[go: up one dir, main page]

WO2013076974A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2013076974A1
WO2013076974A1 PCT/JP2012/007465 JP2012007465W WO2013076974A1 WO 2013076974 A1 WO2013076974 A1 WO 2013076974A1 JP 2012007465 W JP2012007465 W JP 2012007465W WO 2013076974 A1 WO2013076974 A1 WO 2013076974A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
accommodation space
drive device
medium
wall
Prior art date
Application number
PCT/JP2012/007465
Other languages
French (fr)
Japanese (ja)
Inventor
中田 秀輝
佐野 晃正
藤畝 健司
山元 猛晴
愛甲 秀樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011256231A external-priority patent/JP2015035232A/en
Priority claimed from JP2012091573A external-priority patent/JP2015035236A/en
Priority claimed from JP2012129808A external-priority patent/JP2015035237A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013076974A1 publication Critical patent/WO2013076974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs

Definitions

  • the present invention relates to a drive device for driving a recording medium that receives information processing such as information recording and reproduction.
  • a high recording density means miniaturization of the recording bit size of an information recording medium (for example, a hard disk or an optical disk).
  • an information recording medium and a head In order to record information on an information recording medium such as a hard disk or an optical disk at high density and / or reproduce information recorded at high density from the information recording medium, an information recording medium and a head (recording head or reproduction)
  • the distance between the head and the head needs to be designed to be small.
  • the distance between the information recording medium and the head may be designed to be several nm to several tens of nm. If dust of several tens of nm to several ⁇ m enters between the information recording medium and the head, the information recording medium and / or the head may be damaged. As a result, the recording of information on the information recording medium and / or the reproduction of information from the information recording medium may not be performed properly.
  • the distance between the hard disk and the head is designed to be short.
  • the crystal grain size of the magnetic film of the hard disk is reduced.
  • Hard disks having miniaturized crystals face the problem of thermal fluctuation (thermally unstable crystal particles). The problem of thermal fluctuation has become apparent as a major impediment to high density hard disks.
  • the large coercive force contributes to the miniaturization of the crystal grains of the hard disk crystal film and the generation of thermally stable crystal grains.
  • a large coercive force requires a large magnetic field strength used for recording using a magnetic head.
  • optical / magnetic hybrid recording technology in which a technology related to optical recording and a technology related to magnetic recording are combined has been proposed.
  • a magnetic field is applied to the magnetic disk for recording information.
  • the magnetic disk is heated.
  • the coercive force of the magnetic disk decreases. Therefore, with a conventional magnetic head, a magnetic disk having a high coercive force can be appropriately subjected to a recording process by an optical / magnetic hybrid recording technique as the magnetic field strength is too small to record information.
  • the magnetoresistive effect used in the conventional magnetic recording technology is used.
  • the optical / magnetic hybrid recording technique is called “thermally assisted magnetic recording”.
  • near-field light it has been proposed to use near-field light to heat the magnetic disk. If the near-field light is used in the heat-assisted magnetic recording technology, the laser light generated by the laser light source is guided to the recording head.
  • the recording head incorporates an element having a function of generating near-field light (hereinafter referred to as “generating element”).
  • generating element an element having a function of generating near-field light
  • the light spot diameter is adjusted to a size and shape suitable for recording by the generating element.
  • a laser light source is used in a package of a hard disk drive device. Therefore, a small and low power consumption semiconductor laser (also referred to as “laser diode”) is used as the laser light source. If a laser light source is used in an apparatus for performing thermally assisted magnetic recording using near-field light having a recording density of “Tb / in 2 (terabyte / square inch)” or more, sufficient heating is performed on the surface of the recording medium. Therefore, the laser light source is required to have a power of several mW.
  • the laser light generated by the laser diode is guided to the generating element by optical components such as a reflection mirror, a lens and an optical waveguide.
  • the laser light generated by the laser diode passes through various optical components arranged along the optical path, and reaches the generating element and the recording medium.
  • the intensity of the laser light is attenuated while the laser light is propagating along the optical path, and becomes a magnitude of one tenth of the light output generated by the laser diode. Examples of the attenuation of the intensity of laser light include absorption loss and scattering loss caused when the laser light passes through an optical component, and coupling loss due to a shift between the bonding position of the optical component and the ideal position of the optical component. Is done.
  • a pico slider is conventionally used as a slider of a hard disk drive device.
  • a femto slider that is smaller than a pico slider may be used.
  • the flying height of the recording head is reduced to about 10 nm.
  • further reduction in flying height is expected.
  • an optical disk drive device includes a solid immersion lens (SIL) as a near-field optical system for performing information processing such as recording and reproduction on an optical disk.
  • the SIL functions as an objective lens.
  • the optical drive device further includes a control unit that precisely controls the distance between the SIL and the surface of the optical disk. The control unit adjusts the position of the SIL so that the distance between the SIL and the surface of the optical disc is about 1 ⁇ 2 to about 1/10 of the wavelength of light used.
  • the near-field optical system described above generates near-field light between the SIL and the optical disc, and enables high-density recording processing and / or reproduction processing (numerical aperture (NA) ⁇ 1).
  • the distance between the optical disk and the end surface of the SIL installed on the condensing element is precisely controlled so that near-field light can be obtained. It is necessary to If short-wavelength laser light is used, the distance (gap) between the optical disk and the end face of the SIL needs to be controlled to about several tens of nm.
  • Examples of dust adhering to the end surface of the SIL include dust floating in the air and clothing fibers. Since dust often has a width (height) larger than the target value for gap control, dust attached to the end face of the SIL makes gap control impossible.
  • Plasmon type hard disk drive and optical disk drive have been proposed. Similar to the heat-assisted magnetic recording technology described above as the next generation technology of the hard disk drive device, the plasmon type hard disk drive device and optical disk drive device perform high-density recording using light of a minute spot size.
  • Plasmon type hard disk drive and optical disk drive perform high density recording using very small spot size light.
  • a technique that utilizes a surface plasmon resonance phenomenon that occurs when a conductor is irradiated with propagating light has been proposed.
  • minute light for example, near-field light
  • minute light having a minute spot size that cannot be achieved by a conventional optical system is irradiated onto the optical disk.
  • the conductor In order to generate a surface plasmon resonance phenomenon in the conductor and generate near-field light, the conductor is designed to have a size of several tens to several hundreds of nm. The higher the target value for the recording density, the smaller the dimension of the end of the conductor that generates near-field light. Further, the distance between the conductor and the optical disc needs to be set very narrow.
  • the disk recording / reproducing apparatus performs processing such as information recording / reproducing under a narrow gap between the recording medium and the head (recording head and / or reproducing head), it adheres to the recording medium / head. It is important to remove dust.
  • Patent Document 1 discloses a disk cleaning mechanism for removing dust on a recording medium.
  • the disk cleaning mechanism directly wipes off dust on the recording medium using a cleaning tape.
  • Patent Document 1 removes dust on the recording medium, it cannot remove dust attached to the end surface of the SIL. Therefore, if dust adheres to the end surface of the SIL, appropriate gap control cannot be achieved.
  • Patent Document 2 discloses a lens cleaning mechanism that removes dust adhering to the end face of the SIL.
  • the lens cleaning mechanism brings the cleaning tape into contact with the SIL and removes dust adhering to the end surface of the SIL.
  • Patent Document 3 discloses a dust removal technique using a collection filter.
  • the collection filter is disposed in the airflow generated with the rotation of the recording medium. As a result, the dust inside the hard disk drive device is efficiently captured by the collection filter. Since the airflow containing dust passes through the collection filter, the air inside the hard disk drive device is purified over time.
  • FIG. 44 is a schematic view of a conventional optical disc drive apparatus 900. With reference to FIG. 44, a conventional optical disc drive apparatus 900 will be described.
  • the optical disc drive apparatus 900 includes an optical head 910, a servo control system 920, and a spindle motor 930.
  • the optical head 910 and the spindle motor 930 operate under the control of the servo control system 920.
  • the spindle motor 930 rotates an optical disk 950 used as a recording medium.
  • the optical head 910 includes a laser diode 911 used as a light source (the notation “LD” in FIG. 44 means a laser diode), two collimating lenses 912 and 913, and a laser emitted from the collimating lens 912.
  • An anamorphic prism 914 for shaping light a beam splitter 915 (in FIG. 44, “BS” means a beam splitter), and a quarter-wave plate 916 (in FIG. 44, “QWP”).
  • Wollaston prism 919 consists of two prisms.
  • the light incident on the Wollaston prism 919 is emitted as two linearly polarized lights that are orthogonal to each other.
  • Various signals such as an RF reproduction signal for reproducing a signal recorded on the optical disk 950, a tracking error signal necessary for servo control, and a gap error signal are output from the photodetector 944 to the servo control system 920.
  • the servo control system 920 includes a gap servo module 921 (focusing servo module), a tracking servo module 922, a tilt servo module 923, and a spindle servo module 924.
  • the tracking servo module 922 performs tracking control on the light condensing element 943 according to the tracking error signal.
  • the tilt servo module 923 controls the tilt angle of the light condensing element 943.
  • the spindle servo module 924 controls the rotation of the spindle motor 930.
  • the gap servo module 921 will be described later.
  • the auto power controller 946 outputs a predetermined signal to the LD driver 947 in accordance with the signal output from the photo detector 945.
  • the LD driver 947 makes the power of the laser emitted from the laser diode 911 constant according to the signal from the auto power controller 946.
  • an optical disk 950 used as a recording medium is set in the optical disk drive device 900. Thereafter, the servo control system 920 performs various servo controls using the gap servo module 921, the tracking servo module 922, the tilt servo module 923, and the spindle servo module 924.
  • the laser diode 911 emits laser light toward the collimating lens 912.
  • the collimating lens 912 makes the laser light parallel light.
  • the anamorphic prism 914 shapes the parallel light.
  • the shaped laser light is incident on the beam splitter 915.
  • the beam splitter 915 divides the incident laser light into light incident on the quarter wavelength plate 916 and light incident on the condenser lens 942.
  • the laser light incident on the condenser lens 942 is used by the auto power controller 946 as described above.
  • the auto power controller 946 outputting a signal to the LD driver 947 according to the received laser light, the laser diode 911 can emit laser light having a certain power.
  • the quarter wavelength plate 916 changes the incident laser light from linearly polarized light to circularly polarized light. Thereafter, the correction lens 917 corrects chromatic aberration.
  • the laser light passes through the expansion lens 918 and the collimating lens 913 after the correction lens 917 and is incident on the condensing element 943.
  • the condensing element 943 condenses the incident laser light toward the optical disk 950 to generate near-field light. As a result, a signal is recorded on the optical disk 950. The generation of near-field light by the light condensing element 943 will be described later.
  • the near-field light created by the light condensing operation toward the optical disk 950 may be used for reading a signal recorded on the optical disk 950.
  • near-field light may be used to read a signal recorded on the optical disc 950.
  • Near-field light enters the optical disk 950.
  • the optical disk 950 reflects or diffracts near-field light to produce reflected light or diffracted light (hereinafter referred to as “return light”).
  • the condensing element 943 receives the return light.
  • the return light passes through the condensing element 943, passes through the collimating lens 913, the expansion lens 918, the correction lens 917, and the quarter-wave plate 916 and enters the beam splitter 915.
  • the beam splitter 915 totally reflects the return light toward the Wollaston prism 919. Thereafter, the return light passes through the Wollaston prism 919 and the condenser lens 941 and enters the photodetector 944.
  • the photodetector 944 generates an RF reproduction signal and a servo control signal according to the incident return light.
  • the servo control signal is output from the photodetector 944 to the servo control system 920.
  • the servo control system 920 performs various servo controls using a gap servo module 921, a tracking servo module 922, a tilt servo module 923, and a spindle servo module 924.
  • FIG. 45 is a schematic enlarged view of the light condensing element 943 arranged near the optical disk 950.
  • the light collection element 943 will be described with reference to FIGS. 44 and 45.
  • the condensing element 943 faces the optical disk 950.
  • the condensing element 943 includes a SIL 961 and an aspheric lens 962.
  • the SIL 961 and the aspheric lens 962 create near-field light.
  • the condensing element 943 further includes a lens holder 963.
  • the lens holder 963 accommodates the SIL 961 and the aspherical lens 962.
  • the SIL 961 includes a SIL end surface 964 that faces the optical disk 950.
  • Optical disc 950 includes a recording surface 951 that faces SIL end surface 964. Near-field light is applied to the recording surface 951 from the SIL end surface 964.
  • the optical disc drive device 900 further includes a triaxial actuator 965 attached to the lens holder 963.
  • the triaxial actuator 965 is used as a part of a separation / contact mechanism that separates the light collection element 943 from the recording surface 951.
  • the triaxial actuator 965 is greatly simplified.
  • the triaxial actuator 965 is formed from elements such as a triaxial coil and a yoke, for example.
  • the servo control system 920 applies a predetermined servo voltage to each coil of the triaxial actuator 965. As a result, a predetermined current flows through each coil of the triaxial actuator 965, and focusing servo and tilt servo control including tracking servo and gap servo are executed.
  • FIG. 46 is an enlarged schematic view of the optical disk drive device 900 around the optical disk 950.
  • FIG. 47 is a schematic bottom view of the optical disc drive apparatus 900 corresponding to FIG. The optical disk drive device 900 is further described with reference to FIGS. 46 and 47.
  • FIG. 46 is an enlarged schematic view of the optical disk drive device 900 around the optical disk 950.
  • FIG. 47 is a schematic bottom view of the optical disc drive apparatus 900 corresponding to FIG.
  • the optical disk drive device 900 is further described with reference to FIGS. 46 and 47.
  • the optical disc drive apparatus 900 further includes a lens cleaning mechanism 970 that cleans the SIL 961 and a disc cleaning mechanism 980 that contacts the recording surface 951 of the optical disc 950 and cleans the recording surface 951.
  • the lens cleaning mechanism 970 contacts the SIL end surface 964.
  • the lens cleaning mechanism 970 is further away from the rotation axis RX of the optical disc 950 than the outer peripheral edge 952 of the optical disc 950 attached to the spindle motor 930.
  • 48A to 48C are schematic views of the lens cleaning mechanism 970.
  • the lens cleaning mechanism 970 will be described with reference to FIGS. 46 to 48C.
  • the lens cleaning mechanism 970 may be a cleaner device that cleans the SIL 961 using the cleaning tape 971.
  • the lens cleaning mechanism 970 includes two spindles 972 and 973 and two idlers 974 and 975 that define the traveling path of the cleaning tape 971.
  • the cleaning tape 971 travels on the SIL 961 as the spindles 972 and 973 rotate.
  • the cleaning tape 971 is made of a resin that is sufficiently soft so as not to damage the SIL 961.
  • the light condensing element 943 moves to the lens cleaning mechanism 970 disposed near the optical disk 950.
  • the condensing element 943 moves up and down below the lens cleaning mechanism 970.
  • the SIL end surface 964 comes into contact with and comes away from the cleaning tape 971.
  • the condensing element 943 may be displaced up and down by the above-described triaxial actuator 965 (for example, a gap servo coil).
  • the condensing element 943 may be displaced up and down by a driving mechanism (not shown) other than the servo system.
  • the lens cleaning mechanism 970 may be designed such that the lens cleaning mechanism 970 approaches the condensing element 943 instead of the condensing element 943.
  • the disk cleaning mechanism 980 includes a cleaning member 981 that faces the recording surface 951 of the optical disk 950, and a support 982 that supports the cleaning member 981.
  • the support body 982 is moved up and down by a motor (not shown).
  • the cleaning member 981 may be a band having a length substantially equal to the radius of the optical disk 950.
  • the cleaning member 981 is made of, for example, a fiber or a mesh material. Desirably, the cleaning member 981 is formed of a material such as lens paper. The cleaning member 981 contacts the recording surface 951 without removing the recording surface 951 and removes dust.
  • the lens cleaning mechanism 970 cleans the SIL end surface 964.
  • the SIL 961 is separated from the lens cleaning mechanism 970.
  • the SIL 961 moves below the cleaning tape 971.
  • the SIL 961 is displaced upward and comes into contact with the cleaning tape 971.
  • the cleaning tape 971 then travels and removes dust adhering to the end surface of the SIL 961.
  • FIG. 48C after the dust is removed using the cleaning tape 971, the cleaning tape 971 is separated from the SIL 961, and the cleaning operation is completed.
  • the above-described cleaning technique uses direct contact of the cleaning tape 971 to the end surface of the SIL 961.
  • the end surface of the SIL 961 may be damaged.
  • dust attached to the cleaning tape 971 may come into contact with the end surface of the SIL 961 again.
  • an unused surface of the cleaning tape 971 may be brought into contact with the end surface of the SIL 961 using a mechanism for winding the cleaning tape 971.
  • this approach faces a limit on the number of times the cleaning tape 971 can be used.
  • the mechanism for wiping off the dust on the end surface of the SIL 961 and the mechanism for winding the cleaning tape 971 require a large installation space for the optical disc drive device 900.
  • the surface of the optical disk 950 and / or the optical head 910 may be damaged. This means a significant deterioration in performance related to recording and reproduction.
  • FIG. 49 is a schematic plan view of a conventional hard disk drive device 800.
  • a conventional hard disk drive device 800 will be described with reference to FIG.
  • the hard disk drive device 800 includes a housing 810.
  • the housing 810 includes a base member 811 and a cover member coupled to the base member 811.
  • the cover member is not shown. Therefore, FIG. 49 clearly shows the internal structure of the hard disk drive device 800.
  • the hard disk drive device 800 further includes a spindle motor 820, a magnetic recording medium 830, an HSA 840, and a voice coil motor (hereinafter referred to as VCM850).
  • the spindle motor 820, the magnetic recording medium 830, the HSA 840, and the VCM 850 are disposed in the housing 810.
  • the spindle motor 820 is fixed to the base member 811.
  • the spindle motor 820 rotates the magnetic recording medium 830.
  • the magnetic recording medium 830 is attached to the spindle motor 820.
  • the magnetic recording medium 830 is rotated at high speed by the spindle motor 820.
  • the magnetic recording medium 830 includes a recording area 831 and a non-recording area 832 surrounding the recording area 831. Data is recorded in the recording area 831.
  • FIG. 50 is a schematic perspective view of HSA840. 49 and 50, the conventional hard disk drive device 800 will be further described.
  • the HSA 840 includes a slider 841.
  • a magnetic head (not shown) is mounted on the slider 841.
  • the HSA 840 moves the slider 841 to a predetermined position on the magnetic recording medium 830.
  • the magnetic head mounted on the slider 841 performs information processing such as data recording and reproduction on the magnetic recording medium 830.
  • the HSA 840 further includes a swing arm 842 and a suspension 843 attached to the tip of the swing arm 842.
  • the slider 841 described above is attached to the tip of the suspension 843.
  • the suspension 843 includes a load beam 845 coupled to the tip of the swing arm 842 and a flexure 846 on which the slider 841 is mounted.
  • the curved portion 846 is curved so that the slider 841 approaches the surface of the magnetic recording medium 830.
  • the load beam 845 includes a dimple 847 that protrudes toward the swing arm 842.
  • the slider 841 attached to the bending portion 846 can swing finely with respect to the load beam 845. During this time, the curved portion 846 contacts the dimple 847.
  • the hard disk drive device 800 includes a lamp 860.
  • the suspension 843 includes an end tap 848 that protrudes from the tip of the load beam 845.
  • the ramp 860 contacts the end tap 848 and holds the slider 841.
  • the end tap 848 includes a facing surface 849 that faces the lamp 860, and a protrusion 861 that protrudes from the facing surface 849 toward the lamp 860. Since the protrusion 861 contacts the lamp 860, the contact area between the end tap 848 and the lamp 860 is reduced.
  • the slider 841 When the magnetic recording medium 830 rotates on the base member 811 at a high speed, a lift acting on the slider 841 is generated.
  • the suspension 843 urges the slider 841 toward the magnetic recording medium 830, while the lift acts so that the slider 841 is separated from the magnetic recording medium 830.
  • the slider 841 floats to a height position where the lift force and the force of the suspension 843 are balanced, and is held at the height position.
  • a magnetic head (not shown) mounted on the floated slider 841 records data in the recording area 831 of the magnetic recording medium 830. Alternatively, the magnetic head reproduces data from the recording area 831 of the magnetic recording medium 830.
  • the VCM 850 fixed to the base member 811 transmits the rotational force to the HSA 840.
  • the VCM 850 includes a VCM coil 851, magnets 852 arranged above and below the VCM coil 851, and a yoke 853 that supports the magnet 852.
  • the VCM 850 rotates the HSA 840 in a direction according to Fleming's left-hand rule using the interaction formed by the magnet 852 and the current input to the VCM coil 237 under the control of the servo control system.
  • the VCM 850 rotates the HSA 840 clockwise.
  • the hard disk drive device 800 changes from a loading state in which the slider 841 is positioned on the recording area 831 of the magnetic recording medium 830 to an unloading state in which the slider 841 moves onto the ramp 860.
  • the VCM 850 rotates the HSA 840 counterclockwise.
  • the hard disk drive device 800 changes from an unloading state in which the slider 841 is held by the ramp 860 to a loading state in which the slider 841 is positioned on the recording area 831 of the magnetic recording medium 830.
  • the hard disk drive device 800 further includes a latch 870.
  • the latch 870 prevents unnecessary rotation of the HSA 840 due to external force, impact, or vibration that can act on the hard disk drive device 800 while the slider 841 is held by the ramp 860 (unloading state). As a result, unnecessary contact between the slider 841 and the magnetic recording medium 830 due to unnecessary rotation of the HSA 840 and damage to the slider 841 and the magnetic recording medium 830 are prevented.
  • the hard disk drive device 800 further includes an FPC 881 attached to the HSA 840, and an FPC bracket 882 disposed below the FPC 881.
  • the FPC bracket 882 is used to connect the FPC 881 to a main circuit board (not shown) disposed below the base member 811.
  • the FPC bracket 882 is disposed at one of the corners of the base member 811.
  • the hard disk drive device 800 further includes a collection filter 890.
  • the collection filter 890 is disposed at the other corner of the base member 811 to which the FPC bracket 882 is attached.
  • the collection filter 890 removes foreign matters such as fine particles in the air flowing in the hard disk drive device 800.
  • the collection efficiency of the collection filter 890 (ratio of dust to the passage of air containing dust) is, for example, in the range of several percent to 100% for dust having a diameter of 100 nm.
  • the collection efficiency of the collection filter 890 greatly depends on the pressure loss of the collection filter 890 (the roughness of the collection filter 890).
  • the dust in the hard disk drive device 800 is reduced to about It takes tens of seconds to several minutes to reduce to 1/10.
  • the collection period required for reducing the amount of dust to 1/10 greatly depends on the position of the collection filter 890.
  • the collection filter 890 is disposed on the side of the magnetic recording medium 830 (near the periphery).
  • the flow velocity of the air flow generated by the rotation of the magnetic recording medium 830 is significantly reduced on the side of the magnetic recording medium 830 as compared with the flow velocity on the surface of the magnetic recording medium 830. Therefore, the period required for dust collection tends to be long.
  • the ramp 860 holds the slider 841 when the hard disk drive device 800 is stopped.
  • the slider 841 is fixed to the base member 811 near the periphery of the magnetic recording medium 830.
  • the ramp 860 includes an inclined surface 862 and a stop surface 863.
  • the end tap 848 moves toward the periphery of the magnetic recording medium 830 (ie, when the end tap 848 moves away from the center of the magnetic recording medium 830), the end tap 848 is separated from the surface of the magnetic recording medium 830. Further, the inclined surface 862 is inclined. The end tap 848 moves along the inclined surface 862 and then stops on the stop surface 863.
  • the lamp 860 further includes a support surface 864 and a prevention wall 865.
  • the support surface 864 supports the slider 841 while the end tap 848 is stopped on the stop surface 863.
  • the prevention wall 865 prevents the end tap 848 from leaving the stop surface 863.
  • FIG. 51 is a partially enlarged plan view of the magnetic recording medium 830.
  • the conventional hard disk drive device 800 will be further described with reference to FIGS.
  • the non-recording area 832 of the magnetic recording medium 830 overlaps the end of the ramp 860 on which the inclined surface 862 is formed.
  • the non-recording area 832 includes a bump area 833 along the outer edge of the magnetic recording medium 830, and a boundary area 834 formed between the bump area 833 and the recording area 831.
  • the bump area 833 and the boundary area 834 are annular band areas that are concentric with the rotation center of the magnetic recording medium 830.
  • a large number of fine bumps 835 are formed in the bump region 833.
  • the bumps 835 are formed by irradiating the surface of the magnetic recording medium 830 with laser light and expanding the irradiated region.
  • the size and shape of the fine bump 835 may be adjusted by the wavelength of the laser light and the irradiation intensity.
  • the laser beam is irradiated so that the fine bump 835 has an expansion height of 0.1 ⁇ m or less.
  • the HSA 840 rotates clockwise to unload the slider 841.
  • the slider 841 moves from the recording area 831 toward the non-recording area 832 on the magnetic recording medium 830.
  • the spindle motor 820 stops, the rotational speed of the magnetic recording medium 830 converges toward “0”. As a result, the lift acting on the slider 841 decreases.
  • the slider 841 includes a facing surface 869 facing the magnetic recording medium 830.
  • a positive pressure that separates the slider 841 from the magnetic recording medium 830 and a negative pressure that attracts the slider 841 to the magnetic recording medium 830 act on the facing surface 869.
  • the above lift acting on the slider 841 may be defined as a resultant force of positive pressure and negative pressure. It is known that the negative pressure acting on the facing surface 869 decreases as the surface roughness of the magnetic recording medium 830 increases. Since the fine bumps 835 formed in the bump region 833 increase the surface roughness of the magnetic recording medium 830, the fine bumps 835 have an attracting force that attracts the slider 841 to the surface of the magnetic recording medium 830 in the non-recording area 832. It can be made difficult to increase.
  • the end tap 848 of the HSA 840 collides with the inclined surface 862 of the ramp 860. Since the end tap 848 moves at an appropriate speed due to the decrease in the attractive force, the generation of fine particles due to the collision between the end tap 848 and the inclined surface 862 is less likely to occur. The end tap 848 then moves along the inclined surface 862 and eventually stops on the stop surface 863. The slider 841 is stopped on the support surface 864.
  • the above-described cleaning technique uses the collection filter 890 to remove dust in the hard disk drive device 800.
  • the volume of the hard disk drive device 800 is large, it takes a long time to sufficiently remove the dust in the hard disk drive device 800.
  • the collection filter 890 may not be able to sufficiently remove dust in the hard disk drive device.
  • the air flow rate is high near the surface of the magnetic recording medium 830, while the air flow rate is low at a position away from the magnetic recording medium 830. Therefore, the collection efficiency of the collection filter 890 greatly depends on the arrangement position of the collection filter 890.
  • Factors that generate dust in the hard disk drive device 800 include contact between the slider 841 and the magnetic recording medium 830, contact between the protrusion 861 and the lamp 860, evaporation of oil in the fluid bearing portion of the spindle motor 820, and the bearing portion of the VCM 850. Examples include sliding and evaporation of substances such as adhesives and grease.
  • the magnetic recording medium 830 also rotates.
  • the negative pressure generated at the center of rotation of these disks is also a major factor that hinders non-contact information processing. If the internal space of the optical disk drive device 900 or the hard disk drive device 800 communicates with the external space, the dust floating in the external space due to the negative pressure generated at the center of rotation of the disk is reflected in the optical disk drive device 900 or the hard disk drive device 800. It will enter the interior space.
  • the particle size of dust due to the various factors described above is several tens of nm to several ⁇ m.
  • the slider 841 floats from the surface of the magnetic recording medium 830 by a distance of several nm to several tens of nm. If the dust collection efficiency of the collection filter 890 decreases, the dust of several nm to several tens of nm existing in the magnetic recording medium 830 floats on the air current generated by the rotation of the magnetic recording medium 830, and the magnetic recording medium It becomes easy to bite between 830 and the slider 841. This causes scratches or defects on the surface of the magnetic recording medium 830 and makes information processing such as recording and reproduction difficult.
  • Dust caught between the magnetic recording medium 830 and the slider 841 may greatly change the attitude of the slider 841 that has floated.
  • the posture of the slider 841 changes, the bending portion 846 may be deformed, and a magnetic head (not shown) incorporated in the slider 841 may be destroyed.
  • the reliability and performance of recording and reproduction of the hard disk drive device 800 are greatly reduced.
  • An object of the present invention is to provide a drive device that is less prone to inconvenience due to dust.
  • a drive device includes a wall portion that defines a storage space in which at least one medium having a processing surface on which information processing is performed is stored, and the information processing in a non-contact manner with respect to the processing surface. And at least one processing element for performing the above and a drive mechanism for rotating the at least one medium.
  • the drive mechanism includes a force generating unit that generates a driving force for rotating the at least one medium, a transmission unit that transmits the driving force to the at least one medium, and the force generating unit on the wall unit.
  • a fixing portion to be fixed.
  • the wall is formed with an opening that allows the transmission portion to pass therethrough. The fixing portion closes the opening in cooperation with the force generating portion.
  • the drive device of the present invention has high reliability because it is less likely to cause inconvenience due to dust.
  • FIG. 2 is a schematic plan view of the drive device shown in FIG. 1.
  • FIG. 2 is a schematic plan view of the drive device shown in FIG. 1.
  • It is a schematic perspective view of the analysis model used for the analysis of the air flow in the accommodation space of the drive device shown in FIG. It is a figure showing the analysis result regarding the flow of air using the analysis model shown by FIG. 5A.
  • FIG. 5A It is a figure showing the analysis result regarding the pressure distribution in the accommodation space using the analysis model shown by FIG. 5A.
  • FIG. 1 is a schematic plan view of the drive device shown in FIG. 1.
  • FIG. 2 is a schematic plan view of the drive device shown in FIG. 1.
  • FIG. 2 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 1.
  • FIG. 2 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 1. It is the schematic showing the control structure of the drive device shown by FIG. It is a schematic sectional drawing of the drive device shown by FIG. It is a schematic sectional drawing of the drive device of 2nd Embodiment. It is a schematic sectional drawing of the dust removal part of the drive device shown by FIG. It is a schematic sectional drawing of the respiration filter of the drive device shown by FIG. It is a schematic sectional drawing of the drying part of the drive device shown by FIG. It is a schematic sectional drawing of the activated carbon part of the drive device shown by FIG.
  • FIG. 16 is a schematic enlarged view of the drive device shown in FIG. 15. It is a schematic sectional drawing of the drive device of 4th Embodiment. It is the schematic of the structure in the accommodation space of the drive device shown by FIG.
  • FIG. 18 is a schematic enlarged perspective view of the drive device shown in FIG. 17. It is a schematic sectional drawing of the drive device of 5th Embodiment.
  • FIG. 21 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 20.
  • FIG. 21 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 20. It is a schematic sectional drawing of the drive device of 6th Embodiment.
  • FIG. 27A It is a schematic of the drive device of 10th Embodiment. It is the schematic of the optical head of the drive device shown by FIG.
  • FIG. 29 is a schematic plan view of a housing wall of the drive device shown in FIG. 28.
  • FIG. 31B is a schematic cross-sectional view of the accommodation wall shown in FIG. 31A.
  • FIG. 31B is a schematic bottom view of the accommodation wall shown in FIG. 31A.
  • FIG. 29 is a schematic plan view of a housing wall of the drive device shown in FIG. 28.
  • FIG. 32B is a schematic plan view of the accommodation wall of the drive device shown in FIG. 32A.
  • FIG. 32B is a schematic bottom view of the accommodation wall of the drive device shown in FIG. 32A.
  • FIG. 40 is a schematic plan view of the drive device shown in FIG. 39.
  • FIG. 40 is a schematic cross-sectional view of the drive device shown in FIG. 39. It is the schematic of the drive device of 15th Embodiment.
  • FIG. 40 is a schematic plan view of the drive device shown in FIG. 39.
  • FIG. 41B is a schematic plan view of the drive device shown in FIG. 41A.
  • FIG. 41B is a schematic plan view of the drive device shown in FIG. 41A.
  • FIG. 41B is a schematic cross-sectional view of the drive device shown in FIG. 41A.
  • It is the schematic of the drive device of 16th Embodiment.
  • It is the schematic of the conventional optical disk drive device. It is a rough enlarged view of the condensing element of the optical disk drive device shown by FIG.
  • FIG. 45 is an enlarged schematic view of the optical disk drive device shown in FIG. 44.
  • FIG. 45 is a schematic bottom view of the optical disk drive device shown in FIG. 44.
  • FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44.
  • FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44.
  • FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44.
  • It is a schematic plan view of a conventional hard disk drive device.
  • FIG. 50 is a schematic perspective view of the hard disk drive device shown in FIG. 49.
  • FIG. 50 is a partially enlarged plan view of the magnetic recording medium of the hard disk drive device shown in FIG. 49.
  • FIG. 1 is a schematic perspective view of a driving apparatus 100 according to the first embodiment.
  • FIG. 2 is a schematic plan view of the driving apparatus 100 shown in FIG. The driving device 100 will be described with reference to FIGS. 1 and 2.
  • the driving device 100 includes a magnetic disk 120.
  • the magnetic disk 120 includes a processing surface 121 on which information processing such as recording and reproduction is performed magnetically, and an opposite surface 122 opposite to the processing surface 121.
  • the magnetic disk 120 is exemplified as a medium.
  • the driving apparatus 100 further includes a magnetic head 130 that performs information processing such as recording and reproduction on the processing surface 121 in a non-contact manner.
  • the magnetic head 130 magnetically records information on the magnetic disk 120.
  • the magnetic head 130 magnetically reproduces information from the magnetic disk 120.
  • the magnetic head 130 is exemplified as a processing element or a magnetic processing element.
  • the driving apparatus 100 further includes a holding mechanism 140 that holds the magnetic head 130.
  • the holding mechanism 140 includes a slider 141 that holds the magnetic head 130, a suspension 142 that holds the slider 141, a swing arm 143 that holds the suspension 142, and a voice coil motor 144 that rotates the swing arm 143 on the magnetic disk 120. And including.
  • the air flow generated by the rotation of the magnetic disk 120 causes the slider 141 holding the magnetic head 130 to float from the magnetic disk 120.
  • the suspension 142 supports the slider 141 and the magnetic head 130 via a soft leaf spring structure (not shown: generally referred to as “gimbal”).
  • the voice coil motor 144 is formed from components such as a rotating shaft, a coil, a magnet, and a yoke. A structure used in a known hard disk drive device may be applied to the holding mechanism 140. In the present embodiment, the voice coil motor 144 is exemplified as a rotation motor.
  • the driving apparatus 100 further includes a signal processing unit 150.
  • the signal processing unit 150 includes an FPC 151 that transmits a signal to or from the magnetic head 130, a head amplifier 152 that amplifies the signal, and a circuit board 153 that performs signal processing.
  • the circuit board 153 may generate a recording signal including information recorded on the magnetic disk 120.
  • the circuit board 153 may process a reproduction signal including information read from the magnetic disk 120 by the magnetic head 130.
  • the recording signal is supplied to the magnetic head 130 through the FPC 151.
  • the magnetic head 130 can record information on the magnetic disk 120 in accordance with a recording signal.
  • the reproduction signal output from the magnetic head 130 is amplified by the head amplifier 152.
  • the circuit board 153 can process the amplified reproduction signal.
  • the information processing technique for the magnetic disk 120 may be a technique used in a known hard disk drive device.
  • FIG. 3 is a schematic plan view of the driving device 100.
  • FIG. 4 is a schematic cross-sectional view of the driving device 100. The drive device 100 will be further described with reference to FIGS. 3 and 4.
  • the driving device 100 further includes an accommodation wall 160 that defines an accommodation space 169 in which the magnetic disk 120, the magnetic head 130, and the holding mechanism 140 are accommodated, and a housing 110 that surrounds the accommodation wall 160.
  • the housing 110 includes a bottom wall 112 disposed below the housing wall 160, a top wall 116 disposed above the housing wall 160, and a frame surrounding the housing wall 160 between the bottom wall 112 and the top wall 116. And a wall 113.
  • the accommodation wall 160 is illustrated as a wall part.
  • the housing wall 160 includes a first wall 161 lying between the magnetic disk 120 and the top wall 116, a second wall 162 lying between the bottom wall 112 and the magnetic disk 120, and a right side of the first wall 161.
  • a third wall portion 163 connected to the edge and the right edge of the second wall portion 162.
  • the first wall portion 161 cooperates with the second wall portion 162 to form a thin space.
  • the magnetic disk 120 rotates in a space mainly defined by the first wall portion 161 and the second wall portion 162.
  • the first wall portion 161 cooperates with the third wall portion 163 to form a thick space.
  • a voice coil motor 144 is disposed in a space mainly defined by the first wall portion 161 and the third wall portion 163.
  • the voice coil motor 144 is fixed to the third wall portion 163.
  • one of the first wall portion 161, the second wall portion 162, and the third wall portion 163 is exemplified as the first wall member.
  • Another one of the first wall portion 161, the second wall portion 162, and the third wall portion 163 is exemplified as the second wall member.
  • the housing 110 includes a support frame 117.
  • the housing wall 160 is held and positioned in the housing 110 by the support frame 117.
  • the drive device 100 further includes a drive mechanism 170 that rotates the magnetic disk 120.
  • the drive mechanism 170 includes a spindle motor 171.
  • the spindle motor 171 includes a main body 172 that generates a driving force for rotating the magnetic disk 120, and a spindle shaft 173 that protrudes from the main body 172 toward the magnetic disk 120.
  • a spindle hole 164 is formed in the second wall portion 162.
  • the tip of the spindle shaft 173 enters the accommodation space 169 through the spindle hole 164.
  • the magnetic disk 120 is fixed to the tip of the spindle shaft 173.
  • the spindle shaft 173 rotates according to the driving force created by the main body 172.
  • the magnetic disk 120 rotates in the accommodation space 169.
  • the main body 172 is exemplified as a force generation unit.
  • the spindle shaft 173 is exemplified as a force transmission unit.
  • the spindle hole 164 is exemplified as the
  • the driving mechanism 170 includes a fixing wall 174 for fixing the main body 172 exposed from the accommodation space 169 to the second wall 162.
  • the fixed wall 174 closes the spindle hole 164 in cooperation with the main body 172.
  • the drive mechanism 170 includes a hub 175 on which the magnetic disk 120 is placed, a cap 176 that sandwiches the magnetic disk 120 in cooperation with the hub 175, and a fixing screw 177 that passes through the cap 176 and is connected to the hub 175.
  • the magnetic disk 120 is accurately fixed on the hub 175 by a cap 176 and a fixing screw 177. Further, the magnetic disk 120 is accurately rotated by the spindle motor 171 at a rotational speed of several thousand rpm.
  • the drive mechanism 170 includes a shield part 178 that connects the fixed wall 174 to the second wall part 162.
  • the shield part 178 surrounding the spindle hole 164 and the spindle shaft 173 between the fixed wall 174 and the second wall part 162 keeps the shielding agent, adhesive resin, and the fixed wall 174 and the second wall part 162 airtight. It may be formed from a material capable of The rotation of the magnetic disk 120 causes a negative pressure environment around the spindle shaft 173. Since the shield part 178, the fixed wall 174, and the main body part 172 isolate the negative pressure space in the accommodation space 169 from the space between the accommodation wall 160 and the housing 110, the space between the accommodation wall 160 and the housing 110 is separated.
  • the fixing wall 174 and the shield part 178 used for fixing the main body part 172 to the second wall part 162 are exemplified as the fixing part.
  • the fixed wall 174 that supports the main body portion 172 is exemplified as the support portion.
  • the housing wall 160 has a boundary between the first wall portion 161 and the second wall portion 162, a boundary between the second wall portion 162 and the third wall portion 163, and a boundary between the third wall portion 163 and the first wall portion 161.
  • a seal portion 165 for sealing is included.
  • the shield part 178 and the seal part 165 may be formed of a material such as resin, rubber, or silicon.
  • the first wall 161, the second wall 162, and the third wall 163 may be formed of a metal plate or a resin plate having a thickness of 0.1 mm to 1 mm.
  • the voice coil motor 144 is disposed in the accommodation space 169 as a whole. Alternatively, a part of the voice coil motor may be exposed from the receiving space.
  • the housing may include a support frame that supports a part of the voice coil motor exposed from the accommodation space. In this case, the boundary between the voice coil motor and the receiving wall is preferably sealed using a shielding agent or other suitable material.
  • the magnetic head 130, the slider 141, the suspension 142, and the swing arm 143 rotate along the processing surface 121 of the magnetic disk 120 in the accommodation space 169. During this time, the magnetic head 130 magnetically records information on the magnetic disk 120. Alternatively, the magnetic head 130 magnetically reproduces information from the magnetic disk 120.
  • the rotation of the magnetic disk 120 causes an air flow (typically a swirl flow) in the accommodation space 169.
  • the magnetic head 130 and the slider 141 float from the processing surface 121.
  • the flying height of the magnetic head 130 and the slider 141 depends on the design of the holding mechanism 140. Typically, the flying height of the magnetic head 130 and the slider 141 is several nanometers to several tens of nanometers. If dust enters between the magnetic head 130 or the slider 141 and the processing surface 121, the magnetic head 130, the slider 141, and / or the processing surface 121 may be damaged. Damage to the magnetic head 130, the slider 141, and / or the processing surface 121 may significantly reduce the recording performance and / or reproduction performance of the drive device 100.
  • the storage space 169 is sealed by the storage wall 160, the shield portion 178, the fixed wall 174, the main body portion 172, and the seal portion 165. Accordingly, dust floating between the accommodation wall 160 and the housing 110 is less likely to enter the accommodation space 169. As a result, the amount of dust in the accommodation space 169 is kept at a low level. This greatly reduces the risk of dust entering between the magnetic head 130 or slider 141 and the processing surface 121. Therefore, there are almost no inconveniences such as crash of the magnetic head 130, recording error and / or reproduction error of the magnetic disk 120, damage to the magnetic head 130, the slider 141 and / or the processing surface 121. Thus, the driving apparatus 100 can maintain the recording performance and / or the reproduction performance at a high level.
  • the storage wall 160 includes a first wall portion 161, a second wall portion 162, and a third wall portion 163. Therefore, the assembly of the magnetic disk 120 and the holding mechanism 140 in the accommodation space 169 is facilitated. Since the 1st wall part 161, the 2nd wall part 162, and the 3rd wall part 163 are sealed with the seal
  • the accommodation wall 160 has a polygonal shape.
  • the receiving wall may be circular concentric with the magnetic disk.
  • the driving apparatus 100 further includes a dust removing unit 180 that collects dust in the accommodation space 169.
  • the dust removing unit 180 includes an upper collection filter 181 disposed between the processing surface 121 and the first wall portion 161, and a lower collection filter 182 disposed between the opposite surface 122 and the second wall portion 162. ,including.
  • the dust removal part 180 is illustrated as a collection filter.
  • the first wall portion 161 includes a first inner surface 166 that faces the processing surface 121.
  • the upper collection filter 181 attached to the first inner surface 166 protrudes toward the processing surface 121.
  • the upper collection filter 181 is exemplified as the first filter.
  • the second wall portion 162 includes a second inner surface 167 that faces the opposite surface 122.
  • the lower collection filter 182 attached to the second inner surface 167 protrudes toward the opposite surface 122.
  • the lower collection filter 182 is exemplified as the second filter.
  • the dust removing unit 180 may be formed of a resin material such as polyethylene or polypropylene. Or the dust removal part 180 may be formed from an electrostatic nonwoven fabric. In this embodiment, even if the coarseness of the dust removing unit 180 is designed so that the collection efficiency capable of collecting about 50% of dust with respect to the passage of dust of about 100 nm is achieved. Good. If the density of the resin in the air passage in the dust removing unit 180 is high, the dust is efficiently collected, while the pressure difference between the upstream and downstream of the dust removing unit 180 (pressure loss). ) Becomes larger. As a result, if the resin density is excessively high, the air flow may avoid the dust removing unit 180. For example, if the dust removing unit 180 is designed to achieve approximately 100% collection efficiency, air hardly passes through the dust removing unit 180. As a result, the dust removal efficiency of the drive device 100 as a whole decreases.
  • FIG. 5A is a schematic perspective view of an analysis model used for analyzing the air flow in the accommodation space 169.
  • FIG. 5B is an analysis result representing the flow of air in the accommodation space 169.
  • FIG. 5C is an analysis result representing the pressure distribution in the accommodation space 169. With reference to FIG. 4 thru
  • FIG. 5A shows the storage wall 160 that forms the storage space 169, the magnetic disk 120 disposed in the storage space 169, and the upper collection filter 181.
  • FIG. 5B represents the flow of air in the accommodation space 169 when the magnetic disk 120 rotates using a vector.
  • the length of each vector means the magnitude of the flow velocity.
  • the direction of each vector means the direction of air flow. From the analysis result shown in FIG. 5B, it can be seen that when the magnetic disk 120 rotates, a swirl flow swirling outward from the center of the magnetic disk 120 is generated.
  • FIG. 5C shows the pressure distribution in the accommodation space 169 when the magnetic disk 120 rotates. From the analysis result shown in FIG. 5C, during the rotation of the magnetic disk 120, the pressure around the center of the magnetic disk 120 (that is, the rotation center) is lower than the pressure around the outer periphery of the magnetic disk 120. I understand.
  • the first wall portion 161 is disposed close to the processing surface 121 of the magnetic disk 120.
  • the second wall portion 162 is disposed close to the opposite surface 122 of the magnetic disk 120.
  • the rotation of the magnetic disk 120 generates a low pressure at the rotation center of the magnetic disk 120, while a high pressure is generated at a position away from the rotation center of the magnetic disk 120.
  • the centrifugal force generated by the rotation of the magnetic disk 120 acts on the air in the accommodation space 169, and the pressure distribution described above is created.
  • the flow velocity of air in the accommodation space 169 is highest on the surface (the processing surface 121 and / or the opposite surface 122) of the magnetic disk 120.
  • the magnetic disk 120 has a diameter of 3.5 inches and rotates at 7000 rpm, the magnetic disk 120 is separated from the center of rotation of the magnetic disk 120 by a distance of a quarter of the diameter of the magnetic disk 120.
  • the flow velocity of the air swirling outward from the rotation center of the magnetic disk 120 is about 20 m / s.
  • the flow rate of air in the accommodation space 169 is highest on the surface (the processing surface 121 and / or the opposite surface 122) of the magnetic disk 120.
  • the flow rate of air in the accommodation space 169 decreases as the distance from the surface of the magnetic disk 120 increases.
  • the flow rate of air in the accommodation space 169 increases as the distance from the rotation center of the magnetic disk 120 increases.
  • the air between the housing wall 160 and the magnetic disk 120 is rectified.
  • the stabilized air flow can dampen the magnetic disk 120. Therefore, the magnetic disk 120 is less likely to resonate.
  • the distance between the magnetic disk 120 and the magnetic head 130 or the slider 141 becomes substantially constant. Therefore, inconveniences such as a crash of the magnetic head 130, a recording error or a reproduction error of the magnetic disk 120, and damage to the magnetic head 130, the slider 141 and / or the magnetic disk 120 are less likely to occur.
  • the recording performance and / or reproduction performance of the driving apparatus 100 is maintained at a high level.
  • the distance between the magnetic disk 120 and the housing wall 160 may be designed to have a dimension of 20 ⁇ m or more and 5 mm or less. If the distance between the magnetic disk 120 and the housing wall 160 is designed to have a dimension of 20 ⁇ m or more and 5 mm or less, the above-described stabilized air flow can be obtained.
  • the magnetic disk 120 includes an outer peripheral surface 128 that defines a circular contour of the magnetic disk 120 between the processing surface 121 and the opposite surface 122.
  • the first wall portion 161 and the second wall portion 162 form an inner peripheral surface 269 that faces the outer peripheral surface 128 between the first inner surface 166 and the second inner surface 167.
  • the distance between the outer peripheral surface 128 and the inner peripheral surface 269 is designed to be 10 ⁇ m or more and 5 mm or less.
  • FIG. 6 is a graph showing an analysis result regarding dust removal efficiency. The dust removal efficiency is described with reference to FIGS. 5A and 6.
  • the vertical axis of the graph shown in Fig. 6 represents the concentration of dust in the accommodation space 169.
  • the horizontal axis of the graph shown in FIG. 6 represents time.
  • the curve C1 in the graph of FIG. 6 is obtained based on the analysis model described with reference to FIG. 5A.
  • the diameter of the magnetic disk 120 is set to 3.5 inches
  • the rotational speed of the magnetic disk 120 is set to 7000 rpm
  • the collection efficiency of the upper collection filter 181 is , 50% (with respect to dust having a particle diameter of 100 nm or more).
  • the distance between the housing wall 160 and the magnetic disk 120 is set to 0.5 mm.
  • the curve C2 in the graph of FIG. 6 represents the dust removal efficiency when the containing wall 160 is removed.
  • FIG. 7A is a schematic enlarged cross-sectional view of the driving device 100 around the dust removing unit 180. With reference to FIG.6 and FIG.7A, the attachment pattern of the dust removal part 180 is demonstrated.
  • the dust removing unit 180 includes an upper fixing unit 183 used to fix the upper collection filter 181 to the first wall 161 and a lower fixing unit used to fix the lower collection filter 182 to the second wall 162. 184.
  • the upper fixing part 183 and the lower fixing part 184 may be formed of resin or metal.
  • the upper fixing portion 183 and the lower fixing portion 184 are respectively fixed to the first wall portion 161 and the second wall portion 162 using various attachment methods such as adhesion, bonding, or fitting.
  • the upper collection filter 181 shown in FIG. 7A protrudes toward the processing surface 121 at an angle of 90 ° with respect to the upper fixing portion 183 (that is, an angle of 90 ° with respect to the Z axis in FIG. 7A).
  • the lower collection filter 182 shown in FIG. 7A protrudes toward the opposite surface 122 at an angle of 90 ° with respect to the lower fixing portion 184 (that is, an angle of 90 ° with respect to the Z axis in FIG. 7A).
  • the first wall 161 and the processing surface 121 cooperate to stably guide the air in the accommodation space 169. Since the upper collection filter 181 protrudes in the air flow guided to the first wall 161 and the processing surface 121, dust is efficiently collected by the upper collection filter 181.
  • the second wall 162 and the opposite surface 122 cooperate to stably guide the air in the accommodation space 169. Since the lower collection filter 182 protrudes in the flow of air guided to the second wall 162 and the opposite surface 122, dust is efficiently collected by the lower collection filter 182.
  • the collection efficiency of the dust removing unit 180 is 50% (for dust having a particle diameter of 100 nm or more), the rotational speed of the magnetic disk 120 is 7000 rpm, and the magnetic disk 120 is accommodated. If the distance to the wall 160 is 0.2 mm, the period required to remove 90% or more of dust (dust having a particle diameter of 100 nm or more) is about 2.5 seconds or less. If the magnetic disk 120 is rotated for 8 seconds, the dust removing unit 180 can collect 99% or more of dust.
  • the tips of the upper collection filter 181 protruding from the first wall portion 161 and the lower collection filter 182 protruding from the second wall portion 162 may be as close as possible to the magnetic disk 120. As a result, a large amount of dust in the accommodation space 169 collides with the dust removing unit 180. Therefore, the dust removal unit 180 can efficiently collect dust.
  • FIG. 7B is a schematic enlarged cross-sectional view of the driving device 100 around the dust removing unit 180. With reference to FIG. 7A and 7B, the other attachment pattern of the dust removal part 180 is demonstrated.
  • the upper collection filter 181 shown in FIG. 7B has a rotational center of the magnetic disk 120 with respect to the upper fixing portion 183 (that is, with respect to the X axis). It is inclined about 30 ° toward Similarly, the lower collection filter 182 shown in FIG. 7B is inclined about 30 ° toward the rotation center of the magnetic disk 120 with respect to the lower fixing portion 184 (that is, with respect to the X axis).
  • the high pressure loss in the dust removing unit 180 tends to generate an air flow that bypasses the dust removing unit 180.
  • FIG. 7B if the upper collection filter 181 and the lower collection filter 182 are inclined and attached to the storage wall 160, the amount of air that bypasses the dust removing portion 180 is reduced. As a result, the dust removing unit 180 can efficiently collect dust.
  • the distance between the first inner surface 166 and the processing surface 121 and the distance between the second inner surface 167 and the opposite surface 122 are designed to be as short as possible. These distances take into consideration design items such as surface deflection of the magnetic disk 120, positional accuracy of the magnetic disk 120, amplitude of the magnetic disk 120 under resonance, a mounting method of the dust removing unit 180, and a mounting area of the dust removing unit 180. May be determined appropriately. For example, these distances may be set in a range of 50 ⁇ m to 3 mm.
  • FIG. 8 is a schematic diagram showing a control structure of the driving apparatus 100. With reference to FIG. 8, the control of the driving apparatus 100 will be described.
  • the circuit board 153 is disposed outside the accommodation space 169.
  • the circuit board 153 includes a control circuit 154, a signal processing circuit 155, and an input / output circuit 156.
  • the control circuit 154, the signal processing circuit 155, and the input / output circuit 156 generally control the driving device 100.
  • the control circuit 154 controls the spindle motor 171.
  • the main body 172 generates a driving force under the control of the control circuit 154.
  • the driving force is transmitted to the spindle shaft 173.
  • the hub 175 on which the magnetic disk 120 is placed is attached to the tip of the spindle shaft 173 that extends into the accommodation space 169 through a spindle hole 164 formed in the second wall portion 162.
  • the driving force rotates both the spindle shaft 173 and the hub 175.
  • the cap 176 is placed on the magnetic disk 120 and connected to the hub 175 by a fixing screw 177. Therefore, when the hub 175 rotates, the magnetic disk 120 sandwiched between the hub 175 and the cap 176 also rotates.
  • the control circuit 154 controls the voice coil motor 144.
  • the voice coil motor 144 rotates the magnetic head 130 and the slider 141 along the processing surface 121 under the control of the control circuit 154.
  • the magnetic disk 120 includes an inner peripheral region 123 that is closer to the rotation axis RX and an outer peripheral region 124 that is farther from the rotation axis RX than the inner peripheral region 123.
  • the magnetic head 130 and the slider 141 move between the inner peripheral area 123 and the outer peripheral area 124 by the turning operation by the voice coil motor 144.
  • the slider 141 floats about 10 nm from the processing surface 121 while the magnetic disk 120 is rotating.
  • the control circuit 154 can control the flying height of the slider 141 with high accuracy.
  • the magnetic head 130 outputs a signal to the control circuit 154.
  • the control circuit 154 performs tracking control of the magnetic head 130, rotation control of the voice coil motor 144, and rotation control of the spindle motor 171 in accordance with a signal from the magnetic head 130. These controls may be a control technique used in a known hard disk drive device.
  • the magnetic head 130 reads information from the magnetic disk 120 and generates a reproduction signal.
  • the signal processing circuit 155 processes the reproduction signal and reproduces information.
  • a signal including the reproduced information is output from the signal processing circuit 155 to the input / output circuit 156.
  • the input / output circuit 156 can receive an external signal including information recorded on the magnetic disk 120.
  • the external signal is output from the input / output circuit 156 to the control circuit 154.
  • the control circuit 154 outputs an external signal as a recording signal to the magnetic head 130.
  • the magnetic head 130 can record information included in the external signal on the magnetic disk 120 in accordance with the recording signal.
  • FIG. 9 is a schematic cross-sectional view of the driving device 100.
  • the drive device 100 will be described with reference to FIG.
  • the driving device 100 includes the housing 110 and the accommodation wall 160 disposed in the housing 110.
  • the housing wall 160 includes a first wall portion 161, a second wall portion 162, and a third wall portion 163.
  • the housing wall 160 includes a boundary between the first wall portion 161 and the second wall portion 162, a boundary between the second wall portion 162 and the third wall portion 163, and the third wall portion 163 and the first wall portion 161.
  • the housing 110 includes a support frame 117 that supports the accommodation wall 160.
  • the housing wall 160 is fixed on a support frame 117 erected from the bottom wall 112 of the housing 110. At this time, the housing wall 160 is strongly pressed toward the bottom wall 112. As a result, the seal portion 165 can appropriately close the boundary between the first wall portion 161, the second wall portion 162, and the third wall portion 163.
  • the magnetic disk 120 is fitted into the hub 175 attached to the tip of the spindle shaft 173 protruding from the spindle hole 164.
  • the center of the magnetic disk 120 is accurately matched with the rotation center of the magnetic disk 120.
  • the cap 176 cooperates with the hub 175 to sandwich the inner peripheral area 123 of the magnetic disk 120.
  • the cap 176 and the magnetic disk 120 are fixed to the hub 175 by a fixing screw 177.
  • the cap 176 is fixed to the hub 175 using 1 to 8 fixing screws 177. If many fixing screws 177 are used, the interval between the fixing screws 177 is shortened. As a result, the resonance of the magnetic disk 120 is reduced. This means a reduction in vibration NRRO (Non-Repeatable Runout) that is asynchronous with the rotation of the magnetic disk 120.
  • NRRO Non-Repeatable Runout
  • the distance between the processing surface 121 and the magnetic head 130 is maintained in the range of several nm to several tens of nm. Since the distance between the processing surface 121 and the magnetic head 130 is stabilized, the crash of the magnetic head 130, the recording error and / or the reproduction error of the magnetic disk 120, the magnetic head 130, the slider 141 and / or the magnetic disk 120 Damage is less likely to occur. Therefore, the driving device 100 can maintain the recording performance and / or the reproduction performance at a high level.
  • the voice coil motor 144 is attached to the third wall portion 163 before the first wall portion 161 is joined to the second wall portion 162 and the third wall portion 163. Thereafter, the first wall portion 161 is joined to the second wall portion 162 and the third wall portion 163 to form an accommodation space 169.
  • the magnetic disk 120 rotates, air flows in the accommodation space 169. Since the upper collection filter 181 attached to the first wall portion 161 and the lower collection filter 182 attached to the second wall portion 162 collect dust from the air flowing in the accommodation space 169, the processing surface 121. And the magnetic head 130 moved along the processing surface 121 by the voice coil motor 144, dust becomes difficult to bite.
  • the spindle hole 164 is covered with a shield part 178, a fixed wall 174, and a main body part 172 of the spindle motor 171. Therefore, dust floating in the space between the storage wall 160 and the housing 110 hardly enters the storage space 169.
  • the spindle motor 171 includes a fluid bearing 179 that assists the rotation operation. Therefore, the spindle motor 171 has a long life and high rotational accuracy.
  • the main body 172 of the spindle motor 171 is partially exposed from the accommodation space 169. Therefore, it becomes easy to be electrically connected to the circuit board 153 disposed between the bottom wall of the housing 110 and the spindle motor 171.
  • the circuit board 153 is disposed in the housing 110. Alternatively, the circuit board may be attached outside the housing.
  • FIG. 10 is a schematic cross-sectional view of the drive device 100A of the second embodiment.
  • the drive device 100A will be described with reference to FIGS. 5C and 10.
  • symbol is attached
  • the description relevant to 1st Embodiment is used with respect to the element to which the same code
  • the driving device 100A includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, and a dust removing unit 180.
  • the driving device 100 ⁇ / b> A further includes an accommodation wall 160 ⁇ / b> A that defines the accommodation space 169.
  • the housing wall 160 ⁇ / b> A includes a second wall portion 162, a third wall portion 163, and a seal portion 165.
  • the housing wall 160A is attached to the first wall portion 161A and the first wall portion 161A joined to the second wall portion 162 and the third wall portion 163 above the magnetic disk 120 and the holding mechanism 140.
  • a respiratory filter 168 is attached to the first wall portion 161A and the first wall portion 161A joined to the second wall portion 162 and the third wall portion 163 above the magnetic disk 120 and the holding mechanism 140.
  • a respiratory filter 168 Unlike the first embodiment, the first wall 161A has an opening formed at a position corresponding to the rotation axis
  • the respiratory filter 168 flows out of the air from the housing space 169 to the space between the housing wall 160A and the housing 110 (hereinafter referred to as the external space 199), and the air flows from the external space 199 into the housing space 169. Is acceptable.
  • the coarseness of the breathing filter 168 is designed to prevent dust floating in the external space 199 partitioned from the storage space 169 by the storage wall 160A from flowing into the storage space 169.
  • the breathing filter 168 allows air to flow between the accommodation space 169 and the external space 199, so that an excessively large pressure difference between the accommodation space 169 and the external space 199 is less likely to occur. Therefore, the housing wall 160A, the drive mechanism 170 in the housing space 169, and the holding mechanism 140 in the housing space 169 are not easily deformed. Since various dimensions with respect to the housing wall 160A in the housing space 169 are appropriately maintained, the dustproof performance described in relation to the first embodiment is maintained at a high level. As a result, the driving device 100A can maintain high reliability.
  • the eyes of the respiratory filter 168 are finer than the eyes of the dust removing unit 180 (the upper collection filter 181 and the lower collection filter 182) (that is, the fiber interval is narrow). Therefore, the breathing filter 168 has a larger pressure loss than the dust removal unit 180, while collecting dust more efficiently than the dust removal unit 180. Therefore, dust in the external space 199 is difficult to enter the accommodation space 169. As a result, the driving device 100A can maintain high reliability.
  • the breathing filter 168 exists on the rotation axis RX. As described with reference to FIG. 5C, the pressure around the rotation axis RX is relatively low. Accordingly, the air in the external space 199 efficiently flows into the accommodation space 169 through the breathing filter 168.
  • the driving device 100A includes a drying unit 185 and an activated carbon unit 186.
  • the drying unit 185 and the activated carbon unit 186 are disposed in the accommodation space 169.
  • the drying unit 185 absorbs moisture in the accommodation space 169.
  • the activated carbon unit 186 absorbs the organic gas in the accommodation space 169.
  • Activated carbon or desiccant may be blended in the respiratory filter 168. As a result, dry air or air containing almost no organic gas flows into the accommodation space 169.
  • the amount of water and the amount of organic gas in the storage space 169 are reduced by the activated carbon material and the desiccant material blended in the drying unit 185, the activated carbon unit 186, and the breathing filter 168.
  • moisture and organic gas are less likely to adhere to the magnetic head 130 and the magnetic disk 120. Therefore, inconveniences such as a crash of the magnetic head 130 are less likely to occur.
  • the driving device 100A can maintain high reliability.
  • FIG. 11 is a schematic cross-sectional view of the dust removing portion 180 (the upper collection filter 181 or the lower collection filter 182).
  • the dust removing unit 180 will be described with reference to FIG.
  • the dust removing unit 180 includes a filter unit 187 that collects dust and a reinforcing unit 188 that maintains the shape of the filter unit 187.
  • the reinforcing part 188 is designed not to excessively obstruct the air flow. Therefore, most of the air goes to the filter unit 187. Since the reinforcing portion 188 reinforces the filter portion 187, the shape of the filter portion 187 is maintained even under the pressure of the air flow. Therefore, the filter unit 187 can appropriately remove dust from the air.
  • the filter part 187 may be formed from polypropylene or an electrostatic nonwoven fabric.
  • the reinforcement part 188 may be formed from polyethylene.
  • the dust removing unit 180 typically generates a pressure loss of about 5 mmAq at a flow rate of 3.2 / min, and achieves a collection efficiency of about 50% for dust having a particle diameter of 100 nm. Designed to.
  • FIG. 12 is a schematic sectional view of the respiratory filter 168.
  • the respiratory filter 168 is described with reference to FIGS. 10 and 12.
  • the breathing filter 168 includes a filter part 191 that collects dust and a reinforcing part 192 that maintains the shape of the filter part 191.
  • the filter unit 191 faces the external space 199.
  • the reinforcing portion 192 faces the accommodation space 169.
  • the reinforcing part 192 is designed not to excessively obstruct the flow of air that has passed through the filter part 191. Therefore, the air in the external space 199 flows smoothly into the accommodation space 169. Since the reinforcing portion 192 reinforces the filter portion 191, the filter portion 191 is less likely to be bent into the accommodating space 169 even under a pressure difference around the rotation axis RX.
  • the filter part 187 may be formed from polypropylene.
  • the reinforcement part 188 may be formed from polyethylene.
  • the respiratory filter 168 typically produces a pressure drop of about 50 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for 100 nm particle size dust. Designed to do
  • FIG. 13 is a schematic cross-sectional view of the drying unit 185.
  • the drying unit 185 will be described with reference to FIG.
  • the drying unit 185 covers the desiccant 193 that absorbs moisture from the air and the covering unit 194 that covers the desiccant 193.
  • the covering portion 194 is designed to prevent the desiccant 193 from scattering.
  • the desiccant 193 may be silica gel, for example.
  • the drying unit 185 typically generates a pressure loss of about 150 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for dust having a particle diameter of 100 nm. Designed to do.
  • FIG. 14 is a schematic cross-sectional view of the activated carbon portion 186.
  • the activated carbon part 186 is demonstrated with reference to FIG.
  • the activated carbon part 186 covers the activated carbon 195 that absorbs organic gas and the covering part 196 that covers the activated carbon 195.
  • the covering portion 196 is designed to prevent the activated carbon 195 from scattering.
  • the activated carbon portion 186 typically produces a pressure loss of about 150 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for dust having a particle size of 100 nm. Designed to do.
  • the dust removing unit 180 described in relation to the first embodiment and the second embodiment includes two filters (an upper collection filter 181 and a lower collection filter 182).
  • the number of filter elements that collect dust in the accommodation space may be one or more than two.
  • the upper collection filter 181 is disposed above the magnetic disk 120, and the lower collection filter 182 is disposed below the magnetic disk 120.
  • the filter element having a dust collecting function may be arranged at an appropriate position according to the shape of the accommodation space.
  • the driving devices 100 and 100A perform magnetic recording.
  • the driving devices 100 and 100A use a magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • the housing 110 is made of metal.
  • the housing 110 may be formed from resin.
  • the housing walls 160 and 160A are formed from a thin metal material or resin material.
  • the receiving wall may be formed using various materials capable of forming a sealed receiving space.
  • FIG. 15 is a schematic cross-sectional view of the drive device 100B of the third embodiment.
  • the drive device 100B will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment is used with respect to the element to which the same code
  • the driving device 100B includes a housing 110, a housing wall 160, a driving mechanism 170, a holding mechanism 140, a circuit board 153, and a dust removing unit 180. Unlike the first embodiment, the driving device 100B further includes an optical disc 120B and an optical head 130B that performs non-contact information processing such as recording and reproduction on the optical disc 120B.
  • FIG. 16 is a schematic enlarged view of the driving device 100B around the optical head 130B.
  • the drive device 100B will be described with reference to FIGS. 15 and 16.
  • the driving device 100B further includes a semiconductor laser 131 attached to the slider 141.
  • the light beam emitted from the semiconductor laser 131 is used for information processing such as recording and reproduction.
  • the slider 141 is supported by the suspension 142 as in the first embodiment.
  • the suspension 142 is supported by a swing arm 143.
  • the semiconductor laser 131 is exemplified as a light source. Note that another device that emits light capable of optically processing information may be used as a light source instead of the semiconductor laser 131.
  • the optical head 130B includes an optical waveguide 132 and a metal antenna 133.
  • the light beam emitted from the semiconductor laser 131 is guided to the metal antenna 133 through the optical waveguide 132.
  • the optical disc 120B includes a disk-shaped substrate 125, a first recording layer 126 that covers the upper surface of the substrate 125, and a second recording layer 127 that covers the lower surface of the substrate 125. Both the first recording layer 126 and the second recording layer 127 are formed of a phase change material that undergoes phase change between crystal and amorphous upon receiving light irradiation.
  • the metal antenna 133 focuses on the first recording layer 126 and / or the second recording layer 127. Plasmon resonance occurs between the metal antenna 133 and the first recording layer 126 and between the metal antenna 133 and the second recording layer 127.
  • the first recording layer 126 and the second recording layer 127 locally change in phase between crystal and amorphous.
  • the first recording layer 126 and / or the second recording layer 127 is exemplified as the processing surface.
  • the metal antenna 133 is exemplified as a condensing element or a plasmon resonance antenna.
  • the driving device 100B further includes a light receiving element (not shown).
  • the optical disc 120B reflects the light beam from the metal antenna 133 and generates reflected light.
  • the light receiving element receives reflected light.
  • the light receiving element outputs a signal (reproduction signal) to the circuit board 153 in response to reception of the reflected light.
  • the magnitude of the signal generated by the light receiving element depends on the intensity of the reflected light.
  • the intensity of the reflected light varies depending on the phase (crystal or amorphous) at the irradiation position of the light beam emitted from the metal antenna 133. Therefore, information recorded on the optical disc 120B is appropriately read using a signal generated by the light receiving element.
  • FIG. 17 is a schematic cross-sectional view of the drive device 100C of the fourth embodiment.
  • the drive device 100C will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment is used with respect to the element to which the same code
  • the drive device 100C includes a housing 110, a magnetic disk 120, a magnetic head 130, a housing wall 160, a drive mechanism 170, a circuit board 153, and a dust removal unit 180. . Unlike the first embodiment, the driving device 100C further includes a holding mechanism 140C.
  • FIG. 18 is a schematic view of the structure in the accommodation space 169.
  • the holding mechanism 140C will be described with reference to FIGS. In FIG. 18, the first wall portion 161 is removed.
  • the holding mechanism 140 ⁇ / b> C is disposed in the accommodation space 169 defined by the accommodation wall 160.
  • the holding mechanism 140C includes a slider 141 that holds the magnetic head 130, a suspension 142 that holds the slider 141, a swing arm 143 that holds the suspension 142, and the swing arm 143 on the magnetic disk 120. And a voice coil motor 144 that is rotated at the same time.
  • the holding mechanism 140 ⁇ / b> C further includes a ramp 145 and a latch 146.
  • the magnetic head 130, the slider 141, and the suspension 142 are held by the ramp 145 while the driving device 100C is not operating (hereinafter referred to as “unloading”).
  • the lamp 145 is exemplified as the holding unit.
  • the latch 146 locks the swing arm 143 during unloading. Therefore, even when an external force or impact is applied to the driving device 100C during unloading, unnecessary rotation of the swing arm 143 is prevented by the latch 146. As a result, contact between the magnetic head 130, the slider 141, and the magnetic disk 120 and damage due to the contact are less likely to occur.
  • FIG. 19 is a schematic enlarged perspective view of the holding mechanism 140 ⁇ / b> C around the lamp 145.
  • the holding mechanism 140C will be further described with reference to FIGS.
  • the suspension 142 includes a suspension arm 147 connected to the swing arm 143 and a gimbal 148 branched from the suspension arm 147.
  • the gimbal 148 is formed from a soft leaf spring.
  • the slider 141 is attached to the gimbal 148.
  • a dimple 149 is formed on the suspension arm 147. The dimple 149 is used as a fulcrum for the slider 141.
  • the suspension arm 147 includes an end tap 241.
  • the end tap 241 is formed at the tip of the suspension arm 147.
  • the end tap 241 includes a facing surface 242 that faces the lamp 145 and a protrusion 243 that projects from the facing surface 242.
  • the protrusion 243 reduces the contact area between the end tap 241 and the lamp 145. Therefore, the protrusion 243 reduces wear of the lamp 145 and the end tap 241.
  • the magnetic disk 120 includes an outer peripheral surface 128 between the processing surface 121 and the opposite surface 122.
  • the ramp 145 that holds the slider 141 is disposed near the outer peripheral surface 128.
  • the lamp 145 is fixed to the receiving wall 160. Alternatively, the lamp may be fixed to the housing.
  • the lamp 145 includes an inclined surface 244 and a stop surface 245. As the end tap 241 moves away from the rotation axis RX, the inclined surface 244 is inclined so as to separate the end tap 241 from the processing surface 121. The end tap 241 moves along the inclined surface 244 and stops on the stop surface 245.
  • the lamp 145 further includes a support surface 246.
  • the support surface 246 supports the slider 141 while the end tap 241 is stopped on the stop surface 245.
  • the lamp 145 further includes a prevention wall 247.
  • the end tap 241 stopped on the stop surface 245 is sandwiched between the prevention wall 247 and the stop surface 245. Therefore, the end tap 241 is less likely to be detached from the stop surface 245 even in an environment where an external force or impact is applied.
  • Dust may be generated by contact between the protrusion 243 and the lamp 145. Since the holding mechanism 140 ⁇ / b> C is housed in the housing space 169, dust is appropriately collected by the dust removing unit 180. Therefore, the magnetic head 130 crashes, the recording error or the reproduction error with respect to the magnetic disk 120, and the magnetic head 130, the slider 141 and / or the magnetic disk 120 are hardly damaged. Thus, the driving device 100C can maintain the recording performance and the reproduction performance at a high level.
  • the driving device 100C performs magnetic recording.
  • the driving device 100C uses a magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • the medium may be an optical disk as in the third embodiment.
  • the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
  • FIG. 20 is a schematic cross-sectional view of the drive device 100D of the fifth embodiment.
  • the drive device 100D will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment is used with respect to the element to which the same code
  • the driving device 100D includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, a circuit board 153, and a dust removing unit 180. .
  • the drive device 100C further includes an accommodation wall 160D.
  • the magnetic disk 120 includes the inner peripheral region 123 and the outer peripheral region 124 surrounding the inner peripheral region 123.
  • the inner peripheral region 123 is sandwiched between the hub 175 and the cap 176.
  • the inner peripheral region 123 is exemplified as the inner edge region.
  • region 124 is illustrated as an outer edge area
  • the housing wall 160D includes a third wall portion 163.
  • the housing wall 160D further includes a first wall portion 161D and a second wall portion 162D.
  • the first wall portion 161D includes a step portion 261 that is bent toward the outer peripheral region 124 above the outer peripheral region 124, and a first inner surface 166D that faces the processing surface 121.
  • the first inner surface 166 ⁇ / b> D includes a first proximity surface 262 that is closer to the processing surface 121 and a first separation surface 263 that is farther from the processing surface 121 than the first proximity surface 262.
  • the first separation surface 263 surrounds the rotation axis RX.
  • the first proximity surface 262 at least partially surrounds the first spacing surface 263.
  • the second wall portion 162D includes a stepped portion 264 that is bent toward the outer peripheral region 124 below the outer peripheral region 124, and a second inner surface 167D that faces the opposite surface 122.
  • the second inner surface 167D includes a second proximity surface 265 that is close to the opposite surface 122, and a second separation surface 266 that is farther from the opposite surface 122 than the second proximity surface 265.
  • the second separation surface 266 surrounds the rotation axis RX.
  • the second proximity surface 265 at least partially surrounds the second spacing surface 266.
  • FIG. 21A is a schematic enlarged cross-sectional view of the driving device 100D around the step portions 261 and 264.
  • FIG. 21A With reference to FIG.20 and FIG.21A, the 1st design pattern regarding the accommodation wall 160D is demonstrated.
  • the first inner surface 166D includes a first upright surface 267 substantially perpendicular to the processing surface 121 in addition to the first proximity surface 262 and the first separation surface 263.
  • the second inner surface 167D includes a second upstanding surface 268 that is substantially perpendicular to the opposite surface 122 in addition to the second proximity surface 265 and the second spacing surface 266.
  • the accommodation space 169 is narrower between the first proximity surface 262 and the processing surface 121 than between the first separation surface 263 and the processing surface 121. Therefore, when the swirling flow generated by the rotation of the magnetic disk 120 enters the gap between the first proximity surface 262 and the processing surface 121, the swirling flow is stabilized.
  • the accommodating space 169 is narrower between the second proximity surface 265 and the opposite surface 122 than between the second separation surface 266 and the opposite surface 122. Therefore, the swirl flow that flows between the second proximity surface 265 and the opposite surface 122 is stabilized.
  • the driving device 100D can maintain the recording performance and / or the reproduction performance at a high level.
  • FIG. 21B is a schematic enlarged cross-sectional view of the driving device 100D around the step portions 261 and 264.
  • FIG. 21B With reference to FIG. 21B, the 2nd design pattern regarding the accommodation wall 160D is demonstrated.
  • the first inner surface 166D includes a first inclined surface 361 inclined with respect to the processing surface 121 in addition to the first proximity surface 262 and the first separation surface 263.
  • the second inner surface 167D includes a second inclined surface 362 that is inclined with respect to the opposite surface 122 in addition to the second proximity surface 265 and the second separation surface 266.
  • the first inclined surface 361 and the second inclined surface 362 gradually narrow the accommodation space 169 toward the outer peripheral region 124. Therefore, the swirl flow generated in the accommodation space 169 can smoothly flow into the space between the first proximity surface 262 and the processing surface 121 and the space between the second proximity surface 265 and the opposite surface 122. .
  • the speed of the swirl flow increases, so that the magnetic disk 120 is appropriately damped. Is done.
  • the driving device 100D performs magnetic recording.
  • the driving device 100D uses a magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • the medium may be an optical disk as in the third embodiment.
  • the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
  • FIG. 22 is a schematic cross-sectional view of the drive device 100E of the sixth embodiment.
  • the drive device 100E will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 5th Embodiment is used with respect to the element to which the same code
  • the driving device 100E includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140C, a housing wall 160, a driving mechanism 170, a circuit board 153, and a dust removing unit. 180.
  • the driving device 100E further includes a switch element 157 and a capacitor 158. The power supplied from the power source ES is supplied to the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 through the switch element 157 and the capacitor 158.
  • the switch element 157 includes an off mode in which a power path from the power source ES to the circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetic head 130 is cut off, and the circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetism
  • the power supply mode is switched between the on mode in which the power supply path to the head 130 is opened. While the power supply mode is the on mode, the capacitor 158 can store electricity.
  • the circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetic head 130 can operate by consuming electric power stored in the capacitor 158.
  • the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 can operate for a predetermined period.
  • the switch element 157 is exemplified as a power switch unit.
  • Capacitor 158 is exemplified as a power storage unit.
  • the circuit board 153 switches control over the drive mechanism 170 between the processing rotation mode and the dust collection rotation mode.
  • the drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the magnetic head 130 to record information on the magnetic disk 120 under the processing rotation mode.
  • the drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the magnetic head 130 to read information from the magnetic disk 120 under the processing rotation mode.
  • the drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the dust removal unit 180 to collect the dust in the accommodation space 169 under the dust collection rotation mode.
  • a swirl flow at a speed sufficient for the dust removing unit 180 to collect the dust in a short time is generated in the accommodation space 169.
  • the circuit board 153 is exemplified as the control unit.
  • FIG. 23 is a flowchart showing exemplary control by the circuit board 153.
  • the control by the circuit board 153 will be described with reference to FIGS. 18, 19, 22, and 23.
  • Step S110 the user operates the switch element 157 to set the power supply mode to the on mode. As a result, a power supply path from the power supply ES to the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 is opened. Step S120 is executed after the power supply path is opened.
  • Step S120 As described with reference to FIGS. 18 and 19, the magnetic head 130 can rotate between the processing position and the retracted position under the control of the circuit board 153. In the processing position, the magnetic head 130 is disposed on the processing surface 121. During this time, the magnetic head 130 magnetically executes information processing such as recording and reproduction. In the retracted position, the magnetic head 130 is separated from the processing surface 121 and disposed on the ramp 145.
  • step S120 the circuit board 153 controls the drive mechanism 170 and the holding mechanism 140C in the dust collection rotation mode.
  • the circuit board 153 controls the holding mechanism 140C and arranges the magnetic head 130 and the slider 141 on the ramp 145.
  • the ramp 145 holds the magnetic head 130, the slider 141, and the suspension 142.
  • the circuit board 153 rotates the spindle motor 171 at the first rotation speed.
  • the first rotation speed is higher than the second rotation speed set for the spindle motor 171 in the processing rotation mode.
  • the first rotation speed may be set to several thousand rpm (for example, 5000 rpm or more).
  • step S130 is executed.
  • Step S130 the circuit board 153 performs information processing such as recording and reproduction. Thereafter, step S140 is executed.
  • Step S140 The circuit board 153 sets the spindle motor 171 to the second rotation speed. As described above, the second rotation speed is smaller than the first rotation speed set in step S120. Thereafter, the circuit board 153 controls the holding mechanism 140C to rotate the magnetic head 130 and the slider 141 to the processing position. After the magnetic head 130 and the slider 141 are rotated to the processing position, the circuit board 153 performs information processing such as recording or reproduction on the magnetic disk 120 using the magnetic head 130. Thereafter, step S150 is executed.
  • Step S150 the circuit board 153 determines whether or not the user has operated the switch element 157 to set the power supply mode to the off mode. If the power supply mode is not set to the off mode, step S160 is executed. If the power supply mode is set to the off mode, step S170 is executed.
  • Step S160 the circuit board 153 determines whether the information processing (recording or reproducing process) for the magnetic disk 120 is completed. If the information processing is complete, step S170 is executed. In other cases, step S150 is executed.
  • Step S170 the circuit board 153 controls the drive mechanism 170 and the holding mechanism 140C in the dust collection rotation mode.
  • the circuit board 153 controls the holding mechanism 140C and arranges the magnetic head 130 and the slider 141 on the ramp 145.
  • the ramp 145 holds the magnetic head 130, the slider 141, and the suspension 142.
  • the circuit board 153 rotates the spindle motor 171 at the first rotation speed.
  • the spindle motor 171 rotates at the first rotation speed for a predetermined period (several seconds to several tens of seconds).
  • step S170 after step S150 the circuit board 153 consumes the electric power stored in the capacitor 158 and can appropriately operate the spindle motor 171 and the holding mechanism 140C. Accordingly, the dust that can be attached to the magnetic disk 120, the slider 141, and the magnetic head 130 due to the gravitational action and the Coulomb force is properly captured by the dust removing unit 180 on the swirling flow generated by the rotation of the magnetic disk 120. Become.
  • the execution of the above-described timely dust collection rotation mode reduces the dust concentration (number) in the accommodation space 169 to 1/100 or less. Therefore, the magnetic head 130 crashes, the magnetic disk 120 recording error and / or the reproduction error, and the magnetic head 130, the slider 141 and / or the magnetic disk 120 are hardly damaged. As a result, the driving device 100E can maintain the recording performance and / or reproduction performance at a high level.
  • the dust collection rotation mode is executed after the power supply mode is set to the on mode.
  • the dust collection rotation mode may be executed when the stopped driving device 100E resumes operation.
  • the rotation of the spindle motor 171 in the dust collection rotation mode is set to the first rotation speed.
  • the rotation speed of the spindle motor 171 in the dust collection rotation mode may be variable.
  • three levels high speed rotation level> medium speed rotation level> low speed rotation level
  • the rotational operation of the spindle motor 171 under the dust collection rotation mode may be appropriately designed.
  • the number of repetitions of the combination pattern of the three rotation levels and the combination of the set speed levels may be determined according to the design of the driving device 100E.
  • the dust collection rotation mode is executed before and after the processing rotation mode.
  • the dust collection rotation mode and the processing rotation mode may be performed in parallel.
  • the circuit board 153 may execute the control under the dust collection rotation mode without moving the magnetic head 130 and the slider 141 to the retracted position.
  • the power supply mode is switched between the on mode and the off mode by an operation on the switch element 157 by the user.
  • the power supply mode may be switched to the off mode when the user removes the plug that connects the driving device 100E and the power source ES. Since the capacitor 158 exists, the driving device 100E can appropriately execute the dust collection rotation mode in the off mode.
  • the driving device 100E performs magnetic recording.
  • the driving device 100E uses a magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • the medium may be an optical disk as in the third embodiment.
  • the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
  • FIG. 24 is a schematic cross-sectional view of the drive device 100F of the seventh embodiment.
  • the drive device 100F will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment is used with respect to the element to which the same code
  • the driving device 100F includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, a circuit board 153, and a dust removing unit 180. .
  • the driving device 100F further includes an accommodation wall 160F. Similar to the first embodiment, the accommodation wall 160 ⁇ / b> F includes a second wall portion 162 and a third wall portion 163.
  • the housing wall 160F further includes a first wall portion 161F joined to the second wall portion 162 and the third wall portion 163.
  • a first inflow port 363 and a first outflow port 364 are formed in the first wall portion 161F.
  • the first inflow port 363 is formed on the rotation axis RX.
  • the first outlet 364 is formed farther from the rotation axis RX than the first inlet 363.
  • the driving device 100F further includes a first circulation pipe 301 connected to the first inflow port 363 and the first outflow port 364.
  • a swirling flow is generated in the accommodation space 169 as the magnetic disk 120 rotates.
  • the air pressure at a position away from the rotation axis RX is higher than the air pressure around the rotation axis RX. Therefore, the air in the accommodation space 169 flows into the first circulation pipe 301 through the first outlet 364.
  • the air that has flowed into the first circulation pipe 301 flows into the accommodation space 169 through the first inflow port 363.
  • the first outflow port 364 is formed near the corner corner of the housing wall 160F, so that air stagnation is less likely to occur at the corner corner of the housing wall 160F. Since the region where the air flow rate is locally slow is less likely to occur, the rate at which dust passes through the dust removing unit 180 (the amount of dust passing per unit time) increases. Therefore, the dust removing unit 180 can capture dust efficiently. As a result, inconveniences such as a crash of the magnetic head 130 and a recording error and / or a reproduction error of the magnetic disk 120 hardly occur. Since the driving device 100F has high reliability, the driving device 100F can maintain the recording performance and / or the reproduction performance at a high level.
  • FIG. 25 is a schematic cross-sectional view of the drive device 100G of the eighth embodiment.
  • the drive device 100G will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 7th Embodiment is used with respect to the element to which the same code
  • the driving device 100G includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a housing wall 160F, a driving mechanism 170, and a circuit board 153. .
  • the driving device 100G further includes a dust removing unit 180G.
  • the dust removing unit 180G includes an upper collection filter 181 and a lower collection filter 182.
  • the dust collection unit 180G further includes an additional collection filter 189.
  • the collection filter 189 is fixed to the first wall 161F near the first outlet 364. As a result, dust contained in the air flowing toward the first outflow portion 364 is efficiently removed by the collection filter 189.
  • FIG. 26 is a schematic cross-sectional view of the drive device 100H of the ninth embodiment.
  • the drive device 100H will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 7th Embodiment is used with respect to the element to which the same code
  • the drive device 100H includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a circuit board 153, and a first circulation pipe 301.
  • the drive device 100H further includes an accommodation wall 160H, a drive mechanism 170H, and a second circulation pipe 302.
  • the housing wall 160H includes a first wall portion 161F and a second wall portion 162.
  • the housing wall 160H further includes a third wall portion 163H.
  • a second outlet 365 is formed in the third wall portion 163H.
  • the drive mechanism 170H includes a spindle motor 171, a hub 175, a cap 176, a fixing screw 177, and a shield portion 178.
  • the drive mechanism 170H further includes a fixed wall 174H.
  • a second inlet 366 is formed in the fixed wall 174H. Air that has flowed into the second circulation pipe 302 through the second inlet 366 flows into the accommodation space 169 through the second inlet 366. Therefore, the fixed wall 174H supports the spindle motor 171 so that the spindle motor 171 does not block the second inflow port 366.
  • the second inflow port 366 is formed on the rotation axis RX.
  • the second outlet 365 is formed farther from the rotation axis RX than the second inlet 366.
  • the second circulation pipe 302 is connected to the second outlet 365 and the second inlet 366.
  • FIG. 27A is a schematic perspective view of an analysis model used for analyzing dust removal efficiency.
  • FIG. 27B is a schematic graph showing an analysis result regarding dust removal efficiency. The dust removal efficiency will be described with reference to FIGS. 24 and 26 to 27B.
  • a first circulation pipe 301 and a second circulation pipe 302 are shown in the analysis model shown in FIG. 27A.
  • the present inventor in addition to the first analysis model, an analysis model from which the second circulation pipe 302 is removed (hereinafter referred to as a second analysis model), a first circulation pipe 301, a second circulation pipe 302, and An analysis model from which the housing wall 160H was removed (hereinafter referred to as a third analysis model) was prepared, and the removal efficiency was compared between the analysis models.
  • the first analysis model corresponds to the drive device 100H of the present embodiment.
  • the second analysis model corresponds to the drive device 100F described in relation to the seventh embodiment.
  • the vertical axis of the graph shown in FIG. 27B represents the concentration of dust in the accommodation space 169.
  • the horizontal axis of the graph shown in FIG. 6 represents time.
  • the first analysis model and the second analysis model show higher dust removal efficiency than the third analysis model.
  • the time required to reduce dust to 1/10 is 1/11 of the third analysis model.
  • the time required for reducing dust to 1/10 is 1/8 of the third analysis model.
  • the first analysis model achieves higher removal efficiency than the second analysis model. Therefore, it can be seen that an increase in circulation pipes contributes to an improvement in removal efficiency.
  • the ratio of the dust passing through the dust removing unit 180 (the amount of passing dust per unit time) of the circulation pipe (the first circulation pipe 301 and / or the second circulation pipe 302) is increased. Therefore, as a result of the circulation pipe (the first circulation pipe 301 and / or the second circulation pipe 302), the dust removing unit 180 can capture dust efficiently. As a result, inconveniences such as a crash of the magnetic head 130 and a recording error and / or a reproduction error of the magnetic disk 120 hardly occur. Since the driving devices 100F and 100H have high reliability, the driving devices 100F and 100H can maintain the recording performance and / or the reproduction performance at a high level.
  • the second circulation pipe 302 is disposed below the accommodation wall 160H.
  • the second circulation pipe may be disposed above the accommodation wall.
  • the first circulation pipe and the second circulation pipe may be disposed below the receiving wall.
  • the driving devices 100F, 100G, and 100H perform magnetic recording.
  • the driving devices 100F, 100G, and 100H use the magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • the medium may be an optical disk as in the third embodiment.
  • the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
  • FIG. 28 is a schematic diagram of a driving device 400 according to the tenth embodiment.
  • the drive device 400 will be described with reference to FIG.
  • the driving device 400 includes an optical disc 420, an optical head 430, a circuit board 453, an accommodation wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491.
  • the accommodation wall 460 includes an upper wall portion 461 and a lower wall portion 462 disposed below the upper wall portion 461. In the present embodiment, a gap is formed between the upper wall portion 461 and the lower wall portion 462.
  • the upper wall portion 461 and the lower wall portion 462 may be joined using a seal portion according to the joining technique described in connection with the first embodiment.
  • the upper wall portion 461 and the lower wall portion 462 form an accommodation space 469 in which the optical disc 420 is accommodated.
  • a slit 463 and a spindle hole 464 are formed in the lower wall portion 462.
  • the spindle hole 464 is formed on the rotation axis RX of the optical disc 420, while the slit 463 is formed away from the rotation axis RX.
  • the optical head 430 partially enters the slit 463.
  • the slit 463 extends along the moving direction of the optical head 430.
  • the optical disc 420 includes a processing surface 421 that receives information processing such as reproduction and recording, and an opposite surface 422 opposite to the processing surface 421.
  • the optical head 430 moves along the slit 463 and optically scans the processing surface 421.
  • the driving device 400 can record information on the optical disc 420.
  • the driving device 400 can reproduce information from the optical disc 420.
  • the driving mechanism 470 includes a spindle motor 471, a fixed wall 474, a shield part 478, a hub 475, a cap 476, and a breathing filter 479.
  • the spindle motor 471 includes a main body 472 and a spindle shaft 473 that transmits the driving force generated by the main body 472 to the hub 475 and the optical disc 420.
  • the spindle shaft 473 extends along the rotation axis RX and is inserted into the spindle hole 464.
  • the fixed wall 474 joined to the lower wall portion 462 by the shield portion 478 supports the main body portion 472. Similar to the first embodiment, the fixed wall 474 and the main body 472 close the spindle hole 464.
  • the breathing filter 479 closes a vent hole formed in the fixed wall 474.
  • the breathing filter 479 allows air to flow into the accommodation space 469 while preventing dust from entering the accommodation space 469.
  • the respiratory filter 479 may have the performance described in connection with the second embodiment.
  • the cap 476 may be magnetically attracted to the hub 475.
  • the optical disc 420 is sandwiched between the hub 475 and the cap 476.
  • the optical disc 420 rotates in the accommodation space 469.
  • a swirling flow is generated in the accommodation space 469.
  • FIG. 29 is a schematic diagram of the optical head 430. With reference to FIGS. 28 and 29, the driving device 400 will be further described.
  • the optical head 430 includes a semiconductor laser 431, a relay lens 432, a beam splitter 433, a collimator lens 434, an objective lens unit 435, an objective lens actuator 436, a hologram element 437, a cylindrical lens 438, and a photodetector. 439.
  • the objective lens unit 435 includes a SIL 531 facing the processing surface 421 of the optical disc 420, an aspheric lens 532 that receives light from the collimator lens 434, and a lens holder 533 that houses the SIL 531 and the aspheric lens 532.
  • the semiconductor laser 431 emits a light beam used for optical information processing such as recording and reproduction.
  • the relay lens 432 finely adjusts the focal length of the light beam from the semiconductor laser 431.
  • the light beam that has passed through the relay lens 432 enters the beam splitter 433.
  • the beam splitter 433 reflects the light beam toward the collimator lens 434.
  • the collimator lens 434 converts the light beam into a parallel light beam. Thereafter, the light beam enters the objective lens unit 435.
  • the aspherical lens 532 and the SIL 531 concentrate the light flux on the processing surface 421 to produce near-field light.
  • the driving device 400 records information on the optical disc 420 using near-field light. Alternatively, the driving device 400 reproduces information from the optical disc 420 using near-field light.
  • the processing surface 421 of the optical disc 420 reflects or diffracts near-field light to generate reflected light or diffracted light.
  • the reflected light may be used for information reproduction.
  • the reflected light or diffracted light is incident on the objective lens unit 435.
  • the objective lens actuator 436 drives the objective lens unit in the optical axis direction (focus direction) and the tracking direction (radial direction) of the optical disc 420.
  • the above-described reflected light or diffracted light passes through the objective lens unit 435 and sequentially enters the collimator lens 434 and the beam splitter 433.
  • the beam splitter 433 allows transmission of reflected light or diffracted light.
  • the reflected light or diffracted light that has passed through the beam splitter 433 then enters the hologram element 437.
  • the hologram element 437 generates a light beam for generating a tracking error signal according to the one beam method (APP method).
  • the light beam that has passed through the hologram element 437 enters the photodetector 439 through the cylindrical lens 438.
  • the photodetector 439 generates a signal corresponding to the incident position of the light beam.
  • the circuit board 453 uses the signal from the photodetector 439 to perform arithmetic processing and generate a tracking error signal.
  • the circuit board 453 executes tracking servo control for the optical head 430 in accordance with the tracking error signal. As a result, the objective lens unit 435 follows the track of the processing surface 421.
  • the circuit board 453 generates a focus error signal according to the output signal from the photodetector 439.
  • the circuit board 453 performs focus servo control on the optical head 430. As a result, even if the processing surface 421 of the optical disc 420 vibrates, the relative distance between the processing surface 421 and the objective lens unit 435 is kept substantially constant.
  • the circuit board 453 may read information recorded on the optical disc 420 based on an output signal from the photodetector 439.
  • the driving device 400 further includes a traverse device 530 that supports the optical head 430.
  • the traverse device 530 moves the optical head 430 along the slit 463.
  • the circuit board 453 includes a control circuit 454, a signal processing circuit 455, and an input / output circuit 456.
  • the control circuit 454 executes the tracking servo control and the focus servo control described above.
  • the control circuit 454 controls the traverse device 530 and adjusts the position of the optical head 430.
  • the control circuit 454 controls the spindle motor 471 and adjusts the rotation of the optical disc 420.
  • the control circuit 454 may generate a signal representing information recorded on the optical disc 420 according to the output signal of the photodetector 439.
  • the signal processing circuit 455 processes the signal output from the control circuit 454 and generates a reproduction signal.
  • the reproduction signal is then output to an external device (not shown) through the input / output circuit 456.
  • the external device reproduces information according to the reproduction signal.
  • the input / output circuit 456 may receive a signal from an external device.
  • the signal from the external device may include information recorded on the optical disc 420.
  • the signal processing circuit 455 processes a signal from the input / output circuit 456 and generates a recording signal.
  • the recording signal is output to the control circuit 454.
  • the control circuit 454 controls the optical head 430 according to the recording signal and writes information on the optical disc 420.
  • the SIL 531 includes a SIL end surface 534 that faces the processing surface 421.
  • the circuit board 453 controls the gap between the processing surface 421 and the SIL end surface 534.
  • the gap between the processing surface 421 and the SIL end surface 534 is maintained at a distance (near field) where near-field light is generated.
  • the semiconductor laser 431 emits laser light having a short wavelength
  • the gap between the processing surface 421 and the SIL end surface 534 is set to several tens of nm. In the present embodiment, the gap between the processing surface 421 and the SIL end surface 534 is set in the range of 20 nm to 30 nm.
  • the photodetector 439 includes a four-divided light receiving region 535.
  • Quadrant light receiving region 535 receives light from SIL end surface 534.
  • the circuit board 453 controls the gap between the processing surface 421 and the SIL end surface 534 (gap control) so that the total amount of light received by the four-divided light receiving region 535 (total reflection return light) becomes substantially constant. .
  • the drive circuit 491 drives the ionizer 490 under the control of the circuit board 453.
  • the ionizer 490 emits positive ions and negative ions into the accommodation space 469.
  • the dust in the accommodation space 469 is not easily charged. Therefore, dust hardly adheres to the optical disc 420 and the SIL end surface 534.
  • the drive circuit 491 and the ionizer 490 are exemplified as the ion emission unit.
  • the distance between the housing wall 460 and the optical disc 420 is set to be very short.
  • the housing wall 460 substantially surrounds the optical disc 420. Accordingly, a very fast swirling flow along the processing surface 421 and the opposite surface 422 is generated.
  • the dust removing portion 480 is attached to the upper wall portion 461. A part of the swirling flow generated in the accommodation space 469 passes through the dust removing portion 480. At this time, the dust removing unit 480 can remove dust from the swirling flow.
  • the dust removal efficiency of the dust removing unit 480 may be determined in consideration of factors such as the pressure loss of the dust removing unit 480.
  • the dust removing unit 480 may be a non-electric filter. If the dust removing unit 480 is a non-electric filter, the surface of the dust removing unit 480 is not charged with “+” or “ ⁇ ”. Therefore, the positive ions and / or the negative ions released from the ionizer 490 are hardly bonded to the surface of the dust removing portion 480. As a result, the dust removing unit 480 can maintain high collection efficiency over a long period of time. Note that an electric filter may be used as the dust removing unit 480 as necessary. Even with an electric filter, dust is properly removed from the air. In this embodiment, the dust removal part 480 is illustrated as a collection filter.
  • one dust removing unit 480 is installed in the accommodation space 469.
  • a plurality of dust removing units may be arranged in the accommodation space. The position and number of the dust removal units may be appropriately determined according to the size and shape of the accommodation space.
  • the dust removing unit 480 may be formed of a resin such as polypropylene.
  • the dust removing unit 480 may include a fiber layer having a lattice structure with a predetermined lattice interval.
  • the dust removing unit 480 is designed such that every time dust having a particle diameter of 50 nm or 100 nm passes through the dust removing unit 480, tens of percent or more of dust is removed.
  • the dust removal unit 480 is designed so that the pressure loss caused by the dust removal unit 480 is in the range of several mmAq to several tens mmAq.
  • the ionizer 490 includes one electrode needle 492 attached to the upper wall portion 461 on the rotation axis RX, and an application circuit 493 that applies a voltage to the electrode needle 492.
  • the electrode needle 492 protrudes downward within the accommodation space 469.
  • the ionizer 490 may selectively release positive ions and negative ions from the electrode needle 492 into the accommodation space 469.
  • the ionizer 490 may alternately repeat a discharge operation for releasing positive ions for a predetermined period and a discharge operation for discharging negative ions for a predetermined period.
  • the control circuit 454 and / or the input / output circuit 456 of the circuit board 453 may synchronize the operation of the spindle motor 471 and the operation of the ionizer 490.
  • the application circuit 493 is exemplified as the application unit.
  • the spindle motor 471 rotates the optical disk 420 at a rotational speed of several thousand rpm
  • a swirling flow with a flow rate of several tens of m / s is generated in the accommodation space 469.
  • the ionizer 490 releases positive ions and negative ions from the electrode needles 492 into the receiving space 469 in an environment where a swirling flow is generated, the positive ions and the negative ions are emitted from the inner surface of the receiving wall 460 that defines the receiving space 469, the optical disc. Bonds to dust in the surface of 420, the SIL end surface 534 and the accommodation space 469.
  • the dust on the inner surface of the storage wall 460, the surface of the optical disk 420, the SIL end surface 534 and / or the storage space 469 is neutralized, so the Coulomb force is reduced. Therefore, the dust in the accommodation space 469 is less likely to adhere to the inner surface of the accommodation wall 460, the surface of the optical disc 420, and the SIL end surface 534. As a result, the risk that dust enters between the processing surface 421 and the SIL end surface 534 is greatly reduced. Therefore, the processing surface 421 and the SIL end surface 534 are hardly damaged.
  • FIG. 30 is a schematic graph showing the relationship between the spot shape of light on the four-divided light receiving region 535 used for the gap control described above and total reflected return light. The gap control will be described with reference to FIGS. 29 and 30.
  • FIG. 30 is a schematic graph showing the relationship between the spot shape of light on the four-divided light receiving region 535 used for the gap control described above and total reflected return light. The gap control will be described with reference to FIGS. 29 and 30.
  • the distance relationship between the SIL end surface 534 and the processing surface 421 is in a far field state (generally, a gap of 100 nm or more)
  • a far field state generally, a gap of 100 nm or more
  • only the light beam corresponding to the total reflection region of the SIL end surface 534 is reflected, and the light is divided into four parts.
  • the light enters the region 535. Therefore, a donut-shaped light distribution is obtained.
  • the refractive index of the cover layer 429 that forms the SIL 531 and the processing surface 421 is both set to about 2.
  • the gap control depends on the gain setting of the light receiving unit of the photodetector 439.
  • the gain of the photodetector 439 is set so that a voltage signal of about 150 mV is output when a gap of about 25 nm is obtained.
  • the operation of the objective lens actuator 436 in the focus direction is controlled according to the voltage signal from the photodetector 439.
  • FIG. 31A is a schematic plan view of the accommodation wall 460.
  • FIG. 31B is a schematic cross-sectional view of the accommodation wall 460.
  • FIG. 31C is a schematic bottom view of the accommodation wall 460. The operation of the driving device 400 will be described with reference to FIGS. 28, 29, and 31A to 31C.
  • the optical disc 420 is installed on the hub 475. Thereafter, the cap 476 is installed on the hub 475 and the optical disc 420. Cap 476 is magnetically attracted to hub 475. As a result, the optical disc 420 is stably sandwiched between the hub 475 and the cap 476.
  • the spindle motor 471 When the spindle motor 471 rotates, the optical disk 420 also rotates. In the present embodiment, the spindle motor 471 rotates the optical disc 420 clockwise. Alternatively, the spindle motor 471 may rotate the optical disc 420 counterclockwise.
  • the objective lens actuator 436 includes a suspension 536 that elastically supports the lens holder 533.
  • the lens holder 533 that holds the aspheric lens 532 and the SIL 531 is moved in the tracking direction and the focus direction by the objective lens actuator 436.
  • the objective lens actuator 436 may be held on an optical base (not shown) of the optical head 430.
  • the objective lens actuator 436 moves the lens holder 533 in the radial direction of the optical disc 420.
  • the movable range MR of the lens holder 533 is determined according to the length of the slit 463. A part of the lens holder 533 moving along the slit 463 and the SIL 531 enter the accommodation space 469 through the slit 463.
  • FIG. 32A is a schematic plan view of the accommodation wall 460.
  • FIG. 32B is a schematic cross-sectional view of the accommodation wall 460.
  • FIG. 32C is a schematic bottom view of the receiving wall 460. With reference to FIG. 32A thru
  • the arrow AF schematically represents the flow of air in the accommodation space 469.
  • An arrow DR in FIGS. 32A and 32C schematically represents the rotation of the optical disc 420.
  • the optical disc 420 includes an inner peripheral region 423 sandwiched between the hub 475 and the cap 476 and an outer peripheral region 424 that surrounds the inner peripheral region 423 along the outer peripheral edge 425 of the optical disc 420.
  • the speed of the swirling flow generated between the upper wall portion 461 and the opposite surface 422 is larger in the outer peripheral region 424 than in the inner peripheral region 423.
  • the pressure in the accommodation space 469 is larger in the outer peripheral region 424 than in the inner peripheral region 423.
  • a swirling flow from the inner peripheral region 423 toward the outer peripheral region 424 is generated between the upper wall portion 461 and the opposite surface 422.
  • the speed of the swirling flow generated between the lower wall portion 462 and the processing surface 421 is larger in the outer peripheral area 424 than in the inner peripheral area 423. Further, the pressure in the accommodation space 469 is larger in the outer peripheral region 424 than in the inner peripheral region 423. As a result, a swirl flow from the inner peripheral region 423 toward the outer peripheral region 424 is generated between the lower wall portion 462 and the processing surface 421.
  • a respiratory filter 479 is attached to the fixed wall 474. As shown in FIG.
  • the breathing filter 479 allows air containing almost no dust to flow into the accommodation space 469. As described above, since the pressure around the rotation axis RX is relatively low, air existing outside the accommodation space 469 can flow into the accommodation space 469 through the breathing filter 479.
  • the air that has passed through the breathing filter 479 flows into the accommodation space 469 through the spindle hole 464. Thereafter, the air becomes a swirling flow represented by the arrow AF in FIGS. 32A and 32C.
  • the air existing outside the accommodation space 469 may also flow into the accommodation space 469 from the region of the slit 463 close to the rotation axis RX.
  • the air that flows into the accommodation space 469 through the slit 463 also becomes a swirl flow represented by the arrow AF in FIGS. 28, 32A, and 32C.
  • the air pressure around the outer peripheral region 424 is relatively high. As a result, air flows out from the gap between the upper wall portion 461 and the lower wall portion 462.
  • the air in the accommodation space 469 can also flow out from the region of the slit 463 away from the rotation axis RX.
  • the total amount of air flowing out from the gap between the upper wall portion 461 and the lower wall portion 462 and the slit 463 is substantially equal to the total amount of air flowing into the accommodation space 469 through the slit 463 and the breathing filter 479.
  • the upper wall portion 461 is very close to the opposite surface 422.
  • the lower wall portion 462 is very close to the processing surface 421.
  • the housing wall 460 covers the optical disk 420 substantially entirely. Therefore, the average flow velocity of the swirling flow generated between the upper wall portion 461 and the opposite surface 422 and between the lower wall portion 462 and the processing surface 421 is increased. Further, the speed of the swirl flow is stabilized.
  • the electrode needle 492 is disposed on the rotation axis RX in the accommodation space 469. As shown in FIG. When the positive ions and the negative ions are released from the electrode needle 492 into the accommodation space 469, the positive ions and the negative ions ride on the swirling flow and are dispersed over substantially the entire area of the accommodation space 469. Therefore, the dust in the optical disk 420, the SIL end surface 534, and the accommodation space 469 is efficiently discharged. Therefore, the dust in the accommodation space 469 becomes difficult to adhere to the optical disc 420 and the SIL end surface 534. Since the optical disk 420 and the SIL end surface 534 are less likely to be damaged due to dust entering between the optical disk 420 and the SIL end surface 534, the driving device 400 has high reliability.
  • FIG. 33 is a schematic diagram of the ionizer 490.
  • the ionizer 490 will be described with reference to FIGS. 28 and 33.
  • the ionizer 490 includes the electrode needle 492 and the application circuit 493.
  • the application circuit 493 includes a first power supply unit 591 for discharging positive ions from the electrode needle 492, a second power supply unit 592 for discharging negative ions from the electrode needle 492, a first power supply unit 591, and a second power supply. And an earth electrode 593 for grounding the portion 592.
  • the first power supply unit 591 and the second power supply unit 592 apply a high voltage to the electrode needle 492 to generate positive ions and negative ions, respectively.
  • the drive circuit 491 adjusts the timing of voltage application by the first power supply unit 591 and the second power supply unit 592 according to the output signal from the circuit board 453.
  • the drive circuit 491 alternately performs control to release positive ions from the electrode needle 492 for a predetermined period and control to release negative ions from the electrode needle 492 to the first power supply unit 591 and the second power supply unit 592 for a predetermined period. It may be executed.
  • the drive circuit 491 may synchronize the voltage application operation by the first power supply unit 591 and / or the second power supply unit 592 with the operation of the spindle motor 471.
  • FIG. 34 is a schematic diagram of the drive device 400I of the eleventh embodiment. With reference to FIG. 34, drive device 400I will be described. In addition, the same code
  • the driving device 400I includes an optical disk 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, and a driving circuit 491.
  • the driving device 400I further includes an ionizer 490I. Similar to the tenth embodiment, the ionizer 490I includes an application circuit 493.
  • the ionizer 490I further includes a plus electrode needle 494 and a minus electrode needle 495. Both the positive electrode needle 494 and the negative electrode needle 495 are disposed in the accommodation space 469.
  • the positive electrode needle 494 exclusively releases positive ions into the accommodation space 469.
  • the negative electrode needle 495 exclusively releases negative ions into the accommodation space 469.
  • FIG. 35 is a schematic diagram of the ionizer 490I.
  • the ionizer 490I is described with reference to FIG. 34 and FIG.
  • the plus electrode needle 494 is electrically connected to the first power supply unit 591.
  • the negative electrode needle 495 is electrically connected to the second power supply unit 592.
  • the drive circuit 491 adjusts the timing of voltage application by the first power supply unit 591 and the second power supply unit 592 according to the output signal from the circuit board 453.
  • the drive circuit 491 controls the first power supply unit 591 and the second power supply unit 592 to release positive ions from the positive electrode needle 494 for a predetermined period, and control to release negative ions from the negative electrode needle 495 for a predetermined period; May be executed alternately.
  • the drive circuit 491 may synchronize the voltage application operation by the first power supply unit 591 and / or the second power supply unit 592 with the operation of the spindle motor 471.
  • the position and number of electrode needles described in relation to the tenth and eleventh embodiments should not be interpreted in a limited manner.
  • the position and number of electrode needles may be appropriately determined according to the size and shape of the accommodation space.
  • the ion generation described in relation to the tenth and eleventh embodiments uses corona discharge.
  • positive ions and negative ions may be generated utilizing ionizing radiation.
  • the ionizing radiation include soft X-rays, ⁇ rays, and ultraviolet rays.
  • FIG. 36 is a schematic view of a driving device 400J of the twelfth embodiment.
  • the drive device 400J will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 10th Embodiment is used with respect to the element to which the same code
  • the driving device 400J includes an optical disc 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491. .
  • the driving device 400J further includes a switch element 457 and a capacitor 458. The power supplied from the power source ES is supplied to the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 through the switch element 457 and the capacitor 458.
  • the switch element 457 includes an off mode for cutting off a power path from the power source ES to the circuit board 453, the driving mechanism 470, the optical head 430, the driving circuit 491, and the ionizer 490; 430, the power supply mode is switched between the ON mode in which the power supply path to the drive circuit 491 and the ionizer 490 is opened. While the power supply mode is the on mode, the capacitor 458 can store electricity. The circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 can operate by consuming electric power stored in the capacitor 458.
  • the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 can operate for a predetermined period.
  • the switch element 457 is exemplified as a power switch unit.
  • Capacitor 458 is exemplified as a power storage unit.
  • the circuit board 453 switches control over the drive mechanism 470 and the drive circuit 491 between the processing rotation mode and the dust collection rotation mode.
  • the drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the optical head 430 to record information on the optical disc 420 in the processing rotation mode.
  • the drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the optical head 430 to read information from the optical disc 420 under the processing rotation mode.
  • the drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the dust removal unit 480 to collect the dust in the accommodation space 469 in the dust collection rotation mode.
  • the ionizer 490 generates positive ions and negative ions in the accommodation space 469 under the control of the circuit board 453.
  • the circuit board 453 is exemplified as the control unit.
  • FIG. 37 is a flowchart showing exemplary control by the circuit board 453. The control by the circuit board 453 will be described with reference to FIGS.
  • Step S210 the user operates the switch element 457 to switch the power supply mode from the off mode to the on mode. As a result, a power supply path from the power supply ES to the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 is opened. After the power supply path is opened, step S220 is executed.
  • Step S220 the circuit board 153 controls the optical head 430, the drive mechanism 470, and the ionizer 490 in the dust collection rotation mode.
  • the ionizer 490 selectively releases positive ions and negative ions into the accommodation space 469 under the control of the circuit board 453. While the ions are being released, the spindle motor 471 rotates at a first rotation speed larger than the second rotation speed set in the spindle motor 471 in the processing rotation mode, and lower than the first rotation speed.
  • the low-speed rotation operation that rotates at the third rotation speed is executed alternately.
  • the positive ions and the negative ions are diffused widely in the accommodation space 469 by the high-speed rotation operation.
  • the third rotation speed may be a speed of “0” (that is, a stop operation).
  • the ionizer 490 may discharge positive ions and negative ions into the accommodation space 469 in synchronization with the execution cycle of the high-speed rotation operation and the low-speed rotation operation. For example, ions may be released during low speed rotation operation. The ions may be diffused widely by the subsequent high-speed rotation operation.
  • step S230 is executed.
  • the activation of the ionizer 490 and the activation of the spindle motor 471 may be performed simultaneously. Alternatively, the ionizer 490 may be activated earlier than the spindle motor 471. Further alternatively, the ionizer 490 may be activated after the spindle motor 471.
  • step S230 the circuit board 453 executes information processing such as recording and reproduction. Thereafter, step S240 is executed.
  • Step S240 The circuit board 453 sets the spindle motor 471 to the second rotation speed. As described above, the second rotation speed is smaller than the first rotation speed set in step S220.
  • the circuit board 453 moves the optical head 430 along the slit 463. During the movement of the optical head 430, the circuit board 453 performs information processing such as recording or reproduction on the optical disc 420 using the optical head 430. Thereafter, step S250 is executed.
  • step S250 the circuit board 453 determines whether or not the user has operated the switch element 457 to switch the power supply mode from the on mode to the off mode. If the power supply mode is not set to the off mode, step S260 is executed. If the power supply mode is set to the off mode, step S270 is executed.
  • Step S260 the circuit board 453 determines whether or not the information processing (recording or reproducing process) for the optical disc 420 has been completed. If the information processing has been completed, step S270 is executed. In other cases, step S250 is executed. Note that the completion of information processing may be determined based on the end of communication of the recording signal and the reproduction signal. Alternatively, the completion of information processing may be determined based on the mechanical displacement timing of the optical head 430 and other appropriate criteria.
  • Step S270 the circuit board 453 controls the drive mechanism 470 and the ionizer 490 in the dust collection rotation mode.
  • the ionizer 490 selectively releases positive ions and negative ions into the accommodation space 469 under the control of the circuit board 453. While the ions are being released, the spindle motor 471 alternately performs a high-speed rotation operation and a low-speed rotation operation.
  • the ionizer 490 may discharge positive ions and negative ions into the accommodation space 469 in synchronization with the execution cycle of the high-speed rotation operation and the low-speed rotation operation.
  • step S270 after step S250 the circuit board 453 consumes the electric power stored in the capacitor 458, and can operate the spindle motor 471 and the ionizer 490 appropriately. Accordingly, the dust that can be attached to the optical disc 420 and the SIL end surface 534 by the gravitational action and the Coulomb force is properly captured by the dust removing unit 480 on the swirling flow generated by the rotation of the optical disc 420. Alternatively, the dust is appropriately discharged from the accommodation space 469.
  • the relationship between the ion emission timing and the rotation operation switching timing of the spindle motor 471 in the dust collection rotation mode should not be interpreted in a limited way. Further, the rotation operation of the spindle motor 471 may not be switched. For example, ions may be emitted while the spindle motor 471 rotates the optical disc 420 at the second rotation speed set in the processing rotation mode. Alternatively, ions may be emitted while the spindle motor 471 rotates the optical disc 420 at a speed lower than the second rotational speed.
  • the dust collection rotation mode is executed in a period of several seconds to several tens of seconds.
  • the period of the dust collection rotation mode may be appropriately determined according to the ion emission amount, the setting of the rotation operation of the spindle motor, and the size and shape of the accommodation space.
  • the release period of positive ions and negative ions may be set independently.
  • the setting of the rotation operation of the spindle motor (for example, the period and the number of repetitions of the high-speed rotation operation and the low-speed rotation operation) is appropriately determined according to the ion emission amount, the setting of the rotation operation of the spindle motor and the size and shape of the accommodation space. May be.
  • ions are released during the dust collection rotation mode.
  • ions may be ejected during the process rotation mode.
  • the power supply mode is switched between the on mode and the off mode by an operation on the switch element 457 by the user.
  • the power supply mode may be switched to the off mode when the user removes the plug that connects the driving device 400J and the power source ES. Since the capacitor 458 is present, the driving device 400J can appropriately execute the dust collection rotation mode under the off mode.
  • the capacity of the capacitor 458 may be designed such that the dust collection rotation mode is executed for several seconds to several tens of seconds.
  • ion emission is performed in response to an operation on the switch element 457.
  • the spindle motor 471 stops for a predetermined time, the above-described dust collection rotation mode may be automatically executed.
  • FIG. 38 is a schematic view of a driving device 400K according to the thirteenth embodiment.
  • the drive device 400K will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 10th Embodiment is used with respect to the element to which the same code
  • the driving device 400K includes an optical disc 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491.
  • the driving device 400K further includes a charging sensor 459 disposed in the accommodation space 469.
  • the charge sensor 459 is exemplified as a detection unit that detects the charge amount of dust floating in the storage space 469 as the charging characteristics in the storage space 469.
  • the detection unit may detect the charge amount of the optical disk or the SIL end surface.
  • the charging sensor 459 is electrically connected to the circuit board 453.
  • the charging sensor 459 generates a detection signal corresponding to the detected charge amount.
  • the detection signal is output from the charging sensor 459 to the circuit board 453.
  • the circuit board 453 may control the drive circuit 491 according to the detection signal. For example, the circuit board 453 may control the drive circuit 491 so that positive ions and negative ions are released from the electrode needle 492 only when the charge amount represented by the detection signal exceeds a predetermined threshold value.
  • the circuit board 453 may rotate the optical disc 420 in synchronization with ion emission by controlling the spindle motor 471. As a result, the charge amount of dust in the accommodation space 469 is reduced.
  • the charge amount of the SIL end surface 534 and the optical disk 420 is also reduced by the ion emission. Since dust adhering to the SIL end surface 534 and the optical disk 420 is reduced, the dust removing unit 480 can efficiently remove dust from the air.
  • ions are not released unnecessarily. Accordingly, the ionizer 490 can appropriately release ions over a long period of time.
  • FIG. 39 is a schematic diagram of a driving device 400L according to the fourteenth embodiment.
  • the drive device 400L will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment and 10th Embodiment is used with respect to the element to which the same code
  • the driving device 400L includes the magnetic disk 120, the magnetic head 130, and the holding mechanism 140. Similar to the tenth embodiment, a dust removing unit 480, an ionizer 490, and a drive circuit 491 are further provided.
  • the driving device 400L further includes an accommodation wall 460L.
  • the housing wall 460L includes an upper wall portion 461L that covers the processing surface 121 of the magnetic disk 120, and a lower wall portion 462L that covers the opposite surface 122 of the magnetic disk 120.
  • the upper wall portion 461L and the lower wall portion 462L form an accommodation space 469L that opens toward the holding mechanism 140.
  • the dust removing portion 480 is attached to the upper wall portion 461L.
  • the swing arm 143, the suspension 142, the slider 141, and the magnetic head 130 are inserted into the open accommodation space 469L.
  • the holding mechanism 140 can rotate the magnetic head 130 and the slider 141 along the processing surface 121 by using an opening region defined by the upper wall portion 461L and the lower wall portion 462L.
  • the drive device 400L includes a drive mechanism 470L that rotates the magnetic disk 120. Similar to the first embodiment, the drive mechanism 470L includes a spindle motor 171, a hub 175, a cap 176, and a fixing screw 177. Similarly to the tenth embodiment, the drive mechanism 470L includes a fixed wall 474, a shield part 478, and a respiratory filter 479.
  • the driving device 400L further includes a circuit board 453L.
  • the circuit board 453L controls the drive mechanism 470L and the holding mechanism 140 according to the control method described in relation to the first embodiment.
  • the circuit board 453L controls the drive circuit 491 according to the control method described in relation to the tenth embodiment.
  • FIG. 40A is a schematic plan view of the driving device 400L.
  • FIG. 40B is a schematic cross-sectional view of drive device 400L. With reference to FIG. 40A and FIG. 40B, the flow of air in the accommodation space 469L will be described.
  • the arrow AF in FIG. 40A schematically represents the flow of air in the accommodation space 469L.
  • An arrow DR in FIG. 40A schematically represents the rotation of the magnetic disk 120.
  • Rotating flow is generated in the accommodation space 469L by the rotation of the magnetic disk 120.
  • the swirling flow is directed outward from the rotation axis RX of the magnetic disk 120. If the magnetic disk 120 rotates at several thousand rpm, the speed of the swirling flow reaches several tens of m / s. As a result, the slider 141 and the magnetic head 130 float from the processing surface 121.
  • the holding mechanism 140 may be designed such that the slider 141 and the magnetic head 130 are floated from the processing surface 121 by several nm to several tens of nm by a swirling flow.
  • positive ions and negative ions are selectively released from the electrode needle 492.
  • positive ions and negative ions are widely dispersed in the accommodation space 469L. Therefore, the dust in the magnetic disk 120, the magnetic head 130, the slider 141, and the accommodation space 469L is appropriately neutralized. Since the driving device 400L has high reliability, the driving device 400L can maintain the recording performance and the reproduction performance at a high level.
  • the driving device 400L performs magnetic recording.
  • the driving device 400L uses the magnetic disk 120 as a medium.
  • the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
  • FIG. 41A is a schematic cross-sectional view of the drive device 400M of the fifteenth embodiment.
  • FIG. 41B is a schematic plan view of the driving device 400M.
  • the drive device 400M will be described with reference to FIGS. 41A and 41B.
  • symbol is attached
  • the description relevant to 3rd Embodiment and 14th Embodiment is used with respect to the element to which the same code
  • the driving device 400M includes a holding mechanism 140, a circuit board 453L, a housing wall 460L, a driving mechanism 470L, a dust removing unit 480, an ionizer 490, and a driving circuit 491. Similar to the third embodiment, the driving device 400M further includes an optical disc 120B, a semiconductor laser 131 attached to the slider 141, and an optical head 130B.
  • FIG. 42A is a schematic plan view of the driving device 400M.
  • FIG. 42B is a schematic cross-sectional view of drive device 400M. With reference to FIGS. 42A and 42B, the flow of air in the accommodation space 469L defined by the accommodation wall 460L will be described.
  • the arrow AF in FIG. 42A schematically represents the flow of air in the accommodation space 469L.
  • An arrow DR in FIG. 42A schematically represents the rotation of the optical disc 120B.
  • Rotating flow is generated in the accommodation space 469L by the rotation of the optical disc 120B.
  • the swirling flow is directed outward from the rotation axis RX of the optical disc 120B. If the optical disk 120B rotates at several thousand rpm, the speed of the swirling flow reaches several tens of m / s. As a result, the slider 141 and the optical head 130 ⁇ / b> B float from the processing surface 121.
  • the holding mechanism 140 may be designed such that the slider 141 and the optical head 130B float from the processing surface 121 by several nm to several tens of nm by a swirling flow.
  • positive ions and negative ions are selectively released from the electrode needle 492.
  • positive ions and negative ions are widely dispersed in the accommodation space 469L. Accordingly, the dust in the optical disk 120B, the optical head 130B, the slider 141, and the accommodation space 469L is appropriately discharged. Since the driving device 400M has high reliability, the driving device 400M can maintain the recording performance and the reproduction performance at a high level.
  • FIG. 43 is a schematic cross-sectional view of the drive device 400N of the sixteenth embodiment.
  • the drive device 400N will be described with reference to FIG.
  • symbol is attached
  • the description relevant to 1st Embodiment and 15th Embodiment is used with respect to the element to which the same code
  • the driving device 400N includes an optical disk 120B, an optical head 130B, a semiconductor laser 131, a circuit board 453L, a receiving wall 460L, an ionizer 490, and a driving circuit 491.
  • the driving device 400N further includes a dust removing unit 180.
  • the upper collection filter 181 is attached to the upper wall portion 461.
  • the lower collection filter 182 is attached to the lower wall portion 462.
  • the driving device 400N further includes an additional optical disc 120N.
  • the optical disc 120N is held between the optical disc 120B and the upper wall portion 461.
  • the optical disc 120N is substantially coaxial with the optical disc 120B.
  • one of the optical disks 120B and 120N is exemplified as the first medium.
  • the other of the optical disks 120B and 120N is exemplified as the second medium.
  • the driving device 400N further includes a driving mechanism 470N that drives the optical disks 120B and 120N.
  • the drive mechanism 470N includes a spindle motor 171, a hub 175, a cap 176, a fixing screw 177, a fixing wall 474, a shield part 478, and a breathing filter 479.
  • the drive mechanism 470N further includes a spacer 571 interposed between the optical disks 120B and 120N.
  • the fixing screw 177 passes through the cap 176 and the spacer and is screwed into the hub 175. As a result, the optical disks 120B and 120N can rotate integrally.
  • the driving device 400N further includes a holding mechanism 140N. Similar to the fifteenth embodiment, the holding mechanism 140N includes a slider 141, a suspension 142, a swing arm 143, and a voice coil motor 144. The holding mechanism 140N further includes an additional slider 141N, an additional suspension 142N, and an additional swing arm 143N. Similar to the slider 141, the suspension 142, and the swing arm 143, the slider 141N, the suspension 142N, and the swing arm 143N are rotated by the voice coil motor 144.
  • the driving device 400N includes an additional semiconductor laser 131N mounted on the slider 141N and an additional optical head that condenses light from the semiconductor laser 131N on the optical disc 120N and optically executes information processing such as recording and reproduction. 130N.
  • one of the optical heads 130B and 130N is exemplified as the first processing element.
  • the other of the optical heads 130B and 130N is exemplified as the second processing element.
  • the dust in the accommodation space 469L is appropriately reduced by using the swirl flow generated by the rotation of the optical discs 120B and 120N and the ions generated by the ionizer 490.
  • the drive device includes a wall portion that defines an accommodation space in which at least one medium having a processing surface on which information processing is performed is accommodated, and a non-contact type with respect to the processing surface. And at least one processing element that performs information processing, and a drive mechanism that rotates the at least one medium.
  • the drive mechanism includes a force generating unit that generates a driving force for rotating the at least one medium, a transmission unit that transmits the driving force to the at least one medium, and the force generating unit on the wall unit.
  • a fixing portion to be fixed.
  • the wall is formed with an opening that allows the transmission portion to pass therethrough. The fixing portion closes the opening in cooperation with the force generating portion.
  • the drive mechanism rotates at least one medium while at least one processing element performs non-contact information processing on the processing surface of at least one medium in a non-contact manner. Since the opening is formed in the wall portion, the driving force generated by the force generating portion fixed by the fixing portion is transmitted to at least one medium through the transmitting portion. The rotation of at least one medium creates a negative pressure around the opening. Since the fixing portion closes the opening by cooperating with the force generating portion, the outside air and dust floating in the outside air are less likely to enter the accommodation space through the opening. Therefore, the amount of dust in the accommodation space is maintained at a low level.
  • the wall portion, the fixing portion, and the force generating portion may seal the accommodation space.
  • the wall portion, the fixing portion, and the force generation portion seal the accommodation space, so that the amount of dust in the accommodation space is maintained at a low level.
  • the drive device may further include a suspension that supports the at least one processing element, and a rotation motor that rotates the at least one processing element on the processing surface.
  • the suspension and the rotation motor may be disposed in the accommodation space.
  • the suspension space that supports at least one processing element and the rotation motor that rotates the at least one processing element on the processing surface are disposed in the accommodation space, so that the accommodation space is isolated from the outside air. It becomes easy to be done. Therefore, the amount of dust in the accommodation space is maintained at a low level.
  • the driving mechanism may rotate the at least one medium to generate a swirling flow in the accommodation space.
  • the drive mechanism rotates at least one medium and generates a swirling flow in the accommodation space, so that dust in the accommodation space is less likely to adhere to the medium and the processing element.
  • the driving device includes a first inflow port formed in the wall portion, and a first outflow port formed in the wall portion farther from the rotation axis of the at least one medium than the first inflow port. And a first circulation pipe connected to the first and second circulation pipes.
  • the drive mechanism may rotate the at least one medium to generate an air flow from the first outlet to the first inlet.
  • the air in the accommodation space flows out to the first outlet by the generation of the swirling flow. Thereafter, the air returns to the accommodation space through the first inflow port. Since the retention of air in the accommodation space is reduced, the dust is less likely to adhere to the medium and the processing element.
  • the driving device is connected to the second outlet formed in the wall portion and the second inlet formed nearer to the rotation axis of the at least one medium than the second outlet.
  • the second circulation pipe may be further provided.
  • the drive mechanism may rotate the at least one medium to generate an air flow from the second outlet to the second inlet.
  • the air in the accommodation space flows out from the second outlet as well as the first outlet. Thereafter, the air returns to the accommodation space not only through the first inlet but also through the second inlet. Since the retention of air in the accommodation space is reduced, the dust is less likely to adhere to the medium and the processing element.
  • the drive device may further include a collection filter that collects dust in the accommodation space.
  • the dust in the accommodation space is collected by the collection filter, so that the dust floating in the accommodation space is reduced.
  • the driving device may further include an ion emission unit that emits positive ions and negative ions in the accommodation space.
  • the ion emission part emits positive ions and negative ions to the accommodation space, the dust is less likely to adhere to the medium or the processing element.
  • the driving device may further include a light source that generates a light beam used for the information processing.
  • the at least one processing element may include an optical processing element that emits the light flux to the processing surface and optically performs the information processing.
  • the optical processing element may include a condensing element that condenses the light flux on the processing surface as near-field light.
  • the optical processing element may include a plasmon resonance antenna that collects the light flux as plasmon resonance light on the processing surface.
  • the at least one processing element may include a magnetic processing element that performs the information processing using magnetism.
  • the at least one processing element may perform a recording process for recording information on the processing surface as the information processing.
  • the amount of dust in the accommodation space is maintained at a low level, so information is appropriately recorded on the medium.
  • the at least one processing element may perform a reproduction process for reproducing information from the processing surface as the information processing.
  • the amount of dust in the accommodation space is maintained at a low level, so that information is appropriately reproduced from the medium.
  • the said structure WHEREIN contains the 1st wall member which prescribes
  • the wall portion forming the accommodation space can be easily assembled.
  • the fixing portion may include a support portion that supports the force generation portion, and a shield portion that surrounds the transmission portion between the support portion and the wall portion.
  • the shield part may keep an airtight space between the support part and the wall part.
  • the shield portion keeps the space between the support portion and the wall portion airtight, so that the outside air and dust floating in the outside air enter the accommodation space from the gap between the support portion and the wall portion. It becomes difficult. Therefore, the amount of dust in the accommodation space is maintained at a low level.
  • the shield part may include at least one material selected from the group consisting of resin, rubber, and silicon.
  • the shield part includes at least one material selected from the group consisting of resin, rubber, and silicon, the outside air and the dust that floats in the outside air are separated from the gap between the support part and the wall part. It becomes difficult to enter the storage space. Therefore, the amount of dust in the accommodation space is maintained at a low level.
  • the wall portion may include a first inner surface facing the processing surface.
  • the collection filter may include a first filter that protrudes from the first inner surface toward the processing surface.
  • the at least one medium may include an opposite surface opposite to the processing surface.
  • the wall portion may include a second inner surface facing the opposite surface.
  • the collection filter may include a second filter that protrudes from the second inner surface toward the opposite surface.
  • the transmission unit includes a hub to which the at least one medium is fixed, a cap that holds the at least one medium in cooperation with the hub, and penetrates the cap and is connected to the hub. And a fixing screw.
  • the medium can be rotated with high accuracy.
  • the wall portion may include a respiratory filter.
  • the breathing filter may reduce a pressure difference between the housing space and an external space partitioned from the housing space by the wall portion.
  • the driving device may further include a holding portion that holds the suspension in the accommodation space.
  • the rotation motor includes the at least one processing element between a processing position where the at least one processing element performs the information processing on the processing surface and a retreat position where the at least one processing element is separated from the processing surface.
  • the element may be rotated.
  • the holding unit may hold the suspension obtained by rotating the at least one processing element at the retracted position.
  • a distance between the wall portion and the at least one medium may be 20 ⁇ m or more and 5 mm or less.
  • the distance between the wall portion and at least one medium is 20 ⁇ m or more and 5 mm or less, the swirling flow is appropriately generated in the accommodation space.
  • the at least one medium may include an inner edge region sandwiched between the hub and the cap and an outer edge region surrounding the inner edge region.
  • a distance between the inner edge region and the first inner surface may be longer than a distance between the outer edge region and the first inner surface.
  • the swirl flow is stably generated in the accommodation space.
  • the distance between the inner edge region and the second inner surface may be longer than the distance between the outer edge region and the second inner surface.
  • the swirl flow is stably generated in the accommodation space.
  • the wall portion may include an inner peripheral surface that defines the accommodation space between the first inner surface and the second inner surface.
  • the at least one medium may include an outer peripheral surface facing the inner peripheral surface between the processing surface and the opposite surface.
  • the distance between the inner peripheral surface and the outer peripheral surface may be 10 ⁇ m or more and 5 mm or less.
  • the swirl flow is stably generated in the accommodation space.
  • the driving device may further include activated carbon that absorbs organic gas in the accommodation space.
  • the organic gas in the accommodation space is reduced.
  • the driving device may further include a desiccant that absorbs moisture in the accommodation space.
  • the driving device may further include a control unit that controls the driving mechanism.
  • the control unit includes a processing rotation mode in which the processing element rotates the at least one medium in order to perform the information processing on the at least one medium, and at least the dust in the collection filter to collect the dust. You may switch control with respect to the said drive mechanism between the dust collection rotation modes which rotate one medium and generate the said turning flow in the said accommodation space.
  • control unit since the control unit switches the control of the drive mechanism between the processing rotation mode and the dust collection rotation mode, information processing on the medium and cleaning of the accommodation space are appropriately performed.
  • the driving device is between an on mode that enables power supply from the power source to the driving mechanism and the processing element and an off mode that blocks power supply from the power source to the driving mechanism and the processing element.
  • a power switch unit for switching the power supply mode may be further provided. In a period from when the power switch unit sets the power supply mode to the on mode until the at least one processing element starts the information processing, the control unit controls the drive mechanism under the dust collection rotation mode. You may control.
  • the accommodation space is appropriately cleaned.
  • the drive device may further include a power storage unit that performs power storage in a power supply path between the power source and the drive mechanism. After the power switch unit sets the power supply mode to the off mode, the drive mechanism receives power stored in the power storage unit and rotates the at least one medium in the dust collection rotation mode. Good.
  • the accommodation space is appropriately cleaned.
  • control unit may emit the positive ions and the negative ions from the ion emission unit to the accommodation space under the dust collection rotation mode.
  • the ion emission unit emits positive ions and negative ions into the accommodation space under the dust collection rotation mode, so that the dust is appropriately collected by the collection filter.
  • control unit may control the drive mechanism and the ion emission unit under the dust collection rotation mode.
  • the storage space is appropriately cleaned after the power supply mode is switched from the off mode to the on mode.
  • control unit may control the drive mechanism and the ion emission unit under the dust collection rotation mode.
  • the storage space is appropriately cleaned after the power supply mode is switched from the on mode to the off mode.
  • the ion emission unit may emit the positive ions and the negative ions into the accommodation space.
  • the accommodation space is appropriately cleaned.
  • the ion emission unit may emit the positive ions and the negative ions into the accommodation space.
  • the accommodation space is appropriately cleaned.
  • control unit may vary the rotation speed of the at least one medium under the dust collection rotation mode.
  • control unit varies the rotation speed of at least one medium under the dust collection rotation mode, so that the accommodation space is appropriately cleaned.
  • the ion emission unit may release the positive ions and the negative ions into the accommodation space using the electric power stored in the power storage unit.
  • the ion emission unit uses the electric power stored in the power storage unit to release positive ions and negative ions into the accommodation space. To be cleaned.
  • the driving device may further include a detection unit that detects a charging characteristic in the accommodation space.
  • the ion emission unit may emit the positive ions and the negative ions into the accommodation space according to the charging characteristics.
  • the ion emission unit releases positive ions and negative ions into the accommodation space according to the charging characteristics detected by the detection unit, the accommodation space is cleaned in a timely manner. Further, positive ions and negative ions are not unnecessarily released into the accommodation space.
  • the at least one medium may include a first medium and a second medium.
  • the at least one processing element may include a first processing element that performs the information processing on the first medium and a second processing element that performs the information processing on the second medium.
  • the ion emission unit may include at least one electrode needle that emits the positive ions and the negative ions to the accommodation space, and an application unit that applies a voltage to the electrode needle.
  • the accommodating space is appropriately cleaned using positive ions and negative ions emitted from at least one electrode needle.
  • the ion emission part may selectively release the positive ions and the negative ions.
  • the accommodation space is appropriately cleaned using positive ions and negative ions that are selectively released.
  • the at least one electrode needle may include a plus electrode needle that emits the plus ions and a minus electrode needle that emits the minus ions.
  • the accommodation space is appropriately cleaned using positive ions released from the positive electrode needle and negative ions released from the negative electrode needle.
  • the ion emission unit may alternately perform the release of the plus ions from the plus electrode needle and the emission of the minus ions from the minus electrode needle.
  • the accommodation space is appropriately cleaned by using positive ions and negative ions released alternately.
  • the ion emission unit may generate the positive ions and the negative ions using corona discharge.
  • the accommodation space is appropriately cleaned using positive ions and negative ions emitted using corona discharge.
  • the ion emission unit may generate the positive ions and the negative ions using ionizing radiation.
  • the accommodation space is appropriately cleaned using positive ions and negative ions emitted using ionizing radiation.
  • the ion emission unit may generate the positive ions and the negative ions using soft X-rays.
  • the accommodation space is appropriately cleaned using positive ions and negative ions emitted using soft X-rays.
  • the ion emission unit may generate the positive ions and the negative ions using ⁇ rays.
  • the accommodation space is appropriately cleaned using positive ions and negative ions emitted using ⁇ rays.
  • the ion emission unit may generate the positive ions and the negative ions using ultraviolet rays.
  • the accommodation space is appropriately cleaned using positive ions and negative ions released using ultraviolet rays.
  • the collection filter may be a non-electric filter.
  • the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
  • the collection filter may be made of resin.
  • the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
  • the collection filter may be formed using polypropylene.
  • the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
  • the collection filter may have a lattice-like fiber layer.
  • the collection filter can appropriately collect dust.
  • the fiber layer may have a predetermined lattice spacing.
  • the collection filter can collect dust stably.
  • the principles of the various embodiments described above are applicable to an apparatus that performs information processing in a non-contact manner with respect to a medium.
  • the principles of the various embodiments described above may be applied to an external storage device, a video recording device, and a video playback device that use a large-capacity recording medium.
  • the principles of the various embodiments described above can also be applied to devices such as car navigation systems, portable music players, digital still cameras, and digital video cameras.
  • the principles of the various embodiments described above are applied to devices that are susceptible to dust, such as optical disk drive devices and hard disk drive devices.
  • the principles of the various embodiments described above can be suitably applied to the field of optical disk recording / playback apparatuses using the recording / playback principle of the SIL system or plasmon system and the field of hard disk drives using the heat-assisted recording principle.

Landscapes

  • Optical Head (AREA)

Abstract

The present application discloses a drive device provided with: a wall part that defines a housing space in which at least one medium having a processing surface on which information processing is performed is housed; at least one processing element that performs the information processing on the processing surface in a noncontact manner; and a drive mechanism that rotates said at least one medium. The drive mechanism comprises: a force generation part that generates drive force for rotating said at least one medium; a transmission part that transmits the drive force to said at least one medium; and a securing part that secures the force generation part to the wall part. In the wall part, an opening that allows the insertion of the transmission part therethrough is formed. The securing part closes the opening in cooperation with the force generation part.

Description

駆動装置Drive device
 本発明は、情報の記録や再生といった情報処理を受ける記録媒体を駆動する駆動装置に関する。 The present invention relates to a drive device for driving a recording medium that receives information processing such as information recording and reproduction.
 近年の情報化社会の発展に伴って、インターネットのデータ通信量は非常に増加している。この結果、精密な音声データや精細化された映像データがインターネットを経由して通信されている。データ通信量の増加は、サーバといった記録装置に蓄積される電子データ量の増加に帰結する。この結果、情報記録装置の大容量化に対する強いニーズがある。情報記録装置として、パーソナルコンピュータ、レコーダやカメラといった様々な装置に搭載されるHDD(ハードディスクドライブ装置:Hard Disk Drive)が例示される。他の情報記録装置として、光ディスクドライブ装置が例示される。これらの情報記録装置の記録密度が高められるならば、膨大な量の情報がこれらの装置に蓄積されることとなる。高い記録密度は、情報記録媒体(例えば、ハードディスクや光ディスク)の記録ビットサイズの微小化を意味する。 With the development of the information society in recent years, the amount of data communication on the Internet has increased greatly. As a result, precise audio data and refined video data are communicated via the Internet. An increase in the amount of data communication results in an increase in the amount of electronic data stored in a recording device such as a server. As a result, there is a strong need to increase the capacity of the information recording apparatus. As the information recording device, an HDD (Hard Disk Drive Device: Hard Disk Drive) mounted on various devices such as a personal computer, a recorder, and a camera is exemplified. As another information recording apparatus, an optical disk drive apparatus is exemplified. If the recording density of these information recording devices can be increased, an enormous amount of information will be stored in these devices. A high recording density means miniaturization of the recording bit size of an information recording medium (for example, a hard disk or an optical disk).
 ハードディスクや光ディスクといった情報記録媒体に対して高密度で情報を記録し、及び/又は、高密度で記録された情報を情報記録媒体から再生するためには、情報記録媒体とヘッド(記録ヘッド又は再生ヘッド)との間の距離は小さく設計される必要がある。例えば、情報記録媒体とヘッドとの間の距離は、数nm~数十nmに設計されることもある。数十nm~数μmの塵埃が情報記録媒体とヘッドとの間に入り込むならば、情報記録媒体及び/又はヘッドは、損傷することもある。この結果、情報記録媒体への情報の記録及び/又は情報記録媒体からの情報の再生は、適切に行われないこともある。 In order to record information on an information recording medium such as a hard disk or an optical disk at high density and / or reproduce information recorded at high density from the information recording medium, an information recording medium and a head (recording head or reproduction) The distance between the head and the head needs to be designed to be small. For example, the distance between the information recording medium and the head may be designed to be several nm to several tens of nm. If dust of several tens of nm to several μm enters between the information recording medium and the head, the information recording medium and / or the head may be damaged. As a result, the recording of information on the information recording medium and / or the reproduction of information from the information recording medium may not be performed properly.
 上述の如く、ハードディスクを高密度化するためには、ハードディスクとヘッドとの間の距離は短く設計される。この結果、ハードディスクの磁性膜の結晶の粒径は微細化される。微細化された結晶を有するハードディスクは、熱揺らぎ(熱的に不安定な結晶粒子)の問題に直面する。熱揺らぎの問題は、ハードディスクの高密度化に対する主要な阻害因子として顕在化している。 As described above, in order to increase the density of the hard disk, the distance between the hard disk and the head is designed to be short. As a result, the crystal grain size of the magnetic film of the hard disk is reduced. Hard disks having miniaturized crystals face the problem of thermal fluctuation (thermally unstable crystal particles). The problem of thermal fluctuation has become apparent as a major impediment to high density hard disks.
 大きな保磁力は、ハードディスクの結晶膜の結晶粒に対する微細化及び熱的に安定した結晶粒子の生成にともに貢献する。大きな保磁力は、磁気ヘッドを用いた記録に利用される大きな磁界強度を要求する。しかしながら、磁気ヘッドに用いられる磁性材料の物性やハードディスク(磁性ディスク)とヘッドとの距離の観点から、高密度化に伴って保磁力を増大させることは困難である。 The large coercive force contributes to the miniaturization of the crystal grains of the hard disk crystal film and the generation of thermally stable crystal grains. A large coercive force requires a large magnetic field strength used for recording using a magnetic head. However, it is difficult to increase the coercive force as the density increases from the viewpoint of the physical properties of the magnetic material used in the magnetic head and the distance between the hard disk (magnetic disk) and the head.
 上述の課題を解決する手法として、光記録に関する技術と磁気記録に関する技術が組み合わされた「光・磁気ハイブリッド記録技術」が提案されている。情報の記録のために、磁界が磁性ディスクに印加される。これと同時に、磁性ディスクは、加熱される。この結果、磁性ディスクの保磁力は低下する。したがって、従来の磁気ヘッドでは、磁界強度が小さすぎて、情報の記録が困難である程、高い保磁力を有する磁性ディスクは、光・磁気ハイブリッド記録技術によって、適切に記録処理を受けることができる。情報の再生に関して、従来の磁気記録技術で用いられている磁気抵抗効果が利用される。光・磁気ハイブリッド記録手法は、「熱アシスト磁気記録」と称される。 As a method for solving the above-mentioned problems, “optical / magnetic hybrid recording technology” in which a technology related to optical recording and a technology related to magnetic recording are combined has been proposed. A magnetic field is applied to the magnetic disk for recording information. At the same time, the magnetic disk is heated. As a result, the coercive force of the magnetic disk decreases. Therefore, with a conventional magnetic head, a magnetic disk having a high coercive force can be appropriately subjected to a recording process by an optical / magnetic hybrid recording technique as the magnetic field strength is too small to record information. . For reproducing information, the magnetoresistive effect used in the conventional magnetic recording technology is used. The optical / magnetic hybrid recording technique is called “thermally assisted magnetic recording”.
 磁性ディスクを加熱するために、近接場光を利用することが提案されている。近接場光が熱アシスト磁気記録の技術に用いられるならば、レーザ光源が発生させたレーザ光が記録ヘッドに導かれる。記録ヘッドには、近接場光を発生させる機能を有する素子(以下、「発生素子」と称される)が組み込まれている。光スポット径は、発生素子によって、記録に適した大きさ及び形状に調整される。 It has been proposed to use near-field light to heat the magnetic disk. If the near-field light is used in the heat-assisted magnetic recording technology, the laser light generated by the laser light source is guided to the recording head. The recording head incorporates an element having a function of generating near-field light (hereinafter referred to as “generating element”). The light spot diameter is adjusted to a size and shape suitable for recording by the generating element.
 一般的に、レーザ光源は、ハードディスクドライブ装置のパッケージ内で使用される。したがって、レーザ光源として、小型且つ低消費電力の半導体レーザ(「レーザダイオード」とも称される)が用いられる。「Tb/in(テラバイト/平方インチ)」以上の記録密度を有する近接場光を用いて熱アシスト磁気記録を行う装置にレーザ光源が用いられるならば、十分な加熱を記録媒体の表面に行うために、レーザ光源には数mWのパワーが要求される。 Generally, a laser light source is used in a package of a hard disk drive device. Therefore, a small and low power consumption semiconductor laser (also referred to as “laser diode”) is used as the laser light source. If a laser light source is used in an apparatus for performing thermally assisted magnetic recording using near-field light having a recording density of “Tb / in 2 (terabyte / square inch)” or more, sufficient heating is performed on the surface of the recording medium. Therefore, the laser light source is required to have a power of several mW.
 レーザダイオードが発生させたレーザ光は、反射ミラー、レンズや光導波路といった光学部品によって発生素子に導かれる。レーザダイオードが発生させたレーザ光は、光路に沿って配置された様々な光学部品を通過し、発生素子並びに記録媒体に到達する。レーザ光の強度は、レーザ光が光路に沿って伝搬している間に減衰し、レーザダイオードが発生させた光出力の数十分の1の大きさになる。レーザ光の強度の減衰として、レーザ光が光学部品を通過するときに生ずる吸収損失や散乱損失並びに光学部品の接着位置と光学部品の理想的な位置との間のずれに起因する結合損失が例示される。熱アシスト磁気記録技術にとって、発生素子に至るまでの光路において小さな結合損失を達成する構造を作り出すことは重要である。 The laser light generated by the laser diode is guided to the generating element by optical components such as a reflection mirror, a lens and an optical waveguide. The laser light generated by the laser diode passes through various optical components arranged along the optical path, and reaches the generating element and the recording medium. The intensity of the laser light is attenuated while the laser light is propagating along the optical path, and becomes a magnitude of one tenth of the light output generated by the laser diode. Examples of the attenuation of the intensity of laser light include absorption loss and scattering loss caused when the laser light passes through an optical component, and coupling loss due to a shift between the bonding position of the optical component and the ideal position of the optical component. Is done. For thermally-assisted magnetic recording technology, it is important to create a structure that achieves a small coupling loss in the optical path to the generating element.
 ハードディスクドライブ装置のスライダとして、ピコスライダ(Picoslider)が従来用いられている。ハードディスクドライブ装置のスライダとして、ピコスライダよりも小型のフェムトスライダ(Femtoslider)が用いられることもある。ハードディスクドライブ装置のスライダの小型化の結果、記録ヘッドの浮上量は、約10nmまで低減されている。スライダの小型化技術の進展の結果、浮上量の更なる低減が予想される。 A pico slider is conventionally used as a slider of a hard disk drive device. As a slider of a hard disk drive device, a femto slider that is smaller than a pico slider may be used. As a result of the downsizing of the slider of the hard disk drive device, the flying height of the recording head is reduced to about 10 nm. As a result of progress in slider miniaturization technology, further reduction in flying height is expected.
 光ディスクドライブ装置の技術分野において、近接場光を用いて、記録及び再生のうち少なくとも一方を行う高密度の光ディスクが提案されている。例えば、光ディスクドライブ装置は、光ディスクに対して記録や再生といった情報処理を行うための近接場光学系として、ソリッドイマージョンレンズ(SIL:Solid Immersion Lens)を備える。SILは、対物レンズとして機能する。光ドライブ装置は、SILと光ディスクの表面との間の距離を精密に制御する制御部を更に備える。制御部は、SILと光ディスクの表面との間の距離が、使用される光の波長の約1/2~約1/10となるように、SILの位置を調整する。上述の近接場光学系は、SILと光ディスクとの間で近接場光を発生させ、高密度の記録処理及び/又は再生処理(開口数(NA)≧1)を可能にする。 In the technical field of optical disk drive devices, high-density optical disks that perform at least one of recording and reproduction using near-field light have been proposed. For example, an optical disk drive device includes a solid immersion lens (SIL) as a near-field optical system for performing information processing such as recording and reproduction on an optical disk. The SIL functions as an objective lens. The optical drive device further includes a control unit that precisely controls the distance between the SIL and the surface of the optical disk. The control unit adjusts the position of the SIL so that the distance between the SIL and the surface of the optical disc is about ½ to about 1/10 of the wavelength of light used. The near-field optical system described above generates near-field light between the SIL and the optical disc, and enables high-density recording processing and / or reproduction processing (numerical aperture (NA) ≧ 1).
 光ディスクドライブ装置が近接場光を利用するならば、光ディスクと集光素子(例えば、対物レンズ)に設置されるSILの端面との間の距離は、近接場光が得られるように精密に制御される必要がある。短波長のレーザ光が用いられるならば、光ディスクとSILの端面との間の距離(ギャップ)は、約数十nmに制御される必要がある。 If the optical disk drive device uses near-field light, the distance between the optical disk and the end surface of the SIL installed on the condensing element (for example, the objective lens) is precisely controlled so that near-field light can be obtained. It is necessary to If short-wavelength laser light is used, the distance (gap) between the optical disk and the end face of the SIL needs to be controlled to about several tens of nm.
 光ディスクドライブ装置が近接場光を利用するならば、光ディスクやSILの端面に付着する塵埃は、上述のギャップの制御に対して、大きな障壁となる。 If the optical disk drive device uses near-field light, dust adhering to the end face of the optical disk or SIL becomes a large barrier to the above-described gap control.
 SILの端面に付着する塵埃として、空気中に浮遊する埃や衣類の繊維が例示される。塵埃は、ギャップ制御の目標値よりも大きな幅(高さ)をしばしば有するので、SILの端面に付着した塵埃は、ギャップ制御を不能にする。 Examples of dust adhering to the end surface of the SIL include dust floating in the air and clothing fibers. Since dust often has a width (height) larger than the target value for gap control, dust attached to the end face of the SIL makes gap control impossible.
 記録や再生を行うヘッド、光ディスク及び光ディスクドライブ装置の製造時に塵埃をある程度低減することは可能である。しかしながら、塵埃を完全に除去することは困難である。製造工程において塵埃が除去されたとしても、光ディスクや光ディスクドライブ装置が使用される際に、塵埃がSILに付着することもある。したがって、塵埃を完全に排除することは非常に困難である。 It is possible to reduce dust to some extent when manufacturing heads, optical disks and optical disk drive devices that perform recording and reproduction. However, it is difficult to completely remove dust. Even if the dust is removed in the manufacturing process, the dust may adhere to the SIL when the optical disc or the optical disc drive device is used. Therefore, it is very difficult to completely eliminate dust.
 プラズモン方式のハードディスクドライブ装置及び光ディスクドライブ装置が提案されている。ハードディスクドライブ装置の次世代技術として上述された熱アシスト磁気記録技術と同様に、プラズモン方式のハードディスクドライブ装置及び光ディスクドライブ装置は、微小なスポットサイズの光を用いて高密度の記録を行う。 Plasmon type hard disk drive and optical disk drive have been proposed. Similar to the heat-assisted magnetic recording technology described above as the next generation technology of the hard disk drive device, the plasmon type hard disk drive device and optical disk drive device perform high-density recording using light of a minute spot size.
 プラズモン方式のハードディスクドライブ装置及び光ディスクドライブ装置は、非常に小さなスポットサイズの光を用いて、高密度の記録を行う。小さな光スポットサイズを作り出すために、導電体に伝播光を照射したときに生ずる表面プラズモン共鳴現象を利用する技術が提案されている。表面プラズモン共鳴現象が生ずると、導電体の端部に微小光(例えば、近接場光)が生成される。表面プラズモン共鳴現象が近接場光の生成に利用されるならば、従来の光学系では達成できないほどの微小なスポットサイズを有する微小光が光ディスクに照射されることとなる。 Plasmon type hard disk drive and optical disk drive perform high density recording using very small spot size light. In order to create a small light spot size, a technique that utilizes a surface plasmon resonance phenomenon that occurs when a conductor is irradiated with propagating light has been proposed. When the surface plasmon resonance phenomenon occurs, minute light (for example, near-field light) is generated at the end of the conductor. If the surface plasmon resonance phenomenon is used for generation of near-field light, minute light having a minute spot size that cannot be achieved by a conventional optical system is irradiated onto the optical disk.
 導電体に表面プラズモン共鳴現象を生じさせ、近接場光を生成するために、導電体は、数十nmから数百nmの大きさに設計される。記録密度に対する目標値が高くなればなるほど、近接場光を発生する導電体の端部の寸法は、小さく設計される必要がある。また、導電体と光ディスクとの間の距離は、非常に狭く設定される必要がある。 In order to generate a surface plasmon resonance phenomenon in the conductor and generate near-field light, the conductor is designed to have a size of several tens to several hundreds of nm. The higher the target value for the recording density, the smaller the dimension of the end of the conductor that generates near-field light. Further, the distance between the conductor and the optical disc needs to be set very narrow.
 非常に微小な端部の寸法を有する導電体に、光源(例えば、レーザダイオード)から出射される光を集光するために、良好な集光性及び高い伝播効率を有する光学系が必要とされる。 In order to condense light emitted from a light source (for example, a laser diode) onto a conductor having a very minute end size, an optical system having good light condensing properties and high propagation efficiency is required. The
 上述の如く、ディスク記録再生装置が、記録媒体とヘッド(記録ヘッド及び/又は再生ヘッド)との間の狭いギャップの下、情報の記録や再生といった処理を行うならば、記録媒体やヘッドに付着する塵埃を除去することは重要である。 As described above, if the disk recording / reproducing apparatus performs processing such as information recording / reproducing under a narrow gap between the recording medium and the head (recording head and / or reproducing head), it adheres to the recording medium / head. It is important to remove dust.
 特許文献1は、記録媒体上の塵埃を除去するディスククリーニング機構を開示する。ディスククリーニング機構は、クリーニングテープを用いて、記録媒体上の塵埃を直接的に拭き取る。 Patent Document 1 discloses a disk cleaning mechanism for removing dust on a recording medium. The disk cleaning mechanism directly wipes off dust on the recording medium using a cleaning tape.
 特許文献1の開示技術は、記録媒体上の塵埃を除去するけれども、SILの端面に付着した塵埃を除去することはできない。したがって、SILの端面に塵埃が付着するならば、適切なギャップ制御は達成されない。 Although the technology disclosed in Patent Document 1 removes dust on the recording medium, it cannot remove dust attached to the end surface of the SIL. Therefore, if dust adheres to the end surface of the SIL, appropriate gap control cannot be achieved.
 特許文献2は、SILの端面に付着した塵埃を除去するレンズクリーニング機構を開示する。レンズクリーニング機構は、クリーニングテープをSILに接触させ、SILの端面に付着した塵埃を除去する。 Patent Document 2 discloses a lens cleaning mechanism that removes dust adhering to the end face of the SIL. The lens cleaning mechanism brings the cleaning tape into contact with the SIL and removes dust adhering to the end surface of the SIL.
 特許文献1及び特許文献2が開示するクリーニング機構を用いて、記録媒体の表面及びSILの端面に付着した塵埃が除去されるならば、適切なギャップ制御が達成される。 If the dust adhered to the surface of the recording medium and the end surface of the SIL is removed using the cleaning mechanism disclosed in Patent Document 1 and Patent Document 2, appropriate gap control is achieved.
 特許文献3は、捕集フィルタを用いて、塵埃除去技術を開示する。捕集フィルタは、記録媒体の回転に伴い発生する気流中に配置される。この結果、ハードディスクドライブ装置の内部の塵埃は、捕集フィルタによって効率的に捕捉される。塵埃を含む気流が捕集フィルタを通過するので、時間経過に伴い、ハードディスクドライブ装置の内部の空気は浄化されることとなる。 Patent Document 3 discloses a dust removal technique using a collection filter. The collection filter is disposed in the airflow generated with the rotation of the recording medium. As a result, the dust inside the hard disk drive device is efficiently captured by the collection filter. Since the airflow containing dust passes through the collection filter, the air inside the hard disk drive device is purified over time.
 図44は、従来の光ディスクドライブ装置900の概略図である。図44を参照して、従来の光ディスクドライブ装置900が説明される。 FIG. 44 is a schematic view of a conventional optical disc drive apparatus 900. With reference to FIG. 44, a conventional optical disc drive apparatus 900 will be described.
 光ディスクドライブ装置900は、光学ヘッド910と、サーボ制御系920と、スピンドルモータ930と、を備える。光学ヘッド910及びスピンドルモータ930は、サーボ制御系920の制御下で動作する。スピンドルモータ930は、記録媒体として用いられる光ディスク950を回転させる。 The optical disc drive apparatus 900 includes an optical head 910, a servo control system 920, and a spindle motor 930. The optical head 910 and the spindle motor 930 operate under the control of the servo control system 920. The spindle motor 930 rotates an optical disk 950 used as a recording medium.
 光学ヘッド910は、光源として用いられるレーザダイオード911(図44中、「LD」との表記は、レーザダイオードを意味する)と、2つのコリメートレンズ912,913と、コリメートレンズ912から出射されたレーザ光を整形するアナモフィックプリズム914と、ビームスプリッタ915(図44中、「BS」との表記は、ビームスプリッタを意味する)と、1/4波長板916(図44中、「QWP」との表記は、1/4波長板を意味する)と、色収差を補正するための補正レンズ917と、レーザ光を拡張するための拡張レンズ918と、ウォラストンプリズム919と、2つの集光レンズ941,942と、集光素子943と、2つのフォトデテクタ944,945(図44中、「PD」との表記は、フォトデテクタを意味する)と、オートパワーコントローラ946(図44中、「APC」との表記は、オートパワーコントローラを意味する)と、LDドライバ947と、を備える。 The optical head 910 includes a laser diode 911 used as a light source (the notation “LD” in FIG. 44 means a laser diode), two collimating lenses 912 and 913, and a laser emitted from the collimating lens 912. An anamorphic prism 914 for shaping light, a beam splitter 915 (in FIG. 44, “BS” means a beam splitter), and a quarter-wave plate 916 (in FIG. 44, “QWP”). Means a quarter-wave plate), a correction lens 917 for correcting chromatic aberration, an expansion lens 918 for expanding laser light, a Wollaston prism 919, and two condenser lenses 941 and 942 And a light condensing element 943 and two photo detectors 944 and 945 (in FIG. 44, the notation “PD” And means for) a, in automatic power controller 946 (FIG. 44, denoted with "APC" includes a means auto power controller), and LD driver 947, a.
 ウォラストンプリズム919は、2つのプリズムからなる。ウォラストンプリズム919に入射された光は、互いに直交する2つの直線偏光として出射される。光ディスク950に記録された信号を再生するためのRF再生信号、サーボ制御に必要とされるトラッキングエラー信号及びギャップエラー信号といった様々な信号は、フォトデテクタ944からサーボ制御系920へ出力される。 Wollaston prism 919 consists of two prisms. The light incident on the Wollaston prism 919 is emitted as two linearly polarized lights that are orthogonal to each other. Various signals such as an RF reproduction signal for reproducing a signal recorded on the optical disk 950, a tracking error signal necessary for servo control, and a gap error signal are output from the photodetector 944 to the servo control system 920.
 サーボ制御系920は、ギャップサーボモジュール921(フォーカシングサーボモジュール)と、トラッキングサーボモジュール922と、チルトサーボモジュール923と、スピンドルサーボモジュール924と、を備える。トラッキングサーボモジュール922は、トラッキングエラー信号に応じて、集光素子943に対するトラッキング制御を実行する。チルトサーボモジュール923は、集光素子943のチルト角を制御する。スピンドルサーボモジュール924は、スピンドルモータ930の回転を制御する。尚、ギャップサーボモジュール921は、後述される。 The servo control system 920 includes a gap servo module 921 (focusing servo module), a tracking servo module 922, a tilt servo module 923, and a spindle servo module 924. The tracking servo module 922 performs tracking control on the light condensing element 943 according to the tracking error signal. The tilt servo module 923 controls the tilt angle of the light condensing element 943. The spindle servo module 924 controls the rotation of the spindle motor 930. The gap servo module 921 will be described later.
 オートパワーコントローラ946は、フォトデテクタ945から出力された信号に応じて、所定の信号をLDドライバ947に出力する。LDドライバ947は、オートパワーコントローラ946からの信号に応じて、レーザダイオード911から出射されるレーザのパワーを一定にする。 The auto power controller 946 outputs a predetermined signal to the LD driver 947 in accordance with the signal output from the photo detector 945. The LD driver 947 makes the power of the laser emitted from the laser diode 911 constant according to the signal from the auto power controller 946.
 図44を参照して、光ディスクドライブ装置900の上述の光学系の動作が説明される。 44, the operation of the above-described optical system of the optical disc drive apparatus 900 will be described.
 図44に示されるように、記録媒体として用いられる光ディスク950は、光ディスクドライブ装置900にセットされる。その後、サーボ制御系920は、ギャップサーボモジュール921と、トラッキングサーボモジュール922と、チルトサーボモジュール923と、スピンドルサーボモジュール924と、を用いて、様々なサーボ制御を行う。 44, an optical disk 950 used as a recording medium is set in the optical disk drive device 900. Thereafter, the servo control system 920 performs various servo controls using the gap servo module 921, the tracking servo module 922, the tilt servo module 923, and the spindle servo module 924.
 レーザダイオード911は、レーザ光をコリメートレンズ912に向けて出射する。コリメートレンズ912は、レーザ光を平行光にする。その後、アナモフィックプリズム914は、平行光を整形する。 The laser diode 911 emits laser light toward the collimating lens 912. The collimating lens 912 makes the laser light parallel light. Thereafter, the anamorphic prism 914 shapes the parallel light.
 整形されたレーザ光は、ビームスプリッタ915に入射する。ビームスプリッタ915は、入射したレーザ光を、1/4波長板916に入射する光と集光レンズ942に入射する光とに分割する。集光レンズ942に入射したレーザ光は、上述の如く、オートパワーコントローラ946によって利用される。オートパワーコントローラ946が、受け取ったレーザ光に応じて、LDドライバ947に信号を出力する結果、レーザダイオード911は、一定のパワーを有するレーザ光を出射することができる。 The shaped laser light is incident on the beam splitter 915. The beam splitter 915 divides the incident laser light into light incident on the quarter wavelength plate 916 and light incident on the condenser lens 942. The laser light incident on the condenser lens 942 is used by the auto power controller 946 as described above. As a result of the auto power controller 946 outputting a signal to the LD driver 947 according to the received laser light, the laser diode 911 can emit laser light having a certain power.
 1/4波長板916は、入射したレーザ光を直線偏光から円偏光に変える。その後、補正レンズ917は、色収差を補正する。レーザ光は、補正レンズ917の後、拡張レンズ918及びコリメートレンズ913を通過し、集光素子943に入射する。 The quarter wavelength plate 916 changes the incident laser light from linearly polarized light to circularly polarized light. Thereafter, the correction lens 917 corrects chromatic aberration. The laser light passes through the expansion lens 918 and the collimating lens 913 after the correction lens 917 and is incident on the condensing element 943.
 集光素子943は、入射したレーザ光を、光ディスク950に向けて集光し、近接場光を作り出す。この結果、光ディスク950に信号が記録される。尚、集光素子943による近接場光の生成は、後述される。 The condensing element 943 condenses the incident laser light toward the optical disk 950 to generate near-field light. As a result, a signal is recorded on the optical disk 950. The generation of near-field light by the light condensing element 943 will be described later.
 光ディスク950に向けた集光動作によって作り出された近接場光は、光ディスク950に記録された信号を読み出すために用いられてもよい。代替的に、近接場光は、光ディスク950に記録された信号を読み出すために用いられてもよい。 The near-field light created by the light condensing operation toward the optical disk 950 may be used for reading a signal recorded on the optical disk 950. Alternatively, near-field light may be used to read a signal recorded on the optical disc 950.
 近接場光は、光ディスク950に入射する。光ディスク950は、近接場光を反射又は回折し、反射光又は回折光(以下、「戻り光」と称する)を作り出す。集光素子943は、戻り光を受ける。戻り光は、集光素子943の後、コリメートレンズ913、拡張レンズ918、補正レンズ917及び1/4波長板916を通過し、ビームスプリッタ915に入射する。ビームスプリッタ915は、戻り光を、ウォラストンプリズム919に向けて全反射する。その後、戻り光は、ウォラストンプリズム919及び集光レンズ941を通過し、フォトデテクタ944に入射する。フォトデテクタ944は、入射した戻り光に応じて、RF再生信号及びサーボ制御信号を生成する。サーボ制御信号は、フォトデテクタ944からサーボ制御系920に出力される。サーボ制御系920は、ギャップサーボモジュール921と、トラッキングサーボモジュール922と、チルトサーボモジュール923と、スピンドルサーボモジュール924と、を用いて、様々なサーボ制御を行う。 Near-field light enters the optical disk 950. The optical disk 950 reflects or diffracts near-field light to produce reflected light or diffracted light (hereinafter referred to as “return light”). The condensing element 943 receives the return light. The return light passes through the condensing element 943, passes through the collimating lens 913, the expansion lens 918, the correction lens 917, and the quarter-wave plate 916 and enters the beam splitter 915. The beam splitter 915 totally reflects the return light toward the Wollaston prism 919. Thereafter, the return light passes through the Wollaston prism 919 and the condenser lens 941 and enters the photodetector 944. The photodetector 944 generates an RF reproduction signal and a servo control signal according to the incident return light. The servo control signal is output from the photodetector 944 to the servo control system 920. The servo control system 920 performs various servo controls using a gap servo module 921, a tracking servo module 922, a tilt servo module 923, and a spindle servo module 924.
 図45は、光ディスク950の近くに配置された集光素子943の概略的な拡大図である。図44及び図45を参照して、集光素子943が説明される。 FIG. 45 is a schematic enlarged view of the light condensing element 943 arranged near the optical disk 950. The light collection element 943 will be described with reference to FIGS. 44 and 45.
 集光素子943は、光ディスク950に対向する。集光素子943は、SIL961と、非球面レンズ962と、を備える。SIL961及び非球面レンズ962は、近接場光を作り出す。 The condensing element 943 faces the optical disk 950. The condensing element 943 includes a SIL 961 and an aspheric lens 962. The SIL 961 and the aspheric lens 962 create near-field light.
 集光素子943は、レンズホルダ963を更に備える。レンズホルダ963は、SIL961及び非球面レンズ962を収容する。 The condensing element 943 further includes a lens holder 963. The lens holder 963 accommodates the SIL 961 and the aspherical lens 962.
 SIL961は、光ディスク950に対向するSIL端面964を含む。光ディスク950は、SIL端面964に対向する記録面951を含む。近接場光は、SIL端面964から記録面951に照射される。 The SIL 961 includes a SIL end surface 964 that faces the optical disk 950. Optical disc 950 includes a recording surface 951 that faces SIL end surface 964. Near-field light is applied to the recording surface 951 from the SIL end surface 964.
 光ディスクドライブ装置900は、レンズホルダ963に取り付けられた3軸アクチュエータ965を更に備える。3軸アクチュエータ965は、集光素子943を記録面951に対して離接させる離接機構の一部として用いられる。 The optical disc drive device 900 further includes a triaxial actuator 965 attached to the lens holder 963. The triaxial actuator 965 is used as a part of a separation / contact mechanism that separates the light collection element 943 from the recording surface 951.
 図44及び図45において、3軸アクチュエータ965は、非常に簡略化されている。3軸アクチュエータ965は、例えば、3軸方向のコイルやヨークといった要素から形成される。サーボ制御系920は、3軸アクチュエータ965の各コイルに所定のサーボ電圧を印加する。この結果、3軸アクチュエータ965の各コイルに所定の電流が流れ、トラッキングサーボとギャップサーボとを含むフォーカシングサーボ及びチルトサーボの制御が実行される。 44 and 45, the triaxial actuator 965 is greatly simplified. The triaxial actuator 965 is formed from elements such as a triaxial coil and a yoke, for example. The servo control system 920 applies a predetermined servo voltage to each coil of the triaxial actuator 965. As a result, a predetermined current flows through each coil of the triaxial actuator 965, and focusing servo and tilt servo control including tracking servo and gap servo are executed.
 図46は、光ディスク950の周囲の光ディスクドライブ装置900の拡大概略図である。図47は、図46に対応する光ディスクドライブ装置900の概略的な底面図である。図46及び図47を参照して、光ディスクドライブ装置900が更に説明される。 FIG. 46 is an enlarged schematic view of the optical disk drive device 900 around the optical disk 950. FIG. 47 is a schematic bottom view of the optical disc drive apparatus 900 corresponding to FIG. The optical disk drive device 900 is further described with reference to FIGS. 46 and 47. FIG.
 光ディスクドライブ装置900は、SIL961をクリーニングするレンズクリーニング機構970と、光ディスク950の記録面951に接触し、記録面951をクリーニングするディスククリーニング機構980と、を更に備える。レンズクリーニング機構970は、SIL端面964に接触する。レンズクリーニング機構970は、スピンドルモータ930に取り付けられた光ディスク950の外周縁952よりも、光ディスク950の回転軸RXから離れている。 The optical disc drive apparatus 900 further includes a lens cleaning mechanism 970 that cleans the SIL 961 and a disc cleaning mechanism 980 that contacts the recording surface 951 of the optical disc 950 and cleans the recording surface 951. The lens cleaning mechanism 970 contacts the SIL end surface 964. The lens cleaning mechanism 970 is further away from the rotation axis RX of the optical disc 950 than the outer peripheral edge 952 of the optical disc 950 attached to the spindle motor 930.
 図48A乃至図48Cは、レンズクリーニング機構970の概略図である。図46乃至図48Cを参照して、レンズクリーニング機構970が説明される。 48A to 48C are schematic views of the lens cleaning mechanism 970. The lens cleaning mechanism 970 will be described with reference to FIGS. 46 to 48C.
 図48A乃至図48Cに示される如く、レンズクリーニング機構970は、クリーニングテープ971を用いて、SIL961をクリーニングするクリーナー装置であってもよい。レンズクリーニング機構970は、2つのスピンドル972,973と、クリーニングテープ971の走行経路を規定する2つのアイドラ974,975と、を備える。スピンドル972,973の回転に伴って、クリーニングテープ971は、SIL961上を走行する。クリーニングテープ971は、SIL961に損傷を与えない程度に十分に柔らかい樹脂から形成される。 48A to 48C, the lens cleaning mechanism 970 may be a cleaner device that cleans the SIL 961 using the cleaning tape 971. The lens cleaning mechanism 970 includes two spindles 972 and 973 and two idlers 974 and 975 that define the traveling path of the cleaning tape 971. The cleaning tape 971 travels on the SIL 961 as the spindles 972 and 973 rotate. The cleaning tape 971 is made of a resin that is sufficiently soft so as not to damage the SIL 961.
 図46及び図47に示される如く、集光素子943は、光ディスク950の傍に配置されたレンズクリーニング機構970に移動する。集光素子943は、レンズクリーニング機構970の下方において、上下動する。この結果、図48A乃至図48Cに示される如く、SIL端面964は、クリーニングテープ971に対して離接する。集光素子943は、上述の3軸アクチュエータ965(例えば、ギャップサーボ用のコイル)によって、上下に変位されてもよい。或いは、サーボ系以外の他の駆動機構(図示せず)によって、集光素子943が、上下に変位してもよい。代替的に、集光素子943ではなく、レンズクリーニング機構970が集光素子943に接近するようにレンズクリーニング機構970が設計されてもよい。 46 and 47, the light condensing element 943 moves to the lens cleaning mechanism 970 disposed near the optical disk 950. The condensing element 943 moves up and down below the lens cleaning mechanism 970. As a result, as shown in FIGS. 48A to 48C, the SIL end surface 964 comes into contact with and comes away from the cleaning tape 971. The condensing element 943 may be displaced up and down by the above-described triaxial actuator 965 (for example, a gap servo coil). Alternatively, the condensing element 943 may be displaced up and down by a driving mechanism (not shown) other than the servo system. Alternatively, the lens cleaning mechanism 970 may be designed such that the lens cleaning mechanism 970 approaches the condensing element 943 instead of the condensing element 943.
 図46及び図47に示される如く、ディスククリーニング機構980は、光ディスク950の記録面951に対向するクリーニング部材981と、クリーニング部材981を支持する支持体982と、を備える。支持体982は、モータ(図示せず)によって、上下動される。クリーニング部材981は、光ディスク950の半径と略等しい長さの帯体であってもよい。クリーニング部材981は、例えば、繊維やメッシュ材料から形成される。望ましくは、クリーニング部材981は、レンズペーパといった材料から形成される。クリーニング部材981は、記録面951を傷つけることなく、記録面951に接触し、塵埃を除去する。 46 and 47, the disk cleaning mechanism 980 includes a cleaning member 981 that faces the recording surface 951 of the optical disk 950, and a support 982 that supports the cleaning member 981. The support body 982 is moved up and down by a motor (not shown). The cleaning member 981 may be a band having a length substantially equal to the radius of the optical disk 950. The cleaning member 981 is made of, for example, a fiber or a mesh material. Desirably, the cleaning member 981 is formed of a material such as lens paper. The cleaning member 981 contacts the recording surface 951 without removing the recording surface 951 and removes dust.
 図48A乃至図48Cに示される如く、光ディスク950が光ディスクドライブ装置900に搭載されると、レンズクリーニング機構970は、SIL端面964を清浄化する。図48Aにおいて、SIL961は、レンズクリーニング機構970から離れている。その後、図48Bに示される如く、SIL961は、クリーニングテープ971の下方に移動する。SIL961は、上方へ変位し、クリーニングテープ971に接触する。クリーニングテープ971は、その後、走行し、SIL961の端面に付着した塵埃を除去する。図48Cに示される如く、クリーニングテープ971を用いた塵埃の除去の後、クリーニングテープ971は、SIL961から離れ、クリーニング動作が完了する。 48A to 48C, when the optical disk 950 is mounted on the optical disk drive device 900, the lens cleaning mechanism 970 cleans the SIL end surface 964. In FIG. 48A, the SIL 961 is separated from the lens cleaning mechanism 970. Thereafter, as shown in FIG. 48B, the SIL 961 moves below the cleaning tape 971. The SIL 961 is displaced upward and comes into contact with the cleaning tape 971. The cleaning tape 971 then travels and removes dust adhering to the end surface of the SIL 961. As shown in FIG. 48C, after the dust is removed using the cleaning tape 971, the cleaning tape 971 is separated from the SIL 961, and the cleaning operation is completed.
 上述のクリーニング技術は、SIL961の端面へのクリーニングテープ971の直接的な接触を利用する。クリーニングテープ971がSIL961の端面に接触すると、SIL961の端面が損傷されることもある。或いは、クリーニングテープ971に付着した塵埃がSIL961の端面に再度接触することもある。 The above-described cleaning technique uses direct contact of the cleaning tape 971 to the end surface of the SIL 961. When the cleaning tape 971 contacts the end surface of the SIL 961, the end surface of the SIL 961 may be damaged. Alternatively, dust attached to the cleaning tape 971 may come into contact with the end surface of the SIL 961 again.
 SIL961への塵埃の再接触を防止するために、クリーニングテープ971を巻き取る機構を用いて、クリーニングテープ971の未使用の表面がSIL961の端面に接触されてもよい。しかしながら、この手法は、クリーニングテープ971の使用回数の限界に直面する。 In order to prevent re-contact of dust with the SIL 961, an unused surface of the cleaning tape 971 may be brought into contact with the end surface of the SIL 961 using a mechanism for winding the cleaning tape 971. However, this approach faces a limit on the number of times the cleaning tape 971 can be used.
 SIL961の端面の塵埃を拭き取る機構やクリーニングテープ971を巻き取るための機構は、光ディスクドライブ装置900に対して、大きな設置スペースを要求する。 The mechanism for wiping off the dust on the end surface of the SIL 961 and the mechanism for winding the cleaning tape 971 require a large installation space for the optical disc drive device 900.
 光ディスク950及び/又は光学ヘッド910に対する接触を利用して塵埃が除去されるならば、光ディスク950及び/又は光学ヘッド910の表面が損傷されることもある。このことは、記録及び再生に関する性能の大幅な劣化を意味する。 If the dust is removed using contact with the optical disk 950 and / or the optical head 910, the surface of the optical disk 950 and / or the optical head 910 may be damaged. This means a significant deterioration in performance related to recording and reproduction.
 図49は、従来のハードディスクドライブ装置800の概略的な平面図である。図49を参照して、従来のハードディスクドライブ装置800が説明される。 FIG. 49 is a schematic plan view of a conventional hard disk drive device 800. A conventional hard disk drive device 800 will be described with reference to FIG.
 ハードディスクドライブ装置800は、ハウジング810を備える。ハウジング810は、ベース部材811と、ベース部材811に結合されたカバー部材と、を備える。尚、図49において、カバー部材は示されていない。したがって、図49には、ハードディスクドライブ装置800の内部構造が明瞭に示されている。 The hard disk drive device 800 includes a housing 810. The housing 810 includes a base member 811 and a cover member coupled to the base member 811. In FIG. 49, the cover member is not shown. Therefore, FIG. 49 clearly shows the internal structure of the hard disk drive device 800.
 ハードディスクドライブ装置800は、スピンドルモータ820、磁気記録媒体830、HSA840及びボイスコイルモータ(以下、VCM850と称される)を更に備える。スピンドルモータ820、磁気記録媒体830、HSA840及びVCM850は、ハウジング810内に配置される。 The hard disk drive device 800 further includes a spindle motor 820, a magnetic recording medium 830, an HSA 840, and a voice coil motor (hereinafter referred to as VCM850). The spindle motor 820, the magnetic recording medium 830, the HSA 840, and the VCM 850 are disposed in the housing 810.
 スピンドルモータ820は、ベース部材811に固定される。スピンドルモータ820は、磁気記録媒体830を回転させる。 The spindle motor 820 is fixed to the base member 811. The spindle motor 820 rotates the magnetic recording medium 830.
 磁気記録媒体830は、スピンドルモータ820に取り付けられる。磁気記録媒体830は、スピンドルモータ820によって高速に回転される。磁気記録媒体830は、記録区域831と、記録区域831を取り囲む非記録区域832と、を含む。データは、記録区域831に記録される。 The magnetic recording medium 830 is attached to the spindle motor 820. The magnetic recording medium 830 is rotated at high speed by the spindle motor 820. The magnetic recording medium 830 includes a recording area 831 and a non-recording area 832 surrounding the recording area 831. Data is recorded in the recording area 831.
 図50は、HSA840の概略的な斜視図である。図49及び図50を参照して、従来のハードディスクドライブ装置800が更に説明される。 FIG. 50 is a schematic perspective view of HSA840. 49 and 50, the conventional hard disk drive device 800 will be further described.
 HSA840は、スライダ841を備える。スライダ841には、磁気ヘッド(図示せず)が搭載される。HSA840は、スライダ841を磁気記録媒体830上の所定の位置に移動させる。スライダ841に搭載された磁気ヘッドは、磁気記録媒体830に対して、データの記録や再生といった情報処理を実行する。 The HSA 840 includes a slider 841. A magnetic head (not shown) is mounted on the slider 841. The HSA 840 moves the slider 841 to a predetermined position on the magnetic recording medium 830. The magnetic head mounted on the slider 841 performs information processing such as data recording and reproduction on the magnetic recording medium 830.
 HSA840は、スイングアーム842と、スイングアーム842の先端部に取り付けられたサスペンション843と、を更に備える。上述のスライダ841は、サスペンション843の先端部に装着される。 The HSA 840 further includes a swing arm 842 and a suspension 843 attached to the tip of the swing arm 842. The slider 841 described above is attached to the tip of the suspension 843.
 図50に示される如く、サスペンション843は、スイングアーム842の先端部に結合されたロードビーム845と、スライダ841が装着される湾曲部(flexure)846と、を備える。湾曲部846は、スライダ841を磁気記録媒体830の表面に接近させるように湾曲している。ロードビーム845には、スイングアーム842に向けて突出するディンプル847を含む。湾曲部846に装着されたスライダ841は、ロードビーム845に対して微細に揺動可能である。この間、湾曲部846は、ディンプル847に接触する。 50, the suspension 843 includes a load beam 845 coupled to the tip of the swing arm 842 and a flexure 846 on which the slider 841 is mounted. The curved portion 846 is curved so that the slider 841 approaches the surface of the magnetic recording medium 830. The load beam 845 includes a dimple 847 that protrudes toward the swing arm 842. The slider 841 attached to the bending portion 846 can swing finely with respect to the load beam 845. During this time, the curved portion 846 contacts the dimple 847.
 図49に示される如く、ハードディスクドライブ装置800は、ランプ860を備える。サスペンション843は、ロードビーム845の先端部から突出するエンドタップ848を含む。ランプ860は、エンドタップ848に接触し、スライダ841を保持する。 As shown in FIG. 49, the hard disk drive device 800 includes a lamp 860. The suspension 843 includes an end tap 848 that protrudes from the tip of the load beam 845. The ramp 860 contacts the end tap 848 and holds the slider 841.
 図50に示される如く、エンドタップ848は、ランプ860に対向する対向面849と、対向面849からランプ860に向けて突出する突起部861と、を含む。突起部861は、ランプ860に接触するので、エンドタップ848とランプ860との間の接触面積は小さくなる。 50, the end tap 848 includes a facing surface 849 that faces the lamp 860, and a protrusion 861 that protrudes from the facing surface 849 toward the lamp 860. Since the protrusion 861 contacts the lamp 860, the contact area between the end tap 848 and the lamp 860 is reduced.
 磁気記録媒体830がベース部材811上で高速に回転すると、スライダ841に作用する揚力が生ずる。サスペンション843は、磁気記録媒体830に向けてスライダ841を付勢する一方で、揚力は、スライダ841が磁気記録媒体830から離間するように作用する。この結果、スライダ841は、揚力及びサスペンション843の力は平衡する高さ位置に浮上し、当該高さ位置で保持される。浮揚したスライダ841に搭載された磁気ヘッド(図示せず)は、磁気記録媒体830の記録区域831にデータを記録する。或いは、磁気ヘッドは、磁気記録媒体830の記録区域831からデータを再生する。 When the magnetic recording medium 830 rotates on the base member 811 at a high speed, a lift acting on the slider 841 is generated. The suspension 843 urges the slider 841 toward the magnetic recording medium 830, while the lift acts so that the slider 841 is separated from the magnetic recording medium 830. As a result, the slider 841 floats to a height position where the lift force and the force of the suspension 843 are balanced, and is held at the height position. A magnetic head (not shown) mounted on the floated slider 841 records data in the recording area 831 of the magnetic recording medium 830. Alternatively, the magnetic head reproduces data from the recording area 831 of the magnetic recording medium 830.
 ベース部材811に固設されたVCM850は、HSA840に回転力を伝達する。図49に示される如く、VCM850は、VCMコイル851と、VCMコイル851の上側及び下側に配置されるマグネット852と、マグネット852を支持するヨーク853と、を含む。VCM850は、サーボ制御システムの制御下で、VCMコイル237に入力される電流とマグネット852によって形成された相互作用を利用し、フレミングの左手の法則に従う方向にHSA840を回転させる。 The VCM 850 fixed to the base member 811 transmits the rotational force to the HSA 840. As shown in FIG. 49, the VCM 850 includes a VCM coil 851, magnets 852 arranged above and below the VCM coil 851, and a yoke 853 that supports the magnet 852. The VCM 850 rotates the HSA 840 in a direction according to Fleming's left-hand rule using the interaction formed by the magnet 852 and the current input to the VCM coil 237 under the control of the servo control system.
 ハードディスクドライブ装置800の作動が停止すると、VCM850は、HSA840を時計回りに回転させる。この結果、スライダ841が磁気記録媒体830の記録区域831上に位置するローディング状態からスライダ841がランプ860上に移動するアンローディング状態にハードディスクドライブ装置800は変化する。 When the operation of the hard disk drive device 800 is stopped, the VCM 850 rotates the HSA 840 clockwise. As a result, the hard disk drive device 800 changes from a loading state in which the slider 841 is positioned on the recording area 831 of the magnetic recording medium 830 to an unloading state in which the slider 841 moves onto the ramp 860.
 ハードディスクドライブ装置800が起動されると、VCM850は、HSA840を反時計回りに回転させる。この結果、スライダ841がランプ860によって保持されたアンローディング状態からスライダ841が磁気記録媒体830の記録区域831上に位置するローディング状態にハードディスクドライブ装置800は変化する。 When the hard disk drive device 800 is activated, the VCM 850 rotates the HSA 840 counterclockwise. As a result, the hard disk drive device 800 changes from an unloading state in which the slider 841 is held by the ramp 860 to a loading state in which the slider 841 is positioned on the recording area 831 of the magnetic recording medium 830.
 図49に示される如く、ハードディスクドライブ装置800は、ラッチ870を更に備える。ラッチ870は、スライダ841がランプ860によって保持されている間(アンローディング状態)においてハードディスクドライブ装置800に作用し得る外力、衝撃或いは振動に起因するHSA840の不必要な回転を防止する。この結果、HSA840の不必要な回転に起因するスライダ841と磁気記録媒体830との間の不必要な接触並びにスライダ841及び磁気記録媒体830の損傷を防止する。 49, the hard disk drive device 800 further includes a latch 870. The latch 870 prevents unnecessary rotation of the HSA 840 due to external force, impact, or vibration that can act on the hard disk drive device 800 while the slider 841 is held by the ramp 860 (unloading state). As a result, unnecessary contact between the slider 841 and the magnetic recording medium 830 due to unnecessary rotation of the HSA 840 and damage to the slider 841 and the magnetic recording medium 830 are prevented.
 図49に示される如く、ハードディスクドライブ装置800は、HSA840に取り付けられたFPC881と、FPC881の下方に配置されたFPCブラケット882と、を更に備える。FPCブラケット882は、FPC881をベース部材811の下方に配置された主回路基板(図示せず)に接続させるために用いられる。FPCブラケット882は、ベース部材811の角隅部のうち1つに配置される。 49, the hard disk drive device 800 further includes an FPC 881 attached to the HSA 840, and an FPC bracket 882 disposed below the FPC 881. The FPC bracket 882 is used to connect the FPC 881 to a main circuit board (not shown) disposed below the base member 811. The FPC bracket 882 is disposed at one of the corners of the base member 811.
 図49に示される如く、ハードディスクドライブ装置800は、捕集フィルタ890を更に備える。捕集フィルタ890は、FPCブラケット882が取り付けられたベース部材811の角隅部の対角となる他の角隅部に配置される。捕集フィルタ890は、ハードディスクドライブ装置800内で流動する空気中の微粒子といった異物を除去する。 49, the hard disk drive device 800 further includes a collection filter 890. The collection filter 890 is disposed at the other corner of the base member 811 to which the FPC bracket 882 is attached. The collection filter 890 removes foreign matters such as fine particles in the air flowing in the hard disk drive device 800.
 捕集フィルタ890の捕集効率(塵埃を含む空気の通過に対する塵埃の割合)は、例えば、100nmの直径の塵埃に対して、数%から100%の範囲である。捕集フィルタ890の捕集効率は、捕集フィルタ890の圧力損失(捕集フィルタ890の粗さ)に大きく依存する。 The collection efficiency of the collection filter 890 (ratio of dust to the passage of air containing dust) is, for example, in the range of several percent to 100% for dust having a diameter of 100 nm. The collection efficiency of the collection filter 890 greatly depends on the pressure loss of the collection filter 890 (the roughness of the collection filter 890).
 磁気記録媒体830が回転すると、ハードディスクドライブ装置800内で気流が発生する。ハードディスクドライブ装置800内で発生した気流が、磁気記録媒体830の回転数に応じた流速で捕集フィルタ890を通過すると、捕集フィルタ890は、捕集フィルタ890の捕集効率で、気流に含まれる塵埃を除去することができる。 When the magnetic recording medium 830 rotates, an air flow is generated in the hard disk drive device 800. When the air flow generated in the hard disk drive device 800 passes through the collection filter 890 at a flow rate corresponding to the rotational speed of the magnetic recording medium 830, the collection filter 890 is included in the air flow with the collection efficiency of the collection filter 890. Dust can be removed.
 50%の捕集効率を有する捕集フィルタ890が用いられ、且つ、磁気記録媒体830が数千rpmの回転速度で回転しているならば、一般的に、ハードディスクドライブ装置800内の塵埃を約1/10まで低減するのに数十秒から数分かかる。尚、塵埃の量が1/10まで低減されるのに必要とされる捕集期間は、捕集フィルタ890の位置にも大きく依存する。一般的には、捕集フィルタ890は、磁気記録媒体830の側方(周縁の近く)に配置される。 If a collection filter 890 having a collection efficiency of 50% is used and the magnetic recording medium 830 is rotating at a rotational speed of several thousand rpm, generally the dust in the hard disk drive device 800 is reduced to about It takes tens of seconds to several minutes to reduce to 1/10. The collection period required for reducing the amount of dust to 1/10 greatly depends on the position of the collection filter 890. In general, the collection filter 890 is disposed on the side of the magnetic recording medium 830 (near the periphery).
 磁気記録媒体830の回転によって生ずる気流の流速は、磁気記録媒体830の表面上の流速と比べて、磁気記録媒体830の側方において大幅に低減する。したがって、塵埃の捕集に要求される期間は、長くなりやすい。 The flow velocity of the air flow generated by the rotation of the magnetic recording medium 830 is significantly reduced on the side of the magnetic recording medium 830 as compared with the flow velocity on the surface of the magnetic recording medium 830. Therefore, the period required for dust collection tends to be long.
 上述の如く、ハードディスクドライブ装置800が停止したとき、ランプ860は、スライダ841を保持する。スライダ841は、磁気記録媒体830の周縁の傍で、ベース部材811に固定される。 As described above, the ramp 860 holds the slider 841 when the hard disk drive device 800 is stopped. The slider 841 is fixed to the base member 811 near the periphery of the magnetic recording medium 830.
 図50に示される如く、ランプ860は、傾斜面862と停止面863とを含む。エンドタップ848が磁気記録媒体830の周縁に向けて移動すると(即ち、エンドタップ848が磁気記録媒体830の中心から離れる方向に移動すると)、エンドタップ848が磁気記録媒体830の表面から離隔するように、傾斜面862は傾斜する。エンドタップ848は傾斜面862に沿って移動した後、停止面863上で停止する。 50, the ramp 860 includes an inclined surface 862 and a stop surface 863. When the end tap 848 moves toward the periphery of the magnetic recording medium 830 (ie, when the end tap 848 moves away from the center of the magnetic recording medium 830), the end tap 848 is separated from the surface of the magnetic recording medium 830. Further, the inclined surface 862 is inclined. The end tap 848 moves along the inclined surface 862 and then stops on the stop surface 863.
 ランプ860は、支持面864と防止壁865とを更に含む。エンドタップ848が停止面863上で停止している間、支持面864は、スライダ841を支持する。この間、防止壁865は、エンドタップ848が停止面863から離れることを防止する。 The lamp 860 further includes a support surface 864 and a prevention wall 865. The support surface 864 supports the slider 841 while the end tap 848 is stopped on the stop surface 863. During this time, the prevention wall 865 prevents the end tap 848 from leaving the stop surface 863.
 図51は、磁気記録媒体830の部分的な拡大平面図である。図49乃至図51を参照して、従来のハードディスクドライブ装置800が更に説明される。 FIG. 51 is a partially enlarged plan view of the magnetic recording medium 830. The conventional hard disk drive device 800 will be further described with reference to FIGS.
 図49に示される如く、磁気記録媒体830の非記録区域832は、傾斜面862が形成されたランプ860の端部に重なる。図51に示される如く、非記録区域832は、磁気記録媒体830の外縁に沿うバンプ領域833と、バンプ領域833と記録区域831との間に形成された境界領域834と、を含む。バンプ領域833及び境界領域834は、磁気記録媒体830の回転中心と同心の環状の帯領域である。 49, the non-recording area 832 of the magnetic recording medium 830 overlaps the end of the ramp 860 on which the inclined surface 862 is formed. As shown in FIG. 51, the non-recording area 832 includes a bump area 833 along the outer edge of the magnetic recording medium 830, and a boundary area 834 formed between the bump area 833 and the recording area 831. The bump area 833 and the boundary area 834 are annular band areas that are concentric with the rotation center of the magnetic recording medium 830.
 図51に示される如く、バンプ領域833には、多数の微細バンプ835が形成される。磁気記録媒体830の表面にレーザ光を照射し、照射領域を膨張させることによって、微細バンプ835が形成される。微細バンプ835の寸法や形状は、レーザ光の波長や照射強度によって調整されてもよい。好ましくは、微細バンプ835が0.1μm以下の膨張高さを有するように、レーザ光が照射される。 51, a large number of fine bumps 835 are formed in the bump region 833. The bumps 835 are formed by irradiating the surface of the magnetic recording medium 830 with laser light and expanding the irradiated region. The size and shape of the fine bump 835 may be adjusted by the wavelength of the laser light and the irradiation intensity. Preferably, the laser beam is irradiated so that the fine bump 835 has an expansion height of 0.1 μm or less.
 ハードディスクドライブ装置800が停止すると、HSA840は、時計回りに回転し、スライダ841をアンロードする。この結果、スライダ841は、磁気記録媒体830上において、記録区域831から非記録区域832に向けて移動する。スピンドルモータ820が停止すると、磁気記録媒体830の回転数は、「0」に向けて収束する。この結果、スライダ841に作用する揚力は減少する。 When the hard disk drive device 800 stops, the HSA 840 rotates clockwise to unload the slider 841. As a result, the slider 841 moves from the recording area 831 toward the non-recording area 832 on the magnetic recording medium 830. When the spindle motor 820 stops, the rotational speed of the magnetic recording medium 830 converges toward “0”. As a result, the lift acting on the slider 841 decreases.
 図50に示される如く、スライダ841は、磁気記録媒体830に対向する対向面869を含む。対向面869には、スライダ841を磁気記録媒体830から離間させる正圧並びにスライダ841を磁気記録媒体830に吸着させる負圧が作用する。スライダ841に対して作用する上述の揚力は、正圧と負圧との合力として定義されてもよい。対向面869に作用する負圧は、磁気記録媒体830の表面粗度が高くなるにつれて低下することが知られている。バンプ領域833に形成された微細バンプ835は、磁気記録媒体830の表面粗度を高くするので、微細バンプ835は、非記録区域832において、スライダ841を磁気記録媒体830の表面に引きつける吸着力を増加させにくくすることができる。 50, the slider 841 includes a facing surface 869 facing the magnetic recording medium 830. A positive pressure that separates the slider 841 from the magnetic recording medium 830 and a negative pressure that attracts the slider 841 to the magnetic recording medium 830 act on the facing surface 869. The above lift acting on the slider 841 may be defined as a resultant force of positive pressure and negative pressure. It is known that the negative pressure acting on the facing surface 869 decreases as the surface roughness of the magnetic recording medium 830 increases. Since the fine bumps 835 formed in the bump region 833 increase the surface roughness of the magnetic recording medium 830, the fine bumps 835 have an attracting force that attracts the slider 841 to the surface of the magnetic recording medium 830 in the non-recording area 832. It can be made difficult to increase.
 HSA840のエンドタップ848は、ランプ860の傾斜面862に衝突する。吸着力の低下によって、エンドタップ848は適切な速度で移動しているので、エンドタップ848と傾斜面862との衝突に起因する微粒子の発生は生じにくくなる。エンドタップ848は、その後、傾斜面862に沿って移動し、最終的に、停止面863上で停止する。スライダ841は、支持面864上で停止される。 The end tap 848 of the HSA 840 collides with the inclined surface 862 of the ramp 860. Since the end tap 848 moves at an appropriate speed due to the decrease in the attractive force, the generation of fine particles due to the collision between the end tap 848 and the inclined surface 862 is less likely to occur. The end tap 848 then moves along the inclined surface 862 and eventually stops on the stop surface 863. The slider 841 is stopped on the support surface 864.
 上述のクリーニング技術は、捕集フィルタ890を用いて、ハードディスクドライブ装置800内の塵埃を除去する。しかしながら、ハードディスクドライブ装置800の容積は大きいので、ハードディスクドライブ装置800内の塵埃を十分に除去するのに長い時間を要する。 The above-described cleaning technique uses the collection filter 890 to remove dust in the hard disk drive device 800. However, since the volume of the hard disk drive device 800 is large, it takes a long time to sufficiently remove the dust in the hard disk drive device 800.
 ハードディスクドライブ装置800内には、様々な部品が配置される。ハードディスクドライブ装置800の大きな容積及び多数の内部部品は、ハードディスクドライブ装置800内で流れる空気の淀み点を多数生じさせる。したがって、捕集フィルタ890が、ハードディスクドライブ装置内の塵埃を十分に除去できないこともある。 Various components are arranged in the hard disk drive device 800. The large volume and the numerous internal components of the hard disk drive device 800 cause a number of stagnation points for the air flowing in the hard disk drive device 800. Therefore, the collection filter 890 may not be able to sufficiently remove dust in the hard disk drive device.
 上述の如く、磁気記録媒体830の表面の近傍において空気の流速は高い一方で、磁気記録媒体830から離間した位置において空気の流速は低くなる。したがって、捕集フィルタ890の捕集効率は、捕集フィルタ890の配置位置に大きく依存することとなる。 As described above, the air flow rate is high near the surface of the magnetic recording medium 830, while the air flow rate is low at a position away from the magnetic recording medium 830. Therefore, the collection efficiency of the collection filter 890 greatly depends on the arrangement position of the collection filter 890.
 ハードディスクドライブ装置800内の塵埃の発生因子として、スライダ841と磁気記録媒体830との接触、突起部861とランプ860との接触、スピンドルモータ820の流体軸受部のオイルの蒸発、VCM850の軸受部の摺動や接着剤やグリスといった物質の蒸発が挙げられる。 Factors that generate dust in the hard disk drive device 800 include contact between the slider 841 and the magnetic recording medium 830, contact between the protrusion 861 and the lamp 860, evaporation of oil in the fluid bearing portion of the spindle motor 820, and the bearing portion of the VCM 850. Examples include sliding and evaporation of substances such as adhesives and grease.
 光ディスク950と同様に磁気記録媒体830も回転する。これらの円盤の回転中心において生ずる負圧も、非接触式の情報処理を妨げる大きな因子となる。光ディスクドライブ装置900やハードディスクドライブ装置800の内部空間が外部空間と連通しているならば、円盤の回転中心において生じた負圧によって、外部空間で浮遊する塵埃が光ディスクドライブ装置900やハードディスクドライブ装置800の内部空間に進入することとなる。 As with the optical disk 950, the magnetic recording medium 830 also rotates. The negative pressure generated at the center of rotation of these disks is also a major factor that hinders non-contact information processing. If the internal space of the optical disk drive device 900 or the hard disk drive device 800 communicates with the external space, the dust floating in the external space due to the negative pressure generated at the center of rotation of the disk is reflected in the optical disk drive device 900 or the hard disk drive device 800. It will enter the interior space.
 上述の様々な因子に起因する塵埃の粒径は、数十nmから数μmである。 The particle size of dust due to the various factors described above is several tens of nm to several μm.
 磁気記録媒体830が回転している間、スライダ841は、磁気記録媒体830の表面から数nmから数十nmの距離だけ浮上する。捕集フィルタ890の集塵効率が低下するならば、磁気記録媒体830内に存在する数nmから数十nmの塵埃は、磁気記録媒体830の回転によって生じた気流に乗って漂い、磁気記録媒体830とスライダ841との間に噛み込みやすくなる。このことは、磁気記録媒体830の表面の傷又は欠陥を引き起こし、記録や再生といった情報処理を困難にする。 While the magnetic recording medium 830 is rotating, the slider 841 floats from the surface of the magnetic recording medium 830 by a distance of several nm to several tens of nm. If the dust collection efficiency of the collection filter 890 decreases, the dust of several nm to several tens of nm existing in the magnetic recording medium 830 floats on the air current generated by the rotation of the magnetic recording medium 830, and the magnetic recording medium It becomes easy to bite between 830 and the slider 841. This causes scratches or defects on the surface of the magnetic recording medium 830 and makes information processing such as recording and reproduction difficult.
 磁気記録媒体830とスライダ841との間に噛み込んだ塵埃は、浮上したスライダ841の姿勢を大きく変化させることもある。スライダ841の姿勢の変化に伴い、湾曲部846が変形し、スライダ841の内部に組み込まれた磁気ヘッド(図示せず)が破壊されることもある。この結果、ハードディスクドライブ装置800の信頼性及び記録や再生といった性能が大幅に低下する。 Dust caught between the magnetic recording medium 830 and the slider 841 may greatly change the attitude of the slider 841 that has floated. As the posture of the slider 841 changes, the bending portion 846 may be deformed, and a magnetic head (not shown) incorporated in the slider 841 may be destroyed. As a result, the reliability and performance of recording and reproduction of the hard disk drive device 800 are greatly reduced.
特開2004-30821号公報Japanese Patent Laid-Open No. 2004-30821 特開2007-12126号公報JP 2007-12126 A 特開2007-87572号公報JP 2007-87572 A
 本発明は、塵埃に起因する不都合が生じにくい駆動装置を提供することを目的とする。 An object of the present invention is to provide a drive device that is less prone to inconvenience due to dust.
 本発明の一局面に係る駆動装置は、情報処理が行われる処理面を有する少なくとも1つの媒体が収容される収容空間を規定する壁部と、前記処理面に対して非接触式に前記情報処理を行う少なくとも1つの処理素子と、前記少なくとも1つの媒体を回転させる駆動機構と、を備える。該駆動機構は、前記少なくとも1つの媒体を回転させるための駆動力を発生させる力発生部と、前記駆動力を前記少なくとも1つの媒体へ伝達する伝達部と、前記力発生部を前記壁部に固定する固定部と、を含む。前記壁部には、前記伝達部の挿通を許容する開口部が形成される。前記固定部は、前記力発生部と協働して開口部を閉じる。 A drive device according to one aspect of the present invention includes a wall portion that defines a storage space in which at least one medium having a processing surface on which information processing is performed is stored, and the information processing in a non-contact manner with respect to the processing surface. And at least one processing element for performing the above and a drive mechanism for rotating the at least one medium. The drive mechanism includes a force generating unit that generates a driving force for rotating the at least one medium, a transmission unit that transmits the driving force to the at least one medium, and the force generating unit on the wall unit. A fixing portion to be fixed. The wall is formed with an opening that allows the transmission portion to pass therethrough. The fixing portion closes the opening in cooperation with the force generating portion.
 本発明の駆動装置は、塵埃に起因する不都合を生じにくいので、高い信頼性を有する。 The drive device of the present invention has high reliability because it is less likely to cause inconvenience due to dust.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の駆動装置の概略的な斜視図である。It is a schematic perspective view of the drive device of 1st Embodiment. 図1に示される駆動装置の概略的な平面図である。FIG. 2 is a schematic plan view of the drive device shown in FIG. 1. 図1に示される駆動装置の概略的な平面図である。FIG. 2 is a schematic plan view of the drive device shown in FIG. 1. 図1に示される駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device shown by FIG. 図1に示される駆動装置の収容空間内の空気の流れの解析に用いられた解析モデルの概略的な斜視図である。It is a schematic perspective view of the analysis model used for the analysis of the air flow in the accommodation space of the drive device shown in FIG. 図5Aに示される解析モデルを用いた空気の流動に関する解析結果を表す図である。It is a figure showing the analysis result regarding the flow of air using the analysis model shown by FIG. 5A. 図5Aに示される解析モデルを用いた収容空間内の圧力分布に関する解析結果を表す図である。It is a figure showing the analysis result regarding the pressure distribution in the accommodation space using the analysis model shown by FIG. 5A. 図1に示される駆動装置の収容空間内の塵埃の除去効率に関する解析結果を表すグラフである。It is a graph showing the analysis result regarding the removal efficiency of the dust in the accommodation space of the drive device shown by FIG. 図1に示される駆動装置の概略的な拡大断面図である。FIG. 2 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 1. 図1に示される駆動装置の概略的な拡大断面図である。FIG. 2 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 1. 図1に示される駆動装置の制御構造を表す概略図である。It is the schematic showing the control structure of the drive device shown by FIG. 図1に示される駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device shown by FIG. 第2実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 2nd Embodiment. 図10に示される駆動装置の除塵部の概略的な断面図である。It is a schematic sectional drawing of the dust removal part of the drive device shown by FIG. 図10に示される駆動装置の呼吸フィルタの概略的な断面図である。It is a schematic sectional drawing of the respiration filter of the drive device shown by FIG. 図10に示される駆動装置の乾燥部の概略的な断面図である。It is a schematic sectional drawing of the drying part of the drive device shown by FIG. 図10に示される駆動装置の活性炭部の概略的な断面図である。It is a schematic sectional drawing of the activated carbon part of the drive device shown by FIG. 第3実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 3rd Embodiment. 図15に示される駆動装置の概略的な拡大図である。FIG. 16 is a schematic enlarged view of the drive device shown in FIG. 15. 第4実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 4th Embodiment. 図17に示される駆動装置の収容空間内の構造の概略図である。It is the schematic of the structure in the accommodation space of the drive device shown by FIG. 図17に示される駆動装置の概略的な拡大斜視図である。FIG. 18 is a schematic enlarged perspective view of the drive device shown in FIG. 17. 第5実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 5th Embodiment. 図20に示される駆動装置の概略的な拡大断面図である。FIG. 21 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 20. 図20に示される駆動装置の概略的な拡大断面図である。FIG. 21 is a schematic enlarged cross-sectional view of the drive device shown in FIG. 20. 第6実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 6th Embodiment. 図22に示される駆動装置の回路基板による例示的な制御を表すフローチャートである。It is a flowchart showing the exemplary control by the circuit board of the drive device shown by FIG. 第7実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 7th Embodiment. 第8実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of an 8th embodiment. 第9実施形態の駆動装置の概略的な断面図である。It is a schematic sectional drawing of the drive device of 9th Embodiment. 塵埃の除去効率の解析に用いられた解析モデルの概略的な斜視図である。It is a schematic perspective view of the analysis model used for analysis of dust removal efficiency. 図27Aに示される解析モデルを用いて得られた塵埃の除去効率に関する解析結果を表す概略的なグラフである。It is a schematic graph showing the analysis result regarding the removal efficiency of the dust obtained using the analysis model shown by FIG. 27A. 第10実施形態の駆動装置の概略図である。It is the schematic of the drive device of 10th Embodiment. 図28に示される駆動装置の光学ヘッドの概略図である。It is the schematic of the optical head of the drive device shown by FIG. 図28に示される駆動装置の4分割受光領域上の光のスポット形状と、全反射戻り光との関係を表す概略的なグラフである。It is a schematic graph showing the relationship between the spot shape of the light on the 4-part light reception area | region of the drive device shown by FIG. 図28に示される駆動装置の収容壁の概略的な平面図である。FIG. 29 is a schematic plan view of a housing wall of the drive device shown in FIG. 28. 図31Aに示される収容壁の概略的な断面図である。FIG. 31B is a schematic cross-sectional view of the accommodation wall shown in FIG. 31A. 図31Aに示される収容壁の概略的な底面図である。FIG. 31B is a schematic bottom view of the accommodation wall shown in FIG. 31A. 図28に示される駆動装置の収容壁の概略的な平面図である。FIG. 29 is a schematic plan view of a housing wall of the drive device shown in FIG. 28. 図32Aに示される駆動装置の収容壁の概略的な平面図である。FIG. 32B is a schematic plan view of the accommodation wall of the drive device shown in FIG. 32A. 図32Aに示される駆動装置の収容壁の概略的な底面図である。FIG. 32B is a schematic bottom view of the accommodation wall of the drive device shown in FIG. 32A. 図28に示される駆動装置のイオナイザの概略図である。It is the schematic of the ionizer of the drive device shown by FIG. 第11実施形態の駆動装置の概略図である。It is the schematic of the drive device of 11th Embodiment. 図34に示される駆動装置のイオナイザの概略図である。It is the schematic of the ionizer of the drive device shown by FIG. 第12実施形態の駆動装置の概略図である。It is the schematic of the drive device of 12th Embodiment. 図36に示される駆動装置の回路基板による例示的な制御を表すフローチャートである。It is a flowchart showing the exemplary control by the circuit board of the drive device shown by FIG. 第13実施形態の駆動装置の概略図である。It is the schematic of the drive device of 13th Embodiment. 第14実施形態の駆動装置の概略図である。It is the schematic of the drive device of 14th Embodiment. 図39に示される駆動装置の概略的な平面図である。FIG. 40 is a schematic plan view of the drive device shown in FIG. 39. 図39に示される駆動装置の概略的な断面図である。FIG. 40 is a schematic cross-sectional view of the drive device shown in FIG. 39. 第15実施形態の駆動装置の概略図である。It is the schematic of the drive device of 15th Embodiment. 図41Aに示される駆動装置の概略的な平面図である。FIG. 41B is a schematic plan view of the drive device shown in FIG. 41A. 図41Aに示される駆動装置の概略的な平面図である。FIG. 41B is a schematic plan view of the drive device shown in FIG. 41A. 図41Aに示される駆動装置の概略的な断面図である。FIG. 41B is a schematic cross-sectional view of the drive device shown in FIG. 41A. 第16実施形態の駆動装置の概略図である。It is the schematic of the drive device of 16th Embodiment. 従来の光ディスクドライブ装置の概略図である。It is the schematic of the conventional optical disk drive device. 図44に示される光ディスクドライブ装置の集光素子の概略的な拡大図である。It is a rough enlarged view of the condensing element of the optical disk drive device shown by FIG. 図44に示される光ディスクドライブ装置の拡大概略図である。FIG. 45 is an enlarged schematic view of the optical disk drive device shown in FIG. 44. 図44に示される光ディスクドライブ装置の概略的な底面図である。FIG. 45 is a schematic bottom view of the optical disk drive device shown in FIG. 44. 図44に示される光ディスクドライブ装置のレンズクリーニング機構の概略図である。FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44. 図44に示される光ディスクドライブ装置のレンズクリーニング機構の概略図である。FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44. 図44に示される光ディスクドライブ装置のレンズクリーニング機構の概略図である。FIG. 45 is a schematic view of a lens cleaning mechanism of the optical disk drive device shown in FIG. 44. 従来のハードディスクドライブ装置の概略的な平面図である。It is a schematic plan view of a conventional hard disk drive device. 図49に示されるハードディスクドライブ装置の概略的な斜視図である。FIG. 50 is a schematic perspective view of the hard disk drive device shown in FIG. 49. 図49に示されるハードディスクドライブ装置の磁気記録媒体の部分的な拡大平面図である。FIG. 50 is a partially enlarged plan view of the magnetic recording medium of the hard disk drive device shown in FIG. 49.
 非接触式に情報処理を行う様々な装置が図面を参照して説明される。尚、以下に説明される様々な実施形態において、同様の構成要素に対して同様の符号が付されている。また、装置の概念の明瞭化のため、必要に応じて、重複する説明は省略される。図面に示される構成、配置或いは形状並びに図面に関連する記載は、単に本実施形態の原理を容易に理解させることを目的とする。したがって、本実施形態の原理は、これらに何ら限定されるものではない。 Various devices that perform information processing in a non-contact manner will be described with reference to the drawings. In various embodiments described below, the same reference numerals are given to the same components. In addition, for the sake of clarity of the concept of the device, redundant description is omitted as necessary. The structure, arrangement, or shape shown in the drawings and the description related to the drawings are merely for the purpose of easily understanding the principle of the present embodiment. Therefore, the principle of this embodiment is not limited to these.
 <第1実施形態>
 図1は、第1実施形態の駆動装置100の概略的な斜視図である。図2は、図1に示される駆動装置100の概略的な平面図である。図1及び図2を参照して駆動装置100が説明される。
<First Embodiment>
FIG. 1 is a schematic perspective view of a driving apparatus 100 according to the first embodiment. FIG. 2 is a schematic plan view of the driving apparatus 100 shown in FIG. The driving device 100 will be described with reference to FIGS. 1 and 2.
 駆動装置100は、磁気ディスク120を備える。磁気ディスク120は、記録や再生といった情報処理が磁気的に行われる処理面121と、処理面121とは反対側の反対面122と、を含む。本実施形態において、磁気ディスク120は媒体として例示される。 The driving device 100 includes a magnetic disk 120. The magnetic disk 120 includes a processing surface 121 on which information processing such as recording and reproduction is performed magnetically, and an opposite surface 122 opposite to the processing surface 121. In the present embodiment, the magnetic disk 120 is exemplified as a medium.
 駆動装置100は、処理面121に対して非接触式に記録や再生といった情報処理を行う磁気ヘッド130を更に備える。磁気ヘッド130は、情報を磁気ディスク120に磁気的に記録する。或いは、磁気ヘッド130は、情報を磁気ディスク120から磁気的に再生する。本実施形態において、磁気ヘッド130は、処理素子又は磁気処理素子として例示される。 The driving apparatus 100 further includes a magnetic head 130 that performs information processing such as recording and reproduction on the processing surface 121 in a non-contact manner. The magnetic head 130 magnetically records information on the magnetic disk 120. Alternatively, the magnetic head 130 magnetically reproduces information from the magnetic disk 120. In the present embodiment, the magnetic head 130 is exemplified as a processing element or a magnetic processing element.
 駆動装置100は、磁気ヘッド130を保持する保持機構140を更に備える。保持機構140は、磁気ヘッド130を保持するスライダ141と、スライダ141を保持するサスペンション142と、サスペンション142を保持するスイングアーム143と、スイングアーム143を磁気ディスク120上で回動させるボイスコイルモータ144と、を含む。磁気ディスク120の回転によって生じた空気流は、磁気ヘッド130を保持するスライダ141を磁気ディスク120から浮上させる。サスペンション142は、柔らかな板バネ構造(図示せず:一般的に、「ジンバル」と称される)を介して、スライダ141並びに磁気ヘッド130を支持する。ボイスコイルモータ144は、回転シャフト、コイル、マグネットやヨークといった部品から形成される。保持機構140に対して、既知のハードディスクドライブ装置に用いられる構造が適用されてもよい。本実施形態において、ボイスコイルモータ144は、回動モータとして例示される。 The driving apparatus 100 further includes a holding mechanism 140 that holds the magnetic head 130. The holding mechanism 140 includes a slider 141 that holds the magnetic head 130, a suspension 142 that holds the slider 141, a swing arm 143 that holds the suspension 142, and a voice coil motor 144 that rotates the swing arm 143 on the magnetic disk 120. And including. The air flow generated by the rotation of the magnetic disk 120 causes the slider 141 holding the magnetic head 130 to float from the magnetic disk 120. The suspension 142 supports the slider 141 and the magnetic head 130 via a soft leaf spring structure (not shown: generally referred to as “gimbal”). The voice coil motor 144 is formed from components such as a rotating shaft, a coil, a magnet, and a yoke. A structure used in a known hard disk drive device may be applied to the holding mechanism 140. In the present embodiment, the voice coil motor 144 is exemplified as a rotation motor.
 駆動装置100は、信号処理部150を更に備える。信号処理部150は、磁気ヘッド130への或いは磁気ヘッド130からの信号を伝送するFPC151と、信号を増幅するヘッドアンプ152と、信号処理を行う回路基板153と、を含む。回路基板153は、磁気ディスク120に記録される情報を含む記録信号を生成してもよい。回路基板153は、磁気ヘッド130が磁気ディスク120から読み取った情報を含む再生信号を処理してもよい。記録信号は、FPC151を通じて磁気ヘッド130に供給される。磁気ヘッド130は、記録信号に応じて、磁気ディスク120に情報を記録することができる。磁気ヘッド130から出力された再生信号は、ヘッドアンプ152によって増幅される。回路基板153は、増幅された再生信号を処理することができる。磁気ディスク120に対する情報処理技術は、既知のハードディスクドライブ装置に用いられる技術であってもよい。 The driving apparatus 100 further includes a signal processing unit 150. The signal processing unit 150 includes an FPC 151 that transmits a signal to or from the magnetic head 130, a head amplifier 152 that amplifies the signal, and a circuit board 153 that performs signal processing. The circuit board 153 may generate a recording signal including information recorded on the magnetic disk 120. The circuit board 153 may process a reproduction signal including information read from the magnetic disk 120 by the magnetic head 130. The recording signal is supplied to the magnetic head 130 through the FPC 151. The magnetic head 130 can record information on the magnetic disk 120 in accordance with a recording signal. The reproduction signal output from the magnetic head 130 is amplified by the head amplifier 152. The circuit board 153 can process the amplified reproduction signal. The information processing technique for the magnetic disk 120 may be a technique used in a known hard disk drive device.
 図3は、駆動装置100の概略的な平面図である。図4は、駆動装置100の概略的な断面図である。図3及び図4を参照して、駆動装置100が更に説明される。 FIG. 3 is a schematic plan view of the driving device 100. FIG. 4 is a schematic cross-sectional view of the driving device 100. The drive device 100 will be further described with reference to FIGS. 3 and 4.
 駆動装置100は、磁気ディスク120、磁気ヘッド130及び保持機構140が収容される収容空間169を規定する収容壁160と、収容壁160を取り囲む筐体110と、を更に備える。筐体110は、収容壁160の下方に配置された底壁112と、収容壁160の上方に配置された天壁116と、底壁112と天壁116との間で収容壁160を取り囲む枠壁113と、を含む。本実施形態において、収容壁160は、壁部として例示される。 The driving device 100 further includes an accommodation wall 160 that defines an accommodation space 169 in which the magnetic disk 120, the magnetic head 130, and the holding mechanism 140 are accommodated, and a housing 110 that surrounds the accommodation wall 160. The housing 110 includes a bottom wall 112 disposed below the housing wall 160, a top wall 116 disposed above the housing wall 160, and a frame surrounding the housing wall 160 between the bottom wall 112 and the top wall 116. And a wall 113. In this embodiment, the accommodation wall 160 is illustrated as a wall part.
 収容壁160は、磁気ディスク120と天壁116との間で横たわる第1壁部161と、底壁112と磁気ディスク120との間で横たわる第2壁部162と、第1壁部161の右縁及び第2壁部162の右縁に接続された第3壁部163と、を含む。第1壁部161は、第2壁部162と協働して、薄い空間を形成する。第1壁部161と第2壁部162とによって主に規定される空間内で磁気ディスク120は回転する。第1壁部161は、第3壁部163と協働して、厚い空間を形成する。第1壁部161と第3壁部163とによって主に規定される空間内には、ボイスコイルモータ144が配置される。ボイスコイルモータ144は、第3壁部163に固定される。本実施形態において、第1壁部161、第2壁部162及び第3壁部163のうち1つは、第1壁部材として例示される。第1壁部161、第2壁部162及び第3壁部163のうち他のもう1つは、第2壁部材として例示される。 The housing wall 160 includes a first wall 161 lying between the magnetic disk 120 and the top wall 116, a second wall 162 lying between the bottom wall 112 and the magnetic disk 120, and a right side of the first wall 161. A third wall portion 163 connected to the edge and the right edge of the second wall portion 162. The first wall portion 161 cooperates with the second wall portion 162 to form a thin space. The magnetic disk 120 rotates in a space mainly defined by the first wall portion 161 and the second wall portion 162. The first wall portion 161 cooperates with the third wall portion 163 to form a thick space. A voice coil motor 144 is disposed in a space mainly defined by the first wall portion 161 and the third wall portion 163. The voice coil motor 144 is fixed to the third wall portion 163. In the present embodiment, one of the first wall portion 161, the second wall portion 162, and the third wall portion 163 is exemplified as the first wall member. Another one of the first wall portion 161, the second wall portion 162, and the third wall portion 163 is exemplified as the second wall member.
 筐体110は、支持フレーム117を備える。収容壁160は、支持フレーム117によって筐体110内で保持並びに位置決めされる。 The housing 110 includes a support frame 117. The housing wall 160 is held and positioned in the housing 110 by the support frame 117.
 図4に示される如く、駆動装置100は、磁気ディスク120を回転させる駆動機構170を更に備える。駆動機構170は、スピンドルモータ171を備える。スピンドルモータ171は、磁気ディスク120を回転させるための駆動力を発生させる本体部172と、本体部172から磁気ディスク120に向けて突出するスピンドルシャフト173と、を含む。第2壁部162にはスピンドルホール164が形成される。スピンドルシャフト173の先端部は、スピンドルホール164を通じて、収容空間169内に進入する。磁気ディスク120は、スピンドルシャフト173の先端部に固定される。スピンドルシャフト173は、本体部172によって作り出された駆動力に応じて回転する。この結果、磁気ディスク120は、収容空間169内で回転する。本実施形態において、本体部172は、力発生部として例示される。スピンドルシャフト173は、力伝達部として例示される。スピンドルホール164は、開口部として例示される。 As shown in FIG. 4, the drive device 100 further includes a drive mechanism 170 that rotates the magnetic disk 120. The drive mechanism 170 includes a spindle motor 171. The spindle motor 171 includes a main body 172 that generates a driving force for rotating the magnetic disk 120, and a spindle shaft 173 that protrudes from the main body 172 toward the magnetic disk 120. A spindle hole 164 is formed in the second wall portion 162. The tip of the spindle shaft 173 enters the accommodation space 169 through the spindle hole 164. The magnetic disk 120 is fixed to the tip of the spindle shaft 173. The spindle shaft 173 rotates according to the driving force created by the main body 172. As a result, the magnetic disk 120 rotates in the accommodation space 169. In the present embodiment, the main body 172 is exemplified as a force generation unit. The spindle shaft 173 is exemplified as a force transmission unit. The spindle hole 164 is exemplified as the opening.
 駆動機構170は、収容空間169から露出した本体部172を第2壁部162に固定するための固定壁174を備える。固定壁174は、本体部172と協働して、スピンドルホール164を閉じる。 The driving mechanism 170 includes a fixing wall 174 for fixing the main body 172 exposed from the accommodation space 169 to the second wall 162. The fixed wall 174 closes the spindle hole 164 in cooperation with the main body 172.
 駆動機構170は、磁気ディスク120が載置されるハブ175と、ハブ175と協働して磁気ディスク120を挟持するキャップ176と、キャップ176を貫通してハブ175に接続される固定ネジ177と、を更に備える。磁気ディスク120は、キャップ176と固定ネジ177とによって、ハブ175上で精度よく固定される。また、磁気ディスク120は、スピンドルモータ171によって、数千rpmの回転数で精度よく回転する。 The drive mechanism 170 includes a hub 175 on which the magnetic disk 120 is placed, a cap 176 that sandwiches the magnetic disk 120 in cooperation with the hub 175, and a fixing screw 177 that passes through the cap 176 and is connected to the hub 175. Are further provided. The magnetic disk 120 is accurately fixed on the hub 175 by a cap 176 and a fixing screw 177. Further, the magnetic disk 120 is accurately rotated by the spindle motor 171 at a rotational speed of several thousand rpm.
 駆動機構170は、固定壁174を第2壁部162に接続させるシールド部178を備える。固定壁174と第2壁部162との間でスピンドルホール164並びにスピンドルシャフト173を取り囲むシールド部178は、シールド剤、接着樹脂や固定壁174と第2壁部162との間を気密に保つことができる材料から形成されてもよい。磁気ディスク120の回転は、スピンドルシャフト173の周囲で負圧環境を引き起こす。シールド部178、固定壁174及び本体部172は、収容空間169内の負圧空間を、収容壁160と筐体110との間の空間から隔離するので、収容壁160と筐体110との間の空間で漂う塵埃は、スピンドルホール164を通じて収容空間169内に入り込みにくくなる。本実施形態において、本体部172を第2壁部162に固定するために用いられる固定壁174及びシールド部178は、固定部として例示される。本体部172を支持する固定壁174は、支持部として例示される。 The drive mechanism 170 includes a shield part 178 that connects the fixed wall 174 to the second wall part 162. The shield part 178 surrounding the spindle hole 164 and the spindle shaft 173 between the fixed wall 174 and the second wall part 162 keeps the shielding agent, adhesive resin, and the fixed wall 174 and the second wall part 162 airtight. It may be formed from a material capable of The rotation of the magnetic disk 120 causes a negative pressure environment around the spindle shaft 173. Since the shield part 178, the fixed wall 174, and the main body part 172 isolate the negative pressure space in the accommodation space 169 from the space between the accommodation wall 160 and the housing 110, the space between the accommodation wall 160 and the housing 110 is separated. Dust drifting in the space becomes difficult to enter the accommodation space 169 through the spindle hole 164. In the present embodiment, the fixing wall 174 and the shield part 178 used for fixing the main body part 172 to the second wall part 162 are exemplified as the fixing part. The fixed wall 174 that supports the main body portion 172 is exemplified as the support portion.
 収容壁160は、第1壁部161と第2壁部162との境界、第2壁部162と第3壁部163との境界並びに第3壁部163と第1壁部161との境界をシールするシール部165を含む。この結果、収容空間169は、密閉されることとなる。シールド部178及びシール部165は、樹脂、ゴムやシリコンといった材料から形成されてもよい。第1壁部161、第2壁部162及び第3壁部163は、0.1mmから1mmの厚さを有する金属板又は樹脂板から形成されてもよい。 The housing wall 160 has a boundary between the first wall portion 161 and the second wall portion 162, a boundary between the second wall portion 162 and the third wall portion 163, and a boundary between the third wall portion 163 and the first wall portion 161. A seal portion 165 for sealing is included. As a result, the accommodation space 169 is sealed. The shield part 178 and the seal part 165 may be formed of a material such as resin, rubber, or silicon. The first wall 161, the second wall 162, and the third wall 163 may be formed of a metal plate or a resin plate having a thickness of 0.1 mm to 1 mm.
 本実施形態において、ボイスコイルモータ144は、全体的に、収容空間169内に配置される。代替的に、ボイスコイルモータの一部は、収容空間から露出してもよい。筐体は、収容空間から露出したボイスコイルモータの一部を支持する支持フレームを備えてもよい。この場合、ボイスコイルモータと収容壁との間の境界は、シールド剤や他の適切な材料を用いてシールされることが好ましい。 In this embodiment, the voice coil motor 144 is disposed in the accommodation space 169 as a whole. Alternatively, a part of the voice coil motor may be exposed from the receiving space. The housing may include a support frame that supports a part of the voice coil motor exposed from the accommodation space. In this case, the boundary between the voice coil motor and the receiving wall is preferably sealed using a shielding agent or other suitable material.
 磁気ヘッド130、スライダ141、サスペンション142及びスイングアーム143は、収容空間169内で、磁気ディスク120の処理面121に沿って回動する。この間、磁気ヘッド130は、磁気ディスク120に情報を磁気的に記録する。或いは、磁気ヘッド130は、磁気ディスク120から情報を磁気的に再生する。 The magnetic head 130, the slider 141, the suspension 142, and the swing arm 143 rotate along the processing surface 121 of the magnetic disk 120 in the accommodation space 169. During this time, the magnetic head 130 magnetically records information on the magnetic disk 120. Alternatively, the magnetic head 130 magnetically reproduces information from the magnetic disk 120.
 磁気ディスク120の回転は、収容空間169内で空気の流れ(典型的には、旋回流)を引き起こす。この結果、磁気ヘッド130及びスライダ141は、処理面121から浮上する。磁気ヘッド130及びスライダ141の浮上量は、保持機構140の設計に依存する。典型的には、磁気ヘッド130及びスライダ141の浮上量は、数nmから数十nmである。もし、磁気ヘッド130又はスライダ141と、処理面121と、の間に塵埃が入り込むならば、磁気ヘッド130、スライダ141及び/又は処理面121は、損傷されることもある。磁気ヘッド130、スライダ141及び/又は処理面121の損傷は、駆動装置100の記録性能及び/又は再生性能を大幅に低下させることもある。 The rotation of the magnetic disk 120 causes an air flow (typically a swirl flow) in the accommodation space 169. As a result, the magnetic head 130 and the slider 141 float from the processing surface 121. The flying height of the magnetic head 130 and the slider 141 depends on the design of the holding mechanism 140. Typically, the flying height of the magnetic head 130 and the slider 141 is several nanometers to several tens of nanometers. If dust enters between the magnetic head 130 or the slider 141 and the processing surface 121, the magnetic head 130, the slider 141, and / or the processing surface 121 may be damaged. Damage to the magnetic head 130, the slider 141, and / or the processing surface 121 may significantly reduce the recording performance and / or reproduction performance of the drive device 100.
 上述の如く、収容空間169は、収容壁160、シールド部178、固定壁174、本体部172及びシール部165によって密閉されている。したがって、収容壁160と筐体110との間で浮遊する塵埃は、収容空間169へ入り込みにくくなる。この結果、収容空間169内の塵埃の量は、低い水準に保たれることとなる。このことは、磁気ヘッド130又はスライダ141と、処理面121と、の間に入り込む塵埃のリスクを大幅に低減させる。したがって、磁気ヘッド130のクラッシュ、磁気ディスク120の記録エラー及び/又は再生エラー、磁気ヘッド130、スライダ141及び/又は処理面121の損傷といった不都合はほとんど生じない。かくして、駆動装置100は、記録性能及び/又は再生性能を高い水準で維持することができる。 As described above, the storage space 169 is sealed by the storage wall 160, the shield portion 178, the fixed wall 174, the main body portion 172, and the seal portion 165. Accordingly, dust floating between the accommodation wall 160 and the housing 110 is less likely to enter the accommodation space 169. As a result, the amount of dust in the accommodation space 169 is kept at a low level. This greatly reduces the risk of dust entering between the magnetic head 130 or slider 141 and the processing surface 121. Therefore, there are almost no inconveniences such as crash of the magnetic head 130, recording error and / or reproduction error of the magnetic disk 120, damage to the magnetic head 130, the slider 141 and / or the processing surface 121. Thus, the driving apparatus 100 can maintain the recording performance and / or the reproduction performance at a high level.
 本実施形態において、収容壁160は、第1壁部161、第2壁部162及び第3壁部163を含む。したがって、収容空間169内における磁気ディスク120や保持機構140の組立は容易になる。第1壁部161、第2壁部162及び第3壁部163は、シール部165によって密閉されるので、収容空間169は適切に密閉されることとなる。 In the present embodiment, the storage wall 160 includes a first wall portion 161, a second wall portion 162, and a third wall portion 163. Therefore, the assembly of the magnetic disk 120 and the holding mechanism 140 in the accommodation space 169 is facilitated. Since the 1st wall part 161, the 2nd wall part 162, and the 3rd wall part 163 are sealed with the seal | sticker part 165, the accommodation space 169 will be sealed appropriately.
 本実施形態において、収容壁160は、多角形状である。代替的に、収容壁は、磁気ディスクと同心の円形であってもよい。 In the present embodiment, the accommodation wall 160 has a polygonal shape. Alternatively, the receiving wall may be circular concentric with the magnetic disk.
 駆動装置100は、収容空間169内で塵埃を捕集する除塵部180を更に備える。除塵部180は、処理面121と第1壁部161との間に配置された上捕集フィルタ181と、反対面122と第2壁部162との間に配置された下捕集フィルタ182と、を含む。本実施形態において、除塵部180は、捕集フィルタとして例示される。 The driving apparatus 100 further includes a dust removing unit 180 that collects dust in the accommodation space 169. The dust removing unit 180 includes an upper collection filter 181 disposed between the processing surface 121 and the first wall portion 161, and a lower collection filter 182 disposed between the opposite surface 122 and the second wall portion 162. ,including. In this embodiment, the dust removal part 180 is illustrated as a collection filter.
 第1壁部161は、処理面121に対向する第1内面166を含む。第1内面166に取り付けられた上捕集フィルタ181は、処理面121に向かって突出する。本実施形態において、上捕集フィルタ181は、第1フィルタとして例示される。 The first wall portion 161 includes a first inner surface 166 that faces the processing surface 121. The upper collection filter 181 attached to the first inner surface 166 protrudes toward the processing surface 121. In the present embodiment, the upper collection filter 181 is exemplified as the first filter.
 第2壁部162は、反対面122に対向する第2内面167を含む。第2内面167に取り付けられた下捕集フィルタ182は、反対面122に向けて突出する。本実施形態において、下捕集フィルタ182は、第2フィルタとして例示される。 The second wall portion 162 includes a second inner surface 167 that faces the opposite surface 122. The lower collection filter 182 attached to the second inner surface 167 protrudes toward the opposite surface 122. In the present embodiment, the lower collection filter 182 is exemplified as the second filter.
 除塵部180は、ポリエチレンやポリプロピレンといった樹脂材料から形成されてもよい。或いは、除塵部180は、静電不織布から形成されてもよい。本実施形態において、約100nmの塵埃の通過に対して、約50%の塵埃を捕集することができる捕集効率が達成されるように、除塵部180の目の粗さは設計されてもよい。除塵部180中における空気の通過経路での樹脂の密集度が高いならば、塵埃は、効率的に捕集される一方で、除塵部180の上流と下流との間での圧力差(圧力損失)が大きくなる。この結果、樹脂密度が過度に高いならば、空気の流れが除塵部180を避けることもある。例えば、略100%の捕集効率を達成するように除塵部180が設計されるならば、空気は、除塵部180をほとんど通過しない。この結果、駆動装置100全体としての塵埃の除去効率は低下する。 The dust removing unit 180 may be formed of a resin material such as polyethylene or polypropylene. Or the dust removal part 180 may be formed from an electrostatic nonwoven fabric. In this embodiment, even if the coarseness of the dust removing unit 180 is designed so that the collection efficiency capable of collecting about 50% of dust with respect to the passage of dust of about 100 nm is achieved. Good. If the density of the resin in the air passage in the dust removing unit 180 is high, the dust is efficiently collected, while the pressure difference between the upstream and downstream of the dust removing unit 180 (pressure loss). ) Becomes larger. As a result, if the resin density is excessively high, the air flow may avoid the dust removing unit 180. For example, if the dust removing unit 180 is designed to achieve approximately 100% collection efficiency, air hardly passes through the dust removing unit 180. As a result, the dust removal efficiency of the drive device 100 as a whole decreases.
 図5Aは、収容空間169内の空気の流れの解析に用いられた解析モデルの概略的な斜視図である。図5Bは、収容空間169内の空気の流れを表す解析結果である。図5Cは、収容空間169内の圧力分布を表す解析結果である。図4乃至図5Cを参照して、収容空間169内の空気の流れ及び圧力分布に関する解析結果が説明される。 FIG. 5A is a schematic perspective view of an analysis model used for analyzing the air flow in the accommodation space 169. FIG. 5B is an analysis result representing the flow of air in the accommodation space 169. FIG. 5C is an analysis result representing the pressure distribution in the accommodation space 169. With reference to FIG. 4 thru | or FIG. 5C, the analysis result regarding the flow of air in the accommodation space 169 and pressure distribution is demonstrated.
 図5Aには、収容空間169を形成する収容壁160、収容空間169内に配置された磁気ディスク120及び上捕集フィルタ181が示されている。 FIG. 5A shows the storage wall 160 that forms the storage space 169, the magnetic disk 120 disposed in the storage space 169, and the upper collection filter 181.
 図5Bは、磁気ディスク120が回転したときの収容空間169内の空気の流れを、ベクトルを用いて表している。各ベクトルの長さは、流速の大きさを意味する。各ベクトルの方向は、空気の流れの方向を意味する。図5Bに示される解析結果から、磁気ディスク120が回転すると、磁気ディスク120の中心から外方に向かって旋回する旋回流が発生することが分かる。 FIG. 5B represents the flow of air in the accommodation space 169 when the magnetic disk 120 rotates using a vector. The length of each vector means the magnitude of the flow velocity. The direction of each vector means the direction of air flow. From the analysis result shown in FIG. 5B, it can be seen that when the magnetic disk 120 rotates, a swirl flow swirling outward from the center of the magnetic disk 120 is generated.
 図5Cは、磁気ディスク120が回転したときの収容空間169内の圧力分布を表す。図5Cに示される解析結果から、磁気ディスク120の回転の間、磁気ディスク120の中心(即ち、回転中心)の周りにおける圧力は、磁気ディスク120の外周縁の周囲の圧力と比べて低くなることが分かる。 FIG. 5C shows the pressure distribution in the accommodation space 169 when the magnetic disk 120 rotates. From the analysis result shown in FIG. 5C, during the rotation of the magnetic disk 120, the pressure around the center of the magnetic disk 120 (that is, the rotation center) is lower than the pressure around the outer periphery of the magnetic disk 120. I understand.
 図4を参照して説明された如く、第1壁部161は、磁気ディスク120の処理面121に近接して配置される。第2壁部162は、磁気ディスク120の反対面122に近接して配設される。この結果、磁気ディスク120の回転によって、磁気ディスク120の回転中心において低い圧力が生じる一方で磁気ディスク120の回転中心から離間した位置において高い圧力が生じる。磁気ディスク120の回転によって生じた遠心力が収容空間169内の空気に作用し、上述の圧力分布が作り出される。収容空間169内の空気の流速は、磁気ディスク120の表面(処理面121及び/又は反対面122)において最も高くなる。例えば、磁気ディスク120が3.5インチの直径を有し、且つ、7000rpmで回転するならば、磁気ディスク120の回転中心から磁気ディスク120の直径の4分の1の距離だけ離間した位置において、磁気ディスク120の回転中心から外方へ旋回して流れる空気の流速は、約20m/sとなる。 As described with reference to FIG. 4, the first wall portion 161 is disposed close to the processing surface 121 of the magnetic disk 120. The second wall portion 162 is disposed close to the opposite surface 122 of the magnetic disk 120. As a result, the rotation of the magnetic disk 120 generates a low pressure at the rotation center of the magnetic disk 120, while a high pressure is generated at a position away from the rotation center of the magnetic disk 120. The centrifugal force generated by the rotation of the magnetic disk 120 acts on the air in the accommodation space 169, and the pressure distribution described above is created. The flow velocity of air in the accommodation space 169 is highest on the surface (the processing surface 121 and / or the opposite surface 122) of the magnetic disk 120. For example, if the magnetic disk 120 has a diameter of 3.5 inches and rotates at 7000 rpm, the magnetic disk 120 is separated from the center of rotation of the magnetic disk 120 by a distance of a quarter of the diameter of the magnetic disk 120. The flow velocity of the air swirling outward from the rotation center of the magnetic disk 120 is about 20 m / s.
 収容空間169内の空気の流速は、磁気ディスク120の表面(処理面121及び/又は反対面122)において最も高くなる。収容空間169内の空気の流速は、磁気ディスク120の表面から離れるにつれて低くなる。収容空間169内の空気の流速は、磁気ディスク120の回転中心から離れるにつれて高くなる。 The flow rate of air in the accommodation space 169 is highest on the surface (the processing surface 121 and / or the opposite surface 122) of the magnetic disk 120. The flow rate of air in the accommodation space 169 decreases as the distance from the surface of the magnetic disk 120 increases. The flow rate of air in the accommodation space 169 increases as the distance from the rotation center of the magnetic disk 120 increases.
 収容壁160と磁気ディスク120との距離が短いほど、収容空間169内の空気の平均速度は高くなる。加えて、収容壁160と磁気ディスク120との間の空気は整流化される。この結果、収容壁160と磁気ディスク120との間で流れる空気の流動は安定化される。安定化された空気の流れは、磁気ディスク120を制振することができる。したがって、磁気ディスク120は共振しにくくなる。磁気ディスク120の振動の低減の結果、磁気ディスク120と磁気ヘッド130やスライダ141との間の距離も略一定となる。したがって、磁気ヘッド130のクラッシュ、磁気ディスク120の記録エラーや再生エラー、磁気ヘッド130、スライダ141及び/又は磁気ディスク120の損傷といった不都合は生じにくくなる。この結果、駆動装置100の記録性能及び/又は再生性能は、高い水準で維持されることとなる。 The shorter the distance between the storage wall 160 and the magnetic disk 120, the higher the average velocity of the air in the storage space 169. In addition, the air between the housing wall 160 and the magnetic disk 120 is rectified. As a result, the flow of air flowing between the housing wall 160 and the magnetic disk 120 is stabilized. The stabilized air flow can dampen the magnetic disk 120. Therefore, the magnetic disk 120 is less likely to resonate. As a result of the reduction of the vibration of the magnetic disk 120, the distance between the magnetic disk 120 and the magnetic head 130 or the slider 141 becomes substantially constant. Therefore, inconveniences such as a crash of the magnetic head 130, a recording error or a reproduction error of the magnetic disk 120, and damage to the magnetic head 130, the slider 141 and / or the magnetic disk 120 are less likely to occur. As a result, the recording performance and / or reproduction performance of the driving apparatus 100 is maintained at a high level.
 本実施形態において、磁気ディスク120と収容壁160との距離は、20μm以上5mm以下の寸法に設計されてもよい。磁気ディスク120と収容壁160との間の距離が、20μm以上5mm以下の寸法に設計されるならば、上述の安定化された空気の流れが得られる。 In the present embodiment, the distance between the magnetic disk 120 and the housing wall 160 may be designed to have a dimension of 20 μm or more and 5 mm or less. If the distance between the magnetic disk 120 and the housing wall 160 is designed to have a dimension of 20 μm or more and 5 mm or less, the above-described stabilized air flow can be obtained.
 図4に示される如く、磁気ディスク120は、処理面121と反対面122との間で磁気ディスク120の円形の輪郭を規定する外周面128を含む。第1壁部161及び第2壁部162は、第1内面166と第2内面167との間で外周面128に対向する内周面269を形成する。本実施形態において、外周面128と内周面269との間の距離は、10μm以上5mm以下に設計される。 As shown in FIG. 4, the magnetic disk 120 includes an outer peripheral surface 128 that defines a circular contour of the magnetic disk 120 between the processing surface 121 and the opposite surface 122. The first wall portion 161 and the second wall portion 162 form an inner peripheral surface 269 that faces the outer peripheral surface 128 between the first inner surface 166 and the second inner surface 167. In the present embodiment, the distance between the outer peripheral surface 128 and the inner peripheral surface 269 is designed to be 10 μm or more and 5 mm or less.
 図6は、塵埃の除去効率に関する解析結果を表すグラフである。図5A及び図6を参照して、塵埃の除去効率が説明される。 FIG. 6 is a graph showing an analysis result regarding dust removal efficiency. The dust removal efficiency is described with reference to FIGS. 5A and 6.
 図6に示されるグラフの縦軸は、収容空間169中の塵埃の濃度を表す。図6に示されるグラフの横軸は、時間を表す。 The vertical axis of the graph shown in Fig. 6 represents the concentration of dust in the accommodation space 169. The horizontal axis of the graph shown in FIG. 6 represents time.
 図6のグラフ中の曲線C1は、図5Aを参照して説明された解析モデルに基づいて得られている。尚、塵埃の除去効率の算出のために、磁気ディスク120の直径は、3.5インチに設定され、磁気ディスク120の回転数は、7000rpmに設定され、上捕集フィルタ181の捕集効率は、50%(100nm以上の粒径の塵埃に対して)に設定されている。また、収容壁160と磁気ディスク120との間の距離は、0.5mmに設定されている。 The curve C1 in the graph of FIG. 6 is obtained based on the analysis model described with reference to FIG. 5A. In order to calculate the dust removal efficiency, the diameter of the magnetic disk 120 is set to 3.5 inches, the rotational speed of the magnetic disk 120 is set to 7000 rpm, and the collection efficiency of the upper collection filter 181 is , 50% (with respect to dust having a particle diameter of 100 nm or more). The distance between the housing wall 160 and the magnetic disk 120 is set to 0.5 mm.
 図6のグラフ中の曲線C2は、収容壁160が除去されたときの除塵効率を表す。 The curve C2 in the graph of FIG. 6 represents the dust removal efficiency when the containing wall 160 is removed.
 収容壁160の不存在下において、収容空間169中の塵埃を10%まで低減させるためには、約22秒かかる。一方、収容壁160の存在下において、収容空間169中の塵埃を10%まで低減させるためには、約2.5秒かかる。このことから、収容壁160は、収容空間169の浄化に要する期間を1/10まで短縮させることが分かる。 In the absence of the storage wall 160, it takes about 22 seconds to reduce the dust in the storage space 169 to 10%. On the other hand, it takes about 2.5 seconds to reduce the dust in the accommodation space 169 to 10% in the presence of the accommodation wall 160. From this, it can be seen that the storage wall 160 shortens the period required for purification of the storage space 169 to 1/10.
 図7Aは、除塵部180の周りにおける駆動装置100の概略的な拡大断面図である。図6及び図7Aを参照して、除塵部180の取付パターンが説明される。 FIG. 7A is a schematic enlarged cross-sectional view of the driving device 100 around the dust removing unit 180. With reference to FIG.6 and FIG.7A, the attachment pattern of the dust removal part 180 is demonstrated.
 除塵部180は、上捕集フィルタ181を第1壁部161に固定するために用いられる上固定部183と、下捕集フィルタ182を第2壁部162に固定するために用いられる下固定部184と、を含む。上固定部183及び下固定部184は、樹脂又は金属から形成されてもよい。上固定部183及び下固定部184は、第1壁部161及び第2壁部162に対し、接着、貼合又は嵌合といった様々な取付手法を用いてそれぞれ固定される。 The dust removing unit 180 includes an upper fixing unit 183 used to fix the upper collection filter 181 to the first wall 161 and a lower fixing unit used to fix the lower collection filter 182 to the second wall 162. 184. The upper fixing part 183 and the lower fixing part 184 may be formed of resin or metal. The upper fixing portion 183 and the lower fixing portion 184 are respectively fixed to the first wall portion 161 and the second wall portion 162 using various attachment methods such as adhesion, bonding, or fitting.
 図7Aに示される上捕集フィルタ181は、上固定部183に対して90°の角度(即ち、図7A中のZ軸に対して90°の角度)で処理面121に向けて突出している。図7Aに示される下捕集フィルタ182は、下固定部184に対して90°の角度(即ち、図7A中のZ軸に対して90°の角度)で反対面122に向けて突出している。 The upper collection filter 181 shown in FIG. 7A protrudes toward the processing surface 121 at an angle of 90 ° with respect to the upper fixing portion 183 (that is, an angle of 90 ° with respect to the Z axis in FIG. 7A). . The lower collection filter 182 shown in FIG. 7A protrudes toward the opposite surface 122 at an angle of 90 ° with respect to the lower fixing portion 184 (that is, an angle of 90 ° with respect to the Z axis in FIG. 7A). .
 第1壁部161及び処理面121は、協働して、収容空間169内の空気を安定的に案内する。上捕集フィルタ181は、第1壁部161と処理面121とに案内された空気の流れの中で突出するので、塵埃は、上捕集フィルタ181によって効率的に捕集される。 The first wall 161 and the processing surface 121 cooperate to stably guide the air in the accommodation space 169. Since the upper collection filter 181 protrudes in the air flow guided to the first wall 161 and the processing surface 121, dust is efficiently collected by the upper collection filter 181.
 第2壁部162及び反対面122は、協働して、収容空間169内の空気を安定的に案内する。下捕集フィルタ182は、第2壁部162と反対面122とに案内された空気の流れの中で突出するので、塵埃は、下捕集フィルタ182によって効率的に捕集される。 The second wall 162 and the opposite surface 122 cooperate to stably guide the air in the accommodation space 169. Since the lower collection filter 182 protrudes in the flow of air guided to the second wall 162 and the opposite surface 122, dust is efficiently collected by the lower collection filter 182.
 図6に示される如く、除塵部180の捕集効率が50%(100nm以上の粒径の塵埃に対して)であり、磁気ディスク120の回転数が7000rpmであり、且つ、磁気ディスク120と収容壁160との間の距離が0.2mmであるならば、90%以上の塵埃(100nm以上の粒径を有する塵埃)を取り除くために必要な期間は、約2.5秒以下となる。磁気ディスク120が8秒間回転されるならば、除塵部180は、99%以上の塵埃を捕集することができる。 As shown in FIG. 6, the collection efficiency of the dust removing unit 180 is 50% (for dust having a particle diameter of 100 nm or more), the rotational speed of the magnetic disk 120 is 7000 rpm, and the magnetic disk 120 is accommodated. If the distance to the wall 160 is 0.2 mm, the period required to remove 90% or more of dust (dust having a particle diameter of 100 nm or more) is about 2.5 seconds or less. If the magnetic disk 120 is rotated for 8 seconds, the dust removing unit 180 can collect 99% or more of dust.
 第1壁部161から突出する上捕集フィルタ181及び第2壁部162から突出する下捕集フィルタ182の先端は、磁気ディスク120に可能な限り近接されてもよい。この結果、収容空間169内の多くの塵埃が除塵部180に衝突することとなる。したがって、除塵部180は、塵埃を効率的に捕集することができる。 The tips of the upper collection filter 181 protruding from the first wall portion 161 and the lower collection filter 182 protruding from the second wall portion 162 may be as close as possible to the magnetic disk 120. As a result, a large amount of dust in the accommodation space 169 collides with the dust removing unit 180. Therefore, the dust removal unit 180 can efficiently collect dust.
 図7Bは、除塵部180の周りにおける駆動装置100の概略的な拡大断面図である。図7A及び図7Bを参照して、除塵部180の他の取付パターンが説明される。 FIG. 7B is a schematic enlarged cross-sectional view of the driving device 100 around the dust removing unit 180. With reference to FIG. 7A and 7B, the other attachment pattern of the dust removal part 180 is demonstrated.
 図7Aを参照して説明された取付パターンとは異なり、図7Bに示される上捕集フィルタ181は、上固定部183に対して(即ち、X軸に対して)、磁気ディスク120の回転中心に向けて約30°傾斜している。同様に、図7Bに示される下捕集フィルタ182は、下固定部184に対して(即ち、X軸に対して)、磁気ディスク120の回転中心に向けて約30°傾斜している。 Unlike the mounting pattern described with reference to FIG. 7A, the upper collection filter 181 shown in FIG. 7B has a rotational center of the magnetic disk 120 with respect to the upper fixing portion 183 (that is, with respect to the X axis). It is inclined about 30 ° toward Similarly, the lower collection filter 182 shown in FIG. 7B is inclined about 30 ° toward the rotation center of the magnetic disk 120 with respect to the lower fixing portion 184 (that is, with respect to the X axis).
 上述の如く、除塵部180における高い圧力損失は、除塵部180を迂回する空気の流れを生じさせやすい。図7Bに示されるように、上捕集フィルタ181及び下捕集フィルタ182が傾斜して収容壁160に取り付けられるならば、除塵部180を迂回する空気の量は少なくなる。この結果、除塵部180は、塵埃を効率的に捕集することができる。 As described above, the high pressure loss in the dust removing unit 180 tends to generate an air flow that bypasses the dust removing unit 180. As shown in FIG. 7B, if the upper collection filter 181 and the lower collection filter 182 are inclined and attached to the storage wall 160, the amount of air that bypasses the dust removing portion 180 is reduced. As a result, the dust removing unit 180 can efficiently collect dust.
 第1内面166と処理面121との間の距離及び第2内面167と反対面122との間の距離は、できる限り短く設計される。これらの距離は、磁気ディスク120の面振れ、磁気ディスク120の位置的な精度、共振下にある磁気ディスク120の振幅、除塵部180の取付手法、除塵部180の取付面積といった設計事項を考慮に入れて適切に決定されてもよい。例えば、これらの距離は、50μm以上3mm以下の範囲に設定されてもよい。 The distance between the first inner surface 166 and the processing surface 121 and the distance between the second inner surface 167 and the opposite surface 122 are designed to be as short as possible. These distances take into consideration design items such as surface deflection of the magnetic disk 120, positional accuracy of the magnetic disk 120, amplitude of the magnetic disk 120 under resonance, a mounting method of the dust removing unit 180, and a mounting area of the dust removing unit 180. May be determined appropriately. For example, these distances may be set in a range of 50 μm to 3 mm.
 図8は、駆動装置100の制御構造を表す概略図である。図8を参照して、駆動装置100の制御が説明される。 FIG. 8 is a schematic diagram showing a control structure of the driving apparatus 100. With reference to FIG. 8, the control of the driving apparatus 100 will be described.
 回路基板153は、収容空間169の外に配置される。回路基板153は、制御回路154と、信号処理回路155と、入出力回路156と、を含む。制御回路154、信号処理回路155及び入出力回路156は、駆動装置100を全体的に制御する。 The circuit board 153 is disposed outside the accommodation space 169. The circuit board 153 includes a control circuit 154, a signal processing circuit 155, and an input / output circuit 156. The control circuit 154, the signal processing circuit 155, and the input / output circuit 156 generally control the driving device 100.
 制御回路154は、スピンドルモータ171を制御する。本体部172は、制御回路154の制御下で駆動力を発生させる。駆動力は、スピンドルシャフト173に伝達される。磁気ディスク120が載置されるハブ175は、第2壁部162に形成されたスピンドルホール164を通じて収容空間169内に延出したスピンドルシャフト173の先端部に取り付けられる。駆動力は、スピンドルシャフト173及びハブ175をともに回転させる。 The control circuit 154 controls the spindle motor 171. The main body 172 generates a driving force under the control of the control circuit 154. The driving force is transmitted to the spindle shaft 173. The hub 175 on which the magnetic disk 120 is placed is attached to the tip of the spindle shaft 173 that extends into the accommodation space 169 through a spindle hole 164 formed in the second wall portion 162. The driving force rotates both the spindle shaft 173 and the hub 175.
 キャップ176は、磁気ディスク120上に載置され、固定ネジ177によってハブ175に接続される。したがって、ハブ175が回転すると、ハブ175とキャップ176とによって挟まれた磁気ディスク120も回転する。 The cap 176 is placed on the magnetic disk 120 and connected to the hub 175 by a fixing screw 177. Therefore, when the hub 175 rotates, the magnetic disk 120 sandwiched between the hub 175 and the cap 176 also rotates.
 制御回路154は、ボイスコイルモータ144を制御する。ボイスコイルモータ144は、制御回路154の制御下で、磁気ヘッド130及びスライダ141を処理面121に沿って回動させる。磁気ディスク120は、回転軸RXに近い内周領域123と、内周領域123よりも回転軸RXから離れた外周領域124と、を含む。ボイスコイルモータ144による回動動作によって、磁気ヘッド130及びスライダ141は、内周領域123と外周領域124との間で移動する。 The control circuit 154 controls the voice coil motor 144. The voice coil motor 144 rotates the magnetic head 130 and the slider 141 along the processing surface 121 under the control of the control circuit 154. The magnetic disk 120 includes an inner peripheral region 123 that is closer to the rotation axis RX and an outer peripheral region 124 that is farther from the rotation axis RX than the inner peripheral region 123. The magnetic head 130 and the slider 141 move between the inner peripheral area 123 and the outer peripheral area 124 by the turning operation by the voice coil motor 144.
 本実施形態において、磁気ディスク120が回転している間、スライダ141は、処理面121から約10nm浮上する。制御回路154は、スライダ141の浮上量を精度よく制御することができる。 In this embodiment, the slider 141 floats about 10 nm from the processing surface 121 while the magnetic disk 120 is rotating. The control circuit 154 can control the flying height of the slider 141 with high accuracy.
 磁気ヘッド130は、制御回路154に信号を出力する。制御回路154は、磁気ヘッド130からの信号に応じて、磁気ヘッド130のトラッキング制御、ボイスコイルモータ144の回転制御、スピンドルモータ171の回転制御を行う。これらの制御は、既知のハードディスクドライブ装置に用いられる制御技術であってもよい。 The magnetic head 130 outputs a signal to the control circuit 154. The control circuit 154 performs tracking control of the magnetic head 130, rotation control of the voice coil motor 144, and rotation control of the spindle motor 171 in accordance with a signal from the magnetic head 130. These controls may be a control technique used in a known hard disk drive device.
 磁気ヘッド130は、磁気ディスク120から情報を読み取り、再生信号を生成する。信号処理回路155は、再生信号を処理し、情報を再生する。再生された情報を含む信号は、信号処理回路155から入出力回路156へ出力される。 The magnetic head 130 reads information from the magnetic disk 120 and generates a reproduction signal. The signal processing circuit 155 processes the reproduction signal and reproduces information. A signal including the reproduced information is output from the signal processing circuit 155 to the input / output circuit 156.
 入出力回路156は、磁気ディスク120に記録される情報を含む外部信号を受け取ることができる。外部信号は、入出力回路156から制御回路154へ出力される。制御回路154は、外部信号を記録信号として磁気ヘッド130に出力する。磁気ヘッド130は、記録信号に応じて、外部信号が含む情報を磁気ディスク120に記録することができる。 The input / output circuit 156 can receive an external signal including information recorded on the magnetic disk 120. The external signal is output from the input / output circuit 156 to the control circuit 154. The control circuit 154 outputs an external signal as a recording signal to the magnetic head 130. The magnetic head 130 can record information included in the external signal on the magnetic disk 120 in accordance with the recording signal.
 図9は、駆動装置100の概略的な断面図である。図9を参照して、駆動装置100が説明される。 FIG. 9 is a schematic cross-sectional view of the driving device 100. The drive device 100 will be described with reference to FIG.
 上述の如く、駆動装置100は、筐体110と、筐体110内に配置された収容壁160と、を備える。収容壁160は、第1壁部161と、第2壁部162と、第3壁部163と、を含む。収容壁160は、第1壁部161と第2壁部162との間の境界、第2壁部162と第3壁部163との間の境界及び第3壁部163と第1壁部161との境界を閉塞するシール部165を更に含む。筐体110は、収容壁160を支持する支持フレーム117を備える。 As described above, the driving device 100 includes the housing 110 and the accommodation wall 160 disposed in the housing 110. The housing wall 160 includes a first wall portion 161, a second wall portion 162, and a third wall portion 163. The housing wall 160 includes a boundary between the first wall portion 161 and the second wall portion 162, a boundary between the second wall portion 162 and the third wall portion 163, and the third wall portion 163 and the first wall portion 161. And further includes a seal portion 165 for closing the boundary with the. The housing 110 includes a support frame 117 that supports the accommodation wall 160.
 収容壁160は、筐体110の底壁112から立設された支持フレーム117上で固定される。このとき、収容壁160は、底壁112に向けて強く押しつけられる。この結果、シール部165は、第1壁部161、第2壁部162及び第3壁部163の間の境界を適切に塞ぐことができる。 The housing wall 160 is fixed on a support frame 117 erected from the bottom wall 112 of the housing 110. At this time, the housing wall 160 is strongly pressed toward the bottom wall 112. As a result, the seal portion 165 can appropriately close the boundary between the first wall portion 161, the second wall portion 162, and the third wall portion 163.
 第1壁部161が第2壁部162及び第3壁部163に接合される前に、磁気ディスク120は、スピンドルホール164から突出したスピンドルシャフト173の先端に取り付けられたハブ175に嵌め込まれる。この結果、磁気ディスク120の中心は、磁気ディスク120の回転中心に精度よく一致される。その後、キャップ176は、ハブ175と協働して、磁気ディスク120の内周領域123を挟む。キャップ176及び磁気ディスク120は、固定ネジ177によってハブ175に固定される。 Before the first wall portion 161 is joined to the second wall portion 162 and the third wall portion 163, the magnetic disk 120 is fitted into the hub 175 attached to the tip of the spindle shaft 173 protruding from the spindle hole 164. As a result, the center of the magnetic disk 120 is accurately matched with the rotation center of the magnetic disk 120. Thereafter, the cap 176 cooperates with the hub 175 to sandwich the inner peripheral area 123 of the magnetic disk 120. The cap 176 and the magnetic disk 120 are fixed to the hub 175 by a fixing screw 177.
 本実施形態において、キャップ176は、1~8本の固定ネジ177を用いてハブ175に固定される。多くの固定ネジ177が用いられるならば、固定ネジ177の配置間隔は短くなる。この結果、磁気ディスク120の共振は低減される。このことは、磁気ディスク120の回転に非同期な振動NRRO(Non-Repeatable Runout)の低減を意味する。 In this embodiment, the cap 176 is fixed to the hub 175 using 1 to 8 fixing screws 177. If many fixing screws 177 are used, the interval between the fixing screws 177 is shortened. As a result, the resonance of the magnetic disk 120 is reduced. This means a reduction in vibration NRRO (Non-Repeatable Runout) that is asynchronous with the rotation of the magnetic disk 120.
 上述の磁気ディスク120の固定技術の結果、処理面121と磁気ヘッド130との距離は、数nm~数十nmの範囲に維持されることとなる。処理面121と磁気ヘッド130との間の距離が安定化されるので、磁気ヘッド130のクラッシュ、磁気ディスク120の記録エラー及び/又は再生エラー、磁気ヘッド130、スライダ141及び/又は磁気ディスク120の損傷は生じにくくなる。したがって、駆動装置100は、記録性能及び/又は再生性能を高い水準で維持することができる。 As a result of the above-described fixing technique of the magnetic disk 120, the distance between the processing surface 121 and the magnetic head 130 is maintained in the range of several nm to several tens of nm. Since the distance between the processing surface 121 and the magnetic head 130 is stabilized, the crash of the magnetic head 130, the recording error and / or the reproduction error of the magnetic disk 120, the magnetic head 130, the slider 141 and / or the magnetic disk 120 Damage is less likely to occur. Therefore, the driving device 100 can maintain the recording performance and / or the reproduction performance at a high level.
 第1壁部161が第2壁部162及び第3壁部163に接合される前に、ボイスコイルモータ144は、第3壁部163に取り付けられる。その後、第1壁部161が、第2壁部162及び第3壁部163に接合され、収容空間169が形成される。磁気ディスク120が回転すると、収容空間169内で空気の流動が生ずる。第1壁部161に取り付けられた上捕集フィルタ181及び第2壁部162に取り付けられた下捕集フィルタ182は、収容空間169内で流動する空気から塵埃を捕集するので、処理面121とボイスコイルモータ144によって処理面121に沿って移動される磁気ヘッド130との間に塵埃は噛み込みにくくなる。 The voice coil motor 144 is attached to the third wall portion 163 before the first wall portion 161 is joined to the second wall portion 162 and the third wall portion 163. Thereafter, the first wall portion 161 is joined to the second wall portion 162 and the third wall portion 163 to form an accommodation space 169. When the magnetic disk 120 rotates, air flows in the accommodation space 169. Since the upper collection filter 181 attached to the first wall portion 161 and the lower collection filter 182 attached to the second wall portion 162 collect dust from the air flowing in the accommodation space 169, the processing surface 121. And the magnetic head 130 moved along the processing surface 121 by the voice coil motor 144, dust becomes difficult to bite.
 スピンドルホール164は、シールド部178、固定壁174及びスピンドルモータ171の本体部172によって覆われている。したがって、収容壁160と筐体110との間の空間で浮遊する塵埃は、収容空間169にほとんど入り込まない。本実施形態において、スピンドルモータ171は、回転動作を補助する流体軸受179を含む。したがって、スピンドルモータ171は、長い寿命及び高い回転精度を有する。 The spindle hole 164 is covered with a shield part 178, a fixed wall 174, and a main body part 172 of the spindle motor 171. Therefore, dust floating in the space between the storage wall 160 and the housing 110 hardly enters the storage space 169. In the present embodiment, the spindle motor 171 includes a fluid bearing 179 that assists the rotation operation. Therefore, the spindle motor 171 has a long life and high rotational accuracy.
 上述の如く、スピンドルモータ171の本体部172は、収容空間169から部分的に露出している。したがって、筐体110の底壁とスピンドルモータ171との間に配置された回路基板153に電気的に接続されやすくなる。本実施形態において、回路基板153は、筐体110内に配置されている。代替的に、回路基板は、筐体の外に取り付けられてもよい。 As described above, the main body 172 of the spindle motor 171 is partially exposed from the accommodation space 169. Therefore, it becomes easy to be electrically connected to the circuit board 153 disposed between the bottom wall of the housing 110 and the spindle motor 171. In the present embodiment, the circuit board 153 is disposed in the housing 110. Alternatively, the circuit board may be attached outside the housing.
 <第2実施形態>
 図10は、第2実施形態の駆動装置100Aの概略的な断面図である。図5C及び図10を参照して駆動装置100Aが説明される。尚、第1実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態に関連した説明が援用される。
<Second Embodiment>
FIG. 10 is a schematic cross-sectional view of the drive device 100A of the second embodiment. The drive device 100A will be described with reference to FIGS. 5C and 10. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. The description relevant to 1st Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置100Aは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140と、駆動機構170と、除塵部180と、を備える。駆動装置100Aは、収容空間169を規定する収容壁160Aを更に備える。第1実施形態と同様に、収容壁160Aは、第2壁部162と、第3壁部163と、シール部165と、を備える。収容壁160Aは、磁気ディスク120及び保持機構140の上方で、第2壁部162と、第3壁部163と、に接合される第1壁部161Aと、第1壁部161Aに取り付けられた呼吸フィルタ168と、を更に備える。第1実施形態とは異なり、第1壁部161Aは、磁気ディスク120の回転軸RXに対応する位置に開口部が形成される。呼吸フィルタ168は、第1壁部161Aに形成された開口部を塞ぐ。 As in the first embodiment, the driving device 100A includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, and a dust removing unit 180. The driving device 100 </ b> A further includes an accommodation wall 160 </ b> A that defines the accommodation space 169. Similar to the first embodiment, the housing wall 160 </ b> A includes a second wall portion 162, a third wall portion 163, and a seal portion 165. The housing wall 160A is attached to the first wall portion 161A and the first wall portion 161A joined to the second wall portion 162 and the third wall portion 163 above the magnetic disk 120 and the holding mechanism 140. And a respiratory filter 168. Unlike the first embodiment, the first wall 161A has an opening formed at a position corresponding to the rotation axis RX of the magnetic disk 120. The respiratory filter 168 closes the opening formed in the first wall portion 161A.
 図5Cを参照して説明された如く、磁気ディスク120が回転すると、収容空間169内には、高い圧力を有する領域及び低い圧力を有する領域が形成される。呼吸フィルタ168は、収容空間169から収容壁160Aと筐体110との間の空間(以下、外部空間199と称される)への空気の流出及び外部空間199から収容空間169への空気の流入を許容する。尚、呼吸フィルタ168の目の粗さは、収容壁160Aによって収容空間169から仕切られた外部空間199内で浮遊する塵埃が収容空間169に流入することを妨げるように設計される。呼吸フィルタ168は、収容空間169と外部空間199との間での空気の流通を許容するので、収容空間169と外部空間199との間での過度に大きな圧力差は生じにくくなる。したがって、収容壁160A、収容空間169内の駆動機構170及び収容空間169内の保持機構140は変形しにくくなる。収容空間169内での収容壁160Aに対する様々な寸法は適切に維持されるので、第1実施形態に関連して説明された防塵性能は高い水準で維持される。この結果、駆動装置100Aは、高い信頼性を維持することができる。 As described with reference to FIG. 5C, when the magnetic disk 120 rotates, a region having a high pressure and a region having a low pressure are formed in the accommodation space 169. The respiratory filter 168 flows out of the air from the housing space 169 to the space between the housing wall 160A and the housing 110 (hereinafter referred to as the external space 199), and the air flows from the external space 199 into the housing space 169. Is acceptable. The coarseness of the breathing filter 168 is designed to prevent dust floating in the external space 199 partitioned from the storage space 169 by the storage wall 160A from flowing into the storage space 169. The breathing filter 168 allows air to flow between the accommodation space 169 and the external space 199, so that an excessively large pressure difference between the accommodation space 169 and the external space 199 is less likely to occur. Therefore, the housing wall 160A, the drive mechanism 170 in the housing space 169, and the holding mechanism 140 in the housing space 169 are not easily deformed. Since various dimensions with respect to the housing wall 160A in the housing space 169 are appropriately maintained, the dustproof performance described in relation to the first embodiment is maintained at a high level. As a result, the driving device 100A can maintain high reliability.
 本実施形態において、呼吸フィルタ168の目は、除塵部180(上捕集フィルタ181及び下捕集フィルタ182)の目より細かい(即ち、繊維の間隔が狭い)。したがって、呼吸フィルタ168は、除塵部180よりも大きな圧力損失を有する一方で、除塵部180よりも塵埃を効率的に捕集する。したがって、外部空間199内の塵埃は、収容空間169に入り込みにくい。この結果、駆動装置100Aは、高い信頼性を維持することができる。 In this embodiment, the eyes of the respiratory filter 168 are finer than the eyes of the dust removing unit 180 (the upper collection filter 181 and the lower collection filter 182) (that is, the fiber interval is narrow). Therefore, the breathing filter 168 has a larger pressure loss than the dust removal unit 180, while collecting dust more efficiently than the dust removal unit 180. Therefore, dust in the external space 199 is difficult to enter the accommodation space 169. As a result, the driving device 100A can maintain high reliability.
 呼吸フィルタ168は、回転軸RX上に存在する。図5Cを参照して説明された如く、回転軸RXの周囲の圧力は比較的低くなる。したがって、外部空間199内の空気は、呼吸フィルタ168を通じて、収容空間169に効率的に流入する。 The breathing filter 168 exists on the rotation axis RX. As described with reference to FIG. 5C, the pressure around the rotation axis RX is relatively low. Accordingly, the air in the external space 199 efficiently flows into the accommodation space 169 through the breathing filter 168.
 駆動装置100Aは、乾燥部185と活性炭部186とを備える。乾燥部185及び活性炭部186は、収容空間169内に配置される。乾燥部185は、収容空間169内の水分を吸収する。活性炭部186は、収容空間169内の有機ガスを吸収する。この結果、記録エラー、再生エラー、磁気ヘッド130のクラッシュといった不都合は生じにくくなる。したがって、駆動装置100Aは、安定的な記憶性能及び再生性能を有することができる。かくして、駆動装置100Aは、高い信頼性を維持することができる。 The driving device 100A includes a drying unit 185 and an activated carbon unit 186. The drying unit 185 and the activated carbon unit 186 are disposed in the accommodation space 169. The drying unit 185 absorbs moisture in the accommodation space 169. The activated carbon unit 186 absorbs the organic gas in the accommodation space 169. As a result, inconveniences such as recording errors, reproduction errors, and crashes of the magnetic head 130 are less likely to occur. Therefore, the driving device 100A can have stable storage performance and reproduction performance. Thus, the driving device 100A can maintain high reliability.
 呼吸フィルタ168に活性炭や乾燥剤が配合されてもよい。この結果、乾燥した空気や有機ガスをほとんど含まない空気が収容空間169に流入することとなる。 Activated carbon or desiccant may be blended in the respiratory filter 168. As a result, dry air or air containing almost no organic gas flows into the accommodation space 169.
 乾燥部185、活性炭部186、呼吸フィルタ168に配合された活性炭材料及び乾燥剤材料によって、収容空間169内の水分量及び有機ガスの量は低減される。この結果、水分や有機ガスは、磁気ヘッド130及び磁気ディスク120に付着しにくくなる。したがって、磁気ヘッド130のクラッシュといった不都合は生じにくくなる。かくして、駆動装置100Aは、高い信頼性を維持することができる。 The amount of water and the amount of organic gas in the storage space 169 are reduced by the activated carbon material and the desiccant material blended in the drying unit 185, the activated carbon unit 186, and the breathing filter 168. As a result, moisture and organic gas are less likely to adhere to the magnetic head 130 and the magnetic disk 120. Therefore, inconveniences such as a crash of the magnetic head 130 are less likely to occur. Thus, the driving device 100A can maintain high reliability.
 図11は、除塵部180(上捕集フィルタ181又は下捕集フィルタ182)の概略的な断面図である。図11を参照して、除塵部180が説明される。 FIG. 11 is a schematic cross-sectional view of the dust removing portion 180 (the upper collection filter 181 or the lower collection filter 182). The dust removing unit 180 will be described with reference to FIG.
 除塵部180は、塵埃を捕集するフィルタ部187と、フィルタ部187の形状を維持する補強部188と、を含む。補強部188は、空気の流れを過度に妨げないように設計される。したがって、空気の多くは、フィルタ部187に向かう。補強部188は、フィルタ部187を補強するので、空気の流れの圧力下においても、フィルタ部187の形状は維持される。したがって、フィルタ部187は、塵埃を空気から適切に除去することができる。フィルタ部187は、ポリプロピレンや静電不織布から形成されてもよい。補強部188は、ポリエチレンから形成されてもよい。除塵部180は、典型的には、3.2/minの流速下において、約5mmAqの圧力損失を生じ、且つ、100nmの粒径の塵埃に対して約50%の捕集効率を達成するように設計される。 The dust removing unit 180 includes a filter unit 187 that collects dust and a reinforcing unit 188 that maintains the shape of the filter unit 187. The reinforcing part 188 is designed not to excessively obstruct the air flow. Therefore, most of the air goes to the filter unit 187. Since the reinforcing portion 188 reinforces the filter portion 187, the shape of the filter portion 187 is maintained even under the pressure of the air flow. Therefore, the filter unit 187 can appropriately remove dust from the air. The filter part 187 may be formed from polypropylene or an electrostatic nonwoven fabric. The reinforcement part 188 may be formed from polyethylene. The dust removing unit 180 typically generates a pressure loss of about 5 mmAq at a flow rate of 3.2 / min, and achieves a collection efficiency of about 50% for dust having a particle diameter of 100 nm. Designed to.
 図12は、呼吸フィルタ168の概略的な断面図である。図10及び図12を参照して、呼吸フィルタ168が説明される。 FIG. 12 is a schematic sectional view of the respiratory filter 168. The respiratory filter 168 is described with reference to FIGS. 10 and 12.
 呼吸フィルタ168は、塵埃を捕集するフィルタ部191と、フィルタ部191の形状を維持する補強部192と、を含む。フィルタ部191は外部空間199に臨む。補強部192は、収容空間169に臨む。補強部192は、フィルタ部191を通過した空気の流れを過度に妨げないように設計される。したがって、外部空間199内の空気は、収容空間169に円滑に流入する。補強部192は、フィルタ部191を補強するので、回転軸RX周りの圧力差下においても、フィルタ部191は、収容空間169内へ湾曲しにくくなる。フィルタ部187は、ポリプロピレンから形成されてもよい。補強部188は、ポリエチレンから形成されてもよい。呼吸フィルタ168は、典型的には、3.2/minの流速下において、約50mmAqの圧力損失を生じ、且つ、100nmの粒径の塵埃に対して約99.9%の捕集効率を達成するように設計される。 The breathing filter 168 includes a filter part 191 that collects dust and a reinforcing part 192 that maintains the shape of the filter part 191. The filter unit 191 faces the external space 199. The reinforcing portion 192 faces the accommodation space 169. The reinforcing part 192 is designed not to excessively obstruct the flow of air that has passed through the filter part 191. Therefore, the air in the external space 199 flows smoothly into the accommodation space 169. Since the reinforcing portion 192 reinforces the filter portion 191, the filter portion 191 is less likely to be bent into the accommodating space 169 even under a pressure difference around the rotation axis RX. The filter part 187 may be formed from polypropylene. The reinforcement part 188 may be formed from polyethylene. The respiratory filter 168 typically produces a pressure drop of about 50 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for 100 nm particle size dust. Designed to do.
 図13は、乾燥部185の概略的な断面図である。図13を参照して、乾燥部185が説明される。 FIG. 13 is a schematic cross-sectional view of the drying unit 185. The drying unit 185 will be described with reference to FIG.
 乾燥部185は、空気から水分を吸収する乾燥剤193と、乾燥剤193を覆う被覆部194と、を覆う。被覆部194は、乾燥剤193の散乱を防止するように設計される。乾燥剤193は、例えば、シリカゲルであってもよい。乾燥部185は、典型的には、3.2/minの流速下において、約150mmAqの圧力損失を生じ、且つ、100nmの粒径の塵埃に対して約99.9%の捕集効率を達成するように設計される。 The drying unit 185 covers the desiccant 193 that absorbs moisture from the air and the covering unit 194 that covers the desiccant 193. The covering portion 194 is designed to prevent the desiccant 193 from scattering. The desiccant 193 may be silica gel, for example. The drying unit 185 typically generates a pressure loss of about 150 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for dust having a particle diameter of 100 nm. Designed to do.
 図14は、活性炭部186の概略的な断面図である。図14を参照して、活性炭部186が説明される。 FIG. 14 is a schematic cross-sectional view of the activated carbon portion 186. The activated carbon part 186 is demonstrated with reference to FIG.
 活性炭部186は、有機ガスを吸収する活性炭195と、活性炭195を覆う被覆部196と、を覆う。被覆部196は、活性炭195の散乱を防止するように設計される。活性炭部186は、典型的には、3.2/minの流速下において、約150mmAqの圧力損失を生じ、且つ、100nmの粒径の塵埃に対して約99.9%の捕集効率を達成するように設計される。 The activated carbon part 186 covers the activated carbon 195 that absorbs organic gas and the covering part 196 that covers the activated carbon 195. The covering portion 196 is designed to prevent the activated carbon 195 from scattering. The activated carbon portion 186 typically produces a pressure loss of about 150 mmAq at a flow rate of 3.2 / min and achieves a collection efficiency of about 99.9% for dust having a particle size of 100 nm. Designed to do.
 第1実施形態及び第2実施形態に関連して説明された除塵部180は、2つのフィルタ(上捕集フィルタ181及び下捕集フィルタ182)を含む。代替的に、収容空間内で集塵するフィルタ要素は、1つであってもよいし、2より多くてもよい。 The dust removing unit 180 described in relation to the first embodiment and the second embodiment includes two filters (an upper collection filter 181 and a lower collection filter 182). Alternatively, the number of filter elements that collect dust in the accommodation space may be one or more than two.
 第1実施形態及び第2実施形態において、上捕集フィルタ181は、磁気ディスク120の上方に配置され、且つ、下捕集フィルタ182は、磁気ディスク120の下方に配置される。代替的に、集塵機能を有するフィルタ要素は、収容空間の形状に応じた適切な位置に配置されてもよい。 In the first embodiment and the second embodiment, the upper collection filter 181 is disposed above the magnetic disk 120, and the lower collection filter 182 is disposed below the magnetic disk 120. Alternatively, the filter element having a dust collecting function may be arranged at an appropriate position according to the shape of the accommodation space.
 第1実施形態及び第2実施形態において、駆動装置100,100Aは、磁気記録を行う。また、駆動装置100,100Aは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。 In the first embodiment and the second embodiment, the driving devices 100 and 100A perform magnetic recording. The driving devices 100 and 100A use a magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
 第1実施形態及び第2実施形態において、筐体110は、金属製である。代替的に、筐体110は樹脂から形成されてもよい。 In the first embodiment and the second embodiment, the housing 110 is made of metal. Alternatively, the housing 110 may be formed from resin.
 本実施形態において、収容壁160,160Aは、薄い金属材料又は樹脂材料から形成される。代替的に、密閉された収容空間を形成することが可能な様々な材料を用いて、収容壁は形成されてもよい。 In the present embodiment, the housing walls 160 and 160A are formed from a thin metal material or resin material. Alternatively, the receiving wall may be formed using various materials capable of forming a sealed receiving space.
 <第3実施形態>
 図15は、第3実施形態の駆動装置100Bの概略的な断面図である。図15を参照して駆動装置100Bが説明される。尚、第1実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態に関連した説明が援用される。
<Third Embodiment>
FIG. 15 is a schematic cross-sectional view of the drive device 100B of the third embodiment. The drive device 100B will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. The description relevant to 1st Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置100Bは、筐体110と、収容壁160と、駆動機構170と、保持機構140と、回路基板153と、除塵部180と、を備える。第1実施形態とは異なり、駆動装置100Bは、光ディスク120Bと、光ディスク120Bに対して記録や再生といった情報処理を非接触式に行う光学ヘッド130Bと、を更に備える。 As in the first embodiment, the driving device 100B includes a housing 110, a housing wall 160, a driving mechanism 170, a holding mechanism 140, a circuit board 153, and a dust removing unit 180. Unlike the first embodiment, the driving device 100B further includes an optical disc 120B and an optical head 130B that performs non-contact information processing such as recording and reproduction on the optical disc 120B.
 図16は、光学ヘッド130Bの周囲における駆動装置100Bの概略的な拡大図である。図15及び図16を参照して、駆動装置100Bが説明される。 FIG. 16 is a schematic enlarged view of the driving device 100B around the optical head 130B. The drive device 100B will be described with reference to FIGS. 15 and 16.
 駆動装置100Bは、スライダ141に取り付けられた半導体レーザ131を更に備える。半導体レーザ131が出射する光束は、記録や再生といった情報処理に利用される。尚、スライダ141は、第1実施形態と同様にサスペンション142によって支持されている。また、サスペンション142は、スイングアーム143によって支持されている。本実施形態において、半導体レーザ131は、光源として例示される。尚、光学的に情報を処理することができる光を出射する他の装置が、半導体レーザ131に代えて、光源として用いられてもよい。 The driving device 100B further includes a semiconductor laser 131 attached to the slider 141. The light beam emitted from the semiconductor laser 131 is used for information processing such as recording and reproduction. The slider 141 is supported by the suspension 142 as in the first embodiment. The suspension 142 is supported by a swing arm 143. In the present embodiment, the semiconductor laser 131 is exemplified as a light source. Note that another device that emits light capable of optically processing information may be used as a light source instead of the semiconductor laser 131.
 光学ヘッド130Bは、光導波路132と、金属アンテナ133と、を含む。半導体レーザ131が出射した光束は、光導波路132を通じて、金属アンテナ133に導かれる。 The optical head 130B includes an optical waveguide 132 and a metal antenna 133. The light beam emitted from the semiconductor laser 131 is guided to the metal antenna 133 through the optical waveguide 132.
 光ディスク120Bは、円板状の基材125と、基材125の上面を覆う第1記録層126と、基材125の下面を覆う第2記録層127と、を含む。第1記録層126及び第2記録層127はともに、光の照射を受けて、結晶と非晶質との間で相変化する相変化材料から形成される。半導体レーザ131が出射した光束が金属アンテナ133に導かれると、金属アンテナ133は、第1記録層126及び/又は第2記録層127に集光する。金属アンテナ133と第1記録層126との間並びに金属アンテナ133と第2記録層127との間でプラズモン共鳴が生ずる。この結果、第1記録層126及び第2記録層127は、結晶と非晶質との間で局所的に相変化する。本実施形態において、第1記録層126及び/又は第2記録層127は、処理面として例示される。金属アンテナ133は、集光素子又はプラズモン共鳴アンテナとして例示される。 The optical disc 120B includes a disk-shaped substrate 125, a first recording layer 126 that covers the upper surface of the substrate 125, and a second recording layer 127 that covers the lower surface of the substrate 125. Both the first recording layer 126 and the second recording layer 127 are formed of a phase change material that undergoes phase change between crystal and amorphous upon receiving light irradiation. When the light beam emitted from the semiconductor laser 131 is guided to the metal antenna 133, the metal antenna 133 focuses on the first recording layer 126 and / or the second recording layer 127. Plasmon resonance occurs between the metal antenna 133 and the first recording layer 126 and between the metal antenna 133 and the second recording layer 127. As a result, the first recording layer 126 and the second recording layer 127 locally change in phase between crystal and amorphous. In the present embodiment, the first recording layer 126 and / or the second recording layer 127 is exemplified as the processing surface. The metal antenna 133 is exemplified as a condensing element or a plasmon resonance antenna.
 駆動装置100Bは、受光素子(図示せず)を更に備える。光ディスク120Bは、金属アンテナ133からの光束を反射し、反射光を生成する。受光素子は、反射光を受ける。受光素子は、反射光の受光に応じて、回路基板153へ信号(再生信号)を出力する。受光素子が生成する信号の大きさは、反射光の強度に依存する。反射光の強度は、金属アンテナ133から出射された光束の照射位置における相(結晶又は非晶質)によって変化する。したがって、受光素子が生成する信号を利用して、光ディスク120Bに記録された情報が適切に読み取られる。 The driving device 100B further includes a light receiving element (not shown). The optical disc 120B reflects the light beam from the metal antenna 133 and generates reflected light. The light receiving element receives reflected light. The light receiving element outputs a signal (reproduction signal) to the circuit board 153 in response to reception of the reflected light. The magnitude of the signal generated by the light receiving element depends on the intensity of the reflected light. The intensity of the reflected light varies depending on the phase (crystal or amorphous) at the irradiation position of the light beam emitted from the metal antenna 133. Therefore, information recorded on the optical disc 120B is appropriately read using a signal generated by the light receiving element.
 <第4実施形態>
 図17は、第4実施形態の駆動装置100Cの概略的な断面図である。図17を参照して駆動装置100Cが説明される。尚、第1実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態に関連した説明が援用される。
<Fourth embodiment>
FIG. 17 is a schematic cross-sectional view of the drive device 100C of the fourth embodiment. The drive device 100C will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. The description relevant to 1st Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置100Cは、筐体110と、磁気ディスク120と、磁気ヘッド130と、収容壁160と、駆動機構170と、回路基板153と、除塵部180と、を備える。第1実施形態とは異なり、駆動装置100Cは、保持機構140Cを更に備える。 Similar to the first embodiment, the drive device 100C includes a housing 110, a magnetic disk 120, a magnetic head 130, a housing wall 160, a drive mechanism 170, a circuit board 153, and a dust removal unit 180. . Unlike the first embodiment, the driving device 100C further includes a holding mechanism 140C.
 図18は、収容空間169内の構造の概略図である。図17及び図18を用いて、保持機構140Cが説明される。尚、図18において、第1壁部161は除去されている。 FIG. 18 is a schematic view of the structure in the accommodation space 169. The holding mechanism 140C will be described with reference to FIGS. In FIG. 18, the first wall portion 161 is removed.
 第1実施形態と同様に、保持機構140Cは、収容壁160によって規定された収容空間169内に配置される。第1実施形態と同様に、保持機構140Cは、磁気ヘッド130を保持するスライダ141と、スライダ141を保持するサスペンション142と、サスペンション142を保持するスイングアーム143と、スイングアーム143を磁気ディスク120上で回動させるボイスコイルモータ144と、を含む。第1実施形態とは異なり、保持機構140Cは、ランプ145と、ラッチ146と、を更に備える。 As in the first embodiment, the holding mechanism 140 </ b> C is disposed in the accommodation space 169 defined by the accommodation wall 160. As in the first embodiment, the holding mechanism 140C includes a slider 141 that holds the magnetic head 130, a suspension 142 that holds the slider 141, a swing arm 143 that holds the suspension 142, and the swing arm 143 on the magnetic disk 120. And a voice coil motor 144 that is rotated at the same time. Unlike the first embodiment, the holding mechanism 140 </ b> C further includes a ramp 145 and a latch 146.
 駆動装置100Cが動作していない間(以下、「アンロード時」と称される)、磁気ヘッド130、スライダ141及びサスペンション142は、ランプ145によって保持される。本実施形態において、ランプ145は、保持部として例示される。 The magnetic head 130, the slider 141, and the suspension 142 are held by the ramp 145 while the driving device 100C is not operating (hereinafter referred to as “unloading”). In the present embodiment, the lamp 145 is exemplified as the holding unit.
 ラッチ146は、アンロード時において、スイングアーム143をロックする。したがって、アンロード時において、外力や衝撃が駆動装置100Cに加わったとしても、スイングアーム143の不必要な回転は、ラッチ146によって防止される。この結果、磁気ヘッド130、スライダ141及び磁気ディスク120の間での接触並びに接触に起因する損傷は、生じにくくなる。 The latch 146 locks the swing arm 143 during unloading. Therefore, even when an external force or impact is applied to the driving device 100C during unloading, unnecessary rotation of the swing arm 143 is prevented by the latch 146. As a result, contact between the magnetic head 130, the slider 141, and the magnetic disk 120 and damage due to the contact are less likely to occur.
 図19は、ランプ145の周囲における保持機構140Cの概略的な拡大斜視図である。図17乃至図19を参照して、保持機構140Cが更に説明される。 FIG. 19 is a schematic enlarged perspective view of the holding mechanism 140 </ b> C around the lamp 145. The holding mechanism 140C will be further described with reference to FIGS.
 サスペンション142は、スイングアーム143に接続されたサスペンションアーム147と、サスペンションアーム147から分岐したジンバル148と、を含む。ジンバル148は、柔らかい板バネから形成される。スライダ141は、ジンバル148に取り付けられる。サスペンションアーム147にはディンプル149が形成される。ディンプル149は、スライダ141の支点として用いられる。 The suspension 142 includes a suspension arm 147 connected to the swing arm 143 and a gimbal 148 branched from the suspension arm 147. The gimbal 148 is formed from a soft leaf spring. The slider 141 is attached to the gimbal 148. A dimple 149 is formed on the suspension arm 147. The dimple 149 is used as a fulcrum for the slider 141.
 サスペンションアーム147は、エンドタップ241を含む。エンドタップ241は、サスペンションアーム147の先端部に形成される。エンドタップ241は、ランプ145に対向する対向面242と、対向面242から突出する突起部243と、を含む。突起部243によって、エンドタップ241とランプ145との間の接触面積は低減される。したがって、突起部243は、ランプ145及びエンドタップ241の摩耗を少なくする。 The suspension arm 147 includes an end tap 241. The end tap 241 is formed at the tip of the suspension arm 147. The end tap 241 includes a facing surface 242 that faces the lamp 145 and a protrusion 243 that projects from the facing surface 242. The protrusion 243 reduces the contact area between the end tap 241 and the lamp 145. Therefore, the protrusion 243 reduces wear of the lamp 145 and the end tap 241.
 磁気ディスク120は、処理面121と反対面122との間の外周面128を含む。アンロード時において、スライダ141を保持するランプ145は、外周面128の傍に配置される。ランプ145は、収容壁160に固定される。代替的に、ランプは、筐体に固定されてもよい。 The magnetic disk 120 includes an outer peripheral surface 128 between the processing surface 121 and the opposite surface 122. During unloading, the ramp 145 that holds the slider 141 is disposed near the outer peripheral surface 128. The lamp 145 is fixed to the receiving wall 160. Alternatively, the lamp may be fixed to the housing.
 ランプ145は、傾斜面244と、停止面245と、を含む。エンドタップ241が回転軸RXから離れるにつれて、エンドタップ241を処理面121から離間させるように傾斜面244は傾斜される。エンドタップ241は、傾斜面244に沿って移動し、停止面245上で停止する。 The lamp 145 includes an inclined surface 244 and a stop surface 245. As the end tap 241 moves away from the rotation axis RX, the inclined surface 244 is inclined so as to separate the end tap 241 from the processing surface 121. The end tap 241 moves along the inclined surface 244 and stops on the stop surface 245.
 ランプ145は、支持面246を更に含む。エンドタップ241が停止面245上で停止している間、支持面246は、スライダ141を支持する。 The lamp 145 further includes a support surface 246. The support surface 246 supports the slider 141 while the end tap 241 is stopped on the stop surface 245.
 ランプ145は、防止壁247を更に含む。停止面245上で停止したエンドタップ241は、防止壁247と停止面245とによって挟まれる。したがって、外力や衝撃が与えられる環境下においても、エンドタップ241は、停止面245から離脱しにくくなる。 The lamp 145 further includes a prevention wall 247. The end tap 241 stopped on the stop surface 245 is sandwiched between the prevention wall 247 and the stop surface 245. Therefore, the end tap 241 is less likely to be detached from the stop surface 245 even in an environment where an external force or impact is applied.
 突起部243とランプ145との接触によって、塵埃が発生することもある。保持機構140Cは、収容空間169内に収容されるので、塵埃は、除塵部180によって適切に捕集される。したがって、磁気ヘッド130のクラッシュ、磁気ディスク120に対する記録エラーや再生エラー、磁気ヘッド130、スライダ141及び/又は磁気ディスク120の損傷は生じにくくなる。かくして、駆動装置100Cは、記録性能及び再生性能を高い水準で維持することができる。 Dust may be generated by contact between the protrusion 243 and the lamp 145. Since the holding mechanism 140 </ b> C is housed in the housing space 169, dust is appropriately collected by the dust removing unit 180. Therefore, the magnetic head 130 crashes, the recording error or the reproduction error with respect to the magnetic disk 120, and the magnetic head 130, the slider 141 and / or the magnetic disk 120 are hardly damaged. Thus, the driving device 100C can maintain the recording performance and the reproduction performance at a high level.
 本実施形態において、駆動装置100Cは、磁気記録を行う。また、駆動装置100Cは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。更に代替的に、媒体は、第3実施形態と同様に、光ディスクであってもよい。この場合、駆動装置は、第3実施形態の原理にしたがって、記録や再生といった情報処理を光学的に行ってもよい。 In this embodiment, the driving device 100C performs magnetic recording. The driving device 100C uses a magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna. Further alternatively, the medium may be an optical disk as in the third embodiment. In this case, the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
 <第5実施形態>
 図20は、第5実施形態の駆動装置100Dの概略的な断面図である。図20を参照して駆動装置100Dが説明される。尚、第1実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態に関連した説明が援用される。
<Fifth Embodiment>
FIG. 20 is a schematic cross-sectional view of the drive device 100D of the fifth embodiment. The drive device 100D will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. The description relevant to 1st Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置100Dは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140と、駆動機構170と、回路基板153と、除塵部180と、を備える。第1実施形態とは異なり、駆動装置100Cは、収容壁160Dを更に備える。 As in the first embodiment, the driving device 100D includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, a circuit board 153, and a dust removing unit 180. . Unlike the first embodiment, the drive device 100C further includes an accommodation wall 160D.
 上述の如く、磁気ディスク120は、内周領域123と、内周領域123を取り囲む外周領域124と、を含む。内周領域123は、ハブ175とキャップ176とによって挟持される。本実施形態において、内周領域123は、内縁領域として例示される。外周領域124は、外縁領域として例示される。 As described above, the magnetic disk 120 includes the inner peripheral region 123 and the outer peripheral region 124 surrounding the inner peripheral region 123. The inner peripheral region 123 is sandwiched between the hub 175 and the cap 176. In the present embodiment, the inner peripheral region 123 is exemplified as the inner edge region. The outer periphery area | region 124 is illustrated as an outer edge area | region.
 第1実施形態と同様に、収容壁160Dは、第3壁部163を備える。収容壁160Dは、第1壁部161Dと、第2壁部162Dと、を更に備える。第1壁部161Dは、外周領域124の上方で外周領域124に向かって屈曲した段差部261と、処理面121に対向する第1内面166Dと、を含む。第1内面166Dは、処理面121に近接した第1近接面262と、第1近接面262よりも処理面121から離れた第1離間面263と、を含む。第1離間面263は、回転軸RXを取り囲む。第1近接面262は、第1離間面263を少なくとも部分的に取り囲む。第2壁部162Dは、外周領域124の下方で外周領域124に向かって屈曲した段差部264と、反対面122に対向する第2内面167Dと、を含む。第2内面167Dは、反対面122に近接した第2近接面265と、第2近接面265よりも反対面122から離れた第2離間面266と、を含む。第2離間面266は、回転軸RXを取り囲む。第2近接面265は、第2離間面266を少なくとも部分的に取り囲む。 As in the first embodiment, the housing wall 160D includes a third wall portion 163. The housing wall 160D further includes a first wall portion 161D and a second wall portion 162D. The first wall portion 161D includes a step portion 261 that is bent toward the outer peripheral region 124 above the outer peripheral region 124, and a first inner surface 166D that faces the processing surface 121. The first inner surface 166 </ b> D includes a first proximity surface 262 that is closer to the processing surface 121 and a first separation surface 263 that is farther from the processing surface 121 than the first proximity surface 262. The first separation surface 263 surrounds the rotation axis RX. The first proximity surface 262 at least partially surrounds the first spacing surface 263. The second wall portion 162D includes a stepped portion 264 that is bent toward the outer peripheral region 124 below the outer peripheral region 124, and a second inner surface 167D that faces the opposite surface 122. The second inner surface 167D includes a second proximity surface 265 that is close to the opposite surface 122, and a second separation surface 266 that is farther from the opposite surface 122 than the second proximity surface 265. The second separation surface 266 surrounds the rotation axis RX. The second proximity surface 265 at least partially surrounds the second spacing surface 266.
 図21Aは、段差部261,264の周囲における駆動装置100Dの概略的な拡大断面図である。図20及び図21Aを参照して、収容壁160Dに関する第1設計パターンが説明される。 FIG. 21A is a schematic enlarged cross-sectional view of the driving device 100D around the step portions 261 and 264. FIG. With reference to FIG.20 and FIG.21A, the 1st design pattern regarding the accommodation wall 160D is demonstrated.
 第1内面166Dは、第1近接面262と第1離間面263とに加えて、処理面121に対して略直角な第1直立面267を含む。第2内面167Dは、第2近接面265と第2離間面266とに加えて、反対面122に対して略直角な第2直立面268を含む。 The first inner surface 166D includes a first upright surface 267 substantially perpendicular to the processing surface 121 in addition to the first proximity surface 262 and the first separation surface 263. The second inner surface 167D includes a second upstanding surface 268 that is substantially perpendicular to the opposite surface 122 in addition to the second proximity surface 265 and the second spacing surface 266.
 第1近接面262と処理面121との間において、収容空間169は、第1離間面263と処理面121との間よりも狭くなっている。したがって、磁気ディスク120の回転によって発生した旋回流が、第1近接面262と処理面121との間の空隙に入り込むと、旋回流は安定化される。 The accommodation space 169 is narrower between the first proximity surface 262 and the processing surface 121 than between the first separation surface 263 and the processing surface 121. Therefore, when the swirling flow generated by the rotation of the magnetic disk 120 enters the gap between the first proximity surface 262 and the processing surface 121, the swirling flow is stabilized.
 第2近接面265と反対面122との間において、収容空間169は、第2離間面266と反対面122との間よりも狭くなっている。したがって、第2近接面265と反対面122との間に流入した旋回流は、安定化される。 The accommodating space 169 is narrower between the second proximity surface 265 and the opposite surface 122 than between the second separation surface 266 and the opposite surface 122. Therefore, the swirl flow that flows between the second proximity surface 265 and the opposite surface 122 is stabilized.
 外周領域124の近くを流れる旋回流は、非常に安定化されるので、高い剛性を有する空気バネが得られる。磁気ディスク120は、共振しにくくなるので、スライダ141、磁気ヘッド130及び磁気ディスク120の間の相対的な距離関係は安定化される。したがって、磁気ヘッド130のクラッシュ、磁気ディスク120の記録エラー及び/又は再生エラー、磁気ヘッド130、スライダ141及び磁気ディスク120の損傷は、生じにくくなる。この結果、駆動装置100Dは、記録性能及び/又は再生性能を高い水準で維持することができる。 Since the swirling flow that flows near the outer peripheral region 124 is very stabilized, an air spring having high rigidity can be obtained. Since the magnetic disk 120 is less likely to resonate, the relative distance relationship among the slider 141, the magnetic head 130, and the magnetic disk 120 is stabilized. Therefore, a crash of the magnetic head 130, a recording error and / or a reproduction error of the magnetic disk 120, and damage to the magnetic head 130, the slider 141 and the magnetic disk 120 are less likely to occur. As a result, the driving device 100D can maintain the recording performance and / or the reproduction performance at a high level.
 図21Bは、段差部261,264の周囲における駆動装置100Dの概略的な拡大断面図である。図21Bを参照して、収容壁160Dに関する第2設計パターンが説明される。 FIG. 21B is a schematic enlarged cross-sectional view of the driving device 100D around the step portions 261 and 264. FIG. With reference to FIG. 21B, the 2nd design pattern regarding the accommodation wall 160D is demonstrated.
 第1内面166Dは、第1近接面262と第1離間面263とに加えて、処理面121に対して傾斜した第1傾斜面361を含む。第2内面167Dは、第2近接面265と第2離間面266とに加えて、反対面122に対して傾斜した第2傾斜面362を含む。第1傾斜面361及び第2傾斜面362は、外周領域124に向けて、収容空間169を徐々に狭める。したがって、収容空間169内で発生した旋回流は、第1近接面262と処理面121との間の空間並びに第2近接面265と反対面122との間の空間に円滑に流入することができる。第1近接面262と処理面121との間の空間並びに第2近接面265と反対面122との間の空間内において、旋回流の速度は大きくなるので、磁気ディスク120は、適切に制振される。 The first inner surface 166D includes a first inclined surface 361 inclined with respect to the processing surface 121 in addition to the first proximity surface 262 and the first separation surface 263. The second inner surface 167D includes a second inclined surface 362 that is inclined with respect to the opposite surface 122 in addition to the second proximity surface 265 and the second separation surface 266. The first inclined surface 361 and the second inclined surface 362 gradually narrow the accommodation space 169 toward the outer peripheral region 124. Therefore, the swirl flow generated in the accommodation space 169 can smoothly flow into the space between the first proximity surface 262 and the processing surface 121 and the space between the second proximity surface 265 and the opposite surface 122. . In the space between the first proximity surface 262 and the processing surface 121 and in the space between the second proximity surface 265 and the opposite surface 122, the speed of the swirl flow increases, so that the magnetic disk 120 is appropriately damped. Is done.
 本実施形態において、駆動装置100Dは、磁気記録を行う。また、駆動装置100Dは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。更に代替的に、媒体は、第3実施形態と同様に、光ディスクであってもよい。この場合、駆動装置は、第3実施形態の原理にしたがって、記録や再生といった情報処理を光学的に行ってもよい。 In this embodiment, the driving device 100D performs magnetic recording. The driving device 100D uses a magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna. Further alternatively, the medium may be an optical disk as in the third embodiment. In this case, the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
 <第6実施形態>
 図22は、第6実施形態の駆動装置100Eの概略的な断面図である。図22を参照して駆動装置100Eが説明される。尚、第5実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第5実施形態に関連した説明が援用される。
<Sixth Embodiment>
FIG. 22 is a schematic cross-sectional view of the drive device 100E of the sixth embodiment. The drive device 100E will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 5th Embodiment. The description relevant to 5th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第5実施形態と同様に、駆動装置100Eは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140Cと、収容壁160と、駆動機構170と、回路基板153と、除塵部180と、を備える。駆動装置100Eは、スイッチ素子157と、キャパシタ158と、を更に備える。電源ESから供給された電力は、スイッチ素子157及びキャパシタ158を通じて、回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130へ供給される。スイッチ素子157は、電源ESから回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130への電力経路を遮断するオフモードと、電源ESから回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130への電力供給経路を開くオンモードと、の間で電力供給モードを切り替える。電力供給モードがオンモードである間、キャパシタ158は、蓄電することができる。回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130は、キャパシタ158に蓄えられた電力を消費して、動作することができる。したがって、電源ESからの電力供給が途絶えた後も、回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130は、所定期間、動作することができる。本実施形態において、スイッチ素子157は、電力スイッチ部として例示される。キャパシタ158は、蓄電部として例示される。 Similar to the fifth embodiment, the driving device 100E includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140C, a housing wall 160, a driving mechanism 170, a circuit board 153, and a dust removing unit. 180. The driving device 100E further includes a switch element 157 and a capacitor 158. The power supplied from the power source ES is supplied to the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 through the switch element 157 and the capacitor 158. The switch element 157 includes an off mode in which a power path from the power source ES to the circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetic head 130 is cut off, and the circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetism The power supply mode is switched between the on mode in which the power supply path to the head 130 is opened. While the power supply mode is the on mode, the capacitor 158 can store electricity. The circuit board 153, the driving mechanism 170, the holding mechanism 140C, and the magnetic head 130 can operate by consuming electric power stored in the capacitor 158. Therefore, even after the power supply from the power source ES is interrupted, the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 can operate for a predetermined period. In the present embodiment, the switch element 157 is exemplified as a power switch unit. Capacitor 158 is exemplified as a power storage unit.
 回路基板153は、処理回転モードと集塵回転モードとの間で、駆動機構170に対する制御を切り替える。駆動機構170は、処理回転モード下において、磁気ヘッド130が磁気ディスク120に情報を記録するのに適切な回転数で、磁気ディスク120を回転させる。或いは、駆動機構170は、処理回転モード下において、磁気ヘッド130が磁気ディスク120から情報を読み取るのに適切な回転数で、磁気ディスク120を回転させる。駆動機構170は、集塵回転モード下において、除塵部180が収容空間169内の塵埃を集塵するのに適切な回転数で、磁気ディスク120を回転させる。この結果、収容空間169内において、除塵部180が塵埃を短時間で捕集するのに十分な速度の旋回流が発生する。本実施形態において、回路基板153は、制御部として例示される。 The circuit board 153 switches control over the drive mechanism 170 between the processing rotation mode and the dust collection rotation mode. The drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the magnetic head 130 to record information on the magnetic disk 120 under the processing rotation mode. Alternatively, the drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the magnetic head 130 to read information from the magnetic disk 120 under the processing rotation mode. The drive mechanism 170 rotates the magnetic disk 120 at a rotation speed appropriate for the dust removal unit 180 to collect the dust in the accommodation space 169 under the dust collection rotation mode. As a result, a swirl flow at a speed sufficient for the dust removing unit 180 to collect the dust in a short time is generated in the accommodation space 169. In the present embodiment, the circuit board 153 is exemplified as the control unit.
 図23は、回路基板153による例示的な制御を表すフローチャートである。図18、図19、図22及び図23を参照して、回路基板153による制御が説明される。 FIG. 23 is a flowchart showing exemplary control by the circuit board 153. The control by the circuit board 153 will be described with reference to FIGS. 18, 19, 22, and 23.
 (ステップS110)
 ステップS110において、使用者は、スイッチ素子157を操作し、電力供給モードをオンモードに設定する。この結果、電源ESから回路基板153、駆動機構170、保持機構140C及び磁気ヘッド130への電力供給経路が開かれる。電力供給経路が開かれた後、ステップS120が実行される。
(Step S110)
In step S110, the user operates the switch element 157 to set the power supply mode to the on mode. As a result, a power supply path from the power supply ES to the circuit board 153, the drive mechanism 170, the holding mechanism 140C, and the magnetic head 130 is opened. Step S120 is executed after the power supply path is opened.
 (ステップS120)
 図18及び図19を参照して説明された如く、磁気ヘッド130は、回路基板153の制御下で、処理位置と退避位置との間で回動することができる。処理位置において、磁気ヘッド130は、処理面121上に配置される。この間、磁気ヘッド130は、記録や再生といった情報処理を磁気的に実行する。退避位置において、磁気ヘッド130は、処理面121から離れ、ランプ145上に配置される。
(Step S120)
As described with reference to FIGS. 18 and 19, the magnetic head 130 can rotate between the processing position and the retracted position under the control of the circuit board 153. In the processing position, the magnetic head 130 is disposed on the processing surface 121. During this time, the magnetic head 130 magnetically executes information processing such as recording and reproduction. In the retracted position, the magnetic head 130 is separated from the processing surface 121 and disposed on the ramp 145.
 ステップS120において、回路基板153は、集塵回転モードで、駆動機構170及び保持機構140Cを制御する。回路基板153は、保持機構140Cを制御し、磁気ヘッド130及びスライダ141をランプ145上に配置する。ランプ145は、磁気ヘッド130、スライダ141及びサスペンション142を保持する。その後、回路基板153は、スピンドルモータ171を第1回転速度で回転させる。尚、第1回転速度は、処理回転モードにおいてスピンドルモータ171に設定される第2回転速度よりも大きい。例えば、第1回転速度は、数千rpm(例えば、5000rpm以上)に設定されてもよい。スピンドルモータ171が第1回転速度で、所定期間(数秒~数十秒)、回転すると、ステップS130が実行される。 In step S120, the circuit board 153 controls the drive mechanism 170 and the holding mechanism 140C in the dust collection rotation mode. The circuit board 153 controls the holding mechanism 140C and arranges the magnetic head 130 and the slider 141 on the ramp 145. The ramp 145 holds the magnetic head 130, the slider 141, and the suspension 142. Thereafter, the circuit board 153 rotates the spindle motor 171 at the first rotation speed. The first rotation speed is higher than the second rotation speed set for the spindle motor 171 in the processing rotation mode. For example, the first rotation speed may be set to several thousand rpm (for example, 5000 rpm or more). When the spindle motor 171 rotates at the first rotation speed for a predetermined period (several seconds to several tens of seconds), step S130 is executed.
 (ステップS130)
 ステップS130において、回路基板153は、記録や再生といった情報処理を実行する。その後、ステップS140が実行される。
(Step S130)
In step S130, the circuit board 153 performs information processing such as recording and reproduction. Thereafter, step S140 is executed.
 (ステップS140)
 回路基板153は、スピンドルモータ171を第2回転速度に設定する。上述の如く、第2回転速度は、ステップS120において設定された第1回転速度よりも小さい。その後、回路基板153は、保持機構140Cを制御し、磁気ヘッド130及びスライダ141を処理位置へ回動させる。磁気ヘッド130及びスライダ141の処理位置への回動の後、回路基板153は、磁気ヘッド130を用いて、磁気ディスク120に記録又は再生といった情報処理を行う。その後、ステップS150が実行される。
(Step S140)
The circuit board 153 sets the spindle motor 171 to the second rotation speed. As described above, the second rotation speed is smaller than the first rotation speed set in step S120. Thereafter, the circuit board 153 controls the holding mechanism 140C to rotate the magnetic head 130 and the slider 141 to the processing position. After the magnetic head 130 and the slider 141 are rotated to the processing position, the circuit board 153 performs information processing such as recording or reproduction on the magnetic disk 120 using the magnetic head 130. Thereafter, step S150 is executed.
 (ステップS150)
 ステップS150において、回路基板153は、使用者が、スイッチ素子157を操作し、電力供給モードをオフモードに設定したか否かを判定する。電力供給モードがオフモードに設定されていないならば、ステップS160が実行される。電力供給モードがオフモードに設定されているならば、ステップS170が実行される。
(Step S150)
In step S150, the circuit board 153 determines whether or not the user has operated the switch element 157 to set the power supply mode to the off mode. If the power supply mode is not set to the off mode, step S160 is executed. If the power supply mode is set to the off mode, step S170 is executed.
 (ステップS160)
 ステップS160において、回路基板153は、磁気ディスク120に対する情報処理(記録又は再生処理)が完了したか否かを判断する。情報処理が完了しているならば、ステップS170が実行される。他の場合には、ステップS150が実行される。
(Step S160)
In step S160, the circuit board 153 determines whether the information processing (recording or reproducing process) for the magnetic disk 120 is completed. If the information processing is complete, step S170 is executed. In other cases, step S150 is executed.
 (ステップS170)
 ステップS170において、回路基板153は、集塵回転モードで、駆動機構170及び保持機構140Cを制御する。回路基板153は、保持機構140Cを制御し、磁気ヘッド130及びスライダ141をランプ145上に配置する。ランプ145は、磁気ヘッド130、スライダ141及びサスペンション142を保持する。その後、回路基板153は、スピンドルモータ171を第1回転速度で回転させる。スピンドルモータ171が第1回転速度で、所定期間(数秒~数十秒)、回転する。
(Step S170)
In step S170, the circuit board 153 controls the drive mechanism 170 and the holding mechanism 140C in the dust collection rotation mode. The circuit board 153 controls the holding mechanism 140C and arranges the magnetic head 130 and the slider 141 on the ramp 145. The ramp 145 holds the magnetic head 130, the slider 141, and the suspension 142. Thereafter, the circuit board 153 rotates the spindle motor 171 at the first rotation speed. The spindle motor 171 rotates at the first rotation speed for a predetermined period (several seconds to several tens of seconds).
 ステップS150の後のステップS170においても、回路基板153は、キャパシタ158に蓄えられた電力を消費し、スピンドルモータ171及び保持機構140Cを適切に動作させることができる。したがって、重力作用及びクーロン力によって、磁気ディスク120、スライダ141及び磁気ヘッド130に付着され得る塵埃は、磁気ディスク120の回転によって生ずる旋回流に乗って、除塵部180によって適切に捕捉されることとなる。 Also in step S170 after step S150, the circuit board 153 consumes the electric power stored in the capacitor 158 and can appropriately operate the spindle motor 171 and the holding mechanism 140C. Accordingly, the dust that can be attached to the magnetic disk 120, the slider 141, and the magnetic head 130 due to the gravitational action and the Coulomb force is properly captured by the dust removing unit 180 on the swirling flow generated by the rotation of the magnetic disk 120. Become.
 上述の適時の集塵回転モードの実行によって、収容空間169内の塵埃の濃度(個数)は、1/100以下になる。したがって、磁気ヘッド130のクラッシュ、磁気ディスク120の記録エラー及び/又は再生エラーや磁気ヘッド130、スライダ141及び/又は磁気ディスク120の損傷は生じにくくなる。この結果、駆動装置100Eは、記録性能及び/又は再生性能を高い水準で維持することができる。 The execution of the above-described timely dust collection rotation mode reduces the dust concentration (number) in the accommodation space 169 to 1/100 or less. Therefore, the magnetic head 130 crashes, the magnetic disk 120 recording error and / or the reproduction error, and the magnetic head 130, the slider 141 and / or the magnetic disk 120 are hardly damaged. As a result, the driving device 100E can maintain the recording performance and / or reproduction performance at a high level.
 本実施形態において、集塵回転モードは、電力供給モードがオンモードに設定された後に実行される。代替的に、停止した駆動装置100Eが動作を再開したときに、集塵回転モードが実行されてもよい。 In this embodiment, the dust collection rotation mode is executed after the power supply mode is set to the on mode. Alternatively, the dust collection rotation mode may be executed when the stopped driving device 100E resumes operation.
 本実施形態において、集塵回転モード下のスピンドルモータ171の回転は、第1回転速度に設定される。代替的に、集塵回転モード下のスピンドルモータ171の回転速度は、可変であってもよい。例えば、集塵回転モード下において、スピンドルモータ171の回転速度に対して、3つのレベル(高速回転レベル>中速回転レベル>低速回転レベル)が設定されてもよい。3つのレベルの速度設定を用いて、集塵回転モード下のスピンドルモータ171の回転動作が適切に設計されてもよい。3つの回転レベルの組み合わせパターンや設定された速度レベルの組み合わせの繰り返し数は、駆動装置100Eの設計に応じて決定されてもよい。 In this embodiment, the rotation of the spindle motor 171 in the dust collection rotation mode is set to the first rotation speed. Alternatively, the rotation speed of the spindle motor 171 in the dust collection rotation mode may be variable. For example, three levels (high speed rotation level> medium speed rotation level> low speed rotation level) may be set for the rotation speed of the spindle motor 171 under the dust collection rotation mode. Using the three levels of speed settings, the rotational operation of the spindle motor 171 under the dust collection rotation mode may be appropriately designed. The number of repetitions of the combination pattern of the three rotation levels and the combination of the set speed levels may be determined according to the design of the driving device 100E.
 本実施形態において、集塵回転モードは、処理回転モードの前及び後に実行される。代替的に、集塵回転モードと処理回転モードが平行して行われてもよい。例えば、回路基板153は、磁気ヘッド130及びスライダ141を退避位置に移動させることなく、集塵回転モード下での制御を実行してもよい。 In this embodiment, the dust collection rotation mode is executed before and after the processing rotation mode. Alternatively, the dust collection rotation mode and the processing rotation mode may be performed in parallel. For example, the circuit board 153 may execute the control under the dust collection rotation mode without moving the magnetic head 130 and the slider 141 to the retracted position.
 本実施形態において、使用者によるスイッチ素子157に対する操作によって、電力供給モードがオンモードとオフモードとの間で切り替えられる。代替的に、使用者が、駆動装置100Eと電源ESとを接続するプラグを外したときに電力供給モードがオフモードに切り替えられてもよい。キャパシタ158が存在するので、駆動装置100Eは、オフモード下において、集塵回転モードを適切に実行することができる。 In this embodiment, the power supply mode is switched between the on mode and the off mode by an operation on the switch element 157 by the user. Alternatively, the power supply mode may be switched to the off mode when the user removes the plug that connects the driving device 100E and the power source ES. Since the capacitor 158 exists, the driving device 100E can appropriately execute the dust collection rotation mode in the off mode.
 本実施形態において、駆動装置100Eは、磁気記録を行う。また、駆動装置100Eは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。更に代替的に、媒体は、第3実施形態と同様に、光ディスクであってもよい。この場合、駆動装置は、第3実施形態の原理にしたがって、記録や再生といった情報処理を光学的に行ってもよい。 In this embodiment, the driving device 100E performs magnetic recording. The driving device 100E uses a magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna. Further alternatively, the medium may be an optical disk as in the third embodiment. In this case, the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
 <第7実施形態>
 図24は、第7実施形態の駆動装置100Fの概略的な断面図である。図24を参照して駆動装置100Fが説明される。尚、第1実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態に関連した説明が援用される。
<Seventh embodiment>
FIG. 24 is a schematic cross-sectional view of the drive device 100F of the seventh embodiment. The drive device 100F will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment. The description relevant to 1st Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置100Fは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140と、駆動機構170と、回路基板153と、除塵部180と、を備える。駆動装置100Fは、収容壁160Fを更に備える。第1実施形態と同様に、収容壁160Fは、第2壁部162と第3壁部163とを備える。収容壁160Fは、第2壁部162と第3壁部163とに接合される第1壁部161Fを更に備える。 As in the first embodiment, the driving device 100F includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a driving mechanism 170, a circuit board 153, and a dust removing unit 180. . The driving device 100F further includes an accommodation wall 160F. Similar to the first embodiment, the accommodation wall 160 </ b> F includes a second wall portion 162 and a third wall portion 163. The housing wall 160F further includes a first wall portion 161F joined to the second wall portion 162 and the third wall portion 163.
 第1実施形態とは異なり、第1壁部161Fには、第1流入口363及び第1流出口364が形成される。第1流入口363は、回転軸RX上に形成される。第1流出口364は、第1流入口363よりも回転軸RXから離れて形成される。 Unlike the first embodiment, a first inflow port 363 and a first outflow port 364 are formed in the first wall portion 161F. The first inflow port 363 is formed on the rotation axis RX. The first outlet 364 is formed farther from the rotation axis RX than the first inlet 363.
 駆動装置100Fは、第1流入口363と第1流出口364とに接続された第1循環管301を更に備える。第1実施形態に関連して説明された如く、磁気ディスク120の回転に伴って、収容空間169内において旋回流が発生する。また、回転軸RXから離れた位置の空気圧は、回転軸RXの周囲の空気圧よりも高くなる。したがって、収容空間169内の空気は、第1流出口364を通じて、第1循環管301内に流入する。第1循環管301内に流入した空気は、第1流入口363を通じて、収容空間169内に流入する。 The driving device 100F further includes a first circulation pipe 301 connected to the first inflow port 363 and the first outflow port 364. As described in relation to the first embodiment, a swirling flow is generated in the accommodation space 169 as the magnetic disk 120 rotates. The air pressure at a position away from the rotation axis RX is higher than the air pressure around the rotation axis RX. Therefore, the air in the accommodation space 169 flows into the first circulation pipe 301 through the first outlet 364. The air that has flowed into the first circulation pipe 301 flows into the accommodation space 169 through the first inflow port 363.
 本実施形態において、第1流出口364は、収容壁160Fの角隅部の近くに形成されるので、収容壁160Fの角隅部においても、空気の淀みが生じにくくなる。局所的に空気の流速が遅くなる領域は、生じにくくなるので、塵埃が除塵部180を通過する割合(単位時間当たりの塵埃の通過量)は増大する。したがって、除塵部180は、塵埃を効率的に捕捉することができる。この結果、磁気ヘッド130のクラッシュや磁気ディスク120の記録エラー及び/又は再生エラーといった不都合はほとんど生じない。駆動装置100Fは、高い信頼性を有するので、駆動装置100Fは、記録性能及び/又は再生性能を高い水準で維持することができる。 In the present embodiment, the first outflow port 364 is formed near the corner corner of the housing wall 160F, so that air stagnation is less likely to occur at the corner corner of the housing wall 160F. Since the region where the air flow rate is locally slow is less likely to occur, the rate at which dust passes through the dust removing unit 180 (the amount of dust passing per unit time) increases. Therefore, the dust removing unit 180 can capture dust efficiently. As a result, inconveniences such as a crash of the magnetic head 130 and a recording error and / or a reproduction error of the magnetic disk 120 hardly occur. Since the driving device 100F has high reliability, the driving device 100F can maintain the recording performance and / or the reproduction performance at a high level.
 <第8実施形態>
 図25は、第8実施形態の駆動装置100Gの概略的な断面図である。図25を参照して駆動装置100Gが説明される。尚、第7実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第7実施形態に関連した説明が援用される。
<Eighth Embodiment>
FIG. 25 is a schematic cross-sectional view of the drive device 100G of the eighth embodiment. The drive device 100G will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 7th Embodiment. The description relevant to 7th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第7実施形態と同様に、駆動装置100Gは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140と、収容壁160Fと、駆動機構170と、回路基板153と、を備える。駆動装置100Gは、除塵部180Gを更に備える。第7実施形態と同様に、除塵部180Gは、上捕集フィルタ181と下捕集フィルタ182とを備える。集塵部180Gは、追加的な捕集フィルタ189を更に備える。 Similar to the seventh embodiment, the driving device 100G includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a housing wall 160F, a driving mechanism 170, and a circuit board 153. . The driving device 100G further includes a dust removing unit 180G. Similarly to the seventh embodiment, the dust removing unit 180G includes an upper collection filter 181 and a lower collection filter 182. The dust collection unit 180G further includes an additional collection filter 189.
 捕集フィルタ189は、第1流出口364の近くにおいて、第1壁部161Fに固定される。この結果、第1流出部364に向かって流れる空気に含まれる塵埃は、捕集フィルタ189によって効率的に除去される。 The collection filter 189 is fixed to the first wall 161F near the first outlet 364. As a result, dust contained in the air flowing toward the first outflow portion 364 is efficiently removed by the collection filter 189.
 <第9実施形態>
 図26は、第9実施形態の駆動装置100Hの概略的な断面図である。図26を参照して駆動装置100Hが説明される。尚、第7実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第7実施形態に関連した説明が援用される。
<Ninth Embodiment>
FIG. 26 is a schematic cross-sectional view of the drive device 100H of the ninth embodiment. The drive device 100H will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 7th Embodiment. The description relevant to 7th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第7実施形態と同様に、駆動装置100Hは、筐体110と、磁気ディスク120と、磁気ヘッド130と、保持機構140と、回路基板153と、第1循環管301と、を備える。駆動装置100Hは、収容壁160Hと、駆動機構170Hと、第2循環管302と、を更に備える。 Similarly to the seventh embodiment, the drive device 100H includes a housing 110, a magnetic disk 120, a magnetic head 130, a holding mechanism 140, a circuit board 153, and a first circulation pipe 301. The drive device 100H further includes an accommodation wall 160H, a drive mechanism 170H, and a second circulation pipe 302.
 第7実施形態と同様に、収容壁160Hは、第1壁部161Fと第2壁部162とを備える。収容壁160Hは、第3壁部163Hを更に備える。第3壁部163Hには、第2流出口365が形成される。磁気ディスク120が回転すると、収容空間169内の空気は、第2流出口365を通じて、第2循環管302に流入する。保持機構140は、第2流出口365を閉塞しないように、第3壁部163Hに組み付けられる。 As in the seventh embodiment, the housing wall 160H includes a first wall portion 161F and a second wall portion 162. The housing wall 160H further includes a third wall portion 163H. A second outlet 365 is formed in the third wall portion 163H. When the magnetic disk 120 rotates, the air in the accommodation space 169 flows into the second circulation pipe 302 through the second outflow port 365. The holding mechanism 140 is assembled to the third wall portion 163H so as not to close the second outlet 365.
 第7実施形態と同様に、駆動機構170Hは、スピンドルモータ171と、ハブ175と、キャップ176と、固定ネジ177と、シールド部178と、を備える。駆動機構170Hは、固定壁174Hを更に備える。固定壁174Hには、第2流入口366が形成される。第2流入口366を通じて、第2循環管302に流入した空気は、第2流入口366を通じて、収容空間169へ流入する。したがって、固定壁174Hは、スピンドルモータ171が第2流入口366を閉塞しないように、スピンドルモータ171を支持する。第2流入口366は、回転軸RX上に形成される。第2流出口365は、第2流入口366よりも回転軸RXから離れて形成される。第2循環管302は、第2流出口365と第2流入口366とに接続される。 Similarly to the seventh embodiment, the drive mechanism 170H includes a spindle motor 171, a hub 175, a cap 176, a fixing screw 177, and a shield portion 178. The drive mechanism 170H further includes a fixed wall 174H. A second inlet 366 is formed in the fixed wall 174H. Air that has flowed into the second circulation pipe 302 through the second inlet 366 flows into the accommodation space 169 through the second inlet 366. Therefore, the fixed wall 174H supports the spindle motor 171 so that the spindle motor 171 does not block the second inflow port 366. The second inflow port 366 is formed on the rotation axis RX. The second outlet 365 is formed farther from the rotation axis RX than the second inlet 366. The second circulation pipe 302 is connected to the second outlet 365 and the second inlet 366.
 図27Aは、塵埃の除去効率の解析に用いられた解析モデルの概略的な斜視図である。図27Bは、塵埃の除去効率に関する解析結果を表す概略的なグラフである。図24、図26乃至図27Bを参照して、塵埃の除去効率が説明される。 FIG. 27A is a schematic perspective view of an analysis model used for analyzing dust removal efficiency. FIG. 27B is a schematic graph showing an analysis result regarding dust removal efficiency. The dust removal efficiency will be described with reference to FIGS. 24 and 26 to 27B.
 図27Aに示される解析モデル(以下、第1解析モデルと称される)において、第1循環管301及び第2循環管302が示されている。本発明者は、第1解析モデルの他に、第2循環管302が除去された解析モデル(以下、第2解析モデルと称される)と、第1循環管301、第2循環管302及び収容壁160Hが除去された解析モデル(以下、第3解析モデル)と、を用意し、解析モデル間において除去効率を比較した。尚、第1解析モデルは、本実施形態の駆動装置100Hに相当する。第2解析モデルは、第7実施形態に関連して説明された駆動装置100Fに相当する。 In the analysis model shown in FIG. 27A (hereinafter referred to as the first analysis model), a first circulation pipe 301 and a second circulation pipe 302 are shown. The present inventor, in addition to the first analysis model, an analysis model from which the second circulation pipe 302 is removed (hereinafter referred to as a second analysis model), a first circulation pipe 301, a second circulation pipe 302, and An analysis model from which the housing wall 160H was removed (hereinafter referred to as a third analysis model) was prepared, and the removal efficiency was compared between the analysis models. The first analysis model corresponds to the drive device 100H of the present embodiment. The second analysis model corresponds to the drive device 100F described in relation to the seventh embodiment.
 図27Bに示されるグラフの縦軸は、収容空間169中の塵埃の濃度を表す。図6に示されるグラフの横軸は、時間を表す。 The vertical axis of the graph shown in FIG. 27B represents the concentration of dust in the accommodation space 169. The horizontal axis of the graph shown in FIG. 6 represents time.
 図27Bから明らかな如く、第3解析モデルと比べて、第1解析モデル及び第2解析モデルは、高い塵埃除去効率を示す。第1解析モデルにおいて、塵埃が1/10まで低減させるのに要する時間は、第3解析モデルの1/11である。第2解析モデルにおいて、塵埃が1/10まで低減させるのに要する時間は、第3解析モデルの1/8である。 As is clear from FIG. 27B, the first analysis model and the second analysis model show higher dust removal efficiency than the third analysis model. In the first analysis model, the time required to reduce dust to 1/10 is 1/11 of the third analysis model. In the second analysis model, the time required for reducing dust to 1/10 is 1/8 of the third analysis model.
 第1解析モデルと第2解析モデルとを比較すると、第1解析モデルは、第2解析モデルよりも高い除去効率を達成している。したがって、循環管の増加は、除去効率の向上に寄与することが分かる。 When comparing the first analysis model and the second analysis model, the first analysis model achieves higher removal efficiency than the second analysis model. Therefore, it can be seen that an increase in circulation pipes contributes to an improvement in removal efficiency.
 上述の結果から、循環管(第1循環管301及び/又は第2循環管302)は、塵埃が除塵部180を通過する割合(単位時間当たりの塵埃の通過量)は増大させることが分かる。したがって、循環管(第1循環管301及び/又は第2循環管302)の結果、除塵部180は、塵埃を効率的に捕捉することができる。この結果、磁気ヘッド130のクラッシュや磁気ディスク120の記録エラー及び/又は再生エラーといった不都合はほとんど生じない。駆動装置100F,100Hは、高い信頼性を有するので、駆動装置100F,100Hは、記録性能及び/又は再生性能を高い水準で維持することができる。 From the above results, it can be seen that the ratio of the dust passing through the dust removing unit 180 (the amount of passing dust per unit time) of the circulation pipe (the first circulation pipe 301 and / or the second circulation pipe 302) is increased. Therefore, as a result of the circulation pipe (the first circulation pipe 301 and / or the second circulation pipe 302), the dust removing unit 180 can capture dust efficiently. As a result, inconveniences such as a crash of the magnetic head 130 and a recording error and / or a reproduction error of the magnetic disk 120 hardly occur. Since the driving devices 100F and 100H have high reliability, the driving devices 100F and 100H can maintain the recording performance and / or the reproduction performance at a high level.
 本実施形態において、第2循環管302は、収容壁160Hの下方に配置される。代替的に、第2循環管は、収容壁の上方に配置されてもよい。更に代替的に、第1循環管及び第2循環管は、収容壁の下方に配置されてもよい。 In the present embodiment, the second circulation pipe 302 is disposed below the accommodation wall 160H. Alternatively, the second circulation pipe may be disposed above the accommodation wall. Further alternatively, the first circulation pipe and the second circulation pipe may be disposed below the receiving wall.
 第7実施形態乃至第9実施形態おいて、駆動装置100F、100G、100Hは、磁気記録を行う。また、駆動装置100F、100G、100Hは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。更に代替的に、媒体は、第3実施形態と同様に、光ディスクであってもよい。この場合、駆動装置は、第3実施形態の原理にしたがって、記録や再生といった情報処理を光学的に行ってもよい。 In the seventh to ninth embodiments, the driving devices 100F, 100G, and 100H perform magnetic recording. The driving devices 100F, 100G, and 100H use the magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna. Further alternatively, the medium may be an optical disk as in the third embodiment. In this case, the drive device may optically perform information processing such as recording and reproduction according to the principle of the third embodiment.
 <第10実施形態>
 図28は、第10実施形態の駆動装置400の概略図である。図28を参照して、駆動装置400が説明される。
<Tenth Embodiment>
FIG. 28 is a schematic diagram of a driving device 400 according to the tenth embodiment. The drive device 400 will be described with reference to FIG.
 駆動装置400は、光ディスク420と、光学ヘッド430と、回路基板453と、収容壁460と、駆動機構470と、除塵部480と、イオナイザ490と、駆動回路491と、を備える。収容壁460は、上壁部461と、上壁部461の下方に配置された下壁部462と、を含む。本実施形態において、上壁部461と下壁部462との間には空隙が形成されている。代替的に、上壁部461及び下壁部462は、第1実施形態に関連して説明された接合手法に従って、シール部を用いて接合されてもよい。上壁部461及び下壁部462は、光ディスク420が収容される収容空間469を形成する。 The driving device 400 includes an optical disc 420, an optical head 430, a circuit board 453, an accommodation wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491. The accommodation wall 460 includes an upper wall portion 461 and a lower wall portion 462 disposed below the upper wall portion 461. In the present embodiment, a gap is formed between the upper wall portion 461 and the lower wall portion 462. Alternatively, the upper wall portion 461 and the lower wall portion 462 may be joined using a seal portion according to the joining technique described in connection with the first embodiment. The upper wall portion 461 and the lower wall portion 462 form an accommodation space 469 in which the optical disc 420 is accommodated.
 下壁部462には、スリット463及びスピンドルホール464が形成される。スピンドルホール464は、光ディスク420の回転軸RX上に形成されるのに対し、スリット463は、回転軸RXから離れて形成される。光学ヘッド430は、スリット463内に部分的に入り込む。スリット463は、光学ヘッド430の移動方向に沿って延びる。 A slit 463 and a spindle hole 464 are formed in the lower wall portion 462. The spindle hole 464 is formed on the rotation axis RX of the optical disc 420, while the slit 463 is formed away from the rotation axis RX. The optical head 430 partially enters the slit 463. The slit 463 extends along the moving direction of the optical head 430.
 光ディスク420は、再生や記録といった情報処理を受ける処理面421と、処理面421とは反対側の反対面422と、を含む。光学ヘッド430は、スリット463に沿って移動し、処理面421を光学的に走査する。この結果、駆動装置400は、光ディスク420の情報を記録することができる。或いは、駆動装置400は、光ディスク420から情報を再生することができる。 The optical disc 420 includes a processing surface 421 that receives information processing such as reproduction and recording, and an opposite surface 422 opposite to the processing surface 421. The optical head 430 moves along the slit 463 and optically scans the processing surface 421. As a result, the driving device 400 can record information on the optical disc 420. Alternatively, the driving device 400 can reproduce information from the optical disc 420.
 駆動機構470は、スピンドルモータ471と、固定壁474と、シールド部478と、ハブ475と、キャップ476と、呼吸フィルタ479と、を備える。第1実施形態と同様に、スピンドルモータ471は、本体部472と、本体部472が発生させた駆動力をハブ475及び光ディスク420へ伝達するスピンドルシャフト473と、を含む。スピンドルシャフト473は、回転軸RXに沿って延び、スピンドルホール464に挿通される。第1実施形態と同様に、シールド部478によって、下壁部462に接合された固定壁474は、本体部472を支持する。第1実施形態と同様に、固定壁474及び本体部472は、スピンドルホール464を閉じる。 The driving mechanism 470 includes a spindle motor 471, a fixed wall 474, a shield part 478, a hub 475, a cap 476, and a breathing filter 479. Similar to the first embodiment, the spindle motor 471 includes a main body 472 and a spindle shaft 473 that transmits the driving force generated by the main body 472 to the hub 475 and the optical disc 420. The spindle shaft 473 extends along the rotation axis RX and is inserted into the spindle hole 464. Similar to the first embodiment, the fixed wall 474 joined to the lower wall portion 462 by the shield portion 478 supports the main body portion 472. Similar to the first embodiment, the fixed wall 474 and the main body 472 close the spindle hole 464.
 呼吸フィルタ479は、固定壁474に形成された通気穴を閉塞する。呼吸フィルタ479は、収容空間469内への空気の流入を許容する一方で、収容空間469内への塵埃の侵入を阻む。呼吸フィルタ479は、第2実施形態に関連して説明された性能を有してもよい。 The breathing filter 479 closes a vent hole formed in the fixed wall 474. The breathing filter 479 allows air to flow into the accommodation space 469 while preventing dust from entering the accommodation space 469. The respiratory filter 479 may have the performance described in connection with the second embodiment.
 キャップ476は、ハブ475に磁気的に吸着されてもよい。この結果、光ディスク420は、ハブ475とキャップ476とに挟まれる。本体部472が発生させた駆動力がハブ475に伝達されると、光ディスク420は収容空間469内で回転する。この結果、収容空間469内において旋回流が発生する。 The cap 476 may be magnetically attracted to the hub 475. As a result, the optical disc 420 is sandwiched between the hub 475 and the cap 476. When the driving force generated by the main body 472 is transmitted to the hub 475, the optical disc 420 rotates in the accommodation space 469. As a result, a swirling flow is generated in the accommodation space 469.
 図29は、光学ヘッド430の概略図である。図28及び図29を参照して、駆動装置400が更に説明される。 FIG. 29 is a schematic diagram of the optical head 430. With reference to FIGS. 28 and 29, the driving device 400 will be further described.
 光学ヘッド430は、半導体レーザ431と、リレーレンズ432と、ビームスプリッタ433と、コリメータレンズ434と、対物レンズユニット435と、対物レンズアクチュエータ436と、ホログラム素子437と、シリンドリカルレンズ438と、光検出器439と、を備える。対物レンズユニット435は、光ディスク420の処理面421に対向するSIL531と、コリメータレンズ434からの光を受ける非球面レンズ532と、SIL531及び非球面レンズ532を収容するレンズホルダ533と、を備える。 The optical head 430 includes a semiconductor laser 431, a relay lens 432, a beam splitter 433, a collimator lens 434, an objective lens unit 435, an objective lens actuator 436, a hologram element 437, a cylindrical lens 438, and a photodetector. 439. The objective lens unit 435 includes a SIL 531 facing the processing surface 421 of the optical disc 420, an aspheric lens 532 that receives light from the collimator lens 434, and a lens holder 533 that houses the SIL 531 and the aspheric lens 532.
 半導体レーザ431は、記録や再生といった光学的な情報処理に利用される光束を出射する。リレーレンズ432は、半導体レーザ431からの光束の焦点距離を微調整する。リレーレンズ432を通過した光束は、ビームスプリッタ433に入射する。 The semiconductor laser 431 emits a light beam used for optical information processing such as recording and reproduction. The relay lens 432 finely adjusts the focal length of the light beam from the semiconductor laser 431. The light beam that has passed through the relay lens 432 enters the beam splitter 433.
 ビームスプリッタ433は、コリメータレンズ434に向けて光束を反射する。コリメータレンズ434は、光束を平行光束に変換する。その後、光束は、対物レンズユニット435に入射する。 The beam splitter 433 reflects the light beam toward the collimator lens 434. The collimator lens 434 converts the light beam into a parallel light beam. Thereafter, the light beam enters the objective lens unit 435.
 非球面レンズ532及びSIL531は、処理面421に光束を集光し、近接場光を作り出す。駆動装置400は、近接場光を用いて、光ディスク420に情報を記録する。或いは、駆動装置400は、近接場光を用いて、光ディスク420から情報を再生する。 The aspherical lens 532 and the SIL 531 concentrate the light flux on the processing surface 421 to produce near-field light. The driving device 400 records information on the optical disc 420 using near-field light. Alternatively, the driving device 400 reproduces information from the optical disc 420 using near-field light.
 光ディスク420の処理面421は、近接場光を反射又は回折し、反射光又は回折光を生成する。反射光は、情報の再生に用いられてもよい。反射光又は回折光は、対物レンズユニット435に入射する。 The processing surface 421 of the optical disc 420 reflects or diffracts near-field light to generate reflected light or diffracted light. The reflected light may be used for information reproduction. The reflected light or diffracted light is incident on the objective lens unit 435.
 対物レンズアクチュエータ436は、対物レンズユニットを光軸方向(フォーカス方向)及び光ディスク420のトラッキング方向(ラジアル方向)に駆動する。上述の反射光又は回折光は、対物レンズユニット435を通過し、コリメータレンズ434及びビームスプリッタ433に順次入射する。 The objective lens actuator 436 drives the objective lens unit in the optical axis direction (focus direction) and the tracking direction (radial direction) of the optical disc 420. The above-described reflected light or diffracted light passes through the objective lens unit 435 and sequentially enters the collimator lens 434 and the beam splitter 433.
 ビームスプリッタ433は、反射光又は回折光の透過を許容する。ビームスプリッタ433を透過した反射光又は回折光は、その後、ホログラム素子437に入射する。ホログラム素子437は、1ビーム法(APP法)に従ってトラッキングエラー信号を生成するための光束を生成する。 The beam splitter 433 allows transmission of reflected light or diffracted light. The reflected light or diffracted light that has passed through the beam splitter 433 then enters the hologram element 437. The hologram element 437 generates a light beam for generating a tracking error signal according to the one beam method (APP method).
 ホログラム素子437を透過した光束は、シリンドリカルレンズ438を通じて、光検出器439に入射する。光検出器439は、光束の入射位置に応じた信号を生成する。回路基板453は、光検出器439からの信号を用いて、演算処理を実行し、トラッキングエラー信号を生成する。回路基板453は、トラッキングエラー信号に応じて、光学ヘッド430に対して、トラッキングサーボ制御を実行する。この結果、対物レンズユニット435は、処理面421のトラックに追従する。 The light beam that has passed through the hologram element 437 enters the photodetector 439 through the cylindrical lens 438. The photodetector 439 generates a signal corresponding to the incident position of the light beam. The circuit board 453 uses the signal from the photodetector 439 to perform arithmetic processing and generate a tracking error signal. The circuit board 453 executes tracking servo control for the optical head 430 in accordance with the tracking error signal. As a result, the objective lens unit 435 follows the track of the processing surface 421.
 回路基板453は、光検出器439からの出力信号に応じて、フォーカスエラー信号を生成する。回路基板453は、光学ヘッド430に対して、フォーカスサーボ制御を実行する。この結果、光ディスク420の処理面421が振動しても、処理面421と対物レンズユニット435との相対的な距離は略一定に保たれる。 The circuit board 453 generates a focus error signal according to the output signal from the photodetector 439. The circuit board 453 performs focus servo control on the optical head 430. As a result, even if the processing surface 421 of the optical disc 420 vibrates, the relative distance between the processing surface 421 and the objective lens unit 435 is kept substantially constant.
 回路基板453は、光検出器439からの出力信号に基づき、光ディスク420に記録された情報を読み取ってもよい。 The circuit board 453 may read information recorded on the optical disc 420 based on an output signal from the photodetector 439.
 図28に示される如く、駆動装置400は、光学ヘッド430を支持するトラバース装置530を更に備える。トラバース装置530は、光学ヘッド430をスリット463に沿って移動させる。 28, the driving device 400 further includes a traverse device 530 that supports the optical head 430. The traverse device 530 moves the optical head 430 along the slit 463.
 回路基板453は、制御回路454と、信号処理回路455と、入出力回路456と、を備える。制御回路454は、上述のトラッキングサーボ制御及びフォーカスサーボ制御を実行する。制御回路454は、トラバース装置530を制御し、光学ヘッド430の位置を調整する。制御回路454は、スピンドルモータ471を制御し、光ディスク420の回転を調整する。 The circuit board 453 includes a control circuit 454, a signal processing circuit 455, and an input / output circuit 456. The control circuit 454 executes the tracking servo control and the focus servo control described above. The control circuit 454 controls the traverse device 530 and adjusts the position of the optical head 430. The control circuit 454 controls the spindle motor 471 and adjusts the rotation of the optical disc 420.
 制御回路454は、光検出器439の出力信号に応じて、光ディスク420に記録された情報を表す信号を生成してもよい。信号処理回路455は、制御回路454から出力された信号を処理し、再生信号を生成する。再生信号は、その後、入出力回路456を通じて、外部装置(図示せず)に出力される。外部装置は、再生信号に応じて、情報を再生する。 The control circuit 454 may generate a signal representing information recorded on the optical disc 420 according to the output signal of the photodetector 439. The signal processing circuit 455 processes the signal output from the control circuit 454 and generates a reproduction signal. The reproduction signal is then output to an external device (not shown) through the input / output circuit 456. The external device reproduces information according to the reproduction signal.
 入出力回路456は、外部装置からの信号を受けてもよい。外部装置からの信号は、光ディスク420に記録される情報を含んでもよい。信号処理回路455は、入出力回路456からの信号を処理し、記録信号を生成する。記録信号は、制御回路454に出力される。制御回路454は、記録信号に応じて、光学ヘッド430を制御し、光ディスク420に情報を書き込む。 The input / output circuit 456 may receive a signal from an external device. The signal from the external device may include information recorded on the optical disc 420. The signal processing circuit 455 processes a signal from the input / output circuit 456 and generates a recording signal. The recording signal is output to the control circuit 454. The control circuit 454 controls the optical head 430 according to the recording signal and writes information on the optical disc 420.
 SIL531は、処理面421に対向するSIL端面534を含む。回路基板453は、処理面421とSIL端面534との間のギャップを制御する。この結果、処理面421とSIL端面534との間のギャップは、近接場光が生ずる距離(ニアフィールド)に維持される。半導体レーザ431が短い波長のレーザ光を出射するならば、処理面421とSIL端面534との間のギャップは、数十nmに設定される。本実施形態において、処理面421とSIL端面534との間のギャップは、20nm~30nmの範囲に設定される。 The SIL 531 includes a SIL end surface 534 that faces the processing surface 421. The circuit board 453 controls the gap between the processing surface 421 and the SIL end surface 534. As a result, the gap between the processing surface 421 and the SIL end surface 534 is maintained at a distance (near field) where near-field light is generated. If the semiconductor laser 431 emits laser light having a short wavelength, the gap between the processing surface 421 and the SIL end surface 534 is set to several tens of nm. In the present embodiment, the gap between the processing surface 421 and the SIL end surface 534 is set in the range of 20 nm to 30 nm.
 光検出器439は、4分割受光領域535を含む。4分割受光領域535は、SIL端面534からの光を受光する。4分割受光領域535が受光する光量の総和(全反射戻り光)が略一定になるように、回路基板453は、処理面421とSIL端面534との間のギャップに対する制御(ギャップ制御)を行う。 The photodetector 439 includes a four-divided light receiving region 535. Quadrant light receiving region 535 receives light from SIL end surface 534. The circuit board 453 controls the gap between the processing surface 421 and the SIL end surface 534 (gap control) so that the total amount of light received by the four-divided light receiving region 535 (total reflection return light) becomes substantially constant. .
 駆動回路491は、回路基板453の制御下で、イオナイザ490を駆動する。イオナイザ490は、収容空間469内にプラスイオン及びマイナスイオンを放出する。この結果、収容空間469内の塵埃は、帯電しにくくなる。したがって、光ディスク420及びSIL端面534への塵埃の付着はほとんど生じない。本実施形態において、駆動回路491及びイオナイザ490は、イオン放出部として例示される。 The drive circuit 491 drives the ionizer 490 under the control of the circuit board 453. The ionizer 490 emits positive ions and negative ions into the accommodation space 469. As a result, the dust in the accommodation space 469 is not easily charged. Therefore, dust hardly adheres to the optical disc 420 and the SIL end surface 534. In the present embodiment, the drive circuit 491 and the ionizer 490 are exemplified as the ion emission unit.
 第1実施形態と同様に、収容壁460と光ディスク420との距離は、非常に短く設定される。また、収容壁460は、光ディスク420を略全体的に取り囲んでいる。したがって、処理面421及び反対面422に沿う非常に速い旋回流が発生する。 As in the first embodiment, the distance between the housing wall 460 and the optical disc 420 is set to be very short. The housing wall 460 substantially surrounds the optical disc 420. Accordingly, a very fast swirling flow along the processing surface 421 and the opposite surface 422 is generated.
 除塵部480は、上壁部461に取り付けられる。収容空間469内で発生した旋回流の一部は、除塵部480を通過する。このとき、除塵部480は、旋回流から塵埃を除去することができる。除塵部480の除塵効率は、除塵部480の圧力損失といった因子を考慮して決定されてもよい。 The dust removing portion 480 is attached to the upper wall portion 461. A part of the swirling flow generated in the accommodation space 469 passes through the dust removing portion 480. At this time, the dust removing unit 480 can remove dust from the swirling flow. The dust removal efficiency of the dust removing unit 480 may be determined in consideration of factors such as the pressure loss of the dust removing unit 480.
 除塵部480は、非エレクトリックフィルタであってもよい。除塵部480が非エレクトリックフィルタであるならば、除塵部480の表面は、「+」又は「-」に帯電されていない。したがって、イオナイザ490から放出されたプラスイオン及び/又はマイナスイオンは、除塵部480の表面にほとんど結合しない。この結果、除塵部480は、長期間に亘って、高い捕集効率を維持することができる。尚、必要に応じて、除塵部480として、エレクトリックフィルタが利用されてもよい。エレクトリックフィルタを用いても、塵埃は空気から適切に除去される。本実施形態において、除塵部480は、捕集フィルタとして例示される。 The dust removing unit 480 may be a non-electric filter. If the dust removing unit 480 is a non-electric filter, the surface of the dust removing unit 480 is not charged with “+” or “−”. Therefore, the positive ions and / or the negative ions released from the ionizer 490 are hardly bonded to the surface of the dust removing portion 480. As a result, the dust removing unit 480 can maintain high collection efficiency over a long period of time. Note that an electric filter may be used as the dust removing unit 480 as necessary. Even with an electric filter, dust is properly removed from the air. In this embodiment, the dust removal part 480 is illustrated as a collection filter.
 本実施形態において、収容空間469内に1つの除塵部480が設置されている。代替的に、複数の除塵部が収容空間内に配置されてもよい。除塵部の位置や数は、収容空間の大きさや形状に応じて適切に決定されてもよい。 In the present embodiment, one dust removing unit 480 is installed in the accommodation space 469. Alternatively, a plurality of dust removing units may be arranged in the accommodation space. The position and number of the dust removal units may be appropriately determined according to the size and shape of the accommodation space.
 除塵部480は、ポリプロピレンといった樹脂から形成されてもよい。除塵部480は、所定の格子間隔の格子構造を有する繊維層を含んでもよい。本実施形態において、50nm又は100nm以上の粒径を有する塵埃が除塵部480を通過するたびに、数十%以上の塵埃が除去されるように、除塵部480は設計される。また、除塵部480がもたらす圧力損失が、数mmAq以上~数十mmAqの範囲となるように、除塵部480は設計される。 The dust removing unit 480 may be formed of a resin such as polypropylene. The dust removing unit 480 may include a fiber layer having a lattice structure with a predetermined lattice interval. In the present embodiment, the dust removing unit 480 is designed such that every time dust having a particle diameter of 50 nm or 100 nm passes through the dust removing unit 480, tens of percent or more of dust is removed. The dust removal unit 480 is designed so that the pressure loss caused by the dust removal unit 480 is in the range of several mmAq to several tens mmAq.
 イオナイザ490は、回転軸RX上で上壁部461に取り付けられた1つの電極針492と、電極針492に電圧を印加する印加回路493と、を備える。電極針492は、収容空間469内で下方に突出する。イオナイザ490は、電極針492から収容空間469内にプラスイオンとマイナスイオンとを選択的に放出してもよい。例えば、イオナイザ490は、プラスイオンを所定期間放出する放出動作とマイナスイオンを所定期間放出する放出動作とを交互に繰り返してもよい。回路基板453の制御回路454及び/又は入出力回路456は、スピンドルモータ471の動作とイオナイザ490の動作とを同期させてもよい。本実施形態において、印加回路493は、印加部として例示される。 The ionizer 490 includes one electrode needle 492 attached to the upper wall portion 461 on the rotation axis RX, and an application circuit 493 that applies a voltage to the electrode needle 492. The electrode needle 492 protrudes downward within the accommodation space 469. The ionizer 490 may selectively release positive ions and negative ions from the electrode needle 492 into the accommodation space 469. For example, the ionizer 490 may alternately repeat a discharge operation for releasing positive ions for a predetermined period and a discharge operation for discharging negative ions for a predetermined period. The control circuit 454 and / or the input / output circuit 456 of the circuit board 453 may synchronize the operation of the spindle motor 471 and the operation of the ionizer 490. In the present embodiment, the application circuit 493 is exemplified as the application unit.
 第1実施形態と同様に、スピンドルモータ471が光ディスク420を数千rpmの回転数で回転させると、収容空間469内には、数十m/sの流速の旋回流が発生する。旋回流が発生した環境下において、イオナイザ490がプラスイオン及びマイナスイオンを電極針492から収容空間469内に放出すると、プラスイオン及びマイナスイオンは、収容空間469を規定する収容壁460の内面、光ディスク420の表面、SIL端面534及び収容空間469内の塵埃に結合する。 As in the first embodiment, when the spindle motor 471 rotates the optical disk 420 at a rotational speed of several thousand rpm, a swirling flow with a flow rate of several tens of m / s is generated in the accommodation space 469. When the ionizer 490 releases positive ions and negative ions from the electrode needles 492 into the receiving space 469 in an environment where a swirling flow is generated, the positive ions and the negative ions are emitted from the inner surface of the receiving wall 460 that defines the receiving space 469, the optical disc. Bonds to dust in the surface of 420, the SIL end surface 534 and the accommodation space 469.
 収容壁460の内面、光ディスク420の表面、SIL端面534及び/又は収容空間469内の塵埃がプラスに帯電している間、電極針492からマイナスイオンが放出されるならば、収容壁460の内面、光ディスク420の表面、SIL端面534及び/又は収容空間469内の塵埃のプラスの電荷は、マイナスイオンに結合する。この結果、収容壁460の内面、光ディスク420の表面、SIL端面534及び/又は収容空間469内の塵埃は、電気的に中和される。マイナスイオンの放出の結果、収容壁460の内面、光ディスク420の表面、SIL端面534及び/又は収容空間469内の塵埃は、除電されるので、クーロン力は小さくなる。したがって、収容空間469内の塵埃は、収容壁460の内面、光ディスク420の表面及びSIL端面534に付着しにくくなる。この結果、塵埃が処理面421とSIL端面534との間に入り込むリスクは大幅に低減される。したがって、処理面421及びSIL端面534は、損傷しにくくなる。 If negative ions are released from the electrode needle 492 while dust in the inner surface of the storage wall 460, the surface of the optical disk 420, the SIL end surface 534 and / or the storage space 469 is positively charged, the inner surface of the storage wall 460 The positive charge of dust in the surface of the optical disc 420, the SIL end surface 534, and / or the accommodation space 469 binds to negative ions. As a result, the inner surface of the storage wall 460, the surface of the optical disc 420, the SIL end surface 534 and / or the dust in the storage space 469 are electrically neutralized. As a result of the release of negative ions, the dust on the inner surface of the storage wall 460, the surface of the optical disk 420, the SIL end surface 534 and / or the storage space 469 is neutralized, so the Coulomb force is reduced. Therefore, the dust in the accommodation space 469 is less likely to adhere to the inner surface of the accommodation wall 460, the surface of the optical disc 420, and the SIL end surface 534. As a result, the risk that dust enters between the processing surface 421 and the SIL end surface 534 is greatly reduced. Therefore, the processing surface 421 and the SIL end surface 534 are hardly damaged.
 図30は、上述のギャップ制御に用いられる4分割受光領域535上の光のスポット形状と、全反射戻り光との関係を表す概略的なグラフである。図29及び図30を参照して、ギャップ制御が説明される。 FIG. 30 is a schematic graph showing the relationship between the spot shape of light on the four-divided light receiving region 535 used for the gap control described above and total reflected return light. The gap control will be described with reference to FIGS. 29 and 30. FIG.
 SIL端面534と処理面421との距離関係がファーフィールド状態(一般的には、100nm以上のギャップ)であるならば、SIL端面534の全反射領域に対応する光束のみが反射し、4分割受光領域535に入射する。したがって、ドーナツ状の光分布が得られる。 If the distance relationship between the SIL end surface 534 and the processing surface 421 is in a far field state (generally, a gap of 100 nm or more), only the light beam corresponding to the total reflection region of the SIL end surface 534 is reflected, and the light is divided into four parts. The light enters the region 535. Therefore, a donut-shaped light distribution is obtained.
 処理面421がSIL端面534に接触するならば、SIL端面534の全反射領域における反射はなくなる。この結果、SIL端面534からの反射光量は、大幅に低減する(略0mVになる)。本実施形態において、SIL531と処理面421を形成するカバー層429の屈折率はともに約2に設定されている。 If the processing surface 421 contacts the SIL end surface 534, the reflection in the total reflection region of the SIL end surface 534 is eliminated. As a result, the amount of reflected light from the SIL end surface 534 is greatly reduced (becomes substantially 0 mV). In this embodiment, the refractive index of the cover layer 429 that forms the SIL 531 and the processing surface 421 is both set to about 2.
 ギャップ制御は、光検出器439の受光部のゲイン設定に依存する。本実施形態において、約25nmのギャップが得られたときに、約150mVの電圧信号が出力されるように光検出器439のゲインは設定される。光検出器439からの電圧信号に応じて、対物レンズアクチュエータ436のフォーカス方向の動作は制御される。 The gap control depends on the gain setting of the light receiving unit of the photodetector 439. In this embodiment, the gain of the photodetector 439 is set so that a voltage signal of about 150 mV is output when a gap of about 25 nm is obtained. The operation of the objective lens actuator 436 in the focus direction is controlled according to the voltage signal from the photodetector 439.
 図31Aは、収容壁460の概略的な平面図である。図31Bは、収容壁460の概略的な断面図である。図31Cは、収容壁460の概略的な底面図である。図28、図29、図31A乃至図31Cを参照して、駆動装置400の動作が説明される。 FIG. 31A is a schematic plan view of the accommodation wall 460. FIG. 31B is a schematic cross-sectional view of the accommodation wall 460. FIG. 31C is a schematic bottom view of the accommodation wall 460. The operation of the driving device 400 will be described with reference to FIGS. 28, 29, and 31A to 31C.
 光ディスク420は、ハブ475上に設置される。その後、キャップ476は、ハブ475及び光ディスク420上に設置される。キャップ476は、ハブ475に磁気的に引き寄せられる。この結果、光ディスク420は、ハブ475とキャップ476とによって安定的に挟まれる。 The optical disc 420 is installed on the hub 475. Thereafter, the cap 476 is installed on the hub 475 and the optical disc 420. Cap 476 is magnetically attracted to hub 475. As a result, the optical disc 420 is stably sandwiched between the hub 475 and the cap 476.
 スピンドルモータ471が回転すると、光ディスク420も回転する。本実施形態において、スピンドルモータ471は、光ディスク420を時計回りに回転させる。代替的に、スピンドルモータ471は、光ディスク420を反時計回りに回転させてもよい。 When the spindle motor 471 rotates, the optical disk 420 also rotates. In the present embodiment, the spindle motor 471 rotates the optical disc 420 clockwise. Alternatively, the spindle motor 471 may rotate the optical disc 420 counterclockwise.
 図29を参照して説明された如く、非球面レンズ532及びSIL531は、レンズホルダ533によって保持される。図31Aに示される如く、対物レンズアクチュエータ436は、レンズホルダ533を弾性的に支持するサスペンション536を備える。非球面レンズ532及びSIL531を保持するレンズホルダ533は、対物レンズアクチュエータ436によって、トラッキング方向及びフォーカス方向に移動される。対物レンズアクチュエータ436は、光学ヘッド430の光学ベース(図示せず)上に保持されてもよい。対物レンズアクチュエータ436は、レンズホルダ533を光ディスク420の半径方向に移動させる。尚、レンズホルダ533の可動範囲MRは、スリット463の長さに応じて決定される。スリット463に沿って移動するレンズホルダ533の一部及びSIL531は、スリット463を通じて収容空間469内に入り込む。 29, the aspherical lens 532 and the SIL 531 are held by the lens holder 533. As shown in FIG. 31A, the objective lens actuator 436 includes a suspension 536 that elastically supports the lens holder 533. The lens holder 533 that holds the aspheric lens 532 and the SIL 531 is moved in the tracking direction and the focus direction by the objective lens actuator 436. The objective lens actuator 436 may be held on an optical base (not shown) of the optical head 430. The objective lens actuator 436 moves the lens holder 533 in the radial direction of the optical disc 420. The movable range MR of the lens holder 533 is determined according to the length of the slit 463. A part of the lens holder 533 moving along the slit 463 and the SIL 531 enter the accommodation space 469 through the slit 463.
 図32Aは、収容壁460の概略的な平面図である。図32Bは、収容壁460の概略的な断面図である。図32Cは、収容壁460の概略的な底面図である。図32A乃至図32Cを参照して、収容空間469内の空気の流動が説明される。 FIG. 32A is a schematic plan view of the accommodation wall 460. FIG. 32B is a schematic cross-sectional view of the accommodation wall 460. FIG. 32C is a schematic bottom view of the receiving wall 460. With reference to FIG. 32A thru | or FIG. 32C, the flow of the air in the accommodation space 469 is demonstrated.
 図32A及び図32C中の矢印AFは、収容空間469内の空気の流動を概略的に表す。図32A及び図32C中の矢印DRは、光ディスク420の回転を概略的に表す。 32A and 32C, the arrow AF schematically represents the flow of air in the accommodation space 469. An arrow DR in FIGS. 32A and 32C schematically represents the rotation of the optical disc 420.
 光ディスク420が回転軸RX周りに回転すると、上壁部461と反対面422との間において、回転軸RX周りに旋回する旋回流が発生する。旋回流は、回転軸RXから離間する方向に向かう。 When the optical disc 420 rotates around the rotation axis RX, a swirl flow that rotates around the rotation axis RX is generated between the upper wall portion 461 and the opposite surface 422. The swirling flow is directed away from the rotation axis RX.
 光ディスク420は、ハブ475とキャップ476とに挟まれた内周領域423と、光ディスク420の外周縁425に沿い、内周領域423を取り囲む外周領域424と、を含む。上壁部461と反対面422との間で発生した旋回流の速度は、内周領域423よりも外周領域424の方が大きくなる。また、収容空間469内の圧力も、内周領域423よりも外周領域424の方が大きくなる。この結果、上壁部461と反対面422との間において、内周領域423から外周領域424に向かう旋回流が発生する。 The optical disc 420 includes an inner peripheral region 423 sandwiched between the hub 475 and the cap 476 and an outer peripheral region 424 that surrounds the inner peripheral region 423 along the outer peripheral edge 425 of the optical disc 420. The speed of the swirling flow generated between the upper wall portion 461 and the opposite surface 422 is larger in the outer peripheral region 424 than in the inner peripheral region 423. Further, the pressure in the accommodation space 469 is larger in the outer peripheral region 424 than in the inner peripheral region 423. As a result, a swirling flow from the inner peripheral region 423 toward the outer peripheral region 424 is generated between the upper wall portion 461 and the opposite surface 422.
 光ディスク420が回転軸RX周りに回転すると、下壁部462と処理面421との間において、回転軸RX周りに旋回する旋回流が発生する。旋回流は、回転軸RXから離間する方向に向かう。 When the optical disk 420 rotates around the rotation axis RX, a swirl flow that rotates around the rotation axis RX is generated between the lower wall portion 462 and the processing surface 421. The swirling flow is directed away from the rotation axis RX.
 下壁部462と処理面421との間で発生した旋回流の速度は、内周領域423よりも外周領域424の方が大きくなる。また、収容空間469内の圧力も、内周領域423よりも外周領域424の方が大きくなる。この結果、下壁部462と処理面421との間において、内周領域423から外周領域424に向かう旋回流が発生する。 The speed of the swirling flow generated between the lower wall portion 462 and the processing surface 421 is larger in the outer peripheral area 424 than in the inner peripheral area 423. Further, the pressure in the accommodation space 469 is larger in the outer peripheral region 424 than in the inner peripheral region 423. As a result, a swirl flow from the inner peripheral region 423 toward the outer peripheral region 424 is generated between the lower wall portion 462 and the processing surface 421.
 図32Bに示される如く、固定壁474には、呼吸フィルタ479が取り付けられる。呼吸フィルタ479は、塵埃をほとんど含まない空気が収容空間469内へ流入することを許容する。上述の如く、回転軸RXの周囲は、比較的低い圧力であるので、収容空間469の外に存在する空気は、呼吸フィルタ479を通じて、収容空間469内に流入することができる。 32B, a respiratory filter 479 is attached to the fixed wall 474. As shown in FIG. The breathing filter 479 allows air containing almost no dust to flow into the accommodation space 469. As described above, since the pressure around the rotation axis RX is relatively low, air existing outside the accommodation space 469 can flow into the accommodation space 469 through the breathing filter 479.
 呼吸フィルタ479を通過した空気は、スピンドルホール464を通じて、収容空間469内に流入する。その後、空気は、図32A及び図32Cの矢印AFによって表される旋回流になる。 The air that has passed through the breathing filter 479 flows into the accommodation space 469 through the spindle hole 464. Thereafter, the air becomes a swirling flow represented by the arrow AF in FIGS. 32A and 32C.
 図32Bに示される如く、収容空間469の外に存在する空気は、回転軸RXに近いスリット463の領域からも収容空間469内へ流入することもある。スリット463を通じて収容空間469内に流入した空気も図28、図32A及び図32Cの矢印AFによって表される旋回流になる。 32B, the air existing outside the accommodation space 469 may also flow into the accommodation space 469 from the region of the slit 463 close to the rotation axis RX. The air that flows into the accommodation space 469 through the slit 463 also becomes a swirl flow represented by the arrow AF in FIGS. 28, 32A, and 32C.
 上述の如く、外周領域424の周囲における空気圧は、比較的高くなる。この結果、上壁部461と下壁部462との間の隙間から空気は流出する。収容空間469内の空気は、回転軸RXから離れたスリット463の領域からも流出することができる。上壁部461と下壁部462との間の隙間並びにスリット463から流出する空気量の総和は、スリット463及び呼吸フィルタ479を通じて収容空間469に流入する空気量の総和に略等しい。 As described above, the air pressure around the outer peripheral region 424 is relatively high. As a result, air flows out from the gap between the upper wall portion 461 and the lower wall portion 462. The air in the accommodation space 469 can also flow out from the region of the slit 463 away from the rotation axis RX. The total amount of air flowing out from the gap between the upper wall portion 461 and the lower wall portion 462 and the slit 463 is substantially equal to the total amount of air flowing into the accommodation space 469 through the slit 463 and the breathing filter 479.
 上壁部461は、反対面422に非常に近接している。下壁部462は、処理面421に非常に近接している。加えて、収容壁460は、光ディスク420を略全体的に覆う。したがって、上壁部461と反対面422との間並びに下壁部462と処理面421との間で発生する旋回流の平均流速は大きくなる。また、旋回流の速度は安定化される。 The upper wall portion 461 is very close to the opposite surface 422. The lower wall portion 462 is very close to the processing surface 421. In addition, the housing wall 460 covers the optical disk 420 substantially entirely. Therefore, the average flow velocity of the swirling flow generated between the upper wall portion 461 and the opposite surface 422 and between the lower wall portion 462 and the processing surface 421 is increased. Further, the speed of the swirl flow is stabilized.
 上述の如く、内周領域423の周囲において、負圧が生じる。また、外周領域424の周囲において、正圧が生ずる。したがって、旋回流は、内周領域423から外周領域424に向けて、高く且つ安定した速度で流れることとなる。 As described above, a negative pressure is generated around the inner peripheral region 423. Further, a positive pressure is generated around the outer peripheral region 424. Therefore, the swirling flow flows at a high and stable speed from the inner peripheral region 423 toward the outer peripheral region 424.
 図32Bに示される如く、電極針492は、収容空間469内において、回転軸RX上に配置される。プラスイオン及びマイナスイオンが電極針492から収容空間469内に放出されると、プラスイオン及びマイナスイオンは、旋回流に乗って、収容空間469の略全域に分散される。したがって、光ディスク420、SIL端面534並びに収容空間469内の塵埃は、効率的に除電される。したがって、収容空間469内の塵埃は、光ディスク420やSIL端面534に付着しにくくなる。光ディスク420とSIL端面534との間に入り込んだ塵埃に起因する光ディスク420並びにSIL端面534の損傷は生じにくくなるので、駆動装置400は、高い信頼性を有することとなる。 32B, the electrode needle 492 is disposed on the rotation axis RX in the accommodation space 469. As shown in FIG. When the positive ions and the negative ions are released from the electrode needle 492 into the accommodation space 469, the positive ions and the negative ions ride on the swirling flow and are dispersed over substantially the entire area of the accommodation space 469. Therefore, the dust in the optical disk 420, the SIL end surface 534, and the accommodation space 469 is efficiently discharged. Therefore, the dust in the accommodation space 469 becomes difficult to adhere to the optical disc 420 and the SIL end surface 534. Since the optical disk 420 and the SIL end surface 534 are less likely to be damaged due to dust entering between the optical disk 420 and the SIL end surface 534, the driving device 400 has high reliability.
 図33は、イオナイザ490の概略図である。図28及び図33を参照して、イオナイザ490が説明される。 FIG. 33 is a schematic diagram of the ionizer 490. The ionizer 490 will be described with reference to FIGS. 28 and 33.
 上述の如く、イオナイザ490は、電極針492と印加回路493とを備える。印加回路493は、電極針492からプラスイオンを放出させるための第1電源部591と、電極針492からマイナスイオンを放出させるための第2電源部592と、第1電源部591及び第2電源部592を接地するためのアース電極593と、を備える。第1電源部591及び第2電源部592は、電極針492に高い電圧を印加し、プラスイオン及びマイナスイオンをそれぞれ発生させる。 As described above, the ionizer 490 includes the electrode needle 492 and the application circuit 493. The application circuit 493 includes a first power supply unit 591 for discharging positive ions from the electrode needle 492, a second power supply unit 592 for discharging negative ions from the electrode needle 492, a first power supply unit 591, and a second power supply. And an earth electrode 593 for grounding the portion 592. The first power supply unit 591 and the second power supply unit 592 apply a high voltage to the electrode needle 492 to generate positive ions and negative ions, respectively.
 駆動回路491は、回路基板453からの出力信号に応じて、第1電源部591及び第2電源部592による電圧印加のタイミングを調整する。駆動回路491は、第1電源部591及び第2電源部592に対して、電極針492からプラスイオンを所定期間放出させる制御と、電極針492からマイナスイオンを所定期間放出させる制御と、を交互に実行してもよい。駆動回路491は、例えば、スピンドルモータ471の動作に第1電源部591及び/又は第2電源部592による電圧印加動作を同期させてもよい。 The drive circuit 491 adjusts the timing of voltage application by the first power supply unit 591 and the second power supply unit 592 according to the output signal from the circuit board 453. The drive circuit 491 alternately performs control to release positive ions from the electrode needle 492 for a predetermined period and control to release negative ions from the electrode needle 492 to the first power supply unit 591 and the second power supply unit 592 for a predetermined period. It may be executed. For example, the drive circuit 491 may synchronize the voltage application operation by the first power supply unit 591 and / or the second power supply unit 592 with the operation of the spindle motor 471.
 <第11実施形態>
 図34は、第11実施形態の駆動装置400Iの概略図である。図34を参照して、駆動装置400Iが説明される。尚、第10実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第10実施形態に関連した説明が援用される。
<Eleventh embodiment>
FIG. 34 is a schematic diagram of the drive device 400I of the eleventh embodiment. With reference to FIG. 34, drive device 400I will be described. In addition, the same code | symbol is attached | subjected with respect to the element same as 10th Embodiment. The description relevant to 10th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第10実施形態と同様に、駆動装置400Iは、光ディスク420と、光学ヘッド430と、回路基板453と、収容壁460と、駆動機構470と、除塵部480と、駆動回路491と、を備える。駆動装置400Iは、イオナイザ490Iを更に備える。第10実施形態と同様に、イオナイザ490Iは、印加回路493を備える。イオナイザ490Iは、プラス電極針494と、マイナス電極針495と、を更に備える。プラス電極針494及びマイナス電極針495はともに、収容空間469内に配置される。プラス電極針494は、収容空間469内にプラスイオンを専ら放出する。マイナス電極針495は、収容空間469内にマイナスイオンを専ら放出する。 Similarly to the tenth embodiment, the driving device 400I includes an optical disk 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, and a driving circuit 491. The driving device 400I further includes an ionizer 490I. Similar to the tenth embodiment, the ionizer 490I includes an application circuit 493. The ionizer 490I further includes a plus electrode needle 494 and a minus electrode needle 495. Both the positive electrode needle 494 and the negative electrode needle 495 are disposed in the accommodation space 469. The positive electrode needle 494 exclusively releases positive ions into the accommodation space 469. The negative electrode needle 495 exclusively releases negative ions into the accommodation space 469.
 図35は、イオナイザ490Iの概略図である。図34及び図35を参照して、イオナイザ490Iが説明される。 FIG. 35 is a schematic diagram of the ionizer 490I. The ionizer 490I is described with reference to FIG. 34 and FIG.
 プラス電極針494は、第1電源部591に電気的に接続される。マイナス電極針495は、第2電源部592に電気的に接続される。駆動回路491は、回路基板453からの出力信号に応じて、第1電源部591及び第2電源部592による電圧印加のタイミングを調整する。駆動回路491は、第1電源部591及び第2電源部592に対して、プラス電極針494からプラスイオンを所定期間放出させる制御と、マイナス電極針495からマイナスイオンを所定期間放出させる制御と、を交互に実行してもよい。駆動回路491は、例えば、スピンドルモータ471の動作に第1電源部591及び/又は第2電源部592による電圧印加動作を同期させてもよい。 The plus electrode needle 494 is electrically connected to the first power supply unit 591. The negative electrode needle 495 is electrically connected to the second power supply unit 592. The drive circuit 491 adjusts the timing of voltage application by the first power supply unit 591 and the second power supply unit 592 according to the output signal from the circuit board 453. The drive circuit 491 controls the first power supply unit 591 and the second power supply unit 592 to release positive ions from the positive electrode needle 494 for a predetermined period, and control to release negative ions from the negative electrode needle 495 for a predetermined period; May be executed alternately. For example, the drive circuit 491 may synchronize the voltage application operation by the first power supply unit 591 and / or the second power supply unit 592 with the operation of the spindle motor 471.
 第10実施形態及び第11実施形態に関連して説明された電極針の位置や数は、限定的に解釈されるべきではない。電極針の位置や数は、収容空間の大きさや形状に応じて適切に決定されてもよい。 The position and number of electrode needles described in relation to the tenth and eleventh embodiments should not be interpreted in a limited manner. The position and number of electrode needles may be appropriately determined according to the size and shape of the accommodation space.
 第10実施形態及び第11実施形態に関連して説明されたイオン発生は、コロナ放電を利用する。代替的に、プラスイオン及びマイナスイオンは、電離放射線を利用して発生されてもよい。電離放射線として、軟X線、α線や紫外線が例示される。 The ion generation described in relation to the tenth and eleventh embodiments uses corona discharge. Alternatively, positive ions and negative ions may be generated utilizing ionizing radiation. Examples of the ionizing radiation include soft X-rays, α rays, and ultraviolet rays.
 <第12実施形態>
 図36は、第12実施形態の駆動装置400Jの概略図である。図36を参照して、駆動装置400Jが説明される。尚、第10実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第10実施形態に関連した説明が援用される。
<Twelfth embodiment>
FIG. 36 is a schematic view of a driving device 400J of the twelfth embodiment. The drive device 400J will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 10th Embodiment. The description relevant to 10th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第10実施形態と同様に、駆動装置400Jは、光ディスク420と、光学ヘッド430と、回路基板453と、収容壁460と、駆動機構470と、除塵部480と、イオナイザ490と、駆動回路491と、を備える。駆動装置400Jは、スイッチ素子457と、キャパシタ458と、を更に備える。電源ESから供給された電力は、スイッチ素子457及びキャパシタ458を通じて、回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490へ供給される。スイッチ素子457は、電源ESから回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490への電力経路を遮断するオフモードと、電源ESから回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490への電力供給経路を開くオンモードと、の間で電力供給モードを切り替える。電力供給モードがオンモードである間、キャパシタ458は、蓄電することができる。回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490は、キャパシタ458に蓄えられた電力を消費して、動作することができる。したがって、電源ESからの電力供給が途絶えた後も、回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490は、所定期間、動作することができる。本実施形態において、スイッチ素子457は、電力スイッチ部として例示される。キャパシタ458は、蓄電部として例示される。 Similarly to the tenth embodiment, the driving device 400J includes an optical disc 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491. . The driving device 400J further includes a switch element 457 and a capacitor 458. The power supplied from the power source ES is supplied to the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 through the switch element 457 and the capacitor 458. The switch element 457 includes an off mode for cutting off a power path from the power source ES to the circuit board 453, the driving mechanism 470, the optical head 430, the driving circuit 491, and the ionizer 490; 430, the power supply mode is switched between the ON mode in which the power supply path to the drive circuit 491 and the ionizer 490 is opened. While the power supply mode is the on mode, the capacitor 458 can store electricity. The circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 can operate by consuming electric power stored in the capacitor 458. Therefore, even after the power supply from the power source ES is interrupted, the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 can operate for a predetermined period. In the present embodiment, the switch element 457 is exemplified as a power switch unit. Capacitor 458 is exemplified as a power storage unit.
 回路基板453は、処理回転モードと集塵回転モードとの間で、駆動機構470及び駆動回路491に対する制御を切り替える。駆動機構470は、処理回転モード下において、光学ヘッド430が光ディスク420に情報を記録するのに適切な回転数で、光ディスク420を回転させる。或いは、駆動機構470は、処理回転モード下において、光学ヘッド430が光ディスク420から情報を読み取るのに適切な回転数で、光ディスク420を回転させる。駆動機構470は、集塵回転モード下において、除塵部480が収容空間469内の塵埃を集塵するのに適切な回転数で、光ディスク420を回転させる。この結果、収容空間469内において、除塵部480が塵埃を短時間で捕集するのに十分な速度の旋回流が発生する。集塵回転モードの間、イオナイザ490は、回路基板453の制御下で、プラスイオン及びマイナスイオンを収容空間469内で発生させる。本実施形態において、回路基板453は、制御部として例示される。 The circuit board 453 switches control over the drive mechanism 470 and the drive circuit 491 between the processing rotation mode and the dust collection rotation mode. The drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the optical head 430 to record information on the optical disc 420 in the processing rotation mode. Alternatively, the drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the optical head 430 to read information from the optical disc 420 under the processing rotation mode. The drive mechanism 470 rotates the optical disc 420 at a rotation speed appropriate for the dust removal unit 480 to collect the dust in the accommodation space 469 in the dust collection rotation mode. As a result, a swirling flow having a speed sufficient for the dust removing unit 480 to collect the dust in a short time is generated in the accommodation space 469. During the dust collection rotation mode, the ionizer 490 generates positive ions and negative ions in the accommodation space 469 under the control of the circuit board 453. In the present embodiment, the circuit board 453 is exemplified as the control unit.
 図37は、回路基板453による例示的な制御を表すフローチャートである。図36及び図37を参照して、回路基板453による制御が説明される。 FIG. 37 is a flowchart showing exemplary control by the circuit board 453. The control by the circuit board 453 will be described with reference to FIGS.
 (ステップS210)
 ステップS210において、使用者は、スイッチ素子457を操作し、電力供給モードをオフモードからオンモードに切り替える。この結果、電源ESから回路基板453、駆動機構470、光学ヘッド430、駆動回路491及びイオナイザ490への電力供給経路が開かれる。電力供給経路が開かれた後、ステップS220が実行される。
(Step S210)
In step S210, the user operates the switch element 457 to switch the power supply mode from the off mode to the on mode. As a result, a power supply path from the power supply ES to the circuit board 453, the drive mechanism 470, the optical head 430, the drive circuit 491, and the ionizer 490 is opened. After the power supply path is opened, step S220 is executed.
 (ステップS220)
 ステップS220において、回路基板153は、集塵回転モードで、光学ヘッド430、駆動機構470及びイオナイザ490を制御する。イオナイザ490は、回路基板453の制御下で、プラスイオン及びマイナスイオンを、収容空間469内に選択的に放出する。イオンが放出されている間、スピンドルモータ471は、処理回転モードにおいてスピンドルモータ471に設定される第2回転速度よりも大きな第1回転速度で回転する高速回転動作と、第1回転速度よりも低い第3回転速度で回転する低速回転動作と、を交互に実行する。高速回転動作によって、プラスイオン及びマイナスイオンは、収容空間469内で広く拡散される。低速回転動作の間、光ディスク420、SIL端面534及び収容空間469内の塵埃に対してイオンは効率的に結合される。尚、第3回転速度は、「0」の速度であってもよい(即ち、停止動作)。イオナイザ490は、高速回転動作と低速回転動作との実行周期に同期して、プラスイオン及びマイナスイオンを収容空間469内に放出してもよい。例えば、低速回転動作の間、イオンが放出されてもよい。その後の高速回転動作によって、イオンは、広く拡散されてもよい。イオン放出が所定時間(数秒~数十秒)実行されると、ステップS230が実行される。イオナイザ490の起動及びスピンドルモータ471の起動は、同時であってもよい。代替的に、イオナイザ490は、スピンドルモータ471よりも早く起動されてもよい。更に代替的に、イオナイザ490は、スピンドルモータ471の後に起動されてもよい。
(Step S220)
In step S220, the circuit board 153 controls the optical head 430, the drive mechanism 470, and the ionizer 490 in the dust collection rotation mode. The ionizer 490 selectively releases positive ions and negative ions into the accommodation space 469 under the control of the circuit board 453. While the ions are being released, the spindle motor 471 rotates at a first rotation speed larger than the second rotation speed set in the spindle motor 471 in the processing rotation mode, and lower than the first rotation speed. The low-speed rotation operation that rotates at the third rotation speed is executed alternately. The positive ions and the negative ions are diffused widely in the accommodation space 469 by the high-speed rotation operation. During the low-speed rotation operation, ions are efficiently bound to the dust in the optical disc 420, the SIL end surface 534, and the accommodation space 469. The third rotation speed may be a speed of “0” (that is, a stop operation). The ionizer 490 may discharge positive ions and negative ions into the accommodation space 469 in synchronization with the execution cycle of the high-speed rotation operation and the low-speed rotation operation. For example, ions may be released during low speed rotation operation. The ions may be diffused widely by the subsequent high-speed rotation operation. When ion emission is executed for a predetermined time (several seconds to several tens of seconds), step S230 is executed. The activation of the ionizer 490 and the activation of the spindle motor 471 may be performed simultaneously. Alternatively, the ionizer 490 may be activated earlier than the spindle motor 471. Further alternatively, the ionizer 490 may be activated after the spindle motor 471.
 (ステップS230)
 ステップS230において、回路基板453は、記録や再生といった情報処理を実行する。その後、ステップS240が実行される。
(Step S230)
In step S230, the circuit board 453 executes information processing such as recording and reproduction. Thereafter, step S240 is executed.
 (ステップS240)
 回路基板453は、スピンドルモータ471を第2回転速度に設定する。上述の如く、第2回転速度は、ステップS220において設定された第1回転速度よりも小さい。回路基板453は、光学ヘッド430をスリット463に沿って移動させる。光学ヘッド430の移動の間、回路基板453は、光学ヘッド430を用いて、光ディスク420に記録又は再生といった情報処理を行う。その後、ステップS250が実行される。
(Step S240)
The circuit board 453 sets the spindle motor 471 to the second rotation speed. As described above, the second rotation speed is smaller than the first rotation speed set in step S220. The circuit board 453 moves the optical head 430 along the slit 463. During the movement of the optical head 430, the circuit board 453 performs information processing such as recording or reproduction on the optical disc 420 using the optical head 430. Thereafter, step S250 is executed.
 (ステップS250)
 ステップS250において、回路基板453は、使用者が、スイッチ素子457を操作し、電力供給モードをオンモードからオフモードに切り替えたか否かを判定する。電力供給モードがオフモードに設定されていないならば、ステップS260が実行される。電力供給モードがオフモードに設定されているならば、ステップS270が実行される。
(Step S250)
In step S250, the circuit board 453 determines whether or not the user has operated the switch element 457 to switch the power supply mode from the on mode to the off mode. If the power supply mode is not set to the off mode, step S260 is executed. If the power supply mode is set to the off mode, step S270 is executed.
 (ステップS260)
 ステップS260において、回路基板453は、光ディスク420に対する情報処理(記録又は再生処理)が完了したか否かを判断する。情報処理が完了しているならば、ステップS270が実行される。他の場合には、ステップS250が実行される。尚、情報処理の完了は、記録信号及び再生信号の通信の終了を基準に判断されてもよい。或いは、情報処理の完了は、光学ヘッド430の機械的な変位タイミングや他の適切な基準に基づいて判断されてもよい。
(Step S260)
In step S260, the circuit board 453 determines whether or not the information processing (recording or reproducing process) for the optical disc 420 has been completed. If the information processing has been completed, step S270 is executed. In other cases, step S250 is executed. Note that the completion of information processing may be determined based on the end of communication of the recording signal and the reproduction signal. Alternatively, the completion of information processing may be determined based on the mechanical displacement timing of the optical head 430 and other appropriate criteria.
 (ステップS270)
 ステップS270において、回路基板453は、集塵回転モードで、駆動機構470及びイオナイザ490を制御する。イオナイザ490は、回路基板453の制御下で、プラスイオン及びマイナスイオンを、収容空間469内に選択的に放出する。イオンが放出されている間、スピンドルモータ471は、高速回転動作と低速回転動作とを交互に実行する。イオナイザ490は、高速回転動作と低速回転動作との実行周期に同期して、プラスイオン及びマイナスイオンを収容空間469内に放出してもよい。
(Step S270)
In step S270, the circuit board 453 controls the drive mechanism 470 and the ionizer 490 in the dust collection rotation mode. The ionizer 490 selectively releases positive ions and negative ions into the accommodation space 469 under the control of the circuit board 453. While the ions are being released, the spindle motor 471 alternately performs a high-speed rotation operation and a low-speed rotation operation. The ionizer 490 may discharge positive ions and negative ions into the accommodation space 469 in synchronization with the execution cycle of the high-speed rotation operation and the low-speed rotation operation.
 ステップS250の後のステップS270においても、回路基板453は、キャパシタ458に蓄えられた電力を消費し、スピンドルモータ471及びイオナイザ490を適切に動作させることができる。したがって、重力作用及びクーロン力によって、光ディスク420及びSIL端面534に付着され得る塵埃は、光ディスク420の回転によって生ずる旋回流に乗って、除塵部480によって適切に捕捉されることとなる。或いは、塵埃は、収容空間469から適切に放出される。 Also in step S270 after step S250, the circuit board 453 consumes the electric power stored in the capacitor 458, and can operate the spindle motor 471 and the ionizer 490 appropriately. Accordingly, the dust that can be attached to the optical disc 420 and the SIL end surface 534 by the gravitational action and the Coulomb force is properly captured by the dust removing unit 480 on the swirling flow generated by the rotation of the optical disc 420. Alternatively, the dust is appropriately discharged from the accommodation space 469.
 集塵回転モードにおける、イオン放出のタイミングと、スピンドルモータ471の回転動作の切替タイミングと、の間の関係は、限定的に解釈されるべきではない。また、スピンドルモータ471の回転動作の切替は行われなくともよい。例えば、処理回転モードにおいて設定される第2回転速度でスピンドルモータ471が光ディスク420を回転させている間、イオンが放出されてもよい。或いは、第2回転速度より低い速度でスピンドルモータ471が光ディスク420を回転させている間、イオンが放出されてもよい。 The relationship between the ion emission timing and the rotation operation switching timing of the spindle motor 471 in the dust collection rotation mode should not be interpreted in a limited way. Further, the rotation operation of the spindle motor 471 may not be switched. For example, ions may be emitted while the spindle motor 471 rotates the optical disc 420 at the second rotation speed set in the processing rotation mode. Alternatively, ions may be emitted while the spindle motor 471 rotates the optical disc 420 at a speed lower than the second rotational speed.
 本実施形態において、集塵回転モードは、数秒~数十秒の期間において実行される。集塵回転モードの期間は、イオン放出量、スピンドルモータの回転動作の設定や収容空間の大きさや形状に応じて適切に定められてもよい。プラスイオン及びマイナスイオンの放出期間は、独立して設定されてもよい。スピンドルモータの回転動作の設定(例えば、高速回転動作及び低速回転動作の期間や繰り返し数)は、イオン放出量、スピンドルモータの回転動作の設定や収容空間の大きさや形状に応じて適切に定められてもよい。 In the present embodiment, the dust collection rotation mode is executed in a period of several seconds to several tens of seconds. The period of the dust collection rotation mode may be appropriately determined according to the ion emission amount, the setting of the rotation operation of the spindle motor, and the size and shape of the accommodation space. The release period of positive ions and negative ions may be set independently. The setting of the rotation operation of the spindle motor (for example, the period and the number of repetitions of the high-speed rotation operation and the low-speed rotation operation) is appropriately determined according to the ion emission amount, the setting of the rotation operation of the spindle motor and the size and shape of the accommodation space. May be.
 本実施形態において、イオンは、集塵回転モードの間、放出される。代替的に、イオンは、処理回転モードの間にも放出されてもよい。 In this embodiment, ions are released during the dust collection rotation mode. Alternatively, ions may be ejected during the process rotation mode.
 本実施形態において、使用者によるスイッチ素子457に対する操作によって、電力供給モードがオンモードとオフモードとの間で切り替えられる。代替的に、使用者が、駆動装置400Jと電源ESとを接続するプラグを外したときに電力供給モードがオフモードに切り替えられてもよい。キャパシタ458が存在するので、駆動装置400Jは、オフモード下において、集塵回転モードを適切に実行することができる。キャパシタ458の容量は、集塵回転モードが数秒~数十秒の間実行されるように設計されてもよい。 In the present embodiment, the power supply mode is switched between the on mode and the off mode by an operation on the switch element 457 by the user. Alternatively, the power supply mode may be switched to the off mode when the user removes the plug that connects the driving device 400J and the power source ES. Since the capacitor 458 is present, the driving device 400J can appropriately execute the dust collection rotation mode under the off mode. The capacity of the capacitor 458 may be designed such that the dust collection rotation mode is executed for several seconds to several tens of seconds.
 本実施形態において、スイッチ素子457に対する操作に応じて、イオン放出が行われる。代替的に、スピンドルモータ471が所定時間停止するならば、上述の集塵回転モードが自動的に実行されてもよい。 In this embodiment, ion emission is performed in response to an operation on the switch element 457. Alternatively, if the spindle motor 471 stops for a predetermined time, the above-described dust collection rotation mode may be automatically executed.
 <第13実施形態>
 図38は、第13実施形態の駆動装置400Kの概略図である。図38を参照して、駆動装置400Kが説明される。尚、第10実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第10実施形態に関連した説明が援用される。
<13th Embodiment>
FIG. 38 is a schematic view of a driving device 400K according to the thirteenth embodiment. The drive device 400K will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 10th Embodiment. The description relevant to 10th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第10実施形態と同様に、駆動装置400Kは、光ディスク420と、光学ヘッド430と、回路基板453と、収容壁460と、駆動機構470と、除塵部480と、イオナイザ490と、駆動回路491と、を備える。駆動装置400Kは、収容空間469内に配置された帯電センサ459を更に備える。本実施形態において、帯電センサ459は、収容空間469内で浮遊する塵埃の帯電量を収容空間469内の帯電特性として検出する検出部として例示される。代替的に、検出部は、光ディスクやSIL端面の帯電量を検出してもよい。 Similarly to the tenth embodiment, the driving device 400K includes an optical disc 420, an optical head 430, a circuit board 453, a housing wall 460, a driving mechanism 470, a dust removing unit 480, an ionizer 490, and a driving circuit 491. . The driving device 400K further includes a charging sensor 459 disposed in the accommodation space 469. In the present embodiment, the charge sensor 459 is exemplified as a detection unit that detects the charge amount of dust floating in the storage space 469 as the charging characteristics in the storage space 469. Alternatively, the detection unit may detect the charge amount of the optical disk or the SIL end surface.
 帯電センサ459は、回路基板453に電気的に接続される。帯電センサ459は、検出された帯電量に応じた検出信号を生成する。検出信号は、帯電センサ459から回路基板453に出力される。 The charging sensor 459 is electrically connected to the circuit board 453. The charging sensor 459 generates a detection signal corresponding to the detected charge amount. The detection signal is output from the charging sensor 459 to the circuit board 453.
 回路基板453は、検出信号に応じて、駆動回路491を制御してもよい。例えば、検出信号が表す帯電量が所定の閾値を超えたときのみ、プラスイオン及びマイナスイオンが電極針492から放出されるように、回路基板453は駆動回路491を制御してもよい。回路基板453は、スピンドルモータ471を制御し、イオン放出に同期して、光ディスク420を回転させてもよい。この結果、収容空間469内の塵埃の帯電量は低減される。加えて、イオン放出によって、SIL端面534及び光ディスク420の帯電量も低減される。SIL端面534や光ディスク420に付着する塵埃は少なくなるので、除塵部480は、空気から塵埃を効率的に除去することができる。 The circuit board 453 may control the drive circuit 491 according to the detection signal. For example, the circuit board 453 may control the drive circuit 491 so that positive ions and negative ions are released from the electrode needle 492 only when the charge amount represented by the detection signal exceeds a predetermined threshold value. The circuit board 453 may rotate the optical disc 420 in synchronization with ion emission by controlling the spindle motor 471. As a result, the charge amount of dust in the accommodation space 469 is reduced. In addition, the charge amount of the SIL end surface 534 and the optical disk 420 is also reduced by the ion emission. Since dust adhering to the SIL end surface 534 and the optical disk 420 is reduced, the dust removing unit 480 can efficiently remove dust from the air.
 本実施形態において、イオンは、不必要に放出されない。したがって、イオナイザ490は、長期間に亘って、イオンを適切に放出することができる。 In this embodiment, ions are not released unnecessarily. Accordingly, the ionizer 490 can appropriately release ions over a long period of time.
 <第14実施形態>
 図39は、第14実施形態の駆動装置400Lの概略図である。図39を参照して、駆動装置400Lが説明される。尚、第1実施形態及び第10実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態及び第10実施形態に関連した説明が援用される。
<Fourteenth embodiment>
FIG. 39 is a schematic diagram of a driving device 400L according to the fourteenth embodiment. The drive device 400L will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment and 10th Embodiment. The description relevant to 1st Embodiment and 10th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第1実施形態と同様に、駆動装置400Lは、磁気ディスク120と、磁気ヘッド130と、保持機構140と、を備える。第10実施形態と同様に、除塵部480と、イオナイザ490と、駆動回路491と、を更に備える。 As in the first embodiment, the driving device 400L includes the magnetic disk 120, the magnetic head 130, and the holding mechanism 140. Similar to the tenth embodiment, a dust removing unit 480, an ionizer 490, and a drive circuit 491 are further provided.
 駆動装置400Lは、収容壁460Lを更に備える。収容壁460Lは、磁気ディスク120の処理面121を覆う上壁部461Lと、磁気ディスク120の反対面122を覆う下壁部462Lと、を含む。上壁部461L及び下壁部462Lは、保持機構140に向けて開口された収容空間469Lを形成する。除塵部480は、上壁部461Lに取り付けられる。 The driving device 400L further includes an accommodation wall 460L. The housing wall 460L includes an upper wall portion 461L that covers the processing surface 121 of the magnetic disk 120, and a lower wall portion 462L that covers the opposite surface 122 of the magnetic disk 120. The upper wall portion 461L and the lower wall portion 462L form an accommodation space 469L that opens toward the holding mechanism 140. The dust removing portion 480 is attached to the upper wall portion 461L.
 スイングアーム143、サスペンション142、スライダ141及び磁気ヘッド130は、開口した収容空間469L内に挿入される。保持機構140は、上壁部461L及び下壁部462Lによって規定された開口領域を利用して、磁気ヘッド130及びスライダ141を処理面121に沿って回動させることができる。 The swing arm 143, the suspension 142, the slider 141, and the magnetic head 130 are inserted into the open accommodation space 469L. The holding mechanism 140 can rotate the magnetic head 130 and the slider 141 along the processing surface 121 by using an opening region defined by the upper wall portion 461L and the lower wall portion 462L.
 駆動装置400Lは、磁気ディスク120を回転させる駆動機構470Lを備える。第1実施形態と同様に、駆動機構470Lは、スピンドルモータ171と、ハブ175と、キャップ176と、固定ネジ177と、を備える。第10実施形態と同様に、駆動機構470Lは、固定壁474と、シールド部478と、呼吸フィルタ479と、を備える。 The drive device 400L includes a drive mechanism 470L that rotates the magnetic disk 120. Similar to the first embodiment, the drive mechanism 470L includes a spindle motor 171, a hub 175, a cap 176, and a fixing screw 177. Similarly to the tenth embodiment, the drive mechanism 470L includes a fixed wall 474, a shield part 478, and a respiratory filter 479.
 駆動装置400Lは、回路基板453Lを更に備える。回路基板453Lは、第1実施形態に関連して説明された制御方法に従って、駆動機構470L及び保持機構140を制御する。回路基板453Lは、第10実施形態に関連して説明された制御方法に従って、駆動回路491を制御する。 The driving device 400L further includes a circuit board 453L. The circuit board 453L controls the drive mechanism 470L and the holding mechanism 140 according to the control method described in relation to the first embodiment. The circuit board 453L controls the drive circuit 491 according to the control method described in relation to the tenth embodiment.
 図40Aは、駆動装置400Lの概略的な平面図である。図40Bは、駆動装置400Lの概略的な断面図である。図40A及び図40Bを参照して、収容空間469L内の空気の流動が説明される。 FIG. 40A is a schematic plan view of the driving device 400L. FIG. 40B is a schematic cross-sectional view of drive device 400L. With reference to FIG. 40A and FIG. 40B, the flow of air in the accommodation space 469L will be described.
 図40A中の矢印AFは、収容空間469L内の空気の流動を概略的に表す。図40A中の矢印DRは、磁気ディスク120の回転を概略的に表す。 The arrow AF in FIG. 40A schematically represents the flow of air in the accommodation space 469L. An arrow DR in FIG. 40A schematically represents the rotation of the magnetic disk 120.
 磁気ディスク120の回転によって、収容空間469L内には旋回流が発生する。旋回流は、磁気ディスク120の回転軸RXから外方に向かう。磁気ディスク120が数千rpmで回転するならば、旋回流の速度は、数十m/sに達する。この結果、スライダ141及び磁気ヘッド130は、処理面121から浮上する。保持機構140は、スライダ141及び磁気ヘッド130が旋回流によって、処理面121から数nm~数十nmだけ浮上するように設計されてもよい。 Rotating flow is generated in the accommodation space 469L by the rotation of the magnetic disk 120. The swirling flow is directed outward from the rotation axis RX of the magnetic disk 120. If the magnetic disk 120 rotates at several thousand rpm, the speed of the swirling flow reaches several tens of m / s. As a result, the slider 141 and the magnetic head 130 float from the processing surface 121. The holding mechanism 140 may be designed such that the slider 141 and the magnetic head 130 are floated from the processing surface 121 by several nm to several tens of nm by a swirling flow.
 第10実施形態に関連して説明された如く、電極針492からプラスイオン及びマイナスイオンが選択的に放出される。この結果、プラスイオン及びマイナスイオンは、収容空間469L内において広く分散される。したがって、磁気ディスク120、磁気ヘッド130、スライダ141及び収容空間469L内の塵埃は、適切に除電される。駆動装置400Lは、高い信頼性を有するので、駆動装置400Lは、記録性能及び再生性能を高い水準で維持することができる。 As described in relation to the tenth embodiment, positive ions and negative ions are selectively released from the electrode needle 492. As a result, positive ions and negative ions are widely dispersed in the accommodation space 469L. Therefore, the dust in the magnetic disk 120, the magnetic head 130, the slider 141, and the accommodation space 469L is appropriately neutralized. Since the driving device 400L has high reliability, the driving device 400L can maintain the recording performance and the reproduction performance at a high level.
 本実施形態において、駆動装置400Lは、磁気記録を行う。また、駆動装置400Lは、媒体として、磁気ディスク120を用いている。代替的に、駆動装置は、レーザ光と金属アンテナを用いて、プラズモン共鳴を生じさせ、熱アシストの磁気記録を行ってもよい。 In this embodiment, the driving device 400L performs magnetic recording. The driving device 400L uses the magnetic disk 120 as a medium. Alternatively, the driving device may perform assisted magnetic recording by generating plasmon resonance using a laser beam and a metal antenna.
 <第15実施形態>
 図41Aは、第15実施形態の駆動装置400Mの概略的な断面図である。図41Bは、駆動装置400Mの概略的な平面図である。図41A及び図41Bを参照して、駆動装置400Mが説明される。尚、第3実施形態及び第14実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第3実施形態及び第14実施形態に関連した説明が援用される。
<Fifteenth embodiment>
FIG. 41A is a schematic cross-sectional view of the drive device 400M of the fifteenth embodiment. FIG. 41B is a schematic plan view of the driving device 400M. The drive device 400M will be described with reference to FIGS. 41A and 41B. In addition, the same code | symbol is attached | subjected with respect to the element same as 3rd Embodiment and 14th Embodiment. The description relevant to 3rd Embodiment and 14th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第14実施形態と同様に、駆動装置400Mは、保持機構140と、回路基板453Lと、収容壁460Lと、駆動機構470Lと、除塵部480と、イオナイザ490と、駆動回路491と、を備える。第3実施形態と同様に、駆動装置400Mは、光ディスク120Bと、スライダ141に取り付けられた半導体レーザ131と、光学ヘッド130Bと、を更に備える。 As in the fourteenth embodiment, the driving device 400M includes a holding mechanism 140, a circuit board 453L, a housing wall 460L, a driving mechanism 470L, a dust removing unit 480, an ionizer 490, and a driving circuit 491. Similar to the third embodiment, the driving device 400M further includes an optical disc 120B, a semiconductor laser 131 attached to the slider 141, and an optical head 130B.
 図42Aは、駆動装置400Mの概略的な平面図である。図42Bは、駆動装置400Mの概略的な断面図である。図42A及び図42Bを参照して、収容壁460Lによって規定される収容空間469L内の空気の流動が説明される。 FIG. 42A is a schematic plan view of the driving device 400M. FIG. 42B is a schematic cross-sectional view of drive device 400M. With reference to FIGS. 42A and 42B, the flow of air in the accommodation space 469L defined by the accommodation wall 460L will be described.
 図42A中の矢印AFは、収容空間469L内の空気の流動を概略的に表す。図42A中の矢印DRは、光ディスク120Bの回転を概略的に表す。 The arrow AF in FIG. 42A schematically represents the flow of air in the accommodation space 469L. An arrow DR in FIG. 42A schematically represents the rotation of the optical disc 120B.
 光ディスク120Bの回転によって、収容空間469L内には旋回流が発生する。旋回流は、光ディスク120Bの回転軸RXから外方に向かう。光ディスク120Bが数千rpmで回転するならば、旋回流の速度は、数十m/sに達する。この結果、スライダ141及び光学ヘッド130Bは、処理面121から浮上する。保持機構140は、スライダ141及び光学ヘッド130Bが旋回流によって、処理面121から数nm~数十nmだけ浮上するように設計されてもよい。 Rotating flow is generated in the accommodation space 469L by the rotation of the optical disc 120B. The swirling flow is directed outward from the rotation axis RX of the optical disc 120B. If the optical disk 120B rotates at several thousand rpm, the speed of the swirling flow reaches several tens of m / s. As a result, the slider 141 and the optical head 130 </ b> B float from the processing surface 121. The holding mechanism 140 may be designed such that the slider 141 and the optical head 130B float from the processing surface 121 by several nm to several tens of nm by a swirling flow.
 第10実施形態に関連して説明された如く、電極針492からプラスイオン及びマイナスイオンが選択的に放出される。この結果、プラスイオン及びマイナスイオンは、収容空間469L内において広く分散される。したがって、光ディスク120B、光学ヘッド130B、スライダ141及び収容空間469L内の塵埃は、適切に除電される。駆動装置400Mは、高い信頼性を有するので、駆動装置400Mは、記録性能及び再生性能を高い水準で維持することができる。 As described in relation to the tenth embodiment, positive ions and negative ions are selectively released from the electrode needle 492. As a result, positive ions and negative ions are widely dispersed in the accommodation space 469L. Accordingly, the dust in the optical disk 120B, the optical head 130B, the slider 141, and the accommodation space 469L is appropriately discharged. Since the driving device 400M has high reliability, the driving device 400M can maintain the recording performance and the reproduction performance at a high level.
 <第16実施形態>
 図43は、第16実施形態の駆動装置400Nの概略的な断面図である。図43を参照して、駆動装置400Nが説明される。尚、第1実施形態及び第15実施形態と同一の要素に対して、同一の符号が付されている。同一の符号が付された要素に対して、第1実施形態及び第15実施形態に関連した説明が援用される。
<Sixteenth Embodiment>
FIG. 43 is a schematic cross-sectional view of the drive device 400N of the sixteenth embodiment. The drive device 400N will be described with reference to FIG. In addition, the same code | symbol is attached | subjected with respect to the element same as 1st Embodiment and 15th Embodiment. The description relevant to 1st Embodiment and 15th Embodiment is used with respect to the element to which the same code | symbol was attached | subjected.
 第15実施形態と同様に、駆動装置400Nは、光ディスク120Bと、光学ヘッド130Bと、半導体レーザ131と、回路基板453Lと、収容壁460Lと、イオナイザ490と、駆動回路491と、を備える。第1実施形態と同様に、駆動装置400Nは、除塵部180を更に備える。上捕集フィルタ181は、上壁部461に取り付けられる。下捕集フィルタ182は、下壁部462に取り付けられる。 As in the fifteenth embodiment, the driving device 400N includes an optical disk 120B, an optical head 130B, a semiconductor laser 131, a circuit board 453L, a receiving wall 460L, an ionizer 490, and a driving circuit 491. As in the first embodiment, the driving device 400N further includes a dust removing unit 180. The upper collection filter 181 is attached to the upper wall portion 461. The lower collection filter 182 is attached to the lower wall portion 462.
 駆動装置400Nは、追加的な光ディスク120Nを更に備える。光ディスク120Nは、光ディスク120Bと上壁部461との間で保持される。尚、光ディスク120Nは、光ディスク120Bに対して略同軸である。本実施形態において、光ディスク120B,120Nのうち一方は、第1媒体として例示される。光ディスク120B,120Nのうち他方は、第2媒体として例示される。 The driving device 400N further includes an additional optical disc 120N. The optical disc 120N is held between the optical disc 120B and the upper wall portion 461. The optical disc 120N is substantially coaxial with the optical disc 120B. In the present embodiment, one of the optical disks 120B and 120N is exemplified as the first medium. The other of the optical disks 120B and 120N is exemplified as the second medium.
 駆動装置400Nは、光ディスク120B,120Nを駆動する駆動機構470Nを更に備える。第15実施形態と同様に、駆動機構470Nは、スピンドルモータ171と、ハブ175と、キャップ176と、固定ネジ177と、固定壁474と、シールド部478と、呼吸フィルタ479と、を備える。駆動機構470Nは、光ディスク120B,120Nの間に介挿されたスペーサ571を更に備える。固定ネジ177は、キャップ176及びスペーサを貫通し、ハブ175に螺合する。この結果、光ディスク120B,120Nは一体的に回転することができる。 The driving device 400N further includes a driving mechanism 470N that drives the optical disks 120B and 120N. Similar to the fifteenth embodiment, the drive mechanism 470N includes a spindle motor 171, a hub 175, a cap 176, a fixing screw 177, a fixing wall 474, a shield part 478, and a breathing filter 479. The drive mechanism 470N further includes a spacer 571 interposed between the optical disks 120B and 120N. The fixing screw 177 passes through the cap 176 and the spacer and is screwed into the hub 175. As a result, the optical disks 120B and 120N can rotate integrally.
 駆動装置400Nは、保持機構140Nを更に備える。第15実施形態と同様に、保持機構140Nは、スライダ141と、サスペンション142と、スイングアーム143と、ボイスコイルモータ144と、を備える。保持機構140Nは、追加的なスライダ141Nと、追加的なサスペンション142Nと、追加的なスイングアーム143Nと、を更に備える。スライダ141、サスペンション142及びスイングアーム143と同様に、スライダ141N、サスペンション142N及びスイングアーム143Nは、ボイスコイルモータ144によって回動される。 The driving device 400N further includes a holding mechanism 140N. Similar to the fifteenth embodiment, the holding mechanism 140N includes a slider 141, a suspension 142, a swing arm 143, and a voice coil motor 144. The holding mechanism 140N further includes an additional slider 141N, an additional suspension 142N, and an additional swing arm 143N. Similar to the slider 141, the suspension 142, and the swing arm 143, the slider 141N, the suspension 142N, and the swing arm 143N are rotated by the voice coil motor 144.
 駆動装置400Nは、スライダ141Nに搭載された追加的な半導体レーザ131Nと、半導体レーザ131Nからの光を光ディスク120Nに集光し、記録や再生といった情報処理を光学的に実行する追加的な光学ヘッド130Nと、を更に備える。本実施形態において、光学ヘッド130B,130Nのうち一方は、第1処理素子として例示される。光学ヘッド130B,130Nのうち他方は、第2処理素子として例示される。 The driving device 400N includes an additional semiconductor laser 131N mounted on the slider 141N and an additional optical head that condenses light from the semiconductor laser 131N on the optical disc 120N and optically executes information processing such as recording and reproduction. 130N. In the present embodiment, one of the optical heads 130B and 130N is exemplified as the first processing element. The other of the optical heads 130B and 130N is exemplified as the second processing element.
 本実施形態においても、光ディスク120B,120Nの回転によって生ずる旋回流と、イオナイザ490が発生させるイオンと、を用いて、収容空間469L内の塵埃は適切に低減されることとなる。 Also in the present embodiment, the dust in the accommodation space 469L is appropriately reduced by using the swirl flow generated by the rotation of the optical discs 120B and 120N and the ions generated by the ionizer 490.
 上述の実施形態に関連して説明された様々な技術は、以下の特徴を主に備える。 The various techniques described in connection with the above-described embodiments mainly include the following features.
 上述の実施形態の一局面に係る駆動装置は、情報処理が行われる処理面を有する少なくとも1つの媒体が収容される収容空間を規定する壁部と、前記処理面に対して非接触式に前記情報処理を行う少なくとも1つの処理素子と、前記少なくとも1つの媒体を回転させる駆動機構と、を備える。該駆動機構は、前記少なくとも1つの媒体を回転させるための駆動力を発生させる力発生部と、前記駆動力を前記少なくとも1つの媒体へ伝達する伝達部と、前記力発生部を前記壁部に固定する固定部と、を含む。前記壁部には、前記伝達部の挿通を許容する開口部が形成される。前記固定部は、前記力発生部と協働して前記開口部を閉じる。 The drive device according to one aspect of the above-described embodiment includes a wall portion that defines an accommodation space in which at least one medium having a processing surface on which information processing is performed is accommodated, and a non-contact type with respect to the processing surface. And at least one processing element that performs information processing, and a drive mechanism that rotates the at least one medium. The drive mechanism includes a force generating unit that generates a driving force for rotating the at least one medium, a transmission unit that transmits the driving force to the at least one medium, and the force generating unit on the wall unit. A fixing portion to be fixed. The wall is formed with an opening that allows the transmission portion to pass therethrough. The fixing portion closes the opening in cooperation with the force generating portion.
 上記構成によれば、少なくとも1つの処理素子が非接触式に少なくとも1つの媒体の処理面に対して非接触式に情報処理を行っている間、駆動機構は、少なくとも1つの媒体を回転させる。壁部には、開口部が形成されるので、固定部によって固定された力発生部が生じさせた駆動力は、伝達部を通じて、少なくとも1つの媒体へ伝達される。少なくとも1つの媒体の回転は、開口部の周囲で負圧を生じさせる。固定部は、力発生部を協働して開口部を閉じるので、外気及び外気中で浮遊する塵埃は、開口部を通じて、収容空間内に入り込みにくくなる。したがって、収容空間内の塵埃量は、低い水準に維持される。 According to the above configuration, the drive mechanism rotates at least one medium while at least one processing element performs non-contact information processing on the processing surface of at least one medium in a non-contact manner. Since the opening is formed in the wall portion, the driving force generated by the force generating portion fixed by the fixing portion is transmitted to at least one medium through the transmitting portion. The rotation of at least one medium creates a negative pressure around the opening. Since the fixing portion closes the opening by cooperating with the force generating portion, the outside air and dust floating in the outside air are less likely to enter the accommodation space through the opening. Therefore, the amount of dust in the accommodation space is maintained at a low level.
 上記構成において、前記壁部、前記固定部及び前記力発生部は、前記収容空間を密閉してもよい。 In the above configuration, the wall portion, the fixing portion, and the force generating portion may seal the accommodation space.
 上記構成によれば、壁部、固定部及び力発生部は、収容空間を密閉するので、収容空間内の塵埃量は、低い水準に維持される。 According to the above configuration, the wall portion, the fixing portion, and the force generation portion seal the accommodation space, so that the amount of dust in the accommodation space is maintained at a low level.
 上記構成において、駆動装置は、前記少なくとも1つの処理素子を支持するサスペンションと、前記少なくとも1つの処理素子を前記処理面上で回動させる回動モータと、を、更に備えてもよい。前記サスペンション及び前記回動モータは、前記収容空間内に配設されてもよい。 In the above configuration, the drive device may further include a suspension that supports the at least one processing element, and a rotation motor that rotates the at least one processing element on the processing surface. The suspension and the rotation motor may be disposed in the accommodation space.
 上記構成によれば、少なくとも1つの処理素子を支持するサスペンション及び少なくとも1つの処理素子を処理面上で回動させる回動モータが収容空間内に配設されるので、収容空間は、外気から隔離されやすくなる。したがって、収容空間内の塵埃量は、低い水準に維持される。 According to the above configuration, the suspension space that supports at least one processing element and the rotation motor that rotates the at least one processing element on the processing surface are disposed in the accommodation space, so that the accommodation space is isolated from the outside air. It becomes easy to be done. Therefore, the amount of dust in the accommodation space is maintained at a low level.
 上記構成において、前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記収容空間内で旋回流を発生させてもよい。 In the above configuration, the driving mechanism may rotate the at least one medium to generate a swirling flow in the accommodation space.
 上記構成によれば、駆動機構は、少なくとも1つの媒体を回転させ、収容空間内で旋回流を発生させるので、収容空間内の塵埃は、媒体や処理素子に付着しにくくなる。 According to the above configuration, the drive mechanism rotates at least one medium and generates a swirling flow in the accommodation space, so that dust in the accommodation space is less likely to adhere to the medium and the processing element.
 上記構成において、駆動装置は、前記壁部に形成された第1流入口と、該第1流入口よりも前記少なくとも1つの媒体の回転軸から離れて前記壁部に形成された第1流出口と、に接続された第1循環管を更に備えてもよい。前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記第1流出口から前記第1流入口へ向かう気流を生じさせてもよい。 In the above configuration, the driving device includes a first inflow port formed in the wall portion, and a first outflow port formed in the wall portion farther from the rotation axis of the at least one medium than the first inflow port. And a first circulation pipe connected to the first and second circulation pipes. The drive mechanism may rotate the at least one medium to generate an air flow from the first outlet to the first inlet.
 上記構成によれば、旋回流の発生によって、収容空間内の空気は、第1流出口へ流出する。その後、空気は、第1流入口を通じて、収容空間に戻る。収容空間内での空気の停留は少なくなるので、塵埃は、媒体や処理素子に付着しにくくなる。 According to the above configuration, the air in the accommodation space flows out to the first outlet by the generation of the swirling flow. Thereafter, the air returns to the accommodation space through the first inflow port. Since the retention of air in the accommodation space is reduced, the dust is less likely to adhere to the medium and the processing element.
 上記構成において、駆動装置は、前記壁部に形成された第2流出口と、該第2流出口よりも前記少なくとも1つの媒体の回転軸の近くに形成された第2流入口と、に接続された第2循環管を更に備えてもよい。前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記第2流出口から前記第2流入口へ向かう気流を生じさせてもよい。 In the above configuration, the driving device is connected to the second outlet formed in the wall portion and the second inlet formed nearer to the rotation axis of the at least one medium than the second outlet. The second circulation pipe may be further provided. The drive mechanism may rotate the at least one medium to generate an air flow from the second outlet to the second inlet.
 上記構成によれば、旋回流の発生によって、収容空間内の空気は、第1流出口だけでなく、第2流出口からも流出する。その後、空気は、第1流入口だけでなく、第2流入口を通じて、収容空間に戻る。収容空間内での空気の停留は少なくなるので、塵埃は、媒体や処理素子に付着しにくくなる。 According to the above configuration, due to the generation of the swirling flow, the air in the accommodation space flows out from the second outlet as well as the first outlet. Thereafter, the air returns to the accommodation space not only through the first inlet but also through the second inlet. Since the retention of air in the accommodation space is reduced, the dust is less likely to adhere to the medium and the processing element.
 上記構成において、駆動装置は、前記収容空間内で塵埃を捕集する捕集フィルタを更に備えてもよい。 In the above configuration, the drive device may further include a collection filter that collects dust in the accommodation space.
 上記構成によれば、収容空間内の塵埃は、捕集フィルタによって捕集されるので、収容空間内で浮遊する塵埃は低減される。 According to the above configuration, the dust in the accommodation space is collected by the collection filter, so that the dust floating in the accommodation space is reduced.
 上記構成において、駆動装置は、前記収容空間にプラスイオン及びマイナスイオンを放出するイオン放出部を更に備えてもよい。 In the above configuration, the driving device may further include an ion emission unit that emits positive ions and negative ions in the accommodation space.
 上記構成によれば、イオン放出部は、収容空間にプラスイオン及びマイナスイオンを放出するので、塵埃は、媒体や処理素子に付着しにくくなる。 According to the above configuration, since the ion emission part emits positive ions and negative ions to the accommodation space, the dust is less likely to adhere to the medium or the processing element.
 上記構成において、駆動装置は、前記情報処理に利用される光束を発生させる光源を更に備えてもよい。前記少なくとも1つの処理素子は、前記光束を前記処理面に出射し、前記情報処理を光学的に行う光学処理素子を含んでもよい。 In the above configuration, the driving device may further include a light source that generates a light beam used for the information processing. The at least one processing element may include an optical processing element that emits the light flux to the processing surface and optically performs the information processing.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、媒体への光学的な情報処理は適切に行われる。 According to the above configuration, since the amount of dust in the accommodation space is maintained at a low level, optical information processing on the medium is appropriately performed.
 上記構成において、前記光学処理素子は、前記光束を前記処理面に近接場光として集光する集光素子を含んでもよい。 In the above configuration, the optical processing element may include a condensing element that condenses the light flux on the processing surface as near-field light.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、媒体への光学的な情報処理は近接場光を用いて適切に行われる。 According to the above configuration, since the amount of dust in the accommodation space is maintained at a low level, optical information processing on the medium is appropriately performed using near-field light.
 上記構成において、前記光学処理素子は、前記光束を前記処理面にプラズモン共鳴光として集光するプラズモン共鳴アンテナを含んでもよい。 In the above configuration, the optical processing element may include a plasmon resonance antenna that collects the light flux as plasmon resonance light on the processing surface.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、媒体への光学的な情報処理はプラズモン共鳴光を用いて適切に行われる。 According to the above configuration, since the amount of dust in the accommodation space is maintained at a low level, optical information processing on the medium is appropriately performed using plasmon resonance light.
 上記構成において、前記少なくとも1つの処理素子は、磁気を利用して前記情報処理を行う磁気処理素子を含んでもよい。 In the above configuration, the at least one processing element may include a magnetic processing element that performs the information processing using magnetism.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、媒体への磁気的な情報処理は適切に行われる。 According to the above configuration, since the amount of dust in the accommodation space is maintained at a low level, magnetic information processing on the medium is appropriately performed.
 上記構成において、前記少なくとも1つの処理素子は、前記情報処理として、前記処理面に情報を記録する記録処理を行ってもよい。 In the above configuration, the at least one processing element may perform a recording process for recording information on the processing surface as the information processing.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、情報は媒体に適切に記録される。 According to the above configuration, the amount of dust in the accommodation space is maintained at a low level, so information is appropriately recorded on the medium.
 上記構成において、前記少なくとも1つの処理素子は、前記情報処理として、前記処理面から情報を再生する再生処理を行ってもよい。 In the above configuration, the at least one processing element may perform a reproduction process for reproducing information from the processing surface as the information processing.
 上記構成によれば、収容空間内の塵埃量が、低い水準に維持されるので、情報は媒体から適切に再生される。 According to the above configuration, the amount of dust in the accommodation space is maintained at a low level, so that information is appropriately reproduced from the medium.
 上記構成において、前記壁部は、前記収容空間の一部を規定する第1壁部材と、該第1壁部材と協働して、前記収容空間を規定する第2壁部材と、を含んでもよい。 The said structure WHEREIN: The said wall part contains the 1st wall member which prescribes | regulates a part of said accommodation space, and the 2nd wall member which cooperates with this 1st wall member and defines the said accommodation space. Good.
 上記構成によれば、収容空間を形成する壁部は、容易に組み立てられる。 According to the above configuration, the wall portion forming the accommodation space can be easily assembled.
 上記構成において、前記固定部は、前記力発生部を支持する支持部と、該支持部と前記壁部との間で前記伝達部を取り囲むシールド部と、を含んでもよい。該シールド部は、前記支持部と前記壁部との間を気密に保ってもよい。 In the above configuration, the fixing portion may include a support portion that supports the force generation portion, and a shield portion that surrounds the transmission portion between the support portion and the wall portion. The shield part may keep an airtight space between the support part and the wall part.
 上記構成によれば、シールド部は、支持部と壁部との間を気密に保つので、外気及び外気中で浮遊する塵埃は、支持部と壁部との間の空隙から収容空間内に入り込みにくくなる。したがって、収容空間内の塵埃量は、低い水準に維持される。 According to the above configuration, the shield portion keeps the space between the support portion and the wall portion airtight, so that the outside air and dust floating in the outside air enter the accommodation space from the gap between the support portion and the wall portion. It becomes difficult. Therefore, the amount of dust in the accommodation space is maintained at a low level.
 上記構成において、前記シールド部は、樹脂、ゴム及びシリコンからなる群から選択される少なくとも1つの材料を含んでもよい。 In the above configuration, the shield part may include at least one material selected from the group consisting of resin, rubber, and silicon.
 上記構成によれば、シールド部は、樹脂、ゴム及びシリコンからなる群から選択される少なくとも1つの材料を含むので、外気及び外気中で浮遊する塵埃は、支持部と壁部との間の空隙から収容空間内に入り込みにくくなる。したがって、収容空間内の塵埃量は、低い水準に維持される。 According to the above configuration, since the shield part includes at least one material selected from the group consisting of resin, rubber, and silicon, the outside air and the dust that floats in the outside air are separated from the gap between the support part and the wall part. It becomes difficult to enter the storage space. Therefore, the amount of dust in the accommodation space is maintained at a low level.
 上記構成において、前記壁部は、前記処理面に対向する第1内面を含んでもよい。前記捕集フィルタは、前記第1内面から前記処理面に向けて突出する第1フィルタを含んでもよい。 In the above configuration, the wall portion may include a first inner surface facing the processing surface. The collection filter may include a first filter that protrudes from the first inner surface toward the processing surface.
 上記構成によれば、第1フィルタは、第1内面から処理面に向けて突出するので、塵埃は適切に捕集される。したがって、収容空間内で浮遊する塵埃は低減される。 According to the above configuration, since the first filter protrudes from the first inner surface toward the processing surface, dust is appropriately collected. Therefore, dust floating in the accommodation space is reduced.
 上記構成において、前記少なくとも1つの媒体は、前記処理面とは反対側の反対面を含んでもよい。前記壁部は、前記反対面に対向する第2内面を含んでもよい。前記捕集フィルタは、前記第2内面から前記反対面に向けて突出する第2フィルタを含んでもよい。 In the above configuration, the at least one medium may include an opposite surface opposite to the processing surface. The wall portion may include a second inner surface facing the opposite surface. The collection filter may include a second filter that protrudes from the second inner surface toward the opposite surface.
 上記構成によれば、第2フィルタは、第2内面から反対面に向けて突出するので、塵埃は適切に捕集される。したがって、収容空間内で浮遊する塵埃は低減される。 According to the above configuration, since the second filter protrudes from the second inner surface toward the opposite surface, dust is appropriately collected. Therefore, dust floating in the accommodation space is reduced.
 上記構成において、前記伝達部は、前記少なくとも1つの媒体が固定されるハブと、該ハブと協働して前記少なくとも1つの媒体を挟持するキャップと、該キャップを貫通し、前記ハブに接続される固定ネジと、を含んでもよい。 In the above configuration, the transmission unit includes a hub to which the at least one medium is fixed, a cap that holds the at least one medium in cooperation with the hub, and penetrates the cap and is connected to the hub. And a fixing screw.
 上記構成によれば、媒体は、精度よく回転することができる。 According to the above configuration, the medium can be rotated with high accuracy.
 上記構成において、前記壁部は、呼吸フィルタを含んでもよい。該呼吸フィルタは、前記収容空間と前記壁部によって前記収容空間から仕切られた外部空間との間の圧力差を低減させてもよい。 In the above configuration, the wall portion may include a respiratory filter. The breathing filter may reduce a pressure difference between the housing space and an external space partitioned from the housing space by the wall portion.
 上記構成によれば、収容空間と外部空間との圧力差が小さくなるので、壁部は変形しにくくなる。 According to the above configuration, since the pressure difference between the accommodation space and the external space is small, the wall portion is not easily deformed.
 上記構成において、駆動装置は、前記収容空間内で前記サスペンションを保持する保持部を更に備えてもよい。前記回動モータは、前記少なくとも1つの処理素子が前記処理面上で前記情報処理を行う処理位置と前記少なくとも1つの処理素子が前記処理面から離れる退避位置との間で、前記少なくとも1つの処理素子を回動させてもよい。前記保持部は、前記退避位置に前記少なくとも1つの処理素子を回動させた前記サスペンションを保持してもよい。 In the above configuration, the driving device may further include a holding portion that holds the suspension in the accommodation space. The rotation motor includes the at least one processing element between a processing position where the at least one processing element performs the information processing on the processing surface and a retreat position where the at least one processing element is separated from the processing surface. The element may be rotated. The holding unit may hold the suspension obtained by rotating the at least one processing element at the retracted position.
 上記構成によれば、保持部は、収容空間内でサスペンションを保持するので、サスペンションと保持部との摩擦に起因して生じた塵埃は、捕集フィルタによって適切に捕集される。 According to the above configuration, since the holding unit holds the suspension in the accommodation space, dust generated due to friction between the suspension and the holding unit is appropriately collected by the collection filter.
 上記構成において、前記壁部と前記少なくとも1つの媒体との距離は、20μm以上5mm以内であってもよい。 In the above configuration, a distance between the wall portion and the at least one medium may be 20 μm or more and 5 mm or less.
 上記構成によれば、壁部と少なくとも1つの媒体との距離は、20μm以上5mm以内であるので、旋回流は、収容空間内において適切に発生される。 According to the above configuration, since the distance between the wall portion and at least one medium is 20 μm or more and 5 mm or less, the swirling flow is appropriately generated in the accommodation space.
 上記構成において、前記少なくとも1つの媒体は、前記ハブと前記キャップとによって挟持される内縁領域と、該内縁領域を取り囲む外縁領域と、を含んでもよい。前記内縁領域と前記第1内面との距離は、前記外縁領域と前記第1内面との距離よりも長くてもよい。 In the above configuration, the at least one medium may include an inner edge region sandwiched between the hub and the cap and an outer edge region surrounding the inner edge region. A distance between the inner edge region and the first inner surface may be longer than a distance between the outer edge region and the first inner surface.
 上記構成によれば、旋回流は、収容空間内において安定的に発生される。 According to the above configuration, the swirl flow is stably generated in the accommodation space.
 上記構成において、前記内縁領域と前記第2内面との距離は、前記外縁領域と前記第2内面との距離よりも長くともよい。 In the above configuration, the distance between the inner edge region and the second inner surface may be longer than the distance between the outer edge region and the second inner surface.
 上記構成によれば、旋回流は、収容空間内において安定的に発生される。 According to the above configuration, the swirl flow is stably generated in the accommodation space.
 上記構成において、前記壁部は、前記第1内面と前記第2内面との間で前記収容空間を規定する内周面を含んでもよい。前記少なくとも1つの媒体は、前記処理面と前記反対面との間で前記内周面に対向する外周面を含んでもよい。該内周面と前記外周面との間の距離は、10μm以上5mm以下であってもよい。 In the above configuration, the wall portion may include an inner peripheral surface that defines the accommodation space between the first inner surface and the second inner surface. The at least one medium may include an outer peripheral surface facing the inner peripheral surface between the processing surface and the opposite surface. The distance between the inner peripheral surface and the outer peripheral surface may be 10 μm or more and 5 mm or less.
 上記構成によれば、旋回流は、収容空間内において安定的に発生される。 According to the above configuration, the swirl flow is stably generated in the accommodation space.
 上記構成において、駆動装置は、前記収容空間内の有機ガスを吸収する活性炭を更に備えてもよい。 In the above configuration, the driving device may further include activated carbon that absorbs organic gas in the accommodation space.
 上記構成によれば、収容空間内の有機ガスが低減される。 According to the above configuration, the organic gas in the accommodation space is reduced.
 上記構成において、駆動装置は、前記収容空間内の水分を吸収する乾燥剤を更に備えてもよい。 In the above configuration, the driving device may further include a desiccant that absorbs moisture in the accommodation space.
 上記構成によれば、収容空間内の水分が低減される。 According to the above configuration, moisture in the accommodation space is reduced.
 上記構成において、駆動装置は、前記駆動機構を制御する制御部を更に備えてもよい。該制御部は、前記処理素子が前記少なくとも1つの媒体に前記情報処理を行うために前記少なくとも1つの媒体を回転させる処理回転モードと、前記捕集フィルタに前記塵埃を捕集させるために前記少なくとも1つの媒体を回転させ、前記旋回流を前記収容空間に発生させる集塵回転モードと、の間で、前記駆動機構に対する制御を切り替えてもよい。 In the above configuration, the driving device may further include a control unit that controls the driving mechanism. The control unit includes a processing rotation mode in which the processing element rotates the at least one medium in order to perform the information processing on the at least one medium, and at least the dust in the collection filter to collect the dust. You may switch control with respect to the said drive mechanism between the dust collection rotation modes which rotate one medium and generate the said turning flow in the said accommodation space.
 上記構成によれば、制御部が駆動機構に対する制御を、処理回転モードと集塵回転モードとの間で切り替えるので、媒体に対する情報処理及び収容空間内の清浄化が適切に行われることとなる。 According to the above configuration, since the control unit switches the control of the drive mechanism between the processing rotation mode and the dust collection rotation mode, information processing on the medium and cleaning of the accommodation space are appropriately performed.
 上記構成において、駆動装置は、電源から前記駆動機構及び前記処理素子への電力供給を可能にするオンモードと前記電源から前記駆動機構及び前記処理素子への電力供給を遮断するオフモードとの間で電力供給モードを切り替える電力スイッチ部を更に備えてもよい。前記電力スイッチ部が前記電力供給モードを前記オンモードにしてから前記少なくとも1つの処理素子が前記情報処理を開始するまでの期間において、前記制御部は、前記集塵回転モード下で前記駆動機構を制御してもよい。 In the above configuration, the driving device is between an on mode that enables power supply from the power source to the driving mechanism and the processing element and an off mode that blocks power supply from the power source to the driving mechanism and the processing element. A power switch unit for switching the power supply mode may be further provided. In a period from when the power switch unit sets the power supply mode to the on mode until the at least one processing element starts the information processing, the control unit controls the drive mechanism under the dust collection rotation mode. You may control.
 上記構成によれば、電力スイッチ部が電力供給モードをオンモードにした後、収容空間は適切に清浄化される。 According to the above configuration, after the power switch unit sets the power supply mode to the on mode, the accommodation space is appropriately cleaned.
 上記構成において、駆動装置は、前記電源と前記駆動機構との間の電力供給経路において蓄電を行う蓄電部を更に備えてもよい。前記電力スイッチ部が前記電力供給モードを前記オフモードにした後、前記駆動機構は、前記蓄電部に蓄えられた電力を受け、前記集塵回転モード下で前記少なくとも1つの媒体を回転させてもよい。 In the above configuration, the drive device may further include a power storage unit that performs power storage in a power supply path between the power source and the drive mechanism. After the power switch unit sets the power supply mode to the off mode, the drive mechanism receives power stored in the power storage unit and rotates the at least one medium in the dust collection rotation mode. Good.
 上記構成によれば、電力スイッチ部が電力供給モードをオフモードにした後、収容空間は適切に清浄化される。 According to the above configuration, after the power switch unit sets the power supply mode to the off mode, the accommodation space is appropriately cleaned.
 上記構成において、前記制御部は、前記集塵回転モード下で、前記イオン放出部から前記収容空間に前記プラスイオン及び前記マイナスイオンを放出してもよい。 In the above-described configuration, the control unit may emit the positive ions and the negative ions from the ion emission unit to the accommodation space under the dust collection rotation mode.
 上記構成によれば、イオン放出部は、集塵回転モード下において、収容空間にプラスイオン及びマイナスイオンを放出するので、塵埃は、捕集フィルタによって適切に捕集される。 According to the above configuration, the ion emission unit emits positive ions and negative ions into the accommodation space under the dust collection rotation mode, so that the dust is appropriately collected by the collection filter.
 上記構成において、前記電力供給モードが前記オフモードから前記オンモードに切り替えられた後、前記制御部は、前記集塵回転モード下で、前記駆動機構及び前記イオン放出部を制御してもよい。 In the above configuration, after the power supply mode is switched from the off mode to the on mode, the control unit may control the drive mechanism and the ion emission unit under the dust collection rotation mode.
 上記構成によれば、電力供給モードがオフモードからオンモードに切り替えられた後、収容空間は適切に清浄化される。 According to the above configuration, the storage space is appropriately cleaned after the power supply mode is switched from the off mode to the on mode.
 上記構成において、前記電力供給モードが前記オンモードから前記オフモードに切り替えられた後、前記制御部は、前記集塵回転モード下で、前記駆動機構及び前記イオン放出部を制御してもよい。 In the above configuration, after the power supply mode is switched from the on mode to the off mode, the control unit may control the drive mechanism and the ion emission unit under the dust collection rotation mode.
 上記構成によれば、電力供給モードがオンモードからオフモードに切り替えられた後、収容空間は適切に清浄化される。 According to the above configuration, the storage space is appropriately cleaned after the power supply mode is switched from the on mode to the off mode.
 上記構成において、前記駆動機構が所定期間停止するならば、前記イオン放出部は、前記収容空間に前記プラスイオン及び前記マイナスイオンを放出してもよい。 In the above configuration, if the drive mechanism is stopped for a predetermined period, the ion emission unit may emit the positive ions and the negative ions into the accommodation space.
 上記構成によれば、駆動機構が所定期間停止するならば、収容空間は適切に清浄化される。 According to the above configuration, if the drive mechanism is stopped for a predetermined period, the accommodation space is appropriately cleaned.
 上記構成において、前記少なくとも1つの処理素子が前記情報処理を停止した後、前記イオン放出部は、前記収容空間に前記プラスイオン及び前記マイナスイオンを放出してもよい。 In the above configuration, after the at least one processing element stops the information processing, the ion emission unit may emit the positive ions and the negative ions into the accommodation space.
 上記構成によれば、少なくとも1つの処理素子が情報処理を停止した後、収容空間は適切に清浄化される。 According to the above configuration, after at least one processing element stops information processing, the accommodation space is appropriately cleaned.
 上記構成において、前記制御部は、前記集塵回転モード下で、前記少なくとも1つの媒体の回転数を変動させてもよい。 In the above configuration, the control unit may vary the rotation speed of the at least one medium under the dust collection rotation mode.
 上記構成によれば、制御部は、集塵回転モード下で、少なくとも1つの媒体の回転数を変動させるので、収容空間は適切に清浄化される。 According to the above configuration, the control unit varies the rotation speed of at least one medium under the dust collection rotation mode, so that the accommodation space is appropriately cleaned.
 上記構成において、前記イオン放出部は、前記蓄電部に蓄えられた前記電力を用いて、前記収容空間に前記プラスイオン及び前記マイナスイオンを放出してもよい。 In the above configuration, the ion emission unit may release the positive ions and the negative ions into the accommodation space using the electric power stored in the power storage unit.
 上記構成によれば、イオン放出部は、蓄電部に蓄えられた電力を用いて、収容空間にプラスイオン及びマイナスイオンを放出するので、電力供給経路が遮断された後も、収容空間は適切に清浄化される。 According to the above configuration, the ion emission unit uses the electric power stored in the power storage unit to release positive ions and negative ions into the accommodation space. To be cleaned.
 上記構成において、駆動装置は、前記収容空間内の帯電特性を検出する検出部を更に備えてもよい。前記イオン放出部は、前記帯電特性に応じて、前記プラスイオン及び前記マイナスイオンを前記収容空間内に放出してもよい。 In the above configuration, the driving device may further include a detection unit that detects a charging characteristic in the accommodation space. The ion emission unit may emit the positive ions and the negative ions into the accommodation space according to the charging characteristics.
 上記構成によれば、イオン放出部は、検出部によって検出された帯電特性に応じて、プラスイオン及びマイナスイオンを収容空間内に放出するので、収容空間は適時に清浄化される。また、プラスイオン及びマイナスイオンは、不必要に収容空間に放出されない。 According to the above configuration, since the ion emission unit releases positive ions and negative ions into the accommodation space according to the charging characteristics detected by the detection unit, the accommodation space is cleaned in a timely manner. Further, positive ions and negative ions are not unnecessarily released into the accommodation space.
 上記構成において、前記少なくとも1つの媒体は、第1媒体と、第2媒体と、を含んでもよい。前記少なくとも1つの処理素子は、前記第1媒体に対して前記情報処理を行う第1処理素子と、前記第2媒体に対して前記情報処理を行う第2処理素子と、を含んでもよい。 In the above configuration, the at least one medium may include a first medium and a second medium. The at least one processing element may include a first processing element that performs the information processing on the first medium and a second processing element that performs the information processing on the second medium.
 上記構成によれば、第1媒体及び第2媒体に対して、適切な情報処理が実行される。 According to the above configuration, appropriate information processing is executed for the first medium and the second medium.
 上記構成において、前記イオン放出部は、前記プラスイオン及び前記マイナスイオンを前記収容空間に放出する少なくとも1つの電極針と、該電極針に電圧を印加する印加部と、を含んでもよい。 In the above-described configuration, the ion emission unit may include at least one electrode needle that emits the positive ions and the negative ions to the accommodation space, and an application unit that applies a voltage to the electrode needle.
 上記構成によれば、収容空間は、少なくとも1つの電極針から放出されるプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodating space is appropriately cleaned using positive ions and negative ions emitted from at least one electrode needle.
 上記構成において、前記イオン放出部は、前記プラスイオン及び前記マイナスイオンを選択的に放出してもよい。 In the above configuration, the ion emission part may selectively release the positive ions and the negative ions.
 上記構成によれば、収容空間は、選択的に放出されるプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions that are selectively released.
 上記構成において、前記少なくとも1つの電極針は、前記プラスイオンを放出するプラス電極針と、前記マイナスイオンを放出するマイナス電極針と、を含んでもよい。 In the above configuration, the at least one electrode needle may include a plus electrode needle that emits the plus ions and a minus electrode needle that emits the minus ions.
 上記構成によれば、収容空間は、プラス電極針から放出されるプラスイオン及びマイナス電極針から放出されるマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions released from the positive electrode needle and negative ions released from the negative electrode needle.
 上記構成において、前記イオン放出部は、前記プラス電極針からの前記プラスイオンの放出と、前記マイナス電極針からの前記マイナスイオンの放出と、を交互に実行してもよい。 In the above configuration, the ion emission unit may alternately perform the release of the plus ions from the plus electrode needle and the emission of the minus ions from the minus electrode needle.
 上記構成によれば、収容空間は、交互に放出されるプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned by using positive ions and negative ions released alternately.
 上記構成において、前記イオン放出部は、コロナ放電を用いて、前記プラスイオン及び前記マイナスイオンを発生させてもよい。 In the above configuration, the ion emission unit may generate the positive ions and the negative ions using corona discharge.
 上記構成によれば、収容空間は、コロナ放電を用いて放出されたプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions emitted using corona discharge.
 上記構成において、前記イオン放出部は、電離放射線を用いて、前記プラスイオン及び前記マイナスイオンを発生させてもよい。 In the above configuration, the ion emission unit may generate the positive ions and the negative ions using ionizing radiation.
 上記構成によれば、収容空間は、電離放射線を用いて放出されたプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions emitted using ionizing radiation.
 上記構成において、前記イオン放出部は、軟X線を用いて、前記プラスイオン及び前記マイナスイオンを発生させてもよい。 In the above configuration, the ion emission unit may generate the positive ions and the negative ions using soft X-rays.
 上記構成によれば、収容空間は、軟X線を用いて放出されたプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions emitted using soft X-rays.
 上記構成において、前記イオン放出部は、α線を用いて、前記プラスイオン及び前記マイナスイオンを発生させてもよい。 In the above configuration, the ion emission unit may generate the positive ions and the negative ions using α rays.
 上記構成によれば、収容空間は、α線を用いて放出されたプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions emitted using α rays.
 上記構成において、前記イオン放出部は、紫外線を用いて、前記プラスイオン及び前記マイナスイオンを発生させてもよい。 In the above configuration, the ion emission unit may generate the positive ions and the negative ions using ultraviolet rays.
 上記構成によれば、収容空間は、紫外線を用いて放出されたプラスイオン及びマイナスイオンを用いて、適切に清浄化される。 According to the above configuration, the accommodation space is appropriately cleaned using positive ions and negative ions released using ultraviolet rays.
 上記構成において、前記捕集フィルタは、非エレクトリックフィルタであってもよい。 In the above configuration, the collection filter may be a non-electric filter.
 上記構成によれば、プラスイオン及びマイナスイオンの存在下においても、捕集フィルタは劣化しにくくなる。 According to the above configuration, the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
 上記構成において、前記捕集フィルタは、樹脂製であってもよい。 In the above configuration, the collection filter may be made of resin.
 上記構成によれば、プラスイオン及びマイナスイオンの存在下においても、捕集フィルタは劣化しにくくなる。 According to the above configuration, the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
 上記構成において、前記捕集フィルタは、ポリプロピレンを用いて形成されてもよい。 In the above configuration, the collection filter may be formed using polypropylene.
 上記構成によれば、プラスイオン及びマイナスイオンの存在下においても、捕集フィルタは劣化しにくくなる。 According to the above configuration, the collection filter is hardly deteriorated even in the presence of positive ions and negative ions.
 上記構成において、前記捕集フィルタは、格子状の繊維層を有してもよい。 In the above configuration, the collection filter may have a lattice-like fiber layer.
 上記構成によれば、捕集フィルタは、塵埃を適切に捕集することができる。 According to the above configuration, the collection filter can appropriately collect dust.
 上記構成において、前記繊維層は、所定の格子間隔を有してもよい。 In the above configuration, the fiber layer may have a predetermined lattice spacing.
 上記構成によれば、捕集フィルタは、塵埃を安定的に捕集することができる。 According to the above configuration, the collection filter can collect dust stably.
 上述の様々の実施形態の原理は、媒体に対して非接触式に情報処理を行う装置に対して適用可能である。例えば、上述の様々の実施形態の原理は、大容量の記録媒体を用いる外部記憶装置、映像記録装置や映像再生装置に適用されてもよい。上述の様々の実施形態の原理は、カーナビゲーションシステム、携帯式の音楽プレーヤ、デジタルスチルカメラやデジタルビデオカメラといった装置にも適用可能である。特に好ましくは、上述の様々の実施形態の原理は、光ディスクドライブ装置やハードディスクドライブ装置といった塵埃に影響されやすい装置に適用される。上述の様々の実施形態の原理は、SIL方式やプラズモン方式の記録再生原理を用いる光ディスク記録再生装置の分野や熱アシスト記録原理を用いたハードディスクドライブ装置の分野に好適に適用可能である。 The principles of the various embodiments described above are applicable to an apparatus that performs information processing in a non-contact manner with respect to a medium. For example, the principles of the various embodiments described above may be applied to an external storage device, a video recording device, and a video playback device that use a large-capacity recording medium. The principles of the various embodiments described above can also be applied to devices such as car navigation systems, portable music players, digital still cameras, and digital video cameras. Particularly preferably, the principles of the various embodiments described above are applied to devices that are susceptible to dust, such as optical disk drive devices and hard disk drive devices. The principles of the various embodiments described above can be suitably applied to the field of optical disk recording / playback apparatuses using the recording / playback principle of the SIL system or plasmon system and the field of hard disk drives using the heat-assisted recording principle.

Claims (22)

  1.  情報処理が行われる処理面を有する少なくとも1つの媒体が収容される収容空間を規定する壁部と、
     前記処理面に対して非接触式に前記情報処理を行う少なくとも1つの処理素子と、
     前記少なくとも1つの媒体を回転させる駆動機構と、を備え、
     該駆動機構は、前記少なくとも1つの媒体を回転させるための駆動力を発生させる力発生部と、前記駆動力を前記少なくとも1つの媒体へ伝達する伝達部と、前記力発生部を前記壁部に固定する固定部と、を含み、
     前記壁部には、前記伝達部の挿通を許容する開口部が形成され、
     前記固定部は、前記力発生部と協働して前記開口部を閉じることを特徴とする駆動装置。
    A wall that defines a storage space in which at least one medium having a processing surface on which information processing is performed is stored;
    At least one processing element that performs the information processing in a non-contact manner with respect to the processing surface;
    A drive mechanism for rotating the at least one medium,
    The drive mechanism includes a force generating unit that generates a driving force for rotating the at least one medium, a transmission unit that transmits the driving force to the at least one medium, and the force generating unit on the wall unit. A fixing portion for fixing,
    The wall is formed with an opening that allows the transmission part to pass therethrough,
    The fixing unit closes the opening in cooperation with the force generation unit.
  2.  前記壁部、前記固定部及び前記力発生部は、前記収容空間を密閉することを特徴とする請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the wall portion, the fixing portion, and the force generating portion seal the housing space.
  3.  前記少なくとも1つの処理素子を支持するサスペンションと、
     前記少なくとも1つの処理素子を前記処理面上で回動させる回動モータと、を、更に備え、
     前記サスペンション及び前記回動モータは、前記収容空間内に配設されることを特徴とする請求項1に記載の駆動装置。
    A suspension supporting the at least one processing element;
    A rotation motor that rotates the at least one processing element on the processing surface; and
    The drive device according to claim 1, wherein the suspension and the rotation motor are disposed in the housing space.
  4.  前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記収容空間内で旋回流を発生させることを特徴とする請求項3に記載の駆動装置。 4. The drive device according to claim 3, wherein the drive mechanism rotates the at least one medium to generate a swirl flow in the accommodation space.
  5.  前記壁部に形成された第1流入口と、該第1流入口よりも前記少なくとも1つの媒体の回転軸から離れて前記壁部に形成された第1流出口と、に接続された第1循環管を更に備え、
     前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記第1流出口から前記第1流入口へ向かう気流を生じさせることを特徴とする請求項4に記載の駆動装置。
    A first inflow port formed in the wall and a first outflow port formed in the wall away from the rotation axis of the at least one medium than the first inflow port; A circulation pipe,
    The drive device according to claim 4, wherein the drive mechanism rotates the at least one medium to generate an air flow from the first outlet to the first inlet.
  6.  前記壁部に形成された第2流出口と、該第2流出口よりも前記少なくとも1つの媒体の回転軸の近くに形成された第2流入口と、に接続された第2循環管を更に備え、
     前記駆動機構は、前記少なくとも1つの媒体を回転させ、前記第2流出口から前記第2流入口へ向かう気流を生じさせることを特徴とする請求項5に記載の駆動装置。
    A second circulation pipe connected to the second outlet formed in the wall and a second inlet formed closer to the rotation axis of the at least one medium than the second outlet. Prepared,
    The drive device according to claim 5, wherein the drive mechanism rotates the at least one medium to generate an air flow from the second outlet to the second inlet.
  7.  前記収容空間内で塵埃を捕集する捕集フィルタを更に備えることを特徴とする請求項4に記載の駆動装置。 The drive device according to claim 4, further comprising a collection filter for collecting dust in the accommodation space.
  8.  前記収容空間にプラスイオン及びマイナスイオンを放出するイオン放出部を更に備えることを特徴とする請求項7に記載の駆動装置。 The driving device according to claim 7, further comprising an ion emission unit that emits positive ions and negative ions in the accommodation space.
  9.  前記壁部は、前記処理面に対向する第1内面を含み、
     前記捕集フィルタは、前記第1内面から前記処理面に向けて突出する第1フィルタを含むことを特徴とする請求項7に記載の駆動装置。
    The wall includes a first inner surface facing the processing surface,
    The drive device according to claim 7, wherein the collection filter includes a first filter protruding from the first inner surface toward the processing surface.
  10.  前記少なくとも1つの媒体は、前記処理面とは反対側の反対面を含み、
     前記壁部は、前記反対面に対向する第2内面を含み、
     前記捕集フィルタは、前記第2内面から前記反対面に向けて突出する第2フィルタを含むことを特徴とする請求項9に記載の駆動装置。
    The at least one medium includes an opposite surface opposite the treatment surface;
    The wall includes a second inner surface facing the opposite surface;
    The drive device according to claim 9, wherein the collection filter includes a second filter that protrudes from the second inner surface toward the opposite surface.
  11.  前記伝達部は、前記少なくとも1つの媒体が固定されるハブと、該ハブと協働して前記少なくとも1つの媒体を挟持するキャップと、該キャップを貫通し、前記ハブに接続される固定ネジと、を含むことを特徴とする請求項10に記載の駆動装置。 The transmission unit includes a hub to which the at least one medium is fixed, a cap that sandwiches the at least one medium in cooperation with the hub, and a fixing screw that passes through the cap and is connected to the hub. The drive device according to claim 10, comprising:
  12.  前記収容空間内で前記サスペンションを保持する保持部を更に備え、
     前記回動モータは、前記少なくとも1つの処理素子が前記処理面上で前記情報処理を行う処理位置と前記少なくとも1つの処理素子が前記処理面から離れる退避位置との間で、前記少なくとも1つの処理素子を回動させ、
     前記保持部は、前記退避位置に前記少なくとも1つの処理素子を回動させた前記サスペンションを保持することを特徴とする請求項7に記載の駆動装置。
    A holding part for holding the suspension in the housing space;
    The rotation motor includes the at least one processing element between a processing position where the at least one processing element performs the information processing on the processing surface and a retreat position where the at least one processing element is separated from the processing surface. Rotate the element,
    The driving device according to claim 7, wherein the holding unit holds the suspension obtained by rotating the at least one processing element at the retracted position.
  13.  前記少なくとも1つの媒体は、前記ハブと前記キャップとによって挟持される内縁領域と、該内縁領域を取り囲む外縁領域と、を含み、
     前記内縁領域と前記第1内面との距離は、前記外縁領域と前記第1内面との距離よりも長いことを特徴とする請求項11に記載の駆動装置。
    The at least one medium includes an inner edge region sandwiched between the hub and the cap, and an outer edge region surrounding the inner edge region;
    The driving device according to claim 11, wherein a distance between the inner edge region and the first inner surface is longer than a distance between the outer edge region and the first inner surface.
  14.  前記内縁領域と前記第2内面との距離は、前記外縁領域と前記第2内面との距離よりも長いことを特徴とする請求項13に記載の駆動装置。 14. The driving device according to claim 13, wherein a distance between the inner edge region and the second inner surface is longer than a distance between the outer edge region and the second inner surface.
  15.  前記駆動機構を制御する制御部を更に備え、
     該制御部は、前記処理素子が前記少なくとも1つの媒体に前記情報処理を行うために前記少なくとも1つの媒体を回転させる処理回転モードと、前記捕集フィルタに前記塵埃を捕集させるために前記少なくとも1つの媒体を回転させ、前記旋回流を前記収容空間に発生させる集塵回転モードと、の間で、前記駆動機構に対する制御を切り替えることを特徴とする請求項8に記載の駆動装置。
    A control unit for controlling the drive mechanism;
    The control unit includes a processing rotation mode in which the processing element rotates the at least one medium in order to perform the information processing on the at least one medium, and at least the dust in the collection filter to collect the dust. The drive device according to claim 8, wherein control of the drive mechanism is switched between a dust collection rotation mode in which one medium is rotated and the swirl flow is generated in the accommodation space.
  16.  電源から前記駆動機構及び前記処理素子への電力供給を可能にするオンモードと前記電源から前記駆動機構及び前記処理素子への電力供給を遮断するオフモードとの間で電力供給モードを切り替える電力スイッチ部を更に備え、
     前記電力スイッチ部が前記電力供給モードを前記オンモードにしてから前記少なくとも1つの処理素子が前記情報処理を開始するまでの期間において、前記制御部は、前記集塵回転モード下で前記駆動機構を制御することを特徴とする請求項15に記載の駆動装置。
    A power switch that switches a power supply mode between an on mode that enables power supply from a power source to the drive mechanism and the processing element and an off mode that blocks power supply from the power source to the drive mechanism and the processing element Further comprising
    In a period from when the power switch unit sets the power supply mode to the on mode until the at least one processing element starts the information processing, the control unit controls the drive mechanism under the dust collection rotation mode. The drive device according to claim 15, wherein the drive device is controlled.
  17.  前記電源と前記駆動機構との間の電力供給経路において蓄電を行う蓄電部を更に備え、
     前記電力スイッチ部が前記電力供給モードを前記オフモードにした後、前記駆動機構は、前記蓄電部に蓄えられた電力を受け、前記集塵回転モード下で前記少なくとも1つの媒体を回転させることを特徴とする請求項16に記載の駆動装置。
    A power storage unit that stores power in a power supply path between the power source and the drive mechanism;
    After the power switch unit sets the power supply mode to the off mode, the drive mechanism receives the power stored in the power storage unit and rotates the at least one medium under the dust collection rotation mode. The drive device according to claim 16, wherein
  18.  前記制御部は、前記集塵回転モード下で、前記イオン放出部から前記収容空間に前記プラスイオン及び前記マイナスイオンを放出することを特徴とする請求項17に記載の駆動装置。 The driving device according to claim 17, wherein the control unit releases the positive ions and the negative ions from the ion emission unit to the accommodation space under the dust collection rotation mode.
  19.  前記駆動機構が所定期間停止するならば、前記イオン放出部は、前記収容空間に前記プラスイオン及び前記マイナスイオンを放出することを特徴とする請求項18に記載の駆動装置。 19. The driving apparatus according to claim 18, wherein the ion emission unit releases the positive ions and the negative ions into the accommodation space if the driving mechanism is stopped for a predetermined period.
  20.  前記少なくとも1つの処理素子が前記情報処理を停止した後、前記イオン放出部は、前記収容空間に前記プラスイオン及び前記マイナスイオンを放出することを特徴とする請求項18に記載の駆動装置。 19. The driving apparatus according to claim 18, wherein after the at least one processing element stops the information processing, the ion emission unit emits the positive ions and the negative ions into the accommodation space.
  21.  前記制御部は、前記集塵回転モード下で、前記少なくとも1つの媒体の回転数を変動させることを特徴とする請求項18に記載の駆動装置。 19. The driving apparatus according to claim 18, wherein the control unit varies a rotation speed of the at least one medium under the dust collection rotation mode.
  22.  前記収容空間内の帯電特性を検出する検出部を更に備え、
     前記イオン放出部は、前記帯電特性に応じて、前記プラスイオン及び前記マイナスイオンを前記収容空間内に放出することを特徴とする請求項18に記載の駆動装置。
    A detector for detecting charging characteristics in the housing space;
    The driving apparatus according to claim 18, wherein the ion emission unit emits the positive ions and the negative ions into the accommodation space according to the charging characteristics.
PCT/JP2012/007465 2011-11-24 2012-11-21 Drive device WO2013076974A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011256231A JP2015035232A (en) 2011-11-24 2011-11-24 DISCHARGEING DEVICE FOR DISC RECORDER / REPRODUCER AND DISC RECORDER / REPRODUCER
JP2011-256231 2011-11-24
JP2012-091573 2012-04-13
JP2012091573A JP2015035236A (en) 2012-04-13 2012-04-13 Dust-proof device for disk recording / reproducing apparatus and disk recording / reproducing apparatus
JP2012129808A JP2015035237A (en) 2012-06-07 2012-06-07 Dust-proof device for disk recording / reproducing apparatus and disk recording / reproducing apparatus
JP2012-129808 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013076974A1 true WO2013076974A1 (en) 2013-05-30

Family

ID=48469439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007465 WO2013076974A1 (en) 2011-11-24 2012-11-21 Drive device

Country Status (1)

Country Link
WO (1) WO2013076974A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103069A (en) * 1978-11-03 1980-08-06 Papst Motoren Kg Improved brushless dc motor assembly
JPH0312085A (en) * 1989-06-09 1991-01-21 Ricoh Co Ltd Dust elimination mechanism for medium switching type magnetic disk device
JPH0579796U (en) * 1992-04-01 1993-10-29 ティアック株式会社 Fixed magnetic disk unit
JP2003303485A (en) * 2002-03-25 2003-10-24 Samsung Electronics Co Ltd Hard disk drive
JP2004127413A (en) * 2002-10-02 2004-04-22 Hitachi Ltd Magnetic disk drive
JP2004213761A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Magnetic disk drive
JP2006209827A (en) * 2005-01-25 2006-08-10 Toshiba Corp Head retracting method at power cutoff and disk storage device using this method
JP2007200536A (en) * 2006-01-23 2007-08-09 Samsung Electronics Co Ltd Hard disk drive
JP2009015985A (en) * 2007-07-06 2009-01-22 Panasonic Corp Fixed disk device and assembly method thereof
JP2010033261A (en) * 2008-07-28 2010-02-12 Hitachi Ltd Storage device and control method
JP2010146630A (en) * 2008-12-18 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv Disk drive and disk array system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103069A (en) * 1978-11-03 1980-08-06 Papst Motoren Kg Improved brushless dc motor assembly
JPH0312085A (en) * 1989-06-09 1991-01-21 Ricoh Co Ltd Dust elimination mechanism for medium switching type magnetic disk device
JPH0579796U (en) * 1992-04-01 1993-10-29 ティアック株式会社 Fixed magnetic disk unit
JP2003303485A (en) * 2002-03-25 2003-10-24 Samsung Electronics Co Ltd Hard disk drive
JP2004127413A (en) * 2002-10-02 2004-04-22 Hitachi Ltd Magnetic disk drive
JP2004213761A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Magnetic disk drive
JP2006209827A (en) * 2005-01-25 2006-08-10 Toshiba Corp Head retracting method at power cutoff and disk storage device using this method
JP2007200536A (en) * 2006-01-23 2007-08-09 Samsung Electronics Co Ltd Hard disk drive
JP2009015985A (en) * 2007-07-06 2009-01-22 Panasonic Corp Fixed disk device and assembly method thereof
JP2010033261A (en) * 2008-07-28 2010-02-12 Hitachi Ltd Storage device and control method
JP2010146630A (en) * 2008-12-18 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv Disk drive and disk array system

Similar Documents

Publication Publication Date Title
CN100385501C (en) Removable optical storage devices and systems
JP4220153B2 (en) Recording head, recording head manufacturing method, and information recording apparatus
WO2013076974A1 (en) Drive device
WO2012172815A1 (en) Optical drive system, cartridge and drive device which are used in optical drive system, and cleaning method for optical drive system
JP3919149B2 (en) Optical head device
JP2015035236A (en) Dust-proof device for disk recording / reproducing apparatus and disk recording / reproducing apparatus
JP2015035237A (en) Dust-proof device for disk recording / reproducing apparatus and disk recording / reproducing apparatus
US7420892B2 (en) Optical head device, and optical recording/reproducing device
WO1999059149A1 (en) Near-field optical head
JP2015035232A (en) DISCHARGEING DEVICE FOR DISC RECORDER / REPRODUCER AND DISC RECORDER / REPRODUCER
JP3773681B2 (en) Optical head, optical component, and optical storage device
JP6210460B2 (en) Optical disc apparatus, sheet member, and objective lens cleaning method
CN101256784A (en) Objective lens actuator and optical pickup apparatus including the same
KR100776023B1 (en) How to Secure Gap Margin in Near Field Optical Storage Devices
JP4631630B2 (en) Disk unit
JP2566014B2 (en) Optical information recording / reproducing device
KR100438569B1 (en) Apparatus for preventing contamination of optical head for near field recording
JP4100397B2 (en) cartridge
JP4525491B2 (en) Optical disc driving apparatus, optical disc apparatus and driving method thereof
KR100585654B1 (en) Optical Disc Drives, Pickups, and Optical Disc Cartridges
KR100548236B1 (en) High density data recording / playback cartridge
JPH10241175A (en) Optical head device
JP2007095171A (en) Disk device
JP2008532198A (en) Apparatus and method for controlling disc runout in an optical disc drive system
JP2007317290A (en) Objective lens actuator, and optical disk device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP