WO2013081157A1 - Process for producing cyclic carbonate - Google Patents
Process for producing cyclic carbonate Download PDFInfo
- Publication number
- WO2013081157A1 WO2013081157A1 PCT/JP2012/081217 JP2012081217W WO2013081157A1 WO 2013081157 A1 WO2013081157 A1 WO 2013081157A1 JP 2012081217 W JP2012081217 W JP 2012081217W WO 2013081157 A1 WO2013081157 A1 WO 2013081157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- reaction
- nmr
- amine compound
- cyclic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/10—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
- C07D317/32—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D317/34—Oxygen atoms
- C07D317/36—Alkylene carbonates; Substituted alkylene carbonates
- C07D317/38—Ethylene carbonate
Definitions
- the present invention relates to a method for producing a cyclic carbonate that is widely used in various applications such as an electrolytic solution of a lithium ion secondary battery and a plastic raw material. More specifically, the present invention relates to a method for producing a cyclic carbonate using carbon dioxide.
- carbon dioxide in the atmosphere has been steadily increasing and is regarded as a problem as a cause of global warming.
- carbon dioxide can be effectively utilized and converted into a functional material or the like, carbon dioxide can be regarded as one of resources that can be obtained inexhaustibly.
- Non-Patent Document 1 a method using, for example, lithium bromide which is a metal salt (for example, Non-Patent Document 1) requires a high temperature condition under normal pressure conditions, for example, a method using a quaternary ammonium salt (for example, Non-Patent Document 2).
- Etc. require high-pressure conditions in addition to high-temperature conditions while being metal-free (metal-free).
- various methods for synthesizing cyclic carbonates are known (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Non-Patent Document 3, Non-Patent Document 4, (Non-Patent Document 5, Non-Patent Document 6, etc.) and any of the synthesis methods require high temperature, high pressure, or both conditions.
- Non-Patent Document 7 a composite catalyst having both the characteristics of a metal and a quaternary ammonium salt has been developed and used for a carbonate reaction under normal temperature and normal pressure conditions.
- this composite catalyst is an expensive metal coordination catalyst that requires multiple steps for its synthesis, there is a difficulty in practicality.
- the present invention has been made in view of the above-mentioned situation, and not only can produce a wide variety of cyclic carbonates with high yield even when the reaction is performed under mild conditions such as normal temperature and normal pressure, but also the environment.
- An object of the present invention is to provide a practical cyclic carbonate production method in consideration of load reduction.
- the present inventors have found that in the reaction of epoxide (oxirane) with carbon dioxide, the primary to tertiary amine having a pKa of 8 or more, a monoamine, By using an amine compound selected from cyclic amidine and guanidine and hydrogen iodide, it has been found that the above-described object can be achieved, and the present invention has been completed.
- an epoxide and carbon dioxide are reacted in the presence of hydrogen iodide with an amine compound selected from monoamine, cyclic amidine and guanidine, which is a primary to tertiary amine having a pKa of 8 or more. It is invention of the manufacturing method of cyclic carbonate characterized by these.
- a cyclic carbonate by the reaction of epoxide (oxirane) and carbon dioxide, a primary or tertiary amine having a pKa of 8 or more, an amine compound selected from monoamine, cyclic amidine and guanidine, and hydrogen iodide
- epoxide oxirane
- carbon dioxide a primary or tertiary amine having a pKa of 8 or more
- an amine compound selected from monoamine, cyclic amidine and guanidine and hydrogen iodide
- a primary to tertiary amine having a pKa of 8 or more when an amine compound selected from monoamines, cyclic amidines and guanidines and hydrogen iodide are used, the reason why the above-described effects can be obtained. It is considered as follows. That is, it is a primary to tertiary amine having a pKa of 8 or more and is selected from monoamines, cyclic amidines and guanidines (hereinafter sometimes abbreviated as amine compounds according to the present invention) and iodide.
- An amine compound salt prepared from hydrogen and having a proton and iodine anion (hereinafter sometimes abbreviated as the amine compound salt according to the present invention) is a catalyst (hereinafter referred to as “catalyst”) in a reaction of epoxide (oxirane) with carbon dioxide. It is considered that the cyclic carbonate can be produced in good yield even under mild conditions such as normal temperature and normal pressure.
- an amine compound salt having proton and iodine anion can be synthesized easily and inexpensively in one step from the amine compound according to the present invention and hydrogen iodide, and is also a metal-free (metal-free) catalyst. Therefore, the production method of the present invention using the catalyst (amine compound salt) is useful from the viewpoint of green chemistry, and is a practical production method considering reduction of environmental burden.
- the method for producing a cyclic carbonate of the present invention comprises a reaction between an epoxide (oxirane) and carbon dioxide, a primary to tertiary amine having a pKa of 8 or more, and an amine compound selected from monoamine, cyclic amidine and guanidine. And in the presence of hydrogen iodide.
- the amine compound according to the present invention is an amine having at least one amino group and a pKa of 8 or more, may have a plurality of amino groups, and has other functional groups such as a hydroxyl group. You may do it.
- Specific examples of such amine compounds include those selected from, for example, monoamines represented by the following general formula [1], cyclic amidines represented by the following general formula [2], and guanidines represented by the following general formula [3]. Can be mentioned.
- R 1 represents a branched or cyclic alkyl group having 3 to 10 carbon atoms or an aralkyl group having 7 to 12 carbon atoms
- R 2 and R 3 each independently represents a hydrogen atom or a carbon number 1 to 10 linear, branched or cyclic alkyl groups.
- R 4 and R 5 are bonded to each other to represent an alkylene chain having 2 to 5 carbon atoms, and together with the nitrogen atom bonded thereto and the carbon atom bonded to the nitrogen atom, 5- to 8-membered members
- Each of R 6 and R 7 independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 6 and R 7 , And may form a ring structure.
- R 8 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms which may have a hetero atom, or an aralkyl group having 7 to 12 carbon atoms;
- R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 or R 8 and R 12 may form a cyclic structure.
- branched or cyclic alkyl group having 3 to 10 carbon atoms represented by R 1 in the general formula [1] include isopropyl group, isobutyl group, s-butyl group, t-butyl group, Cyclobutyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, isohexyl group, s-hexyl group, t -Hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, isoheptyl group, s-heptyl group, t-heptyl group, Neohept
- a cyclic alkyl group having 5 to 8 carbon atoms such as a cyclooctyl group is preferred, and among them, a t-butyl group and a cyclohexyl group are more preferred.
- s- represents a sec-form and t- represents a tert-form.
- the aralkyl group having 7 to 12 carbon atoms represented by R 1 and R 8 in the general formulas [1] and [3] may be either monocyclic or condensed polycyclic. Examples include benzyl group, phenethyl group, methylbenzyl group, phenylpropyl group, 1-methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, tetrahydronaphthyl group, naphthylmethyl group, naphthylethyl group, etc. However, for example, an aralkyl group having 7 carbon atoms such as a benzyl group is preferred.
- Specific examples of the branched or cyclic alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and cyclobutyl.
- n-pentyl group isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, Isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl , Isoheptyl group, s-heptyl group, t-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl group, s-octyl group
- linear, branched or cyclic alkyl group having 1 to 10 carbon atoms which may have a hetero atom represented by R 8 in the general formula [3] include, for example, a methyl group, Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, Neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl Group, 1,2-dimethylbutyl group, 2,
- a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms having no hetero atom such as a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, Hydroxyheptyl group, hydroxyoctyl group, hydroxynonyl group, hydroxydecyl group Methoxymethyl, methoxyethyl, methoxypropyl, methoxybutyl, methoxypentyl, methoxyhexyl, methoxyheptyl, methoxyoctyl, methoxynonyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl Group, ethoxypentyl group, ethoxyhexyl group, ethoxyheptyl group, ethoxyocty
- R 4 and R 5 in the general formula [2] are bonded together to represent an alkylene chain having 2 to 5 carbon atoms
- R 4 and R 5 form an alkylene group having 2 to 5 carbon atoms
- a 5- to 8-membered ring is formed together with a nitrogen atom bonded to an alkylene group and a carbon atom bonded to the nitrogen atom.
- Specific examples of the alkylene group having 2 to 5 carbon atoms include dimethylene group (ethylene group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4- Diyl group), pentamethylene group (pentane-1,5-diyl group) and the like.
- trimethylene group (propane-1,3-diyl group) which is an alkylene group having 3 carbon atoms is preferable.
- a 5- to 8-membered ring include, for example, 2-imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4,5,6,7-tetrahydro-1H-1,3- Examples thereof include a diazepine ring, among which a 1,4,5,6-tetrahydropyrimidine ring which is a 6-membered ring is preferable.
- R 6 and R 7 in the general formula [2] may form a cyclic structure.
- R 6 and R 7 form an alkylene group having 3 to 6 carbon atoms and bond to the alkylene group. This means that a 5- to 8-membered ring may be formed together with the nitrogen and carbon atoms.
- Specific examples of such an alkylene group having 3 to 6 carbon atoms include trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4-diyl group), and pentamethylene group. (Pentane-1,5-diyl group) and the like, hexamethylene group (hexane-1,6-diyl group), and the like.
- pentamethylene group which is an alkylene group having 5 carbon atoms is mentioned.
- -Diyl group is preferred.
- Specific examples of such a 5- to 8-membered ring include, for example, a pyrrolidine ring, a piperidine ring, a hexamethyleneimine ring (azepane ring), a heptamethyleneimine ring (azocan ring), and among others, a pyrrolidine ring.
- a hexamethyleneimine ring (azepane ring) is preferable, and among them, a hexamethyleneimine ring (azepane ring) that is a seven-membered ring is more preferable.
- R 8 and R 9 , R 10 and R 11 , or R 8 and R 12 in the general formula [3] may form a cyclic structure as R 8 and R 9 , R 10 and R 11 or R 8 and R 12 form an alkylene group having 2 to 5 carbon atoms, and together with the nitrogen atom bonded to the alkylene group and the carbon atom bonded to the nitrogen atom, forms a 5- to 8-membered ring. It means that you may.
- alkylene group having 2 to 5 carbon atoms include dimethylene group (ethylene group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4- Diyl group), pentamethylene group (pentane-1,5-diyl group) and the like.
- dimethylene group ethylene group
- trimethylene group propane-1,3-diyl group
- tetramethylene group butane-1,4- Diyl group
- pentamethylene group pentamethylene group
- pentamethylene group pentamethylene group
- pentamethylene group pentamethylene group
- 5- to 8-membered rings include, for example, 2-imidazoline ring, imidazolidine ring, 1,4,5,6-tetrahydropyrimidine ring, hexahydropyrimidine ring, 4,5,6,7 -Tetrahydro-1H-1,3-diazepine ring, hexahydro-1H-1,3-diazepine ring and the like are mentioned, among which 1,4,5,6-tetrahydropyrimidine ring and hexahydropyrimidine ring are preferable.
- R 9 and R 10 or R 11 and R 12 may form a cyclic structure that R 9 and R 10 or R 11 and R 12 have 4 to 6 carbon atoms.
- Specific examples of the alkylene group having 4 to 6 carbon atoms include a tetramethylene group (butane-1,4-diyl group), a pentamethylene group (pentane-1,5-diyl group), and hexamethylene. Group (hexane-1,6-diyl group) and the like.
- a pentamethylene group which is an alkylene group having 5 carbon atoms is preferable.
- a 5- to 7-membered ring include, for example, a pyrrolidine ring, a piperidine ring, a hexamethyleneimine ring (azepane ring), and among them, a piperidine ring is preferable.
- R 1 is an aralkyl group having 7 to 12 carbon atoms
- R 2 and R 3 are both linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms. It is preferable that
- R 6 in the general formula [2] a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms is preferable when a cyclic structure is not formed with R 7. Groups are preferred.
- R 6 and R 7 in the general formula [2] are preferably those in which R 6 and R 7 form a cyclic structure.
- R 8 is preferably a linear, branched or cyclic alkyl group having 4 to 10 carbon atoms which may have a hetero atom
- R 8 is a linear, branched or cyclic alkyl group having 4 to 10 carbon atoms which may have a hetero atom
- the monoamine represented by the general formula [1] include various monoamines such as monoisopropylamine, mono-t-butylamine, monocyclohexylamine, dicyclohexylamine, and benzyldimethylamine.
- a monoamine represented by the following general formula [1-I] is preferable in that a cyclic carbonate can be obtained with a higher yield.
- R 1a represents a t-alkyl group having 4 to 6 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms
- R 2a represents a hydrogen atom, a t-alkyl group having 4 to 6 carbon atoms, or a carbon atom.
- t-alkyl group having 4 to 6 carbon atoms represented by R 1a and R 2a in the general formula [1-I] include, for example, a t-butyl group, a t-pentyl group, a t-hexyl group, and the like. Among them, a t-butyl group which is a t-alkyl group having 4 carbon atoms is preferable. In the above specific examples, t- represents a tert-isomer.
- cycloalkyl group having 5 to 8 carbon atoms represented by R 1a and R 2a in the general formula [1-1] include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like. Of these, a cyclohexyl group which is a cycloalkyl group having 6 carbon atoms is preferable.
- monoamine represented by the general formula [1-I] include, for example, mono-t-butylamine, di-t-butylamine, mono-t-pentylamine, di-t-pentylamine, and mono-t-hexylamine. , Di-t-hexylamine, monocyclopentylamine, dicyclopentylamine, monocyclohexylamine, dicyclohexylamine, monocycloheptylamine, dicycloheptylamine, monocyclooctylamine, dicyclooctylamine, etc.
- Mono-t-butylamine and dicyclohexylamine are preferred in that a cyclic carbonate can be obtained with a higher yield.
- t- represents a tert-isomer.
- the monoamines represented by the general formula [1] and the general formula [1-I] may be commercially available products or those appropriately synthesized by a general method performed in this field.
- cyclic amidine represented by the general formula [2] include, as an example, 1-methyl-1,4,5,6-tetrahydropyrimidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine.
- various cyclic amidines such as 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) and 1,8-diazabicyclo [5.4.0] -7-undecene (DBU).
- a cyclic amidine represented by the following general formula [2-1] is preferable in that a cyclic carbonate can be obtained with a higher yield.
- n represents an integer of 1 to 4.
- M in the general formula [2-I] usually represents an integer of 1 to 4, preferably 2.
- N in the general formula [2-I] usually represents an integer of 1 to 4, preferably 1 or 3, and more preferably 3.
- cyclic amidine represented by the general formula [2-I] include, for example, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN), 1,8-diazabicyclo [5.4.0]. ] -7-undecene (DBU) and the like. Among them, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) is particularly preferable in that a cyclic carbonate can be obtained with higher yield. preferable.
- the cyclic amidines represented by the above general formula [2] and general formula [2-1] may be commercially available products or those appropriately synthesized by general methods performed in this field.
- guanidine represented by the general formula [3]
- guanidine 1- (1-n-butyl) guanidine, 1- (1-n-butyl) -3-methylguanidine, 1- (1 -n-butyl) -2,3-dimethylguanidine, 1- (1-n-butyl) -2,3,3-trimethylguanidine, 2- (1-n-butyl) -1,1,3,3- Tetramethylguanidine, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1- (1-n-octyl) guanidine, 1,1-dicyclohexylguanidine, 1- Benzylguanidine, 1- (2-hydroxyethyl) guanidine, 1- (2-methoxyethyl) guanidine, 1- (2-dimethylaminoethyl) guanidine, 1-benzyl-2,3,3-trimethylguanidine, 1- ( 2-Dimethylamino
- 1- (1-n-butyl) guanidine, 1- (1-n-butyl) is preferable in that a cyclic carbonate can be obtained with higher yield.
- -2,3,3-trimethylguanidine and 1-benzyl-2,3,3-trimethylguanidine are preferred.
- n- represents a normal-body.
- the guanidine represented by the above general formula [3] may be a commercially available product or a product appropriately synthesized by a general method performed in this field.
- Examples of the hydrogen iodide according to the present invention include those in a gaseous state such as hydrogen iodide gas, and those in a solution state in which hydrogen iodide gas such as hydroiodic acid is dissolved in a liquid (solvent) such as water.
- a gaseous state such as hydrogen iodide gas
- a solution state in which hydrogen iodide gas such as hydroiodic acid is dissolved in a liquid (solvent) such as water.
- a liquid (solvent) such as water
- hydroiodic acid include, for example, a commercially available 57% aqueous solution of hydroiodic acid.
- the reason why the amine is selected from monoamines, cyclic amidines and guanidines and hydrogen iodide is used as follows. It is. That is, as a result of intensive studies on a method for producing a cyclic carbonate using carbon dioxide, the present inventors have prepared an amine compound having protons and iodine anions prepared from the amine compound according to the present invention and hydrogen iodide. It has been found that the salt effectively acts as a catalyst in the reaction of epoxide (oxirane) with carbon dioxide.
- the catalyst (amine compound salt) according to the present invention is an epoxide (oxirane) in which a proton bonded to an amine having an appropriate basicity in the catalyst (amine compound salt) even under mild conditions such as room temperature and normal pressure. It has a coordination action similar to that of a metal ligand with respect to oxygen atoms of iodine, and the iodine anion in the catalyst (amine compound salt) has an action of opening the epoxide (oxirane) effectively. It is considered that the cyclic carbonate can be produced with good yield even under mild conditions such as normal temperature and normal pressure.
- the proton needs to be bonded to an amine having an appropriate basicity. Therefore, the pKa of the amine compound according to the present invention is 8 or more.
- the amine compound preferably has a pKa of 10 or more. If an amine compound having a pKa of 10 or more is used, a cyclic carbonate can be produced with a higher yield.
- An amine compound having a proton and iodine anion which is prepared from hydrogen iodide and a primary to tertiary amine having a pKa of 8 or more used in the present invention, which is selected from monoamines, cyclic amidines and guanidines
- Specific examples of the salt include, for example, a salt of monoamine and hydrogen iodide having a pKa of 8 or more, represented by the following general formula [1 ′], and represented by the following general formula [2 ′].
- the salt of monoamine having a pKa of 8 or more and hydrogen iodide represented by the general formula [1 ′] include monoisopropylamine hydrogen iodide, mono-t-butylamine hydrogen iodide, Various monoamine hydrogen iodides such as monocyclohexylamine hydrogen iodide, dicyclohexylamine hydrogen iodide, benzyldimethylamine hydrogen iodide, and the like can be mentioned. Among them, cyclic carbonate can be obtained with higher yield.
- the monoamine hydrogen iodide salt represented by the following general formula [1′-I] is preferable.
- monoamine hydrogen iodide represented by the general formula [1′-I] include, for example, mono-t-butylamine hydrogen iodide, di-t-butylamine hydrogen iodide, mono-t-pentylamine Hydrochloride, di-t-pentylamine hydrogen iodide, mono-t-hexylamine hydrogen iodide, di-t-hexylamine hydrogen iodide, monocyclopentylamine hydrogen iodide, dicyclopentylamine iodide Hydrogen salt, monocyclohexylamine hydrogen iodide, dicyclohexylamine hydrogen iodide, monocycloheptylamine hydrogen iodide, dicycloheptylamine hydrogen iodide, monocyclooctylamine hydrogen iodide, dicyclooctylamine In particular, a cyclic carbonate can be obtained with a higher yield.
- Specific examples of the salt of cyclic amidine having a pKa of 8 or more and hydrogen iodide represented by the general formula [2 ′] include, for example, -methyl-1,4,5,6-tetrahydropyrimidine iodide salt 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine hydroiodide, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) hydroiodide, 1,8- Various cyclic amidine hydrogen iodides such as diazabicyclo [5.4.0] -7-undecene (DBU) ⁇ ⁇ iodide can be mentioned, and among them, a cyclic carbonate can be obtained at a higher yield.
- a cyclic amidine hydrogen iodide salt represented by the following general formula [2′-I] is preferable.
- cyclic amidine hydrogen iodide represented by the general formula [2′-I] include, for example, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) hydrogen iodide, 1,8 -Diazabicyclo [5.4.0] -7-undecene (DBU) hydroiodide, and the like.
- DBN 1,5-diazabicyclo [4.3.0] -5-nonene
- DBU 1,8 -Diazabicyclo [5.4.0] -7-undecene
- DBU 1,8-diazabicyclo [5. 4.0] -7-undecene
- Specific examples of the salt of guanidine and hydrogen iodide represented by the general formula [3 ′] having a pKa of 8 or more include, as an example, guanidine iodide salt, 1- (1-n-butyl) guanidine iodide.
- n- represents a normal-body.
- catalysts (amine compound salts) those selected from a monoamine hydrogen iodide salt represented by the general formula [1 ′] and a cyclic amidine hydrogen iodide salt represented by the general formula [2 ′] are preferable, Among these, those selected from monoamine hydrogen iodides represented by the general formula [1′-I] and cyclic amidine hydrogen iodides represented by the general formula [2′-I] are more preferable.
- the reaction system of epoxide (oxirane) and carbon dioxide contains a primary or tertiary amine having a pKa of 8 or more and an amine compound selected from monoamine, cyclic amidine and guanidine and iodinated.
- the catalyst (amine compound salt) according to the present invention which is a salt of an amine compound having protons and iodine anions, is generated from the amine compound according to the present invention and hydrogen iodide.
- the catalyst (amine compound salt) according to the present invention may be prepared in use in the reaction system, or the amine compound according to the present invention and hydrogen iodide may be reacted in another system to produce the present invention.
- the catalyst (amine compound salt) is prepared in advance, and the catalyst (amine compound salt) thus prepared and isolated is reacted with epoxide (oxirane) and carbon dioxide. It may be allowed to coexist within. That is, in the present invention, the reaction of epoxide (oxirane) and carbon dioxide may be carried out in the same system as the reaction for preparing the catalyst (amine compound salt) according to the present invention and reacted in one pot.
- the catalyst (amine compound salt) is isolated by performing a reaction (step) in which the catalyst (amine compound salt) according to the present invention is prepared in advance in another system. An epoxide (oxirane) and carbon dioxide may be reacted with each other.
- the reaction of epoxide (oxirane) and carbon dioxide in the presence of the catalyst (amine compound salt) according to the present invention prepared from the amine compound according to the present invention and hydrogen iodide can also be carried out by “pKa of 8 or more. It is a primary to tertiary amine and is included within the range expressed as “reacting with an amine compound selected from monoamine, cyclic amidine and guanidine in the presence of hydrogen iodide”. In addition, the preparation method of the catalyst (amine compound salt) concerning this invention is mentioned later.
- the amine compound according to the present invention is reacted with hydrogen iodide in a separate system, and the catalyst (amine compound salt) according to the present invention is prepared and isolated in advance, and this is used as the catalyst. It is preferable.
- the catalyst amine compound salt
- the amine compound according to the present invention and hydrogen iodide coexist in the reaction system of epoxide (oxirane) and carbon dioxide
- hydroiodic acid is used as a hydrogen iodide source
- the coexisting water becomes epoxide (oxirane).
- hydrogen iodide gas can be used as a hydrogen iodide source.
- the method of preparing and isolating the catalyst (amine compound salt) according to the present invention in a separate system in advance can make the present invention easier. That is, the catalyst (amine compound salt) according to the present invention can be prepared in advance by a so-called one-step simple and inexpensive synthesis method in which the amine compound according to the present invention is reacted with hydroiodic acid which is easy to handle.
- the catalyst (amine compound salt) according to the present invention can be prepared in advance by a so-called one-step simple and inexpensive synthesis method in which the amine compound according to the present invention is reacted with hydroiodic acid which is easy to handle.
- most of the amine compound salt (catalyst according to the present invention) obtained by this preparation method is in a solid state, it can be easily isolated from the reaction system.
- the amine compound salt which is a catalyst according to the present invention, can be synthesized in one step from the amine compound according to the present invention and hydrogen iodide, whether it is prepared at the time of use or prepared in advance and isolated. If used as a catalyst, it is useful in that cyclic carbonates can be produced in a yield equivalent to or higher than that of expensive metal coordination catalysts that require multiple steps for synthesis even under mild conditions such as room temperature and atmospheric pressure. is there. Moreover, since the catalyst (amine compound salt) concerning this invention is also a metal free (metal free) catalyst, the removal process of a metal (metal) is not required and it is useful also from a viewpoint of green chemistry.
- the amine compound salt that is a catalyst according to the present invention may be supported on a carrier such as silica or alumina, or is incorporated in a polymer (polymer), that is, polymerized. It may be what has been done.
- a carrier such as silica or alumina
- polymer polymer
- Such an amine compound salt has the advantage that it can be easily separated from the product cyclic carbonate in the process of isolating the cyclic carbonate from the reaction system, and can be recovered and reused. Since it also has the advantage of being, it is a practical catalyst that is useful from the viewpoint of green chemistry and that takes into consideration the reduction of environmental impact.
- the carbon dioxide according to the present invention is used as a raw material for producing a cyclic carbonate.
- the carbon dioxide is industrially produced by collecting, purifying, etc., carbon dioxide produced as a by-product in the production of electric power, gas, etc., but there is no particular limitation on the supply form, origin, and the like.
- the purity of carbon dioxide is not necessarily high and may be diluted with an inert gas such as nitrogen gas or argon gas. However, since the reaction volume tends to increase if the purity of carbon dioxide is low, the carbon dioxide is preferably highly pure.
- the purity of carbon dioxide is preferably 95% or more, particularly 99% or more.
- the epoxide (oxirane) according to the present invention is used as a raw material for producing a cyclic carbonate in the same manner as the carbon dioxide described above.
- the epoxide (oxirane) is not particularly limited as long as it is usually used in this field, and may have at least one oxirane ring, and may have two or more oxirane rings. You may have other functional groups, such as an ether group and an acyl group.
- Specific examples of the epoxide (oxirane) include those selected from the epoxide (oxirane) represented by the following general formula [4] or the epoxide (oxirane) represented by the following general formula [5].
- a 1 , A 2 , A 3 and A 4 each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
- a 1 and A 2 , A 1 and A 4 or A 3 and A 4 may form a cyclic structure.
- a 5 , A 6 , A 7 , A 8 , A 9 and A 10 are each independently a monovalent hydrocarbon having 1 to 20 carbon atoms which may have a hydrogen atom or a hetero atom.
- T represents a divalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, wherein A 5 and A 6 , A 5 and A 7 , A 8 and A 10 Alternatively, A 9 and A 10 may form a cyclic structure.
- the monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] Specific examples include an alkyl group, an alkenyl group, an aryl group, and an aralkyl group.
- hetero atom represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5].
- Specific examples of the hetero atom in the monovalent hydrocarbon group having 1 to 20 carbon atoms may include, for example, an oxygen atom, a sulfur atom, for example, a halogen atom such as a fluorine atom and a chlorine atom.
- the monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are alkyl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5]
- the alkyl group which may have a hetero atom shown may be linear, branched or cyclic.
- alkyl group has no hetero atom
- the alkyl group has no hetero atom
- examples of the case where the alkyl group has no hetero atom include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, Cyclobutyl group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group , Isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-di
- a 1, A 2, A 3 , A 4, A 5, A 6, A 7, A 8, A 9 and an alkyl group which may have a hetero atom is a heteroatom represented by A 10
- a 10 Specific examples in the case of having, for example, methoxymethyl group, methoxyethyl group, methoxypropyl group, methoxybutyl group, methoxypentyl group, methoxyhexyl group, methoxyheptyl group, methoxyoctyl group, methoxynonyl group, methoxydecyl group, Methoxyundecyl group, methoxydodecyl group, methoxytridecyl group, methoxytetradecyl group, methoxypentadecyl group, methoxyhexadecyl group, methoxyheptadecyl group, methoxyoctadecyl group, methoxynonadecyl group, eth
- methoxymethyl group methoxyethyl group, Methoxypropyl, methoxybutyl, methoxypentyl, methoxyhexyl, methoxyheptyl, methoxyoctyl, methoxynonyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl, ethoxypentyl, ethoxy Xyl group, ethoxyheptyl group, ethoxyoctyl group, propoxymethyl group, propoxyethyl group, propoxypropyl group, propoxybutyl group, propoxypentyl group, propoxyhexyl group, propoxyheptyl group, butoxymethyl group, butoxyethyl group, butoxypropyl group , Butoxybutyl group, butoxypentyl group, butoxyhexyl group, pentyloxymethyl group, pentyl
- Ruoro group fluorine atom having 1 to 10 straight with an alkyl group branched or cyclic are preferred.
- the alkyl group is not limited to the normal-form, but may be a branched or cyclo-form alkyl group such as a sec-form, tert-form, iso-form, or neo-form. May be.
- the monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are alkenyl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5]
- the alkenyl group which may have a hetero atom shown may be linear, branched or cyclic.
- alkenyl group has no hetero atom
- the alkenyl group has no hetero atom
- examples of the case where the alkenyl group has no hetero atom include, for example, a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, and a dodecenyl group.
- Tridecenyl group Tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group and the like, and examples thereof include vinyl group, propenyl group, butenyl group.
- a linear, branched or cyclic alkenyl group having 2 to 10 carbon atoms such as a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group and a decenyl group is preferred.
- alkenyl group having a hetero atom examples include, for example, vinyloxymethyl group, vinyloxyethyl group, vinyloxypropyl group, propenyloxymethyl group, propenyloxyethyl group, propenyloxypropyl group, butenyl Ether groups such as oxymethyl group, butenyloxyethyl group, butenyloxypropyl group, pentenyloxymethyl group, pentenyloxyethyl group, pentenyloxypropyl group, hexenyloxymethyl group, hexenyloxyethyl group, hexenyloxypropyl group ( An oxygen atom) having 3 to 20 carbon atoms, such as acryloyloxymethyl group, acryloyloxyethyl group, acryloyloxypropyl group, methacryloyloxymethyl group, methacryloyloxyethyl group, Tacryloyloxypropyl group, Crotonoyloxy
- alkenyl groups having 2 to 20 carbon atoms having a fluoro group fluorine atom
- a straight chain having 3 to 10 carbon atoms and having an ether group (oxygen atom) such as a xylpropyl group, a pentenyloxymethyl group, a pentenyloxyethyl group, a pentenyloxypropyl group, a hexenyloxymethyl group, a hexenyloxyethyl group, a hexenyloxypropyl group , Branched or cyclic alkenyl groups
- the alkyl group and alkenyl group are not limited to normal-forms, but are branched or cycloalkenyl such as sec-form, tert-form, iso-form, neo-form, etc. It may be a group.
- the position of the double bond in the alkenyl group is not limited to the 1st position, and may be an alkenyl group having a double bond at a position different from the 1st position such as the 2nd position, the 3rd position, and the ⁇ position.
- the monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are aryl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] Specific examples of the aryl group having 1 to 20 carbon atoms which may have a heteroatom may be monocyclic or condensed polycyclic.
- aryl group having no hetero atom examples include, for example, a phenyl group, a naphthyl group, an azulenyl group, a biphenylyl group, an indacenyl group, an acenaphthylenyl group, a phenanthryl group, an anthryl group (anthracenyl group) and the like.
- an aryl group having 6 to 14 carbon atoms such as a phenyl group is preferable.
- aryl group having a hetero atom examples include, for example, a perfluorophenyl group, a perfluoronaphthyl group, a perfluoroazurenyl group, a perfluorobiphenylyl group, a perfluoroindacenyl group, and a perfluoroacena group.
- aryl groups having 6 to 14 carbon atoms having a fluoro group (fluorine atom) such as a phthalenyl group, a perfluorophenanthryl group, and a perfluoroanthryl group (perfluoroanthracenyl group).
- An aryl group having 6 carbon atoms having a fluoro group (fluorine atom) such as a perfluorophenyl group is preferable.
- the monovalent hydrocarbon group represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] is aralkyl.
- aralkyl Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5]
- the aralkyl group which may have a hetero atom shown may be either monocyclic or condensed polycyclic.
- aralkyl group has no hetero atom
- examples of the case where the aralkyl group has no hetero atom include, for example, benzyl group, phenethyl group, methylbenzyl group, phenylpropyl group, 1-methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, Examples thereof include aralkyl groups having 7 to 20 carbon atoms such as a tetrahydronaphthyl group, a naphthylmethyl group, a naphthylethyl group, an indenyl group, and a fluorenyl group.
- the aralkyl group has a hetero atom examples include, for example, a phenyloxymethyl group, a phenyloxyethyl group, a phenyloxypropyl group, a benzyloxymethyl group, a benzyloxyethyl group, a benzyloxypropyl group, a phenethyloxy group.
- Examples thereof include an aralkyl group having 7 to 20 carbon atoms having a hetero atom such as an oxygen atom such as a sulfur atom, and a sulfur atom.
- divalent hydrocarbon group represented by T in the general formula [5] examples include an alkylene group (alkanediyl group), an alkenylene group, an arylene group, and an aralkylene group.
- hetero atom in the divalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom represented by T in the general formula [5] include, for example, an oxygen atom, a sulfur atom, such as fluorine Examples thereof include halogen atoms such as atoms and chlorine atoms.
- divalent hydrocarbon group represented by T in the general formula [5] is an alkylene group (alkanediyl group), that is, having a heteroatom represented by T in the general formula [5]
- alkylene group alkanediyl group
- Specific examples of the alkylene group (alkanediyl group) may be linear, branched or cyclic.
- alkylene group (alkanediyl group) having no hetero atom examples include, for example, a methylene group (methanediyl group), an ethylene group (ethane-1,2-diyl group), a propylene group (propane-1, 2-diyl group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4-diyl group), pentamethylene group (pentane-1,5-diyl group), hexamethylene group (Hexane-1,6-diyl group), heptamethylene group (heptane-1,7-diyl group), octamethylene group (octane-1,8-diyl group), nonamethylene group (nonane-1,9-diyl group) ), Decamethylene group (decane-1,10-diyl group), undecane methylene group (undecane-1,10
- alkylene group (alkanediyl group) having a hetero atom examples include, for example, a methylene bis (oxymethyl) group, a methylene bis (oxyethyl) group, a methylene bis (oxypropyl) group, a methylene bis (oxybutyl) group, and a methylene bis.
- (Oxypentyl) group ethylenebis (oxymethyl) group, ethylenebis (oxyethyl) group, ethylenebis (oxypropyl) group, ethylenebis (oxybutyl) group, ethylenebis (oxypentyl) group, trimethylenebis (oxymethyl) ) Group, trimethylenebis (oxyethyl) group, trimethylenebis (oxypropyl) group, trimethylenebis (oxybutyl) group, trimethylenebis (oxypentyl) group, tetramethylenebis (oxymethyl) group, tetramethylenebis ( Oxy Til) group, tetramethylene bis (oxypropyl) group, tetramethylene bis (oxybutyl) group, tetramethylene bis (oxypentyl) group, pentamethylene bis (oxymethyl) group, pentamethylene bis (oxyethyl) group, pentamethylene bis And an alkylene group having 3 to 20 carbon atoms (alkanediyl group) having an ether
- alkylene group is not limited to the normal-form, but is branched such as sec-form, tert-form, iso-form, neo-form, or cyclic form such as cyclo-form. May be an alkylene group (alkanediyl group).
- divalent hydrocarbon group represented by T in the general formula [5] is an alkenylene group, that is, as an alkenylene group optionally having a hetero atom represented by T in the general formula [5] May be linear, branched or cyclic.
- alkenylene group having no hetero atom examples include, for example, vinylene group, propenylene group, butenylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group, nonenylene group, decenylene group, undecenylene group, dodecenylene group
- An alkenylene group having 2 to 20 carbon atoms such as a tridecenylene group, a tetradecenylene group, a pentadecenylene group, a hexadecenylene group, a heptadecenylene group, an octadecenylene group, a nonadecenylene group, and an icosenylene group.
- alkenylene group has a hetero atom
- the alkenylene group has a hetero atom
- a perfluorovinylene group a perfluoropropenylene group, a perfluorobutenylene group, a perfluoropentenylene group, a perfluorohexenylene group, Perfluoroheptenylene group, perfluorooctenylene group, perfluorononenylene group, perfluorodecenylene group, perfluoroundecenylene group, perfluorododecenylene group, perfluorotridecenylene group, perfluoro Tetradecenylene group, perfluoropentadecenylene group, perfluorohexadecenylene group, perfluoroheptadecenylene group, perfluorooctadecenylene group, perfluorononadecenylene group, perfluoroicoseni group 2
- the alkenylene group is not limited to a normal-form, but is a branched alkenylene group such as a sec-form, tert-form, iso-form, or neo-form, or a cyclo-form. May be.
- the position of the double bond in the alkenylene group is not limited to the 1-position, and may be an alkenylene group having a double bond at a position different from the 1-position such as the 2-position, the 3-position, and the ⁇ -position.
- the divalent hydrocarbon group represented by T in the general formula [5] is an arylene group, that is, the arylene group optionally having a heteroatom represented by T in the general formula [5] As a specific example, it may be monocyclic or condensed polycyclic.
- the arylene group having no hetero atom include arylene groups having 6 to 12 carbon atoms such as a phenylene group, a naphthylene group, and a biphenylene group.
- arylene group having a hetero atom examples include arylene having 6 to 12 carbon atoms having a fluoro group (fluorine atom) such as a perfluorophenylene group, a perfluoronaphthylene group, and a perfluorobiphenylene group. Groups and the like.
- the divalent hydrocarbon group represented by T in the general formula [5] is an aralkylene group, that is, the aralkylene group optionally having a hetero atom represented by T in the general formula [5] As a specific example, it may be monocyclic or condensed polycyclic. Specific examples of the case where the aralkylene group does not have a hetero atom include, for example, benzylene group, phenethylene group, phenylpropylene group, phenylbutylene group, tetrahydronaphthylene group, naphthylmethylene group, naphthylethylene group, etc. There are 20 aralkylene groups.
- aralkylene group having a hetero atom examples include, for example, a methylene bis (phenoxymethyl) group, a methylene bis (phenoxyethyl) group, a methylene bis (phenoxypropyl) group, an ethylene bis (phenoxymethyl) group, an ethylene bis ( Phenoxyethyl) group, ethylenebis (phenoxypropyl) group, dimethylmethylenebis (phenoxymethyl) group, dimethylmethylenebis (phenoxyethyl) group, diperfluoromethylmethylenebis (phenoxymethyl) group, diperfluoromethylmethylenebis ( Phenoxyethyl) group, trimethylene bis (phenoxymethyl) group, trimethylene bis (phenoxyethyl) group, tetramethylene bis (phenoxymethyl) group, tetramethylene bis (phenoxyethyl) group, pentamethyl 15 carbon atoms having hetero atoms such as oxygen atoms and fluorine atoms such as bis (phenoxymethyl)
- a 1 and A 2 , A 1 and A 4 , A 3 and A 4 , A 5 and A 6 , A 5 and A 7 , A 8 and A 10 , A 9 and A in the general formulas [4] and [5] 10 may form a cyclic structure with A 1 to A 10 and a carbon atom bonded to these A to form a cyclic structure (5 to 12-membered ring) having 3 to 10 carbon atoms. It means that it may be.
- cyclic structure having 3 to 10 carbon atoms include, for example, a cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, And cyclododecane ring.
- a cyclopentane ring cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, And cyclododecane ring.
- Monocycles, polycycles, spiro rings, bridged rings, and substituents such as alkyl groups are further substituted on these rings. Also included.
- epoxide (oxirane) represented by the general formula [4] include, for example, methyl glycidyl ether, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, pentyl glycidyl ether, hexyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, styrene. Examples thereof include those represented by the following formulas such as oxide, phenyl glycidyl ether, naphthyl glycidyl ether and the like.
- the epoxide (oxirane) represented by the following formula is merely an example of a specific example, and is not limited to the specific example illustrated here.
- epoxide (oxirane) represented by the general formula [5] include, for example, 1,2-bis (glycidyloxy) ethane ⁇ 1,2-ethylene glycol diglycidyl ether ⁇ , 1,3-bis (glycidyloxy).
- epoxides represented by the general formulas [4] and [5] may be commercially available products or those appropriately synthesized by general methods performed in this field.
- the structure of the cyclic carbonate which is a product is not limited.
- Specific examples of the cyclic carbonate include, for example, the above general formula [4] As a cyclic carbonate generated from the epoxide (oxirane) represented by the following general formula [6], or as a cyclic carbonate generated from the epoxide (oxirane) represented by the general formula [5], the following general formula What is shown by [7] is mentioned.
- cyclic carbonate represented by the general formula [6] include, for example, (methoxymethyl) ethylene carbonate, (ethoxymethyl) ethylene carbonate, (propoxymethyl) ethylene carbonate, (butoxymethyl) ethylene carbonate, (pentyloxymethyl) Ethylene carbonate, (hexyloxymethyl) ethylene carbonate, (2-oxo-1,3-dioxolan-4-yl) methyl acrylate, (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate, (phenyl) What is shown by following formulas, such as ethylene carbonate, (phenoxymethyl) ethylene carbonate, (naphthyloxymethyl) ethylene carbonate, is mentioned.
- the cyclic carbonate shown by the following formula is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here.
- cyclic carbonate represented by the general formula [7] examples include 1,2-ethylenedioxybis [(methyl) ethylene carbonate], 1,3-propylenedioxybis [(methyl) ethylene carbonate], 1 , 4-Butylenedioxybis [(methyl) ethylene carbonate], 1,5-pentylenedioxybis [(methyl) ethylene carbonate], 1,6-hexylenedioxybis [(methyl) ethylene carbonate], methylenebis [ (P-phenoxymethyl) ethylene carbonate] ⁇ bisphenol F diglycidyl ether biscarbonate ⁇ , 1,1-ethylenebis [(p-phenoxymethyl) ethylene carbonate] ⁇ bisphenol E diglycidyl ether biscarbonate ⁇ , 2,2-propylene Bis [(p-phenoxime ) Ethylene carbonate] ⁇ bisphenol A diglycidyl ether ⁇ ⁇ biscarbonate ⁇ , 2,2-hexafluoropropylenebis [(p-phenoxymethyl) ethylene carbonate] ⁇ bisphenol AF
- epoxide (oxirane), carbon dioxide, the amine compound according to the present invention and hydrogen iodide are charged into the reaction system.
- epoxide (oxirane) the amine compound according to the present invention and hydrogen iodide are sequentially charged into the reaction system, and a method of blowing carbon dioxide gas into the reaction system into which these are charged, the amine compound according to the present invention and After reacting hydrogen iodide to obtain a catalyst according to the present invention, epoxide (oxirane) and the catalyst according to the present invention are sequentially charged into the reaction system, and carbon dioxide gas is introduced into the reaction system into which these are charged.
- the method of blowing in is mentioned.
- the production method of the present invention is desirably performed under the following conditions.
- the amount of carbon dioxide used in the present invention is not particularly limited as long as it is a practical amount. For example, it is usually 0.9 equivalent or more, preferably 0.95 equivalent or more, relative to the number of moles of epoxide (oxirane), More preferably, it is 1.0 equivalent or more, and there is no particular upper limit. However, for economic reasons, 20 equivalent or less is preferable.
- the amount of the amine compound used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane).
- epoxide oxirane
- the amount of hydrogen iodide used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane).
- epoxide oxirane
- the amount of the catalyst (amine compound salt) used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane).
- the usage-amount of the said catalyst (amine compound salt) is very small, it exists in the tendency for the yield of a cyclic carbonate to fall.
- the production method of the present invention may be performed in an organic solvent in which an organic solvent is added to the reaction system, or may be performed in a system in which no organic solvent is added.
- the raw material epoxide (oxirane) and the product cyclic carbonate also serve as a solvent.
- organic solvent may be any solvent that does not adversely affect the raw material epoxide (oxirane) and carbon dioxide, and the product cyclic carbonate.
- aliphatic carbonization such as hexane, heptane, and octane.
- Hydrogen solvents such as aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogen solvents such as dichloromethane, trichloromethane (chloroform) and tetrachloromethane (carbon tetrachloride) such as diethyl ether, diisopropyl ether and methyl Ether solvents such as t-butyl ether, cyclopentyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, such as 2-propanone (acetone), 2-butanone (ethyl methyl ketone), 4-methyl-2-pentanone (Mechi Ketone solvents such as isobutyl ketone) such as ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, s-butyl acetate, t-but
- organic solvents such as polar organic solvents, nonpolar organic solvents, protic organic solvents, aprotic organic solvents, and the like. It is desirable to select appropriately considering the solubility of the compound salt) in the organic solvent.
- polar organic solvents such as polar organic solvents, nonpolar organic solvents, protic organic solvents, aprotic organic solvents, and the like. It is desirable to select appropriately considering the solubility of the compound salt) in the organic solvent.
- polar organic solvents such as polar organic solvents, nonpolar organic solvents, protic organic solvents, aprotic organic solvents, and the like. It is desirable to select appropriately considering the solubility of the compound salt) in the organic solvent.
- nonpolar organic solvents such as polar organic solvents, nonpolar organic solvents, protic organic solvents, aprotic organic solvents, and the like. It is desirable to select appropriately considering the solubility of the compound salt) in the organic solvent.
- amine compound salt for example, N, N-dimethylformamide
- an amide solvent such as 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), and the catalyst according to the present invention
- an aliphatic hydrocarbon solvent such as hexane, heptane, octane
- aromatic hydrocarbon solvents such as benzene, toluene, xylene, such as diethyl ether, diisopropyl ether, methyl t- Ether solvents such as tilether, cyclopentylmethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, such as ethyl acetate, n-propyl acetate,
- the above organic solvents may be used alone or in combination of two or more.
- the amount of the organic solvent used is not particularly limited as long as it is a practical amount, and is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, with respect to 1 mmol of epoxide (oxirane), for example.
- the temperature during the reaction is desirably set to a temperature at which the raw material epoxide (oxirane) and carbon dioxide efficiently react to obtain a cyclic carbonate in good yield. Since the present invention is characterized in that a cyclic carbonate can be obtained in good yield even under mild conditions such as normal temperature and normal pressure, among such desirable reaction temperatures, for example, usually 0 to 65 ° C.
- the reaction is preferably carried out at 20 to 60 ° C., more preferably 40 to 60 ° C.
- the pressure at the time of reaction in the present invention is desirably set to a pressure at which the epoxide (oxirane) as a raw material and carbon dioxide efficiently react to obtain a cyclic carbonate in a high yield. Since the present invention is characterized in that a cyclic carbonate can be obtained in a high yield even under mild conditions such as normal temperature and normal pressure, among such desirable pressures, for example, 0.09 to 0.00. It is desirable to carry out the reaction at 11 MPa.
- reaction temperature and pressure described above are reaction conditions that have been difficult to achieve with conventional production methods. Since the manufacturing method of the present invention does not require the high temperature and high pressure conditions required by the conventional manufacturing method, compared with the conventional manufacturing method, it requires less heat energy to maintain the temperature and has a high strength. There is an advantageous effect suitable for production on an industrial scale such that a pressure vessel is not required.
- the reaction time in the present invention is the kind of the epoxide (oxirane) and the amine compound according to the present invention, the amount of carbon dioxide used with respect to the epoxide (oxirane), and the amount of amine compound and hydrogen iodide according to the present invention with respect to the epoxide (oxirane).
- the presence or absence of addition of an organic solvent, the type and amount of the organic solvent used, the reaction temperature, and the pressure during the reaction may be affected.
- the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 72 hours, for example.
- the cyclic carbonate obtained by the production method of the present invention can be isolated by general post-treatment operations and purification operations usually performed in this field.
- the isolation method for example, if necessary, after distilling off the organic solvent in the reaction system, the resulting residue is subjected to recrystallization, distillation, column chromatography, etc. It can be isolated.
- the cyclic residue can be isolated by performing an extraction operation on the obtained residue and removing impurities, followed by recrystallization, distillation, column chromatography, or the like.
- the preparation method of the catalyst (amine compound salt) according to the present invention mainly includes three preparation methods. Specifically, [1] a method of reacting an amine compound according to the present invention with hydroiodic acid, [2] an amine according to the present invention such as a hydrochloride or trifluoromethanesulfonate of the amine compound according to the present invention A method of reacting a salt of a compound with an alkali metal iodide salt such as sodium iodide to exchange anions, [3] After reacting a thiourea derivative with an alkyl iodide to give an isothiourea salt, mono or diamine The method of making it react with is mentioned.
- the catalyst (amine compound salt) according to the present invention in the case of reacting the amine compound according to the present invention with hydroiodic acid may be prepared according to a general neutralization reaction.
- Specific examples of the preparation method include, for example, in the reaction system containing the amine compound according to the present invention, usually 0.9 to 5.0 equivalents, preferably 1.0, in terms of hydrogen iodide, relative to the amine compound. It is sufficient to react with ⁇ 3.0 equivalents of hydroiodic acid.
- the catalyst (amine compound salt) according to the present invention, which is the target product is often in a solid state at normal temperature, and since the reaction system contains water derived from hydroiodic acid, It is desirable to carry out in an organic solvent compatible with water.
- amine compound according to the present invention include, as described above, for example, a monoamine represented by the general formula [1], a cyclic amidine represented by the general formula [2], and the general formula [3]. Those selected from guanidine.
- hydroiodic acid For example, commercially available 57% hydroiodic acid may be used as the hydroiodic acid.
- organic solvent compatible with water examples include ether solvents such as tetrahydrofuran and 1,4-dioxane, such as 2-propanone (acetone) and 2-butanone.
- ether solvents such as tetrahydrofuran and 1,4-dioxane
- 2-propanone (acetone) and 2-butanone examples thereof include ketone solvents such as (ethyl methyl ketone), and nitrile solvents such as acetonitrile.
- the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the organic solvent compatible with water is not particularly limited as long as it is a practical amount.
- the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL per 1 mmol.
- reaction temperature a temperature at which the amine compound according to the present invention and hydroiodic acid are reacted.
- the temperature is preferably 10 to 50 ° C.
- the pressure during the reaction in the preparation method [1] described above is not particularly limited as long as it is a pressure at which the amine compound according to the present invention and hydroiodic acid react, and is, for example, 0.09 to 0.11 MPa.
- the reaction time in the preparation method of [1] described above is the kind of amine compound according to the present invention, the amount of hydroiodic acid used for the amine compound according to the present invention, the kind and amount of organic solvent used, the reaction temperature, and It may be affected by the pressure during the reaction. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
- the catalyst (amine compound salt) according to the present invention obtained by the preparation method of [1] described above can be isolated by general post-treatment operations and purification operations usually performed in this field.
- the isolation method for example, after distilling off an organic solvent compatible with water and water derived from hydroiodic acid in the reaction system, the obtained residue is vacuum-dried to thereby obtain the present invention.
- the catalyst (amine compound salt) can be isolated.
- the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
- the preparation of the catalyst (amine compound salt) according to the present invention in the case of anion exchange by reacting the salt of the amine compound according to the present invention with an alkali metal iodide salt is in accordance with a general anion exchange reaction. Just do it.
- a specific example of the preparation method for example, in the reaction system containing the salt of the amine compound according to the present invention, usually 0.9 to 3.0 equivalents, preferably 0.95 to 2 with respect to the salt of the amine compound. It is sufficient to react 0.0 equivalent of an alkali metal iodide salt.
- the salt of the amine compound and alkali metal iodide salt according to the present invention as raw materials and the catalyst according to the present invention as the target (amine compound salt) are often in a solid state at room temperature, they are prepared. Is preferably carried out in an organic solvent.
- salt of the amine compound according to the present invention used for anion exchange by reacting with an alkali metal iodide salt include, as an example, monoisopropylamine hydrochloride, monoisopropylamine acetate, monoisopropylamine Trifluoromethane sulfonate, mono-t-butylamine ⁇ ⁇ hydrochloride, mono-t-butylamine acetate, mono-t-butylamine trifluoromethanesulfonate, monocyclohexylamine ⁇ ⁇ hydrochloride, monocyclohexylamine acetate, monocyclohexylamine Trifluoromethane sulfonate, dicyclohexylamine ⁇ hydrochloride, dicyclohexylamine ⁇ acetate, dicyclohexylamine trifluoromethanesulfonate, benzyldimethylamine ⁇ ⁇ hydrochloride, benzyl dimethyl
- the salt of the amine compound concerning this invention shown by the above-mentioned specific example is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here.
- n- represents a normal-form and t- represents a tert-form.
- n- represents a normal-form
- t- represents a tert-form.
- what is necessary is just to use what was synthesize
- alkali metal iodide salts include lithium iodide, sodium iodide, potassium iodide, cesium iodide and the like. Moreover, the said alkali metal iodide salt should just use a commercial item.
- organic solvent examples include ether solvents such as diethyl ether, diisopropyl ether, methyl t-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, Ketone solvents such as 2-propanone (acetone), 2-butanone (ethyl methyl ketone), 4-methyl-2-pentanone (methyl isobutyl ketone), such as methanol, ethanol, isopropanol, t-butanol, 2-methoxyethanol, etc. Alcohol solvents such as nitrile solvents such as acetonitrile. In the above specific examples, t- represents a tert-isomer. Moreover, the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
- ether solvents such as diethyl ether, diisopropyl ether, methyl t-butyl ether, tetrahydro
- the amount of the organic solvent used is not particularly limited as long as it is a practical amount.
- the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
- reaction temperature in the preparation method [2] described above is not particularly limited as long as it is a temperature at which the salt of the amine compound according to the present invention reacts with the alkali metal iodide salt. -150 ° C, preferably 10-100 ° C.
- the pressure during the reaction in the preparation method [2] is not particularly limited as long as the salt of the amine compound according to the present invention is reacted with the alkali metal iodide salt. 11 MPa.
- the reaction time in the preparation method of [2] described above is the kind of the salt of the amine compound according to the present invention, the amount of the alkali metal iodide salt used with respect to the salt of the amine compound according to the present invention, the kind of the organic solvent and the amount of its use. ,
- the reaction temperature, and the pressure during the reaction may be affected.
- the desired reaction time is not generally known, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
- the catalyst (amine compound salt) according to the present invention obtained by the above-described preparation method [2] can be isolated by general post-treatment operations and purification operations usually performed in this field.
- the isolation method for example, the organic solvent in the reaction system is distilled off, followed by an extraction operation, and then the residue obtained by distilling off the extraction solvent in the extract is vacuum-dried.
- the catalyst (amine compound salt) according to the present invention can be isolated.
- the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
- a preparation method in which a thiourea derivative and an alkyl iodide are reacted to form an isothiourea salt and then reacted with a mono- or diamine is a general formula [3 ′] of the catalyst (amine compound salt) according to the present invention.
- a specific example of the preparation method for example, in a reaction system containing a thiourea derivative, usually 0.9 to 3.0 equivalents, preferably 0.95 to 2.0 equivalents of an alkyl iodide with respect to the thiourea derivative.
- an isothiourea salt and then 0.9 to 3.0 equivalents, preferably 0.95 to 2.0 equivalents of mono- or diamine may be reacted with the isothiourea salt.
- the isothiourea salt that is an intermediate and the catalyst (amine compound salt) according to the present invention that is an object are often in a solid state at room temperature, the preparation is preferably performed in an organic solvent. .
- thiourea derivative examples include thiourea, N-methylthiourea, N, N-dimethylthiourea, N, N, N-trimethylthiourea, N, N, N, N-tetramethylthiourea and the like.
- the thiourea derivative shown by the above-mentioned specific example is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here.
- the thiourea derivative may be a commercially available product.
- alkyl iodide examples include alkyl iodides such as methyl iodide, ethyl iodide, and propyl iodide. Moreover, what is necessary is just to use a commercial item for the said alkyl iodide.
- mono or diamine examples include, for example, mono or di n-butylamine, mono or di n-octylamine, mono or dicyclohexylamine, mono or dibenzylamine, mono or bis (2-hydroxyethyl) amine, mono or bis (2-methoxyethyl) amine, mono- or bis (2-dimethylaminoethyl) amine and the like can be mentioned.
- the mono- or diamine shown in the above specific examples is merely an example of specific examples, and is not limited to the specific examples illustrated here.
- n- represents a normal-body.
- the said mono or diamine should just use a commercial item.
- organic solvent examples include aliphatic hydrocarbon solvents such as hexane, heptane, and octane, such as benzene, Aromatic hydrocarbon solvents such as toluene and xylene, for example, halogen solvents such as dichloromethane, trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), such as diethyl ether, diisopropyl ether, methyl t-butyl ether, tetrahydrofuran, 2 Examples include ether solvents such as 1-methyltetrahydrofuran and 1,4-dioxane, alcohol solvents such as methanol, ethanol, isopropanol, t-butanol, and 2-methoxyethanol, and nitrile solvents such as aceton
- the amount of the organic solvent used is not particularly limited as long as it is a practical amount. On the other hand, it is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
- organic solvent examples include aliphatic carbonization such as hexane, heptane, and octane.
- Hydrogen solvents such as aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogen solvents such as dichloromethane, trichloromethane (chloroform) and tetrachloromethane (carbon tetrachloride) such as diethyl ether, diisopropyl ether and methyl
- halogen solvents such as dichloromethane, trichloromethane (chloroform) and tetrachloromethane (carbon tetrachloride)
- diethyl ether diisopropyl ether and methyl
- ether solvents such as t-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and nitrile solvents such as acetonitrile.
- t- represents a tert-isomer.
- the said organic solvent may be used individually by 1 type,
- the amount of the organic solvent used is not particularly limited as long as it is a practical amount.
- the amount of the organic solvent used is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
- reaction temperature in the reaction for synthesizing the isothiourea salt, which is an intermediate in the above preparation method [3], is particularly limited as long as it is a temperature at which the thiourea derivative reacts with alkyl iodide.
- reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C.
- reaction temperature in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, is the reaction of isothiourea salt with mono- or diamine.
- the temperature is not particularly limited as long as it is a temperature to be used, for example, usually 0 to 100 ° C., preferably 10 to 80 ° C.
- the reaction pressure in the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of the above [3] is not particularly limited as long as it is a pressure at which the thiourea derivative reacts with alkyl iodide. 0.09 to 0.11 MPa.
- the reaction pressure in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention which is the object of the preparation method of [3] above, may be a pressure at which the isothiourea salt reacts with mono- or diamine. For example, it is 0.09 to 0.11 MPa.
- the reaction time in the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of [3] above, is the kind of thiourea derivative, the amount of alkyl iodide used for the thiourea derivative, the kind of organic solvent and its It may be affected by the amount used, reaction temperature, and pressure during the reaction. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
- the reaction time in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention is the type of isothiourea salt, the amount of mono- or diamine used relative to the isothiourea salt. It may be affected by the type and amount of organic solvent used, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 60 hours, preferably 1 to 30 hours, for example.
- the isothiourea salt obtained by the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of the above [3] is usually isolated by a general post-treatment operation and purification operation performed in this field. be able to.
- the isolation method for example, the unreacted alkyl iodide and the organic solvent in the reaction system are distilled off, and then the resulting residue is vacuum dried to isolate the isothiourea salt. .
- an isothiourea salt can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
- the catalyst (amine compound salt) according to the present invention obtained by the reaction for synthesizing the catalyst (amine compound salt) according to the present invention which is the object of the preparation method of [3] above, is usually carried out in this field. It can be isolated by general post-treatment operations and purification operations. As a specific example of the isolation method, for example, unreacted mono- or diamine and the organic solvent in the reaction system are distilled off, and then the resulting residue is vacuum-dried, whereby the catalyst according to the present invention (amine compound salt). Can be isolated. Moreover, the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
- the preparation method is not particularly limited, You may prepare by methods other than the manufacturing method mentioned above.
- a compound having a highly active hydrogen atom may coexist during the reaction.
- the compound having a highly active hydrogen atom means a compound having a hydrogen atom capable of hydrogen bonding with an oxygen atom of an epoxide capable of hydrogen bonding with an oxygen atom of an epoxide (oxirane) as a raw material. More specifically, the compound has a hydroxyl group, carboxyl group, thiol group, thiocarboxyl group, primary or secondary amino group, primary or secondary amide group, sulfo group, ureylene group, thioureylene in the molecule. Having at least one group selected from a group and a hydroxyboryl group.
- the compound having a hydroxyl group in the molecule include, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, perfluoromethanol, perfluoroethanol, perfluoro.
- aliphatic alcohols such as n-propanol, hexafluoroisopropanol, perfluoroisopropanol, methoxymethanol, methoxyethanol, ethoxymethanol, ethoxyethanol, such as phenol, 4-methylphenol, 4-methoxyphenol, 4-nitrophenol, 2, Aromatic alcohols such as 2′-biphenol, 2-hydroxypyridine, and 3-hydroxypyridine are exemplified.
- n- represents a normal isomer
- s- represents a sec isomer
- t- represents a tert isomer.
- the compound having a carboxyl group in the molecule include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid and lauric acid.
- aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid and lauric acid.
- Acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids such as lactic acid, malic acid, tartaric acid and citric acid
- An aliphatic tricarboxylic acid such as aconitic acid, an aliphatic oxocarboxylic acid such as pyruvic acid, an aromatic monocarboxylic acid such as benzoic acid, an aromatic dicarboxylic acid such as phthalic acid, isophthalic acid, terephthalic acid, etc.
- Aromatic hydroxy carboxylic acids such as salicylic acid and gallic acid, for example aromatic hex such as melittic acid A carboxylic acid.
- a carboxylic acid having one or more hydroxyl groups in the molecule is referred to as a hydroxycarboxylic acid regardless of the number of carboxyl groups.
- the compound having a thiol group in the molecule include fats such as methanethiol, ethanethiol, n-propanethiol, isopropanethiol, n-butanethiol, isobutanethiol, s-butanethiol, and t-butanethiol.
- Group thiols for example, aromatic thiols such as thiophenol.
- n- represents a normal isomer
- s- represents a sec isomer
- t- represents a tert isomer.
- the compound having a thiocarboxyl group in the molecule include aliphatic thiocarboxylic acids such as thioformic acid, thioacetic acid, thiopropionic acid, thiobutyric acid, thiovaleric acid, and thiocaproic acid, and aromatics such as thiobenzoic acid. Examples thereof include thiocarboxylic acid.
- the compound having a primary or secondary amino group in the molecule include aliphatic primary amines such as methylamine, ethylamine, propylamine, butylamine and ethanolamine, for example, aromatic primary amines such as aniline, Examples thereof include aliphatic secondary amines such as dimethylamine, diethylamine, dipropylamine, dibutylamine and diethanolamine, and aromatic secondary amines such as diphenylamine.
- the compound having a primary or secondary amide group in the molecule include primary amides such as formamide, acetamide, and propanamide, such as N-methylformamide, N-ethylformamide, N-methylacetamide, N- Secondary amides such as ethylacetamide, N-methylpropanamide, N-ethylpropanamide and the like can be mentioned.
- the compound having a sulfo group in the molecule include aliphatic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, and trifluoromethanesulfonic acid, such as benzenesulfonic acid and toluenesulfonic acid. And aromatic sulfonic acids such as
- Specific examples of the compound having a ureylene group in the molecule include 1- [3,5-bis (trifluoromethyl) phenyl] -3-phenyl-2-urea.
- Specific examples of the compound having a thioureylene group in the molecule include 1- [3,5-bis (trifluoromethyl) phenyl] -3-phenyl-2-thiourea.
- Specific examples of the compound having a hydroxyboryl group in the molecule include methyl boronic acid, ethyl boronic acid, propyl boronic acid, butyl boronic acid, propenyl boronic acid, phenyl boronic acid, 2-thiophene boronic acid and the like.
- the compound having a highly active hydrogen atom not only a monomer but also a polymer can be used.
- a polymer has a structure (functional group) containing a hydrogen atom capable of hydrogen bonding with an oxygen atom of the epoxide in the structure.
- Such a polymer include, for example, a structure containing a hydrogen atom capable of hydrogen bonding with a vinyl group and an oxygen atom of an epoxide in the molecule, such as 4-hydroxystyrene, (meth) acrylic acid, and (meth) acrylamide.
- a homopolymer composed of monomer units derived from a compound having (functional group) or a copolymer thereof for example, a copolymer composed of monomer units derived from 4-hydroxystyrene and monomer units derived from styrene, (meth) A structure (functional group) containing a hydrogen atom capable of hydrogen bonding with a vinyl group and an oxygen atom of epoxide in the molecule, such as a copolymer comprising a monomer unit derived from acrylic acid and a monomer unit derived from methacrylic acid ester A monomer unit derived from a compound having a hydrogen atom having a vinyl group in the molecule and capable of hydrogen bonding with an oxygen atom of an epoxide Structure (functional group) to have no compound copolymer comprising monomer units derived from including the child and the like.
- the compounds having a highly active hydrogen atom one of them may be used alone, or two or more of them may be used in combination.
- the reason why the reaction is accelerated when a compound having a highly active hydrogen atom is used is as follows. That is, since a compound having a highly active hydrogen atom has a coordination action similar to that of a metal ligand with respect to the oxygen atom of the epoxide (oxirane), protonation of the epoxide (oxirane) tends to occur more effectively. Thus, it is considered that the ring opening of the epoxide (oxirane) by the iodine anion in the catalyst (amine compound salt) according to the present invention is facilitated.
- Synthesis Example 9 Synthesis of S-methylisothiourea hydrogen iodide salt In a suspension of 7.61 g (100 mmol; manufactured by Aldrich) of thiourea in 100 mL of dry ethanol, 17.0 g of methyl iodide (120 mmol; Kanto Chemical Co., Inc.) at room temperature The product was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to obtain 21.8 g (yield: 100%) of S-methylisothiourea hydrogen iodide salt as a colorless powder. It was.
- Synthesis Example 12 Synthesis of 1- (1-butyl) -3-methylguanidine hydrogen iodide [3′-B] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in dry tetrahydrofuran 10 mL, 25 2.32 g (10 mmol) of 23.2 g of N′-methyl-S-methylisothiourea hydrogen iodide salt obtained in Synthesis Example 11 was added at °C, and further stirred at 25 ° C. for 6 hours to react. I let you. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C.
- Synthesis Example 14 Synthesis of 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide [3′-C] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 10 mL of dry tetrahydrofuran Then, 2.46 g (10 mmol) of 24.6 g of N, N′-dimethyl-S-methylisothiourea hydrogen iodide obtained in Synthesis Example 13 was added at 25 ° C., and then at 25 ° C. for 6 hours. The reaction was stirred.
- Synthesis Example 15 Synthesis of N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide A solution of 23.7 g of trimethylthiourea (200 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 200 mL of dry ethanol at room temperature After adding 34.1 g of methyl iodide (240 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C.
- Synthesis Example 16 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydroiodide [3′-D] N, N ′, N′-trimethyl-S— obtained in Synthesis Example 15 After adding 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of n-butylamine at 25 ° C. to a solution of 2.60 g (10 mmol) of 52.0 g of methylisothiourea iodide in 10 mL of dry tetrahydrofuran, The reaction was stirred at 25 ° C. for 6 hours.
- Synthesis Example 18 Synthesis of 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide [3′-E] of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) 2.74 g (10 mmol) of 13.7 g of N, N, N ′, N′-tetramethyl-S-methylisothiourea hydroiodide salt obtained in Synthesis Example 17 at 25 ° C. in a dry tetrahydrofuran 10 mL solution Then, the mixture was further stirred at 25 ° C. for 12 hours for reaction.
- Synthesis Example 20 Synthesis of 1,1-dicyclohexylguanidine hydrogen iodide [3′-G] Synthesis Example 9 was carried out at 25 ° C. in a solution of 1.81 g of dicyclohexylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 25 mL of tetrahydrofuran. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in the above was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours.
- Synthesis Example 21 Synthesis of 1-benzylguanidine hydrogen iodide [3′-H] Obtained in Synthesis Example 9 in a solution of 10.7 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran at 25 ° C. After adding 2.18 g (10 mmol) of 21.8 g of the obtained S-methylisothiourea hydrogen iodide salt, the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C.
- Synthesis Example 24 Synthesis of 1- (N, N-dimethylaminoethyl) guanidine hydroiodide [3′-K] Then, 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in Synthesis Example 9 was added at 25 ° C., and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (N, N-dimethylamino) as a pale yellow oil.
- Synthesis Example 25 Synthesis of 1-benzyl-2,3,3-trimethylguanidine hydrogen iodide [3′-L] To a solution of 1.07 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran, 25 2.60 g (10 mmol) of 52.0 g of N, N ′, N′-trimethyl-S-methylisothiourea hydroiodide obtained in Synthesis Example 15 was added at 5 ° C., and then 6 ° C. at 25 ° C. The reaction was stirred for an hour.
- Synthesis Example 26 Synthesis of 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide [3′-M] N, N-dimethylethylenediamine 882 mg (10 mmol; Tokyo Chemical Industry Co., Ltd.) Of the N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide 52.0 g obtained in Synthesis Example 15 at 25 ° C. in a 10 mL dry tetrahydrofuran solution. Then, the mixture was further reacted by stirring at 25 ° C. for 6 hours.
- Synthesis Example 28 Synthesis of guanidine hydrogen iodide [3′-O] In a mixed solution of 1.91 g of guanidine hydrochloride (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 4 mL of methanol and 6 mL of acetone, 3.00 g of sodium iodide After adding a mixed solution of methanol (4 mL) and acetone (6 mL) (20 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further heated to reflux at 70 ° C. for 12 hours to be reacted. After completion of the reaction, the cooled reaction solution was filtered, and the sodium chloride residue was washed with acetone.
- Comparative Synthesis Example 16 Synthesis of 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt [30′-A] 2- (1-butyl) obtained in Comparative Synthesis Example 15 ) After adding 284 mg (2 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide at 25 ° C. to a solution of 171 mg (1 mmol) of 853 mg of 1,1,3,3-tetramethylguanidine in 2 mL of dry dichloromethane, The reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, diethyl ether was added to the residue obtained by distilling off the solvent to precipitate crystals.
- Comparative Synthesis Example 18 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydrochloride [30′-B] 1- (1-butyl) -2,3 obtained in Comparative Synthesis Example 17 , 3-Trimethylguanidine (782 mg), 315 mg (2 mmol) of 1,4-dioxane (4 mL) at 25 ° C., 1% of 35% aqueous hydrochloric acid (ca.12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) for 10 minutes After dropwise addition, the mixture was further reacted by stirring at 25 ° C. for 12 hours.
- the reaction solution is separated into an ionic liquid layer and an organic layer (diethyl ether layer), then the ionic liquid layer is washed with diethyl ether, and the washed ionic liquid layer is vacuum-dried at 40 ° C. for 12 hours.
- 598 mg (yield: 97%) of 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate as a colorless oil was obtained.
- the measurement results of 1 H-NMR and 13 C-NMR are shown below.
- [1′-D] represents dicyclohexylamine hydrogen iodide
- [10′-A] represents aniline hydrogen iodide
- [10′-B] represents dicyclohexylamine hydrochloride
- [10′-C] represents dicyclohexylamine hydrobromide
- [10′-D] represents N, N-dimethyldicyclohexylammonium iodide
- TBAI represents tetra n-butylammonium iodide.
- NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone)
- DMAc represents N, N-dimethylacetamide
- DMF represents N, N-dimethylformamide.
- n- represents a normal-form
- t- represents a tert-form.
- Examples 7 to 10 and Comparative Examples 7 to 11 Synthesis of cyclic carbonates using various amidine catalysts or aromatic heterocyclic amine catalysts Various amidine catalysts or aromatic heterocyclic amine catalysts 0.05 mmol of organic solvent 0.2 mL After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether at 25 ° C. to the solution (or suspension), the reaction system is sealed with a balloon filled with carbon dioxide gas, and carbon dioxide gas The reaction was carried out under an atmosphere (0.1 MPa) by stirring at 25 ° C. for 24 hours under the same atmosphere.
- [2′-A] in the amidine catalyst or aromatic heterocyclic amine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide
- [2′-B] 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine represents a hydrogen iodide salt
- [2′-C] represents 1,5-diazabicyclo [4.3.0] -5-nonene hydrogen iodide salt
- [2′-D] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide
- [10′-E] represents pyridine hydrogen iodide
- [20 '-A] represents 1-methylimidazole hydrogen iodide salt
- [20'-B] represents N, N-dimethyl-N'-octylacetamidine hydrogen iodide salt.
- MTHF in the organic solvent represents 2-methyltetrahydrofuran
- NMP represents 1-methyl
- Examples 11 to 14 and Comparative Examples 12 to 21 Anion effect of cyclic amidine catalyst in carbonate reaction Phenylglycidyl in 25 mL of an organic solvent 0.2 mL (or suspension) of various cyclic amidine catalysts at 25 ° C. After adding 150 mg of ether (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). And reacted for 24 hours.
- [2′-A] in the cyclic amidine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide
- [2′-D] represents 1,8-diazabicyclo [ 5.4.0] -7-undecene hydrogen iodide salt
- [20′-C] represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen chloride salt
- [20′-D] Represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrobromide
- [20′-E] represents 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate.
- [20'-F] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrochloride
- [20'-G] represents 1,8-diazabicyclo [5.4.0]- 7-undecene hydrogenbromide salt
- [20′-H] is 1,8-diazabicyclo [5.4.0] -7-unde
- It represents emissions acetate, representing a [20'-I] is 1,8-diazabicyclo [5.4.0] -7-undecene trifluoromethanesulphonate.
- NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone)
- MTHF represents 2-methyltetrahydrofuran.
- aromatic hydrocarbon solvents such as toluene, ether solvents such as cyclopentylmethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran, and ketone solvents such as 2-propanone (acetone).
- Ester solvents such as ethyl acetate, amide solvents such as N, N-dimethylformamide, 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), such as isopropanol, t-butanol, 2-methoxyethanol, etc. It was found that even when the reaction was carried out in various organic solvents such as alcohol solvents, the reaction proceeded with good yield. In particular, it was found that the reaction proceeds quantitatively with an aromatic hydrocarbon solvent, an ether solvent, a ketone solvent, and an ester solvent.
- [4-A] in epoxide (oxirane) represents phenyl glycidyl ether
- [4-B] represents n-butyl glycidyl ether
- [4-C] represents glycidyl methacrylate
- [4- D] represents styrene oxide
- [5-A] represents 2,2-bis (4-glycidyloxyphenyl) propane ⁇ bisphenol A diglycidyl ether ⁇ .
- THF in the organic solvent represents tetrahydrofuran
- NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone)
- MTHF represents 2-methyltetrahydrofuran.
- n- represents a normal-body.
- Example 31 when examined using 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) as a highly polar solvent, carbonate [7-A] was not precipitated, but the reactivity decreased. .
- This problem is solved by mixing 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) with a low-polarity solvent, and the yield is improved without precipitating carbonate [7-A] during the reaction. (Examples 32 and 33).
- the bulk reaction is more reactive than the reaction in tetrahydrofuran (Example 34).
- the reaction using epoxide [4-C] is quantitatively performed without generating a by-product.
- the reaction proceeded (Example 35). From these results, it was found that cyclic carbonates can be produced from various epoxides (oxiranes) by changing the organic solvent or using different conditions such as a mixed solvent system and a bulk system.
- Example 37 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using amidine catalyst [2′-D] Phenylglycidyl ether 3.00 g (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) To a mixed solution of tetrahydrofuran 3.6 mL / 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) 0.4 mL at 25 ° C., 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide 280 mg After adding (1 mmol), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C.
- This example has a reaction scale 20 times that of Example 17 in Table 4, but the reactivity is hardly reduced.
- 1,8-diazabicyclo [5.4.0] -7-undecene boroiodide which is a metal-free (metal-free) and inexpensive catalyst, was used, the target carbonate was quantitatively obtained. The carbonate reaction was proved to be a practical reaction.
- Example 38 Isolation and synthesis of (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate using an amidine catalyst [2′-D] under normal temperature and atmospheric pressure 2.84 g (20 mmol) of glycidyl methacrylate And 280 mg (1 mmol) of 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide at 25 ° C. in a balloon filled with carbon dioxide gas. was sealed in a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 48 hours in the same atmosphere.
- This example has a reaction scale 20 times that of Example 35 in Table 5, but the reactivity is hardly reduced. Since the reaction proceeded quantitatively, the product could be isolated only by a liquid separation operation without performing a purification operation. Since the reaction proceeded under mild conditions such as 25 ° C. and 1 atm, even a highly polymerizable epoxide (oxirane) such as glycidyl methacrylate did not produce a polymer by-product, and only carbonate could be obtained.
- Examples 39 to 43, and Comparative Examples 22 to 25 Synthesis of cyclic carbonates using various guanidine catalysts Phenyl phenyl in 25 mL of an organic solvent (or suspension) containing 0.05 mmol of various guanidine catalysts at 25 ° C. After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of glycidyl ether, the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for 24 hours at ° C.
- [3'-C] represents 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide
- [3'-D] represents 1- (1-butyl) -2.
- [3′-E] represents 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide
- [30 ′ -A] represents 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt
- TBAI represents tetra-n-butylammonium iodide.
- NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
- n- represents a normal-body.
- Examples 44 to 50 Solvent effect of guanidine catalyst in carbonate reaction 150 mg (1 mmol) of phenylglycidyl ether in 25 mL of organic solvent (or suspension) of 0.05 mmol of various guanidine catalysts at 25 ° C. After that, the reaction system was sealed with a balloon filled with carbon dioxide gas to make a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 24 hours in the same atmosphere. .
- DMI in an organic solvent represents 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea)
- DMAc represents N, N-dimethylacetamide
- DMF represents N, N-dimethylformamide
- MTBE represents methyl t-butyl ether.
- t- represents a tert-isomer.
- amide solvents such as 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), N, N-dimethylacetamide, N, N-dimethylformamide, such as isopropanol It can be seen that the reaction proceeds in a good yield even when the reaction is carried out in various organic solvents such as an ether solvent such as methyl t-butyl ether, an aromatic hydrocarbon solvent such as toluene. It was.
- [3′-D] in the guanidine catalyst represents 1- (1-butyl) -2,3,3-trimethylguanidine hydrogen iodide
- [30′-B] represents 1- (1- Butyl) -2,3,3-trimethylguanidine hydrochloride
- [30′-C] represents 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate.
- MTHF in the organic solvent represents 2-methyltetrahydrofuran.
- [3′-F] in the guanidine catalyst represents 1- (1-octyl) guanidine hydrogen iodide
- [3′-G] represents 1,1-dicyclohexylguanidine hydrogen iodide
- [3′-H] represents 1-benzylguanidine hydrogen iodide
- [3′-I] represents 1- (2-hydroxyethyl) guanidine hydrogen iodide
- [3′-J] represents 1- (2-methoxyethyl) guanidine represents hydrogen iodide
- [3′-K] represents 1- (N, N-dimethylaminoethyl) guanidine hydrogen iodide
- [3′-L] represents 1-benzyl.
- [3'-M] represents 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide
- [3′-N] is 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-eneio.
- NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone)
- MTHF represents 2-methyltetrahydrofuran.
- reaction proceeds even when guanidine catalysts [3′-I] to [3′-K] containing other functional groups such as hydroxyl groups are used, and in particular, guanidine catalysts [3′-J] and [3 ′ -K] showed higher reactivity than the guanidine catalyst [3′-A] (Examples 56 to 58).
- guanidine catalysts [3′-I] to [3′-K] containing other functional groups such as hydroxyl groups are used, and in particular, guanidine catalysts [3′-J] and [3 ′ -K] showed higher reactivity than the guanidine catalyst [3′-A] (Examples 56 to 58).
- the reaction was carried out using guanidine hydroiodide (guanidine catalyst) having two proton sources.
- Examples 62 to 68 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3′-A] 1- (1-butyl) guanidine hydroiodide 12.0 mg (0.05 mmol) of organic solvent
- guanidine catalyst [3′-A] 1- (1-butyl) guanidine hydroiodide 12.0 mg (0.05 mmol) of organic solvent
- the reaction system is sealed with a balloon filled with carbon dioxide gas, (0.1 MPa), and the reaction was performed by stirring at 25 ° C. or 45 ° C. for 24 hours under the same atmosphere.
- [4-A] in epoxide (oxirane) represents phenyl glycidyl ether
- [4-B] represents n-butyl glycidyl ether
- [4-C] represents glycidyl methacrylate
- [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane ⁇ bisphenol A diglycidyl ether ⁇
- [5-B] represents 1,4-bis (glycidyloxy) butane ⁇ 1,4-butylene glycol di- Glycidyl ether ⁇
- NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone).
- n- represents a normal-body.
- [4-A] in epoxide (oxirane) represents phenyl glycidyl ether
- [4-B] represents n-butyl glycidyl ether
- [4-C] represents glycidyl methacrylate
- [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane ⁇ bisphenol A diglycidyl ether ⁇
- [5-B] represents 1,4-bis (glycidyloxy) butane ⁇ 1,4-butylene glycol di- Glycidyl ether ⁇ .
- MTHF in the organic solvent represents 2-methyltetrahydrofuran
- MTBE represents methyl t-butyl ether
- NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone).
- n- represents a normal-form
- t- represents a tert-form.
- Examples 77 and 78 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3'-O] Guanidine hydrogen iodide [3'-O] 9.3 mg (0.05 mmol) of organic solvent 0.2 mL
- the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere ( 0.1 MPa) and the reaction was carried out by stirring at 45 ° C. for 24 hours under the same atmosphere.
- Example 79 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using a guanidine catalyst [3'-O] 6.01 g (40 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenyl glycidyl ether
- a guanidine catalyst [3'-O] 6.01 g (40 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenyl glycidyl ether
- 1-methyl-2-pyrrolidinone N-methylpyrrolidone
- the reaction system was sealed with a balloon filled with carbon dioxide gas. Under a carbon gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 45 ° C. for 48 hours in the same atmosphere.
- This example is a reaction similar to Example 77 in Table 12, but the reaction time was longer because the reaction scale was 40 times. However, since the reaction proceeds quantitatively, the product could be isolated by simply throwing the reaction solution into water without performing a purification operation.
- guanidine hydrogen iodide which is a metal-free (metal-free) and inexpensive catalyst, was used, the reaction proceeded under mild conditions such as 45 ° C. and 1 atmosphere, and the desired cyclic carbonate was quantitatively obtained. This proved that this carbonate reaction is a practical reaction.
- Example 80 Isolation of 2,2-propylenebis [(p-phenoxymethyl) ethylene carbonate] ⁇ bisphenol A diglycidyl ether biscarbonate ⁇ under normal temperature and pressure conditions using a guanidine catalyst [3′-A] Synthesis 2,2-bis (4-glycidyloxyphenyl) propane ⁇ bisphenol A diglycidyl ether ⁇ 3.40 g (10 mmol; manufactured by Nippon Steel Chemical Co., Ltd.) 4 mL of 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) After adding 243 mg (1 mmol) of 1- (1-butyl) guanidine hydrogen iodide salt to the solution at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere (0.
- Comparative Example 37 Synthesis of cyclic carbonate using metal salt and amidine as catalyst 1-methyl-2-pyrrolidinone of 0.05 mmol of lithium bromide and 0.05 mmol of 1,8-diazabicyclo [5.4.0] -7-undecene
- phenylglycidyl ether After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether to a 0.2 mL solution of (N-methylpyrrolidone) at 25 ° C., the reaction system is sealed with a balloon filled with carbon dioxide gas. Under a carbon dioxide gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 25 ° C. for 24 hours in the same atmosphere.
- the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did.
- the yield of the produced (phenoxymethyl) ethylene carbonate was 31%. Further, almost no by-products were confirmed (5% or less), and the raw materials other than the produced carbonate were unreacted raw materials.
- 1,8-diazabicyclo [5.4.0] -7-undecene has a function of taking in carbon dioxide, it has higher reactivity than the case where the metal salt shown in Table 13 is used alone. I can hear. However, under mild conditions such as normal temperature and normal pressure, the yield of carbonate is low, which is not sufficient from the viewpoint of industrial use.
- the present invention is a combination of hydrogen iodide and an amine compound selected from monoamine, cyclic amidine and guanidine, which is an amine having a pKa of 8 or more among primary to tertiary amines.
- the catalyst amine compound salt
- a catalyst (amine compound salt) consisting only of a specific combination can efficiently promote the carbonate reaction.
- the present invention using such a catalyst (amine compound salt) has revealed that a cyclic carbonate can be produced in a high yield even under mild conditions such as normal temperature and normal pressure.
- the catalyst (amine compound salt) according to the present invention is also a metal-free (metal-free) catalyst (amine compound salt)
- the present invention using the catalyst (amine compound salt) according to the present invention is based on green chemistry. It was clarified that it is useful from the viewpoint and is a practical manufacturing method considering reduction of environmental load.
- the production method of the present invention for example, in producing a cyclic carbonate widely used in various applications such as an electrolyte of a lithium ion secondary battery, a plastic raw material, etc. by reaction of epoxide (oxirane) with carbon dioxide, This makes it possible to produce the cyclic carbonate with high yield under mild conditions such as normal pressure. Furthermore, the production method of the present invention makes it possible to practically produce a cyclic carbonate in consideration of reducing the environmental load.
- epoxide oxirane
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
An objective of the present invention is to provide a practical production method in consideration of reducing environmental load, which can produce cyclic carbonate at a good yield under mild conditions such as room temperature and atmospheric pressure, and in which cyclic carbonate, which is widely used for various purposes such as, for example, an electrolyte for lithium ion secondary batteries and raw materials for plastic, is produced through a reaction of epoxide (oxirane) and carbon dioxide. The present invention relates to a method for producing cyclic carbonate, characterized by reacting epoxide and carbon dioxide with an amine compound in the presence of hydrogen iodide, wherein the amine compound is selected, as a primary to tertiary amine having a pKa of 8 or more, from monoamine, cyclic amidine, and guanidine.
Description
本発明は、例えばリチウムイオン二次電池の電解液、プラスチック原料等の様々な用途に幅広く利用されている環状カーボネートの製造方法に関する。更に詳しくは、二酸化炭素を用いる環状カーボネートの製造方法に関する。
The present invention relates to a method for producing a cyclic carbonate that is widely used in various applications such as an electrolytic solution of a lithium ion secondary battery and a plastic raw material. More specifically, the present invention relates to a method for producing a cyclic carbonate using carbon dioxide.
近年、大気中の二酸化炭素は増加の一途を辿っており、地球温暖化の一因として問題視されている。一方で、二酸化炭素を有効活用して機能性材料等に変換できれば、二酸化炭素は無尽蔵に入手できる資源の1つとして捉えることができる。
In recent years, carbon dioxide in the atmosphere has been steadily increasing and is regarded as a problem as a cause of global warming. On the other hand, if carbon dioxide can be effectively utilized and converted into a functional material or the like, carbon dioxide can be regarded as one of resources that can be obtained inexhaustibly.
二酸化炭素から合成できる環状カーボネートは、例えばリチウムイオン二次電池の電解液、プラスチック原料等の様々な用途に幅広く利用されていることから、以前よりその合成法が種々検討されている。しかしながら、その合成法のほとんどは、高温(100~150℃)、高圧(数十気圧)のいずれかあるいは両方の条件を必要とするため、環境負荷低減を考慮した実用化には至っていないのが実状である。具体的には、例えば金属塩である臭化リチウムを用いる方法(例えば非特許文献1等)は、常圧条件ながら高温条件を必要とし、例えば四級アンモニウム塩を用いる方法(例えば非特許文献2等)は、メタルフリー(金属フリー)ながら高温条件に加え高圧条件を必要とする。また、これらの方法以外にも、種々の環状カーボネートの合成法が知られているが(例えば特許文献1、特許文献2、特許文献3、特許文献4、非特許文献3、非特許文献4、非特許文献5、非特許文献6等)、いずれの合成法も高温、高圧のいずれかあるいは両方の条件を必要とする。
Since cyclic carbonates that can be synthesized from carbon dioxide are widely used in various applications such as electrolytes for lithium ion secondary batteries and plastic raw materials, various synthetic methods have been studied. However, most of the synthesis methods require either high temperature (100 to 150 ° C.), high pressure (tens of atmospheres) or both, and have not yet been put into practical use in consideration of reducing the environmental load. It's real. Specifically, a method using, for example, lithium bromide which is a metal salt (for example, Non-Patent Document 1) requires a high temperature condition under normal pressure conditions, for example, a method using a quaternary ammonium salt (for example, Non-Patent Document 2). Etc.) require high-pressure conditions in addition to high-temperature conditions while being metal-free (metal-free). In addition to these methods, various methods for synthesizing cyclic carbonates are known (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Non-Patent Document 3, Non-Patent Document 4, (Non-Patent Document 5, Non-Patent Document 6, etc.) and any of the synthesis methods require high temperature, high pressure, or both conditions.
また、最近では、金属と四級アンモニウム塩の特性を併せ持つ複合触媒が開発され、常温、常圧条件下でのカーボネート反応に利用されている(例えば非特許文献7等)。しかしながら、この複合触媒は、その合成に多工程を要する高価な金属配位型触媒であるため、実用性に難点がある。
Recently, a composite catalyst having both the characteristics of a metal and a quaternary ammonium salt has been developed and used for a carbonate reaction under normal temperature and normal pressure conditions (for example, Non-Patent Document 7). However, since this composite catalyst is an expensive metal coordination catalyst that requires multiple steps for its synthesis, there is a difficulty in practicality.
上述したように、二酸化炭素を利用した環状カーボネートの合成法は、古くから種々の方法が知られてはいるものの、これらの方法は、高温、高圧条件が必要である、アルカリ金属等の金属を含む触媒を使用するためその除去工程が必要である、触媒が高価である等、いまだに環境負荷の面で問題点を抱えている。このため、今日においても、環境負荷低減に考慮した環状カーボネートの合成法の確立が求められている状況にある。
As described above, various methods for synthesizing cyclic carbonates using carbon dioxide have been known for a long time, but these methods require the use of metals such as alkali metals that require high temperature and high pressure conditions. There are still problems in terms of environmental impact, such as the need for a removal step because of the use of the catalyst, and the high cost of the catalyst. For this reason, even today, there is a demand for establishment of a method for synthesizing a cyclic carbonate in consideration of reducing the environmental burden.
本発明は、上述した状況に鑑みなされたもので、常温、常圧等の穏和な条件下で反応を行っても、多種多様な環状カーボネートを収率良く製造することができるばかりでなく、環境負荷低減を考慮した実用的な環状カーボネートの製造方法を提供することにある。本発明者らは、このような製造方法について鋭意研究を重ねた結果、エポキシド(オキシラン)と二酸化炭素との反応において、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素を用いることで、上述した目的を達成できることを見出し、本発明を完成させるに至った。
The present invention has been made in view of the above-mentioned situation, and not only can produce a wide variety of cyclic carbonates with high yield even when the reaction is performed under mild conditions such as normal temperature and normal pressure, but also the environment. An object of the present invention is to provide a practical cyclic carbonate production method in consideration of load reduction. As a result of intensive research on such a production method, the present inventors have found that in the reaction of epoxide (oxirane) with carbon dioxide, the primary to tertiary amine having a pKa of 8 or more, a monoamine, By using an amine compound selected from cyclic amidine and guanidine and hydrogen iodide, it has been found that the above-described object can be achieved, and the present invention has been completed.
本発明は、エポキシドと二酸化炭素とを、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素の存在下で反応させることを特徴とする、環状カーボネートの製造方法の発明である。
In the present invention, an epoxide and carbon dioxide are reacted in the presence of hydrogen iodide with an amine compound selected from monoamine, cyclic amidine and guanidine, which is a primary to tertiary amine having a pKa of 8 or more. It is invention of the manufacturing method of cyclic carbonate characterized by these.
エポキシド(オキシラン)と二酸化炭素との反応によって環状カーボネートを製造するにあたり、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素を用いることで、常温、常圧等の穏和な条件下でも、環状カーボネートを収率良く製造することができるという効果を奏する。
In the production of a cyclic carbonate by the reaction of epoxide (oxirane) and carbon dioxide, a primary or tertiary amine having a pKa of 8 or more, an amine compound selected from monoamine, cyclic amidine and guanidine, and hydrogen iodide By using this, the cyclic carbonate can be produced with good yield even under mild conditions such as normal temperature and normal pressure.
本発明において、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素を用いると、上述したような効果が得られる理由は以下のように考えられる。すなわち、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物(以下、本発明にかかるアミン化合物と略記する場合がある。)とヨウ化水素とから調製される、プロトンとヨウ素アニオンを有するアミン化合物塩(以下、本発明にかかるアミン化合物塩と略記する場合がある。)が、エポキシド(オキシラン)と二酸化炭素との反応における触媒(以下、本発明にかかる触媒と略記する場合がある。)として効果的に作用することにより、常温、常圧等の穏和な条件下でも、収率良く環状カーボネートが製造できるものと考えられる。
In the present invention, a primary to tertiary amine having a pKa of 8 or more, and when an amine compound selected from monoamines, cyclic amidines and guanidines and hydrogen iodide are used, the reason why the above-described effects can be obtained. It is considered as follows. That is, it is a primary to tertiary amine having a pKa of 8 or more and is selected from monoamines, cyclic amidines and guanidines (hereinafter sometimes abbreviated as amine compounds according to the present invention) and iodide. An amine compound salt prepared from hydrogen and having a proton and iodine anion (hereinafter sometimes abbreviated as the amine compound salt according to the present invention) is a catalyst (hereinafter referred to as “catalyst”) in a reaction of epoxide (oxirane) with carbon dioxide. It is considered that the cyclic carbonate can be produced in good yield even under mild conditions such as normal temperature and normal pressure.
また、このようなプロトンとヨウ素アニオンを有するアミン化合物塩は、本発明にかかるアミン化合物とヨウ化水素から1ステップで簡便かつ安価に合成することができ、メタルフリー(金属フリー)の触媒でもあるので、該触媒(アミン化合物塩)を用いる本発明の製造方法は、グリーンケミストリーの観点からも有用であり、環境負荷低減を考慮した実用的な製造方法である。
Moreover, such an amine compound salt having proton and iodine anion can be synthesized easily and inexpensively in one step from the amine compound according to the present invention and hydrogen iodide, and is also a metal-free (metal-free) catalyst. Therefore, the production method of the present invention using the catalyst (amine compound salt) is useful from the viewpoint of green chemistry, and is a practical production method considering reduction of environmental burden.
本発明の環状カーボネートの製造方法は、エポキシド(オキシラン)と二酸化炭素との反応を、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素の存在下で行うことを特徴とするものである。
The method for producing a cyclic carbonate of the present invention comprises a reaction between an epoxide (oxirane) and carbon dioxide, a primary to tertiary amine having a pKa of 8 or more, and an amine compound selected from monoamine, cyclic amidine and guanidine. And in the presence of hydrogen iodide.
本発明にかかるアミン化合物とは、少なくとも1つ以上のアミノ基を有するpKaが8以上のアミンであり、複数のアミノ基を有していてもよいし、ヒドロキシル基等の他の官能基を有していてもよい。このようなアミン化合物の具体例としては、例えば下記一般式[1]で示されるモノアミン、下記一般式[2]で示される環状アミジン及び下記一般式[3]で示されるグアニジンから選ばれるものが挙げられる。
The amine compound according to the present invention is an amine having at least one amino group and a pKa of 8 or more, may have a plurality of amino groups, and has other functional groups such as a hydroxyl group. You may do it. Specific examples of such amine compounds include those selected from, for example, monoamines represented by the following general formula [1], cyclic amidines represented by the following general formula [2], and guanidines represented by the following general formula [3]. Can be mentioned.
(式中、R1は、炭素数3~10の分枝状もしくは環状のアルキル基又は炭素数7~12のアラルキル基を表し、R2及びR3はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表す。)
(Wherein R 1 represents a branched or cyclic alkyl group having 3 to 10 carbon atoms or an aralkyl group having 7 to 12 carbon atoms, and R 2 and R 3 each independently represents a hydrogen atom or a carbon number 1 to 10 linear, branched or cyclic alkyl groups.)
(式中、R4及びR5は、ともに結合して炭素数2~5のアルキレン鎖を表し、これらと結合している窒素原子と当該窒素原子と結合している炭素原子とともに5~8員環を形成しており、R6及びR7はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表すか、あるいはR6とR7とで環状構造を形成していてもよい。)
(Wherein R 4 and R 5 are bonded to each other to represent an alkylene chain having 2 to 5 carbon atoms, and together with the nitrogen atom bonded thereto and the carbon atom bonded to the nitrogen atom, 5- to 8-membered members) Each of R 6 and R 7 independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 6 and R 7 , And may form a ring structure.)
(式中、R8は、水素原子、ヘテロ原子を有していてもよい炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基又は炭素数7~12のアラルキル基を表し、R9、R10、R11及びR12はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表すか、あるいはR8とR9、R9とR10、R10とR11、R11とR12又はR8とR12とで環状構造を形成していてもよい。)
(Wherein R 8 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms which may have a hetero atom, or an aralkyl group having 7 to 12 carbon atoms; R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 or R 8 and R 12 may form a cyclic structure.)
一般式[1]におけるR1で示される炭素数3~10の分枝状もしくは環状のアルキル基としては、具体的には、例えばイソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、ネオヘプチル基、シクロヘプチル基、イソオクチル基、s-オクチル基、t-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、イソノニル基、s-ノニル基、t-ノニル基、ネオノニル基、シクロノニル基、イソデシル基、s-デシル基、t-デシル基、ネオデシル基、シクロデシル基、ボルニル基、メンチル基、アダマンチル基、デカヒドロナフチル基等が挙げられ、なかでも、例えばt-ブチル基、t-ペンチル基、t-ヘキシル基等の炭素数4~6のt-アルキル基、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数5~8の環状のアルキル基(シクロアルキル基)が好ましく、そのなかでも、t-ブチル基、シクロヘキシル基がより好ましい。なお、上述の具体例において、s-はsec-体を表し、t-はtert-体を表す。
Specific examples of the branched or cyclic alkyl group having 3 to 10 carbon atoms represented by R 1 in the general formula [1] include isopropyl group, isobutyl group, s-butyl group, t-butyl group, Cyclobutyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, isohexyl group, s-hexyl group, t -Hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, isoheptyl group, s-heptyl group, t-heptyl group, Neoheptyl, cycloheptyl, isooctyl, s-octyl, t-octyl, neooctyl, 2-ethylhexyl, cyclooctyl Group, isononyl group, s-nonyl group, t-nonyl group, neononyl group, cyclononyl group, isodecyl group, s-decyl group, t-decyl group, neodecyl group, cyclodecyl group, bornyl group, menthyl group, adamantyl group, Examples thereof include decahydronaphthyl group, among which t-alkyl groups having 4 to 6 carbon atoms such as t-butyl group, t-pentyl group and t-hexyl group, such as cyclopentyl group, cyclohexyl group and cycloheptyl group. A cyclic alkyl group having 5 to 8 carbon atoms (cycloalkyl group) such as a cyclooctyl group is preferred, and among them, a t-butyl group and a cyclohexyl group are more preferred. In the above specific examples, s- represents a sec-form and t- represents a tert-form.
一般式[1]及び[3]におけるR1及びR8で示される炭素数7~12のアラルキル基としては、単環式もしくは縮合多環式のいずれであってもよく、具体的には、例えばベンジル基、フェネチル基、メチルベンジル基、フェニルプロピル基、1-メチルフェニルエチル基、フェニルブチル基、2-メチルフェニルプロピル基、テトラヒドロナフチル基、ナフチルメチル基、ナフチルエチル基等が挙げられ、なかでも、例えばベンジル基等の炭素数7のアラルキル基が好ましい。
The aralkyl group having 7 to 12 carbon atoms represented by R 1 and R 8 in the general formulas [1] and [3] may be either monocyclic or condensed polycyclic. Examples include benzyl group, phenethyl group, methylbenzyl group, phenylpropyl group, 1-methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, tetrahydronaphthyl group, naphthylmethyl group, naphthylethyl group, etc. However, for example, an aralkyl group having 7 carbon atoms such as a benzyl group is preferred.
一般式[1]、[2]及び[3]におけるR2、R3、R6、R7、R9、R10、R11及びR12で示される炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基としては、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、s-オクチル基、t-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、s-ノニル基、t-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、s-デシル基、t-デシル基、ネオデシル基、シクロデシル基、ボルニル基、メンチル基、アダマンチル基、デカヒドロナフチル基等が挙げられる。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
A straight chain having 1 to 10 carbon atoms represented by R 2 , R 3 , R 6 , R 7 , R 9 , R 10 , R 11 and R 12 in the general formulas [1], [2] and [3], Specific examples of the branched or cyclic alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and cyclobutyl. Group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, Isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl , Isoheptyl group, s-heptyl group, t-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl group, s-octyl group, t-octyl group, neooctyl group, 2-ethylhexyl group, cyclooctyl group N-nonyl group, isononyl group, s-nonyl group, t-nonyl group, neononyl group, cyclononyl group, n-decyl group, isodecyl group, s-decyl group, t-decyl group, neodecyl group, cyclodecyl group, bornyl Group, menthyl group, adamantyl group, decahydronaphthyl group and the like. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
一般式[3]におけるR8で示されるヘテロ原子を有していてもよい炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基としては、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、s-オクチル基、t-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、s-ノニル基、t-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、s-デシル基、t-デシル基、ネオデシル基、シクロデシル基、ボルニル基、メンチル基、アダマンチル基、デカヒドロナフチル基等のヘテロ原子を有さない炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基、例えばヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシヘプチル基、ヒドロキシオクチル基、ヒドロキシノニル基、ヒドロキシデシル基、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基、メトキシオクチル基、メトキシノニル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、エトキシペンチル基、エトキシヘキシル基、エトキシヘプチル基、エトキシオクチル基、プロポキシメチル基、プロポキシエチル基、プロポキシブチル基、プロポキシペンチル基、プロポキシヘキシル基、プロポキシヘプチル基、ブトキシメチル基、ブトキシエチル基、ブトキシプロピル基、ブトキシブチル基、ブトキシペンチル基、ブトキシヘキシル基、ペンチルオキシメチル基、ペンチルオキシエチル基、ペンチルオキシプロピル基、ペンチルオキシブチル基、ペンチルオキシペンチル基、ヘキシルオキシメチル基、ヘキシルオキシエチル基、ヘキシルオキシプロピル基、ヘキシルオキシブチル基、ヘプチルオキシメチル基、ヘプチルオキシエチル基、ヘプチルオキシプロピル基、オクチルオキシメチル基、オクチルオキシエチル基、ノニルオキシメチル基、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノペンチル基、ジメチルアミノヘキシル基、ジメチルアミノヘプチル基、ジメチルアミノオクチル基、エチルメチルアミノメチル基、エチルメチルアミノエチル基、エチルメチルアミノプロピル基、エチルメチルアミノブチル基、エチルメチルアミノペンチル基、エチルメチルアミノヘキシル基、エチルメチルアミノヘプチル基、ジエチルアミノメチル基、ジエチルアミノエチル基、ジエチルアミノプロピル基、ジエチルアミノブチル基、ジエチルアミノペンチル基、ジエチルアミノヘキシル基、ジプロピルアミノメチル基、ジプロピルアミノエチル基、ジプロピルアミノプロピル基、ジプロピルアミノブチル基、ジブチルアミノメチル基、ジブチルアミノエチル基等の酸素原子、窒素原子等のヘテロ原子を有する炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基等が挙げられ、なかでも、n-ブチル基、シクロヘキシル基、n-オクチル基、ヒドロキシエチル基、メトキシエチル基、ジメチルアミノエチル基が好ましく、そのなかでも、n-ブチル基がより好ましい。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
Specific examples of the linear, branched or cyclic alkyl group having 1 to 10 carbon atoms which may have a hetero atom represented by R 8 in the general formula [3] include, for example, a methyl group, Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, Neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl Group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl group, isoheptyl group, s-heptyl group, t-heptyl group, Octyl group, cycloheptyl group, n-octyl group, isooctyl group, s-octyl group, t-octyl group, neooctyl group, 2-ethylhexyl group, cyclooctyl group, n-nonyl group, isononyl group, s-nonyl group, t-nonyl group, neononyl group, cyclononyl group, n-decyl group, isodecyl group, s-decyl group, t-decyl group, neodecyl group, cyclodecyl group, bornyl group, menthyl group, adamantyl group, decahydronaphthyl group, etc. A linear, branched or cyclic alkyl group having 1 to 10 carbon atoms having no hetero atom, such as a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, Hydroxyheptyl group, hydroxyoctyl group, hydroxynonyl group, hydroxydecyl group Methoxymethyl, methoxyethyl, methoxypropyl, methoxybutyl, methoxypentyl, methoxyhexyl, methoxyheptyl, methoxyoctyl, methoxynonyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl Group, ethoxypentyl group, ethoxyhexyl group, ethoxyheptyl group, ethoxyoctyl group, propoxymethyl group, propoxyethyl group, propoxybutyl group, propoxypentyl group, propoxyhexyl group, propoxyheptyl group, butoxymethyl group, butoxyethyl group, Butoxypropyl group, butoxybutyl group, butoxypentyl group, butoxyhexyl group, pentyloxymethyl group, pentyloxyethyl group, pentyloxypropyl group, pentyloxybutyl group, Nyloxypentyl group, hexyloxymethyl group, hexyloxyethyl group, hexyloxypropyl group, hexyloxybutyl group, heptyloxymethyl group, heptyloxyethyl group, heptyloxypropyl group, octyloxymethyl group, octyloxyethyl group Nonyloxymethyl group, dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminopentyl group, dimethylaminohexyl group, dimethylaminoheptyl group, dimethylaminooctyl group, ethylmethylaminomethyl Group, ethylmethylaminoethyl group, ethylmethylaminopropyl group, ethylmethylaminobutyl group, ethylmethylaminopentyl group, ethylmethylaminohexyl group, ethylmethylaminoheptyl Group, diethylaminomethyl group, diethylaminoethyl group, diethylaminopropyl group, diethylaminobutyl group, diethylaminopentyl group, diethylaminohexyl group, dipropylaminomethyl group, dipropylaminoethyl group, dipropylaminopropyl group, dipropylaminobutyl group A linear, branched or cyclic alkyl group having 1 to 10 carbon atoms having a hetero atom such as a dibutylaminomethyl group or a dibutylaminoethyl group, and a hetero atom such as a nitrogen atom, A -butyl group, a cyclohexyl group, an n-octyl group, a hydroxyethyl group, a methoxyethyl group, and a dimethylaminoethyl group are preferable, and among them, an n-butyl group is more preferable. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
一般式[2]におけるR4とR5は、ともに結合して炭素数2~5のアルキレン鎖を表すとは、R4とR5とで炭素数2~5のアルキレン基を形成し、当該アルキレン基と結合している窒素原子と当該窒素原子と結合している炭素原子とともに5~8員環を形成していることを意味する。このような炭素数2~5のアルキレン基としては、具体的には、例えばジメチレン基(エチレン基)、トリメチレン基(プロパン-1,3-ジイル基)、テトラメチレン基(ブタン-1,4-ジイル基)、ペンタメチレン基(ペンタン-1,5-ジイル基)等が挙げられ、なかでも、炭素数3のアルキレン基であるトリメチレン基(プロパン-1,3-ジイル基)が好ましい。また、このような5~8員環の具体例としては、例えば2-イミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン環等が挙げられ、なかでも、6員環である1,4,5,6-テトラヒドロピリミジン環が好ましい。
When R 4 and R 5 in the general formula [2] are bonded together to represent an alkylene chain having 2 to 5 carbon atoms, R 4 and R 5 form an alkylene group having 2 to 5 carbon atoms, It means that a 5- to 8-membered ring is formed together with a nitrogen atom bonded to an alkylene group and a carbon atom bonded to the nitrogen atom. Specific examples of the alkylene group having 2 to 5 carbon atoms include dimethylene group (ethylene group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4- Diyl group), pentamethylene group (pentane-1,5-diyl group) and the like. Among them, a trimethylene group (propane-1,3-diyl group) which is an alkylene group having 3 carbon atoms is preferable. Specific examples of such a 5- to 8-membered ring include, for example, 2-imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4,5,6,7-tetrahydro-1H-1,3- Examples thereof include a diazepine ring, among which a 1,4,5,6-tetrahydropyrimidine ring which is a 6-membered ring is preferable.
一般式[2]におけるR6とR7とで環状構造を形成していてもよいとは、R6とR7とで炭素数3~6のアルキレン基を形成し、当該アルキレン基と結合している窒素原子及び炭素原子とともに5~8員環を形成していてもよいことを意味する。このような炭素数3~6のアルキレン基としては、具体的には、例えばトリメチレン基(プロパン-1,3-ジイル基)、テトラメチレン基(ブタン-1,4-ジイル基)、ペンタメチレン基(ペンタン-1,5-ジイル基)等、ヘキサメチレン基(ヘキサン-1,6-ジイル基)等が挙げられ、なかでも、炭素数5のアルキレン基であるペンタメチレン基(ペンタン-1,5-ジイル基)が好ましい。また、このような5~8員環の具体例としては、例えばピロリジン環、ピペリジン環、ヘキサメチレンイミン環(アゼパン環)、ヘプタメチレンイミン環(アゾカン環)等が挙げられ、なかでも、ピロリジン環、ヘキサメチレンイミン環(アゼパン環)が好ましく、そのなかでも、7員環であるヘキサメチレンイミン環(アゼパン環)がより好ましい。
R 6 and R 7 in the general formula [2] may form a cyclic structure. R 6 and R 7 form an alkylene group having 3 to 6 carbon atoms and bond to the alkylene group. This means that a 5- to 8-membered ring may be formed together with the nitrogen and carbon atoms. Specific examples of such an alkylene group having 3 to 6 carbon atoms include trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4-diyl group), and pentamethylene group. (Pentane-1,5-diyl group) and the like, hexamethylene group (hexane-1,6-diyl group), and the like. Among them, pentamethylene group (pentane-1,5) which is an alkylene group having 5 carbon atoms is mentioned. -Diyl group) is preferred. Specific examples of such a 5- to 8-membered ring include, for example, a pyrrolidine ring, a piperidine ring, a hexamethyleneimine ring (azepane ring), a heptamethyleneimine ring (azocan ring), and among others, a pyrrolidine ring. A hexamethyleneimine ring (azepane ring) is preferable, and among them, a hexamethyleneimine ring (azepane ring) that is a seven-membered ring is more preferable.
一般式[3]におけるR8とR9、R10とR11、又はR8とR12とで環状構造を形成していてもよいとは、R8とR9、R10とR11又はR8とR12とで炭素数2~5のアルキレン基を形成し、当該アルキレン基と結合している窒素原子と当該窒素原子と結合している炭素原子とともに5~8員環を形成していてもよいことを意味する。このような炭素数2~5のアルキレン基としては、具体的には、例えばジメチレン基(エチレン基)、トリメチレン基(プロパン-1,3-ジイル基)、テトラメチレン基(ブタン-1,4-ジイル基)、ペンタメチレン基(ペンタン-1,5-ジイル基)等が挙げられ、なかでも、炭素数3のアルキレン基であるトリメチレン基(プロパン-1,3-ジイル基)が好ましい。また、このような5~8員環の具体例としては、例えば2-イミダゾリン環、イミダゾリジン環、1,4,5,6-テトラヒドロピリミジン環、ヘキサヒドロピリミジン環、4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン環、ヘキサヒドロ-1H-1,3-ジアゼピン環等が挙げられ、なかでも、1,4,5,6-テトラヒドロピリミジン環、ヘキサヒドロピリミジン環が好ましい。
R 8 and R 9 , R 10 and R 11 , or R 8 and R 12 in the general formula [3] may form a cyclic structure as R 8 and R 9 , R 10 and R 11 or R 8 and R 12 form an alkylene group having 2 to 5 carbon atoms, and together with the nitrogen atom bonded to the alkylene group and the carbon atom bonded to the nitrogen atom, forms a 5- to 8-membered ring. It means that you may. Specific examples of the alkylene group having 2 to 5 carbon atoms include dimethylene group (ethylene group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4- Diyl group), pentamethylene group (pentane-1,5-diyl group) and the like. Among them, a trimethylene group (propane-1,3-diyl group) which is an alkylene group having 3 carbon atoms is preferable. Specific examples of such 5- to 8-membered rings include, for example, 2-imidazoline ring, imidazolidine ring, 1,4,5,6-tetrahydropyrimidine ring, hexahydropyrimidine ring, 4,5,6,7 -Tetrahydro-1H-1,3-diazepine ring, hexahydro-1H-1,3-diazepine ring and the like are mentioned, among which 1,4,5,6-tetrahydropyrimidine ring and hexahydropyrimidine ring are preferable.
一般式[3]におけるR9とR10又はR11とR12とで環状構造を形成していてもよいとは、R9とR10又はR11とR12とで炭素数4~6のアルキレン基を形成し、当該アルキレン基と結合している窒素原子とともに5~7員環を形成していてもよいことを意味する。このような炭素数4~6のアルキレン基としては、具体的には、例えばテトラメチレン基(ブタン-1,4-ジイル基)、ペンタメチレン基(ペンタン-1,5-ジイル基)、ヘキサメチレン基(ヘキサン-1,6-ジイル基)等が挙げられ、なかでも、炭素数5のアルキレン基であるペンタメチレン基(ペンタン-1,5-ジイル基)が好ましい。また、このような5~7員環の具体例としては、例えばピロリジン環、ピペリジン環、ヘキサメチレンイミン環(アゼパン環)等が挙げられ、なかでも、ピペリジン環が好ましい。
In the general formula [3], R 9 and R 10 or R 11 and R 12 may form a cyclic structure that R 9 and R 10 or R 11 and R 12 have 4 to 6 carbon atoms. This means that an alkylene group may be formed and a 5- to 7-membered ring may be formed together with the nitrogen atom bonded to the alkylene group. Specific examples of the alkylene group having 4 to 6 carbon atoms include a tetramethylene group (butane-1,4-diyl group), a pentamethylene group (pentane-1,5-diyl group), and hexamethylene. Group (hexane-1,6-diyl group) and the like. Among them, a pentamethylene group (pentane-1,5-diyl group) which is an alkylene group having 5 carbon atoms is preferable. Specific examples of such a 5- to 7-membered ring include, for example, a pyrrolidine ring, a piperidine ring, a hexamethyleneimine ring (azepane ring), and among them, a piperidine ring is preferable.
一般式[1]において、R1が炭素数7~12のアラルキル基である場合には、R2及びR3は、ともに炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基であることが好ましい。
In the general formula [1], when R 1 is an aralkyl group having 7 to 12 carbon atoms, R 2 and R 3 are both linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms. It is preferable that
一般式[2]におけるR6としては、R7とで環状構造を形成しない場合には、炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基が好ましく、そのなかでも、メチル基が好ましい。
As R 6 in the general formula [2], a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms is preferable when a cyclic structure is not formed with R 7. Groups are preferred.
一般式[2]におけるR6及びR7としては、R6とR7とで環状構造を形成しているものが好ましい。
R 6 and R 7 in the general formula [2] are preferably those in which R 6 and R 7 form a cyclic structure.
一般式[3]で示されるグアニジンとしては、少なくともR8が、ヘテロ原子を有していてもよい炭素数4~10の直鎖状、分枝状もしくは環状のアルキル基であるものが好ましく、なかでも、R8が、ヘテロ原子を有していてもよい炭素数4~10の直鎖状、分枝状もしくは環状のアルキル基であって、かつR9、R10、R11及びR12のうちの少なくとも1つは、炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基であるものがより好ましい。
As the guanidine represented by the general formula [3], at least R 8 is preferably a linear, branched or cyclic alkyl group having 4 to 10 carbon atoms which may have a hetero atom, Among them, R 8 is a linear, branched or cyclic alkyl group having 4 to 10 carbon atoms which may have a hetero atom, and R 9 , R 10 , R 11 and R 12. More preferably, at least one of them is a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
一般式[1]で示されるモノアミンの具体例としては、一例として、モノイソプロピルアミン、モノ-t-ブチルアミン、モノシクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルジメチルアミン等の種々のモノアミンを挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、下記一般式[1-I]で示されるモノアミンが好ましい。
Specific examples of the monoamine represented by the general formula [1] include various monoamines such as monoisopropylamine, mono-t-butylamine, monocyclohexylamine, dicyclohexylamine, and benzyldimethylamine. Among these, a monoamine represented by the following general formula [1-I] is preferable in that a cyclic carbonate can be obtained with a higher yield.
(式中、R1aは、炭素数4~6のt-アルキル基又は炭素数5~8のシクロアルキル基を表し、R2aは、水素原子、炭素数4~6のt-アルキル基又は炭素数5~8のシクロアルキル基を表す。)
(Wherein R 1a represents a t-alkyl group having 4 to 6 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms, and R 2a represents a hydrogen atom, a t-alkyl group having 4 to 6 carbon atoms, or a carbon atom. Represents a cycloalkyl group of 5 to 8.)
一般式[1-I]におけるR1a及びR2aで示される炭素数4~6のt-アルキル基としては、具体的には、例えばt-ブチル基、t-ペンチル基、t-ヘキシル基等が挙げられ、なかでも、炭素数4のt-アルキル基であるt-ブチル基が好ましい。なお、上述の具体例において、t-はtert-体を表す。
Specific examples of the t-alkyl group having 4 to 6 carbon atoms represented by R 1a and R 2a in the general formula [1-I] include, for example, a t-butyl group, a t-pentyl group, a t-hexyl group, and the like. Among them, a t-butyl group which is a t-alkyl group having 4 carbon atoms is preferable. In the above specific examples, t- represents a tert-isomer.
一般式[1-I]におけるR1a及びR2aで示される炭素数5~8のシクロアルキル基としては、具体的には、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられ、なかでも、炭素数6のシクロアルキル基であるシクロヘキシル基が好ましい。
Specific examples of the cycloalkyl group having 5 to 8 carbon atoms represented by R 1a and R 2a in the general formula [1-1] include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like. Of these, a cyclohexyl group which is a cycloalkyl group having 6 carbon atoms is preferable.
一般式[1-I]で示されるモノアミンの具体例としては、例えばモノ-t-ブチルアミン、ジ-t-ブチルアミン、モノ-t-ペンチルアミン、ジ-t-ペンチルアミン、モノ-t-ヘキシルアミン、ジ-t-ヘキシルアミン、モノシクロペンチルアミン、ジシクロペンチルアミン、モノシクロヘキシルアミン、ジシクロヘキシルアミン、モノシクロヘプチルアミン、ジシクロヘプチルアミン、モノシクロオクチルアミン、ジシクロオクチルアミン等が挙げられ、なかでも、更に高い収率で環状カーボネートが得られるという点において、モノ-t-ブチルアミン、ジシクロヘキシルアミンが好ましい。なお、上述の具体例において、t-はtert-体を表す。また、上記一般式[1]及び一般式[1-I]で示されるモノアミンは、市販品、あるいはこの分野で行われる一般的な方法により適宜合成したものを用いればよい。
Specific examples of the monoamine represented by the general formula [1-I] include, for example, mono-t-butylamine, di-t-butylamine, mono-t-pentylamine, di-t-pentylamine, and mono-t-hexylamine. , Di-t-hexylamine, monocyclopentylamine, dicyclopentylamine, monocyclohexylamine, dicyclohexylamine, monocycloheptylamine, dicycloheptylamine, monocyclooctylamine, dicyclooctylamine, etc. Mono-t-butylamine and dicyclohexylamine are preferred in that a cyclic carbonate can be obtained with a higher yield. In the above specific examples, t- represents a tert-isomer. The monoamines represented by the general formula [1] and the general formula [1-I] may be commercially available products or those appropriately synthesized by a general method performed in this field.
一般式[2]で示される環状アミジンの具体例としては、一例として、1-メチル-1,4,5,6-テトラヒドロピリミジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等の種々の環状アミジンを挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、下記一般式[2-I]で示される環状アミジンが好ましい。
Specific examples of the cyclic amidine represented by the general formula [2] include, as an example, 1-methyl-1,4,5,6-tetrahydropyrimidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine. And various cyclic amidines such as 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) and 1,8-diazabicyclo [5.4.0] -7-undecene (DBU). Among them, a cyclic amidine represented by the following general formula [2-1] is preferable in that a cyclic carbonate can be obtained with a higher yield.
(式中、mは、1~4の整数を表し、nは、1~4の整数を表す。)
(In the formula, m represents an integer of 1 to 4, and n represents an integer of 1 to 4.)
一般式[2-I]におけるmとしては、通常1~4の整数を表し、好ましくは2である。
M in the general formula [2-I] usually represents an integer of 1 to 4, preferably 2.
一般式[2-I]におけるnとしては、通常1~4の整数を表し、好ましくは1又は3であり、より好ましくは3である。
N in the general formula [2-I] usually represents an integer of 1 to 4, preferably 1 or 3, and more preferably 3.
一般式[2-I]で示される環状アミジンの具体例としては、例えば1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等が挙げられ、なかでも、更に高い収率で環状カーボネートが得られるという点において、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)が好ましい。また、上記一般式[2]及び一般式[2-I]で示される環状アミジンは、市販品、あるいはこの分野で行われる一般的な方法により適宜合成したものを用いればよい。
Specific examples of the cyclic amidine represented by the general formula [2-I] include, for example, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN), 1,8-diazabicyclo [5.4.0]. ] -7-undecene (DBU) and the like. Among them, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) is particularly preferable in that a cyclic carbonate can be obtained with higher yield. preferable. The cyclic amidines represented by the above general formula [2] and general formula [2-1] may be commercially available products or those appropriately synthesized by general methods performed in this field.
一般式[3]で示されるグアニジンの具体例としては、一例として、グアニジン、1-(1-n-ブチル)グアニジン、1-(1-n-ブチル)-3-メチルグアニジン、1-(1-n-ブチル)-2,3-ジメチルグアニジン、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン、2-(1-n-ブチル)-1,1,3,3-テトラメチルグアニジン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-(1-n-オクチル)グアニジン、1,1-ジシクロヘキシルグアニジン、1-ベンジルグアニジン、1-(2-ヒドロキシエチル)グアニジン、1-(2-メトキシエチル)グアニジン、1-(2-ジメチルアミノエチル)グアニジン、1-ベンジル-2,3,3-トリメチルグアニジン、1-(2-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン等の種々のグアニジンを挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、1-(1-n-ブチル)グアニジン、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン、1-ベンジル-2,3,3-トリメチルグアニジンが好ましい。なお、上述の具体例において、n-はnormal-体を表す。また、上記一般式[3]で示されるグアニジンは、市販品、あるいはこの分野で行われる一般的な方法により適宜合成したものを用いればよい。
Specific examples of the guanidine represented by the general formula [3] include guanidine, 1- (1-n-butyl) guanidine, 1- (1-n-butyl) -3-methylguanidine, 1- (1 -n-butyl) -2,3-dimethylguanidine, 1- (1-n-butyl) -2,3,3-trimethylguanidine, 2- (1-n-butyl) -1,1,3,3- Tetramethylguanidine, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1- (1-n-octyl) guanidine, 1,1-dicyclohexylguanidine, 1- Benzylguanidine, 1- (2-hydroxyethyl) guanidine, 1- (2-methoxyethyl) guanidine, 1- (2-dimethylaminoethyl) guanidine, 1-benzyl-2,3,3-trimethylguanidine, 1- ( 2-Dimethylaminoethyl) -2,3,3-trimethylguani Various guanidines such as gin can be mentioned. Among them, 1- (1-n-butyl) guanidine, 1- (1-n-butyl) is preferable in that a cyclic carbonate can be obtained with higher yield. -2,3,3-trimethylguanidine and 1-benzyl-2,3,3-trimethylguanidine are preferred. In the above specific examples, n- represents a normal-body. Moreover, the guanidine represented by the above general formula [3] may be a commercially available product or a product appropriately synthesized by a general method performed in this field.
上述の一般式[1]で示されるモノアミン、一般式[2]で示される環状アミジン及び一般式[3]で示されるグアニジンから選ばれるアミン化合物のなかでも、一般式[1]で示されるモノアミン及び一般式[2]で示される環状アミジンから選ばれるものが好ましく、そのなかでも、一般式[1-I]で示されるモノアミン及び一般式[2-I]で示される環状アミジンから選ばれるものがより好ましい。
Among the amine compounds selected from the monoamine represented by the general formula [1], the cyclic amidine represented by the general formula [2] and the guanidine represented by the general formula [3], the monoamine represented by the general formula [1] And those selected from the cyclic amidines represented by the general formula [2], and among them, those selected from the monoamines represented by the general formula [1-I] and the cyclic amidines represented by the general formula [2-I]. Is more preferable.
本発明にかかるヨウ化水素は、ヨウ化水素ガス等の気体状態のもの、ヨウ化水素酸等のヨウ化水素ガスを水等の液体(溶媒)に溶解させた溶液状態のもの等が挙げられるが、供給形態や由来等に関して特に制限はない。また、ヨウ化水素酸のような水溶液の状態のものについても、水溶液中における含有量(濃度)に特に制限はない。ヨウ化水素酸の具体例としては、例えばヨウ化水素酸については市販されている57%の水溶液等が挙げられる。
Examples of the hydrogen iodide according to the present invention include those in a gaseous state such as hydrogen iodide gas, and those in a solution state in which hydrogen iodide gas such as hydroiodic acid is dissolved in a liquid (solvent) such as water. However, there are no particular restrictions on the supply form or origin. Moreover, there is no restriction | limiting in particular in content (concentration) in aqueous solution also about the thing of the state of aqueous solutions like hydroiodic acid. Specific examples of hydroiodic acid include, for example, a commercially available 57% aqueous solution of hydroiodic acid.
上でも少し述べたが、本発明において、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素を用いる理由は以下のとおりである。すなわち、本発明者らは、二酸化炭素を利用した環状カーボネートの製造方法について鋭意検討を重ねた結果、本発明にかかるアミン化合物とヨウ化水素とから調製される、プロトンとヨウ素アニオンを有するアミン化合物塩が、エポキシド(オキシラン)と二酸化炭素との反応における触媒として効果的に作用することを見出した。本発明にかかる触媒(アミン化合物塩)は、常温、常圧等の穏和な条件下でも、該触媒(アミン化合物塩)における適度な塩基性度を有するアミンに結合したプロトンが、エポキシド(オキシラン)の酸素原子に対して金属配位子と同様の配位作用を有し、なおかつ該触媒(アミン化合物塩)におけるヨウ素アニオンがエポキシド(オキシラン)を効果的に開環させる作用を有しているため、常温、常圧等の穏和な条件下でも、収率良く環状カーボネートが製造できるものと考えられる。
As described above, in the present invention, the reason why the amine is selected from monoamines, cyclic amidines and guanidines and hydrogen iodide is used as follows. It is. That is, as a result of intensive studies on a method for producing a cyclic carbonate using carbon dioxide, the present inventors have prepared an amine compound having protons and iodine anions prepared from the amine compound according to the present invention and hydrogen iodide. It has been found that the salt effectively acts as a catalyst in the reaction of epoxide (oxirane) with carbon dioxide. The catalyst (amine compound salt) according to the present invention is an epoxide (oxirane) in which a proton bonded to an amine having an appropriate basicity in the catalyst (amine compound salt) even under mild conditions such as room temperature and normal pressure. It has a coordination action similar to that of a metal ligand with respect to oxygen atoms of iodine, and the iodine anion in the catalyst (amine compound salt) has an action of opening the epoxide (oxirane) effectively. It is considered that the cyclic carbonate can be produced with good yield even under mild conditions such as normal temperature and normal pressure.
本発明にかかる触媒(アミン化合物塩)において、プロトンは適度な塩基性度を有するアミンに結合している必要があるので、本発明にかかるアミン化合物のpKaは8以上であるが、なかでも、当該アミン化合物のpKaは10以上であることが好ましい。pKaが10以上のアミン化合物を用いれば、更に高い収率で環状カーボネートを製造することができる。
In the catalyst (amine compound salt) according to the present invention, the proton needs to be bonded to an amine having an appropriate basicity. Therefore, the pKa of the amine compound according to the present invention is 8 or more. The amine compound preferably has a pKa of 10 or more. If an amine compound having a pKa of 10 or more is used, a cyclic carbonate can be produced with a higher yield.
本発明に用いられるpKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるものとヨウ化水素とから調製される、プロトンとヨウ素アニオンを有するアミン化合物塩(本発明にかかる触媒)の具体例としては、例えば下記一般式[1']で示される、pKaが8以上のモノアミンとヨウ化水素との塩、下記一般式[2']で示される、pKaが8以上の環状アミジンとヨウ化水素との塩、あるいは下記一般式[3']で示される、pKaが8以上のグアニジンとヨウ化水素との塩から選ばれるものが挙げられる。
An amine compound having a proton and iodine anion, which is prepared from hydrogen iodide and a primary to tertiary amine having a pKa of 8 or more used in the present invention, which is selected from monoamines, cyclic amidines and guanidines Specific examples of the salt (catalyst according to the present invention) include, for example, a salt of monoamine and hydrogen iodide having a pKa of 8 or more, represented by the following general formula [1 ′], and represented by the following general formula [2 ′]. , A salt of cyclic amidine having a pKa of 8 or more and hydrogen iodide, or a salt of guanidine and hydrogen iodide having a pKa of 8 or more represented by the following general formula [3 ′].
(式中、R8、R9、R10、R11及びR12は上記に同じ。)
(In the formula, R 8 , R 9 , R 10 , R 11 and R 12 are the same as above.)
一般式[1']で示される、pKaが8以上のモノアミンとヨウ化水素との塩の具体例としては、一例として、モノイソプロピルアミン ヨウ化水素塩、モノ-t-ブチルアミン ヨウ化水素塩、モノシクロヘキシルアミン ヨウ化水素塩、ジシクロヘキシルアミン ヨウ化水素塩、ベンジルジメチルアミン ヨウ化水素塩等の種々のモノアミンヨウ化水素塩を挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、下記一般式[1'-I]で示されるモノアミンヨウ化水素塩が好ましい。
Specific examples of the salt of monoamine having a pKa of 8 or more and hydrogen iodide represented by the general formula [1 ′] include monoisopropylamine hydrogen iodide, mono-t-butylamine hydrogen iodide, Various monoamine hydrogen iodides such as monocyclohexylamine hydrogen iodide, dicyclohexylamine hydrogen iodide, benzyldimethylamine hydrogen iodide, and the like can be mentioned. Among them, cyclic carbonate can be obtained with higher yield. The monoamine hydrogen iodide salt represented by the following general formula [1′-I] is preferable.
一般式[1'-I]で示されるモノアミンヨウ化水素塩の具体例としては、例えばモノ-t-ブチルアミン ヨウ化水素塩、ジ-t-ブチルアミン ヨウ化水素塩、モノ-t-ペンチルアミン ヨウ化水素塩、ジ-t-ペンチルアミン ヨウ化水素塩、モノ-t-ヘキシルアミン ヨウ化水素塩、ジ-t-ヘキシルアミン ヨウ化水素塩、モノシクロペンチルアミン ヨウ化水素塩、ジシクロペンチルアミン ヨウ化水素塩、モノシクロヘキシルアミン ヨウ化水素塩、ジシクロヘキシルアミン ヨウ化水素塩、モノシクロヘプチルアミン ヨウ化水素塩、ジシクロヘプチルアミン ヨウ化水素塩、モノシクロオクチルアミン ヨウ化水素塩、ジシクロオクチルアミン ヨウ化水素塩等が挙げられ、なかでも、更に高い収率で環状カーボネートが得られるという点において、モノ-t-ブチルアミン ヨウ化水素塩、ジシクロヘキシルアミン ヨウ化水素塩が好ましい。なお、上述の具体例において、t-はtert-体を表す。
Specific examples of the monoamine hydrogen iodide represented by the general formula [1′-I] include, for example, mono-t-butylamine hydrogen iodide, di-t-butylamine hydrogen iodide, mono-t-pentylamine Hydrochloride, di-t-pentylamine hydrogen iodide, mono-t-hexylamine hydrogen iodide, di-t-hexylamine hydrogen iodide, monocyclopentylamine hydrogen iodide, dicyclopentylamine iodide Hydrogen salt, monocyclohexylamine hydrogen iodide, dicyclohexylamine hydrogen iodide, monocycloheptylamine hydrogen iodide, dicycloheptylamine hydrogen iodide, monocyclooctylamine hydrogen iodide, dicyclooctylamine In particular, a cyclic carbonate can be obtained with a higher yield. , Mono -t- butylamine hydroiodide, dicyclohexylamine hydroiodide preferred. In the above specific examples, t- represents a tert-isomer.
一般式[2']で示される、pKaが8以上の環状アミジンとヨウ化水素との塩の具体例としては、一例として、-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN) ヨウ化水素塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) ヨウ化水素塩等の種々の環状アミジンヨウ化水素塩を挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、下記一般式[2'-I]で示される環状アミジンヨウ化水素塩が好ましい。
Specific examples of the salt of cyclic amidine having a pKa of 8 or more and hydrogen iodide represented by the general formula [2 ′] include, for example, -methyl-1,4,5,6-tetrahydropyrimidine iodide salt 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine hydroiodide, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) hydroiodide, 1,8- Various cyclic amidine hydrogen iodides such as diazabicyclo [5.4.0] -7-undecene (DBU) 水 素 iodide can be mentioned, and among them, a cyclic carbonate can be obtained at a higher yield. In the above, a cyclic amidine hydrogen iodide salt represented by the following general formula [2′-I] is preferable.
一般式[2'-I]で示される環状アミジンヨウ化水素塩の具体例としては、例えば1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN) ヨウ化水素塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) ヨウ化水素塩等が挙げられ、なかでも、更に高い収率で環状カーボネートが得られるという点において、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) ヨウ化水素塩が好ましい。
Specific examples of the cyclic amidine hydrogen iodide represented by the general formula [2′-I] include, for example, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) hydrogen iodide, 1,8 -Diazabicyclo [5.4.0] -7-undecene (DBU) hydroiodide, and the like. Among them, 1,8-diazabicyclo [5. 4.0] -7-undecene (DBU) 水 素 iodide is preferred.
一般式[3']で示される、pKaが8以上のグアニジンとヨウ化水素との塩の具体例としては、一例として、グアニジン ヨウ化水素塩、1-(1-n-ブチル)グアニジン ヨウ化水素塩、1-(1-n-ブチル)-3-メチルグアニジン ヨウ化水素塩、1-(1-n-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩、2-(1-n-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩、1-(1-n-オクチル)グアニジン ヨウ化水素塩、1,1-ジシクロヘキシルグアニジン ヨウ化水素塩、1-ベンジルグアニジン ヨウ化水素塩、1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩、1-(2-メトキシエチル)グアニジン ヨウ化水素塩、1-(2-ジメチルアミノエチル)グアニジン ヨウ化水素塩、1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩、1-(2-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩等の種々のグアニジンヨウ化水素塩を挙げることができるが、なかでも、より高い収率で環状カーボネートが得られるという点において、1-(1-n-ブチル)グアニジン ヨウ化水素塩、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩、1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩が好ましい。なお、上述の具体例において、n-はnormal-体を表す。
Specific examples of the salt of guanidine and hydrogen iodide represented by the general formula [3 ′] having a pKa of 8 or more include, as an example, guanidine iodide salt, 1- (1-n-butyl) guanidine iodide. Hydrogen salt, 1- (1-n-butyl) -3-methylguanidine hydroiodide salt, 1- (1-n-butyl) -2,3-dimethylguanidine hydroiodide salt, 1- (1-n- Butyl) -2,3,3-trimethylguanidine hydroiodide, 2- (1-n-butyl) -1,1,3,3-tetramethylguanidine hydroiodide, 7-methyl-1,5 7-triazabicyclo [4.4.0] dec-5-ene 水 素 iodide, 1- (1-n-octyl) guanidine 水 素 iodide, 1,1-dicyclohexylguanidine 水 素 iodide, 1- Benzylguanidine hydroiodide salt, 1- (2-hydroxyethyl) guanidine hydroiodide salt 1- (2-methoxyethyl) guanidine hydroiodide salt, 1- (2-dimethylaminoethyl) guanidine hydroiodide salt, 1-benzyl-2,3,3-trimethylguanidine hydroiodide salt, 1- ( Various guanidine hydroiodides such as 2-dimethylaminoethyl) -2,3,3-trimethylguanidine hydroiodide can be mentioned, and above all, cyclic carbonate can be obtained with higher yield. 1- (1-n-butyl) guanidine 水 素 iodide salt, 1- (1-n-butyl) -2,3,3-trimethylguanidine iodide salt, 1-benzyl-2,3,3- Trimethylguanidine hydroiodide is preferred. In the above specific examples, n- represents a normal-body.
上述の一般式[1']で示されるモノアミンヨウ化水素塩、一般式[2']で示される環状アミジンヨウ化水素塩、あるいは一般式[3']で示されるグアニジンヨウ化水素塩から選ばれる本発明にかかる触媒(アミン化合物塩)のなかでも、一般式[1']で示されるモノアミンヨウ化水素塩及び一般式[2']で示される環状アミジンヨウ化水素塩から選ばれるものが好ましく、そのなかでも、一般式[1'-I]で示されるモノアミンヨウ化水素塩及び一般式[2'-I]で示される環状アミジンヨウ化水素塩から選ばれるものがより好ましい。
It is selected from the monoamine hydrogen iodide salt represented by the general formula [1 ′], the cyclic amidine hydrogen iodide salt represented by the general formula [2 ′], or the guanidine hydrogen iodide salt represented by the general formula [3 ′]. Among the catalysts (amine compound salts) according to the present invention, those selected from a monoamine hydrogen iodide salt represented by the general formula [1 ′] and a cyclic amidine hydrogen iodide salt represented by the general formula [2 ′] are preferable, Among these, those selected from monoamine hydrogen iodides represented by the general formula [1′-I] and cyclic amidine hydrogen iodides represented by the general formula [2′-I] are more preferable.
本発明においては、エポキシド(オキシラン)と二酸化炭素との反応系内に、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素を共存させることで、本発明にかかるアミン化合物とヨウ化水素とから、プロトンとヨウ素アニオンを有するアミン化合物の塩である本発明にかかる触媒(アミン化合物塩)が生成していればよいが、該反応系内で本発明にかかる触媒(アミン化合物塩)を用時調製するようにしてもよいし、別系内で本発明にかかるアミン化合物とヨウ化水素とを反応させて、本発明にかかる触媒(アミン化合物塩)をあらかじめ調製し、このように調製して単離した該触媒(アミン化合物塩)をエポキシド(オキシラン)と二酸化炭素との反応系内に共存させるようにしてもよい。すなわち、本発明においては、エポキシド(オキシラン)と二酸化炭素との反応を、本発明にかかる触媒(アミン化合物塩)を調製する反応と同一系内で行って1ポットで反応させるようにしてもよいし、本発明にかかる触媒(アミン化合物塩)を別系内であらかじめ調製する反応(工程)を行って該触媒(アミン化合物塩)を単離しておき、単離した該触媒(アミン化合物塩)を用いてエポキシド(オキシラン)と二酸化炭素とを反応させるようにしてもよい。したがって、本発明にかかるアミン化合物とヨウ化水素から調製される本発明にかかる触媒(アミン化合物塩)の存在下で、エポキシド(オキシラン)と二酸化炭素を反応させることも、「pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素の存在下で反応させる」と表現される範囲内に含まれるものとする。なお、本発明にかかる触媒(アミン化合物塩)の調製方法については後述する。
In the present invention, the reaction system of epoxide (oxirane) and carbon dioxide contains a primary or tertiary amine having a pKa of 8 or more and an amine compound selected from monoamine, cyclic amidine and guanidine and iodinated. By coexisting hydrogen, the catalyst (amine compound salt) according to the present invention, which is a salt of an amine compound having protons and iodine anions, is generated from the amine compound according to the present invention and hydrogen iodide. The catalyst (amine compound salt) according to the present invention may be prepared in use in the reaction system, or the amine compound according to the present invention and hydrogen iodide may be reacted in another system to produce the present invention. The catalyst (amine compound salt) is prepared in advance, and the catalyst (amine compound salt) thus prepared and isolated is reacted with epoxide (oxirane) and carbon dioxide. It may be allowed to coexist within. That is, in the present invention, the reaction of epoxide (oxirane) and carbon dioxide may be carried out in the same system as the reaction for preparing the catalyst (amine compound salt) according to the present invention and reacted in one pot. The catalyst (amine compound salt) is isolated by performing a reaction (step) in which the catalyst (amine compound salt) according to the present invention is prepared in advance in another system. An epoxide (oxirane) and carbon dioxide may be reacted with each other. Therefore, the reaction of epoxide (oxirane) and carbon dioxide in the presence of the catalyst (amine compound salt) according to the present invention prepared from the amine compound according to the present invention and hydrogen iodide can also be carried out by “pKa of 8 or more. It is a primary to tertiary amine and is included within the range expressed as “reacting with an amine compound selected from monoamine, cyclic amidine and guanidine in the presence of hydrogen iodide”. In addition, the preparation method of the catalyst (amine compound salt) concerning this invention is mentioned later.
本発明においては、別系内で本発明にかかるアミン化合物とヨウ化水素とを反応させて、本発明にかかる触媒(アミン化合物塩)をあらかじめ調製して単離しておき、これを触媒として用いることが好ましい。エポキシド(オキシラン)と二酸化炭素との反応系内に、本発明にかかるアミン化合物とヨウ化水素を共存させる場合において、ヨウ化水素源としてヨウ化水素酸を用いると、共存する水がエポキシド(オキシラン)と反応して予期しない副反応を引き起こすおそれがあり、その一方で、ヨウ化水素源としてヨウ化水素ガスを用いることもできるが、ヨウ化水素ガスは常温で気体状態であるので、その取り扱いには注意を要するためである。言い換えれば、別系内で本発明にかかる触媒(アミン化合物塩)をあらかじめ調製して単離しておく方法は、本発明をより容易に行うことができるのである。すなわち、本発明にかかる触媒(アミン化合物塩)は、本発明にかかるアミン化合物と、取り扱いが容易なヨウ化水素酸とを反応させる、いわゆる1ステップで簡便かつ安価な合成方法であらかじめ調製できる。また、この調製方法により得られるアミン化合物塩(本発明にかかる触媒)は、固体状態のものがほとんどであるので、反応系内から容易に単離することができる。
In the present invention, the amine compound according to the present invention is reacted with hydrogen iodide in a separate system, and the catalyst (amine compound salt) according to the present invention is prepared and isolated in advance, and this is used as the catalyst. It is preferable. In the case where the amine compound according to the present invention and hydrogen iodide coexist in the reaction system of epoxide (oxirane) and carbon dioxide, when hydroiodic acid is used as a hydrogen iodide source, the coexisting water becomes epoxide (oxirane). On the other hand, hydrogen iodide gas can be used as a hydrogen iodide source. However, since hydrogen iodide gas is in a gaseous state at room temperature, This is because caution is required. In other words, the method of preparing and isolating the catalyst (amine compound salt) according to the present invention in a separate system in advance can make the present invention easier. That is, the catalyst (amine compound salt) according to the present invention can be prepared in advance by a so-called one-step simple and inexpensive synthesis method in which the amine compound according to the present invention is reacted with hydroiodic acid which is easy to handle. In addition, since most of the amine compound salt (catalyst according to the present invention) obtained by this preparation method is in a solid state, it can be easily isolated from the reaction system.
本発明にかかる触媒であるアミン化合物塩は、用時調製するにしろ、あらかじめ調製して単離しておくにしろ、本発明にかかるアミン化合物とヨウ化水素から1ステップで合成でき、なおかつこれを触媒として用いれば、常温、常圧等の穏和な条件下でも、合成に多工程を要する高価な金属配位型触媒と同等以上の収率で環状カーボネートを製造することができるという点で有用である。また、本発明にかかる触媒(アミン化合物塩)は、メタルフリー(金属フリー)の触媒でもあるので、メタル(金属)の除去工程を必要とせず、グリーンケミストリーの観点からも有用である。特に最近では、製品の精密化が進んでおり、不純物としてメタル(金属)をたとえ微量でも含んでいる材料は好まれない傾向にある。このため、メタル(金属)の除去工程を必要としない本発明の製造方法は、上述したような材料となり得る環状カーボネートを製造する上で非常に有用である。
The amine compound salt, which is a catalyst according to the present invention, can be synthesized in one step from the amine compound according to the present invention and hydrogen iodide, whether it is prepared at the time of use or prepared in advance and isolated. If used as a catalyst, it is useful in that cyclic carbonates can be produced in a yield equivalent to or higher than that of expensive metal coordination catalysts that require multiple steps for synthesis even under mild conditions such as room temperature and atmospheric pressure. is there. Moreover, since the catalyst (amine compound salt) concerning this invention is also a metal free (metal free) catalyst, the removal process of a metal (metal) is not required and it is useful also from a viewpoint of green chemistry. In recent years, in particular, the refinement of products has progressed, and there is a tendency that a material containing even a trace amount of metal as an impurity is not preferred. For this reason, the production method of the present invention that does not require a metal removal step is very useful in producing a cyclic carbonate that can be a material as described above.
本発明にかかる触媒であるアミン化合物塩は、例えばシリカ、アルミナ等の担体に担持されているものであってもよいし、重合体(ポリマー)中に組み込まれているもの、すなわち、高分子化されているものであってもよい。このようなアミン化合物塩は、反応系内からの環状カーボネートの単離工程において、生成物である環状カーボネートとの分離が容易であるという利点を有している上、回収、再利用が可能であるという利点も有しているため、グリーンケミストリーの観点から有用な、環境負荷低減を考慮した実用的な触媒である。
The amine compound salt that is a catalyst according to the present invention may be supported on a carrier such as silica or alumina, or is incorporated in a polymer (polymer), that is, polymerized. It may be what has been done. Such an amine compound salt has the advantage that it can be easily separated from the product cyclic carbonate in the process of isolating the cyclic carbonate from the reaction system, and can be recovered and reused. Since it also has the advantage of being, it is a practical catalyst that is useful from the viewpoint of green chemistry and that takes into consideration the reduction of environmental impact.
本発明にかかる二酸化炭素は、環状カーボネートを製造するための原料として用いられる。当該二酸化炭素は、工業的には、電力、ガス等の生産によって副生する二酸化炭素を回収、精製等することにより製造されるが、供給形態や由来等に関して特に制限はない。また、二酸化炭素の純度については、必ずしも高純度である必要はなく、窒素ガス、アルゴンガス等の不活性ガス等で希釈されていてもよい。ただし、二酸化炭素の純度が低いと反応容積が大きくなる傾向にあるので、二酸化炭素は高純度であることが好ましい。二酸化炭素の純度としては、95%以上、なかでも、99%以上であることが好ましい。
The carbon dioxide according to the present invention is used as a raw material for producing a cyclic carbonate. The carbon dioxide is industrially produced by collecting, purifying, etc., carbon dioxide produced as a by-product in the production of electric power, gas, etc., but there is no particular limitation on the supply form, origin, and the like. Further, the purity of carbon dioxide is not necessarily high and may be diluted with an inert gas such as nitrogen gas or argon gas. However, since the reaction volume tends to increase if the purity of carbon dioxide is low, the carbon dioxide is preferably highly pure. The purity of carbon dioxide is preferably 95% or more, particularly 99% or more.
本発明にかかるエポキシド(オキシラン)は、上述の二酸化炭素と同様に、環状カーボネートを製造するための原料として用いられる。当該エポキシド(オキシラン)は、通常この分野で用いられるものであれば特に限定されず、少なくともオキシラン環を1つ有していればよく、2つ以上のオキシラン環を有していてもよいし、エーテル基、アシル基等の他の官能基を有していてもよい。当該エポキシド(オキシラン)の具体例としては、例えば下記一般式[4]で示されるエポキシド(オキシラン)又は下記一般式[5]で示されるエポキシド(オキシラン)から選ばれるものが挙げられる。
The epoxide (oxirane) according to the present invention is used as a raw material for producing a cyclic carbonate in the same manner as the carbon dioxide described above. The epoxide (oxirane) is not particularly limited as long as it is usually used in this field, and may have at least one oxirane ring, and may have two or more oxirane rings. You may have other functional groups, such as an ether group and an acyl group. Specific examples of the epoxide (oxirane) include those selected from the epoxide (oxirane) represented by the following general formula [4] or the epoxide (oxirane) represented by the following general formula [5].
(式中、A1、A2、A3及びA4はそれぞれ独立して、水素原子又はヘテロ原子を有していてもよい炭素数1~20の1価の炭化水素基を表す。なお、A1とA2、A1とA4又はA3とA4とで環状構造を形成していてもよい。)
(Wherein A 1 , A 2 , A 3 and A 4 each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. A 1 and A 2 , A 1 and A 4 or A 3 and A 4 may form a cyclic structure.)
(式中、A5、A6、A7、A8、A9及びA10はそれぞれ独立して、水素原子又はヘテロ原子を有していてもよい炭素数1~20の1価の炭化水素基を表し、Tは、ヘテロ原子を有していてもよい炭素数1~20の2価の炭化水素基を表す。なお、A5とA6、A5とA7、A8とA10又はA9とA10とで環状構造を形成していてもよい。)
(In the formula, A 5 , A 6 , A 7 , A 8 , A 9 and A 10 are each independently a monovalent hydrocarbon having 1 to 20 carbon atoms which may have a hydrogen atom or a hetero atom. T represents a divalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hetero atom, wherein A 5 and A 6 , A 5 and A 7 , A 8 and A 10 Alternatively, A 9 and A 10 may form a cyclic structure.)
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される1価の炭化水素基としては、具体的には、例えばアルキル基、アルケニル基、アリール基、アラルキル基等が挙げられる。
The monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] Specific examples include an alkyl group, an alkenyl group, an aryl group, and an aralkyl group.
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される、ヘテロ原子を有していてもよい炭素数1~20の1価の炭化水素基におけるヘテロ原子の具体例としては、例えば酸素原子、硫黄原子、例えばフッ素原子、塩素原子等のハロゲン原子等が挙げられる。
It has a hetero atom represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5]. Specific examples of the hetero atom in the monovalent hydrocarbon group having 1 to 20 carbon atoms may include, for example, an oxygen atom, a sulfur atom, for example, a halogen atom such as a fluorine atom and a chlorine atom.
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される1価の炭化水素基がアルキル基である場合の具体例、すなわち、一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示されるヘテロ原子を有していてもよいアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。当該アルキル基がヘテロ原子を有さない場合の具体例としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、s-オクチル基、t-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、s-ノニル基、t-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、s-デシル基、t-デシル基、ネオデシル基、シクロデシル基、n-ウンデシル基、シクロウンデシル基、n-ドデシル基、シクロドデシル基、n-トリデシル基、シクロトリデシル基、n-テトラデシル基、シクロテトラデシル基、n-ペンタデシル基、シクロペンタデシル基、n-ヘキサデシル基、シクロヘキサデシル基、n-ヘプタデシル基、シクロヘプタデシル基、n-オクタデシル基、シクロオクタデシル基、n-ノナデシル基、シクロノナデシル基、n-イコシル基、シクロイコシル基、ボルニル基、メンチル基、アダマンチル基、メチルアダマンチル基、デカヒドロナフチル基等の炭素数1~20のアルキル基が挙げられ、なかでも、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、s-ヘプチル基、t-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、s-オクチル基、t-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、s-ノニル基、t-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、s-デシル基、t-デシル基、ネオデシル基、シクロデシル基、ボルニル基、メンチル基、アダマンチル基、デカヒドロナフチル基等の炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基が好ましい。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
The monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are alkyl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] The alkyl group which may have a hetero atom shown may be linear, branched or cyclic. Specific examples of the case where the alkyl group has no hetero atom include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, Cyclobutyl group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group , Isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl Group, isoheptyl group, s-heptyl group, t-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl group, s-octyl group, t -Octyl, neooctyl, 2-ethylhexyl, cyclooctyl, n-nonyl, isononyl, s-nonyl, t-nonyl, neononyl, cyclononyl, n-decyl, isodecyl, s- Decyl, t-decyl, neodecyl, cyclodecyl, n-undecyl, cycloundecyl, n-dodecyl, cyclododecyl, n-tridecyl, cyclotridecyl, n-tetradecyl, cyclotetra Decyl group, n-pentadecyl group, cyclopentadecyl group, n-hexadecyl group, cyclohexadecyl group, n-heptadecyl group, cycloheptadecyl group, n-octadecyl group, cyclooctadecyl group, n-nonadecyl group, cyclononadecyl group, n-icosyl group, cycloicosyl group, bornyl group, menthyl group, adamantyl group, methyladamanthi And alkyl groups having 1 to 20 carbon atoms, such as a decahydronaphthyl group, among them, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group , T-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, s-pentyl group, t-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl Group, n-hexyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, Cyclohexyl group, n-heptyl group, isoheptyl group, s-heptyl group, t-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl , S-octyl group, t-octyl group, neooctyl group, 2-ethylhexyl group, cyclooctyl group, n-nonyl group, isononyl group, s-nonyl group, t-nonyl group, neononyl group, cyclononyl group, n-decyl A linear, branched or branched group having 1 to 10 carbon atoms, such as a group, isodecyl group, s-decyl group, t-decyl group, neodecyl group, cyclodecyl group, bornyl group, menthyl group, adamantyl group, decahydronaphthyl group, etc. A cyclic alkyl group is preferred. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
また、上述のA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示されるヘテロ原子を有していてもよいアルキル基がヘテロ原子を有する場合の具体例としては、例えばメトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基、メトキシオクチル基、メトキシノニル基、メトキシデシル基、メトキシウンデシル基、メトキシドデシル基、メトキシトリデシル基、メトキシテトラデシル基、メトキシペンタデシル基、メトキシヘキサデシル基、メトキシヘプタデシル基、メトキシオクタデシル基、メトキシノナデシル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、エトキシペンチル基、エトキシヘキシル基、エトキシヘプチル基、エトキシオクチル基、エトキシノニル基、エトキシデシル基、エトキシウンデシル基、エトキシドデシル基、エトキシトリデシル基、エトキシテトラデシル基、エトキシペンタデシル基、エトキシヘキサデシル基、エトキシヘプタデシル基、エトキシオクタデシル基、プロポキシメチル基、プロポキシエチル基、プロポキシプロピル基、プロポキシブチル基、プロポキシペンチル基、プロポキシヘキシル基、プロポキシヘプチル基、プロポキシオクチル基、プロポキシノニル基、プロポキシデシル基、プロポキシウンデシル基、プロポキシドデシル基、プロポキシトリデシル基、プロポキシテトラデシル基、プロポキシペンタデシル基、プロポキシヘキサデシル基、プロポキシヘプタデシル基、ブトキシメチル基、ブトキシエチル基、ブトキシプロピル基、ブトキシブチル基、ブトキシペンチル基、ブトキシヘキシル基、ブトキシヘプチル基、ブトキシオクチル基、ブトキシノニル基、ブトキシデシル基、ブトキシウンデシル基、ブトキシドデシル基、ブトキシトリデシル基、ブトキシテトラデシル基、ブトキシペンタデシル基、ブトキシヘキサデシル基、ペンチルオキシメチル基、ペンチルオキシエチル基、ペンチルオキシプロピル基、ペンチルオキシブチル基、ペンチルオキシペンチル基、ペンチルオキシヘキシル基、ペンチルオキシヘプチル基、ペンチルオキシオクチル基、ペンチルオキシノニル基、ペンチルオキシデシル基、ペンチルオキシウンデシル基、ペンチルオキシドデシル基、ペンチルオキシトリデシル基、ペンチルオキシテトラデシル基、ペンチルオキシペンタデシル基、ヘキシルオキシメチル基、ヘキシルオキシエチル基、ヘキシルオキシプロピル基、ヘキシルオキシブチル基、ヘキシルオキシペンチル基、ヘキシルオキシヘキシル基、ヘキシルオキシヘプチル基、ヘキシルオキシオクチル基、ヘキシルオキシノニル基、ヘキシルオキシデシル基、ヘキシルオキシウンデシル基、ヘキシルオキシドデシル基、ヘキシルオキシトリデシル基、ヘキシルオキシテトラデシル基、ヘプチルオキシメチル基、ヘプチルオキシエチル基、ヘプチルオキシプロピル基、ヘプチルオキシブチル基、ヘプチルオキシペンチル基、ヘプチルオキシヘキシル基、ヘプチルオキシヘプチル基、ヘプチルオキシオクチル基、ヘプチルオキシノニル基、ヘプチルオキシデシル基、ヘプチルオキシウンデシル基、ヘプチルオキシドデシル基、ヘプチルオキシトリデシル基、オクチルオキシメチル基、オクチルオキシエチル基、オクチルオキシプロピル基、オクチルオキシブチル基、オクチルオキシペンチル基、オクチルオキシヘキシル基、オクチルオキシヘプチル基、オクチルオキシオクチル基、オクチルオキシノニル基、オクチルオキシデシル基、オクチルオキシウンデシル基、オクチルオキシドデシル基、ノニルオキシメチル基、ノニルオキシエチル基、ノニルオキシプロピル基、ノニルオキシブチル基、ノニルオキシペンチル基、ノニルオキシヘキシル基、ノニルオキシヘプチル基、ノニルオキシオクチル基、ノニルオキシノニル基、ノニルオキシデシル基、ノニルオキシウンデシル基、デシルオキシメチル基、デシルオキシエチル基、デシルオキシプロピル基、デシルオキシブチル基、デシルオキシペンチル基、デシルオキシヘキシル基、デシルオキシヘプチル基、デシルオキシオクチル基、デシルオキシノニル基、デシルオキシデシル基、ウンデシルオキシメチル基、ウンデシルオキシエチル基、ウンデシルオキシプロピル基、ウンデシルオキシブチル基、ウンデシルオキシペンチル基、ウンデシルオキシヘキシル基、ウンデシルオキシヘプチル基、ウンデシルオキシオクチル基、ウンデシルオキシノニル基、ドデシルオキシメチル基、ドデシルオキシエチル基、ドデシルオキシプロピル基、ドデシルオキシブチル基、ドデシルオキシペンチル基、ドデシルオキシヘキシル基、ドデシルオキシヘプチル基、ドデシルオキシオクチル基、トリデシルオキシメチル基、トリデシルオキシエチル基、トリデシルオキシプロピル基、トリデシルオキシブチル基、トリデシルオキシペンチル基、トリデシルオキシヘキシル基、トリデシルオキシヘプチル基、テトラデシルオキシメチル基、テトラデシルオキシエチル基、テトラデシルオキシプロピル基、テトラデシルオキシブチル基、テトラデシルオキシペンチル基、テトラデシルオキシヘキシル基、ペンタデシルオキシメチル基、ペンタデシルオキシエチル基、ペンタデシルオキシプロピル基、ペンタデシルオキシブチル基、ペンタデシルオキシペンチル基、ヘキサデシルオキシメチル基、ヘキサデシルオキシエチル基、ヘキサデシルオキシプロピル基、ヘキサデシルオキシブチル基、ヘプタデシルオキシメチル基、ヘプタデシルオキシエチル基、ヘプタデシルオキシプロピル基、オクタデシルオキシメチル基、オクタデシルオキシエチル基、ノナデシルオキシメチル基等のエーテル基(酸素原子)を有する炭素数2~20のアルキル基、例えばホルミルオキシメチル基、ホルミルオキシエチル基、ホルミルオキシプロピル基、アセトキシメチル基(アセチルオキシメチル基)、アセトキシエチル基(アセチルオキシエチル基)、アセトキシプロピル基(アセチルオキシプロピル基)、プロピオニルオキシメチル基、プロピオニルオキシエチル基、プロピオニルオキシプロピル基、ブチリルオキシメチル基、ブチリルオキシエチル基、ブチリルオキシプロピル基、バレリルオキシメチル基(ペンタノイルオキシメチル基)、バレリルオキシエチル基(ペンタノイルオキシエチル基)、バレリルオキシプロピル基(ペンタノイルオキシプロピル基)、カプロイルオキシメチル基(ヘキサノイルオキシメチル基)、カプロイルオキシエチル基(ヘキサノイルオキシエチル基)、カプロイルオキシプロピル基(ヘキサノイルオキシプロピル基)、エナントイルオキシメチル基(ヘプタノイルオキシメチル基)、エナントイルオキシエチル基(ヘプタノイルオキシエチル基)、エナントイルオキシプロピル基(ヘプタノイルオキシプロピル基)等のカルボニルオキシ基(酸素原子)を有する炭素数2~20のアルキル基、例えばパーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基、パーフルオロペンタデシル基、パーフルオロヘキサデシル基、パーフルオロヘプタデシル基、パーフルオロオクタデシル基、パーフルオロノナデシル基、パーフルオロイコシル基等のフルオロ基(フッ素原子)を有する炭素数1~20のアルキル基等が挙げられ、なかでも、例えばメトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基、メトキシオクチル基、メトキシノニル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、エトキシペンチル基、エトキシヘキシル基、エトキシヘプチル基、エトキシオクチル基、プロポキシメチル基、プロポキシエチル基、プロポキシプロピル基、プロポキシブチル基、プロポキシペンチル基、プロポキシヘキシル基、プロポキシヘプチル基、ブトキシメチル基、ブトキシエチル基、ブトキシプロピル基、ブトキシブチル基、ブトキシペンチル基、ブトキシヘキシル基、ペンチルオキシメチル基、ペンチルオキシエチル基、ペンチルオキシプロピル基、ペンチルオキシブチル基、ペンチルオキシペンチル基、ヘキシルオキシメチル基、ヘキシルオキシエチル基、ヘキシルオキシプロピル基、ヘキシルオキシブチル基、ヘプチルオキシメチル基、ヘプチルオキシエチル基、ヘプチルオキシプロピル基、オクチルオキシメチル基、オクチルオキシエチル基、ノニルオキシメチル基等のエーテル基(酸素原子)を有する炭素数2~10の直鎖状、分枝状もしくは環状のアルキル基、例えばホルミルオキシメチル基、ホルミルオキシエチル基、ホルミルオキシプロピル基、アセトキシメチル基(アセチルオキシメチル基)、アセトキシエチル基(アセチルオキシエチル基)、アセトキシプロピル基(アセチルオキシプロピル基)、プロピオニルオキシメチル基、プロピオニルオキシエチル基、プロピオニルオキシプロピル基、ブチリルオキシメチル基、ブチリルオキシエチル基、ブチリルオキシプロピル基、バレリルオキシメチル基(ペンタノイルオキシメチル基)、バレリルオキシエチル基(ペンタノイルオキシエチル基)、バレリルオキシプロピル基(ペンタノイルオキシプロピル基)、カプロイルオキシメチル基(ヘキサノイルオキシメチル基)、カプロイルオキシエチル基(ヘキサノイルオキシエチル基)、カプロイルオキシプロピル基(ヘキサノイルオキシプロピル基)、エナントイルオキシメチル基(ヘプタノイルオキシメチル基)、エナントイルオキシエチル基(ヘプタノイルオキシエチル基)、エナントイルオキシプロピル基(ヘプタノイルオキシプロピル基)等のカルボニルオキシ基(酸素原子)を有する炭素数2~10の直鎖状、分枝状もしくは環状のアルキル基、例えばパーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基等のフルオロ基(フッ素原子)を有する炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基が好ましい。なお、上述の具体例において、アルキル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキル基であってもよい。
Further, the above-mentioned A 1, A 2, A 3 , A 4, A 5, A 6, A 7, A 8, A 9 and an alkyl group which may have a hetero atom is a heteroatom represented by A 10 Specific examples in the case of having, for example, methoxymethyl group, methoxyethyl group, methoxypropyl group, methoxybutyl group, methoxypentyl group, methoxyhexyl group, methoxyheptyl group, methoxyoctyl group, methoxynonyl group, methoxydecyl group, Methoxyundecyl group, methoxydodecyl group, methoxytridecyl group, methoxytetradecyl group, methoxypentadecyl group, methoxyhexadecyl group, methoxyheptadecyl group, methoxyoctadecyl group, methoxynonadecyl group, ethoxymethyl group, ethoxyethyl group , Ethoxypropyl group, ethoxybutyl group, ethoxy pliers Group, ethoxyhexyl group, ethoxyheptyl group, ethoxyoctyl group, ethoxynonyl group, ethoxydecyl group, ethoxyundecyl group, ethoxydodecyl group, ethoxytridecyl group, ethoxytetradecyl group, ethoxypentadecyl group, ethoxyhexadecyl group , Ethoxyheptadecyl group, ethoxyoctadecyl group, propoxymethyl group, propoxyethyl group, propoxypropyl group, propoxybutyl group, propoxypentyl group, propoxyhexyl group, propoxyheptyl group, propoxyoctyl group, propoxynonyl group, propoxydecyl group, Propoxyundecyl group, propoxydodecyl group, propoxytridecyl group, propoxytetradecyl group, propoxypentadecyl group, propoxyhexadecyl group, propoxyheptadecyl group , Butoxymethyl group, butoxyethyl group, butoxypropyl group, butoxybutyl group, butoxypentyl group, butoxyhexyl group, butoxyheptyl group, butoxyoctyl group, butoxynonyl group, butoxydecyl group, butoxyundecyl group, butoxydodecyl group, Butoxytridecyl group, butoxytetradecyl group, butoxypentadecyl group, butoxyhexadecyl group, pentyloxymethyl group, pentyloxyethyl group, pentyloxypropyl group, pentyloxybutyl group, pentyloxypentyl group, pentyloxyhexyl group, Pentyloxyheptyl group, pentyloxyoctyl group, pentyloxynonyl group, pentyloxydecyl group, pentyloxyundecyl group, pentyloxidedecyl group, pentyloxytridecyl group, pentyl Ruoxytetradecyl group, pentyloxypentadecyl group, hexyloxymethyl group, hexyloxyethyl group, hexyloxypropyl group, hexyloxybutyl group, hexyloxypentyl group, hexyloxyhexyl group, hexyloxyheptyl group, hexyloxyoctyl Group, hexyloxynonyl group, hexyloxydecyl group, hexyloxyundecyl group, hexyloxidedecyl group, hexyloxytridecyl group, hexyloxytetradecyl group, heptyloxymethyl group, heptyloxyethyl group, heptyloxypropyl group, Heptyloxybutyl, heptyloxypentyl, heptyloxyhexyl, heptyloxyheptyl, heptyloxyoctyl, heptyloxynonyl, heptyloxydecyl, Ptyloxyundecyl group, heptyl oxide decyl group, heptyloxytridecyl group, octyloxymethyl group, octyloxyethyl group, octyloxypropyl group, octyloxybutyl group, octyloxypentyl group, octyloxyhexyl group, octyloxyheptyl group Group, octyloxyoctyl group, octyloxynonyl group, octyloxydecyl group, octyloxyundecyl group, octyloxidedecyl group, nonyloxymethyl group, nonyloxyethyl group, nonyloxypropyl group, nonyloxybutyl group, nonyloxy Pentyl, nonyloxyhexyl, nonyloxyheptyl, nonyloxyoctyl, nonyloxynonyl, nonyloxydecyl, nonyloxyundecyl, decyloxymethyl, decyl Ruoxyethyl, decyloxypropyl, decyloxybutyl, decyloxypentyl, decyloxyhexyl, decyloxyheptyl, decyloxyoctyl, decyloxynonyl, decyloxydecyl, undecyloxymethyl, undecyloxymethyl Decyloxyethyl, undecyloxypropyl, undecyloxybutyl, undecyloxypentyl, undecyloxyhexyl, undecyloxyheptyl, undecyloxyoctyl, undecyloxynonyl, dodecyloxymethyl Group, dodecyloxyethyl group, dodecyloxypropyl group, dodecyloxybutyl group, dodecyloxypentyl group, dodecyloxyhexyl group, dodecyloxyheptyl group, dodecyloxyoctyl group, tridecyloxy Methyl group, tridecyloxyethyl group, tridecyloxypropyl group, tridecyloxybutyl group, tridecyloxypentyl group, tridecyloxyhexyl group, tridecyloxyheptyl group, tetradecyloxymethyl group, tetradecyloxyethyl group , Tetradecyloxypropyl group, tetradecyloxybutyl group, tetradecyloxypentyl group, tetradecyloxyhexyl group, pentadecyloxymethyl group, pentadecyloxyethyl group, pentadecyloxypropyl group, pentadecyloxybutyl group, penta Decyloxypentyl, hexadecyloxymethyl, hexadecyloxyethyl, hexadecyloxypropyl, hexadecyloxybutyl, heptadecyloxymethyl, heptadecyloxyethyl, hep Alkyl groups having 2 to 20 carbon atoms having an ether group (oxygen atom) such as decyloxypropyl group, octadecyloxymethyl group, octadecyloxyethyl group, nonadecyloxymethyl group, such as formyloxymethyl group, formyloxyethyl group, Formyloxypropyl group, acetoxymethyl group (acetyloxymethyl group), acetoxyethyl group (acetyloxyethyl group), acetoxypropyl group (acetyloxypropyl group), propionyloxymethyl group, propionyloxyethyl group, propionyloxypropyl group, Butyryloxymethyl group, butyryloxyethyl group, butyryloxypropyl group, valeryloxymethyl group (pentanoyloxymethyl group), valeryloxyethyl group (pentanoyloxyethyl group), valeryl Xylpropyl group (pentanoyloxypropyl group), caproyloxymethyl group (hexanoyloxymethyl group), caproyloxyethyl group (hexanoyloxyethyl group), caproyloxypropyl group (hexanoyloxypropyl group), enanthate Carbon number having a carbonyloxy group (oxygen atom) such as an yloxymethyl group (heptanoyloxymethyl group), an enanthyloxyethyl group (heptanoyloxyethyl group), an enanthyloxypropyl group (heptanoyloxypropyl group) 2 to 20 alkyl groups such as perfluoromethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl, perfluoropentyl, perfluorohexyl, perfluoroheptyl, perfluorooctyl, perfluoro Orononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, perfluorotridecyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorohexadecyl group, perfluoroheptadecyl group, perfluoro Examples thereof include C1-C20 alkyl groups having a fluoro group (fluorine atom) such as fluorooctadecyl group, perfluorononadecyl group, perfluoroicosyl group, etc. Among them, for example, methoxymethyl group, methoxyethyl group, Methoxypropyl, methoxybutyl, methoxypentyl, methoxyhexyl, methoxyheptyl, methoxyoctyl, methoxynonyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl, ethoxypentyl, ethoxy Xyl group, ethoxyheptyl group, ethoxyoctyl group, propoxymethyl group, propoxyethyl group, propoxypropyl group, propoxybutyl group, propoxypentyl group, propoxyhexyl group, propoxyheptyl group, butoxymethyl group, butoxyethyl group, butoxypropyl group , Butoxybutyl group, butoxypentyl group, butoxyhexyl group, pentyloxymethyl group, pentyloxyethyl group, pentyloxypropyl group, pentyloxybutyl group, pentyloxypentyl group, hexyloxymethyl group, hexyloxyethyl group, hexyloxy Propyl, hexyloxybutyl, heptyloxymethyl, heptyloxyethyl, heptyloxypropyl, octyloxymethyl, octyloxyethyl, nonyloxy C2-C10 linear, branched or cyclic alkyl groups having an ether group (oxygen atom) such as a dimethyl group, such as formyloxymethyl group, formyloxyethyl group, formyloxypropyl group, acetoxymethyl group (Acetyloxymethyl group), acetoxyethyl group (acetyloxyethyl group), acetoxypropyl group (acetyloxypropyl group), propionyloxymethyl group, propionyloxyethyl group, propionyloxypropyl group, butyryloxymethyl group, butyryl Oxyethyl, butyryloxypropyl, valeryloxymethyl (pentanoyloxymethyl), valeryloxyethyl (pentanoyloxyethyl), valeryloxypropyl (pentanoyloxypropyl), cap Royloxime Tyl group (hexanoyloxymethyl group), caproyloxyethyl group (hexanoyloxyethyl group), caproyloxypropyl group (hexanoyloxypropyl group), enanthyloxymethyl group (heptanoyloxymethyl group), enanthate Linear, branched or cyclic having 2 to 10 carbon atoms having a carbonyloxy group (oxygen atom) such as an yloxyethyl group (heptanoyloxyethyl group) or an enanthyloxypropyl group (heptanoyloxypropyl group) Alkyl groups such as perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, Perfluorodecyl group, etc. Ruoro group (fluorine atom) having 1 to 10 straight with an alkyl group branched or cyclic are preferred. In the specific examples described above, the alkyl group is not limited to the normal-form, but may be a branched or cyclo-form alkyl group such as a sec-form, tert-form, iso-form, or neo-form. May be.
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される1価の炭化水素基がアルケニル基である場合の具体例、すなわち、一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示されるヘテロ原子を有していてもよいアルケニル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。当該アルケニル基がヘテロ原子を有さない場合の具体例としては、例えばビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等の炭素数2~20のアルケニル基が挙げられ、なかでも、例えばビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基等の炭素数2~10の直鎖状、分枝状もしくは環状のアルケニル基が好ましい。また、上記アルケニル基がヘテロ原子を有する場合の具体例としては、例えばビニルオキシメチル基、ビニルオキシエチル基、ビニルオキシプロピル基、プロペニルオキシメチル基、プロペニルオキシエチル基、プロペニルオキシプロピル基、ブテニルオキシメチル基、ブテニルオキシエチル基、ブテニルオキシプロピル基、ペンテニルオキシメチル基、ペンテニルオキシエチル基、ペンテニルオキシプロピル基、ヘキセニルオキシメチル基、ヘキセニルオキシエチル基、ヘキセニルオキシプロピル基等のエーテル基(酸素原子)を有する炭素数3~20のアルケニル基、例えばアクリロイルオキシメチル基、アクリロイルオキシエチル基、アクリロイルオキシプロピル基、メタクリロイルオキシメチル基、メタクリロイルオキシエチル基、メタクリロイルオキシプロピル基、クロトノイルオキシメチル基、クロトノイルオキシエチル基、クロトノイルオキシプロピル基、チグロイルオキシメチル基、チグロイルオキシエチル基、チグロイルオキシプロピル基、アンゲロイルオキシメチル基、アンゲロイルオキシエチル基、アンゲロイルオキシプロピル基、セネシオイルオキシメチル基、セネシオイルオキシエチル基、セネシオイルオキシプロピル基、ソルボイルオキシメチル基、ソルボイルオキシエチル基、ソルボイルオキシプロピル基等のカルボニルオキシ基(酸素原子)を有する炭素数4~20のアルケニル基、例えばパーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基、パーフルオロペンテニル基、パーフルオロヘキセニル基、パーフルオロヘプテニル基、パーフルオロオクテニル基、パーフルオロノネニル基、パーフルオロデセニル基、パーフルオロウンデセニル基、パーフルオロドデセニル基、パーフルオロトリデセニル基、パーフルオロテトラデセニル基、パーフルオロペンタデセニル基、パーフルオロヘキサデセニル基、パーフルオロヘプタデセニル基、パーフルオロオクタデセニル基、パーフルオロノナデセニル基、パーフルオロイコセニル基等のフルオロ基(フッ素原子)を有する炭素数2~20のアルケニル基等が挙げられ、なかでも、例えばビニルオキシメチル基、ビニルオキシエチル基、ビニルオキシプロピル基、プロペニルオキシメチル基、プロペニルオキシエチル基、プロペニルオキシプロピル基、ブテニルオキシメチル基、ブテニルオキシエチル基、ブテニルオキシプロピル基、ペンテニルオキシメチル基、ペンテニルオキシエチル基、ペンテニルオキシプロピル基、ヘキセニルオキシメチル基、ヘキセニルオキシエチル基、ヘキセニルオキシプロピル基等のエーテル基(酸素原子)を有する炭素数3~10の直鎖状、分枝状もしくは環状のアルケニル基、例えばアクリロイルオキシメチル基、アクリロイルオキシエチル基、アクリロイルオキシプロピル基、メタクリロイルオキシメチル基、メタクリロイルオキシエチル基、メタクリロイルオキシプロピル基、クロトノイルオキシメチル基、クロトノイルオキシエチル基、クロトノイルオキシプロピル基、チグロイルオキシメチル基、チグロイルオキシエチル基、チグロイルオキシプロピル基、アンゲロイルオキシメチル基、アンゲロイルオキシエチル基、アンゲロイルオキシプロピル基、セネシオイルオキシメチル基、セネシオイルオキシエチル基、セネシオイルオキシプロピル基、ソルボイルオキシメチル基、ソルボイルオキシエチル基、ソルボイルオキシプロピル基等のカルボニルオキシ基(酸素原子)を有する炭素数4~10の直鎖状、分枝状もしくは環状のアルケニル基、例えばパーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基、パーフルオロペンテニル基、パーフルオロヘキセニル基、パーフルオロヘプテニル基、パーフルオロオクテニル基、パーフルオロノネニル基、パーフルオロデセニル基等のフルオロ基(フッ素原子)を有する炭素数2~10の直鎖状、分枝状もしくは環状のアルケニル基が好ましい。なお、上述の具体例において、アルキル基及びアルケニル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルケニル基であってもよい。また、アルケニル基における二重結合の位置は1位に限定されず、例えば2位、3位、ω位等の1位とは異なる位置に二重結合を有するアルケニル基であってもよい。
The monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are alkenyl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] The alkenyl group which may have a hetero atom shown may be linear, branched or cyclic. Specific examples of the case where the alkenyl group has no hetero atom include, for example, a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, and a dodecenyl group. , Tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group and the like, and examples thereof include vinyl group, propenyl group, butenyl group. A linear, branched or cyclic alkenyl group having 2 to 10 carbon atoms such as a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group and a decenyl group is preferred. Specific examples of the alkenyl group having a hetero atom include, for example, vinyloxymethyl group, vinyloxyethyl group, vinyloxypropyl group, propenyloxymethyl group, propenyloxyethyl group, propenyloxypropyl group, butenyl Ether groups such as oxymethyl group, butenyloxyethyl group, butenyloxypropyl group, pentenyloxymethyl group, pentenyloxyethyl group, pentenyloxypropyl group, hexenyloxymethyl group, hexenyloxyethyl group, hexenyloxypropyl group ( An oxygen atom) having 3 to 20 carbon atoms, such as acryloyloxymethyl group, acryloyloxyethyl group, acryloyloxypropyl group, methacryloyloxymethyl group, methacryloyloxyethyl group, Tacryloyloxypropyl group, Crotonoyloxymethyl group, Crotonoyloxyethyl group, Crotonoyloxypropyl group, Tigroyloxymethyl group, Tigroyloxyethyl group, Tigroyloxypropyl group, Angeloyloxymethyl group, Angeloyl Carbonyloxy groups such as oxyethyl group, angeloyloxypropyl group, senecioyloxymethyl group, senecioyloxyethyl group, senecioyloxypropyl group, solvoyloxymethyl group, solvoyloxyethyl group, sorboyloxypropyl group (Oxygen atom) having 4 to 20 carbon atoms, such as perfluorovinyl group, perfluoropropenyl group, perfluorobutenyl group, perfluoropentenyl group, perfluorohexenyl group, perfluoroheptyl group Nyl group, perfluorooctenyl group, perfluorononenyl group, perfluorodecenyl group, perfluoroundecenyl group, perfluorododecenyl group, perfluorotridecenyl group, perfluorotetradecenyl Group, perfluoropentadecenyl group, perfluorohexadecenyl group, perfluoroheptadecenyl group, perfluorooctadecenyl group, perfluorononadecenyl group, perfluoroicosenyl group, etc. Examples include alkenyl groups having 2 to 20 carbon atoms having a fluoro group (fluorine atom). Among them, for example, vinyloxymethyl group, vinyloxyethyl group, vinyloxypropyl group, propenyloxymethyl group, propenyloxyethyl group, Propenyloxypropyl group, butenyloxymethyl group, butenyloxyethyl group, butenyloxy A straight chain having 3 to 10 carbon atoms and having an ether group (oxygen atom) such as a xylpropyl group, a pentenyloxymethyl group, a pentenyloxyethyl group, a pentenyloxypropyl group, a hexenyloxymethyl group, a hexenyloxyethyl group, a hexenyloxypropyl group , Branched or cyclic alkenyl groups such as acryloyloxymethyl group, acryloyloxyethyl group, acryloyloxypropyl group, methacryloyloxymethyl group, methacryloyloxyethyl group, methacryloyloxypropyl group, crotonoyloxymethyl group, crotonoyl Oxyethyl group, Crotonoyloxypropyl group, Tigroyloxymethyl group, Tigroyloxyethyl group, Tigroyloxypropyl group, Angeloyloxymethyl group, Angeloyloxyethyl Groups, angeloyloxypropyl groups, senecioyloxymethyl groups, senecioyloxyethyl groups, senecioyloxypropyl groups, solvoyloxymethyl groups, solvoyloxyethyl groups, solvoyloxypropyl groups, and other carbonyloxy groups (oxygen A straight, branched or cyclic alkenyl group having 4 to 10 carbon atoms having an atom), such as a perfluorovinyl group, a perfluoropropenyl group, a perfluorobutenyl group, a perfluoropentenyl group, a perfluorohexenyl group, C2-C10 linear, branched or cyclic having a fluoro group (fluorine atom) such as perfluoroheptenyl group, perfluorooctenyl group, perfluorononenyl group and perfluorodecenyl group Alkenyl groups are preferred. In the above specific examples, the alkyl group and alkenyl group are not limited to normal-forms, but are branched or cycloalkenyl such as sec-form, tert-form, iso-form, neo-form, etc. It may be a group. Further, the position of the double bond in the alkenyl group is not limited to the 1st position, and may be an alkenyl group having a double bond at a position different from the 1st position such as the 2nd position, the 3rd position, and the ω position.
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される1価の炭化水素基がアリール基である場合の具体例、すなわち、一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示されるヘテロ原子を有していてもよい炭素数1~20のアリール基の具体例としては、単環式、縮合多環式のいずれであってもよい。当該アリール基がヘテロ原子を有さない場合の具体例としては、例えばフェニル基、ナフチル基、アズレニル基、ビフェニリル基、インダセニル基、アセナフチレニル基、フェナントリル基、アントリル基(アントラセニル基)等の炭素数6~14のアリール基が挙げられ、なかでも、例えばフェニル基等の炭素数6のアリール基が好ましい。また、上記アリール基がヘテロ原子を有する場合の具体例としては、例えばパーフルオロフェニル基、パーフルオロナフチル基、パーフルオロアズレニル基、パーフルオロビフェニリル基、パーフルオロインダセニル基、パーフルオロアセナフチレニル基、パーフルオロフェナントリル基、パーフルオロアントリル基(パーフルオロアントラセニル基)等のフルオロ基(フッ素原子)を有する炭素数6~14のアリール基等が挙げられ、なかでも、例えばパーフルオロフェニル基等のフルオロ基(フッ素原子)を有する炭素数6のアリール基が好ましい。
The monovalent hydrocarbon groups represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] are aryl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] Specific examples of the aryl group having 1 to 20 carbon atoms which may have a heteroatom may be monocyclic or condensed polycyclic. Specific examples of the aryl group having no hetero atom include, for example, a phenyl group, a naphthyl group, an azulenyl group, a biphenylyl group, an indacenyl group, an acenaphthylenyl group, a phenanthryl group, an anthryl group (anthracenyl group) and the like. And an aryl group having 6 to 14 carbon atoms such as a phenyl group is preferable. Specific examples of the aryl group having a hetero atom include, for example, a perfluorophenyl group, a perfluoronaphthyl group, a perfluoroazurenyl group, a perfluorobiphenylyl group, a perfluoroindacenyl group, and a perfluoroacena group. Examples include aryl groups having 6 to 14 carbon atoms having a fluoro group (fluorine atom) such as a phthalenyl group, a perfluorophenanthryl group, and a perfluoroanthryl group (perfluoroanthracenyl group). An aryl group having 6 carbon atoms having a fluoro group (fluorine atom) such as a perfluorophenyl group is preferable.
一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示される1価の炭化水素基がアラルキル基である場合の具体例、すなわち、一般式[4]及び[5]におけるA1、A2、A3、A4、A5、A6、A7、A8、A9及びA10で示されるヘテロ原子を有していてもよいアラルキル基としては、単環式、縮合多環式のいずれであってもよい。当該アラルキル基がヘテロ原子を有さない場合の具体例としては、例えばベンジル基、フェネチル基、メチルベンジル基、フェニルプロピル基、1-メチルフェニルエチル基、フェニルブチル基、2-メチルフェニルプロピル基、テトラヒドロナフチル基、ナフチルメチル基、ナフチルエチル基、インデニル基、フルオレニル基等の炭素数7~20のアラルキル基が挙げられ、なかでも、例えばベンジル基、フェネチル基、メチルベンジル基、フェニルプロピル基、1-メチルフェニルエチル基、フェニルブチル基、2-メチルフェニルプロピル基、テトラヒドロナフチル基、ナフチルメチル基、ナフチルエチル基、インデニル基、フルオレニル基等の炭素数7~14のアラルキル基が好ましい。また、上記アラルキル基がヘテロ原子を有する場合の具体例としては、例えばフェニルオキシメチル基、フェニルオキシエチル基、フェニルオキシプロピル基、ベンジルオキシメチル基、ベンジルオキシエチル基、ベンジルオキシプロピル基、フェネチルオキシメチル基、フェネチルオキシエチル基、フェネチルオキシプロピル基、ナフチルオキシメチル基、ナフチルオキシエチル基、ナフチルオキシプロピル基、フリル基、ピラニル基、チエニル基、クロメニル基、クロマニル基、キサンテニル基、フェノキサチイニル基等の酸素原子、硫黄原子等のヘテロ原子を有する炭素数7~20のアラルキル基等が挙げられ、なかでも、例えばフェニルオキシメチル基、フェニルオキシエチル基、フェニルオキシプロピル基、ベンジルオキシメチル基、ベンジルオキシエチル基、ベンジルオキシプロピル基、フェネチルオキシメチル基、フェネチルオキシエチル基、フェネチルオキシプロピル基、ナフチルオキシメチル基、ナフチルオキシエチル基、ナフチルオキシプロピル基、フリル基、ピラニル基、チエニル基、クロメニル基、クロマニル基、キサンテニル基、フェノキサチイニル基等の酸素原子、硫黄原子等のヘテロ原子を有する炭素数7~14のアラルキル基が好ましい。
The monovalent hydrocarbon group represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] is aralkyl. Specific examples in the case of a group, that is, A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 , A 9 and A 10 in the general formulas [4] and [5] The aralkyl group which may have a hetero atom shown may be either monocyclic or condensed polycyclic. Specific examples of the case where the aralkyl group has no hetero atom include, for example, benzyl group, phenethyl group, methylbenzyl group, phenylpropyl group, 1-methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, Examples thereof include aralkyl groups having 7 to 20 carbon atoms such as a tetrahydronaphthyl group, a naphthylmethyl group, a naphthylethyl group, an indenyl group, and a fluorenyl group. Among them, for example, a benzyl group, a phenethyl group, a methylbenzyl group, a phenylpropyl group, 1 Aralkyl groups having 7 to 14 carbon atoms such as -methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, tetrahydronaphthyl group, naphthylmethyl group, naphthylethyl group, indenyl group and fluorenyl group are preferred. Specific examples of the case where the aralkyl group has a hetero atom include, for example, a phenyloxymethyl group, a phenyloxyethyl group, a phenyloxypropyl group, a benzyloxymethyl group, a benzyloxyethyl group, a benzyloxypropyl group, a phenethyloxy group. Methyl group, phenethyloxyethyl group, phenethyloxypropyl group, naphthyloxymethyl group, naphthyloxyethyl group, naphthyloxypropyl group, furyl group, pyranyl group, thienyl group, chromenyl group, chromanyl group, xanthenyl group, phenoxathinyl group Examples thereof include an aralkyl group having 7 to 20 carbon atoms having a hetero atom such as an oxygen atom such as a sulfur atom, and a sulfur atom. Among them, for example, a phenyloxymethyl group, a phenyloxyethyl group, a phenyloxypropyl group, a benzyloxymethyl Benzyloxyethyl group, benzyloxypropyl group, phenethyloxymethyl group, phenethyloxyethyl group, phenethyloxypropyl group, naphthyloxymethyl group, naphthyloxyethyl group, naphthyloxypropyl group, furyl group, pyranyl group, thienyl group, Aralkyl groups having 7 to 14 carbon atoms having a hetero atom such as an oxygen atom or a sulfur atom such as a chromenyl group, a chromanyl group, a xanthenyl group and a phenoxathiinyl group are preferred.
一般式[5]におけるTで示される2価の炭化水素基としては、具体的には、例えばアルキレン基(アルカンジイル基)、アルケニレン基、アリーレン基、アラルキレン基等が挙げられる。
Specific examples of the divalent hydrocarbon group represented by T in the general formula [5] include an alkylene group (alkanediyl group), an alkenylene group, an arylene group, and an aralkylene group.
一般式[5]におけるTで示される、ヘテロ原子を有していてもよい炭素数1~20の2価の炭化水素基におけるヘテロ原子の具体例としては、例えば酸素原子、硫黄原子、例えばフッ素原子、塩素原子等のハロゲン原子等が挙げられる。
Specific examples of the hetero atom in the divalent hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom represented by T in the general formula [5] include, for example, an oxygen atom, a sulfur atom, such as fluorine Examples thereof include halogen atoms such as atoms and chlorine atoms.
一般式[5]におけるTで示される2価の炭化水素基がアルキレン基(アルカンジイル基)である場合の具体例、すなわち、一般式[5]におけるTで示されるヘテロ原子を有していてもよいアルキレン基(アルカンジイル基)の具体例としては、直鎖状、分枝状もしくは環状のいずれであってもよい。当該アルキレン基(アルカンジイル基)がヘテロ原子を有さない場合の具体例としては、例えばメチレン基(メタンジイル基)、エチレン基(エタン-1,2-ジイル基)、プロピレン基(プロパン-1,2-ジイル基)、トリメチレン基(プロパン-1,3-ジイル基)、テトラメチレン基(ブタン-1,4-ジイル基)、ペンタメチレン基(ペンタン-1,5-ジイル基)、ヘキサメチレン基(ヘキサン-1,6-ジイル基)、ヘプタメチレン基(ヘプタン-1,7-ジイル基)、オクタメチレン基(オクタン-1,8-ジイル基)、ノナメチレン基(ノナン-1,9-ジイル基)、デカメチレン基(デカン-1,10-ジイル基)、ウンデカメチレン基(ウンデカン-1,11-ジイル基)、ドデカメチレン基(ドデカン-1,12-ジイル基)、トリデカメチレン基(トリデカン-1,13-ジイル基)、テトラデカメチレン基(テトラデカン-1,14-ジイル基)、ペンタデカメチレン基(ペンタデカン-1,15-ジイル基)、ヘキサデカメチレン基(ヘキサデカン-1,16-ジイル基)、ヘプタデカメチレン基(ヘプタデカン-1,17-ジイル基)、オクタデカメチレン基(オクタデカン-1,18-ジイル基)、ノナデカメチレン基(ノナデカン-1,19-ジイル基)、イコサメチレン基(イコサン-1,20-ジイル基)等の炭素数1~20のアルキレン基(アルカンジイル基)が挙げられる。また、上記アルキレン基(アルカンジイル基)がヘテロ原子を有する場合の具体例としては、例えばメチレンビス(オキシメチル)基、メチレンビス(オキシエチル)基、メチレンビス(オキシプロピル)基、メチレンビス(オキシブチル)基、メチレンビス(オキシペンチル)基、エチレンビス(オキシメチル)基、エチレンビス(オキシエチル)基、エチレンビス(オキシプロピル)基、エチレンビス(オキシブチル)基、エチレンビス(オキシペンチル)基、トリメチレンビス(オキシメチル)基、トリメチレンビス(オキシエチル)基、トリメチレンビス(オキシプロピル)基、トリメチレンビス(オキシブチル)基、トリメチレンビス(オキシペンチル)基、テトラメチレンビス(オキシメチル)基、テトラメチレンビス(オキシエチル)基、テトラメチレンビス(オキシプロピル)基、テトラメチレンビス(オキシブチル)基、テトラメチレンビス(オキシペンチル)基、ペンタメチレンビス(オキシメチル)基、ペンタメチレンビス(オキシエチル)基、ペンタメチレンビス(オキシプロピル)基、ペンタメチレンビス(オキシブチル)基、ペンタメチレンビス(オキシペンチル)基等のエーテル基(酸素原子)を有する炭素数3~20のアルキレン基(アルカンジイル基)等が挙げられる。なお、上述の具体例において、アルキレン基(アルカンジイル基)は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキレン基(アルカンジイル基)であってもよい。
Specific examples when the divalent hydrocarbon group represented by T in the general formula [5] is an alkylene group (alkanediyl group), that is, having a heteroatom represented by T in the general formula [5] Specific examples of the alkylene group (alkanediyl group) may be linear, branched or cyclic. Specific examples of the alkylene group (alkanediyl group) having no hetero atom include, for example, a methylene group (methanediyl group), an ethylene group (ethane-1,2-diyl group), a propylene group (propane-1, 2-diyl group), trimethylene group (propane-1,3-diyl group), tetramethylene group (butane-1,4-diyl group), pentamethylene group (pentane-1,5-diyl group), hexamethylene group (Hexane-1,6-diyl group), heptamethylene group (heptane-1,7-diyl group), octamethylene group (octane-1,8-diyl group), nonamethylene group (nonane-1,9-diyl group) ), Decamethylene group (decane-1,10-diyl group), undecane methylene group (undecane-1,11-diyl group), dodecane methylene group (dodecane-1,12-diyl group), tridecamethylene group ( Ridecane-1,13-diyl group), tetradecane methylene group (tetradecane-1,14-diyl group), pentadecane methylene group (pentadecane-1,15-diyl group), hexadecane methylene group (hexadecane-1,16) -Diyl group), heptadecane group (heptadecane-1,17-diyl group), octadecamethylene group (octadecane-1,18-diyl group), nonadecamethylene group (nonadecane-1,19-diyl group), Examples thereof include an alkylene group (alkanediyl group) having 1 to 20 carbon atoms such as an icosamethylene group (icosane-1,20-diyl group). Specific examples of the alkylene group (alkanediyl group) having a hetero atom include, for example, a methylene bis (oxymethyl) group, a methylene bis (oxyethyl) group, a methylene bis (oxypropyl) group, a methylene bis (oxybutyl) group, and a methylene bis. (Oxypentyl) group, ethylenebis (oxymethyl) group, ethylenebis (oxyethyl) group, ethylenebis (oxypropyl) group, ethylenebis (oxybutyl) group, ethylenebis (oxypentyl) group, trimethylenebis (oxymethyl) ) Group, trimethylenebis (oxyethyl) group, trimethylenebis (oxypropyl) group, trimethylenebis (oxybutyl) group, trimethylenebis (oxypentyl) group, tetramethylenebis (oxymethyl) group, tetramethylenebis ( Oxy Til) group, tetramethylene bis (oxypropyl) group, tetramethylene bis (oxybutyl) group, tetramethylene bis (oxypentyl) group, pentamethylene bis (oxymethyl) group, pentamethylene bis (oxyethyl) group, pentamethylene bis And an alkylene group having 3 to 20 carbon atoms (alkanediyl group) having an ether group (oxygen atom) such as an (oxypropyl) group, a pentamethylenebis (oxybutyl) group, and a pentamethylenebis (oxypentyl) group. In the above specific examples, the alkylene group (alkanediyl group) is not limited to the normal-form, but is branched such as sec-form, tert-form, iso-form, neo-form, or cyclic form such as cyclo-form. May be an alkylene group (alkanediyl group).
一般式[5]におけるTで示される2価の炭化水素基がアルケニレン基である場合の具体例、すなわち、一般式[5]におけるTで示されるヘテロ原子を有していてもよいアルケニレン基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。当該アルケニレン基がヘテロ原子を有さない場合の具体例としては、例えばビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基、ノネニレン基、デセニレン基、ウンデセニレン基、ドデセニレン基、トリデセニレン基、テトラデセニレン基、ペンタデセニレン基、ヘキサデセニレン基、ヘプタデセニレン基、オクタデセニレン基、ノナデセニレン基、イコセニレン基等の炭素数2~20のアルケニレン基が挙げられる。また、上記アルケニレン基がヘテロ原子を有する場合の具体例としては、例えばパーフルオロビニレン基、パーフルオロプロペニレン基、パーフルオロブテニレン基、パーフルオロペンテニレン基、パーフルオロヘキセニレン基、パーフルオロヘプテニレン基、パーフルオロオクテニレン基、パーフルオロノネニレン基、パーフルオロデセニレン基、パーフルオロウンデセニレン基、パーフルオロドデセニレン基、パーフルオロトリデセニレン基、パーフルオロテトラデセニレン基、パーフルオロペンタデセニレン基、パーフルオロヘキサデセニレン基、パーフルオロヘプタデセニレン基、パーフルオロオクタデセニレン基、パーフルオロノナデセニレン基、パーフルオロイコセニレン基等のフルオロ基(フッ素原子)を有する炭素数2~20のアルケニレン基等が挙げられる。なお、上述の具体例において、アルケニレン基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルケニレン基であってもよい。また、アルケニレン基における二重結合の位置は1位に限定されず、例えば2位、3位、ω位等の1位とは異なる位置に二重結合を有するアルケニレン基であってもよい。
Specific examples when the divalent hydrocarbon group represented by T in the general formula [5] is an alkenylene group, that is, as an alkenylene group optionally having a hetero atom represented by T in the general formula [5] May be linear, branched or cyclic. Specific examples of the alkenylene group having no hetero atom include, for example, vinylene group, propenylene group, butenylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group, nonenylene group, decenylene group, undecenylene group, dodecenylene group An alkenylene group having 2 to 20 carbon atoms such as a tridecenylene group, a tetradecenylene group, a pentadecenylene group, a hexadecenylene group, a heptadecenylene group, an octadecenylene group, a nonadecenylene group, and an icosenylene group. Specific examples of the case where the alkenylene group has a hetero atom include, for example, a perfluorovinylene group, a perfluoropropenylene group, a perfluorobutenylene group, a perfluoropentenylene group, a perfluorohexenylene group, Perfluoroheptenylene group, perfluorooctenylene group, perfluorononenylene group, perfluorodecenylene group, perfluoroundecenylene group, perfluorododecenylene group, perfluorotridecenylene group, perfluoro Tetradecenylene group, perfluoropentadecenylene group, perfluorohexadecenylene group, perfluoroheptadecenylene group, perfluorooctadecenylene group, perfluorononadecenylene group, perfluoroicoseni group 2 to 2 carbon atoms having a fluoro group (fluorine atom) such as a len group And the like of the alkenylene group. In the above specific examples, the alkenylene group is not limited to a normal-form, but is a branched alkenylene group such as a sec-form, tert-form, iso-form, or neo-form, or a cyclo-form. May be. Further, the position of the double bond in the alkenylene group is not limited to the 1-position, and may be an alkenylene group having a double bond at a position different from the 1-position such as the 2-position, the 3-position, and the ω-position.
一般式[5]におけるTで示される2価の炭化水素基がアリーレン基である場合の具体例、すなわち、一般式[5]におけるTで示されるヘテロ原子を有していてもよいアリーレン基の具体例としては、単環式、縮合多環式のいずれであってもよい。当該アリーレン基がヘテロ原子を有さない場合の具体例としては、例えばフェニレン基、ナフチレン基、ビフェニレン基等の炭素数6~12のアリーレン基が挙げられる。また、上記アリーレン基がヘテロ原子を有する場合の具体例としては、例えばパーフルオロフェニレン基、パーフルオロナフチレン基、パーフルオロビフェニレン基等のフルオロ基(フッ素原子)を有する炭素数6~12のアリーレン基等が挙げられる。
Specific examples when the divalent hydrocarbon group represented by T in the general formula [5] is an arylene group, that is, the arylene group optionally having a heteroatom represented by T in the general formula [5] As a specific example, it may be monocyclic or condensed polycyclic. Specific examples of the arylene group having no hetero atom include arylene groups having 6 to 12 carbon atoms such as a phenylene group, a naphthylene group, and a biphenylene group. Specific examples of the arylene group having a hetero atom include arylene having 6 to 12 carbon atoms having a fluoro group (fluorine atom) such as a perfluorophenylene group, a perfluoronaphthylene group, and a perfluorobiphenylene group. Groups and the like.
一般式[5]におけるTで示される2価の炭化水素基がアラルキレン基である場合の具体例、すなわち、一般式[5]におけるTで示されるヘテロ原子を有していてもよいアラルキレン基の具体例としては、単環式、縮合多環式のいずれであってもよい。当該アラルキレン基がヘテロ原子を有さない場合の具体例としては、例えばベンジレン基、フェネチレン基、フェニルプロピレン基、フェニルブチレン基、テトラヒドロナフチレン基、ナフチルメチレン基、ナフチルエチレン基等の炭素数7~20のアラルキレン基が挙げられる。また、上記アラルキレン基がヘテロ原子を有する場合の具体例としては、例えばメチレンビス(フェノキシメチル)基、メチレンビス(フェノキシエチル)基、メチレンビス(フェノキシプロピル)基、エチレンビス(フェノキシメチル)基、エチレンビス(フェノキシエチル)基、エチレンビス(フェノキシプロピル)基、ジメチルメチレンビス(フェノキシメチル)基、ジメチルメチレンビス(フェノキシエチル)基、ジパーフルオロメチルメチレンビス(フェノキシメチル)基、ジパーフルオロメチルメチレンビス(フェノキシエチル)基、トリメチレンビス(フェノキシメチル)基、トリメチレンビス(フェノキシエチル)基、テトラメチレンビス(フェノキシメチル)基、テトラメチレンビス(フェノキシエチル)基、ペンタメチレンビス(フェノキシメチル)基、シクロペンタンジイルビス(フェノキシメチル)基、ヘキサメチレンビス(フェノキシエチル)基、シクロヘキサンジイルビス(フェノキシメチル)基等の酸素原子、フッ素原子等のヘテロ原子を有する炭素数15~20のアラルキレン基等が挙げられる。
Specific examples when the divalent hydrocarbon group represented by T in the general formula [5] is an aralkylene group, that is, the aralkylene group optionally having a hetero atom represented by T in the general formula [5] As a specific example, it may be monocyclic or condensed polycyclic. Specific examples of the case where the aralkylene group does not have a hetero atom include, for example, benzylene group, phenethylene group, phenylpropylene group, phenylbutylene group, tetrahydronaphthylene group, naphthylmethylene group, naphthylethylene group, etc. There are 20 aralkylene groups. Specific examples of the aralkylene group having a hetero atom include, for example, a methylene bis (phenoxymethyl) group, a methylene bis (phenoxyethyl) group, a methylene bis (phenoxypropyl) group, an ethylene bis (phenoxymethyl) group, an ethylene bis ( Phenoxyethyl) group, ethylenebis (phenoxypropyl) group, dimethylmethylenebis (phenoxymethyl) group, dimethylmethylenebis (phenoxyethyl) group, diperfluoromethylmethylenebis (phenoxymethyl) group, diperfluoromethylmethylenebis ( Phenoxyethyl) group, trimethylene bis (phenoxymethyl) group, trimethylene bis (phenoxyethyl) group, tetramethylene bis (phenoxymethyl) group, tetramethylene bis (phenoxyethyl) group, pentamethyl 15 carbon atoms having hetero atoms such as oxygen atoms and fluorine atoms such as bis (phenoxymethyl) group, cyclopentanediylbis (phenoxymethyl) group, hexamethylenebis (phenoxyethyl) group, cyclohexanediylbis (phenoxymethyl) group -20 aralkylene groups and the like.
一般式[4]及び[5]におけるA1とA2、A1とA4、A3とA4、A5とA6、A5とA7、A8とA10、A9とA10とで環状構造を形成していてもよいとは、A1~A10並びにこれらのAと結合している炭素原子とともに炭素数3~10の環状構造(5~12員環)を形成していてもよいことを意味する。このような炭素数3~10の環状構造(5~12員環)の具体例としては、例えばシクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環等が挙げられる。なお、上述の具体例はあくまで一例であって、ここで例示される具体例に限定されず、単環、多環、スピロ環、架橋環、これらの環に更にアルキル基等の置換基が置換したものも含まれる。
A 1 and A 2 , A 1 and A 4 , A 3 and A 4 , A 5 and A 6 , A 5 and A 7 , A 8 and A 10 , A 9 and A in the general formulas [4] and [5] 10 may form a cyclic structure with A 1 to A 10 and a carbon atom bonded to these A to form a cyclic structure (5 to 12-membered ring) having 3 to 10 carbon atoms. It means that it may be. Specific examples of such a cyclic structure having 3 to 10 carbon atoms (5- to 12-membered ring) include, for example, a cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, And cyclododecane ring. The above-described specific examples are merely examples, and are not limited to the specific examples illustrated here. Monocycles, polycycles, spiro rings, bridged rings, and substituents such as alkyl groups are further substituted on these rings. Also included.
一般式[4]で示されるエポキシド(オキシラン)の具体例としては、例えばメチルグリシジルエーテル、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、ペンチルグリシジルエーテル、ヘキシルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、スチレンオキシド、フェニルグリシジルエーテル、ナフチルグリシジルエーテル等の下記式で示されるものが挙げられる。なお、下記式で示されるエポキシド(オキシラン)は、あくまで具体例の一例であって、ここで例示される具体例に限定されない。
Specific examples of the epoxide (oxirane) represented by the general formula [4] include, for example, methyl glycidyl ether, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, pentyl glycidyl ether, hexyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, styrene. Examples thereof include those represented by the following formulas such as oxide, phenyl glycidyl ether, naphthyl glycidyl ether and the like. The epoxide (oxirane) represented by the following formula is merely an example of a specific example, and is not limited to the specific example illustrated here.
一般式[5]で示されるエポキシド(オキシラン)の具体例としては、例えば1,2-ビス(グリシジルオキシ)エタン{1,2-エチレングリコールジグリシジルエーテル}、1,3-ビス(グリシジルオキシ)プロパン{1,3-プロピレングリコールジグリシジルエーテル}、1,4-ビス(グリシジルオキシ)ブタン{1,4-ブチレングリコールジグリシジルエーテル}、1,5-ビス(グリシジルオキシ)ペンタン{1,5-ペンチレングリコールジグリシジルエーテル}、1,6-ビス(グリシジルオキシ)ヘキサン{1,6-ヘキシレングリコールジグリシジルエーテル}、ビス(4-グリシジルオキシフェニル)メタン{ビスフェノールFジグリシジルエーテル}、1,1-ビス(4-グリシジルオキシフェニル)エタン{ビスフェノールEジグリシジルエーテル}、2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}、2,2-ビス(4-グリシジルオキシフェニル)ヘキサフルオロプロパン{ビスフェノールAFジグリシジルエーテル}、2,2-ビス(4-グリシジルオキシフェニル)ブタン{ビスフェノールBジグリシジルエーテル}、1,1-ビス(4-グリシジルオキシフェニル)シクロヘキサン{ビスフェノールZジグリシジルエーテル}等の下記式で示されるものが挙げられる。なお、下記式で示されるエポキシド(オキシラン)は、あくまで具体例の一例であって、ここで例示される具体例に限定されない。
Specific examples of the epoxide (oxirane) represented by the general formula [5] include, for example, 1,2-bis (glycidyloxy) ethane {1,2-ethylene glycol diglycidyl ether}, 1,3-bis (glycidyloxy). Propane {1,3-propylene glycol diglycidyl ether}, 1,4-bis (glycidyloxy) butane {1,4-butylene glycol diglycidyl ether}, 1,5-bis (glycidyloxy) pentane {1,5- Pentylene glycol diglycidyl ether}, 1,6-bis (glycidyloxy) hexane {1,6-hexylene glycol diglycidyl ether}, bis (4-glycidyloxyphenyl) methane {bisphenol F diglycidyl ether}, 1, 1-bis (4-glycidyloxyphenyl) ethane {bisphenol E diglycidyl ether}, 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, 2,2-bis (4-glycidyloxyphenyl) hexafluoropropane {bisphenol AF diglycidyl ether}, 2,2-bis (4-glycidyloxyphenyl) butane {bisphenol B diglycidyl ether}, 1,1-bis (4-glycidyloxyphenyl) cyclohexane {bisphenol Z diglycidyl ether} and the like represented by the following formula Can be mentioned. The epoxide (oxirane) represented by the following formula is merely an example of a specific example, and is not limited to the specific example illustrated here.
上記一般式[4]及び[5]で示されるエポキシド(オキシラン)は、市販品、あるいはこの分野で行われる一般的な方法により適宜合成したものを用いればよい。
The epoxides (oxiranes) represented by the general formulas [4] and [5] may be commercially available products or those appropriately synthesized by general methods performed in this field.
本発明の製造方法は、種々のエポキシド(オキシラン)に適用できるので、生成物である環状カーボネートの構造は限定されるものではないが、当該環状カーボネートの具体例としては、例えば上記一般式[4]で示されるエポキシド(オキシラン)から生成する環状カーボネートとして、下記一般式[6]で示されるもの、あるいは上記一般式[5]で示されるエポキシド(オキシラン)から生成する環状カーボネートとして、下記一般式[7]で示されるものが挙げられる。
Since the production method of the present invention can be applied to various epoxides (oxiranes), the structure of the cyclic carbonate which is a product is not limited. Specific examples of the cyclic carbonate include, for example, the above general formula [4] As a cyclic carbonate generated from the epoxide (oxirane) represented by the following general formula [6], or as a cyclic carbonate generated from the epoxide (oxirane) represented by the general formula [5], the following general formula What is shown by [7] is mentioned.
(式中、A5、A6、A7、A8、A9、A10及びTは上記に同じ。)
(In the formula, A 5 , A 6 , A 7 , A 8 , A 9 , A 10 and T are the same as above.)
一般式[6]で示される環状カーボネートの具体例としては、例えば(メトキシメチル)エチレンカーボネート、(エトキシメチル)エチレンカーボネート、(プロポキシメチル)エチレンカーボネート、(ブトキシメチル)エチレンカーボネート、(ペンチルオキシメチル)エチレンカーボネート、(ヘキシルオキシメチル)エチレンカーボネート、(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレート、(2-オキソ-1,3-ジオキソラン-4-イル)メチルメタクリレート、(フェニル)エチレンカーボネート、(フェノキシメチル)エチレンカーボネート、(ナフチルオキシメチル)エチレンカーボネート等の下記式で示されるものが挙げられる。なお、上下記式で示される環状カーボネートは、あくまで具体例の一例であって、ここで例示される具体例に限定されない。
Specific examples of the cyclic carbonate represented by the general formula [6] include, for example, (methoxymethyl) ethylene carbonate, (ethoxymethyl) ethylene carbonate, (propoxymethyl) ethylene carbonate, (butoxymethyl) ethylene carbonate, (pentyloxymethyl) Ethylene carbonate, (hexyloxymethyl) ethylene carbonate, (2-oxo-1,3-dioxolan-4-yl) methyl acrylate, (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate, (phenyl) What is shown by following formulas, such as ethylene carbonate, (phenoxymethyl) ethylene carbonate, (naphthyloxymethyl) ethylene carbonate, is mentioned. In addition, the cyclic carbonate shown by the following formula is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here.
一般式[7]で示される環状カーボネートの具体例としては、例えば1,2-エチレンジオキシビス[(メチル)エチレンカーボネート]、1,3-プロピレンジオキシビス[(メチル)エチレンカーボネート]、1,4-ブチレンジオキシビス[(メチル)エチレンカーボネート]、1,5-ペンチレンジオキシビス[(メチル)エチレンカーボネート]、1,6-ヘキシレンジオキシビス[(メチル)エチレンカーボネート]、メチレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールFジグリシジルエーテル ビスカーボネート}、1,1-エチレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールEジグリシジルエーテル ビスカーボネート}、2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート}、2,2-ヘキサフルオロプロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAFジグリシジルエーテル ビスカーボネート}、2,2-ブチレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールBジグリシジルエーテル ビスカーボネート}、1,1-シクロヘキシレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールZジグリシジルエーテル ビスカーボネート}等の下記式で示されるものが挙げられる。なお、下記式で示される環状カーボネートは、あくまで具体例の一例であって、ここで例示される具体例に限定されない。
Specific examples of the cyclic carbonate represented by the general formula [7] include 1,2-ethylenedioxybis [(methyl) ethylene carbonate], 1,3-propylenedioxybis [(methyl) ethylene carbonate], 1 , 4-Butylenedioxybis [(methyl) ethylene carbonate], 1,5-pentylenedioxybis [(methyl) ethylene carbonate], 1,6-hexylenedioxybis [(methyl) ethylene carbonate], methylenebis [ (P-phenoxymethyl) ethylene carbonate] {bisphenol F diglycidyl ether biscarbonate}, 1,1-ethylenebis [(p-phenoxymethyl) ethylene carbonate] {bisphenol E diglycidyl ether biscarbonate}, 2,2-propylene Bis [(p-phenoxime ) Ethylene carbonate] {bisphenol A diglycidyl ether ジ ル biscarbonate}, 2,2-hexafluoropropylenebis [(p-phenoxymethyl) ethylene carbonate] {bisphenol AF diglycidyl ether biscarbonate}, 2,2-butylenebis [( p-phenoxymethyl) ethylene carbonate] {bisphenol B diglycidyl ether biscarbonate}, 1,1-cyclohexylenebis [(p-phenoxymethyl) ethylene carbonate] {bisphenol Z diglycidyl ether biscarbonate} Can be mentioned. In addition, the cyclic carbonate shown by a following formula is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here.
原料であるエポキシド(オキシラン)、二酸化炭素、本発明にかかるアミン化合物及びヨウ化水素の反応系内への投入順序は、特に限定されない。例えば反応系内に、エポキシド(オキシラン)、本発明にかかるアミン化合物及びヨウ化水素を順次投入し、これらが投入された反応系内に二酸化炭素ガスを吹き込む方法や、本発明にかかるアミン化合物及びヨウ化水素を反応させて、本発明にかかる触媒を得たのち、反応系内にエポキシド(オキシラン)及び当該本発明にかかる触媒を順次投入し、これらが投入された反応系内に二酸化炭素ガスを吹き込む方法等が挙げられる。
There are no particular restrictions on the order in which the raw materials epoxide (oxirane), carbon dioxide, the amine compound according to the present invention and hydrogen iodide are charged into the reaction system. For example, epoxide (oxirane), the amine compound according to the present invention and hydrogen iodide are sequentially charged into the reaction system, and a method of blowing carbon dioxide gas into the reaction system into which these are charged, the amine compound according to the present invention and After reacting hydrogen iodide to obtain a catalyst according to the present invention, epoxide (oxirane) and the catalyst according to the present invention are sequentially charged into the reaction system, and carbon dioxide gas is introduced into the reaction system into which these are charged. The method of blowing in is mentioned.
本発明の製造方法は、以下に示す条件下で行うことが望ましい。
The production method of the present invention is desirably performed under the following conditions.
本発明にかかる二酸化炭素の使用量は、実用的な量であれば特に制限されず、例えばエポキシド(オキシラン)のmol数に対して、通常0.9当量以上、好ましくは0.95当量以上、より好ましくは1.0当量以上であり、特に上限はないが、経済的理由から、20当量以下が好ましい。
The amount of carbon dioxide used in the present invention is not particularly limited as long as it is a practical amount. For example, it is usually 0.9 equivalent or more, preferably 0.95 equivalent or more, relative to the number of moles of epoxide (oxirane), More preferably, it is 1.0 equivalent or more, and there is no particular upper limit. However, for economic reasons, 20 equivalent or less is preferable.
本発明にかかるアミン化合物の使用量は、エポキシド(オキシラン)1molに対して、通常0.1~30mol%、好ましくは0.5~20mol%である。なお、当該アミンの使用量が極めて少ない場合には、環状カーボネートの収率が低下する傾向にある。
The amount of the amine compound used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane). In addition, when the usage-amount of the said amine is very small, it exists in the tendency for the yield of a cyclic carbonate to fall.
本発明にかかるヨウ化水素の使用量は、エポキシド(オキシラン)1molに対して、通常0.1~30mol%、好ましくは0.5~20mol%である。なお、当該臭化水素又はヨウ化水素の使用量が極めて少ない場合には、環状カーボネートの収率が低下する傾向にある。
The amount of hydrogen iodide used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane). In addition, when the usage-amount of the said hydrogen bromide or hydrogen iodide is very small, it exists in the tendency for the yield of a cyclic carbonate to fall.
本発明にかかる触媒(アミン化合物塩)の使用量は、エポキシド(オキシラン)1molに対して、通常0.1~30mol%、好ましくは0.5~20mol%である。尚、当該触媒(アミン化合物塩)の使用量が極めて少ない場合には、環状カーボネートの収率が低下する傾向にある。
The amount of the catalyst (amine compound salt) used in the present invention is usually 0.1 to 30 mol%, preferably 0.5 to 20 mol%, based on 1 mol of epoxide (oxirane). In addition, when the usage-amount of the said catalyst (amine compound salt) is very small, it exists in the tendency for the yield of a cyclic carbonate to fall.
本発明の製造方法は、反応系内に有機溶媒を添加した有機溶媒中で行ってもよいし、有機溶媒を添加しない系で行ってもよい。有機溶媒を添加しない系で反応を行うとは、原料であるエポキシド(オキシラン)及び生成物である環状カーボネートが溶媒としての機能を兼ねている。
The production method of the present invention may be performed in an organic solvent in which an organic solvent is added to the reaction system, or may be performed in a system in which no organic solvent is added. When the reaction is carried out in a system in which no organic solvent is added, the raw material epoxide (oxirane) and the product cyclic carbonate also serve as a solvent.
上記有機溶媒の具体例としては、原料であるエポキシド(オキシラン)と二酸化炭素、並びに生成物である環状カーボネート等に悪影響を及ぼさない溶媒であればよく、例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、例えばジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、メチルt-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えば2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、4-メチル-2-ペンタノン(メチルイソブチルケトン)等のケトン系溶媒、例えば酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸s-ブチル、酢酸t-ブチル、酪酸エチル、酪酸イソアミル等のエステル系溶媒、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)、1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)等のアミド系溶媒、例えばイソプロパノール、t-ブタノール、2-メトキシエタノール等のアルコール系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。上述した具体例には、極性有機溶媒、非極性有機溶媒、プロトン性有機溶媒、非プロトン性有機溶媒等の多種多様の有機溶媒が含まれるが、上記有機溶媒は、本発明にかかる触媒(アミン化合物塩)の有機溶媒に対する溶解度を考慮して適宜選択することが望ましい。例えば本発明にかかる触媒(アミン化合物塩)として、モノ-t-ブチルアミン ヨウ化水素塩又はジシクロヘキシルアミン ヨウ化水素塩を使用する場合には、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)、1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)等のアミド系溶媒を選択することが好ましく、本発明にかかる触媒(アミン化合物塩)として、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) ヨウ化水素塩を使用する場合には、例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、メチルt-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えば酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸s-ブチル、酢酸t-ブチル、酪酸エチル、酪酸イソアミル等のエステル系溶媒を選択することが好ましい。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
Specific examples of the organic solvent may be any solvent that does not adversely affect the raw material epoxide (oxirane) and carbon dioxide, and the product cyclic carbonate. For example, aliphatic carbonization such as hexane, heptane, and octane. Hydrogen solvents such as aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogen solvents such as dichloromethane, trichloromethane (chloroform) and tetrachloromethane (carbon tetrachloride) such as diethyl ether, diisopropyl ether and methyl Ether solvents such as t-butyl ether, cyclopentyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, such as 2-propanone (acetone), 2-butanone (ethyl methyl ketone), 4-methyl-2-pentanone (Mechi Ketone solvents such as isobutyl ketone) such as ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, s-butyl acetate, t-butyl acetate, ethyl butyrate and isoamyl butyrate, such as N, N- Amide solvents such as dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), such as isopropanol, t Examples include alcohol solvents such as -butanol and 2-methoxyethanol, and nitrile solvents such as acetonitrile. Specific examples described above include a wide variety of organic solvents such as polar organic solvents, nonpolar organic solvents, protic organic solvents, aprotic organic solvents, and the like. It is desirable to select appropriately considering the solubility of the compound salt) in the organic solvent. For example, when mono-t-butylamine hydroiodide salt or dicyclohexylamine hydroiodide salt is used as the catalyst (amine compound salt) according to the present invention, for example, N, N-dimethylformamide, N, N-dimethylacetamide is used. It is preferable to select an amide solvent such as 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), and the catalyst according to the present invention (amine In the case of using 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) hydrogen iodide as the compound salt), for example, an aliphatic hydrocarbon solvent such as hexane, heptane, octane, For example, aromatic hydrocarbon solvents such as benzene, toluene, xylene, such as diethyl ether, diisopropyl ether, methyl t- Ether solvents such as tilether, cyclopentylmethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, such as ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, s-butyl acetate, t-butyl acetate, butyric acid It is preferable to select an ester solvent such as ethyl or isoamyl butyrate. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
上記有機溶媒は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The above organic solvents may be used alone or in combination of two or more.
上記有機溶媒の使用量は、実用的な量であれば特に制限されず、例えばエポキシド(オキシラン)1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
The amount of the organic solvent used is not particularly limited as long as it is a practical amount, and is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, with respect to 1 mmol of epoxide (oxirane), for example.
本発明における反応時の温度(反応温度)は、原料であるエポキシド(オキシラン)と二酸化炭素とが効率よく反応し、環状カーボネートが収率よく得られる温度に設定することが望ましい。本発明は、常温、常圧のような穏和な条件下でも収率よく環状カーボネートが得られることを特徴とするものであるから、このような望ましい反応温度のなかでも、例えば通常0~65℃、好ましくは20~60℃、より好ましくは40~60℃で反応を行うことが望ましい。
In the present invention, the temperature during the reaction (reaction temperature) is desirably set to a temperature at which the raw material epoxide (oxirane) and carbon dioxide efficiently react to obtain a cyclic carbonate in good yield. Since the present invention is characterized in that a cyclic carbonate can be obtained in good yield even under mild conditions such as normal temperature and normal pressure, among such desirable reaction temperatures, for example, usually 0 to 65 ° C. The reaction is preferably carried out at 20 to 60 ° C., more preferably 40 to 60 ° C.
本発明における反応時の圧力は、原料であるエポキシド(オキシラン)と二酸化炭素とが効率よく反応し、環状カーボネートが収率よく得られる圧力に設定することが望ましい。本発明は、常温、常圧のような穏和な条件下でも収率よく環状カーボネートが得られることを特徴とするものであるから、このような望ましい圧力のなかでも、例えば0.09~0.11MPaで反応を行うことが望ましい。
The pressure at the time of reaction in the present invention is desirably set to a pressure at which the epoxide (oxirane) as a raw material and carbon dioxide efficiently react to obtain a cyclic carbonate in a high yield. Since the present invention is characterized in that a cyclic carbonate can be obtained in a high yield even under mild conditions such as normal temperature and normal pressure, among such desirable pressures, for example, 0.09 to 0.00. It is desirable to carry out the reaction at 11 MPa.
上述した反応温度、圧力は、従来の製造方法では達成することが困難であった反応条件である。本発明の製造方法は、従来の製造方法で求められるような高温、高圧条件を必要としないため、従来の製造方法と比較して、温度維持に必要な熱エネルギーが少なくてよい、高強度の耐圧容器を必要としない等の工業的規模の生産に適した有利な効果を奏する。
The reaction temperature and pressure described above are reaction conditions that have been difficult to achieve with conventional production methods. Since the manufacturing method of the present invention does not require the high temperature and high pressure conditions required by the conventional manufacturing method, compared with the conventional manufacturing method, it requires less heat energy to maintain the temperature and has a high strength. There is an advantageous effect suitable for production on an industrial scale such that a pressure vessel is not required.
本発明における反応時間は、エポキシド(オキシラン)と本発明にかかるアミン化合物の種類、エポキシド(オキシラン)に対する二酸化炭素の使用量、エポキシド(オキシラン)に対する本発明にかかるアミン化合物とヨウ化水素の使用量、有機溶媒の添加の有無、その種類及びその使用量、反応温度、並びに反応時の圧力等に影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常0.1~120時間、好ましくは1~72時間である。
The reaction time in the present invention is the kind of the epoxide (oxirane) and the amine compound according to the present invention, the amount of carbon dioxide used with respect to the epoxide (oxirane), and the amount of amine compound and hydrogen iodide according to the present invention with respect to the epoxide (oxirane). The presence or absence of addition of an organic solvent, the type and amount of the organic solvent used, the reaction temperature, and the pressure during the reaction may be affected. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 72 hours, for example.
本発明の製造方法によって得られた環状カーボネートは、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば必要に応じて、反応系内の有機溶媒を留去した後、得られた残渣について、再結晶、蒸留、カラムクロマトグラフィー等を行うことにより、環状カーボネートを単離することができる。また、必要に応じて、得られた残渣について抽出操作を行い、不純物を除去した後に、再結晶、蒸留、カラムクロマトグラフィー等を行うことによっても、環状カーボネートを単離できる。
The cyclic carbonate obtained by the production method of the present invention can be isolated by general post-treatment operations and purification operations usually performed in this field. As a specific example of the isolation method, for example, if necessary, after distilling off the organic solvent in the reaction system, the resulting residue is subjected to recrystallization, distillation, column chromatography, etc. It can be isolated. In addition, if necessary, the cyclic residue can be isolated by performing an extraction operation on the obtained residue and removing impurities, followed by recrystallization, distillation, column chromatography, or the like.
別系内で本発明にかかるアミン化合物とヨウ化水素を反応させて、本発明にかかる触媒(アミン化合物塩)をあらかじめ調製する場合の本発明にかかる触媒(アミン化合物塩)の調製方法について以下に示す。
About the preparation method of the catalyst (amine compound salt) concerning this invention when the amine compound concerning this invention and hydrogen iodide are made to react in another system, and the catalyst (amine compound salt) concerning this invention is prepared beforehand, Shown in
本発明にかかる触媒(アミン化合物塩)の調製方法としては、主に3つの調製方法が挙げられる。具体的には、〔1〕本発明にかかるアミン化合物とヨウ化水素酸を反応させる方法、〔2〕例えば本発明にかかるアミン化合物の塩酸塩、トリフルオロメタンスルホン酸塩等の本発明にかかるアミン化合物の塩と、例えばヨウ化ナトリウム等のアルカリ金属ヨウ化物塩とを反応させてアニオン交換させる方法、〔3〕チオ尿素誘導体とヨウ化アルキルを反応させてイソチオ尿素塩とした後、モノ又はジアミンと反応させる方法が挙げられる。
The preparation method of the catalyst (amine compound salt) according to the present invention mainly includes three preparation methods. Specifically, [1] a method of reacting an amine compound according to the present invention with hydroiodic acid, [2] an amine according to the present invention such as a hydrochloride or trifluoromethanesulfonate of the amine compound according to the present invention A method of reacting a salt of a compound with an alkali metal iodide salt such as sodium iodide to exchange anions, [3] After reacting a thiourea derivative with an alkyl iodide to give an isothiourea salt, mono or diamine The method of making it react with is mentioned.
〔1〕本発明にかかるアミン化合物とヨウ化水素酸を反応させる場合における本発明にかかる触媒(アミン化合物塩)の調製は、一般的な中和反応に準じて行えばよい。調製方法の具体例としては、例えば本発明にかかるアミン化合物を含む反応系内に、当該アミン化合物に対して、ヨウ化水素換算で、通常0.9~5.0当量、好ましくは1.0~3.0当量のヨウ化水素酸を反応させればよい。なお、目的物である本発明にかかる触媒(アミン化合物塩)は、常温で固体状態である場合が多く、また、反応系内にはヨウ化水素酸由来の水を含むことから、調製は、水と相溶性のある有機溶媒中で行うことが望ましい。
[1] The catalyst (amine compound salt) according to the present invention in the case of reacting the amine compound according to the present invention with hydroiodic acid may be prepared according to a general neutralization reaction. Specific examples of the preparation method include, for example, in the reaction system containing the amine compound according to the present invention, usually 0.9 to 5.0 equivalents, preferably 1.0, in terms of hydrogen iodide, relative to the amine compound. It is sufficient to react with ~ 3.0 equivalents of hydroiodic acid. In addition, the catalyst (amine compound salt) according to the present invention, which is the target product, is often in a solid state at normal temperature, and since the reaction system contains water derived from hydroiodic acid, It is desirable to carry out in an organic solvent compatible with water.
本発明にかかるアミン化合物の具体例としては、上述したように、例えば上記一般式[1]で示されるモノアミン、上記一般式[2]で示される環状アミジン及び上記一般式[3]で示されるグアニジンから選ばれるものが挙げられる。
Specific examples of the amine compound according to the present invention include, as described above, for example, a monoamine represented by the general formula [1], a cyclic amidine represented by the general formula [2], and the general formula [3]. Those selected from guanidine.
ヨウ化水素酸は、例えば市販されている57%ヨウ化水素酸を適宜用いればよい。
For example, commercially available 57% hydroiodic acid may be used as the hydroiodic acid.
上述の〔1〕の調製方法において、上記水と相溶性のある有機溶媒の具体例としては、例えばテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えば2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)等のケトン系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。また、上記有機溶媒は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the preparation method of [1], specific examples of the organic solvent compatible with water include ether solvents such as tetrahydrofuran and 1,4-dioxane, such as 2-propanone (acetone) and 2-butanone. Examples thereof include ketone solvents such as (ethyl methyl ketone), and nitrile solvents such as acetonitrile. Moreover, the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
上述の〔1〕の調製方法において、上記水と相溶性のある有機溶媒の使用量は、実用的な量であれば特に制限されず、例えばpKaが8以上の第一級乃至第三級アミン1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
In the preparation method of [1] described above, the amount of the organic solvent compatible with water is not particularly limited as long as it is a practical amount. For example, primary to tertiary amines having a pKa of 8 or more. The amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL per 1 mmol.
上述の〔1〕の調製方法における反応時の温度(反応温度)は、本発明にかかるアミン化合物とヨウ化水素酸とが反応する温度であれば特に制限されず、例えば通常0~100℃、好ましくは10~50℃である。
The temperature during the reaction (reaction temperature) in the preparation method of the above [1] is not particularly limited as long as it is a temperature at which the amine compound according to the present invention and hydroiodic acid are reacted. The temperature is preferably 10 to 50 ° C.
上述の〔1〕の調製方法における反応時の圧力は、本発明にかかるアミン化合物とヨウ化水素酸とが反応する圧力であれば特に制限されず、例えば0.09~0.11MPaである。
The pressure during the reaction in the preparation method [1] described above is not particularly limited as long as it is a pressure at which the amine compound according to the present invention and hydroiodic acid react, and is, for example, 0.09 to 0.11 MPa.
上述の〔1〕の調製方法における反応時間は、本発明にかかるアミン化合物の種類、本発明にかかるアミン化合物に対するヨウ化水素酸の使用量、有機溶媒の種類及びその使用量、反応温度、並びに反応時の圧力等に影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常0.1~120時間、好ましくは1~60時間である。
The reaction time in the preparation method of [1] described above is the kind of amine compound according to the present invention, the amount of hydroiodic acid used for the amine compound according to the present invention, the kind and amount of organic solvent used, the reaction temperature, and It may be affected by the pressure during the reaction. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
上述の〔1〕の調製方法によって得られた本発明にかかる触媒(アミン化合物塩)は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば反応系内の、水と相溶性のある有機溶媒とヨウ化水素酸由来の水を留去した後、得られた残渣を真空乾燥することにより、本発明にかかる触媒(アミン化合物塩)を単離することができる。また、必要に応じて、得られた残渣について、再結晶、蒸留、カラムクロマトグラフィー等を行うことによっても、本発明にかかる触媒(アミン化合物塩)を単離できる。
The catalyst (amine compound salt) according to the present invention obtained by the preparation method of [1] described above can be isolated by general post-treatment operations and purification operations usually performed in this field. As a specific example of the isolation method, for example, after distilling off an organic solvent compatible with water and water derived from hydroiodic acid in the reaction system, the obtained residue is vacuum-dried to thereby obtain the present invention. The catalyst (amine compound salt) can be isolated. Moreover, the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
〔2〕本発明にかかるアミン化合物の塩と、アルカリ金属ヨウ化物塩を反応させてアニオン交換させる場合における本発明にかかる触媒(アミン化合物塩)の調製は、一般的なアニオン交換反応に準じて行えばよい。調製方法の具体例としては、例えば本発明にかかるアミン化合物の塩を含む反応系内に、当該アミン化合物の塩に対して、通常0.9~3.0当量、好ましくは0.95~2.0当量のアルカリ金属ヨウ化物塩を反応させればよい。なお、原料である本発明にかかるアミン化合物の塩及びアルカリ金属ヨウ化物塩、並びに目的物である本発明にかかる触媒(アミン化合物塩)は、常温で固体状態である場合が多いことから、調製は、有機溶媒中で行うことが望ましい。
[2] The preparation of the catalyst (amine compound salt) according to the present invention in the case of anion exchange by reacting the salt of the amine compound according to the present invention with an alkali metal iodide salt is in accordance with a general anion exchange reaction. Just do it. As a specific example of the preparation method, for example, in the reaction system containing the salt of the amine compound according to the present invention, usually 0.9 to 3.0 equivalents, preferably 0.95 to 2 with respect to the salt of the amine compound. It is sufficient to react 0.0 equivalent of an alkali metal iodide salt. In addition, since the salt of the amine compound and alkali metal iodide salt according to the present invention as raw materials and the catalyst according to the present invention as the target (amine compound salt) are often in a solid state at room temperature, they are prepared. Is preferably carried out in an organic solvent.
アルカリ金属ヨウ化物塩と反応させてアニオン交換させるために用いられる、本発明にかかるアミン化合物の塩の具体例としては、一例として、モノイソプロピルアミン 塩化水素塩、モノイソプロピルアミン 酢酸塩、モノイソプロピルアミン トリフルオロメタンスルホン酸塩、モノ-t-ブチルアミン 塩化水素塩、モノ-t-ブチルアミン 酢酸塩、モノ-t-ブチルアミン トリフルオロメタンスルホン酸塩、モノシクロヘキシルアミン 塩化水素塩、モノシクロヘキシルアミン 酢酸塩、モノシクロヘキシルアミン トリフルオロメタンスルホン酸塩、ジシクロヘキシルアミン 塩化水素塩、ジシクロヘキシルアミン 酢酸塩、ジシクロヘキシルアミン トリフルオロメタンスルホン酸塩、ベンジルジメチルアミン 塩化水素塩、ベンジルジメチルアミン 酢酸塩、ベンジルジメチルアミン トリフルオロメタンスルホン酸塩等の一般式[1]で示されるモノアミンに由来する塩化水素塩、酢酸塩又はトリフルオロメタンスルホン酸塩、例えば1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩、1-メチル-1,4,5,6-テトラヒドロピリミジン 酢酸塩、1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン 酢酸塩、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN) 塩化水素塩、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN) 酢酸塩、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN) トリフルオロメタンスルホン酸塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) 塩化水素塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) 酢酸塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) トリフルオロメタンスルホン酸塩等の一般式[2]で示される環状アミジンに由来する塩化水素塩、酢酸塩又はトリフルオロメタンスルホン酸塩、例えばグアニジン 塩化水素塩、グアニジン 酢酸塩、グアニジン トリフルオロメタンスルホン酸塩、1-(1-n-ブチル)グアニジン 塩化水素塩、1-(1-n-ブチル)グアニジン 酢酸塩、1-(1-n-ブチル)グアニジン トリフルオロメタンスルホン酸塩、1-(1-n-ブチル)-3-メチルグアニジン 塩化水素塩、1-(1-n-ブチル)-3-メチルグアニジン 酢酸塩、1-(1-n-ブチル)-3-メチルグアニジン トリフルオロメタンスルホン酸塩、1-(1-n-ブチル)-2,3-ジメチルグアニジン 塩化水素塩、1-(1-n-ブチル)-2,3-ジメチルグアニジン 酢酸塩、1-(1-n-ブチル)-2,3-ジメチルグアニジン トリフルオロメタンスルホン酸塩、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン 酢酸塩、1-(1-n-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩、2-(1-n-ブチル)-1,1,3,3-テトラメチルグアニジン 塩化水素塩、2-(1-n-ブチル)-1,1,3,3-テトラメチルグアニジン 酢酸塩、2-(1-n-ブチル)-1,1,3,3-テトラメチルグアニジン トリフルオロメタンスルホン酸塩、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン 塩化水素塩、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン 酢酸塩、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン トリフルオロメタンスルホン酸塩、1-(1-n-オクチル)グアニジン 塩化水素塩、1-(1-n-オクチル)グアニジン 酢酸塩、1-(1-n-オクチル)グアニジン トリフルオロメタンスルホン酸塩、1,1-ジシクロヘキシルグアニジン 塩化水素塩、1,1-ジシクロヘキシルグアニジン 酢酸塩、1,1-ジシクロヘキシルグアニジン トリフルオロメタンスルホン酸塩、1-ベンジルグアニジン 塩化水素塩、1-ベンジルグアニジン 酢酸塩、1-ベンジルグアニジン トリフルオロメタンスルホン酸塩、1-(2-ヒドロキシエチル)グアニジン 塩化水素塩、1-(2-ヒドロキシエチル)グアニジン 酢酸塩、1-(2-ヒドロキシエチル)グアニジン トリフルオロメタンスルホン酸塩、1-(2-メトキシエチル)グアニジン 塩化水素塩、1-(2-メトキシエチル)グアニジン 酢酸塩、1-(2-メトキシエチル)グアニジン トリフルオロメタンスルホン酸塩、1-(2-ジメチルアミノエチル)グアニジン 塩化水素塩、1-(2-ジメチルアミノエチル)グアニジン 酢酸塩、1-(2-ジメチルアミノエチル)グアニジン トリフルオロメタンスルホン酸塩、1-ベンジル-2,3,3-トリメチルグアニジン 塩化水素塩、1-ベンジル-2,3,3-トリメチルグアニジン 酢酸塩、1-ベンジル-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩、1-(2-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン 塩化水素塩、1-(2-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン 酢酸塩、1-(2-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩等の一般式[3]で示されるグアニジンに由来する塩化水素塩、酢酸塩又はトリフルオロメタンスルホン酸塩等が挙げられる。なお、上述の具体例で示される本発明にかかるアミン化合物の塩は、あくまで具体例の一例であって、ここで例示される具体例に限定されない。また、上述の具体例において、n-はnormal-体を表し、t-はtert-体を表す。なお、上記本発明にかかるアミン化合物の塩は、市販品、あるいはこの分野で行われる一般的な方法により適宜合成したものを用いればよい。
Specific examples of the salt of the amine compound according to the present invention used for anion exchange by reacting with an alkali metal iodide salt include, as an example, monoisopropylamine hydrochloride, monoisopropylamine acetate, monoisopropylamine Trifluoromethane sulfonate, mono-t-butylamine 水 素 hydrochloride, mono-t-butylamine acetate, mono-t-butylamine trifluoromethanesulfonate, monocyclohexylamine 水 素 hydrochloride, monocyclohexylamine acetate, monocyclohexylamine Trifluoromethane sulfonate, dicyclohexylamine 、 hydrochloride, dicyclohexylamine ジ acetate, dicyclohexylamine trifluoromethanesulfonate, benzyldimethylamine 水 素 hydrochloride, benzyl dimethyl Hydrochloric acid salts, acetic acid salts or trifluoromethanesulfonic acid salts derived from monoamines represented by the general formula [1] such as ruamine acetate, benzyldimethylamine trifluoromethanesulfonate, etc., such as 1-methyl-1,4,5, 6-tetrahydropyrimidine 水 素 hydrochloride, 1-methyl-1,4,5,6-tetrahydropyrimidine 塩 acetate, 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate, 1,2-dimethyl -1,4,5,6-tetrahydropyrimidine hydrochloride, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine acetate, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine Trifluoromethanesulfonate, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) hydrogen chloride, 1,5-diazabi Chlo [4.3.0] -5-nonene (DBN) acetate, 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) trifluoromethanesulfonate, 1,8-diazabicyclo [5 4.0] -7-undecene (DBU) hydrogen chloride, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) acetate, 1,8-diazabicyclo [5.4.0] Hydrochloride, acetate or trifluoromethanesulfonate derived from the cyclic amidine represented by the general formula [2] such as -7-undecene (DBU) trifluoromethanesulfonate, such as guanidine hydrochloride, guanidine acetate, Guanidine trifluoromethanesulfonate, 1- (1-n-butyl) guanidine hydrochloride, 1- (1-n-butyl) guanidine acetate, 1- (1-n-butyl) guanidine Trifluoromethanesulfonic acid salt, 1- (1-n-butyl) -3-methylguanidine 水 素 hydrochloride, 1- (1-n-butyl) -3-methylguanidine acetate, 1- (1-n-butyl) ) -3-Methylguanidine trifluoromethanesulfonate, 1- (1-n-butyl) -2,3-dimethylguanidine hydrochloride, 1- (1-n-butyl) -2,3-dimethylguanidine acetate 1- (1-n-butyl) -2,3-dimethylguanidine trifluoromethanesulfonate, 1- (1-n-butyl) -2,3,3-trimethylguanidine hydrochloride, 1- (1- n-butyl) -2,3,3-trimethylguanidine acetate, 1- (1-n-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate, 2- (1-n-butyl)- 1,1,3,3-tetramethylguanidine dihydrochloride, 2- (1-n- Butyl) -1,1,3,3-tetramethylguanidine acetate, 2- (1-n-butyl) -1,1,3,3-tetramethylguanidine trifluoromethanesulfonate, 7-methyl-1, 5,7-triazabicyclo [4.4.0] dec-5-ene hydrochlorate, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene acetate 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene trifluoromethanesulfonate, 1- (1-n-octyl) guanidine ア ニ hydrochloride, 1- (1 -n-octyl) guanidine acetate, 1- (1-n-octyl) guanidine trifluoromethanesulfonate, 1,1-dicyclohexylguanidine hydrochloride, 1,1-dicyclohexylguanidine acetate, 1,1-dicyclohexylguanidine Trifluorome Sulfonate, 1-benzylguanidine hydrochloride, 1-benzylguanidine acetate, 1-benzylguanidine trifluoromethanesulfonate, 1- (2-hydroxyethyl) guanidine hydrochloride, 1- (2-hydroxyethyl) Guanidine acetate, 1- (2-hydroxyethyl) guanidine trifluoromethanesulfonate, 1- (2-methoxyethyl) guanidine hydrochloride, 1- (2-methoxyethyl) guanidine acetate, 1- (2-methoxy Ethyl) guanidine trifluoromethanesulfonate, 1- (2-dimethylaminoethyl) guanidine hydrochloride, 1- (2-dimethylaminoethyl) guanidine acetate, 1- (2-dimethylaminoethyl) guanidine trifluoromethanesulfonic acid Salt, 1-benzyl-2,3,3-trimethylguanidi Hydrogen chloride, 1-benzyl-2,3,3-trimethylguanidine acetate, 1-benzyl-2,3,3-trimethylguanidine, trifluoromethanesulfonate, 1- (2-dimethylaminoethyl) -2 3,3-trimethylguanidine hydrochloride, 1- (2-dimethylaminoethyl) -2,3,3-trimethylguanidine acetate, 1- (2-dimethylaminoethyl) -2,3,3-trimethylguanidine trifluor Examples thereof include a hydrogen chloride salt, acetate salt or trifluoromethanesulfonate salt derived from guanidine represented by the general formula [3] such as lomethanesulfonate. In addition, the salt of the amine compound concerning this invention shown by the above-mentioned specific example is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here. In the specific examples described above, n- represents a normal-form and t- represents a tert-form. In addition, what is necessary is just to use what was synthesize | combined suitably by the general method performed by the commercial item performed in this field | area as the salt of the amine compound concerning the said invention.
アルカリ金属ヨウ化物塩の具体例としては、例えばヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム等が挙げられる。また、上記アルカリ金属ヨウ化物塩は、市販品を用いればよい。
Specific examples of alkali metal iodide salts include lithium iodide, sodium iodide, potassium iodide, cesium iodide and the like. Moreover, the said alkali metal iodide salt should just use a commercial item.
上述の〔2〕の調製方法において、上記有機溶媒の具体例としては、例えばジエチルエーテル、ジイソプロピルエーテル、メチルt-ブチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えば2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、4-メチル-2-ペンタノン(メチルイソブチルケトン)等のケトン系溶媒、例えばメタノール、エタノール、イソプロパノール、t-ブタノール、2-メトキシエタノール等のアルコール系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。なお、上述の具体例において、t-はtert-体を表す。また、上記有機溶媒は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the above-mentioned preparation method [2], specific examples of the organic solvent include ether solvents such as diethyl ether, diisopropyl ether, methyl t-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, Ketone solvents such as 2-propanone (acetone), 2-butanone (ethyl methyl ketone), 4-methyl-2-pentanone (methyl isobutyl ketone), such as methanol, ethanol, isopropanol, t-butanol, 2-methoxyethanol, etc. Alcohol solvents such as nitrile solvents such as acetonitrile. In the above specific examples, t- represents a tert-isomer. Moreover, the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
上述の〔2〕の調製方法において、上記有機溶媒の使用量は、実用的な量であれば特に制限されず、例えばpKaが8以上の第一級乃至第三級アミンの塩1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
In the preparation method of [2] described above, the amount of the organic solvent used is not particularly limited as long as it is a practical amount. For example, with respect to 1 mmol of a primary to tertiary amine salt having a pKa of 8 or more. The amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
上述の〔2〕の調製方法における反応時の温度(反応温度)は、本発明にかかるアミン化合物の塩と、アルカリ金属ヨウ化物塩とが反応する温度であれば特に制限されず、例えば通常0~150℃、好ましくは10~100℃である。
The reaction temperature (reaction temperature) in the preparation method [2] described above is not particularly limited as long as it is a temperature at which the salt of the amine compound according to the present invention reacts with the alkali metal iodide salt. -150 ° C, preferably 10-100 ° C.
上述の〔2〕の調製方法における反応時の圧力は、本発明にかかるアミン化合物の塩と、アルカリ金属ヨウ化物塩とが反応する圧力であれば特に制限されず、例えば0.09~0.11MPaである。
The pressure during the reaction in the preparation method [2] is not particularly limited as long as the salt of the amine compound according to the present invention is reacted with the alkali metal iodide salt. 11 MPa.
上述の〔2〕の調製方法における反応時間は、本発明にかかるアミン化合物の塩の種類、本発明にかかるアミン化合物の塩に対するアルカリ金属ヨウ化物塩の使用量、有機溶媒の種類及びその使用量、反応温度、並びに反応時の圧力等に影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常0.1~120時間、好ましくは1~60時間である。
The reaction time in the preparation method of [2] described above is the kind of the salt of the amine compound according to the present invention, the amount of the alkali metal iodide salt used with respect to the salt of the amine compound according to the present invention, the kind of the organic solvent and the amount of its use. , The reaction temperature, and the pressure during the reaction may be affected. For this reason, the desired reaction time is not generally known, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
上述の〔2〕の調製方法によって得られた本発明にかかる触媒(アミン化合物塩)は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば反応系内の有機溶媒を留去した後、抽出操作を行い、次いで抽出液中の抽出溶媒を留去して得られた残渣を真空乾燥することにより、本発明にかかる触媒(アミン化合物塩)を単離することができる。また、必要に応じて、得られた残渣について、再結晶、蒸留、カラムクロマトグラフィー等を行うことによっても、本発明にかかる触媒(アミン化合物塩)を単離できる。
The catalyst (amine compound salt) according to the present invention obtained by the above-described preparation method [2] can be isolated by general post-treatment operations and purification operations usually performed in this field. As a specific example of the isolation method, for example, the organic solvent in the reaction system is distilled off, followed by an extraction operation, and then the residue obtained by distilling off the extraction solvent in the extract is vacuum-dried. The catalyst (amine compound salt) according to the present invention can be isolated. Moreover, the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
〔3〕チオ尿素誘導体とヨウ化アルキルを反応させてイソチオ尿素塩とした後、モノ又はジアミンと反応させる調製方法は、本発明にかかる触媒(アミン化合物塩)のうち、一般式[3']で示される、pKaが8以上のグアニジンとヨウ化水素との塩を調製する場合に用いられる。調製は、通常この分野で行われる方法に準じて行えばよい。調製方法の具体例としては、例えばチオ尿素誘導体を含む反応系内に、チオ尿素誘導体に対して、通常0.9~3.0当量、好ましくは0.95~2.0当量のヨウ化アルキルを反応させてイソチオ尿素塩とした後、当該イソチオ尿素塩に対して、通常0.9~3.0当量、好ましくは0.95~2.0当量のモノ又はジアミンを反応させればよい。なお、中間体であるイソチオ尿素塩、並びに目的物である本発明にかかる触媒(アミン化合物塩)は、常温で固体状態である場合が多いことから、調製は、有機溶媒中で行うことが望ましい。
[3] A preparation method in which a thiourea derivative and an alkyl iodide are reacted to form an isothiourea salt and then reacted with a mono- or diamine is a general formula [3 ′] of the catalyst (amine compound salt) according to the present invention. Used to prepare a salt of guanidine and hydrogen iodide having a pKa of 8 or more. Preparation may be carried out according to a method usually performed in this field. As a specific example of the preparation method, for example, in a reaction system containing a thiourea derivative, usually 0.9 to 3.0 equivalents, preferably 0.95 to 2.0 equivalents of an alkyl iodide with respect to the thiourea derivative. To give an isothiourea salt, and then 0.9 to 3.0 equivalents, preferably 0.95 to 2.0 equivalents of mono- or diamine may be reacted with the isothiourea salt. In addition, since the isothiourea salt that is an intermediate and the catalyst (amine compound salt) according to the present invention that is an object are often in a solid state at room temperature, the preparation is preferably performed in an organic solvent. .
チオ尿素誘導体の具体例としては、例えばチオ尿素、N-メチルチオ尿素、N,N-ジメチルチオ尿素、N,N,N-トリメチルチオ尿素、N,N,N,N-テトラメチルチオ尿素等が挙げられる。なお、上述の具体例で示されるチオ尿素誘導体は、あくまで具体例の一例であって、ここで例示される具体例に限定されない。また、上記チオ尿素誘導体は、市販品を用いればよい。
Specific examples of the thiourea derivative include thiourea, N-methylthiourea, N, N-dimethylthiourea, N, N, N-trimethylthiourea, N, N, N, N-tetramethylthiourea and the like. . In addition, the thiourea derivative shown by the above-mentioned specific example is an example of a specific example to the last, Comprising: It is not limited to the specific example illustrated here. The thiourea derivative may be a commercially available product.
ヨウ化アルキルの具体例としては、例えばヨウ化メチル、ヨウ化エチル、ヨウ化プロピル等のヨウ化アルキル等が挙げられる。また、上記ヨウ化アルキルは、市販品を用いればよい。
Specific examples of the alkyl iodide include alkyl iodides such as methyl iodide, ethyl iodide, and propyl iodide. Moreover, what is necessary is just to use a commercial item for the said alkyl iodide.
モノ又はジアミンの具体例としては、例えばモノ又はジn-ブチルアミン、モノ又はジn-オクチルアミン、モノ又はジシクロヘキシルアミン、モノ又はジベンジルアミン、モノ又はビス(2-ヒドロキシエチル)アミン、モノ又はビス(2-メトキシエチル)アミン、モノ又はビス(2-ジメチルアミノエチル)アミン等が挙げられる。なお、上述の具体例で示されるモノ又はジアミンは、あくまで具体例の一例であって、ここで例示される具体例に限定されない。また、上述の具体例において、n-はnormal-体を表す。なお、上記モノ又はジアミンは、市販品を用いればよい。
Specific examples of mono or diamine include, for example, mono or di n-butylamine, mono or di n-octylamine, mono or dicyclohexylamine, mono or dibenzylamine, mono or bis (2-hydroxyethyl) amine, mono or bis (2-methoxyethyl) amine, mono- or bis (2-dimethylaminoethyl) amine and the like can be mentioned. The mono- or diamine shown in the above specific examples is merely an example of specific examples, and is not limited to the specific examples illustrated here. In the above specific example, n- represents a normal-body. In addition, the said mono or diamine should just use a commercial item.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応において、有機溶媒の具体例としては、例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、例えばジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、メチルt-ブチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えばメタノール、エタノール、イソプロパノール、t-ブタノール、2-メトキシエタノール等のアルコール系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。なお、上述の具体例において、t-はtert-体を表す。また、上記有機溶媒は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of [3] above, specific examples of the organic solvent include aliphatic hydrocarbon solvents such as hexane, heptane, and octane, such as benzene, Aromatic hydrocarbon solvents such as toluene and xylene, for example, halogen solvents such as dichloromethane, trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), such as diethyl ether, diisopropyl ether, methyl t-butyl ether, tetrahydrofuran, 2 Examples include ether solvents such as 1-methyltetrahydrofuran and 1,4-dioxane, alcohol solvents such as methanol, ethanol, isopropanol, t-butanol, and 2-methoxyethanol, and nitrile solvents such as acetonitrile. In the above specific examples, t- represents a tert-isomer. Moreover, the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応において、上記有機溶媒の使用量は、実用的な量であれば特に制限されず、例えばチオ尿素誘導体1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
In the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of [3] described above, the amount of the organic solvent used is not particularly limited as long as it is a practical amount. On the other hand, it is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応において、有機溶媒の具体例としては、例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、例えばジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、メチルt-ブチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。なお、上述の具体例において、t-はtert-体を表す。また、上記有機溶媒は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, specific examples of the organic solvent include aliphatic carbonization such as hexane, heptane, and octane. Hydrogen solvents such as aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogen solvents such as dichloromethane, trichloromethane (chloroform) and tetrachloromethane (carbon tetrachloride) such as diethyl ether, diisopropyl ether and methyl Examples include ether solvents such as t-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and nitrile solvents such as acetonitrile. In the above specific examples, t- represents a tert-isomer. Moreover, the said organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応において、上記有機溶媒の使用量は、実用的な量であれば特に制限されず、例えばイソチオ尿素塩1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
In the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the above preparation method [3], the amount of the organic solvent used is not particularly limited as long as it is a practical amount. For example, with respect to 1 mmol of isothiourea salt, it is usually 0.01 to 500 mL, preferably 0.1 to 100 mL.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応における反応時の温度(反応温度)は、チオ尿素誘導体とヨウ化アルキルとが反応する温度であれば特に制限されず、例えば通常0~100℃、好ましくは10~80℃である。
The reaction temperature (reaction temperature) in the reaction for synthesizing the isothiourea salt, which is an intermediate in the above preparation method [3], is particularly limited as long as it is a temperature at which the thiourea derivative reacts with alkyl iodide. For example, it is usually 0 to 100 ° C., preferably 10 to 80 ° C.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応における反応時の温度(反応温度)は、イソチオ尿素塩とモノ又はジアミンとが反応する温度であれば特に制限されず、例えば通常0~100℃、好ましくは10~80℃である。
The reaction temperature (reaction temperature) in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, is the reaction of isothiourea salt with mono- or diamine. The temperature is not particularly limited as long as it is a temperature to be used, for example, usually 0 to 100 ° C., preferably 10 to 80 ° C.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応における反応時の圧力は、チオ尿素誘導体とヨウ化アルキルとが反応する圧力であれば特に制限されず、例えば0.09~0.11MPaである。
The reaction pressure in the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of the above [3] is not particularly limited as long as it is a pressure at which the thiourea derivative reacts with alkyl iodide. 0.09 to 0.11 MPa.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応における反応時の圧力は、イソチオ尿素塩とモノ又はジアミンとが反応する圧力であれば特に制限されず、例えば0.09~0.11MPaである。
The reaction pressure in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, may be a pressure at which the isothiourea salt reacts with mono- or diamine. For example, it is 0.09 to 0.11 MPa.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応における反応時間は、チオ尿素誘導体の種類、チオ尿素誘導体に対するヨウ化アルキルの使用量、有機溶媒の種類及びその使用量、反応温度、並びに反応時の圧力等に影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常0.1~120時間、好ましくは1~60時間である。
The reaction time in the reaction for synthesizing the isothiourea salt, which is an intermediate in the preparation method of [3] above, is the kind of thiourea derivative, the amount of alkyl iodide used for the thiourea derivative, the kind of organic solvent and its It may be affected by the amount used, reaction temperature, and pressure during the reaction. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 120 hours, preferably 1 to 60 hours, for example.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応における反応時間は、イソチオ尿素塩の種類、イソチオ尿素塩に対するモノ又はジアミンの使用量、有機溶媒の種類及びその使用量、反応温度、並びに反応時の圧力等に影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常0.1~60時間、好ましくは1~30時間である。
The reaction time in the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, is the type of isothiourea salt, the amount of mono- or diamine used relative to the isothiourea salt. It may be affected by the type and amount of organic solvent used, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually 0.1 to 60 hours, preferably 1 to 30 hours, for example.
上述の〔3〕の調製方法のうちの中間体であるイソチオ尿素塩を合成する反応によって得られたイソチオ尿素塩は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば未反応のヨウ化アルキル及び反応系内の有機溶媒を留去した後、得られた残渣を真空乾燥することにより、イソチオ尿素塩を単離することができる。また、必要に応じて、得られた残渣について、再結晶、蒸留、カラムクロマトグラフィー等を行うことによっても、イソチオ尿素塩を単離できる。
The isothiourea salt obtained by the reaction for synthesizing the isothiourea salt which is an intermediate in the preparation method of the above [3] is usually isolated by a general post-treatment operation and purification operation performed in this field. be able to. As a specific example of the isolation method, for example, the unreacted alkyl iodide and the organic solvent in the reaction system are distilled off, and then the resulting residue is vacuum dried to isolate the isothiourea salt. . Moreover, an isothiourea salt can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
上述の〔3〕の調製方法のうちの目的物である本発明にかかる触媒(アミン化合物塩)を合成する反応によって得られた本発明にかかる触媒(アミン化合物塩)は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば未反応のモノ又はジアミン及び反応系内の有機溶媒を留去した後、得られた残渣を真空乾燥することにより、本発明にかかる触媒(アミン化合物塩)を単離することができる。また、必要に応じて、得られた残渣について、再結晶、蒸留、カラムクロマトグラフィー等を行うことによっても、本発明にかかる触媒(アミン化合物塩)を単離できる。
The catalyst (amine compound salt) according to the present invention obtained by the reaction for synthesizing the catalyst (amine compound salt) according to the present invention, which is the object of the preparation method of [3] above, is usually carried out in this field. It can be isolated by general post-treatment operations and purification operations. As a specific example of the isolation method, for example, unreacted mono- or diamine and the organic solvent in the reaction system are distilled off, and then the resulting residue is vacuum-dried, whereby the catalyst according to the present invention (amine compound salt). Can be isolated. Moreover, the catalyst (amine compound salt) concerning this invention can be isolated also by performing recrystallization, distillation, column chromatography etc. about the obtained residue as needed.
本発明にかかる触媒(アミン化合物塩)の調製方法として、3つの調製方法について述べたが、本発明にかかる触媒(アミン化合物塩)が得られる限りにおいては、その調製方法は特に限定されず、上述した製法以外の方法により調製してもよい。
As preparation methods of the catalyst (amine compound salt) according to the present invention, three preparation methods have been described. However, as long as the catalyst (amine compound salt) according to the present invention is obtained, the preparation method is not particularly limited, You may prepare by methods other than the manufacturing method mentioned above.
本発明においては、反応を促進させる目的で、高活性の水素原子を有する化合物を反応時に共存させておいてもよい。高活性の水素原子を有する化合物とは、原料であるエポキシド(オキシラン)の酸素原子と水素結合することが可能な、エポキシドの酸素原子と水素結合し得る水素原子を有する化合物を意味する。より具体的には、当該化合物は、分子内に、ヒドロキシル基、カルボキシル基、チオール基、チオカルボキシル基、1級もしくは2級アミノ基、1級もしくは2級アミド基、スルホ基、ウレイレン基、チオウレイレン基及びヒドロキシボリル基のうちの少なくとも1つの基を有するものである。
In the present invention, for the purpose of promoting the reaction, a compound having a highly active hydrogen atom may coexist during the reaction. The compound having a highly active hydrogen atom means a compound having a hydrogen atom capable of hydrogen bonding with an oxygen atom of an epoxide capable of hydrogen bonding with an oxygen atom of an epoxide (oxirane) as a raw material. More specifically, the compound has a hydroxyl group, carboxyl group, thiol group, thiocarboxyl group, primary or secondary amino group, primary or secondary amide group, sulfo group, ureylene group, thioureylene in the molecule. Having at least one group selected from a group and a hydroxyboryl group.
分子内にヒドロキシル基を有する化合物の具体例としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、パーフルオロメタノール、パーフルオロエタノール、パーフルオロ-n-プロパノール、ヘキサフルオロイソプロパノール、パーフルオロイソプロパノール、メトキシメタノール、メトキシエタノール、エトキシメタノール、エトキシエタノール等の脂肪族アルコール、例えばフェノール、4-メチルフェノール、4-メトキシフェノール、4-ニトロフェノール、2,2'-ビフェノール、2-ヒドロキシピリジン、3-ヒドロキシピリジン等の芳香族アルコール等が挙げられる。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
Specific examples of the compound having a hydroxyl group in the molecule include, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, perfluoromethanol, perfluoroethanol, perfluoro. aliphatic alcohols such as n-propanol, hexafluoroisopropanol, perfluoroisopropanol, methoxymethanol, methoxyethanol, ethoxymethanol, ethoxyethanol, such as phenol, 4-methylphenol, 4-methoxyphenol, 4-nitrophenol, 2, Aromatic alcohols such as 2′-biphenol, 2-hydroxypyridine, and 3-hydroxypyridine are exemplified. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
分子内にカルボキシル基を有する化合物の具体例としては、例えばギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸等の脂肪族モノカルボン酸、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、例えば乳酸、リンゴ酸、酒石酸、クエン酸等の脂肪族ヒドロキシカルボン酸、例えばアコニット酸等の脂肪族トリカルボン酸、例えばピルビン酸等の脂肪族オキソカルボン酸、例えば安息香酸等の芳香族モノカルボン酸、例えばフタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸、例えばサリチル酸、没食子酸等の芳香族ヒドロキシカルボン酸、例えばメリト酸等の芳香族ヘキサカルボン酸等が挙げられる。なお、本発明においては、分子内に、1つ以上のヒドロキシル基を有するカルボン酸は、カルボキシル基の数にかかわらず、ヒドロキシカルボン酸と称する。
Specific examples of the compound having a carboxyl group in the molecule include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid and lauric acid. Acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids such as lactic acid, malic acid, tartaric acid and citric acid An aliphatic tricarboxylic acid such as aconitic acid, an aliphatic oxocarboxylic acid such as pyruvic acid, an aromatic monocarboxylic acid such as benzoic acid, an aromatic dicarboxylic acid such as phthalic acid, isophthalic acid, terephthalic acid, etc. Aromatic hydroxy carboxylic acids such as salicylic acid and gallic acid, for example aromatic hex such as melittic acid A carboxylic acid. In the present invention, a carboxylic acid having one or more hydroxyl groups in the molecule is referred to as a hydroxycarboxylic acid regardless of the number of carboxyl groups.
分子内にチオール基を有する化合物の具体例としては、例えばメタンチオール、エタンチオール、n-プロパンチオール、イソプロパンチオール、n-ブタンチオール、イソブタンチオール、s-ブタンチオール、t-ブタンチオール等の脂肪族チオール、例えばチオフェノール等の芳香族チオール等が挙げられる。なお、上述の具体例において、n-はnormal-体を表し、s-はsec-体を表し、t-はtert-体を表す。
Specific examples of the compound having a thiol group in the molecule include fats such as methanethiol, ethanethiol, n-propanethiol, isopropanethiol, n-butanethiol, isobutanethiol, s-butanethiol, and t-butanethiol. Group thiols, for example, aromatic thiols such as thiophenol. In the specific examples described above, n- represents a normal isomer, s- represents a sec isomer, and t- represents a tert isomer.
分子内にチオカルボキシル基を有する化合物の具体例としては、例えばチオギ酸、チオ酢酸、チオプロピオン酸、チオ酪酸、チオ吉草酸、チオカプロン酸等の脂肪族チオカルボン酸、例えばチオ安息香酸等の芳香族チオカルボン酸等が挙げられる。
Specific examples of the compound having a thiocarboxyl group in the molecule include aliphatic thiocarboxylic acids such as thioformic acid, thioacetic acid, thiopropionic acid, thiobutyric acid, thiovaleric acid, and thiocaproic acid, and aromatics such as thiobenzoic acid. Examples thereof include thiocarboxylic acid.
分子内に1級もしくは2級アミノ基を有する化合物の具体例としては、例えばメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エタノールアミン等の脂肪族1級アミン、例えばアニリン等の芳香族1級アミン、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジエタノールアミン等の脂肪族2級アミン、例えばジフェニルアミン等の芳香族2級アミン等が挙げられる。
Specific examples of the compound having a primary or secondary amino group in the molecule include aliphatic primary amines such as methylamine, ethylamine, propylamine, butylamine and ethanolamine, for example, aromatic primary amines such as aniline, Examples thereof include aliphatic secondary amines such as dimethylamine, diethylamine, dipropylamine, dibutylamine and diethanolamine, and aromatic secondary amines such as diphenylamine.
分子内に1級もしくは2級アミド基を有する化合物の具体例としては、例えばホルムアミド、アセトアミド、プロパンアミド等の1級アミド、例えばN-メチルホルムアミド、N-エチルホルムアミド、N-メチルアセトアミド、N-エチルアセトアミド、N-メチルプロパンアミド、N-エチルプロパンアミド等の2級アミド等が挙げられる。
Specific examples of the compound having a primary or secondary amide group in the molecule include primary amides such as formamide, acetamide, and propanamide, such as N-methylformamide, N-ethylformamide, N-methylacetamide, N- Secondary amides such as ethylacetamide, N-methylpropanamide, N-ethylpropanamide and the like can be mentioned.
分子内にスルホ基を有する化合物の具体例としては、例えばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、トリフルオロメタンスルホン酸等の脂肪族スルホン酸、例えばベンゼンスルホン酸、トルエンスルホン酸等の芳香族スルホン酸等が挙げられる。
Specific examples of the compound having a sulfo group in the molecule include aliphatic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, and trifluoromethanesulfonic acid, such as benzenesulfonic acid and toluenesulfonic acid. And aromatic sulfonic acids such as
分子内にウレイレン基を有する化合物の具体例としては、例えば1-[3,5-ビス(トリフルオロメチル)フェニル]-3-フェニル-2-尿素等が挙げられる。
Specific examples of the compound having a ureylene group in the molecule include 1- [3,5-bis (trifluoromethyl) phenyl] -3-phenyl-2-urea.
分子内にチオウレイレン基を有する化合物の具体例としては、例えば1-[3,5-ビス(トリフルオロメチル)フェニル]-3-フェニル-2-チオ尿素等が挙げられる。
Specific examples of the compound having a thioureylene group in the molecule include 1- [3,5-bis (trifluoromethyl) phenyl] -3-phenyl-2-thiourea.
分子内にヒドロキシボリル基を有する化合物の具体例としては、例えばメチルボロン酸、エチルボロン酸、プロピルボロン酸、ブチルボロン酸、プロペニルボロン酸、フェニルボロン酸、2-チオフェンボロン酸等が挙げられる。
Specific examples of the compound having a hydroxyboryl group in the molecule include methyl boronic acid, ethyl boronic acid, propyl boronic acid, butyl boronic acid, propenyl boronic acid, phenyl boronic acid, 2-thiophene boronic acid and the like.
高活性の水素原子を有する化合物は、単量体のみならず、重合体(ポリマー)も使用することができる。このような重合体は、構造中にエポキシドの酸素原子と水素結合し得る水素原子を含む構造(官能基)を有している。
As the compound having a highly active hydrogen atom, not only a monomer but also a polymer can be used. Such a polymer has a structure (functional group) containing a hydrogen atom capable of hydrogen bonding with an oxygen atom of the epoxide in the structure.
このような重合体の具体例としては、例えば4-ヒドロキシスチレン、(メタ)アクリル酸、(メタ)アクリルアミド等の、分子内にビニル基とエポキシドの酸素原子と水素結合し得る水素原子を含む構造(官能基)を有する化合物に由来するモノマー単位からなる単独重合体又はこれらの共重合体、例えば4-ヒドロキシスチレンに由来するモノマー単位とスチレンに由来するモノマー単位からなる共重合体、(メタ)アクリル酸に由来するモノマー単位とメタアクリル酸エステルに由来するモノマー単位からなる共重合体等の、分子内にビニル基とエポキシドの酸素原子と水素結合し得る水素原子を含む構造(官能基)を有する化合物に由来するモノマー単位と、分子内にビニル基を有しかつエポキシドの酸素原子と水素結合し得る水素原子を含む構造(官能基)を有さない化合物に由来するモノマー単位からなる共重合体等が挙げられる。
Specific examples of such a polymer include, for example, a structure containing a hydrogen atom capable of hydrogen bonding with a vinyl group and an oxygen atom of an epoxide in the molecule, such as 4-hydroxystyrene, (meth) acrylic acid, and (meth) acrylamide. A homopolymer composed of monomer units derived from a compound having (functional group) or a copolymer thereof, for example, a copolymer composed of monomer units derived from 4-hydroxystyrene and monomer units derived from styrene, (meth) A structure (functional group) containing a hydrogen atom capable of hydrogen bonding with a vinyl group and an oxygen atom of epoxide in the molecule, such as a copolymer comprising a monomer unit derived from acrylic acid and a monomer unit derived from methacrylic acid ester A monomer unit derived from a compound having a hydrogen atom having a vinyl group in the molecule and capable of hydrogen bonding with an oxygen atom of an epoxide Structure (functional group) to have no compound copolymer comprising monomer units derived from including the child and the like.
上記高活性の水素原子を有する化合物は、そのうちの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Among the compounds having a highly active hydrogen atom, one of them may be used alone, or two or more of them may be used in combination.
高活性の水素原子を有する化合物を用いると、反応が促進する理由は以下のとおりである。すなわち、高活性の水素原子を有する化合物は、エポキシド(オキシラン)の酸素原子に対して金属配位子と同様の配位作用を有するため、より効果的にエポキシド(オキシラン)のプロトン化が起こり易くなり、本発明にかかる触媒(アミン化合物塩)におけるヨウ素アニオンによるエポキシド(オキシラン)の開環を進行させ易くしているものと考えられる。
The reason why the reaction is accelerated when a compound having a highly active hydrogen atom is used is as follows. That is, since a compound having a highly active hydrogen atom has a coordination action similar to that of a metal ligand with respect to the oxygen atom of the epoxide (oxirane), protonation of the epoxide (oxirane) tends to occur more effectively. Thus, it is considered that the ring opening of the epoxide (oxirane) by the iodine anion in the catalyst (amine compound salt) according to the present invention is facilitated.
以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、以下の例中にある%は、特記しない限り重量基準(w/w%)である。
Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to these examples. In the following examples, “%” is based on weight (w / w%) unless otherwise specified.
合成例1 イソプロピルアミン ヨウ化水素塩[1'-A]の合成
イソプロピルアミン236mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶のイソプロピルアミン ヨウ化水素塩741mg(収率:99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.57(d,6H,J=6.4Hz,CH(CH 3 )2),3.86(quin,1H,J=6.4Hz,CH(CH3)2),7.16(brs,3H,NH 3 ).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):21.1(C(CH3)2),45.9(C(CH3)2). Synthesis Example 1 Synthesis of Isopropylamine Hydrogen Iodide [1′-A] To a solution of isopropylamine 236 mg (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 1,4-dioxane 8 mL, 55% hydrogen iodide at 25 ° C. 1 mL of an aqueous acid solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 741 mg (yield of light yellow crystalline isopropylamine hydroiodide salt). : 99%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.57 (d, 6H, J = 6.4 Hz, CH (C H 3 ) 2 ), 3.86 (quin, 1H, J = 6.4 Hz, C H (CH 3 ) 2 ), 7.16 (brs, 3H, N H 3 ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 21.1 (C (C H 3) 2), 45.9 (C (CH 3) 2).
イソプロピルアミン236mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶のイソプロピルアミン ヨウ化水素塩741mg(収率:99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.57(d,6H,J=6.4Hz,CH(CH 3 )2),3.86(quin,1H,J=6.4Hz,CH(CH3)2),7.16(brs,3H,NH 3 ).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):21.1(C(CH3)2),45.9(C(CH3)2). Synthesis Example 1 Synthesis of Isopropylamine Hydrogen Iodide [1′-A] To a solution of isopropylamine 236 mg (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 1,4-dioxane 8 mL, 55% hydrogen iodide at 25 ° C. 1 mL of an aqueous acid solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 741 mg (yield of light yellow crystalline isopropylamine hydroiodide salt). : 99%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.57 (d, 6H, J = 6.4 Hz, CH (C H 3 ) 2 ), 3.86 (quin, 1H, J = 6.4 Hz, C H (CH 3 ) 2 ), 7.16 (brs, 3H, N H 3 ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 21.1 (C (C H 3) 2), 45.9 (C (CH 3) 2).
合成例2 t-ブチルアミン ヨウ化水素塩[1'-B]の合成
t-ブチルアミン293mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のt-ブチルアミン ヨウ化水素塩805mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.27(s,9H,C(CH 3 )3),7.78(brs,3H,NH 3 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):27.1(C(CH3)3),51.2(C(CH3)3). Synthesis Example 2 Synthesis of t-butylamine hydrogen iodide [1′-B] To a solution of 293 mg of t-butylamine (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 8 mL of 1,4-dioxane, 55% iodine at 25 ° C. Hydrochloric acid aqueous solution 1mL (ca. 7.3mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 805 mg of colorless crystalline t-butylamine hydrogen iodide (yield). : 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.27 (s, 9H, C (C H 3 ) 3 ), 7.78 (brs, 3H, N H 3 ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 27.1 (C (C H 3) 3), 51.2 (C (CH 3) 3).
t-ブチルアミン293mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のt-ブチルアミン ヨウ化水素塩805mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.27(s,9H,C(CH 3 )3),7.78(brs,3H,NH 3 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):27.1(C(CH3)3),51.2(C(CH3)3). Synthesis Example 2 Synthesis of t-butylamine hydrogen iodide [1′-B] To a solution of 293 mg of t-butylamine (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 8 mL of 1,4-dioxane, 55% iodine at 25 ° C. Hydrochloric acid aqueous solution 1mL (ca. 7.3mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 805 mg of colorless crystalline t-butylamine hydrogen iodide (yield). : 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.27 (s, 9H, C (C H 3 ) 3 ), 7.78 (brs, 3H, N H 3 ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 27.1 (C (C H 3) 3), 51.2 (C (CH 3) 3).
合成例3 シクロヘキシルアミン ヨウ化水素塩[1'-C]の合成
シクロヘキシルアミン397mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のシクロヘキシルアミン ヨウ化水素塩910mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.02-1.15(m,1H,CH 2 ),1.18-1.33(m,4H,CH 2 ),1.54-1.63(m,1H,CH 2 ),1.66-1.77(m,2H,CH 2 ),1.83-1.91(m,2H,CH 2 ),2.93-3.04(m,1H,NCH),7.69(brs,3H,NH 3 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.7(CH2),24.5(CH2),30.3(CH2),49.3(NCH). Synthesis Example 3 Synthesis of Cyclohexylamine Hydroiodide [1′-C] To 8 ml of 1,4-dioxane in 397 mg (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of cyclohexylamine at 25 ° C. and 55% hydrogen iodide 1 mL of an aqueous acid solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 910 mg of colorless crystalline cyclohexylamine hydrogen iodide salt (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.02-1.15 (m, 1H, C H 2 ), 1.18-1.33 (m, 4H, C H 2 ), 1.54-1.63 (m, 1H, C H 2 ), 1.66-1.77 (m, 2H, C H 2 ), 1.83-1.91 (m, 2H, C H 2 ), 2.93-3.04 (m, 1H, NC H ), 7.69 (brs, 3H, N H 3 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 23.7 ( C H 2 ), 24.5 ( C H 2 ), 30.3 ( C H 2 ), 49.3 (N C H).
シクロヘキシルアミン397mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のシクロヘキシルアミン ヨウ化水素塩910mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.02-1.15(m,1H,CH 2 ),1.18-1.33(m,4H,CH 2 ),1.54-1.63(m,1H,CH 2 ),1.66-1.77(m,2H,CH 2 ),1.83-1.91(m,2H,CH 2 ),2.93-3.04(m,1H,NCH),7.69(brs,3H,NH 3 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.7(CH2),24.5(CH2),30.3(CH2),49.3(NCH). Synthesis Example 3 Synthesis of Cyclohexylamine Hydroiodide [1′-C] To 8 ml of 1,4-dioxane in 397 mg (4 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of cyclohexylamine at 25 ° C. and 55% hydrogen iodide 1 mL of an aqueous acid solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 910 mg of colorless crystalline cyclohexylamine hydrogen iodide salt (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.02-1.15 (m, 1H, C H 2 ), 1.18-1.33 (m, 4H, C H 2 ), 1.54-1.63 (m, 1H, C H 2 ), 1.66-1.77 (m, 2H, C H 2 ), 1.83-1.91 (m, 2H, C H 2 ), 2.93-3.04 (m, 1H, NC H ), 7.69 (brs, 3H, N H 3 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 23.7 ( C H 2 ), 24.5 ( C H 2 ), 30.3 ( C H 2 ), 49.3 (N C H).
合成例4 ジシクロヘキシルアミン ヨウ化水素塩[1'-D]の合成
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン ヨウ化水素塩1.24g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.03-1.16(m,2H,CH 2 ),1.18-1.36(m,8H,CH 2 ),1.57-1.66(m,2H,CH 2 ),1.72-1.81(m,4H,CH 2 ),1.94-2.05(m,4H,CH 2 ),3.07-3.21(m,2H,NCH),8.09(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.8(CH2),24.8(CH2),28.9(CH2),52.2(NCH). Synthesis Example 4 Synthesis of Dicyclohexylamine Hydroiodide [1′-D] To a solution of 725 mg of dicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of 1,4-dioxane, 55% hydroiodic acid at 25 ° C. 1 mL of an aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 1.24 g of colorless crystalline dicyclohexylamine hydroiodide (condensed). Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.03-1.16 (m, 2H, C H 2 ), 1.18-1.36 (m, 8H, C H 2 ), 1.57-1.66 (m, 2H, C H 2 ), 1.72-1.81 (m, 4H, C H 2 ), 1.94-2.05 (m, 4H, C H 2 ), 3.07-3.21 (m, 2H, NC H ), 8.09 (brs, 2H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 23.8 ( C H 2 ), 24.8 ( C H 2 ), 28.9 ( C H 2 ), 52.2 (N C H).
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン ヨウ化水素塩1.24g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.03-1.16(m,2H,CH 2 ),1.18-1.36(m,8H,CH 2 ),1.57-1.66(m,2H,CH 2 ),1.72-1.81(m,4H,CH 2 ),1.94-2.05(m,4H,CH 2 ),3.07-3.21(m,2H,NCH),8.09(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.8(CH2),24.8(CH2),28.9(CH2),52.2(NCH). Synthesis Example 4 Synthesis of Dicyclohexylamine Hydroiodide [1′-D] To a solution of 725 mg of dicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of 1,4-dioxane, 55% hydroiodic acid at 25 ° C. 1 mL of an aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 1.24 g of colorless crystalline dicyclohexylamine hydroiodide (condensed). Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.03-1.16 (m, 2H, C H 2 ), 1.18-1.36 (m, 8H, C H 2 ), 1.57-1.66 (m, 2H, C H 2 ), 1.72-1.81 (m, 4H, C H 2 ), 1.94-2.05 (m, 4H, C H 2 ), 3.07-3.21 (m, 2H, NC H ), 8.09 (brs, 2H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 23.8 ( C H 2 ), 24.8 ( C H 2 ), 28.9 ( C H 2 ), 52.2 (N C H).
合成例5 1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩[2'-A]の合成
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、暗褐色油状物の1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩901mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.17(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.39(s,3H,NCH 3 ),3.50-3.57(m,4H,CH 2 CH2CH 2 ),8.35(d,1H,J=6.0Hz,N=CH-N),9.22(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(CH2 CH2CH2),36.8(NCH3),42.7(HNCH2),46.2(CH3NCH2),152.0(N=C-N). Synthesis Example 5 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide [2′-A] 1-methyl-1,4,5,6-tetrahydropyrimidine 393 mg (4 mmol) of 1, 1 mL of 55% hydroiodic acid aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise to the 4-dioxane 8 mL solution at 25 ° C over 1 minute, and the mixture was further stirred at 25 ° C for 12 hours. Reacted. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum dried at 60 ° C. for 4 hours to give 1-methyl-1,4,5 as a dark brown oily substance. 901 mg (yield:> 99%) of 6,6-tetrahydropyrimidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.17 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.39 (s, 3H, NC H 3 ), 3.50-3.57 (m, 4H, C H 2 CH 2 C H 2 ), 8.35 (d, 1H, J = 6.0 Hz, N = C H -N), 9. 22 (brs, 1H, NH ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.4 (CH 2 C H 2 CH 2), 36.8 (N C H 3), 42.7 (HN C H 2) , 46.2 (CH 3 N C H 2), 152.0 (N = C -N).
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、暗褐色油状物の1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩901mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.17(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.39(s,3H,NCH 3 ),3.50-3.57(m,4H,CH 2 CH2CH 2 ),8.35(d,1H,J=6.0Hz,N=CH-N),9.22(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(CH2 CH2CH2),36.8(NCH3),42.7(HNCH2),46.2(CH3NCH2),152.0(N=C-N). Synthesis Example 5 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide [2′-A] 1-methyl-1,4,5,6-tetrahydropyrimidine 393 mg (4 mmol) of 1, 1 mL of 55% hydroiodic acid aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise to the 4-dioxane 8 mL solution at 25 ° C over 1 minute, and the mixture was further stirred at 25 ° C for 12 hours. Reacted. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum dried at 60 ° C. for 4 hours to give 1-methyl-1,4,5 as a dark brown oily substance. 901 mg (yield:> 99%) of 6,6-tetrahydropyrimidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.17 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.39 (s, 3H, NC H 3 ), 3.50-3.57 (m, 4H, C H 2 CH 2 C H 2 ), 8.35 (d, 1H, J = 6.0 Hz, N = C H -N), 9. 22 (brs, 1H, NH ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.4 (CH 2 C H 2 CH 2), 36.8 (N C H 3), 42.7 (HN C H 2) , 46.2 (CH 3 N C H 2), 152.0 (N = C -N).
合成例6 1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩[2'-B]の合成
1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン449mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡橙色結晶の1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩962mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,CH2CH 2 CH2),2.54(s,3H,CCH 3 ),3.25(s,3H,NCH 3 ),3.47-3.52(m,2H,CH3NCH 2 ),3.56(t,2H,J=6.0Hz,HNCH 2 ),9.41(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(CH2 CH2CH2),19.4(CCH3),38.0(NCH3),39.9(HNCH2),48.4(CH3NCH2),161.0(N=C-N). Synthesis Example 6 Synthesis of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide [2′-B] 449 mg (4 mmol) of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine 1 mL of a 55% hydroiodic acid aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Ltd.) was added dropwise over 1 minute to an 8 mL solution of 1,4-dioxane manufactured by Wako Pure Chemical Industries, Ltd. Then, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,2-dimethyl-1,4, 962 mg (yield: 100%) of 5,6-tetrahydropyrimidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 2.54 (s, 3H, CC H 3), 3.25 (s, 3H, NC H 3), 3.47-3.52 (m, 2H, CH 3 NC H 2), 3.56 (t, 2H, J = 6.0Hz, HNC H 2 ), 9.41 (brs, 1H, N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.4 (CH 2 C H 2 CH 2), 19.4 (C C H 3), 38.0 (N C H 3) 39.9 (HN C H 2 ), 48.4 (CH 3 N C H 2 ), 161.0 (N = C 2 -N).
1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン449mg(4mmol;和光純薬工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡橙色結晶の1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩962mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,CH2CH 2 CH2),2.54(s,3H,CCH 3 ),3.25(s,3H,NCH 3 ),3.47-3.52(m,2H,CH3NCH 2 ),3.56(t,2H,J=6.0Hz,HNCH 2 ),9.41(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(CH2 CH2CH2),19.4(CCH3),38.0(NCH3),39.9(HNCH2),48.4(CH3NCH2),161.0(N=C-N). Synthesis Example 6 Synthesis of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide [2′-B] 449 mg (4 mmol) of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine 1 mL of a 55% hydroiodic acid aqueous solution (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Ltd.) was added dropwise over 1 minute to an 8 mL solution of 1,4-dioxane manufactured by Wako Pure Chemical Industries, Ltd. Then, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,2-dimethyl-1,4, 962 mg (yield: 100%) of 5,6-tetrahydropyrimidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 2.54 (s, 3H, CC H 3), 3.25 (s, 3H, NC H 3), 3.47-3.52 (m, 2H, CH 3 NC H 2), 3.56 (t, 2H, J = 6.0Hz, HNC H 2 ), 9.41 (brs, 1H, N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.4 (CH 2 C H 2 CH 2), 19.4 (C C H 3), 38.0 (N C H 3) 39.9 (HN C H 2 ), 48.4 (CH 3 N C H 2 ), 161.0 (N = C 2 -N).
合成例7 1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩[2'-C]の合成
1,5-ジアザビシクロ[4.3.0]-5-ノネン497mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶の1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩1.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.24(quin,2H,J=7.6Hz,NCH2CH 2 CH2C),3.19(t,2H,J=7.6Hz,NCH 2 CH2CH2C),3.51-3.58(m,4H,NCH 2 CH2CH 2 NH),3.79(t,2H,J=7.6Hz,NCH 2 CH2CH2C),9.45(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.6(NCH2 CH2CH2NH),19.4(NCH2 CH2CH2C),30.7(NCH2CH2 CH2C),37.8(NCH2CH2 CH2NH),42.8(NCH2CH2CH2NH),53.7(NCH2CH2CH2C),164.4(N=C-N). Synthesis Example 7 Synthesis of 1,5-diazabicyclo [4.3.0] -5-nonene hydroiodide [2'-C] 497 mg (4 mmol) of 1,5-diazabicyclo [4.3.0] -5-nonene 1 ml of 55% hydroiodic acid aqueous solution (ca. Thereafter, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,5-diazabicyclo [4.3. 0] -5-nonene hydroiodide salt (1.01 g, yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.24 (quin, 2H, J = 7.6Hz, NCH 2 C H 2 CH 2 C), 3.19 (t, 2H, J = 7.6Hz, NC H 2 CH 2 CH 2 C), 3.51-3.58 (m, 4H, NC H 2 CH 2 C H 2 NH), 3.79 (t, 2H, J = 7.6Hz, NC H 2 CH 2 CH 2 C), 9.45 (brs, 1H, N H).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.6 (NCH 2 C H 2 CH 2 NH), 19.4 (NCH 2 C H 2 CH 2 C), 30.7 ( NCH 2 CH 2 C H 2 C ), 37.8 (NCH 2 CH 2 C H 2 NH), 42.8 (N C H 2 CH 2 CH 2 NH), 53.7 (N C H 2 CH 2 CH 2 C), 164.4 (N = C− N).
1,5-ジアザビシクロ[4.3.0]-5-ノネン497mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶の1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩1.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.24(quin,2H,J=7.6Hz,NCH2CH 2 CH2C),3.19(t,2H,J=7.6Hz,NCH 2 CH2CH2C),3.51-3.58(m,4H,NCH 2 CH2CH 2 NH),3.79(t,2H,J=7.6Hz,NCH 2 CH2CH2C),9.45(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.6(NCH2 CH2CH2NH),19.4(NCH2 CH2CH2C),30.7(NCH2CH2 CH2C),37.8(NCH2CH2 CH2NH),42.8(NCH2CH2CH2NH),53.7(NCH2CH2CH2C),164.4(N=C-N). Synthesis Example 7 Synthesis of 1,5-diazabicyclo [4.3.0] -5-nonene hydroiodide [2'-C] 497 mg (4 mmol) of 1,5-diazabicyclo [4.3.0] -5-nonene 1 ml of 55% hydroiodic acid aqueous solution (ca. Thereafter, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,5-diazabicyclo [4.3. 0] -5-nonene hydroiodide salt (1.01 g, yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.24 (quin, 2H, J = 7.6Hz, NCH 2 C H 2 CH 2 C), 3.19 (t, 2H, J = 7.6Hz, NC H 2 CH 2 CH 2 C), 3.51-3.58 (m, 4H, NC H 2 CH 2 C H 2 NH), 3.79 (t, 2H, J = 7.6Hz, NC H 2 CH 2 CH 2 C), 9.45 (brs, 1H, N H).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 18.6 (NCH 2 C H 2 CH 2 NH), 19.4 (NCH 2 C H 2 CH 2 C), 30.7 ( NCH 2 CH 2 C H 2 C ), 37.8 (NCH 2 CH 2 C H 2 NH), 42.8 (N C H 2 CH 2 CH 2 NH), 53.7 (N C H 2 CH 2 CH 2 C), 164.4 (N = C− N).
合成例8 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩[2'-D]の合成
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩1.10g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.73-1.86(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.12(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.98-3.04(m,2H,NCH2CH2CH2CH2CH 2 C),3.46-3.52(m,2H,NCH 2 CH2CH2NH),3.60-3.66(m,4H,CH 2 NCH2CH2CH 2 NH),9.48(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.2(NCH2 CH2CH2NH),23.7(NCH2CH2CH2 CH2CH2C),26.5(NCH2CH2 CH2CH2CH2C),28.7(NCH2 CH2CH2CH2CH2C),32.7(NCH2CH2CH2CH2 CH2C),37.7(NCH2CH2 CH2NH),48.8(NCH2CH2CH2NH),54.7(NCH2CH2CH2CH2CH2C),166.0(N=C-N). Synthesis Example 8 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydroiodide [2′-D] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol) 1 ml of 55% hydroiodic acid aqueous solution (ca. Thereafter, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,8-diazabicyclo [5.4. 0] -7-undecene hydrogen iodide 1.10 g (yield: 98%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.73-1.86 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.12 ( quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.98-3.04 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.46- 3.52 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.60-3.66 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 9.48 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.2 (NCH 2 C H 2 CH 2 NH), 23.7 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.5 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.7 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.7 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.7 (NCH 2 CH 2 C H 2 NH), 48.8 (N C H 2 CH 2 CH 2 NH), 54.7 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.0 (N = C -N ).
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩1.10g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.73-1.86(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.12(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.98-3.04(m,2H,NCH2CH2CH2CH2CH 2 C),3.46-3.52(m,2H,NCH 2 CH2CH2NH),3.60-3.66(m,4H,CH 2 NCH2CH2CH 2 NH),9.48(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.2(NCH2 CH2CH2NH),23.7(NCH2CH2CH2 CH2CH2C),26.5(NCH2CH2 CH2CH2CH2C),28.7(NCH2 CH2CH2CH2CH2C),32.7(NCH2CH2CH2CH2 CH2C),37.7(NCH2CH2 CH2NH),48.8(NCH2CH2CH2NH),54.7(NCH2CH2CH2CH2CH2C),166.0(N=C-N). Synthesis Example 8 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydroiodide [2′-D] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol) 1 ml of 55% hydroiodic acid aqueous solution (ca. Thereafter, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,8-diazabicyclo [5.4. 0] -7-undecene hydrogen iodide 1.10 g (yield: 98%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.73-1.86 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.12 ( quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.98-3.04 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.46- 3.52 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.60-3.66 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 9.48 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.2 (NCH 2 C H 2 CH 2 NH), 23.7 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.5 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.7 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.7 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.7 (NCH 2 CH 2 C H 2 NH), 48.8 (N C H 2 CH 2 CH 2 NH), 54.7 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.0 (N = C -N ).
合成例9 S-メチルイソチオ尿素 ヨウ化水素塩の合成
チオ尿素7.61g(100mmol;アルドリッチ社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のS-メチルイソチオ尿素 ヨウ化水素塩21.8g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.58(s,3H,CH 3 ),8.89(s,4H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.4(CH3),171.1(N=C-N). Synthesis Example 9 Synthesis of S-methylisothiourea hydrogen iodide salt In a suspension of 7.61 g (100 mmol; manufactured by Aldrich) of thiourea in 100 mL of dry ethanol, 17.0 g of methyl iodide (120 mmol; Kanto Chemical Co., Inc.) at room temperature The product was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to obtain 21.8 g (yield: 100%) of S-methylisothiourea hydrogen iodide salt as a colorless powder. It was. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.58 (s, 3H, C H 3 ), 8.89 (s, 4H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.4 ( C H 3 ), 171.1 (N = C 3 -N).
チオ尿素7.61g(100mmol;アルドリッチ社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のS-メチルイソチオ尿素 ヨウ化水素塩21.8g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.58(s,3H,CH 3 ),8.89(s,4H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.4(CH3),171.1(N=C-N). Synthesis Example 9 Synthesis of S-methylisothiourea hydrogen iodide salt In a suspension of 7.61 g (100 mmol; manufactured by Aldrich) of thiourea in 100 mL of dry ethanol, 17.0 g of methyl iodide (120 mmol; Kanto Chemical Co., Inc.) at room temperature The product was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to obtain 21.8 g (yield: 100%) of S-methylisothiourea hydrogen iodide salt as a colorless powder. It was. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.58 (s, 3H, C H 3 ), 8.89 (s, 4H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.4 ( C H 3 ), 171.1 (N = C 3 -N).
合成例10 1-(1-ブチル)グアニジン ヨウ化水素塩[3'-A]の合成
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(1-ブチル)グアニジン ヨウ化水素塩2.44g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.2Hz,CH 3 ),1.30(sext,2H,J=7.3Hz,CH 2 CH3),1.45(quin,2H,J=7.3Hz,NCH2CH 2 ),3.10(t,2H,J=7.2Hz,NCH 2 CH2),7.38(brs,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.5(CH3),19.2(CH2CH3),30.5(NCH2 CH2),40.5(NCH2CH2),156.6(N=C-N). Synthesis Example 10 Synthesis of 1- (1-butyl) guanidine hydrogen iodide [3′-A] Synthesis was performed at 25 ° C. in 10 mL of dry tetrahydrofuran of 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of n-butylamine. 2.18 g (10 mmol) of 21.8 g of S-methylisothiourea hydrogen iodide obtained in Example 9 was added, and the mixture was further stirred at 25 ° C. for 6 hours for reaction. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) guanidine iodide as a pale yellow oil. 2.44 g of hydrogen fluoride salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.2 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .3Hz, C H 2 CH 3) , 1.45 (quin, 2H, J = 7.3Hz, NCH 2 C H 2), 3.10 (t, 2H, J = 7.2Hz, NC H 2 CH 2 ), 7.38 (brs, 5H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.2 ( C H 2 CH 3 ), 30.5 (NCH 2 C H 2 ) , 40.5 (N C H 2 CH 2 ), 156.6 (N = C 2 -N).
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(1-ブチル)グアニジン ヨウ化水素塩2.44g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.2Hz,CH 3 ),1.30(sext,2H,J=7.3Hz,CH 2 CH3),1.45(quin,2H,J=7.3Hz,NCH2CH 2 ),3.10(t,2H,J=7.2Hz,NCH 2 CH2),7.38(brs,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.5(CH3),19.2(CH2CH3),30.5(NCH2 CH2),40.5(NCH2CH2),156.6(N=C-N). Synthesis Example 10 Synthesis of 1- (1-butyl) guanidine hydrogen iodide [3′-A] Synthesis was performed at 25 ° C. in 10 mL of dry tetrahydrofuran of 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of n-butylamine. 2.18 g (10 mmol) of 21.8 g of S-methylisothiourea hydrogen iodide obtained in Example 9 was added, and the mixture was further stirred at 25 ° C. for 6 hours for reaction. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) guanidine iodide as a pale yellow oil. 2.44 g of hydrogen fluoride salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.2 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .3Hz, C H 2 CH 3) , 1.45 (quin, 2H, J = 7.3Hz, NCH 2 C H 2), 3.10 (t, 2H, J = 7.2Hz, NC H 2 CH 2 ), 7.38 (brs, 5H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.2 ( C H 2 CH 3 ), 30.5 (NCH 2 C H 2 ) , 40.5 (N C H 2 CH 2 ), 156.6 (N = C 2 -N).
合成例11 N'-メチル-S-メチルイソチオ尿素 ヨウ化水素塩の合成
N-メチルチオ尿素9.02g(100mmol;東京化成工業株式会社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のN'-メチル-S-メチルイソチオ尿素 ヨウ化水素塩23.2g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.61(s,3H,SCH 3 ),2.91(s,3H,NCH 3 ),9.11(s,3H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):14.1(SCH3),31.1(NCH3),168.3(N=C-N). Synthesis Example 11 Synthesis of N′-methyl-S-methylisothiourea hydrogen iodide In a suspension of 9.0 mL of N-methylthiourea (100 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of dry ethanol at room temperature After adding 17.0 g of methyl (120 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 23.2 g of N′-methyl-S-methylisothiourea hydrogen iodide salt as a colorless powder (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.61 (s, 3H, SC H 3 ), 2.91 (s, 3H, NC H 3 ), 9.11 ( s, 3H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 14.1 (S C H 3 ), 31.1 (N C H 3 ), 168.3 (N = C 3 -N) .
N-メチルチオ尿素9.02g(100mmol;東京化成工業株式会社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のN'-メチル-S-メチルイソチオ尿素 ヨウ化水素塩23.2g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.61(s,3H,SCH 3 ),2.91(s,3H,NCH 3 ),9.11(s,3H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):14.1(SCH3),31.1(NCH3),168.3(N=C-N). Synthesis Example 11 Synthesis of N′-methyl-S-methylisothiourea hydrogen iodide In a suspension of 9.0 mL of N-methylthiourea (100 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of dry ethanol at room temperature After adding 17.0 g of methyl (120 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 23.2 g of N′-methyl-S-methylisothiourea hydrogen iodide salt as a colorless powder (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.61 (s, 3H, SC H 3 ), 2.91 (s, 3H, NC H 3 ), 9.11 ( s, 3H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 14.1 (S C H 3 ), 31.1 (N C H 3 ), 168.3 (N = C 3 -N) .
合成例12 1-(1-ブチル)-3-メチルグアニジン ヨウ化水素塩[3'-B]の合成
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例11で得られたN'-メチル-S-メチルイソチオ尿素 ヨウ化水素塩23.2gのうちの2.32g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-(1-ブチル)-3-メチルグアニジン ヨウ化水素塩2.57g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.3Hz,CH 3 ),1.30(sext,2H,J=7.3Hz,CH 2 CH3),1.45(quin,2H,J=7.3Hz,NCH2CH 2 ),2.70(s,3H,NCH 3 ),3.10(t,2H,J=7.3Hz,NCH 2 CH2),7.24(brs,4H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.5(CH3),19.2(CH2CH3),28.0(NCH3),30.5(NCH2 CH2),40.6(NCH2CH2),156.1(N=C-N). Synthesis Example 12 Synthesis of 1- (1-butyl) -3-methylguanidine hydrogen iodide [3′-B] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in dry tetrahydrofuran 10 mL, 25 2.32 g (10 mmol) of 23.2 g of N′-methyl-S-methylisothiourea hydrogen iodide salt obtained in Synthesis Example 11 was added at ℃, and further stirred at 25 ° C. for 6 hours to react. I let you. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give colorless crystals of 1- (1-butyl) -3-methyl. 2.57 g (yield: 100%) of guanidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.3 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .3 Hz, C H 2 CH 3 ), 1.45 (quin, 2 H, J = 7.3 Hz, NCH 2 C H 2 ), 2.70 (s, 3 H, NC H 3 ), 3.10 (t, 2H, J = 7.3 Hz, NC H 2 CH 2 ), 7.24 (brs, 4H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.2 ( C H 2 CH 3 ), 28.0 (N C H 3 ), 30.5 (NCH 2 C H 2) , 40.6 (N C H 2 CH 2), 156.1 (N = C -N).
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例11で得られたN'-メチル-S-メチルイソチオ尿素 ヨウ化水素塩23.2gのうちの2.32g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-(1-ブチル)-3-メチルグアニジン ヨウ化水素塩2.57g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.3Hz,CH 3 ),1.30(sext,2H,J=7.3Hz,CH 2 CH3),1.45(quin,2H,J=7.3Hz,NCH2CH 2 ),2.70(s,3H,NCH 3 ),3.10(t,2H,J=7.3Hz,NCH 2 CH2),7.24(brs,4H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.5(CH3),19.2(CH2CH3),28.0(NCH3),30.5(NCH2 CH2),40.6(NCH2CH2),156.1(N=C-N). Synthesis Example 12 Synthesis of 1- (1-butyl) -3-methylguanidine hydrogen iodide [3′-B] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in dry tetrahydrofuran 10 mL, 25 2.32 g (10 mmol) of 23.2 g of N′-methyl-S-methylisothiourea hydrogen iodide salt obtained in Synthesis Example 11 was added at ℃, and further stirred at 25 ° C. for 6 hours to react. I let you. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give colorless crystals of 1- (1-butyl) -3-methyl. 2.57 g (yield: 100%) of guanidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.3 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .3 Hz, C H 2 CH 3 ), 1.45 (quin, 2 H, J = 7.3 Hz, NCH 2 C H 2 ), 2.70 (s, 3 H, NC H 3 ), 3.10 (t, 2H, J = 7.3 Hz, NC H 2 CH 2 ), 7.24 (brs, 4H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.2 ( C H 2 CH 3 ), 28.0 (N C H 3 ), 30.5 (NCH 2 C H 2) , 40.6 (N C H 2 CH 2), 156.1 (N = C -N).
合成例13 N,N'-ジメチル-S-メチルイソチオ尿素 ヨウ化水素塩の合成
N,N'-ジメチルチオ尿素10.4g(100mmol;東京化成工業株式会社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のN,N'-ジメチル-S-メチルイソチオ尿素 ヨウ化水素塩24.6g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.65(s,3H,SCH 3 ),2.93(s,3H,NCH 3 ),2.96(s,3H,NCH 3 ),8.71(s,1H,NH),8.99(s,1H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.6(SCH3),30.6(NCH3),30.8(NCH3),168.1(N=C-N). Synthesis Example 13 Synthesis of N, N′-dimethyl-S-methylisothiourea hydrogen iodide In a suspension of N, N′-dimethylthiourea 10.4 g (100 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of dry ethanol, After adding 17.0 g (120 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide at room temperature, the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours. Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.65 (s, 3H, SC H 3 ), 2.93 (s, 3H, NC H 3 ), 2.96 ( s, 3H, NC H 3) , 8.71 (s, 1H, N H), 8.99 (s, 1H, N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.6 (S C H 3 ), 30.6 (N C H 3 ), 30.8 (N C H 3 ), 168.1 (N = C− N).
N,N'-ジメチルチオ尿素10.4g(100mmol;東京化成工業株式会社製)の乾燥エタノール100mLの懸濁液に、室温中、ヨウ化メチル17.0g(120mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色粉末のN,N'-ジメチル-S-メチルイソチオ尿素 ヨウ化水素塩24.6g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.65(s,3H,SCH 3 ),2.93(s,3H,NCH 3 ),2.96(s,3H,NCH 3 ),8.71(s,1H,NH),8.99(s,1H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.6(SCH3),30.6(NCH3),30.8(NCH3),168.1(N=C-N). Synthesis Example 13 Synthesis of N, N′-dimethyl-S-methylisothiourea hydrogen iodide In a suspension of N, N′-dimethylthiourea 10.4 g (100 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of dry ethanol, After adding 17.0 g (120 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide at room temperature, the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours. Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.65 (s, 3H, SC H 3 ), 2.93 (s, 3H, NC H 3 ), 2.96 ( s, 3H, NC H 3) , 8.71 (s, 1H, N H), 8.99 (s, 1H, N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.6 (S C H 3 ), 30.6 (N C H 3 ), 30.8 (N C H 3 ), 168.1 (N = C− N).
合成例14 1-(1-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩[3'-C]の合成
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例13で得られたN,N'-ジメチル-S-メチルイソチオ尿素 ヨウ化水素塩24.6gのうちの2.46g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-(1-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩2.71g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.4Hz,CH 3 ),1.30(sext,2H,J=7.4Hz,CH 2 CH3),1.48(quin,2H,J=7.4Hz,NCH2CH 2 ),2.74(s,3H,NCH 3 ),2.76(s,3H,NCH 3 ),3.12(q,2H,J=7.2Hz,NCH 2 CH2),7.28(t,1H,J=5.6Hz,CH2NH),7.38(q,2H,J=4.4Hz,CH3NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.6(CH3),19.3(CH2CH3),28.1(NCH3),30.5(NCH2 CH2),40.7(NCH2CH2),155.2(N=C-N). Synthesis Example 14 Synthesis of 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide [3′-C] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 10 mL of dry tetrahydrofuran Then, 2.46 g (10 mmol) of 24.6 g of N, N′-dimethyl-S-methylisothiourea hydrogen iodide obtained in Synthesis Example 13 was added at 25 ° C., and then at 25 ° C. for 6 hours. The reaction was stirred. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2,3 as colorless crystals. -Dimethylguanidine 2.71 g (yield: 100%) of hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.4 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .4 Hz, C H 2 CH 3 ), 1.48 (quin, 2 H, J = 7.4 Hz, NCH 2 C H 2 ), 2.74 (s, 3 H, N C H 3 ), 2.76 (s, 3H, NC H 3 ), 3.12 (q, 2H, J = 7.2 Hz, NC H 2 CH 2 ), 7.28 (t, 1H, J = 5.6 Hz, CH 2 NH ), 7. 38 (q, 2H, J = 4.4Hz, CH 3 N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.3 ( C H 2 CH 3 ), 28.1 (N C H 3 ), 30.5 (NCH 2 C H 2) , 40.7 (N C H 2 CH 2), 155.2 (N = C -N).
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例13で得られたN,N'-ジメチル-S-メチルイソチオ尿素 ヨウ化水素塩24.6gのうちの2.46g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-(1-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩2.71g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.89(t,3H,J=7.4Hz,CH 3 ),1.30(sext,2H,J=7.4Hz,CH 2 CH3),1.48(quin,2H,J=7.4Hz,NCH2CH 2 ),2.74(s,3H,NCH 3 ),2.76(s,3H,NCH 3 ),3.12(q,2H,J=7.2Hz,NCH 2 CH2),7.28(t,1H,J=5.6Hz,CH2NH),7.38(q,2H,J=4.4Hz,CH3NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):13.6(CH3),19.3(CH2CH3),28.1(NCH3),30.5(NCH2 CH2),40.7(NCH2CH2),155.2(N=C-N). Synthesis Example 14 Synthesis of 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide [3′-C] To a solution of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 10 mL of dry tetrahydrofuran Then, 2.46 g (10 mmol) of 24.6 g of N, N′-dimethyl-S-methylisothiourea hydrogen iodide obtained in Synthesis Example 13 was added at 25 ° C., and then at 25 ° C. for 6 hours. The reaction was stirred. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2,3 as colorless crystals. -Dimethylguanidine 2.71 g (yield: 100%) of hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.89 (t, 3H, J = 7.4 Hz, C H 3 ), 1.30 (sext, 2H, J = 7) .4 Hz, C H 2 CH 3 ), 1.48 (quin, 2 H, J = 7.4 Hz, NCH 2 C H 2 ), 2.74 (s, 3 H, N C H 3 ), 2.76 (s, 3H, NC H 3 ), 3.12 (q, 2H, J = 7.2 Hz, NC H 2 CH 2 ), 7.28 (t, 1H, J = 5.6 Hz, CH 2 NH ), 7. 38 (q, 2H, J = 4.4Hz, CH 3 N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.3 ( C H 2 CH 3 ), 28.1 (N C H 3 ), 30.5 (NCH 2 C H 2) , 40.7 (N C H 2 CH 2), 155.2 (N = C -N).
合成例15 N,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩の合成
トリメチルチオ尿素23.7g(200mmol;東京化成工業株式会社製)の乾燥エタノール200mL溶液に、室温中、ヨウ化メチル34.1g(240mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、赤色油状物のN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.70(s,3H,SCH 3 ),3.33(d,3H,J=5.2Hz,NHCH 3 ),3.54(s,6H,N(CH 3 )2),8.99(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.1(SCH3),33.5(NCH3),43.7(N(CH3)2),168.9(N=C-N). Synthesis Example 15 Synthesis of N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide A solution of 23.7 g of trimethylthiourea (200 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 200 mL of dry ethanol at room temperature After adding 34.1 g of methyl iodide (240 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give a red oily N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide salt 52 0.0 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.70 (s, 3H, SC H 3 ), 3.33 (d, 3H, J = 5.2 Hz, NHC H 3 ), 3.54 (s, 6H, N (C H 3 ) 2 ), 8.99 (s, 1 H, N H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 17.1 (S C H 3 ), 33.5 (N C H 3 ), 43.7 (N ( C H 3 ) 2 ) , 168.9 (N = C -N) .
トリメチルチオ尿素23.7g(200mmol;東京化成工業株式会社製)の乾燥エタノール200mL溶液に、室温中、ヨウ化メチル34.1g(240mmol;関東化学株式会社製)を加えた後、更に室温で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、赤色油状物のN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.70(s,3H,SCH 3 ),3.33(d,3H,J=5.2Hz,NHCH 3 ),3.54(s,6H,N(CH 3 )2),8.99(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.1(SCH3),33.5(NCH3),43.7(N(CH3)2),168.9(N=C-N). Synthesis Example 15 Synthesis of N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide A solution of 23.7 g of trimethylthiourea (200 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 200 mL of dry ethanol at room temperature After adding 34.1 g of methyl iodide (240 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further reacted by stirring at room temperature for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give a red oily N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide salt 52 0.0 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.70 (s, 3H, SC H 3 ), 3.33 (d, 3H, J = 5.2 Hz, NHC H 3 ), 3.54 (s, 6H, N (C H 3 ) 2 ), 8.99 (s, 1 H, N H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 17.1 (S C H 3 ), 33.5 (N C H 3 ), 43.7 (N ( C H 3 ) 2 ) , 168.9 (N = C -N) .
合成例16 1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-D]の合成
合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)の乾燥テトラヒドロフラン10mL溶液に、25℃中、n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩2.85g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.94(t,3H,J=7.2Hz,CH 3 ),1.38(sext,2H,J=7.2Hz,CH 2 CH3),1.71(quin,2H,J=7.2Hz,NCH2CH 2 ),3.04(d,3H,J=4.8Hz,NHCH 3 ),3.13(s,6H,(NCH 3 )2),3.35(q,2H,J=6.8Hz,NCH 2 CH2),6.72(brs,1H,CH2NH),7.10(brs,1H,CH3NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.6(CH3),19.8(CH2CH3),31.3(NCH3),31.8(NCH2 CH2),40.6(N(CH3)2),44.5(NCH2CH2),159.5(N=C-N). Synthesis Example 16 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydroiodide [3′-D] N, N ′, N′-trimethyl-S— obtained in Synthesis Example 15 After adding 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of n-butylamine at 25 ° C. to a solution of 2.60 g (10 mmol) of 52.0 g of methylisothiourea iodide in 10 mL of dry tetrahydrofuran, The reaction was stirred at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2 as a pale yellow oil. , 3,3-trimethylguanidine hydroiodide 2.85 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.94 (t, 3H, J = 7.2 Hz, C H 3 ), 1.38 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.71 (quin, 2H, J = 7.2Hz, NCH 2 C H 2), 3.04 (d, 3H, J = 4.8Hz, NHC H 3), 3. 13 (s, 6H, (NC H 3 ) 2 ), 3.35 (q, 2H, J = 6.8 Hz, NC H 2 CH 2 ), 6.72 (brs, 1H, CH 2 NH ), 7 .10 (brs, 1H, CH 3 N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 31.3 (N C H 3 ), 31. 8 (NCH 2 C H 2) , 40.6 (N (C H 3) 2), 44.5 (N C H 2 CH 2), 159.5 (N = C -N).
合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)の乾燥テトラヒドロフラン10mL溶液に、25℃中、n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩2.85g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.94(t,3H,J=7.2Hz,CH 3 ),1.38(sext,2H,J=7.2Hz,CH 2 CH3),1.71(quin,2H,J=7.2Hz,NCH2CH 2 ),3.04(d,3H,J=4.8Hz,NHCH 3 ),3.13(s,6H,(NCH 3 )2),3.35(q,2H,J=6.8Hz,NCH 2 CH2),6.72(brs,1H,CH2NH),7.10(brs,1H,CH3NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.6(CH3),19.8(CH2CH3),31.3(NCH3),31.8(NCH2 CH2),40.6(N(CH3)2),44.5(NCH2CH2),159.5(N=C-N). Synthesis Example 16 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydroiodide [3′-D] N, N ′, N′-trimethyl-S— obtained in Synthesis Example 15 After adding 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of n-butylamine at 25 ° C. to a solution of 2.60 g (10 mmol) of 52.0 g of methylisothiourea iodide in 10 mL of dry tetrahydrofuran, The reaction was stirred at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2 as a pale yellow oil. , 3,3-trimethylguanidine hydroiodide 2.85 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.94 (t, 3H, J = 7.2 Hz, C H 3 ), 1.38 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.71 (quin, 2H, J = 7.2Hz, NCH 2 C H 2), 3.04 (d, 3H, J = 4.8Hz, NHC H 3), 3. 13 (s, 6H, (NC H 3 ) 2 ), 3.35 (q, 2H, J = 6.8 Hz, NC H 2 CH 2 ), 6.72 (brs, 1H, CH 2 NH ), 7 .10 (brs, 1H, CH 3 N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 31.3 (N C H 3 ), 31. 8 (NCH 2 C H 2) , 40.6 (N (C H 3) 2), 44.5 (N C H 2 CH 2), 159.5 (N = C -N).
合成例17 N,N,N',N'-テトラメチル-S-メチルイソチオ尿素 ヨウ化水素塩の合成
テトラメチルチオ尿素6.61g(50mmol;東京化成工業株式会社製)の乾燥エタノール50mL溶液に、室温中、ヨウ化メチル8.52g(60mmol;関東化学株式会社製)を加えた後、更に室温で24時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、淡黄色結晶のN,N,N',N'-テトラメチル-S-メチルイソチオ尿素 ヨウ化水素塩13.7g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.75(s,3H,SCH 3 ),3.46(s,12H,NCH 3 ).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(SCH3),45.2(NCH3),176.9(N=C-N). Synthesis Example 17 Synthesis of N, N, N ′, N′-tetramethyl-S-methylisothiourea hydroiodide A solution of 6.61 g of tetramethylthiourea (50 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 50 mL of dry ethanol at room temperature After adding 8.52 g (60 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide, the mixture was further reacted by stirring at room temperature for 24 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours, whereby N, N, N ′, N′-tetramethyl-S-methylisothiourea of pale yellow crystals was iodinated. 13.7 g of hydrogen salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.75 (s, 3H, SC H 3 ), 3.46 (s, 12H, NC H 3 ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 18.4 (S C H 3 ), 45.2 (N C H 3 ), 176.9 (N = C 3 -N).
テトラメチルチオ尿素6.61g(50mmol;東京化成工業株式会社製)の乾燥エタノール50mL溶液に、室温中、ヨウ化メチル8.52g(60mmol;関東化学株式会社製)を加えた後、更に室温で24時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、淡黄色結晶のN,N,N',N'-テトラメチル-S-メチルイソチオ尿素 ヨウ化水素塩13.7g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.75(s,3H,SCH 3 ),3.46(s,12H,NCH 3 ).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.4(SCH3),45.2(NCH3),176.9(N=C-N). Synthesis Example 17 Synthesis of N, N, N ′, N′-tetramethyl-S-methylisothiourea hydroiodide A solution of 6.61 g of tetramethylthiourea (50 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 50 mL of dry ethanol at room temperature After adding 8.52 g (60 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide, the mixture was further reacted by stirring at room temperature for 24 hours. After completion of the reaction, the residue obtained by distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours, whereby N, N, N ′, N′-tetramethyl-S-methylisothiourea of pale yellow crystals was iodinated. 13.7 g of hydrogen salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.75 (s, 3H, SC H 3 ), 3.46 (s, 12H, NC H 3 ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 18.4 (S C H 3 ), 45.2 (N C H 3 ), 176.9 (N = C 3 -N).
合成例18 2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩[3'-E]の合成
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例17で得られたN,N,N',N'-テトラメチル-S-メチルイソチオ尿素 ヨウ化水素塩13.7gのうちの2.74g(10mmol)を加えた後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.94(t,3H,J=7.6Hz,CH 3 ),1.37(sext,2H,J=7.6Hz,CH 2 CH3),1.74(quin,2H,J=7.6Hz,NCH2CH 2 ),3.04(brs,6H,N(CH 3 )2),3.17(brs,6H,(NCH 3 )2),3.25(dq,2H,J=6.8,1.6Hz,NCH 2 CH2),7.54(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.4(CH3),19.7(CH2CH3),31.8(NCH2 CH2),40.2(NCH3),41.1(NCH3),44.7(NCH2CH2),160.9(N=C-N). Synthesis Example 18 Synthesis of 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide [3′-E] of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) 2.74 g (10 mmol) of 13.7 g of N, N, N ′, N′-tetramethyl-S-methylisothiourea hydroiodide salt obtained in Synthesis Example 17 at 25 ° C. in a dry tetrahydrofuran 10 mL solution Then, the mixture was further stirred at 25 ° C. for 12 hours for reaction. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give colorless oily 2- (1-butyl) -1, 1,3,3-tetramethylguanidine hydrogen iodide salt (3.01 g, yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.94 (t, 3H, J = 7.6 Hz, C H 3 ), 1.37 (sext, 2H, J = 7.6 Hz) , C H 2 CH 3), 1.74 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 3.04 (brs, 6H, N (C H 3) 2), 3.17 ( brs, 6H, (NC H 3 ) 2), 3.25 (dq, 2H, J = 6.8,1.6Hz, NC H 2 CH 2), 7.54 (brs, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.4 ( C H 3 ), 19.7 ( C H 2 CH 3 ), 31.8 (NCH 2 C H 2 ), 40 .2 (N C H 3 ), 41.1 (N C H 3 ), 44.7 (N C H 2 CH 2 ), 160.9 (N = C— N).
n-ブチルアミン731mg(10mmol;和光純薬工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例17で得られたN,N,N',N'-テトラメチル-S-メチルイソチオ尿素 ヨウ化水素塩13.7gのうちの2.74g(10mmol)を加えた後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.94(t,3H,J=7.6Hz,CH 3 ),1.37(sext,2H,J=7.6Hz,CH 2 CH3),1.74(quin,2H,J=7.6Hz,NCH2CH 2 ),3.04(brs,6H,N(CH 3 )2),3.17(brs,6H,(NCH 3 )2),3.25(dq,2H,J=6.8,1.6Hz,NCH 2 CH2),7.54(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.4(CH3),19.7(CH2CH3),31.8(NCH2 CH2),40.2(NCH3),41.1(NCH3),44.7(NCH2CH2),160.9(N=C-N). Synthesis Example 18 Synthesis of 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide [3′-E] of n-butylamine 731 mg (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) 2.74 g (10 mmol) of 13.7 g of N, N, N ′, N′-tetramethyl-S-methylisothiourea hydroiodide salt obtained in Synthesis Example 17 at 25 ° C. in a dry tetrahydrofuran 10 mL solution Then, the mixture was further stirred at 25 ° C. for 12 hours for reaction. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give colorless oily 2- (1-butyl) -1, 1,3,3-tetramethylguanidine hydrogen iodide salt (3.01 g, yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.94 (t, 3H, J = 7.6 Hz, C H 3 ), 1.37 (sext, 2H, J = 7.6 Hz) , C H 2 CH 3), 1.74 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 3.04 (brs, 6H, N (C H 3) 2), 3.17 ( brs, 6H, (NC H 3 ) 2), 3.25 (dq, 2H, J = 6.8,1.6Hz, NC H 2 CH 2), 7.54 (brs, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.4 ( C H 3 ), 19.7 ( C H 2 CH 3 ), 31.8 (NCH 2 C H 2 ), 40 .2 (N C H 3 ), 41.1 (N C H 3 ), 44.7 (N C H 2 CH 2 ), 160.9 (N = C— N).
合成例19 1-(1-オクチル)グアニジン ヨウ化水素塩[3'-F]の合成
n-オクチルアミン1.29g(10mmol;アルドリッチ社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の1-(1-オクチル)グアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.86(t,3H,J=6.8Hz,CH 3 ),1.24-1.31(m,10H,(CH 2 )5CH3),1.46(quin,2H,J=6.8Hz,NCH2CH 2 ),3.09(q,2H,J=6.5Hz,NCH 2 CH2),6.31-7.50(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):14.0(CH3),22.1(CH2CH3),26.0,28.4,28.5,28.6,31.2(5×CH2),40.8(NCH2),156.6(N=C-N). Synthesis Example 19 Synthesis of 1- (1-octyl) guanidine hydrogen iodide [3′-F] Synthesis example of n-octylamine 1.29 g (10 mmol; manufactured by Aldrich) in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-octyl) guanidine as a colorless oil. 3.01 g of hydrogen salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.86 (t, 3H, J = 6.8 Hz, C H 3 ), 1.24-1.31 (m, 10H) , (C H 2) 5 CH 3), 1.46 (quin, 2H, J = 6.8Hz, NCH 2 C H 2), 3.09 (q, 2H, J = 6.5Hz, NC H 2 CH 2 ), 6.31-7.50 (br, 5H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 14.0 ( C H 3 ), 22.1 ( C H 2 CH 3 ), 26.0, 28.4, 28. 5, 28.6, 31.2 (5 x C H 2 ), 40.8 (N C H 2 ), 156.6 (N = C -N).
n-オクチルアミン1.29g(10mmol;アルドリッチ社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の1-(1-オクチル)グアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):0.86(t,3H,J=6.8Hz,CH 3 ),1.24-1.31(m,10H,(CH 2 )5CH3),1.46(quin,2H,J=6.8Hz,NCH2CH 2 ),3.09(q,2H,J=6.5Hz,NCH 2 CH2),6.31-7.50(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):14.0(CH3),22.1(CH2CH3),26.0,28.4,28.5,28.6,31.2(5×CH2),40.8(NCH2),156.6(N=C-N). Synthesis Example 19 Synthesis of 1- (1-octyl) guanidine hydrogen iodide [3′-F] Synthesis example of n-octylamine 1.29 g (10 mmol; manufactured by Aldrich) in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-octyl) guanidine as a colorless oil. 3.01 g of hydrogen salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 0.86 (t, 3H, J = 6.8 Hz, C H 3 ), 1.24-1.31 (m, 10H) , (C H 2) 5 CH 3), 1.46 (quin, 2H, J = 6.8Hz, NCH 2 C H 2), 3.09 (q, 2H, J = 6.5Hz, NC H 2 CH 2 ), 6.31-7.50 (br, 5H, NH ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 14.0 ( C H 3 ), 22.1 ( C H 2 CH 3 ), 26.0, 28.4, 28. 5, 28.6, 31.2 (5 x C H 2 ), 40.8 (N C H 2 ), 156.6 (N = C -N).
合成例20 1,1-ジシクロヘキシルグアニジン ヨウ化水素塩[3'-G]の合成
ジシクロヘキシルアミン1.81g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色粉末の1,1-ジシクロヘキシルグアニジン ヨウ化水素塩3.51g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.03-1.16(m,2H,CH 2 ),1.19-1.36(m,8H,4×CH 2 ),1.56-1.65(m,2H,CH 2 ),1.72-1.80(m,4H,2×CH 2 ),1.95-2.03(m,4H,2×CH 2 ),3.10-3.20(m,2H,2×CH 2 ),5.37-8.90(br,3H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.8(4×(CHCH2 CH2)),24.8(2×(CHCH2CH2 CH2)),28.9(4×(CHCH2)),52.2(2×CH),162.8(N=C-N). Synthesis Example 20 Synthesis of 1,1-dicyclohexylguanidine hydrogen iodide [3′-G] Synthesis Example 9 was carried out at 25 ° C. in a solution of 1.81 g of dicyclohexylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 25 mL of tetrahydrofuran. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in the above was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to obtain colorless powder of 1,1-dicyclohexylguanidine hydrogen iodide salt 3 Obtained .51 g (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.03-1.16 (m, 2H, C H 2 ), 1.19-1.36 (m, 8H, 4 × C H 2 ), 1.56-1.65 (m, 2H, C H 2 ), 1.72-1.80 (m, 4H, 2 × C H 2 ), 1.95-2.03 ( m, 4H, 2 × C H 2 ), 3.10-3.20 (m, 2H, 2 × C H 2 ), 5.37-8.90 (br, 3H, N H ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 23.8 (4 × (CHCH 2 C H 2)), 24.8 (2 × (CHCH 2 CH 2 C H 2) ), 28.9 (4 × (CH C H 2 )), 52.2 (2 × C H), 162.8 (N = C 2 -N).
ジシクロヘキシルアミン1.81g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色粉末の1,1-ジシクロヘキシルグアニジン ヨウ化水素塩3.51g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.03-1.16(m,2H,CH 2 ),1.19-1.36(m,8H,4×CH 2 ),1.56-1.65(m,2H,CH 2 ),1.72-1.80(m,4H,2×CH 2 ),1.95-2.03(m,4H,2×CH 2 ),3.10-3.20(m,2H,2×CH 2 ),5.37-8.90(br,3H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):23.8(4×(CHCH2 CH2)),24.8(2×(CHCH2CH2 CH2)),28.9(4×(CHCH2)),52.2(2×CH),162.8(N=C-N). Synthesis Example 20 Synthesis of 1,1-dicyclohexylguanidine hydrogen iodide [3′-G] Synthesis Example 9 was carried out at 25 ° C. in a solution of 1.81 g of dicyclohexylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 25 mL of tetrahydrofuran. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in the above was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to obtain colorless powder of 1,1-dicyclohexylguanidine hydrogen iodide salt 3 Obtained .51 g (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.03-1.16 (m, 2H, C H 2 ), 1.19-1.36 (m, 8H, 4 × C H 2 ), 1.56-1.65 (m, 2H, C H 2 ), 1.72-1.80 (m, 4H, 2 × C H 2 ), 1.95-2.03 ( m, 4H, 2 × C H 2 ), 3.10-3.20 (m, 2H, 2 × C H 2 ), 5.37-8.90 (br, 3H, N H ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 23.8 (4 × (CHCH 2 C H 2)), 24.8 (2 × (CHCH 2 CH 2 C H 2) ), 28.9 (4 × (CH C H 2 )), 52.2 (2 × C H), 162.8 (N = C 2 -N).
合成例21 1-ベンジルグアニジン ヨウ化水素塩[3'-H]の合成
ベンジルアミン10.7g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-ベンジルグアニジン ヨウ化水素塩2.78g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.37(s,2H,CH 2 ),6.54-8.12(m,5H,NH),7.31(t,3H,J=7.0Hz,ArH),7.39(t,2H,J=7.0Hz,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):44.1(CH2),127.3,127.6,128.7,137.1(Ar),156.7(N=C-N). Synthesis Example 21 Synthesis of 1-benzylguanidine hydrogen iodide [3′-H] Obtained in Synthesis Example 9 in a solution of 10.7 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran at 25 ° C. After adding 2.18 g (10 mmol) of 21.8 g of the obtained S-methylisothiourea hydrogen iodide salt, the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 2.78 g of 1-benzylguanidine hydrogen iodide as colorless crystals. (Yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.37 (s, 2H, C H 2 ), 6.54-8.12 (m, 5H, N H ), 7 .31 (t, 3H, J = 7.0 Hz, Ar H ), 7.39 (t, 2H, J = 7.0 Hz, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 44.1 ( C H 2 ), 127.3, 127.6, 128.7, 137.1 ( Ar ), 156. 7 (N = C− N).
ベンジルアミン10.7g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色結晶の1-ベンジルグアニジン ヨウ化水素塩2.78g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.37(s,2H,CH 2 ),6.54-8.12(m,5H,NH),7.31(t,3H,J=7.0Hz,ArH),7.39(t,2H,J=7.0Hz,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):44.1(CH2),127.3,127.6,128.7,137.1(Ar),156.7(N=C-N). Synthesis Example 21 Synthesis of 1-benzylguanidine hydrogen iodide [3′-H] Obtained in Synthesis Example 9 in a solution of 10.7 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran at 25 ° C. After adding 2.18 g (10 mmol) of 21.8 g of the obtained S-methylisothiourea hydrogen iodide salt, the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 2.78 g of 1-benzylguanidine hydrogen iodide as colorless crystals. (Yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.37 (s, 2H, C H 2 ), 6.54-8.12 (m, 5H, N H ), 7 .31 (t, 3H, J = 7.0 Hz, Ar H ), 7.39 (t, 2H, J = 7.0 Hz, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 44.1 ( C H 2 ), 127.3, 127.6, 128.7, 137.1 ( Ar ), 156. 7 (N = C− N).
合成例22 1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩[3'-I]の合成
エタノールアミン611mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色結晶の1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩2.26g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.16(t,2H,J=5.2Hz,NHCH 2 ),3.42(brs,1H,OH),3.48(t,2H,J=5.6Hz,HOCH 2 ),6.14-7.61(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):43.5(NHCH3),59.2(HOCH2),157.0(N=C-N). Synthesis Example 22 Synthesis of 1- (2-hydroxyethyl) guanidine hydroiodide [3′-I] Synthesis of ethanolamine 611 mg (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (2-hydroxyethyl) guanidine iodide as pale yellow crystals. 2.26 g (yield: 98%) of hydride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, DMSO -d 6, 25 ℃) δ (ppm): 3.16 (t, 2H, J = 5.2Hz, NHC H 2), 3.42 (brs, 1H, O H) 3.48 (t, 2H, J = 5.6 Hz, HOC H 2 ), 6.14-7.61 (br, 5H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 43.5 (NH C H 3 ), 59.2 (HO C H 2 ), 157.0 (N = C 2 -N) .
エタノールアミン611mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色結晶の1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩2.26g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.16(t,2H,J=5.2Hz,NHCH 2 ),3.42(brs,1H,OH),3.48(t,2H,J=5.6Hz,HOCH 2 ),6.14-7.61(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):43.5(NHCH3),59.2(HOCH2),157.0(N=C-N). Synthesis Example 22 Synthesis of 1- (2-hydroxyethyl) guanidine hydroiodide [3′-I] Synthesis of ethanolamine 611 mg (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (2-hydroxyethyl) guanidine iodide as pale yellow crystals. 2.26 g (yield: 98%) of hydride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, DMSO -d 6, 25 ℃) δ (ppm): 3.16 (t, 2H, J = 5.2Hz, NHC H 2), 3.42 (brs, 1H, O H) 3.48 (t, 2H, J = 5.6 Hz, HOC H 2 ), 6.14-7.61 (br, 5H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 43.5 (NH C H 3 ), 59.2 (HO C H 2 ), 157.0 (N = C 2 -N) .
合成例23 1-(2-メトキシエチル)グアニジン ヨウ化水素塩[3'-J]の合成
O-メチルエタノールアミン751mg(10mmol;アルドリッチ社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色透明油状物の1-(2-メトキシエチル)グアニジン ヨウ化水素塩2.45g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.29(s,3H,CH 3 ),3.30(t,2H,J=4.8Hz,NHCH 2 ),3.43(t,2H,J=4.8Hz,CH3OCH 2 ),6.62-7.75(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):41.2(NHCH2),58.6(OCH3),70.4(CH3OCH2),157.4(N=C-N). Synthesis Example 23 Synthesis of 1- (2-methoxyethyl) guanidine hydroiodide [3′-J] Synthesis of 751 mg (10 mmol; manufactured by Aldrich) of O-methylethanolamine in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (2-methoxyethyl) guanidine as a colorless transparent oil. 2.45 g of hydrogen iodide salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 3.29 (s, 3H, C H 3 ), 3.30 (t, 2H, J = 4.8 Hz, NHC H 2 ), 3.43 (t, 2H, J = 4.8Hz, CH 3 OC H 2), 6.62-7.75 (br, 5H, N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 41.2 (NH C H 2 ), 58.6 (O C H 3 ), 70.4 (CH 3 O C H 2 ), 157.4 (N = C -N ).
O-メチルエタノールアミン751mg(10mmol;アルドリッチ社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色透明油状物の1-(2-メトキシエチル)グアニジン ヨウ化水素塩2.45g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.29(s,3H,CH 3 ),3.30(t,2H,J=4.8Hz,NHCH 2 ),3.43(t,2H,J=4.8Hz,CH3OCH 2 ),6.62-7.75(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):41.2(NHCH2),58.6(OCH3),70.4(CH3OCH2),157.4(N=C-N). Synthesis Example 23 Synthesis of 1- (2-methoxyethyl) guanidine hydroiodide [3′-J] Synthesis of 751 mg (10 mmol; manufactured by Aldrich) of O-methylethanolamine in 10 mL of dry tetrahydrofuran at 25 ° C. 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in 9 was added, and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (2-methoxyethyl) guanidine as a colorless transparent oil. 2.45 g of hydrogen iodide salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 3.29 (s, 3H, C H 3 ), 3.30 (t, 2H, J = 4.8 Hz, NHC H 2 ), 3.43 (t, 2H, J = 4.8Hz, CH 3 OC H 2), 6.62-7.75 (br, 5H, N H).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 41.2 (NH C H 2 ), 58.6 (O C H 3 ), 70.4 (CH 3 O C H 2 ), 157.4 (N = C -N ).
合成例24 1-(N,N-ジメチルアミノエチル)グアニジン ヨウ化水素塩[3'-K]の合成
N,N-ジメチルエチレンジアミン882mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(N,N-ジメチルアミノエチル)グアニジン ヨウ化水素塩2.59g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.18(s,6H,N(CH 3 )2),2.39(t,2H,J=6.0Hz,(CH3)2NCH 2 ),3.19(br,2H,CH3OCH 2 ),6.56-7.62(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):38.8(NHCH2),44.8(N(CH3)2),57.2((CH3)2NCH2),156.9(N=C-N). Synthesis Example 24 Synthesis of 1- (N, N-dimethylaminoethyl) guanidine hydroiodide [3′-K] Then, 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in Synthesis Example 9 was added at 25 ° C., and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (N, N-dimethylamino) as a pale yellow oil. Ethyl) guanidine hydroiodide 2.59 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.18 (s, 6H, N (C H 3 ) 2 ), 2.39 (t, 2H, J = 6.0 Hz) , (CH 3) 2 NC H 2), 3.19 (br, 2H, CH 3 OC H 2), 6.56-7.62 (br, 5H, N H).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 38.8 (NH C H 2), 44.8 (N (C H 3) 2), 57.2 ((CH 3 ) 2 N C H 2 ), 156.9 (N = C— N).
N,N-ジメチルエチレンジアミン882mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例9で得られたS-メチルイソチオ尿素 ヨウ化水素塩21.8gのうちの2.18g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-(N,N-ジメチルアミノエチル)グアニジン ヨウ化水素塩2.59g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.18(s,6H,N(CH 3 )2),2.39(t,2H,J=6.0Hz,(CH3)2NCH 2 ),3.19(br,2H,CH3OCH 2 ),6.56-7.62(br,5H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):38.8(NHCH2),44.8(N(CH3)2),57.2((CH3)2NCH2),156.9(N=C-N). Synthesis Example 24 Synthesis of 1- (N, N-dimethylaminoethyl) guanidine hydroiodide [3′-K] Then, 2.18 g (10 mmol) of 21.8 g of the S-methylisothiourea hydrogen iodide obtained in Synthesis Example 9 was added at 25 ° C., and the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (N, N-dimethylamino) as a pale yellow oil. Ethyl) guanidine hydroiodide 2.59 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.18 (s, 6H, N (C H 3 ) 2 ), 2.39 (t, 2H, J = 6.0 Hz) , (CH 3) 2 NC H 2), 3.19 (br, 2H, CH 3 OC H 2), 6.56-7.62 (br, 5H, N H).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 38.8 (NH C H 2), 44.8 (N (C H 3) 2), 57.2 ((CH 3 ) 2 N C H 2 ), 156.9 (N = C— N).
合成例25 1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-L]の合成
ベンジルアミン1.07g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩3.26g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.81(s,3H,NCH 3 ),2.95(s,6H,N(CH 3 )2),4.43(s,2H,CH 2 ),7.29-7.43(m,5H,ArH),7.56(s,1H,NH),7.90(s,1H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):30.7(NCH3),39.3(N(CH3)2,46.9(CH2),127.4,127.6,128.6,137.6(Ar),159.4(N=C-N). Synthesis Example 25 Synthesis of 1-benzyl-2,3,3-trimethylguanidine hydrogen iodide [3′-L] To a solution of 1.07 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran, 25 2.60 g (10 mmol) of 52.0 g of N, N ′, N′-trimethyl-S-methylisothiourea hydroiodide obtained in Synthesis Example 15 was added at 5 ° C., and then 6 ° C. at 25 ° C. The reaction was stirred for an hour. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1-benzyl-2,3,3 as a pale yellow oil. -Trimethylguanidine hydrogen iodide 3.26g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.81 (s, 3H, NC H 3 ), 2.95 (s, 6H, N (C H 3 ) 2 ), 4.43 (s, 2H, C H 2 ), 7.29-7.43 (m, 5H, Ar H ), 7.56 (s, 1H, NH ), 7.90 (s, 1H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 30.7 (N C H 3 ), 39.3 (N ( C H 3 ) 2 , 46.9 ( C H 2 ) , 127.4, 127.6, 128.6, 137.6 ( Ar ), 159.4 (N = C− N).
ベンジルアミン1.07g(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、淡黄色油状物の1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩3.26g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):2.81(s,3H,NCH 3 ),2.95(s,6H,N(CH 3 )2),4.43(s,2H,CH 2 ),7.29-7.43(m,5H,ArH),7.56(s,1H,NH),7.90(s,1H,NH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):30.7(NCH3),39.3(N(CH3)2,46.9(CH2),127.4,127.6,128.6,137.6(Ar),159.4(N=C-N). Synthesis Example 25 Synthesis of 1-benzyl-2,3,3-trimethylguanidine hydrogen iodide [3′-L] To a solution of 1.07 g of benzylamine (10 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 mL of dry tetrahydrofuran, 25 2.60 g (10 mmol) of 52.0 g of N, N ′, N′-trimethyl-S-methylisothiourea hydroiodide obtained in Synthesis Example 15 was added at 5 ° C., and then 6 ° C. at 25 ° C. The reaction was stirred for an hour. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1-benzyl-2,3,3 as a pale yellow oil. -Trimethylguanidine hydrogen iodide 3.26g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 2.81 (s, 3H, NC H 3 ), 2.95 (s, 6H, N (C H 3 ) 2 ), 4.43 (s, 2H, C H 2 ), 7.29-7.43 (m, 5H, Ar H ), 7.56 (s, 1H, NH ), 7.90 (s, 1H, N H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 30.7 (N C H 3 ), 39.3 (N ( C H 3 ) 2 , 46.9 ( C H 2 ) , 127.4, 127.6, 128.6, 137.6 ( Ar ), 159.4 (N = C− N).
合成例26 1-(N,N-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-M]の合成
N,N-ジメチルエチレンジアミン882mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、黄色油状物の1-(N,N-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.35(s,6H,N(CH 3 )2),2.62(t,2H,J=4.8Hz,(CH3)2NCH 2 ),2.94(d,3H,J=4.4Hz,=NCH 3 ),3.13(s,6H,=CN(CH 3 )2),3.45(t,2H,J=4.8Hz,NHCH 2 ),7.59(s,1H,NH),9.96(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):31.8(=NCH3),40.5(=CN(CH3)2),41.3(NHCH2),44.9(N(CH3)2),60.5((CH3)2NCH2),160.4(N=C-N). Synthesis Example 26 Synthesis of 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide [3′-M] N, N-dimethylethylenediamine 882 mg (10 mmol; Tokyo Chemical Industry Co., Ltd.) Of the N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide 52.0 g obtained in Synthesis Example 15 at 25 ° C. in a 10 mL dry tetrahydrofuran solution. Then, the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (N, N-dimethylaminoethyl as a yellow oil. ) -2,3,3-trimethylguanidine 3.01 g (yield: 100%) of hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.35 (s, 6H, N (C H 3 ) 2 ), 2.62 (t, 2H, J = 4.8 Hz, ( CH 3) 2 NC H 2) , 2.94 (d, 3H, J = 4.4Hz, = NC H 3), 3.13 (s, 6H, = CN (C H 3) 2), 3.45 (t, 2H, J = 4.8Hz , NHC H 2), 7.59 (s, 1H, N H), 9.96 (s, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 31.8 (= N C H 3 ), 40.5 (= CN ( C H 3 ) 2 ), 41.3 (NH C H 2 ), 44.9 (N ( C H 3 ) 2 ), 60.5 ((CH 3 ) 2 N C H 2 ), 160.4 (N = C— N).
N,N-ジメチルエチレンジアミン882mg(10mmol;東京化成工業株式会社製)の乾燥テトラヒドロフラン10mL溶液に、25℃中、合成例15で得られたN,N',N'-トリメチル-S-メチルイソチオ尿素 ヨウ化水素塩52.0gのうちの2.60g(10mmol)を加えた後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、黄色油状物の1-(N,N-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩3.01g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.35(s,6H,N(CH 3 )2),2.62(t,2H,J=4.8Hz,(CH3)2NCH 2 ),2.94(d,3H,J=4.4Hz,=NCH 3 ),3.13(s,6H,=CN(CH 3 )2),3.45(t,2H,J=4.8Hz,NHCH 2 ),7.59(s,1H,NH),9.96(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):31.8(=NCH3),40.5(=CN(CH3)2),41.3(NHCH2),44.9(N(CH3)2),60.5((CH3)2NCH2),160.4(N=C-N). Synthesis Example 26 Synthesis of 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide [3′-M] N, N-dimethylethylenediamine 882 mg (10 mmol; Tokyo Chemical Industry Co., Ltd.) Of the N, N ′, N′-trimethyl-S-methylisothiourea hydrogen iodide 52.0 g obtained in Synthesis Example 15 at 25 ° C. in a 10 mL dry tetrahydrofuran solution. Then, the mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (N, N-dimethylaminoethyl as a yellow oil. ) -2,3,3-trimethylguanidine 3.01 g (yield: 100%) of hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 2.35 (s, 6H, N (C H 3 ) 2 ), 2.62 (t, 2H, J = 4.8 Hz, ( CH 3) 2 NC H 2) , 2.94 (d, 3H, J = 4.4Hz, = NC H 3), 3.13 (s, 6H, = CN (C H 3) 2), 3.45 (t, 2H, J = 4.8Hz , NHC H 2), 7.59 (s, 1H, N H), 9.96 (s, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 31.8 (= N C H 3 ), 40.5 (= CN ( C H 3 ) 2 ), 41.3 (NH C H 2 ), 44.9 (N ( C H 3 ) 2 ), 60.5 ((CH 3 ) 2 N C H 2 ), 160.4 (N = C— N).
合成例27 7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩[3'-N]の合成
7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン307mg(2mmol;アルドリッチ社製)の1,4-ジオキサン4mL溶液に、25℃中、55%ヨウ化水素酸水溶液0.5mL(ca.3.7mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、暗褐色結晶の7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩561mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.07(quin,2H,J=6.0Hz,NCH2CH 2 CH2NCH3),2.15(quin,2H,J=6.0Hz,HNCH2CH 2 CH2N),3.26(s,3H,NCH3),3.41-3.50(m,6H,CH 2 NCH 2 CH2CH 2 NCH3),3.51-3.56(m,2H,HNCH 2 CH2CH2N),7.14(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):20.5(NCH2 CH2CH2NCH3),21.0(HNCH2 CH2CH2N),38.6(NCH3),39.7(HNCH2CH2CH2N),47.2(HNCH2CH2 CH2N),48.0(NCH2CH2CH2NCH3),48.8(NCH2CH2 CH2NCH3),150.8(N=C-N). Synthesis Example 27 Synthesis of 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene hydrogen iodide [3'-N] 7-methyl-1,5,7- To a solution of triazabicyclo [4.4.0] dec-5-ene (307 mg, 2 mmol; manufactured by Aldrich) in 1,4-dioxane (4 mL) at 25 ° C., a 55% aqueous hydroiodic acid solution (0.5 mL, ca. 3.7 mmol (manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 7-methyl-1,5,7- This gave 561 mg (yield:> 99%) of triazabicyclo [4.4.0] dec-5-ene hydrogen iodide. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.07 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NCH 3), 2.15 (quin, 2H , J = 6.0Hz, HNCH 2 C H 2 CH 2 N), 3.26 (s, 3H, NCH 3), 3.41-3.50 (m, 6H, C H 2 NC H 2 CH 2 C H 2 NCH 3), 3.51-3.56 ( m, 2H, HNC H 2 CH 2 CH 2 N), 7.14 (brs, 1H, N H).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 20.5 (NCH 2 C H 2 CH 2 NCH 3), 21.0 (HNCH 2 C H 2 CH 2 N), 38.6 (N C H 3), 39.7 (HN C H 2 CH 2 CH 2 N), 47.2 (HNCH 2 CH 2 C H 2 N), 48.0 (N C H 2 CH 2 CH 2 NCH 3 ), 48.8 (NCH 2 CH 2 C H 2 NCH 3), 150.8 (N = C -N).
7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン307mg(2mmol;アルドリッチ社製)の1,4-ジオキサン4mL溶液に、25℃中、55%ヨウ化水素酸水溶液0.5mL(ca.3.7mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、暗褐色結晶の7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩561mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.07(quin,2H,J=6.0Hz,NCH2CH 2 CH2NCH3),2.15(quin,2H,J=6.0Hz,HNCH2CH 2 CH2N),3.26(s,3H,NCH3),3.41-3.50(m,6H,CH 2 NCH 2 CH2CH 2 NCH3),3.51-3.56(m,2H,HNCH 2 CH2CH2N),7.14(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):20.5(NCH2 CH2CH2NCH3),21.0(HNCH2 CH2CH2N),38.6(NCH3),39.7(HNCH2CH2CH2N),47.2(HNCH2CH2 CH2N),48.0(NCH2CH2CH2NCH3),48.8(NCH2CH2 CH2NCH3),150.8(N=C-N). Synthesis Example 27 Synthesis of 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene hydrogen iodide [3'-N] 7-methyl-1,5,7- To a solution of triazabicyclo [4.4.0] dec-5-ene (307 mg, 2 mmol; manufactured by Aldrich) in 1,4-dioxane (4 mL) at 25 ° C., a 55% aqueous hydroiodic acid solution (0.5 mL, ca. 3.7 mmol (manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 7-methyl-1,5,7- This gave 561 mg (yield:> 99%) of triazabicyclo [4.4.0] dec-5-ene hydrogen iodide. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.07 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NCH 3), 2.15 (quin, 2H , J = 6.0Hz, HNCH 2 C H 2 CH 2 N), 3.26 (s, 3H, NCH 3), 3.41-3.50 (m, 6H, C H 2 NC H 2 CH 2 C H 2 NCH 3), 3.51-3.56 ( m, 2H, HNC H 2 CH 2 CH 2 N), 7.14 (brs, 1H, N H).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 20.5 (NCH 2 C H 2 CH 2 NCH 3), 21.0 (HNCH 2 C H 2 CH 2 N), 38.6 (N C H 3), 39.7 (HN C H 2 CH 2 CH 2 N), 47.2 (HNCH 2 CH 2 C H 2 N), 48.0 (N C H 2 CH 2 CH 2 NCH 3 ), 48.8 (NCH 2 CH 2 C H 2 NCH 3), 150.8 (N = C -N).
合成例28 グアニジン ヨウ化水素塩[3'-O]の合成
グアニジン塩酸塩1.91g(20mmol;和光純薬工業株式会社製)のメタノール4mLとアセトン6mLの混合溶液に、ヨウ化ナトリウム3.00g(20mmol;関東化学株式会社製)のメタノール4mLとアセトン6mLの混合溶液を加えた後、更に70℃で12時間加熱還流して反応させた。反応終了後、冷却した反応液をろ過し、塩化ナトリウム残渣をアセトンで洗浄した。洗浄液とろ液を合わせ、合わせた溶液を濃縮し溶媒を留去後、濃縮残渣をアセトンで抽出し不溶物を除去した。当該アセトン溶液を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色結晶のグアニジン ヨウ化水素塩3.74g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):6.94(s,6H,3NCH 2 ),Cyclohexane as standard of integral intensity:1.40ppm(s,12H,6CH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):157.8(N=C-N). Synthesis Example 28 Synthesis of guanidine hydrogen iodide [3′-O] In a mixed solution of 1.91 g of guanidine hydrochloride (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 4 mL of methanol and 6 mL of acetone, 3.00 g of sodium iodide After adding a mixed solution of methanol (4 mL) and acetone (6 mL) (20 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further heated to reflux at 70 ° C. for 12 hours to be reacted. After completion of the reaction, the cooled reaction solution was filtered, and the sodium chloride residue was washed with acetone. The washing solution and the filtrate were combined, the combined solution was concentrated and the solvent was distilled off. Then, the concentrated residue was extracted with acetone to remove insoluble matters. The residue obtained by concentrating the acetone solution and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to obtain 3.74 g (yield: 100%) of guanidine hydrogen iodide as colorless crystals. . The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 6.94 (s, 6H, 3NC H 2 ), Cyclohexane as standard of integral intensity: 1.40 ppm (s, 12H, 6C H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 157.8 (N = C 3 -N).
グアニジン塩酸塩1.91g(20mmol;和光純薬工業株式会社製)のメタノール4mLとアセトン6mLの混合溶液に、ヨウ化ナトリウム3.00g(20mmol;関東化学株式会社製)のメタノール4mLとアセトン6mLの混合溶液を加えた後、更に70℃で12時間加熱還流して反応させた。反応終了後、冷却した反応液をろ過し、塩化ナトリウム残渣をアセトンで洗浄した。洗浄液とろ液を合わせ、合わせた溶液を濃縮し溶媒を留去後、濃縮残渣をアセトンで抽出し不溶物を除去した。当該アセトン溶液を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色結晶のグアニジン ヨウ化水素塩3.74g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):6.94(s,6H,3NCH 2 ),Cyclohexane as standard of integral intensity:1.40ppm(s,12H,6CH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):157.8(N=C-N). Synthesis Example 28 Synthesis of guanidine hydrogen iodide [3′-O] In a mixed solution of 1.91 g of guanidine hydrochloride (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) in 4 mL of methanol and 6 mL of acetone, 3.00 g of sodium iodide After adding a mixed solution of methanol (4 mL) and acetone (6 mL) (20 mmol; manufactured by Kanto Chemical Co., Inc.), the mixture was further heated to reflux at 70 ° C. for 12 hours to be reacted. After completion of the reaction, the cooled reaction solution was filtered, and the sodium chloride residue was washed with acetone. The washing solution and the filtrate were combined, the combined solution was concentrated and the solvent was distilled off. Then, the concentrated residue was extracted with acetone to remove insoluble matters. The residue obtained by concentrating the acetone solution and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to obtain 3.74 g (yield: 100%) of guanidine hydrogen iodide as colorless crystals. . The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 6.94 (s, 6H, 3NC H 2 ), Cyclohexane as standard of integral intensity: 1.40 ppm (s, 12H, 6C H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 157.8 (N = C 3 -N).
比較合成例1 アニリン ヨウ化水素塩[10'-A]の合成
アニリン373mg(4mmol;アルドリッチ社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、淡黄色結晶のアニリン ヨウ化水素塩885mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):7.38(d,2H,J=7.2Hz,ArH),7.44(t,1H,J=7.2Hz,ArH),7.54(t,1H,J=7.2Hz,ArH),9.76(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):123.1(Ar),128.2(Ar),129.9(Ar),131.6(Ar). Comparative Synthesis Example 1 Synthesis of aniline hydrogen iodide [10′-A] To a solution of 373 mg of aniline (4 mmol; manufactured by Aldrich) in 8 mL of 1,4-dioxane at 25 ° C., 1 mL of a 55% aqueous hydroiodic acid solution (ca 7.3 mmol (manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours, whereby 885 mg (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 7.38 (d, 2H, J = 7.2 Hz, Ar H ), 7.44 (t, 1H, J = 7. 2 Hz, Ar H ), 7.54 (t, 1 H, J = 7.2 Hz, Ar H ), 9.76 (brs, 2 H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 123.1 ( Ar ), 128.2 ( Ar ), 129.9 ( Ar ), 131.6 ( Ar ).
アニリン373mg(4mmol;アルドリッチ社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、淡黄色結晶のアニリン ヨウ化水素塩885mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):7.38(d,2H,J=7.2Hz,ArH),7.44(t,1H,J=7.2Hz,ArH),7.54(t,1H,J=7.2Hz,ArH),9.76(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):123.1(Ar),128.2(Ar),129.9(Ar),131.6(Ar). Comparative Synthesis Example 1 Synthesis of aniline hydrogen iodide [10′-A] To a solution of 373 mg of aniline (4 mmol; manufactured by Aldrich) in 8 mL of 1,4-dioxane at 25 ° C., 1 mL of a 55% aqueous hydroiodic acid solution (ca 7.3 mmol (manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours, whereby 885 mg (yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 7.38 (d, 2H, J = 7.2 Hz, Ar H ), 7.44 (t, 1H, J = 7. 2 Hz, Ar H ), 7.54 (t, 1 H, J = 7.2 Hz, Ar H ), 9.76 (brs, 2 H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 123.1 ( Ar ), 128.2 ( Ar ), 129.9 ( Ar ), 131.6 ( Ar ).
比較合成例2 ジシクロヘキシルアミン 塩化水素塩[10'-B]の合成
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン 塩化水素塩854mg(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CD3OD,25℃)δ(ppm):1.16-1.45(m,10H,CH 2 ),1.68-1.76(m,2H,CH 2 ),1.81-1.92(m,4H,CH 2 ),2.04-2.15(m,4H,CH 2 ),3.15-3.24(m,2H,NCH).
13C-NMR(100MHz,CD3OD,25℃)δ(ppm):25.5(CH2),26.1(CH2),30.5(CH2),54.5(NCH). Comparative Synthesis Example 2 Synthesis of Dicyclohexylamine Hydrochloride [10′-B] To a solution of dicyclohexylamine 725 mg (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 1,4-dioxane 8 mL at 25 ° C., 35% aqueous hydrochloric acid solution 1 mL (ca. 12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 854 mg of colorless crystalline dicyclohexylamine hydrochloride (yield: 98 %). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CD 3 OD, 25 ° C.) δ (ppm): 1.16-1.45 (m, 10 H , C H 2 ), 1.68-1.76 (m, 2 H, C H 2 ), 1.81-1.92 (m, 4H, C H 2 ), 2.04-2.15 (m, 4H, C H 2 ), 3.15-3.24 (m, 2H, NC H ).
13 C-NMR (100 MHz, CD 3 OD, 25 ° C.) δ (ppm): 25.5 ( C H 2 ), 26.1 ( C H 2 ), 30.5 ( C H 2 ), 54.5 ( N C H).
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン 塩化水素塩854mg(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CD3OD,25℃)δ(ppm):1.16-1.45(m,10H,CH 2 ),1.68-1.76(m,2H,CH 2 ),1.81-1.92(m,4H,CH 2 ),2.04-2.15(m,4H,CH 2 ),3.15-3.24(m,2H,NCH).
13C-NMR(100MHz,CD3OD,25℃)δ(ppm):25.5(CH2),26.1(CH2),30.5(CH2),54.5(NCH). Comparative Synthesis Example 2 Synthesis of Dicyclohexylamine Hydrochloride [10′-B] To a solution of dicyclohexylamine 725 mg (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 1,4-dioxane 8 mL at 25 ° C., 35% aqueous hydrochloric acid solution 1 mL (ca. 12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 854 mg of colorless crystalline dicyclohexylamine hydrochloride (yield: 98 %). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CD 3 OD, 25 ° C.) δ (ppm): 1.16-1.45 (m, 10 H , C H 2 ), 1.68-1.76 (m, 2 H, C H 2 ), 1.81-1.92 (m, 4H, C H 2 ), 2.04-2.15 (m, 4H, C H 2 ), 3.15-3.24 (m, 2H, NC H ).
13 C-NMR (100 MHz, CD 3 OD, 25 ° C.) δ (ppm): 25.5 ( C H 2 ), 26.1 ( C H 2 ), 30.5 ( C H 2 ), 54.5 ( N C H).
比較合成例3 ジシクロヘキシルアミン 臭化水素塩[10'-C]の合成
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン 臭化水素塩1.05g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,80℃)δ(ppm):1.04-1.18(m,2H,CH 2 ),1.21-1.47(m,8H,CH 2 ),1.57-1.66(m,2H,CH 2 ),1.72-1.81(m,4H,CH 2 ),1.99-2.08(m,4H,CH 2 ),3.06-3.18(m,2H,NCH),8.32(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,80℃)δ(ppm):23.5(CH2),24.4(CH2),28.4(CH2),51.9(NCH),52.8(NCH). Comparative Synthesis Example 3 Synthesis of Dicyclohexylamine Hydrobromide [10′-C] To a solution of 725 mg of dicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of 1,4-dioxane, 47% hydrogen bromide at 25 ° C. 1 mL of an aqueous acid solution (ca. 8.8 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 1.05 g (yield) of colorless crystalline dicyclohexylamine hydrobromide. Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 80 ° C.) δ (ppm): 1.04-1.18 (m, 2H, C H 2 ), 1.21-1.47 (m, 8H, C H 2 ), 1.57-1.66 (m, 2H, C H 2 ), 1.72-1.81 (m, 4H, C H 2 ), 1.99-2.08 (m, 4H, C H 2 ), 3.06-3.18 (m, 2H, NC H ), 8.32 (brs, 2H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 80 ° C.) δ (ppm): 23.5 ( C H 2 ), 24.4 ( C H 2 ), 28.4 ( C H 2 ), 51.9 (N C H), 52.8 (N C H).
ジシクロヘキシルアミン725mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のジシクロヘキシルアミン 臭化水素塩1.05g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,80℃)δ(ppm):1.04-1.18(m,2H,CH 2 ),1.21-1.47(m,8H,CH 2 ),1.57-1.66(m,2H,CH 2 ),1.72-1.81(m,4H,CH 2 ),1.99-2.08(m,4H,CH 2 ),3.06-3.18(m,2H,NCH),8.32(brs,2H,NH 2 ).
13C-NMR(100MHz,DMSO-d6,80℃)δ(ppm):23.5(CH2),24.4(CH2),28.4(CH2),51.9(NCH),52.8(NCH). Comparative Synthesis Example 3 Synthesis of Dicyclohexylamine Hydrobromide [10′-C] To a solution of 725 mg of dicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of 1,4-dioxane, 47% hydrogen bromide at 25 ° C. 1 mL of an aqueous acid solution (ca. 8.8 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain 1.05 g (yield) of colorless crystalline dicyclohexylamine hydrobromide. Rate: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 80 ° C.) δ (ppm): 1.04-1.18 (m, 2H, C H 2 ), 1.21-1.47 (m, 8H, C H 2 ), 1.57-1.66 (m, 2H, C H 2 ), 1.72-1.81 (m, 4H, C H 2 ), 1.99-2.08 (m, 4H, C H 2 ), 3.06-3.18 (m, 2H, NC H ), 8.32 (brs, 2H, N H 2 ).
13 C-NMR (100 MHz, DMSO-d 6 , 80 ° C.) δ (ppm): 23.5 ( C H 2 ), 24.4 ( C H 2 ), 28.4 ( C H 2 ), 51.9 (N C H), 52.8 (N C H).
比較合成例4 ヨウ化 N,N-ジメチルジシクロヘキシルアンモニウム[10'-D]の合成
N-メチルジシクロヘキシルアミン781mg(4mmol;東京化成工業株式会社製)の乾燥ジクロロメタン8mL溶液に、25℃中、ヨウ化メチル1.14g(8mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のヨウ化 N,N-ジメチルジシクロヘキシルアンモニウム1.36g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.16-1.29(m,2H,CH 2 ),1.44-1.77(m,10H,CH 2 ),1.97-2.05(m,4H,CH 2 ),2.22-2.30(m,4H,CH 2 ),3.09(s,6H,CH 3 ),3.63-3.71(m,2H,NCH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):24.6(CH2),25.2(CH2),26.4(CH2),44.8(CH3),70.6(NCH). Comparative Synthesis Example 4 Iodination Synthesis of N, N-dimethyldicyclohexylammonium [10′-D] Iodination at 25 ° C. in a solution of 781 mg of N-methyldicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of dry dichloromethane Methyl 1.14 g (8 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give N, N-dimethyldicyclohexylammonium iodide as colorless crystals. 36 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.16-1.29 (m, 2H, C H 2 ), 1.44-1.77 (m, 10 H , C H 2 ), 1.97-2.05 (m, 4H, C H 2 ), 2.22-2.30 (m, 4H, C H 2 ), 3.09 (s, 6H, C H 3 ), 3 .63-3.71 (m, 2H, NC H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 24.6 ( C H 2 ), 25.2 ( C H 2 ), 26.4 ( C H 2 ), 44.8 ( C H 3), 70.6 (N C H).
N-メチルジシクロヘキシルアミン781mg(4mmol;東京化成工業株式会社製)の乾燥ジクロロメタン8mL溶液に、25℃中、ヨウ化メチル1.14g(8mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶のヨウ化 N,N-ジメチルジシクロヘキシルアンモニウム1.36g(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.16-1.29(m,2H,CH 2 ),1.44-1.77(m,10H,CH 2 ),1.97-2.05(m,4H,CH 2 ),2.22-2.30(m,4H,CH 2 ),3.09(s,6H,CH 3 ),3.63-3.71(m,2H,NCH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):24.6(CH2),25.2(CH2),26.4(CH2),44.8(CH3),70.6(NCH). Comparative Synthesis Example 4 Iodination Synthesis of N, N-dimethyldicyclohexylammonium [10′-D] Iodination at 25 ° C. in a solution of 781 mg of N-methyldicyclohexylamine (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 8 mL of dry dichloromethane Methyl 1.14 g (8 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give N, N-dimethyldicyclohexylammonium iodide as colorless crystals. 36 g (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.16-1.29 (m, 2H, C H 2 ), 1.44-1.77 (m, 10 H , C H 2 ), 1.97-2.05 (m, 4H, C H 2 ), 2.22-2.30 (m, 4H, C H 2 ), 3.09 (s, 6H, C H 3 ), 3 .63-3.71 (m, 2H, NC H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 24.6 ( C H 2 ), 25.2 ( C H 2 ), 26.4 ( C H 2 ), 44.8 ( C H 3), 70.6 (N C H).
比較合成例5 ピリジン ヨウ化水素塩[10'-E]の合成
ピリジン316mg(4mmol;関東化学株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、無色結晶のピリジン ヨウ化水素塩828mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):7.10(brs,1H,NH),8.11(dd,2H,J=7.6,6.4Hz,ArH),8.65(t,1H,J=7.6Hz,ArH),8.97(dd,2H,J=6.4,1.6Hz,ArH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):127.3(Ar),142.1(Ar),146.5(Ar). Comparative Synthesis Example 5 Synthesis of Pyridine Hydroiodide [10′-E] Pyridine 316 mg (4 mmol; manufactured by Kanto Chemical Co., Ltd.) in 1,4-dioxane 8 mL solution at 25 ° C. in 55% hydroiodic acid aqueous solution 1 mL (Ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours to obtain 828 mg of colorless crystalline pyridine hydrogen iodide (yield: 100). %). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 7.10 (brs, 1H, NH ), 8.11 (dd, 2H, J = 7.6, 6.4 Hz, Ar H ), 8.65 (t, 1H, J = 7.6 Hz, Ar H ), 8.97 (dd, 2H, J = 6.4, 1.6 Hz, Ar H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 127.3 ( Ar ), 142.1 ( Ar ), 146.5 ( Ar ).
ピリジン316mg(4mmol;関東化学株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、無色結晶のピリジン ヨウ化水素塩828mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):7.10(brs,1H,NH),8.11(dd,2H,J=7.6,6.4Hz,ArH),8.65(t,1H,J=7.6Hz,ArH),8.97(dd,2H,J=6.4,1.6Hz,ArH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):127.3(Ar),142.1(Ar),146.5(Ar). Comparative Synthesis Example 5 Synthesis of Pyridine Hydroiodide [10′-E] Pyridine 316 mg (4 mmol; manufactured by Kanto Chemical Co., Ltd.) in 1,4-dioxane 8 mL solution at 25 ° C. in 55% hydroiodic acid aqueous solution 1 mL (Ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours to obtain 828 mg of colorless crystalline pyridine hydrogen iodide (yield: 100). %). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 7.10 (brs, 1H, NH ), 8.11 (dd, 2H, J = 7.6, 6.4 Hz, Ar H ), 8.65 (t, 1H, J = 7.6 Hz, Ar H ), 8.97 (dd, 2H, J = 6.4, 1.6 Hz, Ar H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 127.3 ( Ar ), 142.1 ( Ar ), 146.5 ( Ar ).
比較合成例6 1-メチルイミダゾール ヨウ化水素塩[20'-A]の合成
1-メチルイミダゾール324mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、光沢黒色結晶の1-メチルイミダゾール ヨウ化水素塩842mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.88(s,3H,NCH 3 ),7.69(brs,1H,CH),7.72(brs,1H,CH),9.08(s,1H,NCHN).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):35.5(NCH3),119.7(HNCHCH),123.1(CH3NCHCH),135.8(NCHN). Comparative Synthesis Example 6 Synthesis of 1-methylimidazole hydrogen iodide [20′-A] To a solution of 1-methylimidazole 324 mg (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 1,4-dioxane 8 mL at 25 ° C., 55 A 1% aqueous solution of hydroiodic acid (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours, whereby 842 mg of 1-methylimidazole hydrogen iodide salt of bright black crystals ( Yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 3.88 (s, 3H, NC H 3 ), 7.69 (brs, 1H, C H ), 7.72 (brs , 1H, C H ), 9.08 (s, 1H, NC H N).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 35.5 (N C H 3 ), 119.7 (HN C HCH), 123.1 (CH 3 N C HCH), 135.8 (N C HN).
1-メチルイミダゾール324mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で4時間真空乾燥することにより、光沢黒色結晶の1-メチルイミダゾール ヨウ化水素塩842mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):3.88(s,3H,NCH 3 ),7.69(brs,1H,CH),7.72(brs,1H,CH),9.08(s,1H,NCHN).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):35.5(NCH3),119.7(HNCHCH),123.1(CH3NCHCH),135.8(NCHN). Comparative Synthesis Example 6 Synthesis of 1-methylimidazole hydrogen iodide [20′-A] To a solution of 1-methylimidazole 324 mg (4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 1,4-dioxane 8 mL at 25 ° C., 55 A 1% aqueous solution of hydroiodic acid (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) was added dropwise over 1 minute, and the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 4 hours, whereby 842 mg of 1-methylimidazole hydrogen iodide salt of bright black crystals ( Yield: 100%). The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 3.88 (s, 3H, NC H 3 ), 7.69 (brs, 1H, C H ), 7.72 (brs , 1H, C H ), 9.08 (s, 1H, NC H N).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 35.5 (N C H 3 ), 119.7 (HN C HCH), 123.1 (CH 3 N C HCH), 135.8 (N C HN).
比較合成例7 N,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩[20'-B]の合成
N,N-ジメチル-N'-オクチルアセトアミジン793mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、薄茶色結晶のN,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩1.28g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.88(t,3H,J=7.2Hz,CH2CH 3 ),1.22-1.39(m,10H,CH 2 CH 2 CH 2 CH 2 CH 2 CH3),1.70(quin,2H,J=7.2Hz,HNCH2CH 2 ),2.39(s,3H,CCH 3 ),3.36(s,3H,NCH 3 ),3.46(s,3H,NCH 3 ),3.48-3.56(m,2H,HNCH 2 CH3),8.43(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.9(CCH3),15.8(CH2 CH3),22.4(CH2CH3),26.5(HNCH2CH2 CH2),29.0(CH2CH2CH2CH3),30.2(HNCH2CH2CH2 CH2),31.6(HNCH2 CH2),42.2(CH2CH2CH3),42.8(N,(CH3)2),44.7(HNCH2),163.0(N=C-N). Comparative Synthesis Example 7 Synthesis of N, N-dimethyl-N′-octylacetamidine hydrogen iodide [20′-B] 793 mg (4 mmol) of 1,4-dioxane of N, N-dimethyl-N′-octylacetamidine 1 mL (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) of 55% aqueous hydroiodic acid was added dropwise to the 8 mL solution over 1 minute at 25 ° C., and the mixture was further stirred at 25 ° C. for 12 hours for reaction. . After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain N, N-dimethyl-N′-octyl as light brown crystals. 1.28 g (yield: 98%) of acetamidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 0.88 (t, 3H, J = 7.2Hz, CH 2 C H 3), 1.22-1.39 (m, 10H , C H 2 C H 2 C H 2 C H 2 C H 2 CH 3 ), 1.70 (quin, 2H, J = 7.2 Hz, HNCH 2 C H 2 ), 2.39 (s, 3H, CC H 3), 3.36 (s, 3H, NC H 3), 3.46 (s, 3H, NC H 3), 3.48-3.56 (m, 2H, HNC H 2 CH 3), 8 .43 (brs, 1H, NH ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.9 (C C H 3 ), 15.8 (CH 2 C H 3 ), 22.4 ( C H 2 CH 3 ), 26.5 (HNCH 2 CH 2 C H 2), 29.0 (C H 2 CH 2 CH 2 CH 3), 30.2 (HNCH 2 CH 2 CH 2 C H 2), 31.6 (HNCH 2 C H 2 ), 42.2 ( C H 2 CH 2 CH 3 ), 42.8 (N, ( C H 3 ) 2 ), 44.7 (HN C H 2 ), 163.0 (N = C -N ).
N,N-ジメチル-N'-オクチルアセトアミジン793mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、55%ヨウ化水素酸水溶液1mL(ca.7.3mmol;関東化学株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、薄茶色結晶のN,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩1.28g(収率:98%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.88(t,3H,J=7.2Hz,CH2CH 3 ),1.22-1.39(m,10H,CH 2 CH 2 CH 2 CH 2 CH 2 CH3),1.70(quin,2H,J=7.2Hz,HNCH2CH 2 ),2.39(s,3H,CCH 3 ),3.36(s,3H,NCH 3 ),3.46(s,3H,NCH 3 ),3.48-3.56(m,2H,HNCH 2 CH3),8.43(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.9(CCH3),15.8(CH2 CH3),22.4(CH2CH3),26.5(HNCH2CH2 CH2),29.0(CH2CH2CH2CH3),30.2(HNCH2CH2CH2 CH2),31.6(HNCH2 CH2),42.2(CH2CH2CH3),42.8(N,(CH3)2),44.7(HNCH2),163.0(N=C-N). Comparative Synthesis Example 7 Synthesis of N, N-dimethyl-N′-octylacetamidine hydrogen iodide [20′-B] 793 mg (4 mmol) of 1,4-dioxane of N, N-dimethyl-N′-octylacetamidine 1 mL (ca. 7.3 mmol; manufactured by Kanto Chemical Co., Inc.) of 55% aqueous hydroiodic acid was added dropwise to the 8 mL solution over 1 minute at 25 ° C., and the mixture was further stirred at 25 ° C. for 12 hours for reaction. . After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to obtain N, N-dimethyl-N′-octyl as light brown crystals. 1.28 g (yield: 98%) of acetamidine hydrogen iodide was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 0.88 (t, 3H, J = 7.2Hz, CH 2 C H 3), 1.22-1.39 (m, 10H , C H 2 C H 2 C H 2 C H 2 C H 2 CH 3 ), 1.70 (quin, 2H, J = 7.2 Hz, HNCH 2 C H 2 ), 2.39 (s, 3H, CC H 3), 3.36 (s, 3H, NC H 3), 3.46 (s, 3H, NC H 3), 3.48-3.56 (m, 2H, HNC H 2 CH 3), 8 .43 (brs, 1H, NH ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.9 (C C H 3 ), 15.8 (CH 2 C H 3 ), 22.4 ( C H 2 CH 3 ), 26.5 (HNCH 2 CH 2 C H 2), 29.0 (C H 2 CH 2 CH 2 CH 3), 30.2 (HNCH 2 CH 2 CH 2 C H 2), 31.6 (HNCH 2 C H 2 ), 42.2 ( C H 2 CH 2 CH 3 ), 42.8 (N, ( C H 3 ) 2 ), 44.7 (HN C H 2 ), 163.0 (N = C -N ).
比較合成例8 1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩[20'-C]の合成
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩541mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.12(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.38(s,3H,NCH 3 ),3.43-3.53(m,4H,CH 2 CH2CH 2 ),8.48(d,1H,J=6.0Hz,N=CH-N),10.6(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.9(CH2 CH2CH2),36.1(NCH3),41.5(HNCH2),45.1(CH3NCH2),151.8(N=C-N). Comparative Synthesis Example 8 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrochloride [20′-C] 1-methyl-1,4,5,6-tetrahydropyrimidine 393 mg (4 mmol) of 1, 1 mL of a 35% hydrochloric acid aqueous solution (ca. 12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to an 8 mL solution of 4-dioxane at 25 ° C. over 1 minute, followed by further stirring at 25 ° C. for 12 hours. I let you. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give colorless crystals of 1-methyl-1,4,5,6. -541 mg (yield: 100%) of tetrahydropyrimidine hydrochloride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.12 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.38 (s, 3H, NC H 3 ), 3.43-3.53 (m, 4H, C H 2 CH 2 C H 2 ), 8.48 (d, 1H, J = 6.0 Hz, N = C H -N), 10. 6 (brs, 1H, NH ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 17.9 (CH 2 C H 2 CH 2), 36.1 (N C H 3), 41.5 (HN C H 2) , 45.1 (CH 3 N C H 2), 151.8 (N = C -N).
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩541mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.12(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.38(s,3H,NCH 3 ),3.43-3.53(m,4H,CH 2 CH2CH 2 ),8.48(d,1H,J=6.0Hz,N=CH-N),10.6(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.9(CH2 CH2CH2),36.1(NCH3),41.5(HNCH2),45.1(CH3NCH2),151.8(N=C-N). Comparative Synthesis Example 8 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrochloride [20′-C] 1-methyl-1,4,5,6-tetrahydropyrimidine 393 mg (4 mmol) of 1, 1 mL of a 35% hydrochloric acid aqueous solution (ca. 12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to an 8 mL solution of 4-dioxane at 25 ° C. over 1 minute, followed by further stirring at 25 ° C. for 12 hours. I let you. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give colorless crystals of 1-methyl-1,4,5,6. -541 mg (yield: 100%) of tetrahydropyrimidine hydrochloride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.12 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.38 (s, 3H, NC H 3 ), 3.43-3.53 (m, 4H, C H 2 CH 2 C H 2 ), 8.48 (d, 1H, J = 6.0 Hz, N = C H -N), 10. 6 (brs, 1H, NH ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 17.9 (CH 2 C H 2 CH 2), 36.1 (N C H 3), 41.5 (HN C H 2) , 45.1 (CH 3 N C H 2), 151.8 (N = C -N).
比較合成例9 1-メチル-1,4,5,6-テトラヒドロピリミジン 臭化水素塩[20'-D]の合成
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色油状物の1-メチル-1,4,5,6-テトラヒドロピリミジン 臭化水素塩721mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.41(s,3H,NCH 3 ),3.47-3.53(m,2H,NHCH2CH2CH 2 NCH3),3.55(t,2H,J=6.0Hz,NHCH 2 CH2CH2NCH3),8.42(d,1H,J=6.0Hz,N=CH-N),9.80(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.8(CH2 CH2CH2),36.1(NCH3),41.7(HNCH2),45.3(CH3NCH2),151.4(N=C-N). Comparative Synthesis Example 9 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrobromide [20′-D] 1 of 393 mg (4 mmol) of 1-methyl-1,4,5,6-tetrahydropyrimidine , 4-Dioxane 8 mL solution, 1 mL of 47% hydrobromic acid solution (ca. 8.8 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at 25 ° C. over 1 minute, and further at 25 ° C. for 12 hours. The reaction was stirred. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1-methyl-1,4,5 as a pale yellow oil. , 6-tetrahydropyrimidine hydrobromide 721 mg (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.41 (s, 3H, NC H 3), 3.47-3.53 (m, 2H, NHCH 2 CH 2 C H 2 NCH 3), 3.55 (t, 2H, J = 6.0Hz, NHC H 2 CH 2 CH 2 NCH 3 ), 8.42 (d, 1H, J = 6.0 Hz, N = C H -N), 9.80 (brs, 1H, N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 17.8 (CH 2 C H 2 CH 2), 36.1 (N C H 3), 41.7 (HN C H 2) , 45.3 (CH 3 N C H 2), 151.4 (N = C -N).
1-メチル-1,4,5,6-テトラヒドロピリミジン393mg(4mmol)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、淡黄色油状物の1-メチル-1,4,5,6-テトラヒドロピリミジン 臭化水素塩721mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):2.16(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.41(s,3H,NCH 3 ),3.47-3.53(m,2H,NHCH2CH2CH 2 NCH3),3.55(t,2H,J=6.0Hz,NHCH 2 CH2CH2NCH3),8.42(d,1H,J=6.0Hz,N=CH-N),9.80(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):17.8(CH2 CH2CH2),36.1(NCH3),41.7(HNCH2),45.3(CH3NCH2),151.4(N=C-N). Comparative Synthesis Example 9 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine hydrobromide [20′-D] 1 of 393 mg (4 mmol) of 1-methyl-1,4,5,6-tetrahydropyrimidine , 4-Dioxane 8 mL solution, 1 mL of 47% hydrobromic acid solution (ca. 8.8 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at 25 ° C. over 1 minute, and further at 25 ° C. for 12 hours. The reaction was stirred. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1-methyl-1,4,5 as a pale yellow oil. , 6-tetrahydropyrimidine hydrobromide 721 mg (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 2.16 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.41 (s, 3H, NC H 3), 3.47-3.53 (m, 2H, NHCH 2 CH 2 C H 2 NCH 3), 3.55 (t, 2H, J = 6.0Hz, NHC H 2 CH 2 CH 2 NCH 3 ), 8.42 (d, 1H, J = 6.0 Hz, N = C H -N), 9.80 (brs, 1H, N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 17.8 (CH 2 C H 2 CH 2), 36.1 (N C H 3), 41.7 (HN C H 2) , 45.3 (CH 3 N C H 2), 151.4 (N = C -N).
比較合成例10 1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩[20'-E]の合成
1-メチル-1,4,5,6-テトラヒドロピリミジン196mg(2mmol)の乾燥ジクロロメタン4mL溶液に、25℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン6mL溶液を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色固体の1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩491mg(収率:99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.92(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.13(s,3H,NCH 3 ),3.23(t,2H,J=6.0Hz,NHCH2CH2CH 2 NCH3),3.33(t,2H,J=6.0Hz,NHCH 2 CH2CH2NCH3),3.01-3.53(brs,1H,NH),8.11(s,1H,N=CH-N).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):18.0(CH2 CH2CH2),36.2(NCH3),41.1(HNCH2),44.9(CH3NCH2),115.9,119.1,122.3,125.5(CF3),152.1(N=C-N). Comparative Synthesis Example 10 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate [20′-E] 196 mg (2 mmol) of 1-methyl-1,4,5,6-tetrahydropyrimidine A solution of 300 mg of trifluoromethanesulfonic acid (2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 6 mL of dry dichloromethane was added dropwise to a 4 mL solution of dry dichloromethane over 10 minutes, and the mixture was further stirred at 25 ° C. for 6 hours to react. It was. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1-methyl-1,4,5,6 as a colorless solid. -491 mg (yield: 99%) of tetrahydropyrimidine trifluoromethanesulfonate was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, DMSO -d 6, 25 ℃) δ (ppm): 1.92 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.13 (s, 3H , NC H 3), 3.23 ( t, 2H, J = 6.0Hz, NHCH 2 CH 2 C H 2 NCH 3), 3.33 (t, 2H, J = 6.0Hz, NHC H 2 CH 2 CH 2 NCH 3), 3.01-3.53 ( brs, 1H, N H), 8.11 (s, 1H, N = C H -N).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 18.0 (CH 2 C H 2 CH 2), 36.2 (N C H 3), 41.1 (HN C H 2), 44.9 (CH 3 N C H 2), 115.9,119.1,122.3,125.5 (C F 3), 152.1 (N = C -N).
1-メチル-1,4,5,6-テトラヒドロピリミジン196mg(2mmol)の乾燥ジクロロメタン4mL溶液に、25℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン6mL溶液を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色固体の1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩491mg(収率:99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.92(quin,2H,J=6.0Hz,CH2CH 2 CH2),3.13(s,3H,NCH 3 ),3.23(t,2H,J=6.0Hz,NHCH2CH2CH 2 NCH3),3.33(t,2H,J=6.0Hz,NHCH 2 CH2CH2NCH3),3.01-3.53(brs,1H,NH),8.11(s,1H,N=CH-N).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):18.0(CH2 CH2CH2),36.2(NCH3),41.1(HNCH2),44.9(CH3NCH2),115.9,119.1,122.3,125.5(CF3),152.1(N=C-N). Comparative Synthesis Example 10 Synthesis of 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate [20′-E] 196 mg (2 mmol) of 1-methyl-1,4,5,6-tetrahydropyrimidine A solution of 300 mg of trifluoromethanesulfonic acid (2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) in 6 mL of dry dichloromethane was added dropwise to a 4 mL solution of dry dichloromethane over 10 minutes, and the mixture was further stirred at 25 ° C. for 6 hours to react. It was. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1-methyl-1,4,5,6 as a colorless solid. -491 mg (yield: 99%) of tetrahydropyrimidine trifluoromethanesulfonate was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, DMSO -d 6, 25 ℃) δ (ppm): 1.92 (quin, 2H, J = 6.0Hz, CH 2 C H 2 CH 2), 3.13 (s, 3H , NC H 3), 3.23 ( t, 2H, J = 6.0Hz, NHCH 2 CH 2 C H 2 NCH 3), 3.33 (t, 2H, J = 6.0Hz, NHC H 2 CH 2 CH 2 NCH 3), 3.01-3.53 ( brs, 1H, N H), 8.11 (s, 1H, N = C H -N).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 18.0 (CH 2 C H 2 CH 2), 36.2 (N C H 3), 41.1 (HN C H 2), 44.9 (CH 3 N C H 2), 115.9,119.1,122.3,125.5 (C F 3), 152.1 (N = C -N).
比較合成例11 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 塩化水素塩[20'-F]の合成
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 塩化水素塩757mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.68-1.83(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.06(quin,2H,J=4.8Hz,NCH2CH 2 CH2NH),2.96-3.03(m,2H,NCH2CH2CH2CH2CH 2 C),3.43-3.49(m,2H,NCH 2 CH2CH2NH),3.51-3.59(m,4H,CH 2 NCH2CH2CH 2 NH),11.2(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.5(NCH2 CH2CH2NH),24.0(NCH2CH2CH2 CH2CH2C),26.8(NCH2CH2 CH2CH2CH2C),28.9(NCH2 CH2CH2CH2CH2C),32.2(NCH2CH2CH2CH2 CH2C),37.9(NCH2CH2 CH2NH),48.7(NCH2CH2CH2NH),54.5(NCH2CH2CH2CH2CH2C),166.2(N=C-N). Comparative Synthesis Example 11 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydrochloride [20′-F] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol) 1 ml of a 35% hydrochloric acid aqueous solution (ca.12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to an 8 mL solution of 1,4-dioxane (manufactured by Tokyo Chemical Industry Co., Ltd.) at 25 ° C. over 1 minute. Further, the reaction was carried out by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,8-diazabicyclo [5.4. 757 mg of undecene hydrogen chloride salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.68-1.83 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.06 ( quin, 2H, J = 4.8Hz, NCH 2 C H 2 CH 2 NH), 2.96-3.03 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.43- 3.49 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.51-3.59 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 11.2 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.5 (NCH 2 C H 2 CH 2 NH), 24.0 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.8 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.9 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.2 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.9 (NCH 2 CH 2 C H 2 NH), 48.7 (N C H 2 CH 2 CH 2 NH), 54.5 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.2 (N = C -N ).
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 塩化水素塩757mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.68-1.83(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.06(quin,2H,J=4.8Hz,NCH2CH 2 CH2NH),2.96-3.03(m,2H,NCH2CH2CH2CH2CH 2 C),3.43-3.49(m,2H,NCH 2 CH2CH2NH),3.51-3.59(m,4H,CH 2 NCH2CH2CH 2 NH),11.2(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.5(NCH2 CH2CH2NH),24.0(NCH2CH2CH2 CH2CH2C),26.8(NCH2CH2 CH2CH2CH2C),28.9(NCH2 CH2CH2CH2CH2C),32.2(NCH2CH2CH2CH2 CH2C),37.9(NCH2CH2 CH2NH),48.7(NCH2CH2CH2NH),54.5(NCH2CH2CH2CH2CH2C),166.2(N=C-N). Comparative Synthesis Example 11 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydrochloride [20′-F] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol) 1 ml of a 35% hydrochloric acid aqueous solution (ca.12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to an 8 mL solution of 1,4-dioxane (manufactured by Tokyo Chemical Industry Co., Ltd.) at 25 ° C. over 1 minute. Further, the reaction was carried out by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours, whereby 1,8-diazabicyclo [5.4. 757 mg of undecene hydrogen chloride salt (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.68-1.83 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.06 ( quin, 2H, J = 4.8Hz, NCH 2 C H 2 CH 2 NH), 2.96-3.03 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.43- 3.49 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.51-3.59 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 11.2 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.5 (NCH 2 C H 2 CH 2 NH), 24.0 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.8 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.9 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.2 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.9 (NCH 2 CH 2 C H 2 NH), 48.7 (N C H 2 CH 2 CH 2 NH), 54.5 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.2 (N = C -N ).
比較合成例12 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 臭化水素塩[20'-G]の合成
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 臭化水素塩887mg(収率:95%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.70-1.84(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.09(quin,2H,J=5.6Hz,NCH2CH 2 CH2NH),2.99-3.06(m,2H,NCH2CH2CH2CH2CH 2 C),3.45-3.50(m,2H,NCH 2 CH2CH2NH),3.54-3.62(m,4H,CH 2 NCH2CH2CH 2 NH),10.5(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.4(NCH2 CH2CH2NH),23.8(NCH2CH2CH2 CH2CH2C),26.7(NCH2CH2 CH2CH2CH2C),28.9(NCH2 CH2CH2CH2CH2C),32.3(NCH2CH2CH2CH2 CH2C),37.8(NCH2CH2 CH2NH),48.8(NCH2CH2CH2NH),54.6(NCH2CH2CH2CH2CH2C),166.1(N=C-N). Comparative Synthesis Example 12 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydrobromide [20′-G] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg ( 1 mmol of 47% hydrobromic acid aqueous solution (ca.8.8 mmol ;; manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. for 1 minute in an 8 mL solution of 4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) After dropwise addition, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,8-diazabicyclo [5.4.0] as colorless crystals. ] -7-undecene hydrobromide 887 mg (yield: 95%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.70-1.84 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.09 ( quin, 2H, J = 5.6Hz, NCH 2 C H 2 CH 2 NH), 2.99-3.06 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.45- 3.50 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.54-3.62 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 10.5 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.4 (NCH 2 C H 2 CH 2 NH), 23.8 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.7 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.9 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.3 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.8 (NCH 2 CH 2 C H 2 NH), 48.8 (N C H 2 CH 2 CH 2 NH), 54.6 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.1 (N = C -N ).
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の1,4-ジオキサン8mL溶液に、25℃中、47%臭化水素酸水溶液1mL(ca.8.8mmol;;和光純薬工業株式会社製)を1分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 臭化水素塩887mg(収率:95%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.70-1.84(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.09(quin,2H,J=5.6Hz,NCH2CH 2 CH2NH),2.99-3.06(m,2H,NCH2CH2CH2CH2CH 2 C),3.45-3.50(m,2H,NCH 2 CH2CH2NH),3.54-3.62(m,4H,CH 2 NCH2CH2CH 2 NH),10.5(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.4(NCH2 CH2CH2NH),23.8(NCH2CH2CH2 CH2CH2C),26.7(NCH2CH2 CH2CH2CH2C),28.9(NCH2 CH2CH2CH2CH2C),32.3(NCH2CH2CH2CH2 CH2C),37.8(NCH2CH2 CH2NH),48.8(NCH2CH2CH2NH),54.6(NCH2CH2CH2CH2CH2C),166.1(N=C-N). Comparative Synthesis Example 12 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene hydrobromide [20′-G] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg ( 1 mmol of 47% hydrobromic acid aqueous solution (ca.8.8 mmol ;; manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. for 1 minute in an 8 mL solution of 4 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) After dropwise addition, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,8-diazabicyclo [5.4.0] as colorless crystals. ] -7-undecene hydrobromide 887 mg (yield: 95%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.70-1.84 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.09 ( quin, 2H, J = 5.6Hz, NCH 2 C H 2 CH 2 NH), 2.99-3.06 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.45- 3.50 (m, 2H, NC H 2 CH 2 CH 2 NH), 3.54-3.62 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH), 10.5 (brs, 1H , N H ).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.4 (NCH 2 C H 2 CH 2 NH), 23.8 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.7 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.9 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.3 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.8 (NCH 2 CH 2 C H 2 NH), 48.8 (N C H 2 CH 2 CH 2 NH), 54.6 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 166.1 (N = C -N ).
比較合成例13 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 酢酸塩[20'-H]の合成
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の乾燥ジクロロメタン20mL溶液に、25℃中、酢酸240μL(4.2mmol;和光純薬工業株式会社製)を滴下した後、更に25℃で2時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 酢酸塩851mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.67-1.81(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),1.98(s,3H,OCOCH 3 ),2.04(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.83-2.88(m,2H,NCH2CH2CH2CH2CH 2 C),3.43(t,2H,J=5.6Hz,NCH 2 CH2CH2NH),3.49-3.56(m,4H,CH 2 NCH2CH2CH 2 NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.0(NCH2 CH2CH2NH),23.4,23.5(NCH2CH2CH2 CH2CH2C,OCOCH3),26.3(NCH2CH2 CH2CH2CH2C),28.4(NCH2 CH2CH2CH2CH2C),31.3(NCH2CH2CH2CH2 CH2C),37.4(NCH2CH2 CH2NH),47.9(NCH2CH2CH2NH),53.5(NCH2CH2CH2CH2CH2C),165.3(N=C-N),176.4(C=O). Comparative Synthesis Example 13 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene acetate [20′-H] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol; To a 20 mL dry dichloromethane solution (manufactured by Tokyo Chemical Industry Co., Ltd.), 240 μL of acetic acid (4.2 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at 25 ° C., and the mixture was further reacted by stirring at 25 ° C. for 2 hours. . After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,8-diazabicyclo [5.4.0] as colorless crystals. ] -7-undecene acetate 851 mg (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 1.67-1.81 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 1.98 ( s, 3H, OCOC H 3) , 2.04 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.83-2.88 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C) , 3.43 (t, 2H, J = 5.6Hz, NC H 2 CH 2 CH 2 NH), 3.49-3.56 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.0 (NCH 2 C H 2 CH 2 NH), 23.4,23.5 (NCH 2 CH 2 CH 2 C H 2 CH 2 C, OCO C H 3) , 26.3 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.4 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 31.3 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.4 (NCH 2 CH 2 C H 2 NH), 47.9 (N C H 2 CH 2 CH 2 NH), 53.5 (N C H 2 CH 2 CH 2 CH 2 CH 2 C), 165.3 (N = C -N), 176.4 (C = O).
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン609mg(4mmol;東京化成工業株式会社製)の乾燥ジクロロメタン20mL溶液に、25℃中、酢酸240μL(4.2mmol;和光純薬工業株式会社製)を滴下した後、更に25℃で2時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を60℃で4時間真空乾燥することにより、無色結晶の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 酢酸塩851mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.67-1.81(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),1.98(s,3H,OCOCH 3 ),2.04(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.83-2.88(m,2H,NCH2CH2CH2CH2CH 2 C),3.43(t,2H,J=5.6Hz,NCH 2 CH2CH2NH),3.49-3.56(m,4H,CH 2 NCH2CH2CH 2 NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.0(NCH2 CH2CH2NH),23.4,23.5(NCH2CH2CH2 CH2CH2C,OCOCH3),26.3(NCH2CH2 CH2CH2CH2C),28.4(NCH2 CH2CH2CH2CH2C),31.3(NCH2CH2CH2CH2 CH2C),37.4(NCH2CH2 CH2NH),47.9(NCH2CH2CH2NH),53.5(NCH2CH2CH2CH2CH2C),165.3(N=C-N),176.4(C=O). Comparative Synthesis Example 13 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene acetate [20′-H] 1,8-diazabicyclo [5.4.0] -7-undecene 609 mg (4 mmol; To a 20 mL dry dichloromethane solution (manufactured by Tokyo Chemical Industry Co., Ltd.), 240 μL of acetic acid (4.2 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at 25 ° C., and the mixture was further reacted by stirring at 25 ° C. for 2 hours. . After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 60 ° C. for 4 hours to give 1,8-diazabicyclo [5.4.0] as colorless crystals. ] -7-undecene acetate 851 mg (yield: 100%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 1.67-1.81 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 1.98 ( s, 3H, OCOC H 3) , 2.04 (quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.83-2.88 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C) , 3.43 (t, 2H, J = 5.6Hz, NC H 2 CH 2 CH 2 NH), 3.49-3.56 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.0 (NCH 2 C H 2 CH 2 NH), 23.4,23.5 (NCH 2 CH 2 CH 2 C H 2 CH 2 C, OCO C H 3) , 26.3 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.4 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 31.3 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 37.4 (NCH 2 CH 2 C H 2 NH), 47.9 (N C H 2 CH 2 CH 2 NH), 53.5 (N C H 2 CH 2 CH 2 CH 2 CH 2 C), 165.3 (N = C -N), 176.4 (C = O).
比較合成例14 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン トリフルオロメタンスルホン酸塩[20'-I]の合成
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン305mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン4mL溶液に、25℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン6mL溶液を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色シロップ状の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン トリフルオロメタンスルホン酸塩559mg(収率:92%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.66-1.87(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.06(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.65-2.81(m,2H,NCH2CH2CH2CH2CH 2 C),3.39(t,2H,J=6.0Hz,NCH 2 CH2CH2NH),3.49-3.70(m,4H,CH 2 NCH2CH2CH 2 NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.2(NCH2 CH2CH2NH),23.6(NCH2CH2CH2 CH2CH2C),26.3(NCH2CH2 CH2CH2CH2C),28.7(NCH2 CH2CH2CH2CH2C),32.7(NCH2CH2CH2CH2 CH2C),38.2(NCH2CH2 CH2NH),48.5(NCH2CH2CH2NH),54.4(NCH2CH2CH2CH2CH2C),115.6,118.8,122.0,125.1(CF3),166.0(N=C-N). Comparative Synthesis Example 14 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene trifluoromethanesulfonate [20′-I] 1,8-diazabicyclo [5.4.0] -7-undecene 305 mg To a dry dichloromethane 4 mL solution of 2 mmol (manufactured by Tokyo Chemical Industry Co., Ltd.), a solution of 300 mg of trifluoromethanesulfonic acid (2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) 6 mL in 25 mL was added dropwise over 10 minutes. The reaction was further stirred at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours, whereby 1,8-diazabicyclo [5.4. 0] -7-undecene trifluoromethanesulfonate 559 mg (yield: 92%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 1.66-1.87 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.06 ( quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.65-2.81 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.39 ( t, 2H, J = 6.0Hz, NC H 2 CH 2 CH 2 NH), 3.49-3.70 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.2 (NCH 2 C H 2 CH 2 NH), 23.6 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.3 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.7 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.7 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 38.2 (NCH 2 CH 2 C H 2 NH), 48.5 (N C H 2 CH 2 CH 2 NH), 54.4 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 115.6, 118.8, 122.0, 125.1 ( C F 3 ), 166.0 (N = C− N).
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン305mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン4mL溶液に、25℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)の乾燥ジクロロメタン6mL溶液を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色シロップ状の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン トリフルオロメタンスルホン酸塩559mg(収率:92%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.66-1.87(m,6H,NCH2CH 2 CH 2 CH 2 CH2C),2.06(quin,2H,J=6.0Hz,NCH2CH 2 CH2NH),2.65-2.81(m,2H,NCH2CH2CH2CH2CH 2 C),3.39(t,2H,J=6.0Hz,NCH 2 CH2CH2NH),3.49-3.70(m,4H,CH 2 NCH2CH2CH 2 NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):19.2(NCH2 CH2CH2NH),23.6(NCH2CH2CH2 CH2CH2C),26.3(NCH2CH2 CH2CH2CH2C),28.7(NCH2 CH2CH2CH2CH2C),32.7(NCH2CH2CH2CH2 CH2C),38.2(NCH2CH2 CH2NH),48.5(NCH2CH2CH2NH),54.4(NCH2CH2CH2CH2CH2C),115.6,118.8,122.0,125.1(CF3),166.0(N=C-N). Comparative Synthesis Example 14 Synthesis of 1,8-diazabicyclo [5.4.0] -7-undecene trifluoromethanesulfonate [20′-I] 1,8-diazabicyclo [5.4.0] -7-undecene 305 mg To a dry dichloromethane 4 mL solution of 2 mmol (manufactured by Tokyo Chemical Industry Co., Ltd.), a solution of 300 mg of trifluoromethanesulfonic acid (2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) 6 mL in 25 mL was added dropwise over 10 minutes. The reaction was further stirred at 25 ° C. for 6 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours, whereby 1,8-diazabicyclo [5.4. 0] -7-undecene trifluoromethanesulfonate 559 mg (yield: 92%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400MHz, CDCl 3, 25 ℃) δ (ppm): 1.66-1.87 (m, 6H, NCH 2 C H 2 C H 2 C H 2 CH 2 C), 2.06 ( quin, 2H, J = 6.0Hz, NCH 2 C H 2 CH 2 NH), 2.65-2.81 (m, 2H, NCH 2 CH 2 CH 2 CH 2 C H 2 C), 3.39 ( t, 2H, J = 6.0Hz, NC H 2 CH 2 CH 2 NH), 3.49-3.70 (m, 4H, C H 2 NCH 2 CH 2 C H 2 NH).
13 C-NMR (100MHz, CDCl 3, 25 ℃) δ (ppm): 19.2 (NCH 2 C H 2 CH 2 NH), 23.6 (NCH 2 CH 2 CH 2 C H 2 CH 2 C), 26.3 (NCH 2 CH 2 C H 2 CH 2 CH 2 C), 28.7 (NCH 2 C H 2 CH 2 CH 2 CH 2 C), 32.7 (NCH 2 CH 2 CH 2 CH 2 C H 2 C), 38.2 (NCH 2 CH 2 C H 2 NH), 48.5 (N C H 2 CH 2 CH 2 NH), 54.4 (N C H 2 CH 2 CH 2 CH 2 CH 2 C ), 115.6, 118.8, 122.0, 125.1 ( C F 3 ), 166.0 (N = C− N).
比較合成例15 2-(1-ブチル)-1,1,3,3-テトラメチルグアニジンの合成
合成例18と同様の方法で得た2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩1.50g(5mmol)に、25℃中、40%水酸化ナトリウム水溶液5mL及びジクロロメタン10mLを加えた後、25℃で10分間激しく攪拌して反応させた。反応終了後、反応液を有機層と水層に分液し、次いで水層をジクロロメタン10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色液体の2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン853mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.90(t,3H,J=7.2Hz,CH 3 ),1.34(sext,2H,J=7.2Hz,CH 2 CH3),1.50(quin,2H,J=7.6Hz,NCH2CH 2 ),2.64(s,6H,N(CH 3 )2),2.74(s,3H,N(CH 3 )2),3.25(t,2H,J=6.8Hz,NCH 2 CH2).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):14.0(CH3),20.5(CH2CH3),35.0(NCH2 CH2),38.8(NCH3),39.6(NCH3),49.3(NCH2CH2),159.9(N=C-N). Comparative Synthesis Example 15 Synthesis of 2- (1-butyl) -1,1,3,3-tetramethylguanidine 2- (1-butyl) -1,1,3,3 obtained by the same method as in Synthesis Example 18 -To tetramethylguanidine hydrogen iodide salt (1.50 g, 5 mmol), 25 mL of a 40% aqueous sodium hydroxide solution and 10 mL of dichloromethane were added, followed by vigorous stirring at 25 ° C for 10 minutes. After completion of the reaction, the reaction solution is separated into an organic layer and an aqueous layer, and then the aqueous layer is extracted twice with 10 mL of dichloromethane, and the organic layer when separated is combined with the extracted organic layer. Dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 2- (1-butyl) -1,1,3,3- 853 mg (yield:> 99%) of tetramethylguanidine was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.90 (t, 3H, J = 7.2 Hz, C H 3 ), 1.34 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.50 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 2.64 (s, 6H, N (C H 3) 2), 2.74 ( s, 3H, N (C H 3 ) 2 ), 3.25 (t, 2H, J = 6.8 Hz, NC H 2 CH 2 ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 14.0 ( C H 3 ), 20.5 ( C H 2 CH 3 ), 35.0 (NCH 2 C H 2 ), 38 .8 (N C H 3 ), 39.6 (N C H 3 ), 49.3 (N C H 2 CH 2 ), 159.9 (N = C— N).
合成例18と同様の方法で得た2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩1.50g(5mmol)に、25℃中、40%水酸化ナトリウム水溶液5mL及びジクロロメタン10mLを加えた後、25℃で10分間激しく攪拌して反応させた。反応終了後、反応液を有機層と水層に分液し、次いで水層をジクロロメタン10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色液体の2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン853mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.90(t,3H,J=7.2Hz,CH 3 ),1.34(sext,2H,J=7.2Hz,CH 2 CH3),1.50(quin,2H,J=7.6Hz,NCH2CH 2 ),2.64(s,6H,N(CH 3 )2),2.74(s,3H,N(CH 3 )2),3.25(t,2H,J=6.8Hz,NCH 2 CH2).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):14.0(CH3),20.5(CH2CH3),35.0(NCH2 CH2),38.8(NCH3),39.6(NCH3),49.3(NCH2CH2),159.9(N=C-N). Comparative Synthesis Example 15 Synthesis of 2- (1-butyl) -1,1,3,3-tetramethylguanidine 2- (1-butyl) -1,1,3,3 obtained by the same method as in Synthesis Example 18 -To tetramethylguanidine hydrogen iodide salt (1.50 g, 5 mmol), 25 mL of a 40% aqueous sodium hydroxide solution and 10 mL of dichloromethane were added, followed by vigorous stirring at 25 ° C for 10 minutes. After completion of the reaction, the reaction solution is separated into an organic layer and an aqueous layer, and then the aqueous layer is extracted twice with 10 mL of dichloromethane, and the organic layer when separated is combined with the extracted organic layer. Dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 2- (1-butyl) -1,1,3,3- 853 mg (yield:> 99%) of tetramethylguanidine was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.90 (t, 3H, J = 7.2 Hz, C H 3 ), 1.34 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.50 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 2.64 (s, 6H, N (C H 3) 2), 2.74 ( s, 3H, N (C H 3 ) 2 ), 3.25 (t, 2H, J = 6.8 Hz, NC H 2 CH 2 ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 14.0 ( C H 3 ), 20.5 ( C H 2 CH 3 ), 35.0 (NCH 2 C H 2 ), 38 .8 (N C H 3 ), 39.6 (N C H 3 ), 49.3 (N C H 2 CH 2 ), 159.9 (N = C— N).
比較合成例16 1-(1-ブチル)-1,2,2,3,3-ペンタメチルグアニジン ヨウ化物塩[30'-A]の合成
比較合成例15で得られた2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン853mgのうちの171mg(1mmol)の乾燥ジクロロメタン2mL溶液に、25℃中、ヨウ化メチル284mg(2mmol;関東化学株式会社製)を加えた後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣にジエチルエーテルを加えて結晶を析出させた。次いで再度溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、淡黄色結晶の1-(1-ブチル)-1,2,2,3,3-ペンタメチルグアニジン ヨウ化物塩314mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.95(t,3H,J=7.2Hz,CH 3 ),1.27-1.43(m,2H,CH 2 CH3),1.51-1.74(m,2H,NCH2CH 2 ),3.06(s,6H,NCH 3 ),3.10(brs,6H,NCH 3 ),3.15(brs,3H,NCH 3 ),3.21-3.29(m,2H,NCH 2 CH2).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.6(CH3),19.8(CH2CH3),29.5(NCH2 CH2),39.0(NCH3),40.8(NCH3),41.1(NCH3),41.5(NCH3),52.6(NCH2CH2),163.2(N=C-N). Comparative Synthesis Example 16 Synthesis of 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt [30′-A] 2- (1-butyl) obtained in Comparative Synthesis Example 15 ) After adding 284 mg (2 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide at 25 ° C. to a solution of 171 mg (1 mmol) of 853 mg of 1,1,3,3-tetramethylguanidine in 2 mL of dry dichloromethane, The reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, diethyl ether was added to the residue obtained by distilling off the solvent to precipitate crystals. Then, the residue obtained by distilling off the solvent again was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine as pale yellow crystals. 314 mg (yield: 100%) of iodide salt was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.95 (t, 3H, J = 7.2 Hz, C H 3 ), 1.27-1.43 (m, 2H, C H 2 CH 3), 1.51-1.74 ( m, 2H, NCH 2 C H 2), 3.06 (s, 6H, NC H 3), 3.10 (brs, 6H, NC H 3) , 3.15 (brs, 3H, NC H 3), 3.21-3.29 (m, 2H, NC H 2 CH 2).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 29.5 (NCH 2 C H 2 ), 39 0.0 (N C H 3 ), 40.8 (N C H 3 ), 41.1 (N C H 3 ), 41.5 (N C H 3 ), 52.6 (N C H 2 CH 2 ) , 163.2 (N = C− N).
比較合成例15で得られた2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン853mgのうちの171mg(1mmol)の乾燥ジクロロメタン2mL溶液に、25℃中、ヨウ化メチル284mg(2mmol;関東化学株式会社製)を加えた後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣にジエチルエーテルを加えて結晶を析出させた。次いで再度溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、淡黄色結晶の1-(1-ブチル)-1,2,2,3,3-ペンタメチルグアニジン ヨウ化物塩314mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.95(t,3H,J=7.2Hz,CH 3 ),1.27-1.43(m,2H,CH 2 CH3),1.51-1.74(m,2H,NCH2CH 2 ),3.06(s,6H,NCH 3 ),3.10(brs,6H,NCH 3 ),3.15(brs,3H,NCH 3 ),3.21-3.29(m,2H,NCH 2 CH2).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.6(CH3),19.8(CH2CH3),29.5(NCH2 CH2),39.0(NCH3),40.8(NCH3),41.1(NCH3),41.5(NCH3),52.6(NCH2CH2),163.2(N=C-N). Comparative Synthesis Example 16 Synthesis of 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt [30′-A] 2- (1-butyl) obtained in Comparative Synthesis Example 15 ) After adding 284 mg (2 mmol; manufactured by Kanto Chemical Co., Inc.) of methyl iodide at 25 ° C. to a solution of 171 mg (1 mmol) of 853 mg of 1,1,3,3-tetramethylguanidine in 2 mL of dry dichloromethane, The reaction was further stirred at 25 ° C. for 12 hours. After completion of the reaction, diethyl ether was added to the residue obtained by distilling off the solvent to precipitate crystals. Then, the residue obtained by distilling off the solvent again was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine as pale yellow crystals. 314 mg (yield: 100%) of iodide salt was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.95 (t, 3H, J = 7.2 Hz, C H 3 ), 1.27-1.43 (m, 2H, C H 2 CH 3), 1.51-1.74 ( m, 2H, NCH 2 C H 2), 3.06 (s, 6H, NC H 3), 3.10 (brs, 6H, NC H 3) , 3.15 (brs, 3H, NC H 3), 3.21-3.29 (m, 2H, NC H 2 CH 2).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.6 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 29.5 (NCH 2 C H 2 ), 39 0.0 (N C H 3 ), 40.8 (N C H 3 ), 41.1 (N C H 3 ), 41.5 (N C H 3 ), 52.6 (N C H 2 CH 2 ) , 163.2 (N = C− N).
比較合成例17 1-(1-ブチル)-2,3,3-トリメチルグアニジンの合成
合成例16と同様の方法で得た1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩1.43g(5mmol)に、25℃中、40%水酸化ナトリウム水溶液5mL及びジクロロメタン10mLを加えた後、25℃で10分間激しく攪拌して反応させた。反応終了後、反応液を有機層と水層に分液し、次いで水層をジクロロメタン10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色液体の1-(1-ブチル)-2,3,3-トリメチルグアニジン782mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.93(t,3H,J=7.2Hz,CH 3 ),1.36(sext,2H,J=7.2Hz,CH 2 CH3),1.50(quin,2H,J=7.6Hz,NCH2CH 2 ),2.68(s,6H,N(CH 3 )2),2.83(s,3H,NCH 3 ),3.05(t,2H,J=7.2Hz,NCH 2 CH2),7.30(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.7(CH3),20.0(CH2CH3),33.5(NCH2 CH2),39.4(NCH3),45.0(NCH2CH2),159.6(N=C-N). Comparative Synthesis Example 17 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine 1- (1-butyl) -2,3,3-trimethylguanidine obtained in the same manner as in Synthesis Example 16 Iodination To 1.43 g (5 mmol) of a hydrogen salt, 5 mL of 40% aqueous sodium hydroxide solution and 10 mL of dichloromethane were added at 25 ° C., and the mixture was vigorously stirred for 10 minutes at 25 ° C. for reaction. After completion of the reaction, the reaction solution is separated into an organic layer and an aqueous layer, and then the aqueous layer is extracted twice with 10 mL of dichloromethane, and the organic layer when separated is combined with the extracted organic layer. Dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2,3,3-trimethylguanidine as a colorless liquid. 782 mg (yield:> 99%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.93 (t, 3H, J = 7.2 Hz, C H 3 ), 1.36 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.50 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 2.68 (s, 6H, N (C H 3) 2), 2.83 ( s, 3H, NC H 3) , 3.05 (t, 2H, J = 7.2Hz, NC H 2 CH 2), 7.30 (s, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.7 ( C H 3 ), 20.0 ( C H 2 CH 3 ), 33.5 (NCH 2 C H 2 ), 39 .4 (N C H 3 ), 45.0 (N C H 2 CH 2 ), 159.6 (N = C 2 -N).
合成例16と同様の方法で得た1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩1.43g(5mmol)に、25℃中、40%水酸化ナトリウム水溶液5mL及びジクロロメタン10mLを加えた後、25℃で10分間激しく攪拌して反応させた。反応終了後、反応液を有機層と水層に分液し、次いで水層をジクロロメタン10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で12時間真空乾燥することにより、無色液体の1-(1-ブチル)-2,3,3-トリメチルグアニジン782mg(収率:>99%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.93(t,3H,J=7.2Hz,CH 3 ),1.36(sext,2H,J=7.2Hz,CH 2 CH3),1.50(quin,2H,J=7.6Hz,NCH2CH 2 ),2.68(s,6H,N(CH 3 )2),2.83(s,3H,NCH 3 ),3.05(t,2H,J=7.2Hz,NCH 2 CH2),7.30(s,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.7(CH3),20.0(CH2CH3),33.5(NCH2 CH2),39.4(NCH3),45.0(NCH2CH2),159.6(N=C-N). Comparative Synthesis Example 17 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine 1- (1-butyl) -2,3,3-trimethylguanidine obtained in the same manner as in Synthesis Example 16 Iodination To 1.43 g (5 mmol) of a hydrogen salt, 5 mL of 40% aqueous sodium hydroxide solution and 10 mL of dichloromethane were added at 25 ° C., and the mixture was vigorously stirred for 10 minutes at 25 ° C. for reaction. After completion of the reaction, the reaction solution is separated into an organic layer and an aqueous layer, and then the aqueous layer is extracted twice with 10 mL of dichloromethane, and the organic layer when separated is combined with the extracted organic layer. Dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2,3,3-trimethylguanidine as a colorless liquid. 782 mg (yield:> 99%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.93 (t, 3H, J = 7.2 Hz, C H 3 ), 1.36 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.50 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 2.68 (s, 6H, N (C H 3) 2), 2.83 ( s, 3H, NC H 3) , 3.05 (t, 2H, J = 7.2Hz, NC H 2 CH 2), 7.30 (s, 1H, N H).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.7 ( C H 3 ), 20.0 ( C H 2 CH 3 ), 33.5 (NCH 2 C H 2 ), 39 .4 (N C H 3 ), 45.0 (N C H 2 CH 2 ), 159.6 (N = C 2 -N).
比較合成例18 1-(1-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩[30'-B]の合成
比較合成例17で得られた1-(1-ブチル)-2,3,3-トリメチルグアニジン782mgのうちの315mg(2mmol)の1,4-ジオキサン4mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を10分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩389mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.92(t,3H,J=7.2Hz,CH 3 ),1.36(sext,2H,J=7.2Hz,CH 2 CH3),1.68(quin,2H,J=7.6Hz,NCH2CH 2 ),3.00(d,3H,J=4.4Hz,NHCH 3 ),3.07(s,6H,N(CH 3 )2),3.24-3.32(m,2H,NCH 2 CH2),7.87(brs,1H,NH),8.17(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.5(CH3),19.8(CH2CH3),31.0(NCH3),31.7(NCH2 CH2),39.9(N(CH3)2),44.4(NCH2CH2),159.8(N=C-N). Comparative Synthesis Example 18 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydrochloride [30′-B] 1- (1-butyl) -2,3 obtained in Comparative Synthesis Example 17 , 3-Trimethylguanidine (782 mg), 315 mg (2 mmol) of 1,4-dioxane (4 mL) at 25 ° C., 1% of 35% aqueous hydrochloric acid (ca.12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) for 10 minutes After dropwise addition, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2 as a colorless oil. 389 mg (yield: 100%) of 3,3-trimethylguanidine hydrochloride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.92 (t, 3H, J = 7.2 Hz, C H 3 ), 1.36 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.68 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 3.00 (d, 3H, J = 4.4Hz, NHC H 3), 3. 07 (s, 6H, N ( C H 3) 2), 3.24-3.32 (m, 2H, NC H 2 CH 2), 7.87 (brs, 1H, N H), 8.17 ( brs, 1H, NH )).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 31.0 (N C H 3 ), 31. 7 (NCH 2 C H 2) , 39.9 (N (C H 3) 2), 44.4 (N C H 2 CH 2), 159.8 (N = C -N).
比較合成例17で得られた1-(1-ブチル)-2,3,3-トリメチルグアニジン782mgのうちの315mg(2mmol)の1,4-ジオキサン4mL溶液に、25℃中、35%塩化水素酸水溶液1mL(ca.12mmol;和光純薬工業株式会社製)を10分かけて滴下した後、更に25℃で12時間攪拌して反応させた。反応終了後、溶媒を留去することで得られた残渣をジエチルエーテルで洗浄し、当該残渣を40℃で12時間真空乾燥することにより、無色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩389mg(収率:100%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.92(t,3H,J=7.2Hz,CH 3 ),1.36(sext,2H,J=7.2Hz,CH 2 CH3),1.68(quin,2H,J=7.6Hz,NCH2CH 2 ),3.00(d,3H,J=4.4Hz,NHCH 3 ),3.07(s,6H,N(CH 3 )2),3.24-3.32(m,2H,NCH 2 CH2),7.87(brs,1H,NH),8.17(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.5(CH3),19.8(CH2CH3),31.0(NCH3),31.7(NCH2 CH2),39.9(N(CH3)2),44.4(NCH2CH2),159.8(N=C-N). Comparative Synthesis Example 18 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine hydrochloride [30′-B] 1- (1-butyl) -2,3 obtained in Comparative Synthesis Example 17 , 3-Trimethylguanidine (782 mg), 315 mg (2 mmol) of 1,4-dioxane (4 mL) at 25 ° C., 1% of 35% aqueous hydrochloric acid (ca.12 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) for 10 minutes After dropwise addition, the mixture was further reacted by stirring at 25 ° C. for 12 hours. After completion of the reaction, the residue obtained by distilling off the solvent was washed with diethyl ether, and the residue was vacuum-dried at 40 ° C. for 12 hours to give 1- (1-butyl) -2 as a colorless oil. 389 mg (yield: 100%) of 3,3-trimethylguanidine hydrochloride was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.92 (t, 3H, J = 7.2 Hz, C H 3 ), 1.36 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.68 (quin, 2H, J = 7.6Hz, NCH 2 C H 2), 3.00 (d, 3H, J = 4.4Hz, NHC H 3), 3. 07 (s, 6H, N ( C H 3) 2), 3.24-3.32 (m, 2H, NC H 2 CH 2), 7.87 (brs, 1H, N H), 8.17 ( brs, 1H, NH )).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.8 ( C H 2 CH 3 ), 31.0 (N C H 3 ), 31. 7 (NCH 2 C H 2) , 39.9 (N (C H 3) 2), 44.4 (N C H 2 CH 2), 159.8 (N = C -N).
比較合成例19 1-(1-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩[30'-C]の合成
比較合成例17で得られた1-(1-ブチル)-2,3,3-トリメチルグアニジン782mgのうちの315mg(2mmol)の乾燥ジエチルエーテル4mL溶液に、0℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、反応液をイオン液体層と有機層(ジエチルエーテル層)に分液し、次いでイオン液体層をジエチルエーテルで洗浄、洗浄後のイオン液体層を40℃で12時間真空乾燥することにより、無色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩598mg(収率:97%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.92(t,3H,J=7.2Hz,CH 3 ),1.35(sext,2H,J=7.2Hz,CH 2 CH3),1.61(quin,2H,J=7.2Hz,NCH2CH 2 ),2.95(d,3H,J=4.4Hz,NHCH 3 ),3.00(s,6H,N(CH 3 )2),3.22(q,2H,J=6.8Hz,NCH 2 CH2),6.48(brs,1H,NH),6.74(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.5(CH3),19.7(CH2CH3),30.8(NCH3),31.5(NCH2 CH2),39.2(N(CH3)2),44.4(NCH2CH2),118.8(CF3),121.9(CF3),160.0(N=C-N). Comparative Synthesis Example 19 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate [30′-C] 1- (1-butyl) -2 obtained in Comparative Synthesis Example 17 , 3,3-Trimethylguanidine (782 mg) 315 mg (2 mmol) in dry diethyl ether (4 mL) was added dropwise at 0 ° C. with trifluoromethanesulfonic acid (300 mg, 2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) over 10 minutes. The mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the reaction solution is separated into an ionic liquid layer and an organic layer (diethyl ether layer), then the ionic liquid layer is washed with diethyl ether, and the washed ionic liquid layer is vacuum-dried at 40 ° C. for 12 hours. As a result, 598 mg (yield: 97%) of 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate as a colorless oil was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.92 (t, 3H, J = 7.2 Hz, C H 3 ), 1.35 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.61 (quin, 2H, J = 7.2Hz, NCH 2 C H 2), 2.95 (d, 3H, J = 4.4Hz, NHC H 3), 3. 00 (s, 6H, N ( C H 3) 2), 3.22 (q, 2H, J = 6.8Hz, NC H 2 CH 2), 6.48 (brs, 1H, N H), 6. 74 (brs, 1H, NH ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.7 ( C H 2 CH 3 ), 30.8 (N C H 3 ), 31. 5 (NCH 2 C H 2) , 39.2 (N (C H 3) 2), 44.4 (N C H 2 CH 2), 118.8 (C F 3), 121.9 (C F 3 ), 160.0 (N = C− N).
比較合成例17で得られた1-(1-ブチル)-2,3,3-トリメチルグアニジン782mgのうちの315mg(2mmol)の乾燥ジエチルエーテル4mL溶液に、0℃中、トリフルオロメタンスルホン酸300mg(2mmol;東京化成工業株式会社製)を10分かけて滴下した後、更に25℃で6時間攪拌して反応させた。反応終了後、反応液をイオン液体層と有機層(ジエチルエーテル層)に分液し、次いでイオン液体層をジエチルエーテルで洗浄、洗浄後のイオン液体層を40℃で12時間真空乾燥することにより、無色油状物の1-(1-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩598mg(収率:97%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):0.92(t,3H,J=7.2Hz,CH 3 ),1.35(sext,2H,J=7.2Hz,CH 2 CH3),1.61(quin,2H,J=7.2Hz,NCH2CH 2 ),2.95(d,3H,J=4.4Hz,NHCH 3 ),3.00(s,6H,N(CH 3 )2),3.22(q,2H,J=6.8Hz,NCH 2 CH2),6.48(brs,1H,NH),6.74(brs,1H,NH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):13.5(CH3),19.7(CH2CH3),30.8(NCH3),31.5(NCH2 CH2),39.2(N(CH3)2),44.4(NCH2CH2),118.8(CF3),121.9(CF3),160.0(N=C-N). Comparative Synthesis Example 19 Synthesis of 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate [30′-C] 1- (1-butyl) -2 obtained in Comparative Synthesis Example 17 , 3,3-Trimethylguanidine (782 mg) 315 mg (2 mmol) in dry diethyl ether (4 mL) was added dropwise at 0 ° C. with trifluoromethanesulfonic acid (300 mg, 2 mmol; manufactured by Tokyo Chemical Industry Co., Ltd.) over 10 minutes. The mixture was further reacted by stirring at 25 ° C. for 6 hours. After completion of the reaction, the reaction solution is separated into an ionic liquid layer and an organic layer (diethyl ether layer), then the ionic liquid layer is washed with diethyl ether, and the washed ionic liquid layer is vacuum-dried at 40 ° C. for 12 hours. As a result, 598 mg (yield: 97%) of 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate as a colorless oil was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 0.92 (t, 3H, J = 7.2 Hz, C H 3 ), 1.35 (sext, 2H, J = 7.2 Hz) , C H 2 CH 3), 1.61 (quin, 2H, J = 7.2Hz, NCH 2 C H 2), 2.95 (d, 3H, J = 4.4Hz, NHC H 3), 3. 00 (s, 6H, N ( C H 3) 2), 3.22 (q, 2H, J = 6.8Hz, NC H 2 CH 2), 6.48 (brs, 1H, N H), 6. 74 (brs, 1H, NH ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 13.5 ( C H 3 ), 19.7 ( C H 2 CH 3 ), 30.8 (N C H 3 ), 31. 5 (NCH 2 C H 2) , 39.2 (N (C H 3) 2), 44.4 (N C H 2 CH 2), 118.8 (C F 3), 121.9 (C F 3 ), 160.0 (N = C− N).
実施例1~6、並びに比較例1~6 種々のモノアミン触媒を用いた環状カーボネートの合成
種々のモノアミン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表1に示す。なお、表中、モノアミン触媒における[1'-A]はイソプロピルアミン ヨウ化水素塩を表し、[1'-B]はt-ブチルアミン ヨウ化水素塩を表し、[1'-C]はシクロヘキシルアミン ヨウ化水素塩を表し、[1'-D]はジシクロヘキシルアミン ヨウ化水素塩を表し、[10'-A]はアニリン ヨウ化水素塩を表し、[10'-B]はジシクロヘキシルアミン 塩化水素塩を表し、[10'-C]はジシクロヘキシルアミン 臭化水素塩を表し、[10'-D]はヨウ化 N,N-ジメチルジシクロヘキシルアンモニウムを表し、TBAIはヨウ化 テトラn-ブチルアンモニウム表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、DMAcはN,N-ジメチルアセトアミドを表し、DMFはN,N-ジメチルホルムアミドを表す。なお、上述の実施例において、n-はnormal-体を表し、t-はtert-体を表す。 Examples 1 to 6 and Comparative Examples 1 to 6 Synthesis of cyclic carbonates using various monoamine catalysts Phenyl chloride was added to a solution (or suspension) of 0.05 mmol of various monoamine catalysts in an organic solvent at 25 ° C. After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of glycidyl ether, the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for 24 hours at ° C. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 1. In the table, [1′-A] in the monoamine catalyst represents isopropylamine hydrogen iodide, [1′-B] represents t-butylamine hydrogen iodide, and [1′-C] represents cyclohexylamine. Represents hydrogen iodide, [1′-D] represents dicyclohexylamine hydrogen iodide, [10′-A] represents aniline hydrogen iodide, and [10′-B] represents dicyclohexylamine hydrochloride. [10′-C] represents dicyclohexylamine hydrobromide, [10′-D] represents N, N-dimethyldicyclohexylammonium iodide, and TBAI represents tetra n-butylammonium iodide. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), DMAc represents N, N-dimethylacetamide, and DMF represents N, N-dimethylformamide. In the above-mentioned examples, n- represents a normal-form and t- represents a tert-form.
種々のモノアミン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表1に示す。なお、表中、モノアミン触媒における[1'-A]はイソプロピルアミン ヨウ化水素塩を表し、[1'-B]はt-ブチルアミン ヨウ化水素塩を表し、[1'-C]はシクロヘキシルアミン ヨウ化水素塩を表し、[1'-D]はジシクロヘキシルアミン ヨウ化水素塩を表し、[10'-A]はアニリン ヨウ化水素塩を表し、[10'-B]はジシクロヘキシルアミン 塩化水素塩を表し、[10'-C]はジシクロヘキシルアミン 臭化水素塩を表し、[10'-D]はヨウ化 N,N-ジメチルジシクロヘキシルアンモニウムを表し、TBAIはヨウ化 テトラn-ブチルアンモニウム表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、DMAcはN,N-ジメチルアセトアミドを表し、DMFはN,N-ジメチルホルムアミドを表す。なお、上述の実施例において、n-はnormal-体を表し、t-はtert-体を表す。 Examples 1 to 6 and Comparative Examples 1 to 6 Synthesis of cyclic carbonates using various monoamine catalysts Phenyl chloride was added to a solution (or suspension) of 0.05 mmol of various monoamine catalysts in an organic solvent at 25 ° C. After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of glycidyl ether, the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for 24 hours at ° C. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 1. In the table, [1′-A] in the monoamine catalyst represents isopropylamine hydrogen iodide, [1′-B] represents t-butylamine hydrogen iodide, and [1′-C] represents cyclohexylamine. Represents hydrogen iodide, [1′-D] represents dicyclohexylamine hydrogen iodide, [10′-A] represents aniline hydrogen iodide, and [10′-B] represents dicyclohexylamine hydrochloride. [10′-C] represents dicyclohexylamine hydrobromide, [10′-D] represents N, N-dimethyldicyclohexylammonium iodide, and TBAI represents tetra n-butylammonium iodide. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), DMAc represents N, N-dimethylacetamide, and DMF represents N, N-dimethylformamide. In the above-mentioned examples, n- represents a normal-form and t- represents a tert-form.
表1の結果から明らかなように、種々のモノアミン塩(モノアミン触媒)を用いて反応を行ったところ、モノアミン触媒[1'-A]~[1'-D]のなかでは、ジシクロヘキシルアミン ヨウ化水素塩[1'-D]を用いた場合に、副生成物がほとんど確認されずに、最も高い収率で(フェノキシメチル)エチレンカーボネートを得た(実施例4)。これは、アルキル基の嵩高さが小さくなるにつれて収率が減少していることから(実施例1~4)、嵩高いジシクロヘキシル基が副反応を抑制し、かつヨウ素イオンの脱離能も高めているためと予想される。一方で、アニリン ヨウ化水素塩[10'-A]を用いた場合には、全く反応が進行しなかった(比較例1)。アニリンは嵩高いアミンの1つであるのにも関わらず、反応が全く進行しなかったのは、アミンの塩基性度(アニリンのpKa=4.6)が反応に影響しているものと予想される。すなわち、アミンとしての塩基性をほとんど持たないアミンのヨウ化水素塩では、反応が進行しないものと考えられる。また、ジシクロヘキシルアミン 塩化水素塩[10'-B]及びジシクロヘキシルアミン 臭化水素塩[10'-C]を用いた場合には、ほとんど反応が進行しなかった(比較例2及び3)。嵩高いジシクロヘキシルアミンを用いているのにも関わらす、反応がほとんど進行しなかったのは、モノアミン触媒のカウンターアニオンがヨウ素アニオンでなかったことが影響しているものと予想される。このように、常温、常圧条件下でのカーボネート反応においては、多種多様なアニオン種のなかでも、ヨウ素アニオンが大きな効果を有し、モノアミン触媒のカウンターアニオンは、ヨウ素アニオンであることが重要であることが判った。更に、プロトン源を全く持たないヨウ化 N,N-ジメチルジシクロヘキシルアンモニウム[10'-D]及びヨウ化 テトラn-ブチルアンモニウムを用いた場合には、ほとんど反応が進行しなかった(比較例4及び5)。このように、常温、常圧条件下で収率よく環状カーボネートを得るには、モノアミン触媒は、少なくとも1つ以上のプロトン源が必要であることが判った。更にまた、置換基を持たないヨウ化アンモニウムでは、ほとんど反応が進行しなかった(比較例6)。このように、適度な塩基性度と嵩高いアミンのヨウ化水素塩が、常温、常圧等の穏和な条件下で環状カーボネートを製造するための効果的な触媒であることが判った。
As is apparent from the results in Table 1, when the reaction was carried out using various monoamine salts (monoamine catalysts), among the monoamine catalysts [1′-A] to [1′-D], dicyclohexylamine bromoiodide was used. When the hydrogen salt [1′-D] was used, (phenoxymethyl) ethylene carbonate was obtained with the highest yield with almost no by-products (Example 4). This is because the yield decreases as the bulkiness of the alkyl group decreases (Examples 1 to 4), so that the bulky dicyclohexyl group suppresses side reactions and increases the ability to desorb iodine ions. This is expected. On the other hand, when aniline boroiodide [10′-A] was used, the reaction did not proceed at all (Comparative Example 1). Although aniline is one of the bulky amines, the reaction did not proceed at all because the basicity of the amine (aniline pKa = 4.6) is expected to affect the reaction. Is done. That is, it is considered that the reaction does not proceed with an amine hydroiodide having almost no basicity as an amine. In addition, when dicyclohexylamine hydrobromide [10′-B] and dicyclohexylamine hydrobromide [10′-C] were used, the reaction hardly proceeded (Comparative Examples 2 and 3). Although the bulky dicyclohexylamine was used, the fact that the reaction hardly proceeded is presumably due to the fact that the counter anion of the monoamine catalyst was not an iodine anion. Thus, in the carbonate reaction under normal temperature and normal pressure conditions, iodine anion has a great effect among various anion species, and it is important that the counter anion of the monoamine catalyst is iodine anion. It turns out that there is. Furthermore, when using ほ と ん ど N, N-dimethyldicyclohexylammonium iodide [10′-D] and ntetra-n-butylammonium iodide having no proton source, the reaction hardly proceeded (Comparative Example 4 and 5). Thus, it was found that in order to obtain a cyclic carbonate with good yield under normal temperature and atmospheric pressure conditions, the monoamine catalyst needs at least one proton source. Furthermore, the reaction hardly proceeded with ammonium iodide having no substituent (Comparative Example 6). Thus, it was found that moderate basicity and bulky amine hydrogen iodide salts are effective catalysts for producing cyclic carbonates under mild conditions such as normal temperature and normal pressure.
実施例7~10、並びに比較例7~11 種々のアミジン触媒又は芳香族複素環アミン触媒を用いた環状カーボネートの合成
種々のアミジン触媒又は芳香族複素環アミン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表2に示す。なお、表中、アミジン触媒又は芳香族複素環アミン触媒における[2'-A]は1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-B]は1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-C]は1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩を表し、[2'-D]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩を表し、[10'-E]はピリジン ヨウ化水素塩を表し、[20'-A]は1-メチルイミダゾール ヨウ化水素塩を表し、[20'-B]はN,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、THFはテトラヒドロフランを表す。 Examples 7 to 10 and Comparative Examples 7 to 11 Synthesis of cyclic carbonates using various amidine catalysts or aromatic heterocyclic amine catalysts Various amidine catalysts or aromatic heterocyclic amine catalysts 0.05 mmol of organic solvent 0.2 mL After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether at 25 ° C. to the solution (or suspension), the reaction system is sealed with a balloon filled with carbon dioxide gas, and carbon dioxide gas The reaction was carried out under an atmosphere (0.1 MPa) by stirring at 25 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 2. In the table, [2′-A] in the amidine catalyst or aromatic heterocyclic amine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide, and [2′-B] represents 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine represents a hydrogen iodide salt, [2′-C] represents 1,5-diazabicyclo [4.3.0] -5-nonene hydrogen iodide salt [2′-D] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide, [10′-E] represents pyridine hydrogen iodide, [20 '-A] represents 1-methylimidazole hydrogen iodide salt, and [20'-B] represents N, N-dimethyl-N'-octylacetamidine hydrogen iodide salt. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and THF represents tetrahydrofuran.
種々のアミジン触媒又は芳香族複素環アミン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表2に示す。なお、表中、アミジン触媒又は芳香族複素環アミン触媒における[2'-A]は1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-B]は1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-C]は1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩を表し、[2'-D]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩を表し、[10'-E]はピリジン ヨウ化水素塩を表し、[20'-A]は1-メチルイミダゾール ヨウ化水素塩を表し、[20'-B]はN,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、THFはテトラヒドロフランを表す。 Examples 7 to 10 and Comparative Examples 7 to 11 Synthesis of cyclic carbonates using various amidine catalysts or aromatic heterocyclic amine catalysts Various amidine catalysts or aromatic heterocyclic amine catalysts 0.05 mmol of organic solvent 0.2 mL After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether at 25 ° C. to the solution (or suspension), the reaction system is sealed with a balloon filled with carbon dioxide gas, and carbon dioxide gas The reaction was carried out under an atmosphere (0.1 MPa) by stirring at 25 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 2. In the table, [2′-A] in the amidine catalyst or aromatic heterocyclic amine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide, and [2′-B] represents 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine represents a hydrogen iodide salt, [2′-C] represents 1,5-diazabicyclo [4.3.0] -5-nonene hydrogen iodide salt [2′-D] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide, [10′-E] represents pyridine hydrogen iodide, [20 '-A] represents 1-methylimidazole hydrogen iodide salt, and [20'-B] represents N, N-dimethyl-N'-octylacetamidine hydrogen iodide salt. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and THF represents tetrahydrofuran.
表2の結果から明らかなように、種々のアミジン又は芳香族複素環アミンのヨウ化水素塩(アミジン触媒又は芳香族複素環アミン触媒)を用いて反応を行ったところ、極限構造を有する環状のアミジン触媒を用いた場合に、極限構造を有さないモノアミン触媒を用いた場合(実施例1~6)よりも、高収率で(フェノキシメチル)エチレンカーボネートが得られた(実施例7~10)。特に1,5-ジアザビシクロ[4.3.0]-5-ノネン ヨウ化水素塩[2'-C]又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩[2'-D]を用いた場合には、常温、常圧条件下で定量的に反応した(実施例9及び10)。一方、芳香族複素環アミン塩であるピリジン ヨウ化水素塩や、芳香族複素環アミジン塩である1-メチルイミダゾール ヨウ化水素塩を用いた場合には、ほとんど反応が進行しなかった(比較例7及び8)。これは、比較例1でも述べたように、アミンの塩基性度が反応に影響し、塩基性に乏しいアミン(ピリジンのpKa=5.2、1-メチルイミダゾールのpKa=7.4)は、ほとんど触媒能がないことが窺える。また、鎖状のアミジンであるN,N-ジメチル-N'-オクチルアセトアミジン ヨウ化水素塩を用いた場合には、常温、常圧条件下では高収率で反応を進行させることができなかった(比較例9)。このように、常温、常圧条件下で収率よく環状カーボネートを得るには、アミジン触媒は、環状構造であることが重要であることが判った。更に、ヨウ化水素のみを用いた場合又はヨウ素のみを用いた場合には、全く反応が進行しないことを確認した(比較例10及び11)。このように、常温、常圧条件下でのカーボネート反応においては、pKaが8以上のアミンを用いることが必要であり、特にpKaが10以上のアミンを用いることが望ましい。その条件を満たすもののなかでも、環状のアミジン構造を有するヨウ化水素塩が非常に有効であることを明らかにした。
As is apparent from the results in Table 2, when the reaction was carried out using various amidines or hydrogen iodide salts of aromatic heterocyclic amines (amidine catalyst or aromatic heterocyclic amine catalyst), When the amidine catalyst was used, (phenoxymethyl) ethylene carbonate was obtained in a higher yield (Examples 7 to 10) than when the monoamine catalyst having no limit structure was used (Examples 1 to 6). ). In particular, 1,5-diazabicyclo [4.3.0] -5-nonene hydroiodide [2′-C] or 1,8-diazabicyclo [5.4.0] -7-undecene iodide [2 When '-D] was used, it reacted quantitatively under normal temperature and normal pressure conditions (Examples 9 and 10). On the other hand, when the pyridine hydroiodide salt which is an aromatic heterocyclic amine salt or the 1-methylimidazole hydroiodide salt which is an aromatic heterocyclic amidine salt was used, the reaction hardly proceeded (Comparative Example). 7 and 8). This is because, as described in Comparative Example 1, the basicity of the amine affects the reaction, and the amine with poor basicity (pKa = 5.2 for pyridine, pKa = 7.4 for 1-methylimidazole) It seems that there is almost no catalytic ability. In addition, when N, N-dimethyl-N'-octylacetamidine monoiodide salt, which is a chain amidine, is used, the reaction cannot proceed in a high yield under normal temperature and pressure conditions. (Comparative Example 9). Thus, it has been found that it is important that the amidine catalyst has a cyclic structure in order to obtain a cyclic carbonate with good yield under normal temperature and normal pressure conditions. Furthermore, when only hydrogen iodide was used or when only iodine was used, it was confirmed that the reaction did not proceed at all (Comparative Examples 10 and 11). Thus, in the carbonate reaction under normal temperature and normal pressure conditions, it is necessary to use an amine having a pKa of 8 or more, and it is particularly desirable to use an amine having a pKa of 10 or more. Among those satisfying the conditions, it has been clarified that a hydrogen iodide salt having a cyclic amidine structure is very effective.
実施例11~14、並びに比較例12~21 カーボネート反応における環状アミジン触媒のアニオン効果
種々の環状アミジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表3に示す。なお、表中、環状アミジン触媒における[2'-A]は1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-D]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩を表し、[20'-C]は1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩を表し、[20'-D]は1-メチル-1,4,5,6-テトラヒドロピリミジン 臭化水素塩を表し、[20'-E]は1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩を表し、[20'-F]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 塩化水素塩を表し、[20'-G]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 臭化水素塩を表し、[20'-H]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 酢酸塩を表し、[20'-I]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン トリフルオロメタンスルホン酸塩を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Examples 11 to 14 and Comparative Examples 12 to 21 Anion effect of cyclic amidine catalyst in carbonate reaction Phenylglycidyl in 25 mL of an organic solvent 0.2 mL (or suspension) of various cyclic amidine catalysts at 25 ° C. After adding 150 mg of ether (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). And reacted for 24 hours. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 3. In the table, [2′-A] in the cyclic amidine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide, and [2′-D] represents 1,8-diazabicyclo [ 5.4.0] -7-undecene hydrogen iodide salt, [20′-C] represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen chloride salt, and [20′-D] Represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrobromide, and [20′-E] represents 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate. , [20'-F] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrochloride, and [20'-G] represents 1,8-diazabicyclo [5.4.0]- 7-undecene hydrogenbromide salt, [20′-H] is 1,8-diazabicyclo [5.4.0] -7-unde It represents emissions acetate, representing a [20'-I] is 1,8-diazabicyclo [5.4.0] -7-undecene trifluoromethanesulphonate. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
種々の環状アミジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表3に示す。なお、表中、環状アミジン触媒における[2'-A]は1-メチル-1,4,5,6-テトラヒドロピリミジン ヨウ化水素塩を表し、[2'-D]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩を表し、[20'-C]は1-メチル-1,4,5,6-テトラヒドロピリミジン 塩化水素塩を表し、[20'-D]は1-メチル-1,4,5,6-テトラヒドロピリミジン 臭化水素塩を表し、[20'-E]は1-メチル-1,4,5,6-テトラヒドロピリミジン トリフルオロメタンスルホン酸塩を表し、[20'-F]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 塩化水素塩を表し、[20'-G]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 臭化水素塩を表し、[20'-H]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 酢酸塩を表し、[20'-I]は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン トリフルオロメタンスルホン酸塩を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Examples 11 to 14 and Comparative Examples 12 to 21 Anion effect of cyclic amidine catalyst in carbonate reaction Phenylglycidyl in 25 mL of an organic solvent 0.2 mL (or suspension) of various cyclic amidine catalysts at 25 ° C. After adding 150 mg of ether (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). And reacted for 24 hours. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 3. In the table, [2′-A] in the cyclic amidine catalyst represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen iodide, and [2′-D] represents 1,8-diazabicyclo [ 5.4.0] -7-undecene hydrogen iodide salt, [20′-C] represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrogen chloride salt, and [20′-D] Represents 1-methyl-1,4,5,6-tetrahydropyrimidine hydrobromide, and [20′-E] represents 1-methyl-1,4,5,6-tetrahydropyrimidine trifluoromethanesulfonate. , [20'-F] represents 1,8-diazabicyclo [5.4.0] -7-undecene hydrochloride, and [20'-G] represents 1,8-diazabicyclo [5.4.0]- 7-undecene hydrogenbromide salt, [20′-H] is 1,8-diazabicyclo [5.4.0] -7-unde It represents emissions acetate, representing a [20'-I] is 1,8-diazabicyclo [5.4.0] -7-undecene trifluoromethanesulphonate. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
表2において、代表的な環状アミジンである1-メチル-1,4,5,6-テトラヒドロピリミジンのヨウ化水素塩[2'-A]と、表2において最も収率の高い1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩[2'-D]について、アニオン部位の異なる誘導体を合成し、アニオン部位のカーボネート反応への影響を検討した。表3の結果から明らかなように、アニオン部位をヨウ素アニオンから塩素アニオン、臭素アニオン、トリフルオロメタンスルホネートアニオン(トリフラートアニオン)又はアセテートアニオンに代えた環状アミジン触媒では反応性が著しく低下し、溶媒として、2-メチルテトラヒドロフラン、1-メチル-2-ピロリジノン(N-メチルピロリドン)のいずれを用いた場合でも、目的とする環状カーボネートはほとんど得られなかった(比較例12~21)。このように、常温、常圧条件下でのカーボネート反応においては、多種多様なアニオン種のなかでも、ヨウ素アニオンが大きな効果を有することを明らかにした。
In Table 2, the typical cyclic amidine 1-methyl-1,4,5,6-tetrahydropyrimidine hydroiodide [2′-A] and the highest yield of 1,8- For diazabicyclo [5.4.0] -7-undecene boroiodide [2'-D], derivatives having different anion sites were synthesized, and the influence of the anion sites on the carbonate reaction was investigated. As is clear from the results in Table 3, the reactivity of the cyclic amidine catalyst in which the anion site is changed from the iodine anion to the chlorine anion, bromine anion, trifluoromethanesulfonate anion (triflate anion) or acetate anion is significantly reduced. When any of 2-methyltetrahydrofuran and 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) was used, the target cyclic carbonate was hardly obtained (Comparative Examples 12 to 21). Thus, it has been clarified that iodine anion has a great effect in the carbonate reaction under normal temperature and normal pressure conditions among a wide variety of anion species.
実施例15~27 カーボネート反応における環状アミジン触媒の溶媒効果
表4に示す量の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表4に示す。なお、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、THFはテトラヒドロフランを表し、CPMEはシクロペンチルメチルエーテルを表す。 Examples 15 to 27 Solvent Effect of Cyclic Amidine Catalyst in Carbonate Reaction A 0.2 mL organic solvent solution (or suspension) of 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide in the amount shown in Table 4 After adding 150 mg of phenylglycidyl ether (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) to the suspension at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere (0 1 MPa) and the reaction was carried out by stirring at 25 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 4. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), THF represents tetrahydrofuran, and CPME represents cyclopentylmethyl ether.
表4に示す量の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表4に示す。なお、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、THFはテトラヒドロフランを表し、CPMEはシクロペンチルメチルエーテルを表す。 Examples 15 to 27 Solvent Effect of Cyclic Amidine Catalyst in Carbonate Reaction A 0.2 mL organic solvent solution (or suspension) of 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide in the amount shown in Table 4 After adding 150 mg of phenylglycidyl ether (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) to the suspension at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere (0 1 MPa) and the reaction was carried out by stirring at 25 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 4. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), THF represents tetrahydrofuran, and CPME represents cyclopentylmethyl ether.
表4の結果から明らかなように、例えばトルエン等の芳香族炭化水素系溶媒、例えばシクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系溶媒、例えば2-プロパノン(アセトン)等のケトン系溶媒、例えば酢酸エチル等のエステル系溶媒、例えばN,N-ジメチルホルムアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)等のアミド系溶媒、例えばイソプロパノール、t-ブタノール、2-メトキシエタノール等のアルコール系溶媒等の種々の有機溶媒中で反応を行っても、収率よく反応が進行することが判った。特に芳香族炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒では、定量的に反応が進行することが判った。
As is apparent from the results in Table 4, for example, aromatic hydrocarbon solvents such as toluene, ether solvents such as cyclopentylmethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran, and ketone solvents such as 2-propanone (acetone). Ester solvents such as ethyl acetate, amide solvents such as N, N-dimethylformamide, 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), such as isopropanol, t-butanol, 2-methoxyethanol, etc. It was found that even when the reaction was carried out in various organic solvents such as alcohol solvents, the reaction proceeded with good yield. In particular, it was found that the reaction proceeds quantitatively with an aromatic hydrocarbon solvent, an ether solvent, a ketone solvent, and an ester solvent.
実施例28~36 アミジン触媒[2'-D]を用いた種々のエポキシド(オキシラン)のカーボネート反応
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩14.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表5に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表5に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[4-D]はスチレンオキシドを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表す。また、表中、有機溶媒におけるTHFはテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 28 to 36 Carbonate reaction of various epoxides (oxiranes) using amidine catalyst [2′-D] 1,8-diazabicyclo [5.4.0] -7-undecene 14.0 mg (0 .05 mmol) in an organic solvent 0.2 mL solution (or suspension) at 25 ° C., various epoxides (oxiranes) shown in Table 5 were added, and then the reaction system was charged with a balloon filled with carbon dioxide gas. The mixture was sealed to a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was carried out by stirring at 25 ° C. for 24 hours in the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 5. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [4- D] represents styrene oxide, and [5-A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}. In the table, THF in the organic solvent represents tetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran. In the above-described embodiments, n- represents a normal-body.
1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩14.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表5に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表5に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[4-D]はスチレンオキシドを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表す。また、表中、有機溶媒におけるTHFはテトラヒドロフランを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 28 to 36 Carbonate reaction of various epoxides (oxiranes) using amidine catalyst [2′-D] 1,8-diazabicyclo [5.4.0] -7-undecene 14.0 mg (0 .05 mmol) in an organic solvent 0.2 mL solution (or suspension) at 25 ° C., various epoxides (oxiranes) shown in Table 5 were added, and then the reaction system was charged with a balloon filled with carbon dioxide gas. The mixture was sealed to a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was carried out by stirring at 25 ° C. for 24 hours in the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 5. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [4- D] represents styrene oxide, and [5-A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}. In the table, THF in the organic solvent represents tetrahydrofuran, NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran. In the above-described embodiments, n- represents a normal-body.
表2において最も収率の高い1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩[2'-D]を触媒として、種々のエポキシドに対する反応性について検討した。表5の結果から明らかなように、モノエポキシド体、ビスエポキシド体のいずれでも、対応するカーボネートが収率よく得られた。また、実施例30では、反応をテトラヒドロフラン中で行ったが、エポキシド[5-A]から得られる環状カーボネート[7-A](2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート})が、反応途中に析出して攪拌できなくなった。このため、実施例31では、高極性溶媒の1-メチル-2-ピロリジノン(N-メチルピロリドン)を用いて検討したところ、カーボネート[7-A]は析出しなくなったが、反応性が低下した。この問題は、1-メチル-2-ピロリジノン(N-メチルピロリドン)を低極性の溶媒と混合させることで解決し、カーボネート[7-A]を反応途中で析出させることなく、収率を向上させることに成功した(実施例32及び33)。また、バルク反応では、テトラヒドロフラン中で反応を行うよりも反応性が向上し(実施例34)、特にエポキシド[4-C]を用いた反応では、副生成物が生成することなく、定量的に反応が進行した(実施例35)。これらの結果から、有機溶媒を代えたり、混合溶媒系やバルク系等の条件を使い分けることで、様々なエポキシド(オキシラン)から環状カーボネートを製造できることが判った。
In Table 2, reactivity to various epoxides was examined using 1,8-diazabicyclo [5.4.0] -7-undecene borohydride [2′-D] having the highest yield in Table 2. As is apparent from the results in Table 5, the corresponding carbonate was obtained in good yield in either the monoepoxide or bisepoxide. In Example 30, the reaction was carried out in tetrahydrofuran, but cyclic carbonate [7-A] (2,2-propylenebis [(p-phenoxymethyl) ethylene carbonate] obtained from epoxide [5-A] { Bisphenol A diglycidyl ether biscarbonate}) precipitated during the reaction and could not be stirred. For this reason, in Example 31, when examined using 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) as a highly polar solvent, carbonate [7-A] was not precipitated, but the reactivity decreased. . This problem is solved by mixing 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) with a low-polarity solvent, and the yield is improved without precipitating carbonate [7-A] during the reaction. (Examples 32 and 33). The bulk reaction is more reactive than the reaction in tetrahydrofuran (Example 34). In particular, the reaction using epoxide [4-C] is quantitatively performed without generating a by-product. The reaction proceeded (Example 35). From these results, it was found that cyclic carbonates can be produced from various epoxides (oxiranes) by changing the organic solvent or using different conditions such as a mixed solvent system and a bulk system.
実施例37 アミジン触媒[2'-D]を用いた常温、常圧条件下での(フェノキシメチル)エチレンカーボネートの単離合成
フェニルグリシジルエーテル3.00g(20mmol;和光純薬工業株式会社製)のテトラヒドロフラン3.6mL/1-メチル-2-ピロリジノン(N-メチルピロリドン)0.4mL混合溶液に、25℃中、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩280mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で48時間攪拌して反応させた。反応終了後、反応液にN,N-ジメチルホルムアミド3mLを加えた後、該反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の(フェノキシメチル)エチレンカーボネート3.76g(収率:96.9%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のフェニルグリシジルエーテルの転化率は86%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.20(dd,1H,J=11.2,4.8Hz,PhOCH 2 ),4.28(dd,1H,J=11.2,2.4Hz,PhOCH 2 ),4.39(dd,1H,J=8.4,6.4Hz,OCHCH 2 O),4.64(dd,1H,J=8.4,8.4Hz,OCHCH 2 O),5.12-5.19(m,1H,OCHCH2O),6.94-7.03(m,3H,ArH),7.28-7.35(m,2H,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.6(Ar),121.2(Ar),129.6(Ar),154.9(Ar),157.9(C=O). Example 37 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using amidine catalyst [2′-D] Phenylglycidyl ether 3.00 g (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) To a mixed solution of tetrahydrofuran 3.6 mL / 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) 0.4 mL at 25 ° C., 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide 280 mg After adding (1 mmol), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 48 hours in the same atmosphere. After completion of the reaction, 3 mL of N, N-dimethylformamide was added to the reaction solution, and then the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and the crystals were vacuum-dried at 80 ° C. for 12 hours to obtain 3.76 g of colorless crystals of (phenoxymethyl) ethylene carbonate (yield: 96.9%). The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of phenylglycidyl ether when reacted for 24 hours was 86%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.20 (dd, 1H, J = 11.2, 4.8 Hz, PhOC H 2 ), 4.28 (dd, 1H , J = 11.2, 2.4 Hz, PhOC H 2 ), 4.39 (dd, 1 H, J = 8.4, 6.4 Hz, OCCH H 2 O), 4.64 (dd, 1 H, J = 8.4, 8.4 Hz, OCCH H 2 O), 5.12-5.19 (m, 1H, OC H CH 2 O), 6.94-7.03 (m, 3H, Ar H ), 7 .28-7.35 (m, 2H, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.6 ( Ar ), 121.2 ( Ar ), 129.6 ( Ar ), 154.9 ( Ar ), 157.9 ( C = O).
フェニルグリシジルエーテル3.00g(20mmol;和光純薬工業株式会社製)のテトラヒドロフラン3.6mL/1-メチル-2-ピロリジノン(N-メチルピロリドン)0.4mL混合溶液に、25℃中、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩280mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で48時間攪拌して反応させた。反応終了後、反応液にN,N-ジメチルホルムアミド3mLを加えた後、該反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の(フェノキシメチル)エチレンカーボネート3.76g(収率:96.9%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のフェニルグリシジルエーテルの転化率は86%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.20(dd,1H,J=11.2,4.8Hz,PhOCH 2 ),4.28(dd,1H,J=11.2,2.4Hz,PhOCH 2 ),4.39(dd,1H,J=8.4,6.4Hz,OCHCH 2 O),4.64(dd,1H,J=8.4,8.4Hz,OCHCH 2 O),5.12-5.19(m,1H,OCHCH2O),6.94-7.03(m,3H,ArH),7.28-7.35(m,2H,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.6(Ar),121.2(Ar),129.6(Ar),154.9(Ar),157.9(C=O). Example 37 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using amidine catalyst [2′-D] Phenylglycidyl ether 3.00 g (20 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) To a mixed solution of tetrahydrofuran 3.6 mL / 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) 0.4 mL at 25 ° C., 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide 280 mg After adding (1 mmol), the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 48 hours in the same atmosphere. After completion of the reaction, 3 mL of N, N-dimethylformamide was added to the reaction solution, and then the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and the crystals were vacuum-dried at 80 ° C. for 12 hours to obtain 3.76 g of colorless crystals of (phenoxymethyl) ethylene carbonate (yield: 96.9%). The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of phenylglycidyl ether when reacted for 24 hours was 86%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.20 (dd, 1H, J = 11.2, 4.8 Hz, PhOC H 2 ), 4.28 (dd, 1H , J = 11.2, 2.4 Hz, PhOC H 2 ), 4.39 (dd, 1 H, J = 8.4, 6.4 Hz, OCCH H 2 O), 4.64 (dd, 1 H, J = 8.4, 8.4 Hz, OCCH H 2 O), 5.12-5.19 (m, 1H, OC H CH 2 O), 6.94-7.03 (m, 3H, Ar H ), 7 .28-7.35 (m, 2H, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.6 ( Ar ), 121.2 ( Ar ), 129.6 ( Ar ), 154.9 ( Ar ), 157.9 ( C = O).
本実施例は、表4における実施例17の20倍の反応スケールであるが、反応性はほとんど低下していない。メタルフリー(金属フリー)かつ安価な触媒である1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩を用いると、目的とするカーボネートが定量的に得られたことから、本カーボネート反応が実用的な反応であることを実証した。
This example has a reaction scale 20 times that of Example 17 in Table 4, but the reactivity is hardly reduced. When 1,8-diazabicyclo [5.4.0] -7-undecene boroiodide, which is a metal-free (metal-free) and inexpensive catalyst, was used, the target carbonate was quantitatively obtained. The carbonate reaction was proved to be a practical reaction.
実施例38 アミジン触媒[2'-D]を用いた常温、常圧条件下での(2-オキソ-1,3-ジオキソラン-4-イル)メチルメタクリレートの単離合成
グリシジルメタクリレート2.84g(20mmol;アルドリッチ社製)に、25℃中、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩280mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で48時間攪拌して反応させた。反応終了後、反応液をメチルt-ブチルエーテル20mLと水10mLで分液し、更に水層をメチルt-ブチルエーテル10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で6時間真空乾燥することにより、淡黄色油状物の(2-オキソ-1,3-ジオキソラン-4-イル)メチルメタクリレート3.63g(収率:97.6%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のグリシジルメタクリレートの転化率は78.4%であった。また、上述の実施例において、t-はtert-体を表す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.96(t,3H,J=1.6Hz,CH 3 ),4.34(dd,1H,J=12.4,4.0Hz,OCHCH 2 O),4.36(dd,1H,J=8.8,5.2Hz,CO2CH 2 ),4.39(dd,1H,J=8.4,3.2Hz,OCHCH 2 O),4.64(dd,1H,J=8.8,8.8Hz,CO2CH 2 ),4.98-5.04(m,1H,OCHCH2O),5.67(quin,1H,J=1.6Hz,C=CHH),6.15-6.17(m,1H,C=CHH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.1(CH3),63.4(OCHCH2O),66.0(OCHCH2O),73.8(CO2 CH2),127.2(C=CH2),135.0(C=CH2),154.5(CO3),166.6(CO2). Example 38 Isolation and synthesis of (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate using an amidine catalyst [2′-D] under normal temperature and atmospheric pressure 2.84 g (20 mmol) of glycidyl methacrylate And 280 mg (1 mmol) of 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide at 25 ° C. in a balloon filled with carbon dioxide gas. Was sealed in a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 48 hours in the same atmosphere. After completion of the reaction, the reaction solution is separated with 20 mL of methyl t-butyl ether and 10 mL of water, and the aqueous layer is extracted twice with 10 mL of methyl t-butyl ether. The combined organic layers were dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 6 hours to give (2-oxo-1,3-dioxolan-4-yl as a pale yellow oily substance. ) 3.63 g (yield: 97.6%) of methyl methacrylate was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of glycidyl methacrylate when reacted for 24 hours was 78.4%. Moreover, in the above-mentioned Example, t- represents a tert-isomer.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.96 (t, 3H, J = 1.6 Hz, C H 3 ), 4.34 (dd, 1H, J = 12.4 , 4.0 Hz, OCCH H 2 O), 4.36 (dd, 1 H, J = 8.8, 5.2 Hz, CO 2 C H 2 ), 4.39 (dd, 1 H, J = 8.4). 3.2Hz, OCHC H 2 O), 4.64 (dd, 1H, J = 8.8,8.8Hz, CO 2 C H 2), 4.98-5.04 (m, 1H, OC H CH 2 O), 5.67 (quin, 1H, J = 1.6 Hz, C = C H H), 6.15-6.17 (m, 1H, C = CH H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 18.1 ( C H 3 ), 63.4 (OCH C H 2 O), 66.0 (O C HCH 2 O), 73 .8 (CO 2 C H 2) , 127.2 (C = C H 2), 135.0 (C = CH 2), 154.5 (C O 3), 166.6 (C O 2).
グリシジルメタクリレート2.84g(20mmol;アルドリッチ社製)に、25℃中、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン ヨウ化水素塩280mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で48時間攪拌して反応させた。反応終了後、反応液をメチルt-ブチルエーテル20mLと水10mLで分液し、更に水層をメチルt-ブチルエーテル10mLで2回抽出、分液した際の有機層と抽出した際の有機層を合わせ、合わせた有機層を無水硫酸ナトリウムで乾燥した。乾燥後の有機層を濃縮し溶媒を留去することで得られた残渣を40℃で6時間真空乾燥することにより、淡黄色油状物の(2-オキソ-1,3-ジオキソラン-4-イル)メチルメタクリレート3.63g(収率:97.6%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のグリシジルメタクリレートの転化率は78.4%であった。また、上述の実施例において、t-はtert-体を表す。
1H-NMR(400MHz,CDCl3,25℃)δ(ppm):1.96(t,3H,J=1.6Hz,CH 3 ),4.34(dd,1H,J=12.4,4.0Hz,OCHCH 2 O),4.36(dd,1H,J=8.8,5.2Hz,CO2CH 2 ),4.39(dd,1H,J=8.4,3.2Hz,OCHCH 2 O),4.64(dd,1H,J=8.8,8.8Hz,CO2CH 2 ),4.98-5.04(m,1H,OCHCH2O),5.67(quin,1H,J=1.6Hz,C=CHH),6.15-6.17(m,1H,C=CHH).
13C-NMR(100MHz,CDCl3,25℃)δ(ppm):18.1(CH3),63.4(OCHCH2O),66.0(OCHCH2O),73.8(CO2 CH2),127.2(C=CH2),135.0(C=CH2),154.5(CO3),166.6(CO2). Example 38 Isolation and synthesis of (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate using an amidine catalyst [2′-D] under normal temperature and atmospheric pressure 2.84 g (20 mmol) of glycidyl methacrylate And 280 mg (1 mmol) of 1,8-diazabicyclo [5.4.0] -7-undecene hydrogen iodide at 25 ° C. in a balloon filled with carbon dioxide gas. Was sealed in a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 48 hours in the same atmosphere. After completion of the reaction, the reaction solution is separated with 20 mL of methyl t-butyl ether and 10 mL of water, and the aqueous layer is extracted twice with 10 mL of methyl t-butyl ether. The combined organic layers were dried over anhydrous sodium sulfate. The residue obtained by concentrating the organic layer after drying and distilling off the solvent was vacuum-dried at 40 ° C. for 6 hours to give (2-oxo-1,3-dioxolan-4-yl as a pale yellow oily substance. ) 3.63 g (yield: 97.6%) of methyl methacrylate was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of glycidyl methacrylate when reacted for 24 hours was 78.4%. Moreover, in the above-mentioned Example, t- represents a tert-isomer.
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ (ppm): 1.96 (t, 3H, J = 1.6 Hz, C H 3 ), 4.34 (dd, 1H, J = 12.4 , 4.0 Hz, OCCH H 2 O), 4.36 (dd, 1 H, J = 8.8, 5.2 Hz, CO 2 C H 2 ), 4.39 (dd, 1 H, J = 8.4). 3.2Hz, OCHC H 2 O), 4.64 (dd, 1H, J = 8.8,8.8Hz, CO 2 C H 2), 4.98-5.04 (m, 1H, OC H CH 2 O), 5.67 (quin, 1H, J = 1.6 Hz, C = C H H), 6.15-6.17 (m, 1H, C = CH H ).
13 C-NMR (100 MHz, CDCl 3 , 25 ° C.) δ (ppm): 18.1 ( C H 3 ), 63.4 (OCH C H 2 O), 66.0 (O C HCH 2 O), 73 .8 (CO 2 C H 2) , 127.2 (C = C H 2), 135.0 (C = CH 2), 154.5 (C O 3), 166.6 (C O 2).
本実施例は、表5における実施例35の20倍の反応スケールであるが、反応性はほとんど低下していない。反応が定量的に進行するため、精製操作を行わなくても分液操作だけで生成物を単離することができた。25℃、1気圧等の穏和な条件下で反応が進行するため、グリシジルメタクリレートのような重合性の高いエポキシド(オキシラン)でもポリマー副生成物を生じずに、カーボネートのみを得ることができた。また、アミジン塩によるグリシジルメタクリレートの二重結合へのマイケル付加、オキシラン環への開環付加、エステル基の分解等も見られないことから、本カーボネート反応は、化学選択的な二酸化炭素挿入反応として優れていることを見出した。
This example has a reaction scale 20 times that of Example 35 in Table 5, but the reactivity is hardly reduced. Since the reaction proceeded quantitatively, the product could be isolated only by a liquid separation operation without performing a purification operation. Since the reaction proceeded under mild conditions such as 25 ° C. and 1 atm, even a highly polymerizable epoxide (oxirane) such as glycidyl methacrylate did not produce a polymer by-product, and only carbonate could be obtained. In addition, since there is no Michael addition to the double bond of glycidyl methacrylate with an amidine salt, ring-opening addition to the oxirane ring, or decomposition of the ester group, this carbonate reaction is a chemoselective carbon dioxide insertion reaction. I found it excellent.
実施例39~43、並びに比較例22~25 種々のグアニジン触媒を用いた環状カーボネートの合成
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表6に示す。なお、表中、グアニジン触媒における[3'-A]は1-(1-ブチル)グアニジン ヨウ化水素塩を表し、[3'-B]は1-(1-ブチル)-3-メチルグアニジン ヨウ化水素塩を表し、[3'-C]は1-(1-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩を表し、[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-E]は2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩を表し、[30'-A]は1-(1-ブチル)-1,2,2,3,3-ペンタメチルグアニジン ヨウ化物塩を表し、TBAIはヨウ化 テトラn-ブチルアンモニウムを表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 39 to 43, and Comparative Examples 22 to 25 Synthesis of cyclic carbonates using various guanidine catalysts Phenyl phenyl in 25 mL of an organic solvent (or suspension) containing 0.05 mmol of various guanidine catalysts at 25 ° C. After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of glycidyl ether, the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for 24 hours at ° C. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 6. In the table, [3′-A] in the guanidine catalyst represents 1- (1-butyl) guanidine hydrogen iodide, and [3′-B] represents 1- (1-butyl) -3-methylguanidine iodine. [3'-C] represents 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide, and [3'-D] represents 1- (1-butyl) -2. , 3,3-trimethylguanidine hydrogen iodide, [3′-E] represents 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide, [30 ′ -A] represents 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt, and TBAI represents tetra-n-butylammonium iodide. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran. In the above-described embodiments, n- represents a normal-body.
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表6に示す。なお、表中、グアニジン触媒における[3'-A]は1-(1-ブチル)グアニジン ヨウ化水素塩を表し、[3'-B]は1-(1-ブチル)-3-メチルグアニジン ヨウ化水素塩を表し、[3'-C]は1-(1-ブチル)-2,3-ジメチルグアニジン ヨウ化水素塩を表し、[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-E]は2-(1-ブチル)-1,1,3,3-テトラメチルグアニジン ヨウ化水素塩を表し、[30'-A]は1-(1-ブチル)-1,2,2,3,3-ペンタメチルグアニジン ヨウ化物塩を表し、TBAIはヨウ化 テトラn-ブチルアンモニウムを表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 39 to 43, and Comparative Examples 22 to 25 Synthesis of cyclic carbonates using various guanidine catalysts Phenyl phenyl in 25 mL of an organic solvent (or suspension) containing 0.05 mmol of various guanidine catalysts at 25 ° C. After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of glycidyl ether, the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for 24 hours at ° C. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 6. In the table, [3′-A] in the guanidine catalyst represents 1- (1-butyl) guanidine hydrogen iodide, and [3′-B] represents 1- (1-butyl) -3-methylguanidine iodine. [3'-C] represents 1- (1-butyl) -2,3-dimethylguanidine hydrogen iodide, and [3'-D] represents 1- (1-butyl) -2. , 3,3-trimethylguanidine hydrogen iodide, [3′-E] represents 2- (1-butyl) -1,1,3,3-tetramethylguanidine hydrogen iodide, [30 ′ -A] represents 1- (1-butyl) -1,2,2,3,3-pentamethylguanidine iodide salt, and TBAI represents tetra-n-butylammonium iodide. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran. In the above-described embodiments, n- represents a normal-body.
表6の結果から明らかなように、種々のグアニジンのヨウ化水素塩(グアニジン触媒)を用いて反応を行ったところ、グアニジン触媒[3'-A]~[3'-E]のプロトン源の数に関わらず、収率よくカーボネートが得られた(実施例39~43)。また、表6には記載していないが、実施例40及び41の方法において、グアニジン触媒の使用量を10mol%に変えると、両実施例ともに92%の収率で(フェノキシメチル)エチレンカーボネートが得られた。一方で、プロトン源を全く持たないグアニジン触媒[30'-A]はほとんど反応が進行しないことが判った(比較例22)。すなわち、常温、常圧条件下で収率よくカーボネートを得るには、グアニジン触媒は、少なくとも1つ以上のプロトン源が必要であることを見出した。これは、グアニジン触媒[30'-A]と同じくプロトン源を持たないヨウ化 テトラn-ブチルアンモニウムを用いた場合に、反応がほとんど進行しなかったことからも明らかである(比較例23)。また、最も汎用的に用いられる金属塩(金属触媒)である臭化リチウムを用いた場合でも、常温、常圧条件下では、カーボネート反応はほとんど進行しなかった(比較例24及び25)。このように、プロトン源を少なくとも1つ以上有するグアニジンのヨウ化水素塩は、常温、常圧等の穏和な条件下で環状カーボネートを製造するための効果的な触媒であることが判った。
As is apparent from the results in Table 6, the reaction was carried out using various guanidine hydrogen iodide salts (guanidine catalysts). As a result, the proton sources of the guanidine catalysts [3′-A] to [3′-E] Regardless of the number, carbonates were obtained in good yield (Examples 39 to 43). Although not shown in Table 6, in the methods of Examples 40 and 41, when the amount of guanidine catalyst used was changed to 10 mol%, (phenoxymethyl) ethylene carbonate was obtained in a yield of 92% in both Examples. Obtained. On the other hand, it was found that the guanidine catalyst [30′-A] having no proton source hardly reacted (Comparative Example 22). That is, it has been found that at least one proton source is required for the guanidine catalyst in order to obtain a carbonate with high yield under normal temperature and normal pressure conditions. This is also clear from the fact that the reaction hardly proceeded when tetran-butylammonium iodide having no proton source was used as in the guanidine catalyst [30′-A] (Comparative Example 23). Even when lithium bromide, which is the most commonly used metal salt (metal catalyst), was used, the carbonate reaction hardly proceeded under normal temperature and normal pressure conditions (Comparative Examples 24 and 25). Thus, it was found that guanidine hydrogen iodide salt having at least one proton source is an effective catalyst for producing a cyclic carbonate under mild conditions such as normal temperature and normal pressure.
実施例44~50 カーボネート反応におけるグアニジン触媒の溶媒効果
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表7に示す。なお、表中、グアニジン触媒における[3'-A]は1-(1-ブチル)グアニジン ヨウ化水素塩を表し、[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表す。また、表中、有機溶媒におけるDMIは1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)を表し、DMAcはN,N-ジメチルアセトアミドを表し、DMFはN,N-ジメチルホルムアミドを表し、MTBEはメチルt-ブチルエーテルを表す。なお、上述の実施例において、t-はtert-体を表す。 Examples 44 to 50 Solvent effect of guanidine catalyst in carbonate reaction 150 mg (1 mmol) of phenylglycidyl ether in 25 mL of organic solvent (or suspension) of 0.05 mmol of various guanidine catalysts at 25 ° C. After that, the reaction system was sealed with a balloon filled with carbon dioxide gas to make a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 24 hours in the same atmosphere. . Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 7. In the table, [3′-A] in the guanidine catalyst represents 1- (1-butyl) guanidine hydrogen iodide, and [3′-D] represents 1- (1-butyl) -2,3,3. -Represents trimethylguanidine hydrogen iodide. In the table, DMI in an organic solvent represents 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), DMAc represents N, N-dimethylacetamide, and DMF represents N, N-dimethylformamide. , MTBE represents methyl t-butyl ether. In the above examples, t- represents a tert-isomer.
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表7に示す。なお、表中、グアニジン触媒における[3'-A]は1-(1-ブチル)グアニジン ヨウ化水素塩を表し、[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表す。また、表中、有機溶媒におけるDMIは1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)を表し、DMAcはN,N-ジメチルアセトアミドを表し、DMFはN,N-ジメチルホルムアミドを表し、MTBEはメチルt-ブチルエーテルを表す。なお、上述の実施例において、t-はtert-体を表す。 Examples 44 to 50 Solvent effect of guanidine catalyst in carbonate reaction 150 mg (1 mmol) of phenylglycidyl ether in 25 mL of organic solvent (or suspension) of 0.05 mmol of various guanidine catalysts at 25 ° C. After that, the reaction system was sealed with a balloon filled with carbon dioxide gas to make a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 24 hours in the same atmosphere. . Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 7. In the table, [3′-A] in the guanidine catalyst represents 1- (1-butyl) guanidine hydrogen iodide, and [3′-D] represents 1- (1-butyl) -2,3,3. -Represents trimethylguanidine hydrogen iodide. In the table, DMI in an organic solvent represents 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), DMAc represents N, N-dimethylacetamide, and DMF represents N, N-dimethylformamide. , MTBE represents methyl t-butyl ether. In the above examples, t- represents a tert-isomer.
表7の結果から明らかなように、例えば1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒、例えばイソプロパノール等のアルコール系溶媒、例えばメチルt-ブチルエーテル等のエーテル系溶媒、例えばトルエン等の芳香族炭化水素系溶媒等の種々の有機溶媒中で反応を行っても、収率よく反応が進行することが判った。
As is apparent from the results in Table 7, for example, amide solvents such as 1,3-dimethyl-2-imidazolidinone (dimethylethyleneurea), N, N-dimethylacetamide, N, N-dimethylformamide, such as isopropanol It can be seen that the reaction proceeds in a good yield even when the reaction is carried out in various organic solvents such as an ether solvent such as methyl t-butyl ether, an aromatic hydrocarbon solvent such as toluene. It was.
実施例51及び52、並びに比較例26~28 カーボネート反応におけるグアニジン触媒のアニオン効果
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表8に示す。なお、表中、グアニジン触媒における[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[30'-B]は1-(1-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩を表し、[30'-C]は1-(1-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表す。 Examples 51 and 52, and Comparative Examples 26 to 28 Anion effect of guanidine catalyst in carbonate reaction 150 mg of phenylglycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various guanidine catalysts at 25 ° C. (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.), and the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for an hour. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 8. In the table, [3′-D] in the guanidine catalyst represents 1- (1-butyl) -2,3,3-trimethylguanidine hydrogen iodide, and [30′-B] represents 1- (1- Butyl) -2,3,3-trimethylguanidine hydrochloride, and [30′-C] represents 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran.
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表8に示す。なお、表中、グアニジン触媒における[3'-D]は1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[30'-B]は1-(1-ブチル)-2,3,3-トリメチルグアニジン 塩化水素塩を表し、[30'-C]は1-(1-ブチル)-2,3,3-トリメチルグアニジン トリフルオロメタンスルホン酸塩を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表す。 Examples 51 and 52, and Comparative Examples 26 to 28 Anion effect of guanidine catalyst in carbonate reaction 150 mg of phenylglycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various guanidine catalysts at 25 ° C. (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.), and the reaction system was sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa). The reaction was stirred for an hour. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 8. In the table, [3′-D] in the guanidine catalyst represents 1- (1-butyl) -2,3,3-trimethylguanidine hydrogen iodide, and [30′-B] represents 1- (1- Butyl) -2,3,3-trimethylguanidine hydrochloride, and [30′-C] represents 1- (1-butyl) -2,3,3-trimethylguanidine trifluoromethanesulfonate. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran.
表6において最も収率の高い1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-D]について、アニオン部位の異なる誘導体を合成し、アニオン部位のカーボネート反応への影響を検討した。表8の結果から明らかなように、アニオン部位をヨウ素アニオンから塩素アニオンに代えたグアニジン触媒では反応性が著しく低下し(比較例26及び28)、トリフルオロメタンスルホネートアニオン(トリフラートアニオン)に代えたグアニジン触媒では全く反応が進行しなかった(比較例27)。2-メチルテトラヒドロフラン、2-プロパノン(アセトン)いずれの溶媒系においても同様の結果が得られた。これは、原子半径が大きく負電荷が分散されるアニオンの脱離能の大きさが、エポキシド(オキシラン)に対する二酸化炭素挿入反応を促進していると考えられる。このように、常温、常圧条件下でのカーボネート反応においては、多種多様なアニオン種のなかでも、ヨウ素アニオンが大きな効果を有することを明らかにした。
In Table 6, the highest yield of 1- (1-butyl) -2,3,3-trimethylguanidine hydroiodide [3′-D] was synthesized with derivatives having different anion sites and carbonate reactions at the anion sites. The impact on As is clear from the results in Table 8, the guanidine catalyst in which the anion site was changed from the iodine anion to the chlorine anion significantly decreased the reactivity (Comparative Examples 26 and 28), and the guanidine replaced with the trifluoromethanesulfonate anion (triflate anion). The reaction did not proceed at all with the catalyst (Comparative Example 27). Similar results were obtained in any solvent system of 2-methyltetrahydrofuran and 2-propanone (acetone). This is thought to be due to the large ability of the anion to dissipate a negative charge with a large atomic radius to promote the carbon dioxide insertion reaction with epoxide (oxirane). Thus, it has been clarified that iodine anion has a great effect in the carbonate reaction under normal temperature and normal pressure conditions among a wide variety of anion species.
実施例53~61 カーボネート反応におけるグアニジン触媒の置換基効果
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表9に示す。なお、表中、グアニジン触媒における[3'-F]は1-(1-オクチル)グアニジン ヨウ化水素塩を表し、[3'-G]は1,1-ジシクロヘキシルグアニジン ヨウ化水素塩を表し、[3'-H]は1-ベンジルグアニジン ヨウ化水素塩を表し、[3'-I]は1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩を表し、[3'-J]は1-(2-メトキシエチル)グアニジン ヨウ化水素塩を表し、[3'-K]は1-(N,N-ジメチルアミノエチル)グアニジン ヨウ化水素塩を表し、[3'-L]は1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-M]は1-(N,N-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-N]は7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Examples 53 to 61 Substituent effect of guanidine catalyst in carbonate reaction 150 mg (1 mmol; Wako Pure Chemical Industries, Ltd.) phenyl glycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various guanidine catalysts Kogyo Co., Ltd.) was added, and the reaction system was sealed with a balloon filled with carbon dioxide gas to create a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 24 hours in the same atmosphere. It was. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 9. In the table, [3′-F] in the guanidine catalyst represents 1- (1-octyl) guanidine hydrogen iodide, [3′-G] represents 1,1-dicyclohexylguanidine hydrogen iodide, [3′-H] represents 1-benzylguanidine hydrogen iodide, [3′-I] represents 1- (2-hydroxyethyl) guanidine hydrogen iodide, and [3′-J] represents 1- (2-methoxyethyl) guanidine represents hydrogen iodide, [3′-K] represents 1- (N, N-dimethylaminoethyl) guanidine hydrogen iodide, and [3′-L] represents 1-benzyl. -2,3,3-trimethylguanidine hydrogen iodide, [3'-M] represents 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide, [3′-N] is 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-eneio. Represents a hydride salt. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
種々のグアニジン触媒0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表9に示す。なお、表中、グアニジン触媒における[3'-F]は1-(1-オクチル)グアニジン ヨウ化水素塩を表し、[3'-G]は1,1-ジシクロヘキシルグアニジン ヨウ化水素塩を表し、[3'-H]は1-ベンジルグアニジン ヨウ化水素塩を表し、[3'-I]は1-(2-ヒドロキシエチル)グアニジン ヨウ化水素塩を表し、[3'-J]は1-(2-メトキシエチル)グアニジン ヨウ化水素塩を表し、[3'-K]は1-(N,N-ジメチルアミノエチル)グアニジン ヨウ化水素塩を表し、[3'-L]は1-ベンジル-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-M]は1-(N,N-ジメチルアミノエチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩を表し、[3'-N]は7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン ヨウ化水素塩を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Examples 53 to 61 Substituent effect of guanidine catalyst in carbonate reaction 150 mg (1 mmol; Wako Pure Chemical Industries, Ltd.) phenyl glycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various guanidine catalysts Kogyo Co., Ltd.) was added, and the reaction system was sealed with a balloon filled with carbon dioxide gas to create a carbon dioxide gas atmosphere (0.1 MPa), and the reaction was stirred at 25 ° C. for 24 hours in the same atmosphere. It was. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 9. In the table, [3′-F] in the guanidine catalyst represents 1- (1-octyl) guanidine hydrogen iodide, [3′-G] represents 1,1-dicyclohexylguanidine hydrogen iodide, [3′-H] represents 1-benzylguanidine hydrogen iodide, [3′-I] represents 1- (2-hydroxyethyl) guanidine hydrogen iodide, and [3′-J] represents 1- (2-methoxyethyl) guanidine represents hydrogen iodide, [3′-K] represents 1- (N, N-dimethylaminoethyl) guanidine hydrogen iodide, and [3′-L] represents 1-benzyl. -2,3,3-trimethylguanidine hydrogen iodide, [3'-M] represents 1- (N, N-dimethylaminoethyl) -2,3,3-trimethylguanidine hydrogen iodide, [3′-N] is 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-eneio. Represents a hydride salt. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
表9の結果から明らかなように、まず、プロトン源を4つ以上有するグアニジンのヨウ化水素塩(グアニジン触媒)を用いて反応を行ったところ、1-(1-ブチル)グアニジン ヨウ化水素塩[3'-A]よりも長いアルキル鎖を有するグアニジン触媒[3'-F]や非常に嵩高いジシクロヘキシル基を有するグアニジン触媒[3'-G]を用いた場合でも、収率よく反応が進行した(実施例53及び54)。更に、ヒドロキシル基等の他の官能基を含むグアニジン触媒[3'-I]~[3'-K]を用いた場合でも反応は進行し、特にグアニジン触媒[3'-J]及び[3'-K]は、グアニジン触媒[3'-A]よりも高い反応性を示した(実施例56~58)。次にプロトン源を2つ有するグアニジンのヨウ化水素塩(グアニジン触媒)を用いて反応を行ったところ、1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-D]と同等以上の反応性を示し、特にベンジル基を有するグアニジン触媒[3'-L]を用いた場合には、2-メチルテトラヒドロフラン中で定量的に反応が進行することが判った。本実施例で用いたグアニジン触媒は、グアニジン触媒[3'-A]や[3'-D]から容易に合成することができる。これらの結果から、本グアニジン触媒は、多くのアミン類から容易に種々の誘導体を合成することができるという大きな特徴を有し、例えば担体への担持や高分子化による再利用反応への応用が期待できる。
As is apparent from the results in Table 9, first, a reaction was carried out using a guanidine hydrogen iodide salt (guanidine catalyst) having four or more proton sources. 1- (1-butyl) guanidine 水 素 iodide salt was obtained. Even when a guanidine catalyst [3′-F] having an alkyl chain longer than [3′-A] or a guanidine catalyst [3′-G] having a very bulky dicyclohexyl group is used, the reaction proceeds in a high yield. (Examples 53 and 54). Furthermore, the reaction proceeds even when guanidine catalysts [3′-I] to [3′-K] containing other functional groups such as hydroxyl groups are used, and in particular, guanidine catalysts [3′-J] and [3 ′ -K] showed higher reactivity than the guanidine catalyst [3′-A] (Examples 56 to 58). Next, the reaction was carried out using guanidine hydroiodide (guanidine catalyst) having two proton sources. As a result, 1- (1-butyl) -2,3,3-trimethylguanidine iodide [3 ′ It was found that the reaction proceeded quantitatively in 2-methyltetrahydrofuran when a guanidine catalyst [3′-L] having a benzyl group was used. The guanidine catalyst used in this example can be easily synthesized from guanidine catalysts [3′-A] and [3′-D]. From these results, the present guanidine catalyst has a great feature that various derivatives can be easily synthesized from many amines. For example, the guanidine catalyst can be applied to a reuse reaction by supporting on a support or polymerizing. I can expect.
実施例62~68 グアニジン触媒[3'-A]を用いた種々のエポキシド(オキシラン)のカーボネート反応
1-(1-ブチル)グアニジン ヨウ化水素塩12.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表10に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃又は45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表10に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表し、[5-B]は1,4-ビス(グリシジルオキシ)ブタン{1,4-ブチレングリコールジグリシジルエーテル}を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 62 to 68 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3′-A] 1- (1-butyl) guanidine hydroiodide 12.0 mg (0.05 mmol) of organic solvent After adding various amounts of epoxides (oxiranes) shown in Table 10 to a 2 mL solution (or suspension) at 25 ° C., the reaction system is sealed with a balloon filled with carbon dioxide gas, (0.1 MPa), and the reaction was performed by stirring at 25 ° C. or 45 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 10. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, and [5-B] represents 1,4-bis (glycidyloxy) butane {1,4-butylene glycol di- Glycidyl ether}. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone). In the above-described embodiments, n- represents a normal-body.
1-(1-ブチル)グアニジン ヨウ化水素塩12.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表10に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃又は45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表10に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表し、[5-B]は1,4-ビス(グリシジルオキシ)ブタン{1,4-ブチレングリコールジグリシジルエーテル}を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。なお、上述の実施例において、n-はnormal-体を表す。 Examples 62 to 68 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3′-A] 1- (1-butyl) guanidine hydroiodide 12.0 mg (0.05 mmol) of organic solvent After adding various amounts of epoxides (oxiranes) shown in Table 10 to a 2 mL solution (or suspension) at 25 ° C., the reaction system is sealed with a balloon filled with carbon dioxide gas, (0.1 MPa), and the reaction was performed by stirring at 25 ° C. or 45 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 10. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, and [5-B] represents 1,4-bis (glycidyloxy) butane {1,4-butylene glycol di- Glycidyl ether}. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone). In the above-described embodiments, n- represents a normal-body.
1-(1-ブチル)グアニジン ヨウ化水素塩[3'-A]を触媒として、種々のエポキシドに対する反応性について検討した。表10の結果から明らかなように、モノエポキシド体、ビスエポキシド体のいずれでも、対応する環状カーボネートが収率よく得られた。特にメタクリル基を有するエポキシド(オキシラン)との反応は、アミン塩による二重結合へのマイケル付加、オキシラン環への開環付加、エステル基の分解等の様々な副反応が予想されるが、グアニジン触媒[3'-A]は活性水素を多く持つのにも関わらず、(2-オキソ-1,3-ジオキソラン-4-イル)メチルメタクリレート[6-C]のみが選択的に高収率で得られた(実施例64)。これは、グアニジン触媒[3'-A]のグアニジニウムカチオンが3つの極限構造を持ち、極度に安定化しているためと考えられる。また、常温(25℃)でも収率よく環状カーボネートが得られるが、反応温度を45℃に上げるだけで、常圧下で定量的に環状カーボネートが得られた(実施例67及び68)。これらの結果から、グアニジン触媒[3'-A]は、様々なエポキシド(オキシラン)に適用できることが判った。
1- (1-Butyl) guanidine hydroiodide [3′-A] was used as a catalyst to study reactivity with various epoxides. As is clear from the results in Table 10, the corresponding cyclic carbonate was obtained in good yield in either the monoepoxide or bisepoxide. In particular, the reaction with methoxide-containing epoxides (oxiranes) is expected to undergo various side reactions such as Michael addition to double bonds with amine salts, ring-opening addition to oxirane rings, and decomposition of ester groups. Although the catalyst [3′-A] has a large amount of active hydrogen, only (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate [6-C] is selectively produced in a high yield. Obtained (Example 64). This is presumably because the guanidinium cation of the guanidine catalyst [3′-A] has three extreme structures and is extremely stabilized. Moreover, although cyclic carbonate was obtained with good yield at normal temperature (25 ° C.), cyclic carbonate was quantitatively obtained under normal pressure only by raising the reaction temperature to 45 ° C. (Examples 67 and 68). From these results, it was found that the guanidine catalyst [3′-A] can be applied to various epoxides (oxiranes).
実施例69~76 グアニジン触媒[3'-D]を用いた種々のエポキシド(オキシラン)のカーボネート反応
1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩14.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表11に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃又は45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成したカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成した種々のカーボネート以外は未反応の原料であった。これらの結果を表11に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表し、[5-B]は1,4-ビス(グリシジルオキシ)ブタン{1,4-ブチレングリコールジグリシジルエーテル}を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、MTBEはメチルt-ブチルエーテルを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。なお、上述の実施例において、n-はnormal-体を表し、t-はtert-体を表す。 Examples 69 to 76 Carbonate reaction of various epoxides (oxiranes) using a guanidine catalyst [3′-D] 1- (1-butyl) -2,3,3-trimethylguanidine 14.0 mg (0 .05 mmol) in an organic solvent 0.2 mL solution (or suspension) at 25 ° C., various amounts of epoxides (oxiranes) shown in Table 11 were added, and then the reaction system was charged with a balloon filled with carbon dioxide gas. The mixture was sealed and brought to a carbon dioxide gas atmosphere (0.1 MPa). Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yield of the produced carbonate was calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and other than the various carbonates produced were unreacted raw materials. These results are shown in Table 11. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, and [5-B] represents 1,4-bis (glycidyloxy) butane {1,4-butylene glycol di- Glycidyl ether}. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, MTBE represents methyl t-butyl ether, and NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone). In the above-mentioned examples, n- represents a normal-form and t- represents a tert-form.
1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩14.0mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表11に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃又は45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成したカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成した種々のカーボネート以外は未反応の原料であった。これらの結果を表11に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[4-B]はn-ブチルグリシジルエーテルを表し、[4-C]はグリシジルメタクリレートを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表し、[5-B]は1,4-ビス(グリシジルオキシ)ブタン{1,4-ブチレングリコールジグリシジルエーテル}を表す。また、表中、有機溶媒におけるMTHFは2-メチルテトラヒドロフランを表し、MTBEはメチルt-ブチルエーテルを表し、NMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。なお、上述の実施例において、n-はnormal-体を表し、t-はtert-体を表す。 Examples 69 to 76 Carbonate reaction of various epoxides (oxiranes) using a guanidine catalyst [3′-D] 1- (1-butyl) -2,3,3-trimethylguanidine 14.0 mg (0 .05 mmol) in an organic solvent 0.2 mL solution (or suspension) at 25 ° C., various amounts of epoxides (oxiranes) shown in Table 11 were added, and then the reaction system was charged with a balloon filled with carbon dioxide gas. The mixture was sealed and brought to a carbon dioxide gas atmosphere (0.1 MPa). Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yield of the produced carbonate was calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and other than the various carbonates produced were unreacted raw materials. These results are shown in Table 11. In the table, [4-A] in epoxide (oxirane) represents phenyl glycidyl ether, [4-B] represents n-butyl glycidyl ether, [4-C] represents glycidyl methacrylate, [5- A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, and [5-B] represents 1,4-bis (glycidyloxy) butane {1,4-butylene glycol di- Glycidyl ether}. In the table, MTHF in the organic solvent represents 2-methyltetrahydrofuran, MTBE represents methyl t-butyl ether, and NMP represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone). In the above-mentioned examples, n- represents a normal-form and t- represents a tert-form.
1-(1-ブチル)-2,3,3-トリメチルグアニジン ヨウ化水素塩[3'-D]を触媒として、種々のエポキシドに対する反応性について検討した。表11の結果から明らかなように、グアニジン触媒[3'-A]と同様にモノエポキシド体、ビスエポキシド体のいずれでも、対応する環状カーボネートが収率よく得られた。また、常温(25℃)でも収率よくカーボネートが得られるが、反応温度を45℃に上げるだけで、常圧下で定量的に環状カーボネートが得られた(実施例74及び75)。更に、グアニジン触媒[3'-D]は、無溶媒でも反応が進行し、むしろ有機溶媒中で反応させるよりも反応性が増大した(実施例76)。これらの結果から、グアニジン触媒[3'-D]は、様々なエポキシド(オキシラン)に適用できることが判った。
1- (1-Butyl) -2,3,3-trimethylguanidine hydroiodide [3′-D] was used as a catalyst to study reactivity with various epoxides. As is clear from the results in Table 11, the corresponding cyclic carbonates were obtained in good yields in both the monoepoxide and bisepoxide forms as in the guanidine catalyst [3′-A]. Further, although carbonate can be obtained with good yield even at room temperature (25 ° C.), cyclic carbonate was quantitatively obtained under normal pressure only by raising the reaction temperature to 45 ° C. (Examples 74 and 75). Furthermore, the reaction of the guanidine catalyst [3′-D] proceeded even without a solvent, and the reactivity increased rather than reacting in an organic solvent (Example 76). From these results, it was found that the guanidine catalyst [3′-D] can be applied to various epoxides (oxiranes).
実施例77及び78 グアニジン触媒[3'-O]を用いた種々のエポキシド(オキシラン)のカーボネート反応
グアニジン ヨウ化水素塩[3'-O]9.3mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表12に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表12に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。 Examples 77 and 78 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3'-O] Guanidine hydrogen iodide [3'-O] 9.3 mg (0.05 mmol) of organic solvent 0.2 mL After adding various epoxides (oxiranes) in the amounts shown in Table 12 to the solution (or suspension) at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere ( 0.1 MPa) and the reaction was carried out by stirring at 45 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 12. In the table, [4-A] in the epoxide (oxirane) represents phenyl glycidyl ether, and [5-A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}. . In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone).
グアニジン ヨウ化水素塩[3'-O]9.3mg(0.05mmol)の有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、表12に示す量の種々のエポキシド(オキシラン)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した種々のカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表12に示す。なお、表中、エポキシド(オキシラン)における[4-A]はフェニルグリシジルエーテルを表し、[5-A]は2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}を表す。また、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表す。 Examples 77 and 78 Carbonate reaction of various epoxides (oxiranes) using guanidine catalyst [3'-O] Guanidine hydrogen iodide [3'-O] 9.3 mg (0.05 mmol) of organic solvent 0.2 mL After adding various epoxides (oxiranes) in the amounts shown in Table 12 to the solution (or suspension) at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere ( 0.1 MPa) and the reaction was carried out by stirring at 45 ° C. for 24 hours under the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, the reaction solution was analyzed based on tetramethylsilane contained in deuterated chloroform, and the yields of various carbonates produced were calculated. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 12. In the table, [4-A] in the epoxide (oxirane) represents phenyl glycidyl ether, and [5-A] represents 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}. . In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone).
グアニジン ヨウ化水素塩[3'-O]を触媒として、種々のエポキシドに対する反応性について検討した。表12の結果から明らかなように、グアニジン触媒[3'-A]及び[3'-D]と同様に、45℃で反応を行うことで、モノエポキシド体、ビスエポキシド体のいずれでも、対応する環状カーボネートが定量的に得られた。これらの結果から、グアニジン触媒[3'-O]も、様々なエポキシド(オキシラン)に適用できることが判った。
Reactivity to various epoxides was examined using guanidine borohydride [3′-O] as a catalyst. As is clear from the results in Table 12, both monoepoxide and bisepoxide forms can be handled by performing the reaction at 45 ° C., similarly to the guanidine catalysts [3′-A] and [3′-D]. The cyclic carbonate was quantitatively obtained. From these results, it was found that the guanidine catalyst [3′-O] can also be applied to various epoxides (oxiranes).
実施例79 グアニジン触媒[3'-O]を用いた常温、常圧条件下での(フェノキシメチル)エチレンカーボネートの単離合成
フェニルグリシジルエーテル6.01g(40mmol;和光純薬工業株式会社製)の1-メチル-2-ピロリジノン(N-メチルピロリドン)4mL溶液に、25℃中、グアニジン ヨウ化水素塩374mg(2mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で48時間攪拌して反応させた。反応終了後、反応液に2-プロパノン(アセトン)5mLを加えた後、該反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の(フェノキシメチル)エチレンカーボネート7.75g(収率:99.7%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のフェニルグリシジルエーテルの転化率は65%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.20(dd,1H,J=11.2,4.8Hz,PhOCH 2 ),4.28(dd,1H,J=11.2,2.4Hz,PhOCH 2 ),4.39(dd,1H,J=8.4,6.4Hz,OCHCH 2 O),4.64(dd,1H,J=8.4,8.4Hz,OCHCH 2 O),5.12-5.19(m,1H,OCHCH2O),6.94-7.02(m,3H,ArH),7.28-7.35(m,2H,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.6(Ar),121.2(Ar),129.6(Ar),154.9(Ar),157.9(C=O). Example 79 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using a guanidine catalyst [3'-O] 6.01 g (40 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenyl glycidyl ether To a 4 mL solution of 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) was added 374 mg (2 mmol) of guanidine hydrogen iodide salt at 25 ° C., and the reaction system was sealed with a balloon filled with carbon dioxide gas. Under a carbon gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 45 ° C. for 48 hours in the same atmosphere. After completion of the reaction, 5 mL of 2-propanone (acetone) was added to the reaction solution, and then the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and then the crystals were vacuum-dried at 80 ° C. for 12 hours to obtain 7.75 g of colorless crystals of (phenoxymethyl) ethylene carbonate (yield: 99.7%). The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of phenylglycidyl ether when reacted for 24 hours was 65%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.20 (dd, 1H, J = 11.2, 4.8 Hz, PhOC H 2 ), 4.28 (dd, 1H , J = 11.2, 2.4 Hz, PhOC H 2 ), 4.39 (dd, 1 H, J = 8.4, 6.4 Hz, OCCH H 2 O), 4.64 (dd, 1 H, J = 8.4, 8.4 Hz, OCCH H 2 O), 5.12-5.19 (m, 1H, OC H CH 2 O), 6.94-7.02 (m, 3H, Ar H ), 7 .28-7.35 (m, 2H, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.6 ( Ar ), 121.2 ( Ar ), 129.6 ( Ar ), 154.9 ( Ar ), 157.9 ( C = O).
フェニルグリシジルエーテル6.01g(40mmol;和光純薬工業株式会社製)の1-メチル-2-ピロリジノン(N-メチルピロリドン)4mL溶液に、25℃中、グアニジン ヨウ化水素塩374mg(2mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で48時間攪拌して反応させた。反応終了後、反応液に2-プロパノン(アセトン)5mLを加えた後、該反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の(フェノキシメチル)エチレンカーボネート7.75g(収率:99.7%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際のフェニルグリシジルエーテルの転化率は65%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):4.20(dd,1H,J=11.2,4.8Hz,PhOCH 2 ),4.28(dd,1H,J=11.2,2.4Hz,PhOCH 2 ),4.39(dd,1H,J=8.4,6.4Hz,OCHCH 2 O),4.64(dd,1H,J=8.4,8.4Hz,OCHCH 2 O),5.12-5.19(m,1H,OCHCH2O),6.94-7.02(m,3H,ArH),7.28-7.35(m,2H,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.6(Ar),121.2(Ar),129.6(Ar),154.9(Ar),157.9(C=O). Example 79 Isolation and synthesis of (phenoxymethyl) ethylene carbonate under normal temperature and normal pressure conditions using a guanidine catalyst [3'-O] 6.01 g (40 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenyl glycidyl ether To a 4 mL solution of 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) was added 374 mg (2 mmol) of guanidine hydrogen iodide salt at 25 ° C., and the reaction system was sealed with a balloon filled with carbon dioxide gas. Under a carbon gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 45 ° C. for 48 hours in the same atmosphere. After completion of the reaction, 5 mL of 2-propanone (acetone) was added to the reaction solution, and then the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and then the crystals were vacuum-dried at 80 ° C. for 12 hours to obtain 7.75 g of colorless crystals of (phenoxymethyl) ethylene carbonate (yield: 99.7%). The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of phenylglycidyl ether when reacted for 24 hours was 65%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 4.20 (dd, 1H, J = 11.2, 4.8 Hz, PhOC H 2 ), 4.28 (dd, 1H , J = 11.2, 2.4 Hz, PhOC H 2 ), 4.39 (dd, 1 H, J = 8.4, 6.4 Hz, OCCH H 2 O), 4.64 (dd, 1 H, J = 8.4, 8.4 Hz, OCCH H 2 O), 5.12-5.19 (m, 1H, OC H CH 2 O), 6.94-7.02 (m, 3H, Ar H ), 7 .28-7.35 (m, 2H, Ar H ).
13 C-NMR (100 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.6 ( Ar ), 121.2 ( Ar ), 129.6 ( Ar ), 154.9 ( Ar ), 157.9 ( C = O).
本実施例は、表12における実施例77と同様の反応であるが、反応スケールが40倍であるため、反応時間が長くなった。しかしながら、反応が定量的に進行するため、精製操作を行わなくても反応液を水中に投じるだけで生成物を単離することができた。メタルフリー(金属フリー)かつ安価な触媒であるグアニジン ヨウ化水素塩を用いると、45℃、1気圧等の穏和な条件下で反応が進行し、目的とする環状カーボネートが定量的に得られたことから、本カーボネート反応が実用的な反応であることを実証した。
This example is a reaction similar to Example 77 in Table 12, but the reaction time was longer because the reaction scale was 40 times. However, since the reaction proceeds quantitatively, the product could be isolated by simply throwing the reaction solution into water without performing a purification operation. When guanidine hydrogen iodide, which is a metal-free (metal-free) and inexpensive catalyst, was used, the reaction proceeded under mild conditions such as 45 ° C. and 1 atmosphere, and the desired cyclic carbonate was quantitatively obtained. This proved that this carbonate reaction is a practical reaction.
実施例80 グアニジン触媒[3'-A]を用いた常温、常圧条件下での2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート}の単離合成
2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}3.40g(10mmol;新日鐵化学株式会社製)の1-メチル-2-ピロリジノン(N-メチルピロリドン)4mL溶液に、25℃中、1-(1-ブチル)グアニジン ヨウ化水素塩243mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で48時間攪拌して反応させた。反応終了後、反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート}4.25g(収率:99.3%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際の2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}の転化率は62%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.58(s,6H,C(CH 3 )2),4.16(dd,2H,J=11.6,4.4Hz,2×(PhOCH 2 )),4.24(dd,2H,J=11.2,2.4Hz,2×(PhOCH 2 )),4.38(dd,2H,J=8.0,6.0Hz,2×(OCHCH 2 O)),4.64(dd,2H,J=8.8,8.8Hz,2×(OCHCH 2 O)),5.10-5.17(m,2H,2×(OCHCH2O)),6.85(d,4H,J=8.8Hz,ArH),7.12(d,4H,J=8.8Hz,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):30.7(C(CH3)2),41.3(C(CH3)2),66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.0(Ar),127.5(Ar),143.3(Ar),154.9(Ar),155.7(C=O). Example 80 Isolation of 2,2-propylenebis [(p-phenoxymethyl) ethylene carbonate] {bisphenol A diglycidyl ether biscarbonate} under normal temperature and pressure conditions using a guanidine catalyst [3′-A] Synthesis 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether} 3.40 g (10 mmol; manufactured by Nippon Steel Chemical Co., Ltd.) 4 mL of 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) After adding 243 mg (1 mmol) of 1- (1-butyl) guanidine hydrogen iodide salt to the solution at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere (0. 1 MPa), and the reaction was stirred at 45 ° C. for 48 hours under the same atmosphere. After completion of the reaction, the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and then the crystals were vacuum-dried at 80 ° C. for 12 hours, whereby colorless crystals of 2,2-propylenebis [(p-phenoxymethyl) Ethylene carbonate] {bisphenol A diglycidyl ether biscarbonate} 4.25g (yield: 99.3%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether} upon reaction for 24 hours was 62%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.58 (s, 6H, C (C H 3 ) 2 ), 4.16 (dd, 2H, J = 11.6) , 4.4 Hz, 2 × (PhOC H 2 )), 4.24 (dd, 2H, J = 11.2, 2.4 Hz, 2 × (PhOC H 2 )), 4.38 (dd, 2H, J = 8.0, 6.0 Hz, 2 × (OCHC H 2 O)), 4.64 (dd, 2H, J = 8.8, 8.8 Hz, 2 × (OCHC H 2 O)), 5.10 −5.17 (m, 2H, 2 × (OC H CH 2 O)), 6.85 (d, 4H, J = 8.8 Hz, Ar H ), 7.12 (d, 4H, J = 8. 8 Hz, Ar H ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 30.7 (C (C H 3) 2), 41.3 (C (CH 3) 2), 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.0 ( Ar ), 127.5 ( Ar ), 143.3 ( Ar ), 154. 9 ( Ar ), 155.7 ( C = O).
2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}3.40g(10mmol;新日鐵化学株式会社製)の1-メチル-2-ピロリジノン(N-メチルピロリドン)4mL溶液に、25℃中、1-(1-ブチル)グアニジン ヨウ化水素塩243mg(1mmol)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、45℃で48時間攪拌して反応させた。反応終了後、反応液を水80mL中に投入し、結晶を析出させた。析出した結晶をろ取し、次いでろ取した結晶を水で洗浄した後、該結晶を80℃で12時間真空乾燥することにより、無色結晶の2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート}4.25g(収率:99.3%)を得た。以下に1H-NMR及び13C-NMRの測定結果を示す。なお、24時間反応させた際の2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}の転化率は62%であった。
1H-NMR(400MHz,DMSO-d6,25℃)δ(ppm):1.58(s,6H,C(CH 3 )2),4.16(dd,2H,J=11.6,4.4Hz,2×(PhOCH 2 )),4.24(dd,2H,J=11.2,2.4Hz,2×(PhOCH 2 )),4.38(dd,2H,J=8.0,6.0Hz,2×(OCHCH 2 O)),4.64(dd,2H,J=8.8,8.8Hz,2×(OCHCH 2 O)),5.10-5.17(m,2H,2×(OCHCH2O)),6.85(d,4H,J=8.8Hz,ArH),7.12(d,4H,J=8.8Hz,ArH).
13C-NMR(100MHz,DMSO-d6,25℃)δ(ppm):30.7(C(CH3)2),41.3(C(CH3)2),66.0(OCHCH2O),67.4(OCHCH2O),74.8(PhOCH2),114.0(Ar),127.5(Ar),143.3(Ar),154.9(Ar),155.7(C=O). Example 80 Isolation of 2,2-propylenebis [(p-phenoxymethyl) ethylene carbonate] {bisphenol A diglycidyl ether biscarbonate} under normal temperature and pressure conditions using a guanidine catalyst [3′-A] Synthesis 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether} 3.40 g (10 mmol; manufactured by Nippon Steel Chemical Co., Ltd.) 4 mL of 1-methyl-2-pyrrolidinone (N-methylpyrrolidone) After adding 243 mg (1 mmol) of 1- (1-butyl) guanidine hydrogen iodide salt to the solution at 25 ° C., the reaction system was sealed with a balloon filled with carbon dioxide gas, and a carbon dioxide gas atmosphere (0. 1 MPa), and the reaction was stirred at 45 ° C. for 48 hours under the same atmosphere. After completion of the reaction, the reaction solution was poured into 80 mL of water to precipitate crystals. The precipitated crystals were collected by filtration, and then the collected crystals were washed with water, and then the crystals were vacuum-dried at 80 ° C. for 12 hours, whereby colorless crystals of 2,2-propylenebis [(p-phenoxymethyl) Ethylene carbonate] {bisphenol A diglycidyl ether biscarbonate} 4.25g (yield: 99.3%) was obtained. The measurement results of 1 H-NMR and 13 C-NMR are shown below. The conversion rate of 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether} upon reaction for 24 hours was 62%.
1 H-NMR (400 MHz, DMSO-d 6 , 25 ° C.) δ (ppm): 1.58 (s, 6H, C (C H 3 ) 2 ), 4.16 (dd, 2H, J = 11.6) , 4.4 Hz, 2 × (PhOC H 2 )), 4.24 (dd, 2H, J = 11.2, 2.4 Hz, 2 × (PhOC H 2 )), 4.38 (dd, 2H, J = 8.0, 6.0 Hz, 2 × (OCHC H 2 O)), 4.64 (dd, 2H, J = 8.8, 8.8 Hz, 2 × (OCHC H 2 O)), 5.10 −5.17 (m, 2H, 2 × (OC H CH 2 O)), 6.85 (d, 4H, J = 8.8 Hz, Ar H ), 7.12 (d, 4H, J = 8. 8 Hz, Ar H ).
13 C-NMR (100MHz, DMSO -d 6, 25 ℃) δ (ppm): 30.7 (C (C H 3) 2), 41.3 (C (CH 3) 2), 66.0 (OCH C H 2 O), 67.4 (O C HCH 2 O), 74.8 (PhO C H 2 ), 114.0 ( Ar ), 127.5 ( Ar ), 143.3 ( Ar ), 154. 9 ( Ar ), 155.7 ( C = O).
本実施例は、表10における実施例68と同様の反応であるが、反応スケールが20倍であるため、反応時間が長くなった。しかしながら、反応が定量的に進行するため、精製操作を行わなくても反応液を水中に投じるだけで生成物を単離することができた。生成物である2,2-プロピレンビス[(p-フェノキシメチル)エチレンカーボネート]{ビスフェノールAジグリシジルエーテル ビスカーボネート}は、工業的に重要な高機能性モノマーであるが、原料である2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}と同様に結晶性が高いために、バルクでは扱えず、穏和な条件でのカーボネート合成は成功していなかった。本実施例では、45℃、1気圧等の穏和な条件下で、2,2-ビス(4-グリシジルオキシフェニル)プロパン{ビスフェノールAジグリシジルエーテル}のカーボネート反応が定量的に進行することを見出した。
This example was the same reaction as Example 68 in Table 10, but the reaction time was longer because the reaction scale was 20 times. However, since the reaction proceeds quantitatively, the product could be isolated by simply throwing the reaction solution into water without performing a purification operation. The product 2,2-propylene bis [(p-phenoxymethyl) ethylene carbonate] {bisphenol A diglycidyl ether biscarbonate} is an industrially important high-functional monomer, but the raw material 2,2 Like bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether}, it has high crystallinity, so it cannot be handled in bulk, and carbonate synthesis under mild conditions has not been successful. In this example, it was found that the carbonate reaction of 2,2-bis (4-glycidyloxyphenyl) propane {bisphenol A diglycidyl ether} proceeds quantitatively under mild conditions such as 45 ° C. and 1 atm. It was.
比較例29~36 種々の金属塩を用いた環状カーボネートの合成
種々の金属塩0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表13に示す。なお、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Comparative Examples 29 to 36 Synthesis of Cyclic Carbonate Using Various Metal Salts 150 mg (1 mmol; sum) of phenylglycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various metal salts at 25 ° C. After the addition of Kobunyaku Kogyo Co., Ltd., the reaction system is sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa), and stirred at 25 ° C. for 24 hours in the same atmosphere. Reacted. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 13. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
種々の金属塩0.05mmolの有機溶媒0.2mL溶液(又は懸濁液)に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。これらの結果を表13に示す。なお、表中、有機溶媒におけるNMPは1-メチル-2-ピロリジノン(N-メチルピロリドン)を表し、MTHFは2-メチルテトラヒドロフランを表す。 Comparative Examples 29 to 36 Synthesis of Cyclic Carbonate Using Various Metal Salts 150 mg (1 mmol; sum) of phenylglycidyl ether in 25 mL of organic solvent 0.2 mL (or suspension) of various metal salts at 25 ° C. After the addition of Kobunyaku Kogyo Co., Ltd., the reaction system is sealed with a balloon filled with carbon dioxide gas to form a carbon dioxide gas atmosphere (0.1 MPa), and stirred at 25 ° C. for 24 hours in the same atmosphere. Reacted. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of the analysis, almost no by-products were confirmed (5% or less), and the materials other than the produced carbonate were unreacted raw materials. These results are shown in Table 13. In the table, NMP in the organic solvent represents 1-methyl-2-pyrrolidinone (N-methylpyrrolidone), and MTHF represents 2-methyltetrahydrofuran.
種々の金属塩を触媒として、エポキシドに対する反応性について検討した。表13の結果から明らかなように、金属塩を用いた場合には、総じて反応性が低く、反応系内でヨウ素アニオンが生じると考えられるヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムを用いた場合では、生成物である(フェノキシメチル)エチレンカーボネートの収率が10%台にとどまる結果となった。また、アルミナに担持したフッ化カリウムやヨウ化銅ではほとんど反応が進行せず、高価なヨウ化セシウムを用いた場合でも、生成物である(フェノキシメチル)エチレンカーボネートの収率は28%であった。これらの結果から、金属塩を触媒として用いる反応は、常温、常圧等の穏和な条件下でのカーボネートの合成には適していないことが判った。
The reactivity to epoxides was examined using various metal salts as catalysts. As is clear from the results in Table 13, when metal salts were used, lithium iodide, sodium iodide, and potassium iodide, which are considered to be low in reactivity and generate iodine anions in the reaction system, were used. In some cases, the yield of the product (phenoxymethyl) ethylene carbonate remained in the 10% range. In addition, the reaction hardly proceeds with potassium fluoride and copper iodide supported on alumina, and even when expensive cesium iodide is used, the yield of the product (phenoxymethyl) ethylene carbonate was 28%. It was. From these results, it was found that the reaction using a metal salt as a catalyst is not suitable for the synthesis of carbonate under mild conditions such as normal temperature and normal pressure.
比較例37 金属塩とアミジンを触媒として用いた環状カーボネートの合成
臭化リチウム0.05mmolと1,8-ジアザビシクロ[5.4.0]-7-ウンデセン0.05mmolの1-メチル-2-ピロリジノン(N-メチルピロリドン)0.2mL溶液に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、生成した(フェノキシメチル)エチレンカーボネートの収率は31%であった。また、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。 Comparative Example 37 Synthesis of cyclic carbonate using metal salt and amidine as catalyst 1-methyl-2-pyrrolidinone of 0.05 mmol of lithium bromide and 0.05 mmol of 1,8-diazabicyclo [5.4.0] -7-undecene After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether to a 0.2 mL solution of (N-methylpyrrolidone) at 25 ° C., the reaction system is sealed with a balloon filled with carbon dioxide gas. Under a carbon dioxide gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 25 ° C. for 24 hours in the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of analysis, the yield of the produced (phenoxymethyl) ethylene carbonate was 31%. Further, almost no by-products were confirmed (5% or less), and the raw materials other than the produced carbonate were unreacted raw materials.
臭化リチウム0.05mmolと1,8-ジアザビシクロ[5.4.0]-7-ウンデセン0.05mmolの1-メチル-2-ピロリジノン(N-メチルピロリドン)0.2mL溶液に、25℃中、フェニルグリシジルエーテル150mg(1mmol;和光純薬工業株式会社製)を加えた後、二酸化炭素ガスを充填した風船で反応系を密閉して二酸化炭素ガス雰囲気下(0.1MPa)とし、同雰囲気下、25℃で24時間攪拌して反応させた。次いで反応液を少量抜き取った後、抜き取った反応液を重クロロホルムで希釈し、重クロロホルムに含まれるテトラメチルシランを基準として反応液を分析し、生成した(フェノキシメチル)エチレンカーボネートの収率を算出した。分析の結果、生成した(フェノキシメチル)エチレンカーボネートの収率は31%であった。また、副生成物はほとんど確認されず(5%以下)、生成したカーボネート以外は未反応の原料であった。 Comparative Example 37 Synthesis of cyclic carbonate using metal salt and amidine as catalyst 1-methyl-2-pyrrolidinone of 0.05 mmol of lithium bromide and 0.05 mmol of 1,8-diazabicyclo [5.4.0] -7-undecene After adding 150 mg (1 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of phenylglycidyl ether to a 0.2 mL solution of (N-methylpyrrolidone) at 25 ° C., the reaction system is sealed with a balloon filled with carbon dioxide gas. Under a carbon dioxide gas atmosphere (0.1 MPa), the reaction was carried out by stirring at 25 ° C. for 24 hours in the same atmosphere. Next, after extracting a small amount of the reaction solution, the extracted reaction solution was diluted with deuterated chloroform, and the reaction solution was analyzed with reference to tetramethylsilane contained in deuterated chloroform, and the yield of the produced (phenoxymethyl) ethylene carbonate was calculated. did. As a result of analysis, the yield of the produced (phenoxymethyl) ethylene carbonate was 31%. Further, almost no by-products were confirmed (5% or less), and the raw materials other than the produced carbonate were unreacted raw materials.
1,8-ジアザビシクロ[5.4.0]-7-ウンデセンには、二酸化炭素を取り込む機能があるため、表13に示す金属塩を単独で用いた場合と比較して、反応性は高いことが窺える。しかしながら、常温、常圧等の穏和な条件下では、カーボネートの収率は低く、工業的利用という観点からは十分ではなかった。
Since 1,8-diazabicyclo [5.4.0] -7-undecene has a function of taking in carbon dioxide, it has higher reactivity than the case where the metal salt shown in Table 13 is used alone. I can hear. However, under mild conditions such as normal temperature and normal pressure, the yield of carbonate is low, which is not sufficient from the viewpoint of industrial use.
以上の結果から、第一級乃至第三級アミンのなかでもpKaが8以上のアミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素とを組み合わせた、本発明にかかる触媒(アミン化合物塩)が、常温、常圧等の穏和な条件下でも、カーボネート反応が効率的に進行することを明らかにした。すなわち、第一級乃至第三級アミンであれば、いずれのアミンでもよいというわけではないし、アニオン成分も何でもよいというわけではないのである。言い換えれば、特定の組み合わせのみからなる触媒(アミン化合物塩)が、カーボネート反応を効率的に進行させることができるのである。このような触媒(アミン化合物塩)を用いる本発明は、常温、常圧等の穏和な条件下でも、高収率で環状カーボネートを製造できることを明らかにした。また、本発明にかかる触媒(アミン化合物塩)は、メタルフリー(金属フリー)の触媒(アミン化合物塩)でもあるので、本発明にかかる触媒(アミン化合物塩)を用いる本発明は、グリーンケミストリーの観点からも有用であり、環境負荷低減を考慮した実用的な製造方法であることを明らかにした。
From the above results, the present invention is a combination of hydrogen iodide and an amine compound selected from monoamine, cyclic amidine and guanidine, which is an amine having a pKa of 8 or more among primary to tertiary amines. It has been clarified that the catalyst (amine compound salt) proceeds efficiently under mild conditions such as normal temperature and normal pressure. That is, any amine can be used as long as it is a primary to tertiary amine, and an anion component is not anything. In other words, a catalyst (amine compound salt) consisting only of a specific combination can efficiently promote the carbonate reaction. The present invention using such a catalyst (amine compound salt) has revealed that a cyclic carbonate can be produced in a high yield even under mild conditions such as normal temperature and normal pressure. In addition, since the catalyst (amine compound salt) according to the present invention is also a metal-free (metal-free) catalyst (amine compound salt), the present invention using the catalyst (amine compound salt) according to the present invention is based on green chemistry. It was clarified that it is useful from the viewpoint and is a practical manufacturing method considering reduction of environmental load.
本発明の製造方法は、例えばリチウムイオン二次電池の電解液、プラスチック原料等の多用途に幅広く利用されている環状カーボネートを、エポキシド(オキシラン)と二酸化炭素との反応によって製造するにあたり、常温、常圧等の穏和な条件下で当該環状カーボネート収率よく製造することを可能にするものである。更に、本発明の製造方法は、環境負荷低減を考慮した上で、環状カーボネートを実用的に製造することを可能にするものである。
In the production method of the present invention, for example, in producing a cyclic carbonate widely used in various applications such as an electrolyte of a lithium ion secondary battery, a plastic raw material, etc. by reaction of epoxide (oxirane) with carbon dioxide, This makes it possible to produce the cyclic carbonate with high yield under mild conditions such as normal pressure. Furthermore, the production method of the present invention makes it possible to practically produce a cyclic carbonate in consideration of reducing the environmental load.
Claims (8)
- エポキシドと二酸化炭素とを、pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素の存在下で反応させることを特徴とする、環状カーボネートの製造方法。 An epoxide and carbon dioxide are reacted in the presence of hydrogen iodide with an amine compound selected from monoamines, cyclic amidines and guanidines, which is a primary to tertiary amine having a pKa of 8 or more. The manufacturing method of cyclic carbonate.
- 前記アミン化合物が、下記一般式[1]で示されるモノアミン、下記一般式[2]で示される環状アミジン及び下記一般式[3]で示されるグアニジンから選ばれるものである、請求項1に記載の製造方法。
(式中、R1は、炭素数3~10の分枝状もしくは環状のアルキル基又は炭素数7~12のアラルキル基を表し、R2及びR3はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表す。)
(式中、R4及びR5は、ともに結合して炭素数2~5のアルキレン鎖を表し、これらと結合している窒素原子と当該窒素原子と結合している炭素原子とともに5~8員環を形成しており、R6及びR7はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表すか、あるいはR6とR7とで環状構造を形成していてもよい。)
(式中、R8は、水素原子、ヘテロ原子を有していてもよい炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基又は炭素数7~12のアラルキル基を表し、R9、R10、R11及びR12はそれぞれ独立して、水素原子又は炭素数1~10の直鎖状、分枝状もしくは環状のアルキル基を表すか、あるいはR8とR9、R9とR10、R10とR11、R11とR12又はR8とR12とで環状構造を形成していてもよい。) 2. The amine compound according to claim 1, wherein the amine compound is selected from a monoamine represented by the following general formula [1], a cyclic amidine represented by the following general formula [2], and a guanidine represented by the following general formula [3]. Manufacturing method.
(Wherein R 1 represents a branched or cyclic alkyl group having 3 to 10 carbon atoms or an aralkyl group having 7 to 12 carbon atoms, and R 2 and R 3 each independently represents a hydrogen atom or a carbon number 1 to 10 linear, branched or cyclic alkyl groups.)
(Wherein R 4 and R 5 are bonded to each other to represent an alkylene chain having 2 to 5 carbon atoms, and together with the nitrogen atom bonded thereto and the carbon atom bonded to the nitrogen atom, 5- to 8-membered members) Each of R 6 and R 7 independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 6 and R 7 , And may form a ring structure.)
(Wherein R 8 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms which may have a hetero atom, or an aralkyl group having 7 to 12 carbon atoms; R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 or R 8 and R 12 may form a cyclic structure.) - 前記アミン化合物が、下記一般式[1-I]で示されるモノアミン及び下記一般式[2-I]で示される環状アミジンから選ばれるものである、請求項1に記載の製造方法。
(式中、R1aは、炭素数4~6のt-アルキル基又は炭素数5~8のシクロアルキル基を表し、R2aは、水素原子、炭素数4~6のt-アルキル基又は炭素数5~8のシクロアルキル基を表す。)
(式中、mは、1~4の整数を表し、nは、1~4の整数を表す。) The production method according to claim 1, wherein the amine compound is selected from a monoamine represented by the following general formula [1-I] and a cyclic amidine represented by the following general formula [2-I].
(Wherein R 1a represents a t-alkyl group having 4 to 6 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms, and R 2a represents a hydrogen atom, a t-alkyl group having 4 to 6 carbon atoms, or a carbon atom. Represents a cycloalkyl group of 5 to 8.)
(In the formula, m represents an integer of 1 to 4, and n represents an integer of 1 to 4.) - 前記アミン化合物が、モノ-t-ブチルアミン、ジシクロヘキシルアミン及び1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)から選ばれるものである、請求項1に記載の製造方法。 The production method according to claim 1, wherein the amine compound is selected from mono-t-butylamine, dicyclohexylamine, and 1,8-diazabicyclo [5.4.0] -7-undecene (DBU).
- 前記アミン化合物が、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the amine compound is 1,8-diazabicyclo [5.4.0] -7-undecene (DBU).
- pKaが8以上の第一級乃至第三級アミンであって、モノアミン、環状アミジン及びグアニジンから選ばれるアミン化合物とヨウ化水素とから調製される、プロトンとヨウ素アニオンを有するアミン化合物塩を予め調製する工程を含む、請求項1に記載の製造方法。 A pre-prepared amine compound salt having a proton and iodine anion, which is a primary to tertiary amine having a pKa of 8 or more and is prepared from an amine compound selected from monoamine, cyclic amidine and guanidine and hydrogen iodide. The manufacturing method of Claim 1 including the process to do.
- 20~60℃で反応させる、請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction is carried out at 20 to 60 ° C.
- 0.09~0.11MPaで反応させる、請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction is carried out at 0.09 to 0.11 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013547261A JP6146312B2 (en) | 2011-12-02 | 2012-12-01 | Method for producing cyclic carbonate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-265340 | 2011-12-02 | ||
JP2011265340 | 2011-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013081157A1 true WO2013081157A1 (en) | 2013-06-06 |
Family
ID=48535603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081217 WO2013081157A1 (en) | 2011-12-02 | 2012-12-01 | Process for producing cyclic carbonate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6146312B2 (en) |
WO (1) | WO2013081157A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216498A1 (en) | 2016-06-17 | 2017-12-21 | Veolia Recherche Et Innovation | Co2 recovery |
CN107626308A (en) * | 2017-08-30 | 2018-01-26 | 江南大学 | One kind is used for CO2The hydrotalcite carried with doped Au catalyst and preparation method of cycloaddition reaction and bisphenol synthesis F |
JP2020019745A (en) * | 2018-08-03 | 2020-02-06 | 日油株式会社 | (Meth) acrylate monomer containing cyclocarbonate group |
JPWO2021144996A1 (en) * | 2020-01-15 | 2021-07-22 | ||
CN117567425A (en) * | 2023-11-20 | 2024-02-20 | 南京工业大学 | Method for preparing cyclic carbonate from halogen-free ionic liquid |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245584A (en) * | 1985-08-16 | 1987-02-27 | ヘキスト・アクチエンゲゼルシヤフト | Production of 2-oxo-1, 3-dioxolane |
WO2008031864A1 (en) * | 2006-09-15 | 2008-03-20 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of alkylene carbonate |
JP2010100539A (en) * | 2008-10-21 | 2010-05-06 | Jsr Corp | Method of manufacturing cyclic carbonate compound |
-
2012
- 2012-12-01 JP JP2013547261A patent/JP6146312B2/en active Active
- 2012-12-01 WO PCT/JP2012/081217 patent/WO2013081157A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245584A (en) * | 1985-08-16 | 1987-02-27 | ヘキスト・アクチエンゲゼルシヤフト | Production of 2-oxo-1, 3-dioxolane |
WO2008031864A1 (en) * | 2006-09-15 | 2008-03-20 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of alkylene carbonate |
JP2010100539A (en) * | 2008-10-21 | 2010-05-06 | Jsr Corp | Method of manufacturing cyclic carbonate compound |
Non-Patent Citations (1)
Title |
---|
NAOTO AOYAGI ET AL.: "Remarkably Effect Catalysis of Amidine Hydroiodides for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions", CHEMISTRY LETTERS, vol. 41, no. 3, 2012, pages 240 - 241, XP003031316 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216498A1 (en) | 2016-06-17 | 2017-12-21 | Veolia Recherche Et Innovation | Co2 recovery |
CN107626308A (en) * | 2017-08-30 | 2018-01-26 | 江南大学 | One kind is used for CO2The hydrotalcite carried with doped Au catalyst and preparation method of cycloaddition reaction and bisphenol synthesis F |
CN107626308B (en) * | 2017-08-30 | 2020-08-04 | 江南大学 | For CO2Hydrotalcite loaded gold-doped catalyst for cycloaddition reaction and bisphenol F synthesis and preparation method thereof |
JP2020019745A (en) * | 2018-08-03 | 2020-02-06 | 日油株式会社 | (Meth) acrylate monomer containing cyclocarbonate group |
JP7094493B2 (en) | 2018-08-03 | 2022-07-04 | 日油株式会社 | Method for Producing Cyclocarbonate Group-Containing (Meta) Acrylate Monomer |
JPWO2021144996A1 (en) * | 2020-01-15 | 2021-07-22 | ||
JP7486721B2 (en) | 2020-01-15 | 2024-05-20 | 日油株式会社 | Cyclocarbonate group-containing (meth)acrylate monomers and polymers |
CN117567425A (en) * | 2023-11-20 | 2024-02-20 | 南京工业大学 | Method for preparing cyclic carbonate from halogen-free ionic liquid |
Also Published As
Publication number | Publication date |
---|---|
JP6146312B2 (en) | 2017-06-14 |
JPWO2013081157A1 (en) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6146312B2 (en) | Method for producing cyclic carbonate | |
DK2970263T3 (en) | PROCESSES FOR THE MANUFACTURE OF AN APOPTOSIS-PRACTICING EFFECT | |
US11225417B2 (en) | Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal | |
US8981095B2 (en) | Intermediate compounds and process for the preparation of lurasidone and salts thereof | |
WO2018211952A1 (en) | Carbonate derivative production method | |
WO2006106960A1 (en) | Process for producing disulfonyl fluoride compound | |
US11130763B2 (en) | Method for preparing a bicyclic guanidine and its derivatives | |
WO2018211953A1 (en) | Fluorinated carbonate derivative production method | |
CA3099778A1 (en) | Method for preparing oligonucleic acid compound | |
JP2023541873A (en) | Purification of bis(fluorosulfonyl)imide salt | |
JP6172152B2 (en) | Method for producing cyclic carbonate | |
KR101569571B1 (en) | Method for synthesis of organic carbonates | |
US6794519B2 (en) | Process for the production of sulfonic esters | |
JP6210065B2 (en) | Method for producing cyclic carbonate | |
US9586926B2 (en) | Methods of making alkylene carbonates and methods of converting CO2 | |
CN102180816A (en) | Preparation method of asymmetric type bi-fluoro sulfimide potassium | |
CN102365266B (en) | Fluorine-containing n-alkyl sulfonyl imide compound, manufacturing method therefor, and method of manufacturing an ionic compound | |
CN105130908B (en) | The preparation method and its synthetic intermediate of the cyano methyl pyrimidine of 4,6 dialkoxy 2 | |
CN113698409A (en) | Multipurpose diazabicyclo compound, preparation method and application in synthetic drugs | |
JP5412879B2 (en) | Trithiocarbonate compound and process for producing the same | |
RU2674027C2 (en) | Method of obtaining azd5363 (options) and new intermediate compound applicable therein | |
JP2013518901A (en) | Process for producing polyalkylated oligoalkylene polyamines | |
US8889891B2 (en) | Method for preparing a furfuranol-based compound and 2-furancarboxylic acid-based compound using an ionic liquid as a solvent | |
JP2012036155A (en) | Bis(oxetane vinyl ether) compound, and method for producing the same | |
EP0781272A1 (en) | Novel synthesis of penta-substituted guanidines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853718 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547261 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12853718 Country of ref document: EP Kind code of ref document: A1 |