[go: up one dir, main page]

WO2013080701A1 - Laminate porous film roll and manufacturing method thereof - Google Patents

Laminate porous film roll and manufacturing method thereof Download PDF

Info

Publication number
WO2013080701A1
WO2013080701A1 PCT/JP2012/077222 JP2012077222W WO2013080701A1 WO 2013080701 A1 WO2013080701 A1 WO 2013080701A1 JP 2012077222 W JP2012077222 W JP 2012077222W WO 2013080701 A1 WO2013080701 A1 WO 2013080701A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
laminated
coating layer
laminated porous
roll
Prior art date
Application number
PCT/JP2012/077222
Other languages
French (fr)
Japanese (ja)
Inventor
寺井 智彦
桃平 覚
博孝 荒井
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2013080701A1 publication Critical patent/WO2013080701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminated porous film roll using a polyolefin resin porous film and a method for producing the same.
  • the laminated porous film roll of the present invention can be used as a packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator, and in particular, a separator for a nonaqueous electrolyte battery. Can be suitably used.
  • the polymer porous body with many fine communication holes is used for separation membranes used for the production of ultrapure water, purification of chemicals, water treatment, waterproof and moisture-permeable films used for clothing and sanitary materials, and batteries. It is used in various fields such as battery separators.
  • secondary batteries are widely used as power sources for portable devices such as OA, FA, household electric appliances or communication devices.
  • portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices.
  • large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
  • the working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V.
  • the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages.
  • the solvent for the non-aqueous electrolyte a high dielectric constant organic solvent capable of allowing more lithium ions to be present is used, and organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. in use.
  • a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
  • a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit.
  • the separator is required to have insulating properties due to its role.
  • a porous film is used as a separator.
  • SD characteristic As a characteristic that contributes to the safety of the battery separator, there is a shutdown characteristic (hereinafter referred to as “SD characteristic”).
  • This SD characteristic is a function that can prevent a subsequent increase in temperature inside the battery because the micropores are closed when the temperature is about 100 to 150 ° C., and as a result, ion conduction inside the battery is blocked.
  • the lowest temperature among the temperatures at which the micropores of the laminated porous film are blocked is referred to as a shutdown temperature (hereinafter referred to as “SD temperature”).
  • SD temperature shutdown temperature
  • Patent Document 1 a laminated porous film (Patent Document 1) is proposed in which a heat-resistant layer (a coating layer for improving heat resistance) containing an inorganic filler and a resin binder is laminated on at least one surface of a polyolefin resin porous film.
  • the corona treatment is usually applied to the surface on which the coating layer is provided in order to ensure the adhesion between the coating layer and the polyolefin porous film.
  • Surface treatment by etc. is performed.
  • polyolefin resin porous films for battery separators are very thin and porous, so that the film tends to wrinkle during and / or after surface treatment such as corona treatment, and the surface treatment is performed. There is a problem that the porous film cannot be applied neatly.
  • the coating layer in the laminated porous film in which the coating layer is partially laminated on at least one surface of the polyolefin resin porous film, the coating layer is not laminated on the portion where the coating layer is laminated (coating layer lamination portion).
  • a film can be wound up, suppressing generation
  • the present invention (1) A laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer laminate portion X and at least one non-laminate portion Y are formed.
  • a laminated porous film roll wound up, wherein the film thickness Ta at the end of at least one coating layer laminated portion X and the film thickness Tb at the central portion satisfy a relational expression of Ta ⁇ Tb, and the laminated porous film is wound.
  • the laminated porous film roll having a length of 1000 m or more, (2) The laminated porous film roll according to (1), wherein the non-laminated portion Y is provided at an end in the film width direction, (3) The laminated porous film roll according to (1) or (2), wherein the non-laminated portion Y is provided at a place other than the end in the film width direction, (4) The film thickness Ta1 at one end and the film thickness Ta2 at the other end in at least one coating layer laminate portion X satisfy the relational expression
  • the laminated porous film roll according to 1, (6) The laminated porous film roll according to any one of (1) to (5), wherein the width of at least one non-laminate portion Y is 5 mm to 100 mm, (7) The laminated porous film roll according to any one of (1) to (6), wherein the thickness of the coating layer in the central portion of at least one coating layer laminate portion X is 0.5 ⁇ m to 50 ⁇ m, (8) In any one of (1) to (7), the ratio of the thickness of the coating layer to the thickness of the polyolefin resin porous film in the central portion of at least one coating layer laminate portion X is 1/1 to 1/6.
  • a laminated porous film roll according to claim 1 (9) The laminated porous film roll according to any one of (1) to (8), wherein the polyolefin resin porous film has a thickness of 5 ⁇ m to 50 ⁇ m, (10) The laminated porous film roll according to any one of (1) to (9), wherein a width of the laminated porous film is 0.3 m to 3 m, (11) The laminated porous film roll according to any one of (1) to (10), wherein a coating layer is laminated on both surfaces of a polyolefin resin porous film, (12) The laminated porous film roll according to any one of (1) to (11), wherein the coating layer comprises a filler and a resin binder, (13) The coating layer is used as a laminated porous film roll according to any one of (1) to (12) and (14) a separator for a nonaqueous electrolyte battery, which are laminated by coating. It is an object of the present invention to provide a laminated porous film roll according to any one of (1) to
  • the present invention also provides: (15) A laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer laminate portion X and at least one non-laminate portion Y are formed.
  • a method for producing a wound laminated porous film roll wherein the coating layer is formed by gravure coating and corresponds to at least one coating layer laminate portion X in the film width direction of the gravure roll used for gravure coating
  • a method for producing a laminated porous film roll wherein the cell depth Tc at the end of the engraving portion Z and the cell depth Td at the center satisfy the relational expression Tc ⁇ Td;
  • the production method (17) The method for producing a laminated porous film roll according to (15) or (16), wherein the shape of the cell is trapezoidal in the depth direction, (18) Any one of (15) to (17), wherein the rotation direction of the gravure roll at the time of gravure coating is opposite to the conveyance direction of the substrate at the position where the paint is transferred to the substrate Or the method for producing a laminated porous film roll according to (1), and (19) when transferring the paint, the substrate is brought into contact with the gravure roll through the guide rolls arranged before and after the gravure roll without using the back roll. It is another object of the present invention to provide a method for producing a laminated porous film roll as described in (18), wherein the coating material is transferred.
  • a laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin resin porous film the occurrence of wrinkles is suppressed by controlling the height at the end of the coating layer lamination part.
  • a laminated porous film roll having a uniform quality and improved secondary workability such as slits can be provided.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the main component is intended to include 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition.
  • X to Y (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X or more and Y or less” unless otherwise specified. Is included.
  • Polyolefin resin porous film examples of the polyolefin resin used in the polyolefin resin porous film include homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexane and the like. Among these, a polypropylene resin and a polyethylene resin are preferable.
  • Polypropylene resins include homopropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Random copolymers or block copolymers with ⁇ -olefins may be mentioned. Among these, homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the laminated porous film.
  • the polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably 83 to 98%, and still more preferably 85 to 97%. If the isotactic pentad fraction is too low, the mechanical strength of the film may be reduced.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. It conformed to Zambelli et al (Macromolecules 8,687, (1975)).
  • Mw / Mn which is a parameter indicating a molecular weight distribution
  • Mw / Mn is 2.0 to 10.0. More preferred is 2.0 to 8.0, and still more preferred is 2.0 to 6.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution.
  • Mw / Mn is 2.0 or more, there is no problem such as deterioration of extrusion moldability, and industrial production is easy. It becomes.
  • Mw / Mn is 10.0 or less, the low molecular weight component is small and the mechanical strength of the laminated porous film is not lowered.
  • Mw / Mn is obtained by GPC (gel permeation chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and 1.0 to 10 g / 10 minutes. It is more preferable. When the MFR is 0.5 g / 10 min or more, the resin has a high melt viscosity at the time of molding, and sufficient productivity can be ensured. On the other hand, the mechanical strength of the obtained laminated porous film can be sufficiently maintained by setting it to 15 g / 10 min or less. MFR is measured according to JIS K7210 under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • the method for producing the polypropylene resin is not particularly limited, and a known polymerization method using a known polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. And a polymerization method using a single site catalyst.
  • a known polymerization method using a known polymerization catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • a polymerization method using a single site catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • polypropylene resins examples include the trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” “Thermolan” (Mitsubishi Chemical) , “Sumitomo Noblen”, “Tough Selenium” (manufactured by Sumitomo Chemical Co., Ltd.), “Prime Polypro”, “Prime TPO” (manufactured by Prime Polymer Co., Ltd.), “Adflex”, “Adsyl”, “HMS-PP (PF814)” ( Commercially available products such as “San Aroma” and “Inspire” (Dow Chemical) can be used.
  • the polyolefin resin porous film used in the present invention preferably has ⁇ activity.
  • the presence or absence of “ ⁇ activity” is determined by holding the laminated porous film with a differential scanning calorimeter from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute.
  • the temperature was lowered from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min and held for 1 minute, and when the temperature was raised again from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min
  • Tm ⁇ derived crystal melting peak temperature
  • the ⁇ activity of the porous film is calculated by the following formula using the crystal heat of fusion derived from ⁇ crystal ( ⁇ Hm ⁇ ) and the crystal heat of fusion derived from ⁇ crystal ( ⁇ Hm ⁇ ) of the polypropylene resin to be detected.
  • ⁇ activity (%) [ ⁇ Hm ⁇ / ( ⁇ Hm ⁇ + ⁇ Hm ⁇ )] ⁇ 100
  • the amount of heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower.
  • the amount of heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the crystal melting calorie ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected in the range of from 0 ° C. to 165 ° C.
  • the ⁇ activity of the polyolefin resin porous film is preferably 20% or more, and more preferably 40% or more and 60% or more. If the laminated porous film has a ⁇ activity of 20% or more, a lot of fine and uniform pores are formed by stretching, and as a result, a separator for a lithium ion battery having high mechanical strength and excellent air permeability is obtained. Can do.
  • the upper limit of ⁇ activity is not particularly limited, but the higher the ⁇ activity, the more effective the effect is obtained.
  • the ⁇ activity can be measured regardless of whether the polypropylene resin porous film has a single layer structure or is laminated with another porous layer. Further, if a layer containing a polypropylene resin other than the layer made of polypropylene resin is laminated, it is preferable that both layers have ⁇ activity.
  • ⁇ crystal nucleating agent examples include the following, but are not particularly limited as long as they increase the formation / growth of ⁇ -crystals of a polypropylene resin, and two or more types thereof. May be used in combination.
  • examples of the ⁇ crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
  • Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising component A which is an organic dibasic acid and a component B which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound; Made of magnesium compound Such as the formation thereof.
  • specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A No. 06-289656, and JP-A No. 09-194650.
  • ⁇ crystal nucleating agent Commercially available products of ⁇ crystal nucleating agent are ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd.
  • Specific examples of polypropylene resins to which ⁇ crystal nucleating agent is added include polypropylene “Bepol® B” manufactured by Aristech. -022SP ”, polypropylene manufactured by Borealis“ Beta ( ⁇ ) -PP BE60-7032 ”, polypropylene manufactured by Mayzo“ BNX BETAPP-LN ”, and the like.
  • the ratio of the ⁇ -crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the ⁇ -crystal nucleating agent or the composition of the polypropylene-based resin. 0.0001 to 5.0 parts by mass of the agent is preferred. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable. If it is 0.0001 part by mass or more, ⁇ crystals of polypropylene resin can be sufficiently produced and grown at the time of production, and sufficient ⁇ activity can be secured even when used as a separator, and the desired air permeability performance can be obtained. can get.
  • Addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the ⁇ crystal nucleating agent on the surface of the laminated porous film.
  • the amount of ⁇ crystal nucleating agent added to each layer may be the same or different.
  • the porous structure of each layer can be appropriately adjusted by changing the addition amount of the ⁇ crystal nucleating agent.
  • additives generally blended in the resin composition can be appropriately added to the polypropylene resin within a range that does not significantly impair the effects of the present invention.
  • the additive include recycling resin, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the laminated porous film.
  • Inorganic particles such as, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Examples thereof include additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • a polyethylene resin porous film is suitably used as the porous film laminated with the porous film made of the polypropylene resin.
  • the polyethylene resin include ultra low density polyethylene, low density polyethylene, high density polyethylene, linear low density polyethylene, and homopolymer polyethylene such as ultra high molecular weight polyethylene having a characteristic molecular weight, as well as ethylene.
  • a propylene copolymer or a copolymer polyethylene of a polyethylene resin and another polyolefin resin can be used.
  • homopolymer polyethylene or copolymer polyethylene having an ⁇ -olefin comonomer content of 2 mol% or less is preferable, and homopolymer polyethylene is more preferable.
  • ⁇ -olefin comonomer There are no particular restrictions on the type of ⁇ -olefin comonomer.
  • the density of the polyethylene resin is preferably 0.910 to 0.970 g / cm 3 , more preferably 0.930 to 0.970 g / cm 3 , and 0.940 to 0.970 g / cm 3. 3 is more preferable.
  • a density of 0.910 g / cm 3 or more is preferable because it can have appropriate SD characteristics.
  • 0.970 g / cm 3 or less is preferable in that it can have an appropriate SD characteristic and can maintain stretchability.
  • the density can be measured according to JIS K7112 using a density gradient tube method.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 30 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. It is more preferable. If the MFR is 0.03 g / 10 min or more, the melt viscosity of the resin during the molding process is sufficiently low, which is excellent in productivity and preferable. On the other hand, if it is 30 g / 10 minutes or less, since sufficient mechanical strength can be obtained, it is preferable. MFR is measured in accordance with JIS K7210 under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the polymerization catalyst for the polyethylene resin is not particularly limited, and may be any one such as a Ziegler type catalyst, a Philips type catalyst, or a Kaminsky type catalyst.
  • a polymerization method of the polyethylene resin there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that, and any method of the polyethylene resin can be used.
  • porosification promoting compound It is preferable to add a porosity promoting compound that promotes porosity to the polyethylene resin. By adding the porosity promoting compound, a porous structure can be obtained more efficiently, and the shape and diameter of the pores can be easily controlled.
  • the porosity promoting compound is not limited, but specific examples include a porosity promoting compound selected from a modified polyolefin resin, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax. More preferably, at least one kind is included. Among these, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax, which is more effective when made porous, is more preferable, and a wax is more preferable from the viewpoint of moldability.
  • Examples of the alicyclic saturated hydrocarbon resin and modified products thereof include petroleum resins, rosin resins, terpene resins, coumarone resins, indene resins, coumarone-indene resins, and modified products thereof.
  • the petroleum resin is a C4 to C10 aliphatic olefin or diolefin obtained from a by-product such as naphtha pyrolysis, or an aromatic compound having C8 or more having an olefinically unsaturated bond.
  • An aliphatic, aromatic and copolymer petroleum resin obtained by singly or copolymerizing one or more of the compounds contained therein.
  • Examples of petroleum resins include aliphatic petroleum resins mainly containing C5 fraction, aromatic petroleum resins mainly containing C9 fraction, copolymer petroleum resins thereof, and alicyclic petroleum resins.
  • Examples of the terpene resin include terpene resins and terpene-phenol resins from ⁇ -pinene
  • examples of the rosin resin include rosin resins such as gum rosin and utudrodin, and esterified rosin resins modified with glycerin and pentaerythritol.
  • the alicyclic saturated hydrocarbon resin and the modified product thereof have relatively good compatibility when mixed with a polyethylene resin, but a petroleum resin is more preferable in terms of color tone and thermal stability, and a hydrogenated petroleum resin is used. More preferably.
  • Hydrogenated petroleum resin is obtained by hydrogenating petroleum resin by a conventional method.
  • Examples thereof include hydrogenated aliphatic petroleum resins, hydrogenated aromatic petroleum resins, hydrogenated copolymer petroleum resins and hydrogenated alicyclic petroleum resins, and hydrogenated terpene resins.
  • hydrogenated petroleum resins hydrogenated alicyclic petroleum resins obtained by copolymerizing and hydrogenating a cyclopentadiene compound and an aromatic vinyl compound are particularly preferable.
  • Examples of commercially available hydrogenated petroleum resins include “ALCON” (manufactured by Arakawa Chemical Industries).
  • the ethylene copolymer in the present invention is a compound obtained by copolymerizing ethylene and one or more of vinyl acetate, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, or carboxylic acid ester. It is.
  • the ethylene copolymer preferably has an ethylene monomer unit content of 50% by mass or more, more preferably 60% by mass or more, and still more preferably 65% by mass or more.
  • the content of ethylene monomer units is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. If the content of the ethylene monomer unit is within a predetermined range, a porous structure can be formed more efficiently.
  • ethylene copolymer those having an MFR (JIS K7210, temperature: 190 ° C., load: 2.16 kg) of 0.1 g / 10 min to 10 g / 10 min are preferably used. If the MFR is 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily. On the other hand, if the MFR is 10 g / 10 min or less, the strength of the film is hardly lowered, which is preferable.
  • MFR JIS K7210, temperature: 190 ° C., load: 2.16 kg
  • the ethylene-based copolymer includes “EVAFLEX” (Mitsui DuPont, manufactured by Polychemical Co., Ltd.), “Novatech EVA” (manufactured by Nippon Polyethylene Co., Ltd.) as an ethylene-vinyl acetate copolymer, and “NUC as an ethylene-acrylic acid copolymer.
  • the wax in the present invention is an organic compound that satisfies the following properties (a) and (b).
  • the melting point is 40 ° C to 200 ° C.
  • the melt viscosity at a temperature 10 ° C. higher than the melting point is 50 Pa ⁇ s or less.
  • ⁇ For wax including polar or nonpolar wax, polypropylene wax, polyethylene wax and wax modifier.
  • paraffin wax, polyethylene wax, and microcrystalline wax are preferable from the viewpoint of efficiently forming a porous structure, and microcrystalline wax that can further reduce the pore diameter is more preferable from the viewpoint of SD characteristics.
  • examples of commercially available polyethylene wax include “FT-115” (manufactured by Nippon Seiwa), and examples of microcrystalline wax include “Hi-Mic” (manufactured by Nippon Seiwa).
  • the blending amount of the porosity promoting compound is 1 mass as a lower limit with respect to 100 parts by mass of the polyethylene resin contained in one layer when the interface between the polyethylene resin and the porosity promoting compound is peeled to form micropores. Part or more, preferably 5 parts by weight or more, more preferably 10 parts by weight or more.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • thermoplastic resin may be used in addition to the polyethylene-based resin and the porosity promoting compound as long as the thermal characteristics of the porous film, specifically, the porosity is not impaired.
  • Other thermoplastic resins that can be mixed with the above-mentioned polyethylene resin include styrene resins such as polystyrene, AS resin, or ABS resin: polyvinyl chloride, fluorine resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or Ester resins such as polyarylate; ether resins such as polyacetal, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone or polyphenylene sulfide; polyamide resins such as 6 nylon, 6-6 nylon, 6-12 nylon And other thermoplastic resins.
  • thermoplastic elastomer examples include styrene / butadiene, polyolefin, urethane, polyester, polyamide, 1,2-polybutadiene, polyvinyl chloride, and ionomer.
  • an additive or other component that is generally blended in the resin composition may be included.
  • the additive include recycling resin, silica, talc, kaolin, carbonic acid, etc., which are added for the purpose of improving / adjusting the processability, productivity, and various physical properties of the laminated porous film.
  • Inorganic particles such as calcium, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents And additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • the nucleating agent is preferable because it has an effect of controlling the crystal structure of the polyethylene resin and reducing the porous structure at the time of stretching and opening.
  • Examples of commercially available products include “Gelall D” (manufactured by Shin Nippon Chemical Co., Ltd.), “Adeka Stub” (manufactured by Asahi Denka Kogyo Co., Ltd.), “Hyperform” (manufactured by Milliken Chemical Co., Ltd.), or “IRGACLEAR D” (Ciba Special Chemicals). Etc.).
  • “Rike Master” manufactured by Riken Vitamin Co., Ltd.
  • the like are commercially available.
  • the polyolefin-based resin porous film may be a single layer or a laminate, but is preferably laminated in two or more layers. Especially, what laminated
  • the layer structure of the polyolefin resin porous film is not particularly limited as long as at least one layer containing a polypropylene resin (hereinafter referred to as “A layer”) is present.
  • other layers hereinafter referred to as “B layer” can be laminated as long as they do not interfere with the function of the polyolefin resin porous film.
  • strength maintenance layer, the heat-resistant layer (high melting temperature resin layer), the shutdown layer (low melting temperature resin layer), etc. are mentioned.
  • a low melting point resin layer that ensures the safety of the battery is laminated by closing the hole in a high temperature atmosphere as described in JP-A No. 04-181651.
  • Specific examples include a two-layer structure in which A layers / B layers are stacked, a three-layer structure in which A layers / B layers / A layers, or B layers / A layers / B layers are stacked.
  • the physical properties of the polyolefin resin porous film of the present invention can be freely adjusted by the layer constitution, lamination ratio, composition of each layer, and production method.
  • the method for producing the non-porous film is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll. Is mentioned. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable. There are no particular limitations on the method for making the nonporous membrane-like material, and known methods such as wet uniaxial or more stretched porous and dry uniaxial or more stretched porous may be used.
  • the stretching method there are methods such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more to perform uniaxial stretching or biaxial stretching.
  • sequential biaxial stretching is preferable from the viewpoint of controlling the porous structure.
  • a manufacturing method when making a polyolefin resin porous film into a lamination, a manufacturing method is divided roughly into the following four according to the order of porous formation and lamination.
  • A A method of laminating each porous layer after laminating each porous layer or bonding with an adhesive or the like.
  • B A method of laminating each layer to produce a laminated nonporous film-like material and then making the nonporous film-like material porous.
  • C A method in which one of the layers is made porous and then laminated with another layer of a nonporous film to make it porous.
  • (D) A method of forming a laminated porous film by preparing a porous layer and then applying a coating such as inorganic / organic particles or depositing metal particles.
  • a coating such as inorganic / organic particles or depositing metal particles.
  • a method of forming a porous layer after preparing is particularly preferable.
  • a mixed resin composition of a polypropylene resin and, if necessary, a thermoplastic resin and additives is prepared.
  • raw materials such as polypropylene resin, ⁇ crystal nucleating agent, and other additives as required, preferably using Henschel mixer, super mixer, tumbler type mixer, etc., or by hand-blending all ingredients in a bag
  • the mixture is melt-kneaded with a single-screw or twin-screw extruder, a kneader or the like, preferably a twin-screw extruder, and then cut to obtain pellets.
  • the pellets are put into an extruder and extruded from a T-die extrusion die to form a film.
  • the type of T die is not particularly limited.
  • the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers.
  • the gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft ratio, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5. -1.0 mm. If it is 0.1 mm or more, it is preferable from a viewpoint of production speed, and if it is 3.0 mm or less, since a draft rate becomes small, it is preferable from a viewpoint of production stability.
  • the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C.
  • a temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved.
  • the temperature is set to 350 ° C. or lower, it is possible to suppress the deterioration of the resin composition, and hence the mechanical strength of the laminated porous film obtained.
  • the cooling and solidification temperature by the cast roll is very important, and the ratio of ⁇ crystal of the polypropylene resin in the film can be adjusted.
  • the cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C. It is preferable to set the cooling and solidification temperature to 80 ° C. or higher because the ratio of ⁇ crystals in the film can be sufficiently increased. Further, it is preferable to set the temperature to 150 ° C. or lower because troubles such as the extruded molten resin sticking to and wrapping around the cast roll hardly occur and the film can be efficiently formed into a film.
  • the ⁇ crystal ratio of the polypropylene resin of the film-like material before stretching can be adjusted to 20 to 100%.
  • uniaxial stretching may be performed in the longitudinal direction or the transverse direction, or biaxial stretching may be performed.
  • biaxial stretching simultaneous biaxial stretching may be sufficient and sequential biaxial stretching may be sufficient.
  • sequential biaxial stretching is more preferable because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
  • the longitudinal direction of the film and the film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”.
  • stretching in the longitudinal direction is referred to as “longitudinal stretching”
  • stretching in the direction perpendicular to the longitudinal direction is referred to as “lateral stretching”.
  • the stretching temperature needs to be changed appropriately depending on the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the stretching temperature in the longitudinal stretching is preferably about 0 to 130 ° C., More preferably, it is controlled in the range of 10 to 120 ° C., more preferably 20 to 110 ° C.
  • the longitudinal draw ratio is preferably 2 to 10 times, more preferably 3 to 8 times, still more preferably 4 to 7 times.
  • the stretching temperature in transverse stretching is generally from 100 to 160 ° C., preferably from 110 to 150 ° C., more preferably from 120 to 140 ° C.
  • the preferred transverse draw ratio is 2 to 10 times, more preferably 3 to 8 times, and still more preferably 4 to 7 times.
  • the stretching speed in the stretching step is preferably 500 to 12000% / min, more preferably 1500 to 10,000% / min, and further preferably 2500 to 8000% / min.
  • the porous film thus obtained is preferably subjected to heat treatment for the purpose of improving dimensional stability.
  • the effect of dimensional stability can be expected by setting the temperature to preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 140 ° C. or higher.
  • the heat treatment temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower.
  • the heat treatment temperature is 170 ° C. or lower, it is preferable because the heat treatment hardly melts polypropylene and maintains a porous structure.
  • a relaxation treatment of 1 to 20% may be performed as necessary.
  • the porous film of this invention is obtained by uniformly cooling and winding up after heat processing.
  • the surface treatment in the present invention means a physical and / or chemical surface modification treatment that can improve the surface adhesion of the polyolefin resin porous film.
  • Examples thereof include, but are not limited to, corona treatment, plasma treatment, plasma treatment under atmospheric pressure, flame plasma treatment (flame treatment), and UV treatment.
  • the surface treatment can be performed using known conditions and equipment that can be used in polyolefin resin porous films.
  • the polyolefin resin porous film may be surface-treated over the entire width, or may be surface-treated in stripes (partially).
  • the non-treated portion cannot be applied by coating or the like, or even if it can be applied, it can be peeled off because it is not in close contact with the porous film of the substrate. Therefore, also in the laminated porous film of the present invention in which the coating layer is partially laminated, the porous film may be subjected to a surface treatment over the entire width.
  • the present invention provides a laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer lamination portion X and at least one non-laminate portion Y are formed.
  • the present invention relates to a laminated porous film roll wound up in a roll shape with a predetermined length in the length direction of the film.
  • the film thickness Ta at the end of the coating layer laminate portion X and the film thickness Tb at the center satisfy the relational expression of Ta ⁇ Tb. Furthermore, it is preferable to satisfy the relational expression of Ta ⁇ Tb.
  • the end portion of the covering layer stacking portion refers to a maximum value within 5 mm from the boundary between the covering layer stacking portion and the non-stacking portion. In the present invention, it is possible to provide a film roll having a length of about 1000 m or more in which generation of wrinkles is suppressed by controlling the thickness of the film at the end portion and the central portion in the coating layer lamination portion. .
  • the laminated porous film roll of the present invention When the laminated porous film roll of the present invention is used as a separator for a non-aqueous electrolyte battery, it is desirable to make the winding length as long as possible because the battery is finally manufactured in a roll shape and stacked with a positive electrode or a negative electrode. .
  • the film can be wound to a length of 1000 m or more, it can be used as a battery separator for manufacturing a battery, is efficient from the viewpoint of productivity, and has a quality assortment. Can do.
  • the winding length is preferably 1000 m or more, more preferably 1200 m or more, further preferably 1500 m or more, and particularly preferably 2000 m or more.
  • the longer winding length is preferable, there is no particular upper limit, but the winding length can be substantially 100,000 m or less.
  • At least one non-laminate portion Y is provided in the film width direction.
  • the non-lamination part Y can be provided in the edge part of a film width direction, or places other than an edge part.
  • the non-laminate portion Y can be provided at one end in the film width direction, or at a place other than the end, for example, near the center.
  • two or more non-laminate portions Y are provided in the film width direction.
  • the non-laminate portions can be provided at both end portions or at both end portions and the vicinity of the center.
  • the width of at least one non-laminated portion Y is preferably in the range of 5 mm to 100 mm, more preferably 8 mm to 90 mm, and still more preferably 10 mm to 80 mm. If it is 5 mm or more, there is no problem in post-processing such as slits, and if it is 100 mm or less, wrinkles are less likely to occur, which is preferable.
  • the film thickness Ta1 at one end and the film thickness Ta2 at the other end of at least one coating layer laminate portion X satisfy the relational expression
  • the maximum value Tmax and the minimum value Tmin of the film thickness at the ends of all the coating layer laminated portions X satisfy the relational expression of (Tmax ⁇ Tmin) ⁇ 3 ⁇ m. Further, it is more preferable to satisfy the relational expression of (Tmax ⁇ Tmin) ⁇ 2 ⁇ m. By setting it within this range, it is possible to more effectively suppress the generation of wrinkles.
  • the thickness of the coating layer in the central portion of at least one coating layer laminate portion X is preferably 0.5 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 40 ⁇ m, and further preferably 2 ⁇ m to 30 ⁇ m. If it is in the range of 0.5 ⁇ m to 50 ⁇ m, heat resistance when used as a separator for a non-aqueous electrolyte battery can be taken.
  • the polyolefin resin porous film has a thickness of preferably 5 ⁇ m to 50 ⁇ m, more preferably 8 ⁇ m to 40 ⁇ m, still more preferably 10 ⁇ m to 30 ⁇ m.
  • a thin polyolefin-based resin porous film When used as a separator for a non-aqueous electrolyte battery, a thin polyolefin-based resin porous film has been desired.
  • a coating layer is partially formed even if it is a thin film of 30 ⁇ m or less.
  • the film laminated on can be rolled up for a long time while suppressing the generation of wrinkles.
  • the ratio of the thickness of the coating layer to the thickness of the polyolefin resin porous film in the central portion of at least one coating layer laminate portion X is preferably 1/1 to 1/6, more preferably 1/2. ⁇ 1 / 5, more preferably 1 ⁇ 2 to 1 ⁇ 4.
  • the coating layer may be laminated on one side of the polyolefin resin porous film, or may be laminated on both sides.
  • the width of the film roll is preferably 0.3 to 3 m, more preferably 0.4 to 2.5 m, and still more preferably 0.8 to 2.5 m. According to the present invention, even if the width of the film roll is widened to increase the number of non-laminate portions, the film roll can be wound with reduced wrinkles. It can be produced efficiently by slitting in the direction.
  • the laminated porous film roll in the present invention can be produced by any method as long as it is a method of partially laminating a coating layer on at least one surface of a polyolefin resin porous film. It is preferable to laminate a coating layer by coating (application) on the surface of the film that has been surface-treated.
  • Coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze method
  • a coater method, a cast coater method, a die coater method, a screen printing method, a spray coating method, and the like can be used, but in the present invention, the unevenness of the geometric pattern for transferring the coating liquid onto the roll ( It is particularly preferable to use a coating method using a gravure roll provided with a cell) (hereinafter also referred to as “gravure coating”).
  • the gravure coating method that can be used in the production method of the present invention is divided into a gravure coating method and a small-diameter gravure coating method from the size of the roll diameter, and in each method, the paint transfer position to the substrate
  • the gravure roll is divided into a normal application method in which the gravure roll is rotated in the same direction as the base material traveling direction and a reverse method in which the gravure roll is rotated in the reverse direction.
  • a back roll system (see FIG. 5) that supports the base material with a back roll from the opposite side of the base material, and a guide roll disposed before and after the gravure roll
  • a kiss system see FIG. 4 in which a material is brought into contact with a gravure roll to transfer a paint, which can be combined as appropriate.
  • Examples of the cell shape of the gravure roll that can be used in the production method of the present invention include a pyramid shape, a trapezoid shape, a lattice shape, and a diagonal shape (triangle, trapezoid).
  • a pyramid shape a trapezoid shape
  • a lattice shape a lattice shape
  • a diagonal shape triangle, trapezoid.
  • symmetrical cell shapes such as a pyramid shape, a lattice shape, and a trapezoid shape are preferably used.
  • a slanted gravure roll that is asymmetrical to the left and right is often used for the reason that the transfer rate of the coating liquid can be increased.
  • a left-right asymmetric oblique gravure roll is used, a lateral flow occurs in the coating liquid due to rotation, the thickness is not stabilized in the width direction, and the coating is not performed. Wrinkles may occur during construction and winding.
  • the coating liquid protrudes into the uncoated part and the uncoated part with an accurate width
  • wrinkles may occur in the uncoated portion and the coated portion. At this time, wrinkles may occur because of differences in the thickness of both end portions of the laminated portion, resulting in a height shift, and in particular, the thickness of one end portion is thick and the ear height is in the state. There are many cases.
  • a gravure roll having a symmetrical cell shape such as a pyramid shape, a lattice shape, or a trapezoidal shape, it is possible to advantageously prevent a difference in thickness between both end portions of the laminated portion.
  • partial coating stripe shape or the like
  • generation of wrinkles can be effectively suppressed.
  • a trapezoidal cell in the depth direction among the symmetrical cell shapes such as a pyramid shape, a lattice shape, and a trapezoidal shape (a non-limiting example is illustrated). 2).
  • the transfer rate is generally lower than that of a hatched gravure cell (see FIG. 3).
  • the transfer rate can be increased by using a deep trapezoidal cell. Therefore, it is preferable.
  • the formation of the uncoated portion is a method of making the portion corresponding to the uncoated portion of the gravure roll unengraved, a method of cutting back the gravure roll to a predetermined width, or an uncoated portion. Examples include a masking method.
  • the step of applying the coating liquid to the surface of the polyolefin resin porous film is not particularly limited, and may be after extrusion molding or after the longitudinal stretching step. It may be after the transverse stretching step.
  • a gravure roll having a symmetrical cell shape as described above, but in order to further ensure the effect, at least one coating in the film width direction of the gravure roll is used.
  • the cell depth Tc at the end of the engraving portion Z corresponding to the layer stack portion X and the cell depth Td at the center may satisfy the relational expression of Tc ⁇ Td, and further satisfy the relational expression of Tc ⁇ Td. It is considered effective.
  • a non-limiting example of such a gravure roll is shown in FIG. The example of the roll shown in FIG.
  • 1B is a roll-shaped cell having a roll diameter of 60 mm, a roll width of 400 mm, and a cell depth Tc at the end of the engraving portion: 240 ⁇ m, a cell volume of 100 cm 3 / m 2 , The cell depth Td at the center is 260 ⁇ m, and the cell volume is 110 cm 3 / m 2 .
  • a preferable range of the cell depth Tc at the end of the engraving portion Z corresponding to at least one coating layer laminate portion X in the film width direction of the gravure roll to be used is a coating solution (dispersion) concentration described later.
  • a coating solution (dispersion) concentration described later.
  • the type of the plate laminate type, oblique line type, etc.
  • the oblique line type it is 30 to 180 ⁇ m, more preferably 50 to 150 ⁇ m
  • the preferred range of the cell depth Td in the center is 50 to 200 ⁇ m More preferably, it is 70 to 220 ⁇ m.
  • the preferable range of the cell volume Tcv at the end is 15 to 80 cm 3 / m 2 , more preferably 30 to 60 cm 3 / m 2 , depending on the concentration of the coating liquid (dispersion) as well as the depth.
  • a preferable range of the cell volume Tdv at the center is 30 to 100 cm 3 / m 2 , more preferably 40 to 120 cm 3 / m 2 .
  • the thickness is 40 to 320 ⁇ m, more preferably 80 to 300 ⁇ m
  • the preferable range of the cell depth Td in the center is 60 to 430 ⁇ m, more preferably 80 to 400 ⁇ m.
  • the preferable range of the cell volume Tcv at the end is 15 to 150 cm 3 / m 2 , more preferably 40 to 120 cm 3 / m 2 , although it depends on the coating liquid (dispersion) concentration as well as the depth.
  • a preferable range of the cell volume Tdv at the center is 25 to 190 cm 3 / m 2 , more preferably 40 to 160 cm 3 / m 2 .
  • a heat-resistant layer containing a filler and a resin binder is particularly preferable.
  • the heat-resistant layer is a porous film formed by coating (applying) a surface of the polyolefin resin porous film with a filler-containing resin solution (dispersion) in which a filler and a resin binder are dissolved or dispersed in a solvent. Can be formed on the surface.
  • Filler examples of the filler that can be used in the present invention include an inorganic filler and an organic filler, but are not particularly limited.
  • inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; sulfates such as calcium sulfate, magnesium sulfate and barium sulfate; chlorides such as sodium chloride, calcium chloride and magnesium chloride, aluminum oxide and oxidation
  • oxides such as calcium, magnesium oxide, zinc oxide, titanium oxide, and silica
  • silicates such as talc, clay, and mica can be used.
  • barium sulfate and aluminum oxide are preferable.
  • organic fillers include ultra high molecular weight polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polytetrafluoroethylene, polyimide, polyether.
  • examples thereof include thermoplastic resins such as imide, melamine, and benzoguanamine, and thermosetting resins. Among these, cross-linked polystyrene and the like are particularly preferable.
  • the average particle size of the filler is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and the upper limit is preferably 3.0 ⁇ m or less, more preferably 1.5 ⁇ m or less. It is. Setting the average particle size to 0.1 ⁇ m or more is preferable from the viewpoint of reducing the shrinkage rate of the laminated porous film to make it difficult to break the film and from the viewpoint of realizing heat resistance. On the other hand, setting the average particle size to 3.0 ⁇ m or less is preferable from the viewpoint of reducing the shrinkage rate of the laminated porous film and making it difficult to break the membrane.
  • an average particle diameter shall be 1.5 micrometers or less from a viewpoint of forming a porous layer with small layer thickness favorably, and the viewpoint of the dispersibility in the porous layer of an inorganic filler.
  • the “average particle diameter of the inorganic filler” is a value measured according to a method using SEM.
  • the ratio of the filler to the total amount of the filler and the resin binder (hereinafter referred to as “F%”) is preferably 92% by mass or more, more preferably 95% by mass or more, and 98% by mass. The above is more preferable. If the F% is 92% by mass or more, it is preferable because a laminated porous film having connectivity can be produced and excellent air permeation performance can be exhibited.
  • the filler, the polyolefin-based resin porous film can be satisfactorily bonded, is electrochemically stable, and a laminated porous film is used as a battery separator.
  • a laminated porous film is used as a battery separator.
  • ethylene-acrylic acid copolymers such as ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-ethyl acrylate copolymers, fluororesins [Polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, etc.], fluorinated rubber, styrene-butadiene rubber (SBR), nitrile butadiene rubber (NBR), polybutadiene rubber (BR), poly Acrylonitrile (PAN), polyacrylic acid (PAA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), cyanoethyl polyvinyl alcohol, polyvinyl butyral (PVB), polyvinyl chloride Rupiroridon (PVP), polyviny
  • organic binders may be used alone or in combination of two or more.
  • polyvinyl alcohol, polyvinylidene fluoride, styrene-butadiene rubber, carboxymethyl cellulose, and polyacrylic acid are preferable.
  • a filler-containing resin solution in which the filler and the resin binder are dissolved or dispersed in a solvent is coated (applied) on the surface of the polyolefin resin porous film that has been surface-treated.
  • a heat-resistant layer can be formed on the surface of the porous film.
  • the solvent it is preferable to use a solvent in which the filler and the resin binder can be dissolved or dispersed uniformly and stably.
  • a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane.
  • the dispersion liquid contains a dispersant such as a surfactant, a thickener, a wetting agent, a disinfectant.
  • additives such as foaming agents, pH adjusting agents including acids and alkalis, and the like may be added. These additives are preferably those that can be removed upon solvent removal or plasticizer extraction, but are electrochemically stable in the range of use of the lithium ion secondary battery, do not inhibit the battery reaction, and are up to about 200 ° C. If stable, it may remain in the battery (in the laminated porous film).
  • Examples of a method for dissolving or dispersing the filler and the resin binder in a solvent include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, and a high-speed Examples thereof include an impact mill, ultrasonic dispersion, a mechanical stirring method using stirring blades, and the like.
  • the solvent is preferably a solvent that can be removed from the dispersion applied to the polyolefin resin porous film.
  • a method for removing the solvent any method that does not adversely affect the polyolefin resin porous film can be adopted without any particular limitation.
  • a method for removing the solvent for example, a method in which a polyolefin resin porous film is fixed and dried at a temperature below its melting point, a method in which drying is performed at a low temperature under reduced pressure, or a resin binder is solidified by being immersed in a poor solvent for the resin binder. And a method of extracting the solvent at the same time.
  • the heat-resistant layer can be formed in-line, but after the surface treatment, the porous film is wound up and offline in a separate process.
  • a heat-resistant layer can also be formed.
  • the total thickness of the laminated porous film obtained using the production method of the present invention is preferably 5 to 100 ⁇ m. More preferably, it is 8 to 50 ⁇ m, and still more preferably 10 to 30 ⁇ m.
  • it is used as a battery separator, if it is 5 ⁇ m or more, substantially necessary electrical insulation can be obtained. For example, even when a large force is applied to the protruding portion of the electrode, the battery separator is broken and short-circuited. It is difficult and safe.
  • the electrical resistance of a laminated porous film can be made small if a film thickness is 100 micrometers or less, the performance of a battery can fully be ensured.
  • the porosity is preferably 30% to 70% as described above, and if it is 30% or more, it is possible to obtain a laminated porous film that secures communication and has excellent air permeability. Moreover, if it is 70% or less, the intensity
  • the laminated porous film of the present invention has an air permeability measured in accordance with JIS P8117 of 2000 seconds / 100 ml or less.
  • the air permeability after heating at 135 ° C. for 5 seconds is set to 10,000 seconds / 100 ml or more, and the pores are quickly closed when abnormal heat is generated. It shuts off so that troubles such as battery rupture can be avoided.
  • a nonaqueous electrolyte battery containing the laminated porous film of the present invention as a battery separator will be described with reference to FIG.
  • Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
  • the wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a secondary battery 20 made of a cylindrical nonaqueous electrolyte battery is produced.
  • an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane.
  • LiPF 6 lithium hexafluorophosphate
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • a carbon material having an average particle size of 10 ⁇ m is mixed with a solution in which vinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a 70-mesh net. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry.
  • This positive electrode mixture slurry is passed through a 70-mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press. After forming, it is cut into a strip-like positive electrode plate.
  • polypropylene resin (Prime Polymer Co., Prime Polypro F300SV, density: 0.90 g / cm 3 , MFR: 3.0 g / 10 min) and ⁇ crystal nucleating agent 3,9-bis [4 -(N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane was prepared.
  • Each raw material is blended at a ratio of 0.2 part by mass of ⁇ -crystal nucleating agent with respect to 100 parts by mass of polypropylene resin, and the same direction twin screw extruder manufactured by Toshiba Machine Co., Ltd.
  • polypropylene resin composition pellets (caliber: 40 mm ⁇ , L / D: 32), melted and mixed at a preset temperature of 300 ° C., cooled and solidified in a water bath, cut into strands with a pelletizer, and produced polypropylene resin composition pellets.
  • the ⁇ activity of the polypropylene resin composition was 80%.
  • glycerin is added to 100 parts by mass of high-density polyethylene (manufactured by Nippon Polytechnics, Novatec HD HF560, density: 0.963 g / cm 3 , MFR: 7.0 g / 10 min).
  • the resulting porous film made of polyolefin resin was prepared using a corona treatment device (Kasuga Denki Co., Ltd., aluminum 5 type electrode, 2 ridges x 6, line speed: 50 m / min, treatment output: 1.5 kW), Corona surface treatment was performed under the conditions of the following examples.
  • Coating fluid for heat-resistant layer Alumina (Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m) 39.2 parts by mass, polyvinyl alcohol (Kuraray Co., Ltd., PVA120, saponification degree: 98.0 to 99.0, average polymerization degree) : 2000) A dispersion in which 0.8 part by mass was dispersed in 60.0 parts by mass of water was obtained.
  • Example 1 A gravure roll (roll diameter 60 mm, roll width 400 mm, lattice type, cell depth 260 ⁇ m, cell volume 110 cm 3 / m 2 ) shown in FIG. 1A is applied to the base material (350 mm width) of the polyolefin resin porous film.
  • the coating solution was continuously coated by a kiss reverse gravure coating method to form a coating layer, and a 1000 m film roll was prepared.
  • the film thickness Ta at the end of the coating layer laminated portion and the film thickness Tb at the center satisfy the relational expression of Ta ⁇ Tb and the case where the relational expression is not satisfied.
  • Comparative Example 1 in which the so-called ear height was increased it was confirmed that a significant difference occurred in the generation of wrinkles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The purpose of the present invention is to provide a laminate porous film roll which is a laminate porous film comprising a covering layer partially laminated on at least one surface of a polyolephin resin porous film, wherein the laminate porous film roll comprises a boundary line formed linearly between the portion where the covering layer is laminated (the covering layer lamination portion) and the portion where the covering layer is not laminated (the no-covering layer portion), can be wound without wrinkles, has uniform quality, and has improved secondary workability for slits, etc.. This laminate porous film roll comprises a covering layer partially laminated on the at least one surface of the polyolephin resin porous film, and comprises at least one covering layer lamination portion X and at least one no-covering layer portion Y, wherein the film thickness Ta at the end portion of the at least one covering layer lamination portion X and the film thickness Tb in the center portion fulfill the relational expression Ta ≦ Tb, and the winding length of the film is 1000m or greater.

Description

積層多孔フィルムロール及びその製造方法Laminated porous film roll and method for producing the same
 本発明は、ポリオレフィン系樹脂多孔フィルムを用いた積層多孔フィルムロール及びその製造方法に関する。本発明の積層多孔フィルムロールは、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特に、非水電解液電池用セパレータとして好適に利用できるものである。 The present invention relates to a laminated porous film roll using a polyolefin resin porous film and a method for producing the same. The laminated porous film roll of the present invention can be used as a packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator, and in particular, a separator for a nonaqueous electrolyte battery. Can be suitably used.
 多数の微細連通孔を有する高分子多孔体は、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは電池などに使用する電池セパレータなど各種の分野で利用されている。 The polymer porous body with many fine communication holes is used for separation membranes used for the production of ultrapure water, purification of chemicals, water treatment, waterproof and moisture-permeable films used for clothing and sanitary materials, and batteries. It is used in various fields such as battery separators.
 特に、二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。その中でも、機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。 In particular, secondary batteries are widely used as power sources for portable devices such as OA, FA, household electric appliances or communication devices. Among them, portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices. On the other hand, large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
 リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。非水電解液用溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。 The working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V. At such a high voltage, the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages. As the solvent for the non-aqueous electrolyte, a high dielectric constant organic solvent capable of allowing more lithium ions to be present is used, and organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. in use. As a supporting electrolyte that becomes a lithium ion source in the solvent, a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
 リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。 In the lithium ion secondary battery, a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit. Of course, the separator is required to have insulating properties due to its role. Moreover, it is necessary to have a microporous structure in order to provide air permeability as a lithium ion passage and a function of diffusing and holding the electrolyte. In order to satisfy these requirements, a porous film is used as a separator.
 最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。電池用セパレータの安全に寄与する特性として、シャットダウン特性(以後、「SD特性」と称す)がある。このSD特性は、100~150℃程度の高温状態になると微細孔が閉塞され、その結果、電池内部のイオン伝導が遮断されるため、その後の電池内部の温度上昇を防止できるという機能である。この時、積層多孔性フィルムの微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度(以後、「SD温度」と称す)という。電池用セパレータとして使用する場合は、このSD特性を具備していることが必要である。 With the recent increase in battery capacity, the importance of battery safety is increasing. As a characteristic that contributes to the safety of the battery separator, there is a shutdown characteristic (hereinafter referred to as “SD characteristic”). This SD characteristic is a function that can prevent a subsequent increase in temperature inside the battery because the micropores are closed when the temperature is about 100 to 150 ° C., and as a result, ion conduction inside the battery is blocked. At this time, the lowest temperature among the temperatures at which the micropores of the laminated porous film are blocked is referred to as a shutdown temperature (hereinafter referred to as “SD temperature”). When used as a battery separator, it is necessary to have this SD characteristic.
 しかしながら、近年、リチウムイオン二次電池の高エネルギー密度化、ハイパワー化に伴い、通常のシャットダウン機能が十分に機能せず、電池内部の温度が、従来セパレータの原料として使用されるポリエチレンの融点である150℃前後を超え、さらに上昇し、セパレータが破膜する恐れがある。そこで、安全性を確保するため、現在のSD特性と耐熱性を合わせもつセパレータが求められている。 However, in recent years, with the increase in energy density and power of lithium ion secondary batteries, the normal shutdown function does not function sufficiently, and the temperature inside the battery is the melting point of polyethylene conventionally used as a raw material for separators. There is a risk that the temperature will rise further above about 150 ° C. and the separator will break. Therefore, in order to ensure safety, a separator having both current SD characteristics and heat resistance is required.
 前記要望に対し、ポリオレフィン樹脂多孔フィルムの少なくとも片面に、無機フィラーと樹脂バインダとを含む耐熱層(耐熱性を向上させるための被覆層)を積層した積層多孔フィルム(特許文献1)が提案されている。 In response to the request, a laminated porous film (Patent Document 1) is proposed in which a heat-resistant layer (a coating layer for improving heat resistance) containing an inorganic filler and a resin binder is laminated on at least one surface of a polyolefin resin porous film. Yes.
 また、セパレータは、適用される電池のサイズによりさまざまなサイズがあり、幅広くコーティングしたセパレータを長手方向に沿って切断(スリット)して使用することが検討されているが、耐熱性を向上させるための被覆層が非常に硬いため、切断時に、切断刃の磨耗が進行しやすく、磨耗した刃による切断により、基材フィルムの樹脂の細長い削りクズが付着するという問題があり、更には、切断部分近傍の被覆層が剥がれ落ちるといった問題があった。これらの問題を解決するために、切断部分に被覆層を形成させない、いわゆる部分塗布なども検討されている(特許文献2)。 In addition, there are various sizes of separators depending on the size of the applied battery, and it has been studied to use a widely coated separator cut (slit) along the longitudinal direction, but to improve heat resistance. Since the coating layer is very hard, there is a problem that the cutting blade wears easily at the time of cutting, and there is a problem that a long and narrow scrap of resin of the base film adheres due to the cutting with the worn blade. There was a problem that a nearby coating layer peeled off. In order to solve these problems, so-called partial coating, in which a coating layer is not formed on a cut portion, has been studied (Patent Document 2).
WO2011/062285WO2011 / 062285 特開2011-159434JP2011-159434A
 しかしながら、特許文献1のように多孔フィルム上に被覆層を形成する場合は、被覆層とポリオレフィン多孔フィルムとの密着性を確保するため、被覆層を設ける側の表面に対して、通常はコロナ処理などによる表面処理が施される。しかしながら、電池セパレータ用のポリオレフィン系樹脂多孔フィルムは、非常に薄く、多孔性であるという特徴により、コロナ処理などの表面処理時及び/又は表面処理後にフィルムにシワが発生し易く、表面処理がされた多孔フィルムをきれいに塗工できないという問題がある。また、非常に薄く、多孔性であるという特徴から、ポリオレフィン多孔フィルムにコーティングなどで被覆層を設ける工程や巻取り工程において該多孔フィルムにシワが入り易く、塗工液をコーティングする前に該多孔フィルムにシワが発生すると、均一な塗工ができず、被覆層の厚みがランダムに不均一となる。結果としてセパレータの耐熱性、透気性等の主性能が不均一になり、更には、巻取り時に厚み差の大きい部分でシワが入りやすいという問題が起こる。巻取り工程でシワが発生すると、巻き取られた製品においてシワの部分に大きな圧力がかかり、同様にセパレータとしての性能が不均一になり、また、正極、負極等と組み合わせて電池とする際の加工性にも悪影響を与えるため好ましくない。 However, when the coating layer is formed on the porous film as in Patent Document 1, the corona treatment is usually applied to the surface on which the coating layer is provided in order to ensure the adhesion between the coating layer and the polyolefin porous film. Surface treatment by etc. is performed. However, polyolefin resin porous films for battery separators are very thin and porous, so that the film tends to wrinkle during and / or after surface treatment such as corona treatment, and the surface treatment is performed. There is a problem that the porous film cannot be applied neatly. In addition, since it is very thin and porous, it is easy to wrinkle the porous film in the process of providing a coating layer on the polyolefin porous film with a coating or the winding process, and before the coating liquid is coated, When wrinkles occur in the film, uniform coating cannot be performed, and the thickness of the coating layer becomes randomly non-uniform. As a result, main performances such as heat resistance and air permeability of the separator become non-uniform, and further, there arises a problem that wrinkles are likely to occur at a portion having a large thickness difference during winding. When wrinkles occur in the winding process, a large pressure is applied to the wrinkled portion of the wound product, and the performance as a separator becomes non-uniform in the same manner. Also, when a battery is combined with a positive electrode, a negative electrode, etc. This is not preferable because it adversely affects workability.
 また、特許文献2のように部分塗布により被覆層が積層されていない部分を設ける場合、塗工部分と未塗工部分との境界部分の厚みを制御し、かつきれいな境界線を形成することが難しく、結果として、スリット時の問題点を解決するには至っておらず、更には巻取り時のシワの問題を誘発するという問題が起こる。 Moreover, when providing the part by which the coating layer is not laminated | stacked by partial application like patent document 2, the thickness of the boundary part of a coating part and an uncoated part can be controlled, and a beautiful boundary line can be formed. As a result, the problem of slitting has not been solved, and the problem of wrinkling at the time of winding occurs.
 特にフィルム幅方向の端部以外に被覆層が積層されていない部分(非積層部)を設ける場合は、フィルムにしわが発生したり巻きロールが変形したりする問題がある。更に、フィルムを長く巻くほどに巻きロールが変形して、不均一が大きくなるため、巻きずれやシワのない状態で長さが1000m程度以上のフィルムロールや幅が広いフィルムロールを製造することは困難である。 In particular, when a portion where the coating layer is not laminated (non-laminated portion) other than the end portion in the film width direction is provided, there is a problem that the film is wrinkled or the winding roll is deformed. Furthermore, the longer the film is wound, the more the winding roll is deformed and the non-uniformity becomes large. Therefore, it is possible to produce a film roll having a length of about 1000 m or more and a wide film roll without winding deviation and wrinkles. Have difficulty.
 そこで、本発明は、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に被覆層が部分的に積層されてなる積層多孔フィルムにおいて、被覆層を積層した部分(被覆層積層部)と被覆層を積層していない部分(非積層部)の境界線が直線状に形成され、シワなく巻き取られ、均一な品質を有し、かつ、スリット等の二次加工性を向上させた積層多孔フィルムロールを提供することを目的とする。 Therefore, in the present invention, in the laminated porous film in which the coating layer is partially laminated on at least one surface of the polyolefin resin porous film, the coating layer is not laminated on the portion where the coating layer is laminated (coating layer lamination portion). To provide a laminated porous film roll in which the boundary line of a part (non-laminated part) is formed in a straight line, wound up without wrinkles, has uniform quality, and has improved secondary workability such as slits. With the goal.
 本発明者等は、部分塗布などで被覆層が積層されていない部分(非積層部)を設ける場合、特にフィルム幅方向における端部以外の場所に非積層部を設ける場合に、非積層部においてしわやたるみが発生する原因を検討したところ、被覆層積層部の端部において高さのずれが生じ、この状態で長尺のフィルムロールを製造すると、端部に耳高と呼ばれる周囲に比べて突出した高さを有する突起部が発生し、これにより非積層部においてシワやたるみが発生することを知見した。そして、被覆層積層部の端部における高さを制御することにより、シワの発生を抑えながらフィルムを巻き取ることができ、1000m程度以上の長尺品や幅広品のフィルムロールを製造することが可能となることを見出し、本発明を完成した。 In the case of providing a non-laminated portion where a coating layer is not laminated by partial coating or the like, particularly when providing a non-laminated portion in a place other than the end in the film width direction, When we examined the cause of wrinkles and sagging, there was a shift in height at the end of the coating layer stack, and when a long film roll was manufactured in this state, compared to the surrounding area called the ear height at the end It has been found that a protruding portion having a protruding height is generated, thereby causing wrinkles and sagging in the non-laminated portion. And by controlling the height in the edge part of a coating layer lamination | stacking part, a film can be wound up, suppressing generation | occurrence | production of a wrinkle, and the film roll of about 1000 m or more long goods and wide goods can be manufactured. As a result, the present invention has been completed.
 即ち、本発明は、
(1)ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールであって、少なくとも1つの被覆層積層部Xの端部におけるフィルム厚みTaと中央部におけるフィルム厚みTbが、Ta≦Tbの関係式を満たし、積層多孔フィルムの巻き長さが1000m以上である、該積層多孔フィルムロール、
(2)前記非積層部Yがフィルム幅方向の端部に設けられた、(1)に記載の積層多孔フィルムロール、
(3)前記非積層部Yがフィルム幅方向の端部以外の場所に設けられた、(1)又は(2)に記載の積層多孔フィルムロール、
(4)少なくとも1つの被覆層積層部Xにおける一方の端部でのフィルム厚みTa1と他方の端部でのフィルム厚みTa2が、|Ta1-Ta2|≦3μmの関係式を満たす、(1)~(3)のいずれか1に記載の積層多孔フィルムロール、
(5)全ての被覆層積層部Xの端部でのフィルム厚みの最大値Tmaxと最小値Tminが、(Tmax-Tmin)≦3μmの関係式を満たす、(1)~(4)のいずれか1に記載の積層多孔フィルムロール、
(6)少なくとも1つの非積層部Yの幅が5mm~100mmである、(1)~(5)のいずれか1に記載の積層多孔フィルムロール、
(7)少なくとも1つの被覆層積層部Xの中央部における被覆層の厚みが0.5μm~50μmである、(1)~(6)のいずれか1に記載の積層多孔フィルムロール、
(8)少なくとも1つの被覆層積層部Xの中央部における、ポリオレフィン系樹脂多孔フィルムの厚みに対する被覆層の厚みの比が1/1~1/6である、(1)~(7)のいずれか1に記載の積層多孔フィルムロール、
(9)前記ポリオレフィン系樹脂多孔フィルムの厚みが5μm~50μmである、(1)~(8)のいずれか1に記載の積層多孔フィルムロール、
(10)前記積層多孔フィルムの幅が0.3m~3mである、(1)~(9)のいずれか1に記載の積層多孔フィルムロール、
(11)ポリオレフィン系樹脂多孔フィルムの両面に被覆層が積層されてなる、(1)~(10)のいずれか1に記載の積層多孔フィルムロール、
(12)前記被覆層は、フィラーと樹脂バインダを含んでなる、(1)~(11)のいずれか1に記載の積層多孔フィルムロール、
(13)前記被覆層は、コーティングにより積層される、(1)~(12)のいずれか1に記載の積層多孔フィルムロール、及び
(14)非水電解液電池用セパレータとして用いること特徴とする(1)~(13)のいずれか1に記載の積層多孔フィルムロール
を、提供することを目的とする。
That is, the present invention
(1) A laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer laminate portion X and at least one non-laminate portion Y are formed. A laminated porous film roll wound up, wherein the film thickness Ta at the end of at least one coating layer laminated portion X and the film thickness Tb at the central portion satisfy a relational expression of Ta ≦ Tb, and the laminated porous film is wound. The laminated porous film roll having a length of 1000 m or more,
(2) The laminated porous film roll according to (1), wherein the non-laminated portion Y is provided at an end in the film width direction,
(3) The laminated porous film roll according to (1) or (2), wherein the non-laminated portion Y is provided at a place other than the end in the film width direction,
(4) The film thickness Ta1 at one end and the film thickness Ta2 at the other end in at least one coating layer laminate portion X satisfy the relational expression | Ta1-Ta2 | ≦ 3 μm. The laminated porous film roll according to any one of (3),
(5) Any one of (1) to (4), wherein the maximum value Tmax and the minimum value Tmin of the film thickness at the ends of all the coating layer laminated portions X satisfy the relational expression (Tmax−Tmin) ≦ 3 μm 1. The laminated porous film roll according to 1,
(6) The laminated porous film roll according to any one of (1) to (5), wherein the width of at least one non-laminate portion Y is 5 mm to 100 mm,
(7) The laminated porous film roll according to any one of (1) to (6), wherein the thickness of the coating layer in the central portion of at least one coating layer laminate portion X is 0.5 μm to 50 μm,
(8) In any one of (1) to (7), the ratio of the thickness of the coating layer to the thickness of the polyolefin resin porous film in the central portion of at least one coating layer laminate portion X is 1/1 to 1/6. Or a laminated porous film roll according to claim 1,
(9) The laminated porous film roll according to any one of (1) to (8), wherein the polyolefin resin porous film has a thickness of 5 μm to 50 μm,
(10) The laminated porous film roll according to any one of (1) to (9), wherein a width of the laminated porous film is 0.3 m to 3 m,
(11) The laminated porous film roll according to any one of (1) to (10), wherein a coating layer is laminated on both surfaces of a polyolefin resin porous film,
(12) The laminated porous film roll according to any one of (1) to (11), wherein the coating layer comprises a filler and a resin binder,
(13) The coating layer is used as a laminated porous film roll according to any one of (1) to (12) and (14) a separator for a nonaqueous electrolyte battery, which are laminated by coating. It is an object of the present invention to provide a laminated porous film roll according to any one of (1) to (13).
 また、本発明は、
(15)ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールの製造方法であって、該被覆層はグラビア塗工により形成され、グラビア塗工に使用するグラビアロールのフィルム幅方向における少なくとも1つの被覆層積層部Xに相当する彫刻部Zの端部のセル深さTcと中央部のセル深さTdがTc≦Tdの関係式を満たしてなる、積層多孔フィルムロールの製造方法、
(16)ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールの製造方法であって、該被覆層はグラビア塗工により形成され、グラビア塗工に使用するグラビアロールのセルの形状が左右対称の形状であることを特徴とする該製造方法、
(17)前記セルの形状が深さ方向に台形状である(15)又は(16)に記載の積層多孔フィルムロールの製造方法、
(18)グラビア塗工の際のグラビアロールの回転方向が、基材へ塗料を転写する位置において、基材の搬送方向と反対向きであることを特徴とする(15)~(17)のいずれか1に記載の積層多孔フィルムロールの製造方法、及び
(19)塗料を転写させる際、バックロールを用いず、グラビアロールの前後に配置したガイドロールを介して、基材をグラビアロールに接触させて塗料を転写させることを特徴とする(18)に記載の積層多孔フィルムロールの製造方法
を、提供することも目的とする。
The present invention also provides:
(15) A laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer laminate portion X and at least one non-laminate portion Y are formed. A method for producing a wound laminated porous film roll, wherein the coating layer is formed by gravure coating and corresponds to at least one coating layer laminate portion X in the film width direction of the gravure roll used for gravure coating A method for producing a laminated porous film roll, wherein the cell depth Tc at the end of the engraving portion Z and the cell depth Td at the center satisfy the relational expression Tc ≦ Td;
(16) A laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer laminate portion X and at least one non-laminate portion Y are formed. A method for producing a wound laminated porous film roll, wherein the coating layer is formed by gravure coating, and the shape of a gravure roll cell used for gravure coating is a symmetrical shape The production method,
(17) The method for producing a laminated porous film roll according to (15) or (16), wherein the shape of the cell is trapezoidal in the depth direction,
(18) Any one of (15) to (17), wherein the rotation direction of the gravure roll at the time of gravure coating is opposite to the conveyance direction of the substrate at the position where the paint is transferred to the substrate Or the method for producing a laminated porous film roll according to (1), and (19) when transferring the paint, the substrate is brought into contact with the gravure roll through the guide rolls arranged before and after the gravure roll without using the back roll. It is another object of the present invention to provide a method for producing a laminated porous film roll as described in (18), wherein the coating material is transferred.
 本発明においては、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に被覆層が部分的に積層されてなる積層多孔フィルムにおいて、被覆層積層部の端部における高さを制御することにより、シワの発生を抑えながらフィルムを巻き取ることができ、均一な品質を有し、かつ、スリット等の二次加工性を向上させた積層多孔フィルムロールを提供することができる。特に、本発明においては、従来は製造が困難であった、部分塗工品において1000m程度以上の長尺品や幅広品のフィルムロールを製造することが可能となる。 In the present invention, in a laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin resin porous film, the occurrence of wrinkles is suppressed by controlling the height at the end of the coating layer lamination part. Thus, a laminated porous film roll having a uniform quality and improved secondary workability such as slits can be provided. In particular, in the present invention, it is possible to produce a long or wide film roll of about 1000 m or more in a partially coated product, which has been difficult to manufacture.
本発明の製造方法の一つの実施態様で使用することができるグラビアロールの模式図Schematic diagram of gravure roll that can be used in one embodiment of the production method of the present invention 格子状の部分塗布用グラビアロールの一例An example of a gravure roll for partial coating in a grid pattern 斜線状の部分塗布用グラビアロールの一例An example of gravure rolls for oblique coating (小径)キスリバースグラビアコート法の塗工部略図(Small-diameter) Kiss reverse gravure coating method リバースグラビアコート法の塗工部略図Reverse gravure coating method coating diagram 本発明の積層多孔フィルムを収容している電池の一部破断斜視図The partially broken perspective view of the battery which accommodates the lamination | stacking porous film of this invention
 以下、本発明の積層多孔フィルムロールの実施形態について詳細に説明する。 Hereinafter, embodiments of the laminated porous film roll of the present invention will be described in detail.
 本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特に、規定しない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
In the present invention, the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified. Although the content ratio is not specified, the main component is intended to include 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. .
In addition, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X or more and Y or less” unless otherwise specified. Is included.
(ポリオレフィン系樹脂多孔フィルム)
 ポリオレフィン系樹脂多孔フィルムで用いるポリオレフィン系樹脂として、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキサンなどを重合した単独重合体または共重合体が挙げられる。この中でも、ポリプロピレン系樹脂、ポリエチレン系樹脂が好ましい。
(Polyolefin resin porous film)
Examples of the polyolefin resin used in the polyolefin resin porous film include homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexane and the like. Among these, a polypropylene resin and a polyethylene resin are preferable.
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
(Polypropylene resin)
Polypropylene resins include homopropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Random copolymers or block copolymers with α-olefins may be mentioned. Among these, homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the laminated porous film.
 また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。より好ましくは83~98%、更に好ましくは85~97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠した。
The polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably 83 to 98%, and still more preferably 85 to 97%. If the isotactic pentad fraction is too low, the mechanical strength of the film may be reduced. On the other hand, the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
The isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. It conformed to Zambelli et al (Macromolecules 8,687, (1975)).
 また、ポリプロピレン系樹脂としては、分子量分布を示すパラメータであるMw/Mnが2.0~10.0であることが好ましい。より好ましくは2.0~8.0、更に好ましくは2.0~6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0以上であれば押出成形性が低下する等の問題が生じることがなく、工業的に生産することが容易となる。一方、Mw/Mnが10.0以下であれば低分子量成分が少なく、積層多孔フィルムの機械的強度の低下を起こすことがない。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。 Further, as a polypropylene resin, it is preferable that Mw / Mn, which is a parameter indicating a molecular weight distribution, is 2.0 to 10.0. More preferred is 2.0 to 8.0, and still more preferred is 2.0 to 6.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution. However, if the Mw / Mn is 2.0 or more, there is no problem such as deterioration of extrusion moldability, and industrial production is easy. It becomes. On the other hand, if Mw / Mn is 10.0 or less, the low molecular weight component is small and the mechanical strength of the laminated porous film is not lowered. Mw / Mn is obtained by GPC (gel permeation chromatography) method.
 また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5~15g/10分であることが好ましく、1.0~10g/10分であることがより好ましい。MFRが0.5g/10分以上とすることで、成形加工時の樹脂の溶融粘度が高く、十分な生産性を確保することができる。一方、15g/10分以下とすることで、得られる積層多孔フィルムの機械的強度を十分に保持することができる。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定する。 The melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and 1.0 to 10 g / 10 minutes. It is more preferable. When the MFR is 0.5 g / 10 min or more, the resin has a high melt viscosity at the time of molding, and sufficient productivity can be ensured. On the other hand, the mechanical strength of the obtained laminated porous film can be sufficiently maintained by setting it to 15 g / 10 min or less. MFR is measured according to JIS K7210 under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
 なお、前記ポリプロピレン系樹脂の製造方法は特に限定されるものではなく、公知の重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。 The method for producing the polypropylene resin is not particularly limited, and a known polymerization method using a known polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. And a polymerization method using a single site catalyst.
 ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「バーシファイ」「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライムポリプロ」「プライム TPO」(プライムポリマー社製)、「Adflex」、「Adsyl」、「HMS-PP(PF814)」(サンアロマー社製)、「インスパイア」(ダウケミカル)など市販されている商品を使用できる。 Examples of polypropylene resins include the trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” “Thermolan” (Mitsubishi Chemical) , “Sumitomo Noblen”, “Tough Selenium” (manufactured by Sumitomo Chemical Co., Ltd.), “Prime Polypro”, “Prime TPO” (manufactured by Prime Polymer Co., Ltd.), “Adflex”, “Adsyl”, “HMS-PP (PF814)” ( Commercially available products such as “San Aroma” and “Inspire” (Dow Chemical) can be used.
 本発明で使用するポリオレフィン系樹脂多孔フィルムは、β活性を有することが好ましい。
 本発明のポリオレフィン系樹脂多孔フィルムにおいて、「β活性」の有無は、示差走査型熱量計で積層多孔フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β活性を有すると判断している。
The polyolefin resin porous film used in the present invention preferably has β activity.
In the polyolefin resin porous film of the present invention, the presence or absence of “β activity” is determined by holding the laminated porous film with a differential scanning calorimeter from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute. When the temperature was lowered from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min and held for 1 minute, and when the temperature was raised again from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min, When the derived crystal melting peak temperature (Tmβ) is detected, it is determined to have β activity.
 また、前記多孔フィルムのβ活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
 β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1~4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
Further, the β activity of the porous film is calculated by the following formula using the crystal heat of fusion derived from α crystal (ΔHmα) and the crystal heat of fusion derived from β crystal (ΔHmβ) of the polypropylene resin to be detected.
β activity (%) = [ΔHmβ / (ΔHmβ + ΔHmα)] × 100
For example, when the polypropylene resin is homopolypropylene, the amount of heat of crystal melting derived from the β crystal (ΔHmβ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower. It can be calculated from the heat of crystal melting (ΔHmα) derived from the α crystal. For example, in the case of random polypropylene copolymerized with 1 to 4 mol% of ethylene, the amount of heat of crystal melting (ΔHmβ) derived from the β crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the crystal melting calorie (ΔHmα) derived from the α crystal detected in the range of from 0 ° C. to 165 ° C.
 ポリオレフィン系樹脂多孔フィルムのβ活性度は20%以上が好ましく、さらに、40%以上、60%以上であることが特に好ましい。積層多孔フィルムが20%以上のβ活性度を有すれば、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れたリチウムイオン電池用セパレータとすることができる。
 β活性度の上限値は特に限定されないが、β活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
The β activity of the polyolefin resin porous film is preferably 20% or more, and more preferably 40% or more and 60% or more. If the laminated porous film has a β activity of 20% or more, a lot of fine and uniform pores are formed by stretching, and as a result, a separator for a lithium ion battery having high mechanical strength and excellent air permeability is obtained. Can do.
The upper limit of β activity is not particularly limited, but the higher the β activity, the more effective the effect is obtained.
 また、前記β活性の有無は、特定の熱処理を施した積層多孔フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
 詳細には、ポリプロピレン系樹脂の融点を超える温度である170℃~190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔フィルムについて広角X線回折測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β活性が有ると判断している。
 ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。
The presence or absence of the β activity can also be determined by a diffraction profile obtained by wide-angle X-ray diffraction measurement of a laminated porous film subjected to a specific heat treatment.
More specifically, a wide-angle X-ray diffraction measurement was performed on a laminated porous film which was subjected to heat treatment at 170 ° C. to 190 ° C., which is a temperature exceeding the melting point of the polypropylene resin, and was slowly cooled to form and grow β crystals. When a diffraction peak derived from the (300) plane of the β crystal of the resin is detected in the range of 2θ = 16.0 ° to 16.5 °, it is determined that there is β activity.
Details on the β crystal structure and wide angle X-ray diffraction of polypropylene resins can be found in Macromol. Chem. 187, 643-652 (1986), Prog. Polym. Sci. Vol. 16, 361-404 (1991), Macromol. Symp. 89, 499-511 (1995), Macromol. Chem. 75, 134 (1964), and references cited therein.
 前記β活性は、ポリプロピレン系樹脂多孔フィルムが単層構造である場合であっても、他の多孔性層と積層される場合のいずれにおいても測定することができる。
 また、仮に、ポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、両層ともにβ活性を有することが好ましい。
The β activity can be measured regardless of whether the polypropylene resin porous film has a single layer structure or is laminated with another porous layer.
Further, if a layer containing a polypropylene resin other than the layer made of polypropylene resin is laminated, it is preferable that both layers have β activity.
 前述したβ活性を得る方法としては、特許第3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。 As a method for obtaining the β activity described above, a method of adding polypropylene subjected to a treatment for generating a peroxide radical as described in Japanese Patent No. 3739481, and a method of adding a β crystal nucleating agent to the composition Etc.
(β晶核剤)
 本発明で用いる前記β晶核剤としては、以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
 β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003-306585号公報、特開平06-289566号公報、特開平09-194650号公報に記載されている。
(Β crystal nucleating agent)
Examples of the β-crystal nucleating agent used in the present invention include the following, but are not particularly limited as long as they increase the formation / growth of β-crystals of a polypropylene resin, and two or more types thereof. May be used in combination.
Examples of the β crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc. Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising component A which is an organic dibasic acid and a component B which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound; Made of magnesium compound Such as the formation thereof. In addition, specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A No. 06-289656, and JP-A No. 09-194650.
 β晶核剤の市販品としては新日本理化社製β晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B-022SP」、Borealis社製ポリプロピレン「Beta(β)-PP BE60-7032」、Mayzo社製ポリプロピレン「BNX BETAPP-LN」などが挙げられる。 Commercially available products of β crystal nucleating agent are β crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd. Specific examples of polypropylene resins to which β crystal nucleating agent is added include polypropylene “Bepol® B” manufactured by Aristech. -022SP ”, polypropylene manufactured by Borealis“ Beta (β) -PP BE60-7032 ”, polypropylene manufactured by Mayzo“ BNX BETAPP-LN ”, and the like.
 前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤0.0001~5.0質量部が好ましい。0.001~3.0質量部がより好ましく、0.01~1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、セパレータとした際にも十分なβ活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、積層多孔フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
 また、仮にポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
The ratio of the β-crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the β-crystal nucleating agent or the composition of the polypropylene-based resin. 0.0001 to 5.0 parts by mass of the agent is preferred. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable. If it is 0.0001 part by mass or more, β crystals of polypropylene resin can be sufficiently produced and grown at the time of production, and sufficient β activity can be secured even when used as a separator, and the desired air permeability performance can be obtained. can get. Addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the β crystal nucleating agent on the surface of the laminated porous film.
Further, when a layer containing a polypropylene resin other than the layer made of polypropylene resin is laminated, the amount of β crystal nucleating agent added to each layer may be the same or different. The porous structure of each layer can be appropriately adjusted by changing the addition amount of the β crystal nucleating agent.
(他の成分)
 ポリプロピレン系樹脂に、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および積層多孔フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
(Other ingredients)
In addition to the components described above, additives generally blended in the resin composition can be appropriately added to the polypropylene resin within a range that does not significantly impair the effects of the present invention. Examples of the additive include recycling resin, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the laminated porous film. Inorganic particles such as, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Examples thereof include additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
(ポリエチレン系樹脂)
 本実施形態では、前記ポリプロプレン系樹脂からなる多孔フィルムと積層する多孔フィルムとして、ポリエチレン系樹脂多孔フィルムが好適に用いられる。
 該ポリエチレン系樹脂としては、具体的に超低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、また分子量に特徴のある超高分子量ポリエチレンのようなホモポリマーポリエチレンだけでなく、エチレンプロピレン共重合体、またはポリエチレン系樹脂と他のポリオレフィン系樹脂とのコポリマーポリエチレンが挙げられる。中でも、ホモポリマーポリエチレン、或いはα-オレフィンコモノマー含量が2モル%以下のコポリマーポリエチレンが好ましく、ホモポリマーポリエチレンであることが更に好ましい。α-オレフィンコモノマーの種類については特に制限はない。
(Polyethylene resin)
In the present embodiment, a polyethylene resin porous film is suitably used as the porous film laminated with the porous film made of the polypropylene resin.
Specific examples of the polyethylene resin include ultra low density polyethylene, low density polyethylene, high density polyethylene, linear low density polyethylene, and homopolymer polyethylene such as ultra high molecular weight polyethylene having a characteristic molecular weight, as well as ethylene. A propylene copolymer or a copolymer polyethylene of a polyethylene resin and another polyolefin resin can be used. Among them, homopolymer polyethylene or copolymer polyethylene having an α-olefin comonomer content of 2 mol% or less is preferable, and homopolymer polyethylene is more preferable. There are no particular restrictions on the type of α-olefin comonomer.
 前記ポリエチレン系樹脂の密度は、0.910~0.970g/cmであることが好ましく、0.930~0.970g/cmであることがより好ましく、0.940~0.970g/cmであることが更に好ましい。密度が0.910g/cm以上であれば適度なSD特性を有することができるため好ましい。一方、0.970g/cm以下であれば適度なSD特性を有することができるほか、延伸性が維持される点で好ましい。密度の測定は密度勾配管法を用いてJIS K7112に準じて測定することができる。 The density of the polyethylene resin is preferably 0.910 to 0.970 g / cm 3 , more preferably 0.930 to 0.970 g / cm 3 , and 0.940 to 0.970 g / cm 3. 3 is more preferable. A density of 0.910 g / cm 3 or more is preferable because it can have appropriate SD characteristics. On the other hand, 0.970 g / cm 3 or less is preferable in that it can have an appropriate SD characteristic and can maintain stretchability. The density can be measured according to JIS K7112 using a density gradient tube method.
 また、前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03~30g/10分であることが好ましく、0.3~10g/10分であることがより好ましい。MFRが0.03g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れ好ましい。一方、30g/10分以下であれば、十分な機械的強度を得ることができるために好ましい。
 MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
Further, the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 30 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. It is more preferable. If the MFR is 0.03 g / 10 min or more, the melt viscosity of the resin during the molding process is sufficiently low, which is excellent in productivity and preferable. On the other hand, if it is 30 g / 10 minutes or less, since sufficient mechanical strength can be obtained, it is preferable.
MFR is measured in accordance with JIS K7210 under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 ポリエチレン系樹脂の重合触媒には特に制限はなく、チーグラー型触媒、フィリップス型触媒、カミンスキー型触媒等いずれのものでも良い。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法のポリエチレン系樹脂も使用可能である。 The polymerization catalyst for the polyethylene resin is not particularly limited, and may be any one such as a Ziegler type catalyst, a Philips type catalyst, or a Kaminsky type catalyst. As a polymerization method of the polyethylene resin, there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that, and any method of the polyethylene resin can be used.
(多孔化促進化合物)
 ポリエチレン系樹脂に、多孔化を促進させる多孔化促進化合物を添加することが好ましい。前記多孔化促進化合物を添加することにより、より効率的に多孔構造を得ることができ、孔の形状や孔径を制御しやすくなる。
 前記多孔化促進化合物は限定はしないが、具体的に例示すると、変性ポリオレフィン樹脂、脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスから選ばれる多孔化促進化合物のうち少なくとも1種が含まれていることがより好ましい。中でも、多孔化でより効果の大きい脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスがより好ましく、成形性の観点からワックスが更に好ましい。
(Porosification promoting compound)
It is preferable to add a porosity promoting compound that promotes porosity to the polyethylene resin. By adding the porosity promoting compound, a porous structure can be obtained more efficiently, and the shape and diameter of the pores can be easily controlled.
The porosity promoting compound is not limited, but specific examples include a porosity promoting compound selected from a modified polyolefin resin, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax. More preferably, at least one kind is included. Among these, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax, which is more effective when made porous, is more preferable, and a wax is more preferable from the viewpoint of moldability.
 脂環族飽和炭化水素樹脂及びその変性体として、石油樹脂、ロジン樹脂、テルペン樹脂、クマロン樹脂、インデン樹脂、クマロン-インデン樹脂、及びそれらの変性体等が挙げられる。 Examples of the alicyclic saturated hydrocarbon resin and modified products thereof include petroleum resins, rosin resins, terpene resins, coumarone resins, indene resins, coumarone-indene resins, and modified products thereof.
 本発明における前記石油樹脂とは、ナフサの熱分解などによる副生物から得られるC4~C10の脂肪族オレフィン類やジオレフィン類、オレフィン性不飽和結合を有するC8以上の芳香族化合物で、それらの中に含まれる化合物の一種又は二種以上を単独若しくは共重合することにより得られる脂肪族系、芳香族系及び共重合系石油樹脂を言う。 In the present invention, the petroleum resin is a C4 to C10 aliphatic olefin or diolefin obtained from a by-product such as naphtha pyrolysis, or an aromatic compound having C8 or more having an olefinically unsaturated bond. An aliphatic, aromatic and copolymer petroleum resin obtained by singly or copolymerizing one or more of the compounds contained therein.
 石油樹脂としては、例えばC5留分を主原料とする脂肪族系石油樹脂、C9留分を主原料とする芳香族系石油樹脂、それらの共重合系石油樹脂、脂環族系石油樹脂がある。テルペン樹脂としてはβ-ピネンからのテルペン樹脂やテルペン-フェノール樹脂が、またロジン系樹脂としては、ガムロジン、ウツドロジンなどのロジン樹脂、グリセリンやペンタエリスリトールで変性したエステル化ロジン樹脂などが例示できる。脂環族飽和炭化水素樹脂及びその変性体はポリエチレン系樹脂に混合した場合に比較的良好な相溶性を示すが、色調や熱安定性といった面から石油樹脂がより好ましく、水添石油樹脂を用いることが更に好ましい。 Examples of petroleum resins include aliphatic petroleum resins mainly containing C5 fraction, aromatic petroleum resins mainly containing C9 fraction, copolymer petroleum resins thereof, and alicyclic petroleum resins. . Examples of the terpene resin include terpene resins and terpene-phenol resins from β-pinene, and examples of the rosin resin include rosin resins such as gum rosin and utudrodin, and esterified rosin resins modified with glycerin and pentaerythritol. The alicyclic saturated hydrocarbon resin and the modified product thereof have relatively good compatibility when mixed with a polyethylene resin, but a petroleum resin is more preferable in terms of color tone and thermal stability, and a hydrogenated petroleum resin is used. More preferably.
 水添石油樹脂は、石油樹脂を慣用の方法によって水素化することにより得られるものである。例えば、水素化脂肪族系石油樹脂、水素化芳香族系石油樹脂、水素化共重合系石油樹脂及び水素化脂環族系石油樹脂、並びに水素化テルペン系樹脂が挙げられる。水添石油樹脂の中でも、水素化脂環族系石油樹脂で、シクロペンタジエン系化合物と芳香族ビニル系化合物とを共重合して水素添加したものが特に好ましい。市販されている水添石油樹脂としては、「アルコン」(荒川化学工業社製)などが挙げられる。 Hydrogenated petroleum resin is obtained by hydrogenating petroleum resin by a conventional method. Examples thereof include hydrogenated aliphatic petroleum resins, hydrogenated aromatic petroleum resins, hydrogenated copolymer petroleum resins and hydrogenated alicyclic petroleum resins, and hydrogenated terpene resins. Among hydrogenated petroleum resins, hydrogenated alicyclic petroleum resins obtained by copolymerizing and hydrogenating a cyclopentadiene compound and an aromatic vinyl compound are particularly preferable. Examples of commercially available hydrogenated petroleum resins include “ALCON” (manufactured by Arakawa Chemical Industries).
 本発明におけるエチレン系共重合体とは、エチレンと、酢酸ビニル、不飽和カルボン酸、不飽和カルボン酸無水物、またはカルボン酸エステル等の中から1種類以上とを共重合させることにより得られる化合物である。 The ethylene copolymer in the present invention is a compound obtained by copolymerizing ethylene and one or more of vinyl acetate, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, or carboxylic acid ester. It is.
 エチレン系共重合体は、エチレン単量体単位の含有率が好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。一方、上限については、エチレン単量体単位の含有率が好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下であることが望ましい。エチレン単量体単位の含有率が所定の範囲内であれば、より効率的に多孔構造を形成することができる。 The ethylene copolymer preferably has an ethylene monomer unit content of 50% by mass or more, more preferably 60% by mass or more, and still more preferably 65% by mass or more. On the other hand, regarding the upper limit, the content of ethylene monomer units is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. If the content of the ethylene monomer unit is within a predetermined range, a porous structure can be formed more efficiently.
 前記エチレン系共重合体は、MFR(JIS K7210、温度:190℃、荷重:2.16kg)が0.1g/10分以上10g/10分以下のものが好適に用いられる。MFRが0.1g/10分以上であれば、押出加工性を良好に維持でき、一方、MFRが10g/10分以下であればフィルムの強度低下を起こしにくく、好ましい。 As the ethylene copolymer, those having an MFR (JIS K7210, temperature: 190 ° C., load: 2.16 kg) of 0.1 g / 10 min to 10 g / 10 min are preferably used. If the MFR is 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily. On the other hand, if the MFR is 10 g / 10 min or less, the strength of the film is hardly lowered, which is preferable.
 前記エチレン系共重合体は、エチレン-酢酸ビニル共重合体として「EVAFLEX」(三井・デュポン ポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)、エチレン-アクリル酸共重合体として「NUCコポリマー」 (日本ユニカー社製)、「エバフレックス-EAA」(三井・デュポン ポリケミカル社製)、「REXPEARL EAA」(日本エチレン社製)、エチレン-(メタ)アクリル酸共重合体として「ELVALOY」(三井・デュポン ポリケミカル社製)、「REXPEARL EMA」(日本エチレン社製)、エチレン-アクリル酸エチル共重合体として「REXPEARL EEA」(日本エチレン社製)、エチレン-メチル(メタ)アクリル酸共重合体として「アクリフト」(住友化学社製)、エチレン-酢酸ビニル-無水マレイン酸三元共重合体として「ボンダイン」(住友化学社製)、エチレン-メタクリル酸グリシジル共重合体、エチレン-酢酸ビニル-メタクリル酸グリシジル三元共重合体、エチレン-アクリル酸エチル-メタクリル酸グリシジル三元共重合体として「ボンドファースト」(住友化学社製)などが商業的に入手できる。 The ethylene-based copolymer includes “EVAFLEX” (Mitsui DuPont, manufactured by Polychemical Co., Ltd.), “Novatech EVA” (manufactured by Nippon Polyethylene Co., Ltd.) as an ethylene-vinyl acetate copolymer, and “NUC as an ethylene-acrylic acid copolymer. "Copolymer" (Nippon Unicar), "Evaflex-EAA" (Mitsui DuPont, Polychemical), "REXPEARL EAA" (Nihon Ethylene), "ELVALOY" as an ethylene- (meth) acrylic acid copolymer (Mitsui / DuPont Polychemical Co., Ltd.), “REXPEARL EMA” (Nippon Ethylene Co., Ltd.), “REXPEARL EEA” (manufactured by Nippon Ethylene Co., Ltd.), ethylene-methyl (meth) acrylic acid co "Acrylift" as a polymer (Sumitomo Chemical) ), “Bondyne” (manufactured by Sumitomo Chemical Co., Ltd.), an ethylene-glycidyl methacrylate copolymer, an ethylene-vinyl acetate-glycidyl methacrylate terpolymer, “Bond First” (manufactured by Sumitomo Chemical Co., Ltd.) is commercially available as an ethylene-ethyl acrylate-glycidyl methacrylate terpolymer.
 本発明におけるワックスとは、以下の(ア)および(イ)の性質を満たす有機化合物のことである。
 (ア)融点が40℃~200℃である。
 (イ)融点より10℃高い温度での溶融粘度が50Pa・s以下である。
The wax in the present invention is an organic compound that satisfies the following properties (a) and (b).
(A) The melting point is 40 ° C to 200 ° C.
(A) The melt viscosity at a temperature 10 ° C. higher than the melting point is 50 Pa · s or less.
 ワックスについて、極性または非極性ワックス、ポリプロピレンワックス、ポリエチレンワックス及びワックス改質剤を含む。具体的には、極性ワックス、非極性ワックス、フィッシャー-トロプシュワックス、酸化フィッシャー-トロプシュワックス、ヒドロキシステアロマイドワックス、機能化ワックス、ポリプロピレンワックス、ポリエチレンワックス、ワックス改質剤、アモルファスワックス、カルナウバワックス、キャスター・オイルワックス、マイクロクリスタリンワックス、蜜ろう、カルナウバろう、キャスターワックス、植物ろう、カンデリラろう、日本ろう、ouricuryワックス、ダグラスファーバーク・ワックス、米ぬかワックス、ホホバワックス、ヤマモモワックス、モンタンワックス、オゾケライトワックス、セレシンワックス、石油ろう、パラフィンワックス、化学変性炭化水素ワックス、置換アミドワックス、及びこれらの組み合わせ及び誘導体が挙げられる。中でも多孔構造を効率的に形成できる点から、パラフィンワックス、ポリエチレンワックス、マイクロクリスタリンワックスが好ましく、SD特性の観点より孔径をより微小化できるマイクロクリスタリンワックスが更に好ましい。市販されているポリエチレンワックスとしては「FT-115」(日本精蝋社製)、マイクロクリスタリンワックスとしては「Hi-Mic」(日本精蝋社製)などが挙げられる。 ¡For wax, including polar or nonpolar wax, polypropylene wax, polyethylene wax and wax modifier. Specifically, polar wax, nonpolar wax, Fischer-Tropsch wax, oxidized Fischer-Tropsch wax, hydroxy stearamide wax, functionalized wax, polypropylene wax, polyethylene wax, wax modifier, amorphous wax, carnauba wax , Castor oil wax, microcrystalline wax, beeswax, carnauba wax, castor wax, plant wax, candelilla wax, Japanese wax, ouricury wax, rice bran wax bark, rice bran wax, jojoba wax, bay wax, montan wax, ozo Kelite wax, ceresin wax, petroleum wax, paraffin wax, chemically modified hydrocarbon wax, substituted amide wax, and combinations thereof Allowed and derivatives. Among these, paraffin wax, polyethylene wax, and microcrystalline wax are preferable from the viewpoint of efficiently forming a porous structure, and microcrystalline wax that can further reduce the pore diameter is more preferable from the viewpoint of SD characteristics. Examples of commercially available polyethylene wax include “FT-115” (manufactured by Nippon Seiwa), and examples of microcrystalline wax include “Hi-Mic” (manufactured by Nippon Seiwa).
 前記多孔化促進化合物の配合量は、ポリエチレン系樹脂と前記多孔化促進化合物との界面を剥離させて微細孔を形成させる場合、一層に含まれるポリエチレン系樹脂100質量部に対し、下限として1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。一方、上限として50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下が更に好ましい。前記多孔化促進化合物の配合量がポリエチレン系樹脂100質量部に対し、1質量部以上とすることで、目的とする良好な多孔構造が発現する効果が十分に得られる。また、前記多孔化促進化合物の配合量が50質量部以下とすることで、より安定した成形性を確保することができる。 The blending amount of the porosity promoting compound is 1 mass as a lower limit with respect to 100 parts by mass of the polyethylene resin contained in one layer when the interface between the polyethylene resin and the porosity promoting compound is peeled to form micropores. Part or more, preferably 5 parts by weight or more, more preferably 10 parts by weight or more. On the other hand, the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. By setting the blending amount of the porosity promoting compound to 1 part by mass or more with respect to 100 parts by mass of the polyethylene resin, an effect of expressing a desired good porous structure can be sufficiently obtained. Moreover, the more stable moldability is securable because the compounding quantity of the said porosity promotion compound shall be 50 mass parts or less.
 必要に応じてポリエチレン系樹脂や多孔化促進化合物以外に、多孔フィルムの熱特性、具体的には多孔化を損なわない範囲で熱可塑性樹脂を用いても良い。前述のポリエチレン系樹脂と混合させることができる他の熱可塑性樹脂としては、ポリスチレン、AS樹脂、もしくはABS樹脂等のスチレン系樹脂:ポリ塩化ビニル、フッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートもしくはポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6-6ナイロン、6-12ナイロン等のポリアミド系樹脂等の熱可塑性樹脂が挙げられる。 If necessary, a thermoplastic resin may be used in addition to the polyethylene-based resin and the porosity promoting compound as long as the thermal characteristics of the porous film, specifically, the porosity is not impaired. Other thermoplastic resins that can be mixed with the above-mentioned polyethylene resin include styrene resins such as polystyrene, AS resin, or ABS resin: polyvinyl chloride, fluorine resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or Ester resins such as polyarylate; ether resins such as polyacetal, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone or polyphenylene sulfide; polyamide resins such as 6 nylon, 6-6 nylon, 6-12 nylon And other thermoplastic resins.
 また、必要に応じて熱可塑性エラストマー等のゴム成分と呼ばれているものを添加しても良い。熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどが挙げられる。 Also, if necessary, what is called a rubber component such as a thermoplastic elastomer may be added. Examples of the thermoplastic elastomer include styrene / butadiene, polyolefin, urethane, polyester, polyamide, 1,2-polybutadiene, polyvinyl chloride, and ionomer.
 ポリエチレン系樹脂や多孔化促進化合物以外に、一般に樹脂組成物に配合される添加剤または他の成分を含んでいてもよい。前記添加剤としては、成形加工性、生産性および積層多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
 中でも、核剤はポリエチレン系樹脂の結晶構造を制御し、延伸開孔時の多孔構造を細かくするという効果があるため好ましい。市販されているものとして、「ゲルオールD」(新日本理化社製)、「アデカ スタブ」(旭電化工業社製)、「Hyperform」(ミリケンケミカル社製)、または「IRGACLEAR D」(チバ スペシャルケミカルズ社製)等が挙げられる。また、核剤の添加されたポリエチレン系樹脂の具体例としては、「リケマスター」(理研ビタミン社製)等が商業的に入手できる。
In addition to the polyethylene-based resin and the porosity promoting compound, an additive or other component that is generally blended in the resin composition may be included. Examples of the additive include recycling resin, silica, talc, kaolin, carbonic acid, etc., which are added for the purpose of improving / adjusting the processability, productivity, and various physical properties of the laminated porous film. Inorganic particles such as calcium, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents And additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
Among them, the nucleating agent is preferable because it has an effect of controlling the crystal structure of the polyethylene resin and reducing the porous structure at the time of stretching and opening. Examples of commercially available products include “Gelall D” (manufactured by Shin Nippon Chemical Co., Ltd.), “Adeka Stub” (manufactured by Asahi Denka Kogyo Co., Ltd.), “Hyperform” (manufactured by Milliken Chemical Co., Ltd.), or “IRGACLEAR D” (Ciba Special Chemicals). Etc.). Moreover, as a specific example of the polyethylene resin to which the nucleating agent is added, “Rike Master” (manufactured by Riken Vitamin Co., Ltd.) and the like are commercially available.
(ポリオレフィン系樹脂多孔フィルムの層構成)
 本発明において、ポリオレフィン系樹脂多孔フィルムは、単層でも積層でも構わないが、2層以上に積層させることが好ましい。中でも、ポリプロピレン系樹脂を含有する層とポリエチレン系樹脂を含有する層とを積層したものがより好ましい。
 ポリオレフィン系樹脂多孔フィルムの層構成は、ポリプロピレン系樹脂を含有する層(以降「A層」と称す)が少なくとも1層存在すれば特に限定されるものではない。また、ポリオレフィン系樹脂多孔フィルムの機能を妨げない範囲で他の層(以降「B層」と称す)を積層することもできる。強度保持層、耐熱層(高融解温度樹脂層)、シャットダウン層(低融解温度樹脂層)などを積層させた構成が挙げられる。例えば、リチウムイオン電池用セパレータとして用いる際には、特開平04-181651号公報に記載されているような高温雰囲気化で孔閉塞し、電池の安全性を確保する低融点樹脂層を積層させることが好ましい。
 具体的にはA層/B層を積層した2層構造、A層/B層/A層、若しくは、B層/A層/B層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。
(Layer structure of polyolefin resin porous film)
In the present invention, the polyolefin-based resin porous film may be a single layer or a laminate, but is preferably laminated in two or more layers. Especially, what laminated | stacked the layer containing a polypropylene resin and the layer containing a polyethylene resin is more preferable.
The layer structure of the polyolefin resin porous film is not particularly limited as long as at least one layer containing a polypropylene resin (hereinafter referred to as “A layer”) is present. In addition, other layers (hereinafter referred to as “B layer”) can be laminated as long as they do not interfere with the function of the polyolefin resin porous film. The structure which laminated | stacked the intensity | strength maintenance layer, the heat-resistant layer (high melting temperature resin layer), the shutdown layer (low melting temperature resin layer), etc. are mentioned. For example, when used as a separator for a lithium ion battery, a low melting point resin layer that ensures the safety of the battery is laminated by closing the hole in a high temperature atmosphere as described in JP-A No. 04-181651. Is preferred.
Specific examples include a two-layer structure in which A layers / B layers are stacked, a three-layer structure in which A layers / B layers / A layers, or B layers / A layers / B layers are stacked. In addition, it is possible to adopt a form of three types and three layers in combination with layers having other functions. In this case, the order of stacking with layers having other functions is not particularly limited. Further, the number of layers may be increased as necessary to 4 layers, 5 layers, 6 layers, and 7 layers.
 本発明のポリオレフィン系樹脂多孔フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。 The physical properties of the polyolefin resin porous film of the present invention can be freely adjusted by the layer constitution, lamination ratio, composition of each layer, and production method.
(ポリオレフィン系樹脂多孔フィルムの製造方法)
 次に、本発明のポリオレフィン系樹脂多孔フィルムの製造方法について説明するが、本発明はかかる製造方法により製造される積層多孔フィルムのみに限定されるものではない。
(Manufacturing method of polyolefin resin porous film)
Next, although the manufacturing method of the polyolefin resin porous film of this invention is demonstrated, this invention is not limited only to the lamination | stacking porous film manufactured by this manufacturing method.
 無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
 無孔膜状物の多孔化方法としては特に限定されることなく、湿式による一軸以上の延伸多孔化、乾式による一軸以上の延伸多孔化など、公知の方法を用いてもよい。延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から逐次二軸延伸が好ましい。
The method for producing the non-porous film is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll. Is mentioned. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
There are no particular limitations on the method for making the nonporous membrane-like material, and known methods such as wet uniaxial or more stretched porous and dry uniaxial or more stretched porous may be used. As the stretching method, there are methods such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more to perform uniaxial stretching or biaxial stretching. Among these, sequential biaxial stretching is preferable from the viewpoint of controlling the porous structure.
 また、本発明において、ポリオレフィン系樹脂多孔フィルムを積層にする場合、製造方法は、多孔化と積層の順序によって次の4つに大別される。
(a)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(b)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(c)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
(d)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
 本発明においては、その工程の簡略さ、生産性の観点から(b)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
Moreover, in this invention, when making a polyolefin resin porous film into a lamination, a manufacturing method is divided roughly into the following four according to the order of porous formation and lamination.
(A) A method of laminating each porous layer after laminating each porous layer or bonding with an adhesive or the like.
(B) A method of laminating each layer to produce a laminated nonporous film-like material and then making the nonporous film-like material porous.
(C) A method in which one of the layers is made porous and then laminated with another layer of a nonporous film to make it porous.
(D) A method of forming a laminated porous film by preparing a porous layer and then applying a coating such as inorganic / organic particles or depositing metal particles.
In the present invention, it is preferable to use the method (b) from the viewpoint of the simplicity of the process and productivity, and in particular, in order to ensure the interlayer adhesion between the two layers, a laminated nonporous film-like material is obtained by coextrusion. A method of forming a porous layer after preparing is particularly preferable.
 以下に、ポリオレフィン系樹脂多孔フィルムの製造方法の詳細を説明する。
 まず、ポリプロピレン系樹脂と、必要であれば熱可塑性樹脂、添加剤の混合樹脂組成物を作製する。例えば、ポリプロピレン系樹脂、β晶核剤、および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
Below, the detail of the manufacturing method of a polyolefin resin porous film is demonstrated.
First, a mixed resin composition of a polypropylene resin and, if necessary, a thermoplastic resin and additives is prepared. For example, raw materials such as polypropylene resin, β crystal nucleating agent, and other additives as required, preferably using Henschel mixer, super mixer, tumbler type mixer, etc., or by hand-blending all ingredients in a bag After mixing, the mixture is melt-kneaded with a single-screw or twin-screw extruder, a kneader or the like, preferably a twin-screw extruder, and then cut to obtain pellets.
 前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。Tダイの種類としては特に限定されない。例えば、本発明の当該実施形態の積層多孔フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
 使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1~3.0mm程度、好ましくは0.5~1.0mmである。0.1mm以上であれば生産速度という観点から好ましく、また3.0mm以下であれば、ドラフト率が小さくなるので生産安定性の観点から好ましい。
The pellets are put into an extruder and extruded from a T-die extrusion die to form a film. The type of T die is not particularly limited. For example, when the laminated porous film of the embodiment of the present invention has a laminated structure of two types and three layers, the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers. .
The gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft ratio, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5. -1.0 mm. If it is 0.1 mm or more, it is preferable from a viewpoint of production speed, and if it is 3.0 mm or less, since a draft rate becomes small, it is preferable from a viewpoint of production stability.
 押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180~350℃が好ましく、200~330℃がより好ましく、220~300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる積層多孔フィルムの機械的強度の低下を抑制できる。 In extrusion molding, the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C. A temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved. On the other hand, by setting the temperature to 350 ° C. or lower, it is possible to suppress the deterioration of the resin composition, and hence the mechanical strength of the laminated porous film obtained.
 β晶核剤を添加する場合には、キャストロールによる冷却固化温度は非常に重要であり、膜状物中のポリプロピレン系樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80~150℃、より好ましくは90~140℃、更に好ましくは100~130℃である。冷却固化温度を80℃以上とすることで、膜状物中のβ晶の比率を十分に増加させることができるために好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。前記温度範囲にキャストロールを設定することで、延伸前の膜状物のポリプロピレン系樹脂のβ晶比率は20~100%に調整することができる。 When the β crystal nucleating agent is added, the cooling and solidification temperature by the cast roll is very important, and the ratio of β crystal of the polypropylene resin in the film can be adjusted. The cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C. It is preferable to set the cooling and solidification temperature to 80 ° C. or higher because the ratio of β crystals in the film can be sufficiently increased. Further, it is preferable to set the temperature to 150 ° C. or lower because troubles such as the extruded molten resin sticking to and wrapping around the cast roll hardly occur and the film can be efficiently formed into a film. By setting the cast roll in the above temperature range, the β crystal ratio of the polypropylene resin of the film-like material before stretching can be adjusted to 20 to 100%.
 延伸工程においては、縦方向又は横方向に一軸延伸してもよいし、二軸延伸であってもよい。また、二軸延伸を行う場合は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明のポリオレフィン系樹脂多孔フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、かつ多孔構造を制御し易い逐次二軸延伸がより好ましい。
 なお、膜状物及びフィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。また、長手方向への延伸を「縦延伸」、長手方向に対して垂直方向への延伸を「横延伸」と称する。
In the stretching step, uniaxial stretching may be performed in the longitudinal direction or the transverse direction, or biaxial stretching may be performed. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be sufficient and sequential biaxial stretching may be sufficient. When producing the polyolefin resin porous film of the present invention, sequential biaxial stretching is more preferable because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
The longitudinal direction of the film and the film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”. In addition, stretching in the longitudinal direction is referred to as “longitudinal stretching”, and stretching in the direction perpendicular to the longitudinal direction is referred to as “lateral stretching”.
 逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時変える必要があるが、縦延伸での延伸温度は概ね0~130℃が好ましく、より好ましくは10~120℃、更に好ましくは20~110℃の範囲で制御される。また、縦延伸倍率は2~10倍が好ましく、より好ましくは3~8倍、更に好ましくは4~7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。 When sequential biaxial stretching is used, the stretching temperature needs to be changed appropriately depending on the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the stretching temperature in the longitudinal stretching is preferably about 0 to 130 ° C., More preferably, it is controlled in the range of 10 to 120 ° C., more preferably 20 to 110 ° C. The longitudinal draw ratio is preferably 2 to 10 times, more preferably 3 to 8 times, still more preferably 4 to 7 times. By performing longitudinal stretching within the above range, it is possible to develop an appropriate pore starting point while suppressing breakage during stretching.
 一方、横延伸での延伸温度は概ね100~160℃、好ましくは110~150℃、更に好ましくは120~140℃である。また、好ましい横延伸倍率は2~10倍、より好ましくは3~8倍、更に好ましくは4~7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができる。
 前記延伸工程の延伸速度としては、500~12000%/分が好ましく、1500~10000%/分がさらに好ましく、2500~8000%/分であることが更に好ましい。
On the other hand, the stretching temperature in transverse stretching is generally from 100 to 160 ° C., preferably from 110 to 150 ° C., more preferably from 120 to 140 ° C. The preferred transverse draw ratio is 2 to 10 times, more preferably 3 to 8 times, and still more preferably 4 to 7 times. By transversely stretching within the above range, the pore starting point formed by longitudinal stretching can be appropriately expanded, and a fine porous structure can be expressed.
The stretching speed in the stretching step is preferably 500 to 12000% / min, more preferably 1500 to 10,000% / min, and further preferably 2500 to 8000% / min.
 このようにして得られた多孔フィルムは、寸法安定性の改良を目的として熱処理を施すことが好ましい。この際、温度は好ましくは100℃以上、より好ましくは120℃以上、更に好ましくは140℃以上とすることで、寸法安定性の効果が期待できる。一方、熱処理温度は好ましくは170℃以下、より好ましくは165℃以下、更に好ましくは160℃以下である。熱処理温度が170℃以下であれば、熱処理によってポリプロピレンの融解が起こりにくく、多孔構造を維持できるため好ましい。また、熱処理工程中には、必要に応じて1~20%の弛緩処理を施しても良い。なお、熱処理後、均一に冷却して巻き取ることにより、本発明の多孔フィルムが得られる。 The porous film thus obtained is preferably subjected to heat treatment for the purpose of improving dimensional stability. In this case, the effect of dimensional stability can be expected by setting the temperature to preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 140 ° C. or higher. On the other hand, the heat treatment temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower. When the heat treatment temperature is 170 ° C. or lower, it is preferable because the heat treatment hardly melts polypropylene and maintains a porous structure. Further, during the heat treatment step, a relaxation treatment of 1 to 20% may be performed as necessary. In addition, the porous film of this invention is obtained by uniformly cooling and winding up after heat processing.
(表面処理)
 本発明における表面処理とは、前記ポリオレフィン系樹脂多孔フィルムの表面の密着性を向上させることができる物理的及び/又は化学的な表面改質処理を意味する。その例としては、コロナ処理、プラズマ処理、大気圧下のプラズマ処理、フレームプラズマ処理(火炎処理)、UV処理などがあげられるが、これらに限定されない。本発明においては、ポリオレフィン系樹脂多孔フィルムにおいて使用できる公知の条件・装置を用いて、表面処理を行なうことができる。
(surface treatment)
The surface treatment in the present invention means a physical and / or chemical surface modification treatment that can improve the surface adhesion of the polyolefin resin porous film. Examples thereof include, but are not limited to, corona treatment, plasma treatment, plasma treatment under atmospheric pressure, flame plasma treatment (flame treatment), and UV treatment. In the present invention, the surface treatment can be performed using known conditions and equipment that can be used in polyolefin resin porous films.
 また、本発明においては、ポリオレフィン系樹脂多孔フィルムは、全幅に亘って表面処理されていてもよいし、また、ストライプ(部分的)に表面処理されていてもよい。積層多孔フィルムの製造の際に、非処理部分はコーティング等で塗工することができず、または塗工できても基材の多孔フィルムと密着していないので剥がすことができる。従って、被覆層が部分的に積層されている本発明の積層多孔フィルムにおいても、多孔フィルムは全幅に亘って表面処理されていてもよい。 In the present invention, the polyolefin resin porous film may be surface-treated over the entire width, or may be surface-treated in stripes (partially). In the production of the laminated porous film, the non-treated portion cannot be applied by coating or the like, or even if it can be applied, it can be peeled off because it is not in close contact with the porous film of the substrate. Therefore, also in the laminated porous film of the present invention in which the coating layer is partially laminated, the porous film may be subjected to a surface treatment over the entire width.
(積層多孔フィルムロール)
 本発明は、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムを当該フィルムの長さ方向に所定の長さでロール状に巻き取った積層多孔フィルムロールに関る。
(Laminated porous film roll)
The present invention provides a laminated porous film in which a coating layer is partially laminated on at least one surface of a polyolefin-based resin porous film, and at least one coating layer lamination portion X and at least one non-laminate portion Y are formed. The present invention relates to a laminated porous film roll wound up in a roll shape with a predetermined length in the length direction of the film.
 本発明においては、被覆層積層部Xの端部におけるフィルム厚みTaと中央部におけるフィルム厚みTbが、Ta≦Tbの関係式を満たすことが好ましい。更には、Ta<Tbの関係式を満たすことが好ましい。なお、本発明においては、被覆層積層部の端部とは、被覆層積層部と非積層部との境界から5mm以内の最大値をいう。
 本発明においては、被覆層積層部における端部と中央部でのフィルムの厚みを制御することにより、シワの発生が抑えられた1000m程度以上の長さのフィルムロールを提供することが可能となる。本発明の積層多孔フィルムロールを非水電解液電池用セパレータとして用いる場合、最終的にはロール状で正極や負極などと重ねて電池を製造していくため、できるだけ巻き長さは長くできることが望ましい。1000m以上の長さにフィルムを巻くことができれば、電池を製造するための電池用セパレータとして優位に使用でき、また生産性の観点からも効率がよく、さらに品質的にも揃ったものを得ることができる。この点から、巻き長さは1000m以上が好ましく、1200m以上がより好ましく、1500m以上がさらに好ましく、2000m以上が特に好ましい。なお、巻き長さは長ければ長い方が好ましいため特に上限はないが、実質的には100000m以下とすることができる。
In the present invention, it is preferable that the film thickness Ta at the end of the coating layer laminate portion X and the film thickness Tb at the center satisfy the relational expression of Ta ≦ Tb. Furthermore, it is preferable to satisfy the relational expression of Ta <Tb. In the present invention, the end portion of the covering layer stacking portion refers to a maximum value within 5 mm from the boundary between the covering layer stacking portion and the non-stacking portion.
In the present invention, it is possible to provide a film roll having a length of about 1000 m or more in which generation of wrinkles is suppressed by controlling the thickness of the film at the end portion and the central portion in the coating layer lamination portion. . When the laminated porous film roll of the present invention is used as a separator for a non-aqueous electrolyte battery, it is desirable to make the winding length as long as possible because the battery is finally manufactured in a roll shape and stacked with a positive electrode or a negative electrode. . If the film can be wound to a length of 1000 m or more, it can be used as a battery separator for manufacturing a battery, is efficient from the viewpoint of productivity, and has a quality assortment. Can do. In this respect, the winding length is preferably 1000 m or more, more preferably 1200 m or more, further preferably 1500 m or more, and particularly preferably 2000 m or more. In addition, since the longer winding length is preferable, there is no particular upper limit, but the winding length can be substantially 100,000 m or less.
 本発明においては、フィルム幅方向において非積層部Yは少なくとも1つ設けられている。非積層部Yはフィルム幅方向の端部、又は端部以外の場所に設けることができる。本発明における一つの実施態様において、非積層部Yは、フィルム幅方向における片方の端部、又は端部以外の場所、例えば中央付近に設けることができる。本発明における別の実施態様においては、フィルム幅方向において非積層部Yが2つ以上設けられ、例えば、両端部、或いは、両端部と中央付近に非積層部を設けることができる。 In the present invention, at least one non-laminate portion Y is provided in the film width direction. The non-lamination part Y can be provided in the edge part of a film width direction, or places other than an edge part. In one embodiment of the present invention, the non-laminate portion Y can be provided at one end in the film width direction, or at a place other than the end, for example, near the center. In another embodiment of the present invention, two or more non-laminate portions Y are provided in the film width direction. For example, the non-laminate portions can be provided at both end portions or at both end portions and the vicinity of the center.
 本発明においては、少なくとも1つの非積層部Yの幅は、好ましくは5mm~100mm、より好ましくは8mm~90mm、更に好ましくは10mm~80mmの範囲にある。5mm以上であればスリット等の後加工において問題がなく、100mm以下であればシワが入りにくくなるため好ましい。 In the present invention, the width of at least one non-laminated portion Y is preferably in the range of 5 mm to 100 mm, more preferably 8 mm to 90 mm, and still more preferably 10 mm to 80 mm. If it is 5 mm or more, there is no problem in post-processing such as slits, and if it is 100 mm or less, wrinkles are less likely to occur, which is preferable.
 また、本発明においては、少なくとも1つの被覆層積層部Xにおける一方の端部でのフィルム厚みTa1と他方の端部でのフィルム厚みTa2が|Ta1-Ta2|≦3μmの関係式を満たすことがより好ましい。更には|Ta1-Ta2|≦2μmの関係式を満たすことがより好ましい。被覆層積層部Xの両方の端部でのフィルム厚みを制御することにより、被覆層積層部Xの全体に亘って厚みが均一となるため、被覆層端部の高さのずれが発生せずシワの発生を有効に抑えることが可能となる。
 更に、本発明においては、全ての被覆層積層部Xの端部でのフィルム厚みの最大値Tmaxと最小値Tminが(Tmax-Tmin)≦3μmの関係式を満たすことがより好ましい。更には(Tmax-Tmin)≦2μmの関係式を満たすことがより好ましい。この範囲とすることにより、シワの発生を更に有効に抑えることが可能となる。
In the present invention, the film thickness Ta1 at one end and the film thickness Ta2 at the other end of at least one coating layer laminate portion X satisfy the relational expression | Ta1-Ta2 | ≦ 3 μm. More preferred. Further, it is more preferable that the relational expression | Ta1-Ta2 | ≦ 2 μm is satisfied. By controlling the film thickness at both ends of the coating layer stacking portion X, the thickness is uniform over the entire coating layer stacking portion X, so that there is no deviation in the height of the coating layer end portion. The generation of wrinkles can be effectively suppressed.
Furthermore, in the present invention, it is more preferable that the maximum value Tmax and the minimum value Tmin of the film thickness at the ends of all the coating layer laminated portions X satisfy the relational expression of (Tmax−Tmin) ≦ 3 μm. Further, it is more preferable to satisfy the relational expression of (Tmax−Tmin) ≦ 2 μm. By setting it within this range, it is possible to more effectively suppress the generation of wrinkles.
 本発明においては、少なくとも1つの被覆層積層部Xの中央部における被覆層の厚みは、好ましくは0.5μm~50μm、より好ましくは1μm~40μm、更に好ましくは2μm~30μmである。0.5μm~50μmの範囲であれば非水電解液電池用セパレータとして用いた際の耐熱性を担うことができる。
 また、本発明においては、前記ポリオレフィン系樹脂多孔フィルムの厚みは好ましくは5μm~50μm、より好ましくは8μm~40μm、更に好ましくは10μm~30μmである。非水電解液電池用セパレータとして用いる場合、ポリオレフィン系樹脂多孔フィルムは薄いものが所望されるようになってきており、本発明によれば30μm以下という薄いフィルムであっても、被覆層を部分的に積層したフィルムをシワの発生を抑えて長く巻き取ることができる。
 本発明においては、少なくとも1つの被覆層積層部Xの中央部における、ポリオレフィン系樹脂多孔フィルムの厚みに対する被覆層の厚みの比は、好ましくは1/1~1/6、より好ましくは1/2~1/5、更に好ましくは1/2~1/4である。1/1より小さければ積層フィルムの搬送における問題がなく、シワの発生を抑えることができる。また、1/6より大きければ被覆層を積層することによる耐熱性向上等の効果を優位に奏することができる。
In the present invention, the thickness of the coating layer in the central portion of at least one coating layer laminate portion X is preferably 0.5 μm to 50 μm, more preferably 1 μm to 40 μm, and further preferably 2 μm to 30 μm. If it is in the range of 0.5 μm to 50 μm, heat resistance when used as a separator for a non-aqueous electrolyte battery can be taken.
In the present invention, the polyolefin resin porous film has a thickness of preferably 5 μm to 50 μm, more preferably 8 μm to 40 μm, still more preferably 10 μm to 30 μm. When used as a separator for a non-aqueous electrolyte battery, a thin polyolefin-based resin porous film has been desired. According to the present invention, a coating layer is partially formed even if it is a thin film of 30 μm or less. The film laminated on can be rolled up for a long time while suppressing the generation of wrinkles.
In the present invention, the ratio of the thickness of the coating layer to the thickness of the polyolefin resin porous film in the central portion of at least one coating layer laminate portion X is preferably 1/1 to 1/6, more preferably 1/2. ˜1 / 5, more preferably ½ to ¼. If it is smaller than 1/1, there is no problem in conveyance of a laminated film, and generation | occurrence | production of a wrinkle can be suppressed. Moreover, if it is larger than 1/6, effects such as improvement in heat resistance by laminating the coating layer can be obtained.
 本発明においては、被覆層は、ポリオレフィン系樹脂多孔フィルムの片面に積層されていてもよいし、両面に積層されていてもよい。 In the present invention, the coating layer may be laminated on one side of the polyolefin resin porous film, or may be laminated on both sides.
 本発明においては、フィルムロールの幅は、好ましくは0.3m~3m、より好ましくは0.4m~2.5m、更に好ましくは0.8~2.5mである。本発明によればフィルムロールの幅を広くして非積層部を多くしてもシワの発生を抑えて巻き取ることができるため、幅広品でフィルムロールを製造しておいて、最終的に幅方向にスリットすることによって効率よく生産することができる。 In the present invention, the width of the film roll is preferably 0.3 to 3 m, more preferably 0.4 to 2.5 m, and still more preferably 0.8 to 2.5 m. According to the present invention, even if the width of the film roll is widened to increase the number of non-laminate portions, the film roll can be wound with reduced wrinkles. It can be produced efficiently by slitting in the direction.
(積層多孔フィルムロールの製造方法)
 本発明における積層多孔フィルムロールは、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に被覆層を部分的に積層する方法であれば任意の方法により製造することができるが、本発明においては、ポリオレフィン系樹脂多孔フィルムの表面処理がされた面にコーティング(塗布)により被覆層を積層することが好ましい。
(Method for producing laminated porous film roll)
The laminated porous film roll in the present invention can be produced by any method as long as it is a method of partially laminating a coating layer on at least one surface of a polyolefin resin porous film. It is preferable to laminate a coating layer by coating (application) on the surface of the film that has been surface-treated.
 コーティングの方法としては、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等を使用することができるが、本発明においては、ロール上に塗工液を転写するための幾何学模様の凹凸(セル)を設けたグラビアロールを用いる塗工方式(以下「グラビア塗工」とも言う。)を用いることが特に好ましい。 Coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze method A coater method, a cast coater method, a die coater method, a screen printing method, a spray coating method, and the like can be used, but in the present invention, the unevenness of the geometric pattern for transferring the coating liquid onto the roll ( It is particularly preferable to use a coating method using a gravure roll provided with a cell) (hereinafter also referred to as “gravure coating”).
 本発明の製造方法に使用することができるグラビア塗工の方式としては、ロール径の大きさから、グラビアコート法、小径グラビアコート法に分けられ、それぞれの方式において、基材への塗料転写位置において、グラビアロールを基材進行方向と同方向に回転させる正転塗布方式と逆方向に回転させるリバース方式に分けられる。さらには、基材へ塗料を転写させる位置において、基材の反対側からバックロールで基材を支えるバックロール方式(図5参照)と、グラビアロールの前後に配置したガイドロールを介して、基材をグラビアロールに接触させて塗料を転写させるキス方式(図4参照)があり、それぞれ適宜組み合わせることができる。 The gravure coating method that can be used in the production method of the present invention is divided into a gravure coating method and a small-diameter gravure coating method from the size of the roll diameter, and in each method, the paint transfer position to the substrate In the above, the gravure roll is divided into a normal application method in which the gravure roll is rotated in the same direction as the base material traveling direction and a reverse method in which the gravure roll is rotated in the reverse direction. Furthermore, at a position where the coating material is transferred to the base material, a back roll system (see FIG. 5) that supports the base material with a back roll from the opposite side of the base material, and a guide roll disposed before and after the gravure roll, There is a kiss system (see FIG. 4) in which a material is brought into contact with a gravure roll to transfer a paint, which can be combined as appropriate.
 本発明の製造方法に使用することができるグラビアロールのセル形状としては、ピラミッド状、台形状、格子状、斜線状(三角形、台形)などがあげられる。このうち、本発明では、ピラミッド状や格子状、台形状などの左右対称のセル形状が好ましく用いられる。 Examples of the cell shape of the gravure roll that can be used in the production method of the present invention include a pyramid shape, a trapezoid shape, a lattice shape, and a diagonal shape (triangle, trapezoid). Among these, in the present invention, symmetrical cell shapes such as a pyramid shape, a lattice shape, and a trapezoid shape are preferably used.
 通常のグラビア塗工においては、塗工液の転写率を上げることができるという理由から、従来から、左右非対称である斜線状のグラビアロールが使用されることが多い。しかしながら、本発明の積層多孔フィルムロールの製造において、左右非対称の斜線状のグラビアロールロールを使用すると、回転によって塗工液に横方向の流れが発生し、幅方向に厚みが安定せず、塗工時及び巻取り時にシワが発生することがある。また、基材であるポリオレフィン系樹脂多孔フィルムに対して未塗工部分を設ける部分塗工を実施する場合には、未塗工部分へ塗液がはみ出してしまい正確な幅で未塗工部分を設けることが困難であり、更に、塗工後の巻取りでは未塗工部分と塗工部分でシワが入ることがあった。このときシワが発生する理由として、積層部の両端部の厚みに差が生じて高さのずれが生じる場合があり、特に一方の端部の厚みが厚くなって耳高の状態になっていることが多い。本発明においては、例えば、ピラミッド状や格子状、台形状などの左右対称のセル形状のグラビアロールを使用することにより、積層部の両端部の厚みに差が生じることを優位に防止することができ、未塗工部分を設ける部分塗工(ストライプ状等)を行なう場合に、シワの発生を有効に抑えることができる。 In ordinary gravure coating, a slanted gravure roll that is asymmetrical to the left and right is often used for the reason that the transfer rate of the coating liquid can be increased. However, in the production of the laminated porous film roll of the present invention, if a left-right asymmetric oblique gravure roll is used, a lateral flow occurs in the coating liquid due to rotation, the thickness is not stabilized in the width direction, and the coating is not performed. Wrinkles may occur during construction and winding. In addition, when carrying out partial coating to provide an uncoated part to the polyolefin resin porous film that is the base material, the coating liquid protrudes into the uncoated part and the uncoated part with an accurate width Further, it is difficult to provide, and in the winding after coating, wrinkles may occur in the uncoated portion and the coated portion. At this time, wrinkles may occur because of differences in the thickness of both end portions of the laminated portion, resulting in a height shift, and in particular, the thickness of one end portion is thick and the ear height is in the state. There are many cases. In the present invention, for example, by using a gravure roll having a symmetrical cell shape such as a pyramid shape, a lattice shape, or a trapezoidal shape, it is possible to advantageously prevent a difference in thickness between both end portions of the laminated portion. In the case of performing partial coating (stripe shape or the like) for providing an uncoated portion, generation of wrinkles can be effectively suppressed.
 また、本発明においては、ピラミッド状や格子状、台形状などの左右対称のセル形状のうちでも、特に、深さ方向に台形状のセルを使用することが好ましい(その非限定的例を図2に示す)。左右対称の形状のグラビアセルを使用すると、一般に、斜線状グラビアセル(図3参照)より転写率が低下するところ、深さのある台形状のセルを使用することにより転写率を上げることができるので好ましい。 Further, in the present invention, it is preferable to use a trapezoidal cell in the depth direction among the symmetrical cell shapes such as a pyramid shape, a lattice shape, and a trapezoidal shape (a non-limiting example is illustrated). 2). When a gravure cell having a symmetrical shape is used, the transfer rate is generally lower than that of a hatched gravure cell (see FIG. 3). However, the transfer rate can be increased by using a deep trapezoidal cell. Therefore, it is preferable.
 本発明においては、未塗工部分の形成は、グラビアロールの未塗工部分に該当する部分を未彫刻にする方法、グラビアロールを所定幅にカットバック加工する方法、あるいは、未塗工部分をマスキング処理する方法等が挙げられる。 In the present invention, the formation of the uncoated portion is a method of making the portion corresponding to the uncoated portion of the gravure roll unengraved, a method of cutting back the gravure roll to a predetermined width, or an uncoated portion. Examples include a masking method.
 また、本発明においては、ポリオレフィン系樹脂多孔フィルムの表面に、塗工液を塗布する工程としては、特に限定されることはなく、押出成形の後であってもよいし、縦延伸工程の後であってもよいし、横延伸工程の後であってもよい。 In the present invention, the step of applying the coating liquid to the surface of the polyolefin resin porous film is not particularly limited, and may be after extrusion molding or after the longitudinal stretching step. It may be after the transverse stretching step.
 本発明の製造方法においては、上述の通り左右対称のセル形状のグラビアロールを用いることが有用であるが、更に、その効果を確実にするために、グラビアロールのフィルム幅方向における少なくとも1つの被覆層積層部Xに相当する彫刻部Zの端部のセル深さTcと中央部のセル深さTdが、Tc≦Tdの関係式、更にはTc<Tdの関係式を満たすようにすることが有効と考えられる。このようなグラビアロールの非限定的な例を図1(b)に示す。図1(b)に示したロールの例は、ロール径60mm、ロール幅400mm、格子型のセルであって、彫刻部の端部のセル深さTc:240μm、セル容積100cm/m、中央部のセル深さTd:260μm、セル容積110cm/mである。このようなグラビアロールを使用することにより、被覆層積層部における端部と中央部でのフィルムの厚みを有効に制御することができると推定される。 In the production method of the present invention, as described above, it is useful to use a gravure roll having a symmetrical cell shape as described above, but in order to further ensure the effect, at least one coating in the film width direction of the gravure roll is used. The cell depth Tc at the end of the engraving portion Z corresponding to the layer stack portion X and the cell depth Td at the center may satisfy the relational expression of Tc ≦ Td, and further satisfy the relational expression of Tc <Td. It is considered effective. A non-limiting example of such a gravure roll is shown in FIG. The example of the roll shown in FIG. 1B is a roll-shaped cell having a roll diameter of 60 mm, a roll width of 400 mm, and a cell depth Tc at the end of the engraving portion: 240 μm, a cell volume of 100 cm 3 / m 2 , The cell depth Td at the center is 260 μm, and the cell volume is 110 cm 3 / m 2 . By using such a gravure roll, it is estimated that the thickness of the film in the edge part and center part in a coating layer laminated part can be controlled effectively.
 本発明においては、使用するグラビアロールのフィルム幅方向における少なくとも1つの被覆層積層部Xに相当する彫刻部Zの端部のセル深さTcの好ましい範囲は、後述する塗布液(分散液)濃度や版の型(格子型、斜線型等)によって変わるが、斜線型の場合は、30~180μm、より好ましくは50~150μmであり、中央部のセル深さTdの好ましい範囲は50~200μm、より好ましくは70~220μmである。また、端部のセル容積Tcvの好ましい範囲は、深度と同様、塗布液(分散液)濃度にもよるが、15~80cm/m、より好ましくは30~60cm/mであり、中央部のセル容積Tdvの好ましい範囲は30~100cm/m、より好ましくは40~120cm/mである。
 格子型の場合は、40~320μm、より好ましくは80~300μmであり、中央部のセル深さTdの好ましい範囲は60~430μm、より好ましくは80~400μmである。また、端部のセル容積Tcvの好ましい範囲は、深度と同様、塗布液(分散液)濃度にもよるが、15~150cm/m、より好ましくは40~120cm/mであり、中央部のセル容積Tdvの好ましい範囲は25~190cm/m、より好ましくは40~160cm/mである。
In the present invention, a preferable range of the cell depth Tc at the end of the engraving portion Z corresponding to at least one coating layer laminate portion X in the film width direction of the gravure roll to be used is a coating solution (dispersion) concentration described later. Depending on the type of the plate (lattice type, oblique line type, etc.), in the case of the oblique line type, it is 30 to 180 μm, more preferably 50 to 150 μm, and the preferred range of the cell depth Td in the center is 50 to 200 μm More preferably, it is 70 to 220 μm. Further, the preferable range of the cell volume Tcv at the end is 15 to 80 cm 3 / m 2 , more preferably 30 to 60 cm 3 / m 2 , depending on the concentration of the coating liquid (dispersion) as well as the depth. A preferable range of the cell volume Tdv at the center is 30 to 100 cm 3 / m 2 , more preferably 40 to 120 cm 3 / m 2 .
In the case of the lattice type, the thickness is 40 to 320 μm, more preferably 80 to 300 μm, and the preferable range of the cell depth Td in the center is 60 to 430 μm, more preferably 80 to 400 μm. Further, the preferable range of the cell volume Tcv at the end is 15 to 150 cm 3 / m 2 , more preferably 40 to 120 cm 3 / m 2 , although it depends on the coating liquid (dispersion) concentration as well as the depth. A preferable range of the cell volume Tdv at the center is 25 to 190 cm 3 / m 2 , more preferably 40 to 160 cm 3 / m 2 .
(被覆層)
 本発明においては、被覆層として、種々の被覆層を使用することができるが、本発明では特に、フィラーと樹脂バインダを含む耐熱層であることが好ましい。耐熱層は、フィラーと樹脂バインダとを溶媒に溶解または分散させたフィラー含有樹脂溶液(分散液)を、ポリオレフィン系樹脂多孔フィルムの表面処理がされた面にコーティング(塗布)することによって、多孔フィルムの表面に形成することができる。以下に耐熱層を構成する成分とその該耐熱層を形成する塗工液を調製する方法を記載する。
(Coating layer)
In the present invention, various coating layers can be used as the coating layer. In the present invention, a heat-resistant layer containing a filler and a resin binder is particularly preferable. The heat-resistant layer is a porous film formed by coating (applying) a surface of the polyolefin resin porous film with a filler-containing resin solution (dispersion) in which a filler and a resin binder are dissolved or dispersed in a solvent. Can be formed on the surface. Hereinafter, the components constituting the heat-resistant layer and a method for preparing a coating solution for forming the heat-resistant layer will be described.
(フィラー)
 本発明に用いることができるフィラーとして無機フィラー、有機フィラーなどがあるが特に制約されるものではない。
(Filler)
Examples of the filler that can be used in the present invention include an inorganic filler and an organic filler, but are not particularly limited.
 無機フィラーの例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの炭酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸バリウムなどの硫酸塩;塩化ナトリウム、塩化カルシウム、塩化マグネシウムなどの塩化物、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化チタン、シリカなどの酸化物のほか、タルク、クレー、マイカなどのケイ酸塩等が挙げられる。これらの中でも、硫酸バリウム、酸化アルミニウムが好ましい。 Examples of inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; sulfates such as calcium sulfate, magnesium sulfate and barium sulfate; chlorides such as sodium chloride, calcium chloride and magnesium chloride, aluminum oxide and oxidation In addition to oxides such as calcium, magnesium oxide, zinc oxide, titanium oxide, and silica, silicates such as talc, clay, and mica can be used. Among these, barium sulfate and aluminum oxide are preferable.
 有機フィラーの例としては、超高分子量ポリエチレン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリイミド、ポリエーテルイミド、メラミン、ベンゾグアナミンなどの熱可塑性樹脂及び熱硬化性樹脂が挙げられる。これらの中でも、特に架橋させたポリスチレンなどが好ましい。 Examples of organic fillers include ultra high molecular weight polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polytetrafluoroethylene, polyimide, polyether. Examples thereof include thermoplastic resins such as imide, melamine, and benzoguanamine, and thermosetting resins. Among these, cross-linked polystyrene and the like are particularly preferable.
 前記フィラーの平均粒径としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、上限として好ましくは3.0μm以下、より好ましくは1.5μm以下である。平均粒径を0.1μm以上とすることは、積層多孔フィルムの収縮率を低減して破膜しにくくする観点、及び、耐熱性を実現する観点から好ましい。一方、平均粒径を3.0μm以下とすることは、積層多孔フィルムの収縮率を低減して破膜しにくくする観点から好ましい。また、平均粒径を1.5μm以下とすることは、層厚の小さい多孔層を良好に形成する観点、及び無機フィラーの多孔層中における分散性の観点から好ましい。
 なお、本実施の形態において「無機フィラーの平均粒径」とは、SEMを用いる方法に準じて測定される値である。
The average particle size of the filler is preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, and the upper limit is preferably 3.0 μm or less, more preferably 1.5 μm or less. It is. Setting the average particle size to 0.1 μm or more is preferable from the viewpoint of reducing the shrinkage rate of the laminated porous film to make it difficult to break the film and from the viewpoint of realizing heat resistance. On the other hand, setting the average particle size to 3.0 μm or less is preferable from the viewpoint of reducing the shrinkage rate of the laminated porous film and making it difficult to break the membrane. Moreover, it is preferable that an average particle diameter shall be 1.5 micrometers or less from a viewpoint of forming a porous layer with small layer thickness favorably, and the viewpoint of the dispersibility in the porous layer of an inorganic filler.
In the present embodiment, the “average particle diameter of the inorganic filler” is a value measured according to a method using SEM.
 耐熱層において、前記フィラーと前記樹脂バインダとの総量に占めるフィラーの割合(以後、「F%」と称す)が92質量%以上であることが好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。前記F%が92質量%以上であれば、連通性がある積層多孔フィルムを作製でき、優れた透気性能を示すことができるために好ましい。 In the heat-resistant layer, the ratio of the filler to the total amount of the filler and the resin binder (hereinafter referred to as “F%”) is preferably 92% by mass or more, more preferably 95% by mass or more, and 98% by mass. The above is more preferable. If the F% is 92% by mass or more, it is preferable because a laminated porous film having connectivity can be produced and excellent air permeation performance can be exhibited.
(樹脂バインダ)
 本発明に用いることができる樹脂バインダの例として、前記フィラー、前記ポリオレフィン系樹脂多孔フィルムを良好に接着でき、電気化学的に安定で、かつ積層多孔フィルムを電池用セパレータとして使用する場合には、有機電解液に対して安定であれば特に制限はない。具体的には、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン、ポリフッ化ビニリデン-トリクロロエチレンなど]、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、ポリブタジエンゴム(BR)、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、シアノエチルポリビニルアルコール、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、ポリエーテル、ポリアミド、ポリイミド、ポリアミドイミド、ポリアラミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用しても構わない。これらの中でもポリビニルアルコール、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸が好ましい。
(Resin binder)
As an example of a resin binder that can be used in the present invention, the filler, the polyolefin-based resin porous film can be satisfactorily bonded, is electrochemically stable, and a laminated porous film is used as a battery separator. There is no particular limitation as long as it is stable with respect to the organic electrolyte. Specifically, ethylene-acrylic acid copolymers such as ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-ethyl acrylate copolymers, fluororesins [Polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, etc.], fluorinated rubber, styrene-butadiene rubber (SBR), nitrile butadiene rubber (NBR), polybutadiene rubber (BR), poly Acrylonitrile (PAN), polyacrylic acid (PAA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), cyanoethyl polyvinyl alcohol, polyvinyl butyral (PVB), polyvinyl chloride Rupiroridon (PVP), poly N- vinyl acetamide, polyether, polyamide, polyimide, polyamideimide, polyaramide, crosslinked acrylic resin, polyurethane, and epoxy resin. These organic binders may be used alone or in combination of two or more. Among these, polyvinyl alcohol, polyvinylidene fluoride, styrene-butadiene rubber, carboxymethyl cellulose, and polyacrylic acid are preferable.
(塗工液の調製方法)
 本発明においては、前記フィラーと前記樹脂バインダとを溶媒に溶解または分散させたフィラー含有樹脂溶液(分散液)を、前記ポリオレフィン系樹脂多孔フィルムの表面処理がされた面にコーティング(塗布)することによって、多孔フィルムの表面に耐熱層を形成することができる。
(Preparation method of coating solution)
In the present invention, a filler-containing resin solution (dispersion) in which the filler and the resin binder are dissolved or dispersed in a solvent is coated (applied) on the surface of the polyolefin resin porous film that has been surface-treated. By this, a heat-resistant layer can be formed on the surface of the porous film.
 前記溶媒としては、前記フィラーと前記樹脂バインダとが均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N-メチルピロリドンやN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどを挙げることができる。また、無機フィラー含有樹脂溶液を安定化させるため、あるいはポリオレフィン樹脂多孔膜への塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたPH調製剤、等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば、電池内(積層多孔フィルム内)に残存してもよい。 As the solvent, it is preferable to use a solvent in which the filler and the resin binder can be dissolved or dispersed uniformly and stably. Examples of such a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane. In addition, in order to stabilize the inorganic filler-containing resin solution or to improve the coating property to the polyolefin resin porous membrane, the dispersion liquid contains a dispersant such as a surfactant, a thickener, a wetting agent, a disinfectant. Various additives such as foaming agents, pH adjusting agents including acids and alkalis, and the like may be added. These additives are preferably those that can be removed upon solvent removal or plasticizer extraction, but are electrochemically stable in the range of use of the lithium ion secondary battery, do not inhibit the battery reaction, and are up to about 200 ° C. If stable, it may remain in the battery (in the laminated porous film).
 前記フィラーと前記樹脂バインダとを溶媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法、等が挙げられる。 Examples of a method for dissolving or dispersing the filler and the resin binder in a solvent include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, and a high-speed Examples thereof include an impact mill, ultrasonic dispersion, a mechanical stirring method using stirring blades, and the like.
 前記溶媒としては、ポリオレフィン系樹脂多孔フィルムに塗布した分散液から除去され得る溶媒であることが好ましい。溶媒を除去する方法としては、ポリオレフィン系樹脂多孔フィルムに悪影響を及ぼさない方法であれば特に限定することなく採用することが出来る。溶媒を除去する方法としては、例えば、ポリオレフィン系樹脂多孔フィルムを固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂バインダに対する貧溶媒に浸漬して樹脂バインダを凝固させると同時に溶媒を抽出する方法などが挙げられる。 The solvent is preferably a solvent that can be removed from the dispersion applied to the polyolefin resin porous film. As a method for removing the solvent, any method that does not adversely affect the polyolefin resin porous film can be adopted without any particular limitation. As a method for removing the solvent, for example, a method in which a polyolefin resin porous film is fixed and dried at a temperature below its melting point, a method in which drying is performed at a low temperature under reduced pressure, or a resin binder is solidified by being immersed in a poor solvent for the resin binder. And a method of extracting the solvent at the same time.
 本発明においては、ポリオレフィン系樹脂多孔フィルムの表面に本発明の表面処理を行なった後、インラインで耐熱層を形成することもできるが、表面処理後に多孔フィルムを巻き取って、別工程によりオフラインで耐熱層を形成することもできる。 In the present invention, after the surface treatment of the present invention is performed on the surface of the polyolefin resin porous film, the heat-resistant layer can be formed in-line, but after the surface treatment, the porous film is wound up and offline in a separate process. A heat-resistant layer can also be formed.
(積層多孔フィルムの形状及び物性)
 本発明の製造方法を用いて得られる積層多孔フィルムの全体の膜厚は、5~100μmが好ましい。より好ましくは8~50μm、更に好ましくは10~30μmである。電池用セパレータとして使用する場合、5μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも、電池用セパレータを突き破って短絡しにくく安全性に優れる。また、膜厚が100μm以下であれば、積層多孔フィルムの電気抵抗を小さくすることができるので、電池の性能を十分に確保することができる。
(Shape and physical properties of laminated porous film)
The total thickness of the laminated porous film obtained using the production method of the present invention is preferably 5 to 100 μm. More preferably, it is 8 to 50 μm, and still more preferably 10 to 30 μm. When it is used as a battery separator, if it is 5 μm or more, substantially necessary electrical insulation can be obtained. For example, even when a large force is applied to the protruding portion of the electrode, the battery separator is broken and short-circuited. It is difficult and safe. Moreover, since the electrical resistance of a laminated porous film can be made small if a film thickness is 100 micrometers or less, the performance of a battery can fully be ensured.
 本発明の積層多孔フィルムにおいて、空孔率は前記のように30%~70%が好ましく、30%以上であれば、連通性を確保し透気特性に優れた積層多孔フィルムとすることができる。また、70%以下であれば、積層多孔フィルムの強度が低下しにくく、ハンドリングの観点からも好ましい。 In the laminated porous film of the present invention, the porosity is preferably 30% to 70% as described above, and if it is 30% or more, it is possible to obtain a laminated porous film that secures communication and has excellent air permeability. . Moreover, if it is 70% or less, the intensity | strength of a laminated porous film will not fall easily, and it is preferable also from a viewpoint of handling.
 本発明の積層多孔フィルムは、前記のように、JIS P8117に準拠して測定した透気度を2000秒/100ml以下としている。
 また、電池用セパレータとして使用時において、SD特性を付与するため、135℃で5秒間加熱後の透気度は10000秒/100ml以上とし、異常発熱時において空孔が速やかに閉塞し、電流を遮断して、電池の破裂等のトラブルを回避できるようにしている。
As described above, the laminated porous film of the present invention has an air permeability measured in accordance with JIS P8117 of 2000 seconds / 100 ml or less.
In addition, when used as a battery separator, in order to provide SD characteristics, the air permeability after heating at 135 ° C. for 5 seconds is set to 10,000 seconds / 100 ml or more, and the pores are quickly closed when abnormal heat is generated. It shuts off so that troubles such as battery rupture can be avoided.
(電池)
 本発明の前記積層多孔フィルムを電池用セパレータとして収容している非水電解液電池について、図6を参照して説明する。
 正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。
(battery)
A nonaqueous electrolyte battery containing the laminated porous film of the present invention as a battery separator will be described with reference to FIG.
Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
 前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池からなる二次電池20を作製している。 The wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25. Next, the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed. A secondary battery 20 made of a cylindrical nonaqueous electrolyte battery is produced.
 電解液としては、リチウム塩を電解質とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
 なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. The organic solvent is not particularly limited. For example, esters such as propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile. 1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3-dioxolane, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane. These may be used alone or in combination of two or more.
Among them, an electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6) at a rate of 1.0 mol / L in a solvent obtained by mixing 2 parts by mass of methyl ethyl carbonate relative to ethylene carbonate 1 part by weight is preferred.
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
As the negative electrode, an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used. Examples of the alkali metal include lithium, sodium, and potassium. Examples of the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
When a carbon material is used for the negative electrode, the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
 本実施形態では、負極として、フッ化ビニリデンをN-メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。 In this embodiment, as a negative electrode, a carbon material having an average particle size of 10 μm is mixed with a solution in which vinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a 70-mesh net. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。 As the positive electrode, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials. , These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
 本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。 In the present embodiment, a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry. This positive electrode mixture slurry is passed through a 70-mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press. After forming, it is cut into a strip-like positive electrode plate.
[実施例]
 以下に実施例および比較例を示し、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
[Example]
EXAMPLES Examples and comparative examples will be shown below, and the present invention will be described in more detail. However, the present invention is not limited to these.
(ポリオレフィン系樹脂多孔フィルム)
 A層として、ポリプロピレン系樹脂(プライムポリマー社製、プライムポリプロ F300SV、密度:0.90g/cm、MFR:3.0g/10分)と、β晶核剤として、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンを準備した。ポリプロピレン系樹脂100質量部に対して、β晶核剤を0.2質量部の割合で各原材料をブレンドし、東芝機械株式会社製の同方向二軸押出機(口径:40mmφ、L/D:32)に投入し、設定温度300℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂組成物のペレットを作製した。ポリプロピレン系樹脂組成物のβ活性は80%であった。
(Polyolefin resin porous film)
As the A layer, polypropylene resin (Prime Polymer Co., Prime Polypro F300SV, density: 0.90 g / cm 3 , MFR: 3.0 g / 10 min) and β crystal nucleating agent 3,9-bis [4 -(N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane was prepared. Each raw material is blended at a ratio of 0.2 part by mass of β-crystal nucleating agent with respect to 100 parts by mass of polypropylene resin, and the same direction twin screw extruder manufactured by Toshiba Machine Co., Ltd. (caliber: 40 mmφ, L / D: 32), melted and mixed at a preset temperature of 300 ° C., cooled and solidified in a water bath, cut into strands with a pelletizer, and produced polypropylene resin composition pellets. The β activity of the polypropylene resin composition was 80%.
 次にB層を構成する混合樹脂組成物として、高密度ポリエチレン(日本ポリエチ社製、ノバテックHD HF560、密度:0.963g/cm、MFR:7.0g/10分)100質量部に、グリセリンモノエステルを0.04質量部、及びマイクロクリスタリンワックス(日本精蝋社製、Hi-Mic1080)10質量部を加え、同型の同方向二軸押出機を用いて220℃にて溶融混練してペレット状に加工した樹脂組成物を得た。 Next, as a mixed resin composition constituting the B layer, glycerin is added to 100 parts by mass of high-density polyethylene (manufactured by Nippon Polytechnics, Novatec HD HF560, density: 0.963 g / cm 3 , MFR: 7.0 g / 10 min). Add 0.04 parts by mass of monoester and 10 parts by mass of microcrystalline wax (Nisei Seiwa Co., Ltd., Hi-Mic 1080), melt and knead at 220 ° C. using the same type twin screw extruder and pellets A resin composition processed into a shape was obtained.
 前記2種類の原料を用いて、外層がA層、中間層がB層となるように別々の押出機を用いて、2種3層のフィードブロックを通じて積層成型用の口金より押出し、124℃のキャスティングロールで冷却固化させて、A層/B層/A層とした2種3層の積層膜状物を作製した。
 前記積層膜状物を、縦延伸機を用いて縦方向に4.6倍延伸し、その後、横延伸機にて98℃で横方向に1.9倍延伸後、熱固定/弛緩処理を行った。その結果、膜厚20μm、透気度450秒/100mlのポリオレフィン系樹脂製の積層多孔フィルムを得た。
Using the two kinds of raw materials, using a separate extruder so that the outer layer is A layer and the intermediate layer is B layer, it is extruded from a die for lamination molding through a feed block of two kinds and three layers, By cooling and solidifying with a casting roll, a two-layered / three-layered film-like product of A layer / B layer / A layer was produced.
The laminated film-like product is stretched 4.6 times in the longitudinal direction using a longitudinal stretching machine, and then stretched 1.9 times in the transverse direction at 98 ° C. by a transverse stretching machine, and then subjected to heat setting / relaxation treatment. It was. As a result, a laminated porous film made of polyolefin resin having a film thickness of 20 μm and an air permeability of 450 seconds / 100 ml was obtained.
 得られたポリオレフィン系樹脂製の多孔フィルムは、コロナ処理装置(春日電機社製、アルミ5型電極、2山×6本、ライン速度:50m/min、処理出力:1.5kW)を用いて、以下の各実施例の条件でコロナ表面処理を施した。 The resulting porous film made of polyolefin resin was prepared using a corona treatment device (Kasuga Denki Co., Ltd., aluminum 5 type electrode, 2 ridges x 6, line speed: 50 m / min, treatment output: 1.5 kW), Corona surface treatment was performed under the conditions of the following examples.
(耐熱層用の塗工液)
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.2質量部、ポリビニルアルコール(クラレ社製、PVA120、鹸化度:98.0~99.0、平均重合度:2000)0.8質量部を60.0質量部の水に分散させた分散液を得た。
(Coating fluid for heat-resistant layer)
Alumina (Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 μm) 39.2 parts by mass, polyvinyl alcohol (Kuraray Co., Ltd., PVA120, saponification degree: 98.0 to 99.0, average polymerization degree) : 2000) A dispersion in which 0.8 part by mass was dispersed in 60.0 parts by mass of water was obtained.
[実施例1]
 上記ポリオレフィン系樹脂多孔フィルムの基材(350mm幅)に、図1(a)に示すグラビアロール(ロール径60mm、ロール幅400mm、格子型、セル深さ260μm、セル容積110cm/m)を用いて、キスリバースグラビアコート法により上記塗工液を連続コートして被覆層を形成し、1000mのフィルムロールを作成した。
[Example 1]
A gravure roll (roll diameter 60 mm, roll width 400 mm, lattice type, cell depth 260 μm, cell volume 110 cm 3 / m 2 ) shown in FIG. 1A is applied to the base material (350 mm width) of the polyolefin resin porous film. The coating solution was continuously coated by a kiss reverse gravure coating method to form a coating layer, and a 1000 m film roll was prepared.
(厚み)
 得られたフィルムロールの巻き終わり部分を採取し、名産株式会社製卓上厚さ計RC-1を用いてフィルムの幅方向の厚みを測定し、厚みTa、Tbの値を読み取った。測定結果は表1に記載した。
(シワ)
 端部、及び中央部の被服層非積層部のシワの状態を目視し、以下の基準によりシワの評価を実施した。
  ◎ : シワが全く無い
  ○ : 僅かにシワがある
  △ : 部分的に大きなシワがある
  × : 円周全体に大きなシワが多数ある
(Thickness)
The winding end portion of the obtained film roll was collected, and the thickness in the width direction of the film was measured using a tabletop thickness meter RC-1 manufactured by Meisen Co., Ltd., and the values of the thicknesses Ta and Tb were read. The measurement results are shown in Table 1.
(Wrinkle)
The wrinkle state of the end portion and the non-laminated portion of the clothing layer at the center portion was visually observed, and wrinkle was evaluated according to the following criteria.
◎: No wrinkles ○: Slightly wrinkled △: Partially large wrinkles ×: Many large wrinkles around the circumference
[比較例1]
 グラビアロールを図1(c)に示したロール(ロール径60mm、ロール幅400mm、斜線型、セル深さ:90μm、セル容積40cm/m)に変更した以外は実施例1と同様に1000mのフィルムロールを作成した。
[Comparative Example 1]
1000 m as in Example 1 except that the gravure roll was changed to the roll shown in FIG. 1C (roll diameter 60 mm, roll width 400 mm, diagonal line type, cell depth: 90 μm, cell volume 40 cm 3 / m 2 ). A film roll was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1の結果により、被覆層積層部の端部におけるフィルム厚みTaと中央部におけるフィルム厚みTbが、Ta≦Tbの関係式を満たす実施例1の場合と、当該関係式を満たさず、端部がいわゆる耳高になった比較例1とを比較すると、シワの発生において顕著な差が生じることが確認できた。 According to the results of Table 1, the film thickness Ta at the end of the coating layer laminated portion and the film thickness Tb at the center satisfy the relational expression of Ta ≦ Tb and the case where the relational expression is not satisfied. When compared with Comparative Example 1 in which the so-called ear height was increased, it was confirmed that a significant difference occurred in the generation of wrinkles.

Claims (19)

  1.  ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールであって、少なくとも1つの被覆層積層部Xの端部におけるフィルム厚みTaと中央部におけるフィルム厚みTbが、
     Ta≦Tb
    の関係式を満たし、積層多孔フィルムの巻き長さが1000m以上である、該積層多孔フィルムロール。
    A coating layer is partially laminated on at least one surface of the polyolefin-based resin porous film, and a laminated porous film in which at least one coating layer laminate portion X and at least one non-laminate portion Y are formed is wound. A laminated porous film roll having a film thickness Ta at an end of at least one coating layer laminate portion X and a film thickness Tb at a central portion,
    Ta ≦ Tb
    The laminated porous film roll satisfying the above relational expression, and the winding length of the laminated porous film is 1000 m or more.
  2.  前記非積層部Yがフィルム幅方向の端部に設けられた、請求項1に記載の積層多孔フィルムロール。 The laminated porous film roll according to claim 1, wherein the non-laminated portion Y is provided at an end in the film width direction.
  3.  前記非積層部Yがフィルム幅方向の端部以外の場所に設けられた、請求項1又は2に記載の積層多孔フィルムロール。 The laminated porous film roll according to claim 1 or 2, wherein the non-laminated portion Y is provided at a place other than an end portion in the film width direction.
  4.  少なくとも1つの被覆層積層部Xにおける一方の端部でのフィルム厚みTa1と他方の端部でのフィルム厚みTa2が、
     |Ta1-Ta2|≦3μm
    の関係式を満たす、請求項1~3のいずれか1項に記載の積層多孔フィルムロール。
    The film thickness Ta1 at one end and the film thickness Ta2 at the other end in at least one coating layer laminate X are:
    | Ta1-Ta2 | ≦ 3μm
    The laminated porous film roll according to any one of claims 1 to 3, which satisfies the following relational expression:
  5.  全ての被覆層積層部Xの端部でのフィルム厚みの最大値Tmaxと最小値Tminが、
     (Tmax-Tmin)≦3μm 
    の関係式を満たす、請求項1~4のいずれか1項に記載の積層多孔フィルムロール。
    The maximum value Tmax and the minimum value Tmin of the film thickness at the end of all the coating layer laminate portions X are
    (Tmax−Tmin) ≦ 3 μm
    The laminated porous film roll according to any one of claims 1 to 4, which satisfies the relational expression:
  6.  少なくとも1つの非積層部Yの幅が5mm~100mmである、請求項1~5のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 5, wherein the width of at least one non-laminated portion Y is 5 mm to 100 mm.
  7.  少なくとも1つの被覆層積層部Xの中央部における被覆層の厚みが0.5μm~50μmである、請求項1~6のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 6, wherein the thickness of the coating layer at the central portion of at least one coating layer laminate portion X is 0.5 µm to 50 µm.
  8.  少なくとも1つの被覆層積層部Xの中央部における、ポリオレフィン系樹脂多孔フィルムの厚みに対する被覆層の厚みの比が1/1~1/6である、請求項1~7のいずれか1項に記載の積層多孔フィルムロール。 The ratio of the thickness of the coating layer to the thickness of the polyolefin resin porous film in the central portion of at least one coating layer laminate portion X is 1/1 to 1/6. Laminated porous film roll.
  9.  前記ポリオレフィン系樹脂多孔フィルムの厚みが5μm~50μmである、請求項1~8のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 8, wherein the polyolefin-based resin porous film has a thickness of 5 袖 m to 50 袖 m.
  10.  前記積層多孔フィルムの幅が0.3m~3mである、請求項1~9のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 9, wherein the width of the laminated porous film is 0.3 m to 3 m.
  11.  ポリオレフィン系樹脂多孔フィルムの両面に被覆層が積層されてなる、請求項1~10のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 10, wherein coating layers are laminated on both surfaces of the polyolefin resin porous film.
  12.  前記被覆層は、フィラーと樹脂バインダを含んでなる、請求項1~11のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 11, wherein the coating layer comprises a filler and a resin binder.
  13.  前記被覆層は、コーティングにより積層される、請求項1~12のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 12, wherein the coating layer is laminated by coating.
  14.  非水電解液電池用セパレータとして用いること特徴とする請求項1~13のいずれか1項に記載の積層多孔フィルムロール。 The laminated porous film roll according to any one of claims 1 to 13, which is used as a separator for a non-aqueous electrolyte battery.
  15.  ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールの製造方法であって、
     該被覆層はグラビア塗工により形成され、グラビア塗工に使用するグラビアロールのフィルム幅方向における少なくとも1つの被覆層積層部Xに相当する彫刻部Zの端部のセル深さTcと中央部のセル深さTdが
     Tc≦Td 
    の関係式を満たしてなる、積層多孔フィルムロールの製造方法。
    A coating layer is partially laminated on at least one surface of the polyolefin-based resin porous film, and a laminated porous film in which at least one coating layer laminate portion X and at least one non-laminate portion Y are formed is wound. A method for producing a laminated porous film roll comprising:
    The coating layer is formed by gravure coating, and the cell depth Tc at the end of the engraving portion Z corresponding to at least one coating layer laminated portion X in the film width direction of the gravure roll used for gravure coating and the central portion Cell depth Td is Tc ≦ Td
    The manufacturing method of the lamination | stacking porous film roll formed by satisfy | filling the relational expression of these.
  16.  ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、被覆層が部分的に積層されており、少なくとも1つの被覆層積層部Xと少なくとも1つの非積層部Yとが形成されてなる積層多孔フィルムが巻き取られた積層多孔フィルムロールの製造方法であって、
     該被覆層はグラビア塗工により形成され、グラビア塗工に使用するグラビアロールのセルの形状が左右対称の形状であることを特徴とする積層多孔フィルムロールの製造方法。
    A coating layer is partially laminated on at least one surface of the polyolefin-based resin porous film, and a laminated porous film in which at least one coating layer laminate portion X and at least one non-laminate portion Y are formed is wound. A method for producing a laminated porous film roll comprising:
    The method for producing a laminated porous film roll, wherein the coating layer is formed by gravure coating, and a gravure roll cell used for gravure coating has a symmetrical shape.
  17.  前記セルの形状が深さ方向に台形状である請求項15又は16に記載の積層多孔フィルムロールの製造方法。 The method for producing a laminated porous film roll according to claim 15 or 16, wherein the cell has a trapezoidal shape in the depth direction.
  18.  グラビア塗工の際のグラビアロールの回転方向が、基材へ塗料を転写する位置において、基材の搬送方向と反対向きであることを特徴とする請求項15~17のいずれか1項に記載の積層多孔フィルムロールの製造方法。 The rotation direction of the gravure roll at the time of gravure coating is opposite to the conveyance direction of the base material at a position where the paint is transferred to the base material. Manufacturing method of laminated porous film rolls.
  19.  塗料を転写させる際、バックロールを用いず、グラビアロールの前後に配置したガイドロールを介して、基材をグラビアロールに接触させて塗料を転写させることを特徴とする請求項18に記載の積層多孔フィルムロールの製造方法。 The laminate according to claim 18, wherein when transferring the paint, the base material is brought into contact with the gravure roll via a guide roll arranged before and after the gravure roll without using a back roll, and the paint is transferred. A method for producing a porous film roll.
PCT/JP2012/077222 2011-12-02 2012-10-22 Laminate porous film roll and manufacturing method thereof WO2013080701A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-264768 2011-12-02
JP2011264768 2011-12-02
JP2012130651 2012-06-08
JP2012-130651 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013080701A1 true WO2013080701A1 (en) 2013-06-06

Family

ID=48535172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077222 WO2013080701A1 (en) 2011-12-02 2012-10-22 Laminate porous film roll and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JPWO2013080701A1 (en)
WO (1) WO2013080701A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031990A1 (en) * 2014-08-29 2016-03-03 住友化学株式会社 Wound body of porous film, and manufacturing method thereof
JP2016042446A (en) * 2014-08-19 2016-03-31 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film wound body
WO2017018483A1 (en) * 2015-07-29 2017-02-02 東レバッテリーセパレータフィルム株式会社 Battery separator and production method therefor
JP6105185B1 (en) * 2015-10-09 2017-03-29 東レバッテリーセパレータフィルム株式会社 Laminated polyolefin microporous membrane, battery separator and production method thereof
WO2017094486A1 (en) * 2015-12-04 2017-06-08 東レ株式会社 Battery separator and method of manufacturing same
WO2017110306A1 (en) * 2015-12-24 2017-06-29 東レ株式会社 Polyolefin microporous membrane, battery separator and production method for these
CN107925034A (en) * 2015-08-27 2018-04-17 东丽株式会社 Battery separator and its manufacture method
EP3493296A4 (en) * 2016-07-28 2020-04-29 Toray Industries, Inc. Multilayer wound body
TWI716496B (en) * 2016-11-21 2021-01-21 日商東麗股份有限公司 Diaphragm for battery, manufacturing method thereof, and wound body of diaphragm for battery
CN114364534A (en) * 2019-09-06 2022-04-15 东洋纺株式会社 Laminate for fuel cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170029494A (en) 2014-07-11 2017-03-15 데이진 가부시키가이샤 Separator roll and nonaqueous secondary battery
KR101717392B1 (en) 2014-12-25 2017-03-16 스미또모 가가꾸 가부시키가이샤 Method for producing separator and method for slitting
JP6740570B2 (en) * 2015-05-29 2020-08-19 住友化学株式会社 Laminated film and method for producing laminated film
JP2017064704A (en) * 2015-10-02 2017-04-06 住友化学株式会社 Coating method, coating apparatus, and method for producing functional film
KR102218546B1 (en) 2017-12-26 2021-02-19 주식회사 엘지화학 Gravure coating apparatus
KR20230024157A (en) * 2021-08-11 2023-02-20 주식회사 엘지에너지솔루션 Cell for secondary battery and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175870U (en) * 1984-10-19 1986-05-22
JPH0161968U (en) * 1987-10-12 1989-04-20
JPH0721558A (en) * 1993-06-30 1995-01-24 Sony Corp Production of magnetic recording medium
JPH115052A (en) * 1997-06-16 1999-01-12 Toppan Printing Co Ltd Gravure coating printing plate
JP2002301411A (en) * 2001-04-03 2002-10-15 Osg Corp Rod for coating and production of the same
JP2007273126A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Forming method of porous heatproof layer and forming device of porous heatproof layer
JP2009028719A (en) * 2007-07-05 2009-02-12 Toyota Motor Corp Coating device
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2011159434A (en) * 2010-01-29 2011-08-18 Toyota Motor Corp Separator and manufacturing method thereof
JP2011194381A (en) * 2010-03-24 2011-10-06 Toray Advanced Film Co Ltd Gravure roll and coating method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175870U (en) * 1984-10-19 1986-05-22
JPH0161968U (en) * 1987-10-12 1989-04-20
JPH0721558A (en) * 1993-06-30 1995-01-24 Sony Corp Production of magnetic recording medium
JPH115052A (en) * 1997-06-16 1999-01-12 Toppan Printing Co Ltd Gravure coating printing plate
JP2002301411A (en) * 2001-04-03 2002-10-15 Osg Corp Rod for coating and production of the same
JP2007273126A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Forming method of porous heatproof layer and forming device of porous heatproof layer
JP2009028719A (en) * 2007-07-05 2009-02-12 Toyota Motor Corp Coating device
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2011159434A (en) * 2010-01-29 2011-08-18 Toyota Motor Corp Separator and manufacturing method thereof
JP2011194381A (en) * 2010-03-24 2011-10-06 Toray Advanced Film Co Ltd Gravure roll and coating method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042446A (en) * 2014-08-19 2016-03-31 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film wound body
US10059085B2 (en) 2014-08-29 2018-08-28 Sumitomo Chemical Company, Limited Wound body of porous film, and manufacturing method thereof
JPWO2016031990A1 (en) * 2014-08-29 2017-04-27 住友化学株式会社 Porous film wound body and method for producing the same
JP2017022092A (en) * 2014-08-29 2017-01-26 住友化学株式会社 Wound body of porous film, and manufacturing method therefor
WO2016031990A1 (en) * 2014-08-29 2016-03-03 住友化学株式会社 Wound body of porous film, and manufacturing method thereof
WO2017018483A1 (en) * 2015-07-29 2017-02-02 東レバッテリーセパレータフィルム株式会社 Battery separator and production method therefor
CN107925034A (en) * 2015-08-27 2018-04-17 东丽株式会社 Battery separator and its manufacture method
KR20180041137A (en) * 2015-08-27 2018-04-23 도레이 카부시키가이샤 Battery separator and manufacturing method thereof
KR102187519B1 (en) * 2015-08-27 2020-12-07 도레이 카부시키가이샤 Battery separator and its manufacturing method
CN107431166A (en) * 2015-10-09 2017-12-01 东丽株式会社 Lamination polyolefin micro porous polyolefin membrane, battery barrier film and its manufacture method
WO2017061489A1 (en) * 2015-10-09 2017-04-13 東レバッテリーセパレータフィルム株式会社 Layered polyolefin microporous membrane, separator for batteries, and methods for manufacturing same
JP6105185B1 (en) * 2015-10-09 2017-03-29 東レバッテリーセパレータフィルム株式会社 Laminated polyolefin microporous membrane, battery separator and production method thereof
EP3211693A4 (en) * 2015-10-09 2018-08-29 Toray Industries, Inc. Layered polyolefin microporous membrane, separator for batteries, and methods for manufacturing same
US10283749B2 (en) 2015-10-09 2019-05-07 Toray Industries, Inc. Laminated polyolefin microporous membrane, battery separator, and production method thereof
WO2017094486A1 (en) * 2015-12-04 2017-06-08 東レ株式会社 Battery separator and method of manufacturing same
JPWO2017094486A1 (en) * 2015-12-04 2018-09-27 東レ株式会社 Battery separator and method for producing the same
US10770707B2 (en) 2015-12-04 2020-09-08 Toray Industries, Inc. Battery separator and method of manufacturing same
TWI717431B (en) * 2015-12-04 2021-02-01 日商東麗股份有限公司 Diaphragm for battery, preparation method thereof, and winding body of diaphragm for battery
TWI720088B (en) * 2015-12-24 2021-03-01 日商東麗股份有限公司 Diaphragm for battery, preparation method thereof, and preparation method of diaphragm winding body for battery
JPWO2017110306A1 (en) * 2015-12-24 2018-10-11 東レ株式会社 Polyolefin microporous membrane, battery separator and method for producing them
WO2017110306A1 (en) * 2015-12-24 2017-06-29 東レ株式会社 Polyolefin microporous membrane, battery separator and production method for these
US10978721B2 (en) 2015-12-24 2021-04-13 Toray Industries, Inc. Polyolefin microporous membrane, battery separator and production method
TWI716618B (en) * 2016-07-28 2021-01-21 日商東麗股份有限公司 Laminated winding body
EP3493296A4 (en) * 2016-07-28 2020-04-29 Toray Industries, Inc. Multilayer wound body
TWI716496B (en) * 2016-11-21 2021-01-21 日商東麗股份有限公司 Diaphragm for battery, manufacturing method thereof, and wound body of diaphragm for battery
CN114364534A (en) * 2019-09-06 2022-04-15 东洋纺株式会社 Laminate for fuel cell
CN114364534B (en) * 2019-09-06 2023-06-27 东洋纺株式会社 Laminate for fuel cell

Also Published As

Publication number Publication date
JPWO2013080701A1 (en) 2015-04-27
JP2014012391A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5265052B1 (en) Method for producing laminated porous film
WO2013080701A1 (en) Laminate porous film roll and manufacturing method thereof
JP5676577B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5502707B2 (en) Multilayer porous film, battery separator and battery
JP5419817B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5298247B2 (en) Multilayer porous film, battery separator and battery
JP5690832B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5697328B2 (en) Multilayer porous film, battery separator, and battery
JP4734397B2 (en) Laminated porous film, separator for lithium ion battery using the same, and battery
JP5930032B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5092072B2 (en) Polyolefin resin porous film and non-aqueous electrolyte battery separator using the same
JP4801706B2 (en) Laminated porous film for separator and method for producing the same
JP5885104B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6117493B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5976305B2 (en) Method for producing laminated porous film
JP4801705B2 (en) Laminated porous film for separator and method for producing the same
JP5848193B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013116442A (en) Method for manufacturing laminated porous film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012550652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853378

Country of ref document: EP

Kind code of ref document: A1