount of any one of vaccines, toxoid, amyloid β peptide or allergen diluted to the protein concentration shown in Table 14 Each was filled with 0.5 ml / vial to prepare a composition for enhancing antibody production for mucosal administration.
 本品を、それぞれ、実施例2の方法に準じ、マウスの左右の鼻腔内に、15μl/回/匹ずつ、2乃至4回、経鼻投与したところ、何れの組成物も、それに含まれる抗原特異的な、分泌型IgA抗体、血中IgG抗体及び/又は血中IgM抗体の産生が増強され、それら抗体の産生量は、投与回数に依存して増強された。本品は、通常、成人或いは成獣1回あたり、その0.01ml乃至0.2mlを、1乃至4回程度、望ましくは、3乃至4回、粘膜投与することにより、配合した抗原に対する抗原特異的な血中IgG抗体及びIgA抗体、並びに、粘膜組織における分泌型IgA抗体の産生を効果的に増強することができるので、投与した抗原がワクチン類の場合、その抗原が由来する病原性微生物に対する感染防御能(交叉防御能を含む)の獲得、さらには、感染症の発症予防乃至重篤化の抑制に極めて有用である。また、投与した抗原がトキソイドの場合、その抗原が由来するトキシンによる感染症の発症を効果的に予防することができる。投与した抗原がアミロイドβペプチドの場合、アルツハイマー病等のアミロイドβペプチドの毒性により引き起こされる各種疾患の発症予防乃至重篤化の抑制に有用である。投与した抗原がアレルゲンの場合、斯かるアレルゲンに起因するアレルギーの発症を抑制乃至その症状の軽減に有用である。また、本品は、生体に投与しても、重篤な副作用の発生のない安全性の高い粘膜投与用の組成物である。 When this product was administered nasally at 15 μl / dose / mouse 2 to 4 times in the right and left nasal cavities of the mouse according to the method of Example 2, each composition contained the antigen contained therein. Production of specific, secretory IgA antibody, blood IgG antibody and / or blood IgM antibody was enhanced, and the production amount of these antibodies was enhanced depending on the number of administrations. This product is usually antigen-specific to the combined antigen by mucosal administration of 0.01 ml to 0.2 ml per adult or adult, about 1 to 4 times, preferably 3 to 4 times. Can effectively enhance the production of blood IgG antibody and IgA antibody, and secretory IgA antibody in mucosal tissue, so that when the administered antigen is a vaccine, infection with a pathogenic microorganism from which the antigen is derived It is extremely useful for obtaining protective ability (including cross-protective ability), and for preventing the onset of infection or suppressing its seriousness. Moreover, when the administered antigen is a toxoid, the onset of the infection by the toxin from which the antigen originates can be prevented effectively. When the administered antigen is amyloid β peptide, it is useful for preventing the onset of various diseases caused by the toxicity of amyloid β peptide such as Alzheimer's disease or suppressing the seriousness. When the administered antigen is an allergen, it is useful for suppressing the onset of allergies caused by such allergens or reducing the symptoms. This product is a highly safe composition for mucosal administration that does not cause serious side effects even when administered to a living body.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<粘膜投与用ワクチン製剤:凍結乾燥品形態>
 実施例12と同様の方法で、TNF-α-コレステロールプルラン複合体及びrec-TNF-α-コレステロールプルラン複合体を、各々TNF-αタンパク質として2.5、25及び250μg/mlの溶液とした何れかと、抗原として上記表14に示す、経口生ポリオワクチン以外の成分を、各々生理食塩水で稀釈し、表14に示すタンパク質濃度に稀釈したワクチン類、トキソイド、アミロイドβペプチド或いはアレルゲンの何れか1種とを等量混合した溶液を、それぞれ、0.5ml/バイアルで充填し、これを常法により、凍結乾燥して、粘膜投与用のワクチン製剤を調製した。
<Vaccine preparation for mucosal administration: lyophilized product form>
In the same manner as in Example 12, the TNF-α-cholesterol pullulan complex and the rec-TNF-α-cholesterol pullulan complex were each made into solutions of 2.5, 25, and 250 μg / ml as TNF-α protein, respectively. In addition, any of the vaccines, toxoid, amyloid β peptide, or allergen that are diluted with physiological saline and diluted to the protein concentration shown in Table 14 except for the oral live polio vaccine shown in Table 14 above as antigens. Each solution mixed with an equal amount of seeds was filled in 0.5 ml / vial, and this was freeze-dried by a conventional method to prepare a vaccine preparation for mucosal administration.
 本品を、各々0.5mlの注射用精製水に溶解し、実施例2の方法に準じ、マウスの左右の鼻腔内に、15μl/回/匹ずつ、2乃至4回、経鼻投与したところ、何れの組成物も、それに含まれる抗原特異的な、分泌型IgA抗体、血中IgG抗体及び/又は血中IgM抗体の産生が増強され、それら抗体の産生量は、投与回数に依存して増強された。本品は、用時に、注射用精製水に溶解し、通常、成人或いは成獣1回あたり、その0.01ml乃至0.2mlを、1乃至4回程度、望ましくは、3乃至4回、粘膜投与することにより、配合した抗原に対する抗原特異的な血中IgG抗体及びIgA抗体、並びに、粘膜組織における分泌型IgA抗体の産生を効果的に増強することができる。また、本品は、粘膜組織以外の部位へ経皮経路で投与することにより、投与した抗原特異的な血中IgG抗体の産生を効果的に増強することができるので、投与した抗原が病原性微生物に対する感染防御用のワクチン類の場合、その抗原が由来する病原性微生物に対する感染防御能(交叉防御能を含む)の獲得、さらには、感染症の発症予防乃至重篤化の抑制に極めて有用である。また、投与した抗原がトキソイドの場合、その抗原が由来するトキシンによる疾患の発症を効果的に予防することができる。投与した抗原がアミロイドβペプチドの場合、アルツハイマー病等のアミロイドβペプチドの細胞毒性により引き起こされる各種疾患の発症予防乃至重篤化の抑制に有用である。投与した抗原がアレルゲンの場合、斯かるアレルゲンに起因するアレルギーの発症を抑制乃至その症状の軽減に有用である。また、本品は、生体に投与しても、重篤な副作用の発生のない安全性の高い粘膜投与用の組成物である。 This product was dissolved in 0.5 ml of purified water for injection and administered nasally 2 to 4 times at 15 μl / dose / mouse into the right and left nasal cavities of mice according to the method of Example 2. In any composition, the production of antigen-specific, secretory IgA antibody, blood IgG antibody and / or blood IgM antibody contained in the composition is enhanced, and the production amount of these antibodies depends on the number of administrations. Enhanced. This product dissolves in purified water for injection at the time of use. Usually, 0.01 ml to 0.2 ml of adult or adult animal is administered to mucous membranes 1 to 4 times, preferably 3 to 4 times. By doing so, it is possible to effectively enhance the production of antigen-specific blood IgG antibody and IgA antibody against the formulated antigen, and secretory IgA antibody in mucosal tissue. In addition, this product can effectively enhance the production of blood IgG antibodies specific to the administered antigen by administering to the site other than the mucosal tissue by a transdermal route. In the case of vaccines for infection protection against microorganisms, it is extremely useful for acquiring infection protection ability (including cross-protection ability) against pathogenic microorganisms from which the antigen is derived, as well as preventing the onset of infections and suppressing their severity. It is. Moreover, when the administered antigen is a toxoid, the onset of the disease by the toxin from which the antigen is derived can be effectively prevented. When the administered antigen is amyloid β peptide, it is useful for preventing the onset of various diseases caused by cytotoxicity of amyloid β peptide such as Alzheimer's disease or for suppressing the seriousness. When the administered antigen is an allergen, it is useful for suppressing the onset of allergies caused by such allergens or reducing the symptoms. This product is a highly safe composition for mucosal administration that does not cause serious side effects even when administered to a living body.
 以上のように、TNF-α-コレステロールプルラン複合体を有効成分として含有する本発明の経粘膜アジュバントは、粘膜投与或いはそれ以外の部位へ経皮経路で投与した抗原に対する抗体産生を効果的に増強できるアジュバントとして、及び、斯かるアジュバントと抗原とを有効成分として含有する抗体産生増強用組成物は、粘膜或いはそれ以外の部位へ経皮経路で投与した抗原に対する抗体産生を効果的に増強できる組成物として、ワクチンなどの医薬品を製造する業界や、試薬、臨床診断薬用の抗体を製造する業界において利用することができる。本発明は、斯くも顕著な作用効果を奏する発明であり、斯界に多大の貢献をする、誠に意義のある発明である。 As described above, the transmucosal adjuvant of the present invention containing TNF-α-cholesterol pullulan complex as an active ingredient effectively enhances antibody production against an antigen administered to the mucosa or to other sites by a transdermal route. A composition for enhancing antibody production comprising an adjuvant that can be used as an active ingredient and such an adjuvant and an antigen as an active ingredient is a composition that can effectively enhance antibody production against an antigen administered to a mucosa or other site by a transdermal route. As a product, it can be used in the industry for producing pharmaceuticals such as vaccines and in the industry for producing antibodies for reagents and clinical diagnostics. The present invention is an invention that exhibits such remarkable effects, and is a truly significant invention that contributes greatly to the world.

Claims (12)

  1. 抗原と、ツモア・ネクローシス・ファクター-α(TNF-α)とコレステロールプルランとからなる複合体とを含有する抗体産生増強用組成物。 A composition for enhancing antibody production, which comprises an antigen and a complex comprising Tsumor Necrosis Factor-α (TNF-α) and cholesterol pullulan.
  2. 抗体が分泌型イムノグロブリンA抗体である請求項1記載の抗体産生増強用組成物。 The composition for enhancing antibody production according to claim 1, wherein the antibody is a secretory immunoglobulin A antibody.
  3. コレステロールプルランが、プルラン分子中のグルコース100分子当たり、コレステリル基を1個以上2個以下導入したものである請求項1又は2記載の抗体産生増強用組成物。 The composition for enhancing antibody production according to claim 1 or 2, wherein the cholesterol pullulan has one or more and two or less cholesteryl groups introduced per 100 molecules of glucose in the pullulan molecule.
  4. さらに、製剤学的に許容される1又は2種以上の成分を配合してなる請求項1乃至3の何れかに記載の抗体産生増強用組成物。 Furthermore, the composition for antibody production enhancement in any one of Claim 1 thru | or 3 formed by mix | blending 1 or 2 or more types of components accept | permitted pharmaceutically.
  5. 抗原が病原性微生物由来である請求項1乃至4何れかに記載の抗体産生増強用組成物。 The composition for enhancing antibody production according to any one of claims 1 to 4, wherein the antigen is derived from a pathogenic microorganism.
  6. 病原性微生物由来の抗原が、その病原性微生物及び/又はその亜型の病原性微生物に対する感染防御に有効な抗体産生の誘導能を有している請求項5に記載の抗体産生増強用組成物。 6. The composition for enhancing antibody production according to claim 5, wherein the antigen derived from the pathogenic microorganism has an ability of inducing antibody production effective in protecting against the pathogenic microorganism of the pathogenic microorganism and / or its subtype. .
  7. 病原性微生物及び/又はその亜型の病原性微生物に対する感染防御に有効な抗体産生の誘導能を有している抗原が、それらの微生物の感染防御用ワクチンとして用いられる抗原又はそれらの微生物の産生する毒素の中和抗体産生増強用のトキソイドから選ばれる何れか1種又は2種以上である請求項6に記載の抗体産生増強用組成物。 Antigens capable of inducing antibody production effective in protecting against pathogenic microorganisms and / or subtypes of pathogenic microorganisms are antigens used as vaccines for protecting the infection of those microorganisms or production of those microorganisms The composition for enhancing antibody production according to claim 6, wherein the composition is any one or more selected from toxoids for enhancing production of neutralizing antibody of toxin.
  8. 粘膜投与用である請求項1乃至7の何れかに記載の抗体産生増強用組成物。 The composition for enhancing antibody production according to any one of claims 1 to 7, which is for mucosal administration.
  9. 経鼻投与又は経口投与形態である請求項8に記載の抗体産生増強用組成物。 The composition for enhancing antibody production according to claim 8, which is a nasal administration or oral administration form.
  10. ツモア・ネクローシス・ファクター-α(TNF-α)とコレステロールプルランとからなる複合体を含有するアジュバント。 An adjuvant containing a complex composed of Tsumore Necrosis Factor-α (TNF-α) and cholesterol pullulan.
  11. コレステロールプルランが、プルラン分子中のグルコース100分子当たり、コレステリル基を1個以上2個以下導入したものである請求項10記載のアジュバント。 The adjuvant according to claim 10, wherein the cholesterol pullulan has one or more and two or less cholesteryl groups introduced per 100 molecules of glucose in the pullulan molecule.
  12. さらに、製剤学的に許容される1又は2種以上の成分を配合してなる請求項10又は11に記載のアジュバント。 Furthermore, the adjuvant of Claim 10 or 11 formed by mix | blending 1 or 2 or more types of components accept | permitted pharmaceutically.
PCT/JP2012/081752 2011-12-09 2012-12-07 Composition for enhancing antibody production WO2013085021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286747 2011-12-09
JP2011-286747 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085021A1 true WO2013085021A1 (en) 2013-06-13

Family

ID=48574375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081752 WO2013085021A1 (en) 2011-12-09 2012-12-07 Composition for enhancing antibody production

Country Status (2)

Country Link
JP (1) JPWO2013085021A1 (en)
WO (1) WO2013085021A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
WO2022149609A1 (en) * 2021-01-07 2022-07-14 国立大学法人東京工業大学 Conjugated protein monomer carrying peptide derived from pathogenic microorganism compatible with mhc molecule, aggregate of said monomers, component vaccine containing said aggregate as active ingredient, and method for acquiring information on secretion of physiologically active substance after immunization
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009650A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Chemical Corporation Vaccinal preparations
WO2010050578A1 (en) * 2008-10-31 2010-05-06 国立大学法人東京医科歯科大学 Mucosal vaccine using cationic nanogel
WO2010098432A1 (en) * 2009-02-27 2010-09-02 東レ株式会社 Immunogenic composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009650A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Chemical Corporation Vaccinal preparations
WO2010050578A1 (en) * 2008-10-31 2010-05-06 国立大学法人東京医科歯科大学 Mucosal vaccine using cationic nanogel
WO2010098432A1 (en) * 2009-02-27 2010-09-02 東レ株式会社 Immunogenic composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAYAMURO H ET AL.: "The use of a mutant TNF- alpha as a vaccine adjuvant for the induction of mucosal immune responses", BIOMATERIALS, vol. 30, 2009, pages 5869 - 5876, XP026470014, DOI: doi:10.1016/j.biomaterials.2009.07.009 *
KAYAMURO H ET AL.: "TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant", BIOCHEM BIOPHYS RES COMMUN., vol. 384, no. 3, 2009, pages 296 - 300, XP026129991, DOI: doi:10.1016/j.bbrc.2009.04.115 *
NAGANO K ET AL.: "The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-a-induced bone resorption lacunae on mouse calvariae", J BONE MINER METAB., vol. 29, 5 December 2011 (2011-12-05), pages 671 - 681, XP019978741, DOI: doi:10.1007/s00774-011-0270-z *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules
US11878079B2 (en) 2017-04-14 2024-01-23 Capsugel Belgium Nv Pullulan capsules
WO2022149609A1 (en) * 2021-01-07 2022-07-14 国立大学法人東京工業大学 Conjugated protein monomer carrying peptide derived from pathogenic microorganism compatible with mhc molecule, aggregate of said monomers, component vaccine containing said aggregate as active ingredient, and method for acquiring information on secretion of physiologically active substance after immunization

Also Published As

Publication number Publication date
JPWO2013085021A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
EP2939692B1 (en) Nasal influenza vaccine composition
JP5344558B2 (en) Mucosal vaccine using cationic nanogel
JP4817625B2 (en) Novel vaccine containing mucosal immunity induction adjuvant
US8211442B2 (en) Mucosal vaccine enabling switching from production of IgA antibody to production of both of IgA and IgG antibodies
JP2003522802A (en) Proteosome influenza vaccine
CA2680193C (en) Lyophilized preparation comprising influenza vaccine, and method for preparation thereof
EP2543387A1 (en) Mucosal vaccine
WO2013085021A1 (en) Composition for enhancing antibody production
US20220257752A1 (en) New use of cyclic dinucleotides
JP2023091085A (en) mucosal adjuvant
US8535683B2 (en) Intranasal or inhalational administration of virosomes
EP2158921B1 (en) Intranasal influenza vaccine based on virosomes
Sloat et al. Evaluation of the immune response induced by a nasal anthrax vaccine based on the protective antigen protein in anaesthetized and non-anaesthetized mice
WO2022168889A1 (en) Fine particle powder-type mucosal vaccine
TWI397419B (en) Intranasal or inhalational administration of virosomes
US20160129106A1 (en) Method for preparing virosomes
US9463236B2 (en) RSV mucosal vaccine
WO2023159082A2 (en) Nanotechnology based intranasal vaccine for covid-19 comprising chitosan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856482

Country of ref document: EP

Kind code of ref document: A1